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A brief overview of vectors and tensors is given here. A three dimensional vector V in Cartesian
coordinate system can be written as

V:uf#—vf—kwfc

where u, v, and w are the components of the vector along the three mutually perpendicular
directions x, y, and z respectively and i, j, and k are the unit vectors along the coordinate axes.
If x, v, and z axes are replaced respectively by xi, xp, and x3 and the unit vectors along these
directions are denoted by &1, é», and &3, then the vector V may be represented as

V = Vié] + vaéy + v3és3
where vi, v2, and v3 are the components of vector along the three directions. Using summation
notation the above vector can be represented as

3
V=Y viei = viéy, i=1,2,3
i=1

where the repeating index i is called dummy index. Repetition of an index in a term implies a
summation with respect to that index over its range. This short hand notation for summation
is called Einstein’s summation convention.

The i component of V can be written as v;. If nonrepeating index appears in a term it is
called a free index and summation is not implied in this case.

Kronecker delta

Kronecker delta, also known as identity tensor is defined as
1 ifi=j
0 ifi#j

Also, since the unit vectors are linearly independent,

5,']' =

1 ifi=j
0 ifitj

8-0) =



Thus, we have
éi-éj = 6,'j
The most common use of the Kronecker delta is in the following operation: If we have terms

in which one of the indices of J;; is repeated, then it simply replaces the dummy index by the
other index of &;;. Consider

5,~juj = Ojjuq + Spuy + Ous
The right-hand side is u; when i =1, up when i =2, uz when i = 3. Therefore

5ijuj = U;

Dot product between two vectors

Let V and W are three-dimensional vectors, the dot product (inner product) between these
vector is

VW= (vié;) - (wjéj)
:VinSij i,j:1,2,3
= Viw;

=Vviw1 + vawy + v3ws

Levy-Civita operator (permutation epsilon)

Levy—Civita operator, also known as permutation epsilon or alternating unit tensor is defined
to be 1, 0, or —1, according to

1 if ijk are distinct and in cyclic order
&jk = § —1 if ijk are distinct but not in cyclic order
0 if ijk are not distinct (repeats)

é; X éj = 8ijkék
It follows directly from the definition of the Kronecker delta and the Levy—Civita operator, that
the equation
Eijk Eitm = Oj1 Okm — Ojm Oul

is valid.

Cross product between two vectors

The cross product (vector product) between two vector is defined as

e & &
V X W = Vi V2 V3
wip w2 w3

= (V2W3 —V3W2)él + (V3W1 —V1W3)é2 + (V1W2 — V2W1)é3



Using indicial notation,

VXW = (v;é)) x (weéy)
=VjWwg éj X ék

= VW &ji i
The i™" component of V x W is given by v,wy &ji. if i = 1 we have

VoW3E123 + V3w €130 = Vaw3 — V3w

Scalar triple product
The scalar triple product between three vectors U, V, and W is defined as
Uy w3

U(VXW): Vi V2 V3

wp wy w3
=u (vawz —vawa) + up(vawy —viwsz) + uz(viwa —vowy)

Using indicial notation,

Vector differential operators
Gradient

The gradient operator is defined as

veo? 1560 50
8x1 8x2 aX3
., d

0
V(P = 6,'8—)?
.00 L do 0
B elc?xl + ezaxz +€38x3

d
The ith component of V¢ is given by 8_¢
Xi



Divergence

The divergence of a vector V is defined as

0
©dx;
. 8v1 a\/2 aV3
N 8x1 8)62 aX3
Curl
The curl of a vector V is defined as
— (. 0
VxV= eja_xj X(Vkek)
_dv
= €i—k8ijk
Xj

The it component of V x V is given by a—vksijk. If i=1, we have
Xj

= aV3 aVZ - 8V3 aVZ
(VxV) = 8_x28123 + 8_X38132 = o  on

Laplacian operator

The Laplacian operator is defined as

92
B
Thus, the Laplacian of a scalar ¢ is defined as
9’9  d*¢  J*¢ 9%

2 2 2 2
ox; ox7 x5 x5

Vi =

and the Laplacian of a vector V is defined as

827 . az(vié,-)

VIV = =
2 2
dx; ox;
n Bzvi . . .
=éi5> —  (in Cartesian coordinates)
dx;
L 9% Lo 9%y Lo 9%v3
= €] € €3
8x§ 8x§ 8x§



Substantial derivative

The Substantial derivative operator D/Dt is defined as
D 0 d d
D=9, TV V=g ié) (—)

ot o1 “I9x;
0 d
= E + Vi8_)cj6ij
0 0
- E + V’O_xl-
Thus, the substantial derivative of a scalar variable is defined as
Do 0 00

Dt Ot 8x,
and the substantial derivative of a vector field is defined as
DV 9V N A%
—_— e R v~_
Dt dt ' ox;
0 v;
[8‘: + vja—;}j —  (in Cartesian coordinates)

DV v, v
The it component of D is given by a—‘;l + Vja—:;

Second-order tensors

We know that a scalar can be represented by a single number, and a Cartesian vector can
be represented by three numbers. However, there are other quantities, that need more than
three components for a complete description. For example, the stress at a point in a material
needs nine components for a complete specification because two directions are involved in its
description. One of the directions specifies the orientation of the surface on which the stress is
acting, and the other specifies the direction of the force on that surface. Because two directions
are involved, two indices are required to represent a second-order tensor. For example, if 7;;
represents the (7)™ component of stress tensor, the first index i denotes the direction of the
unit normal to the surface, and the second index j denotes the direction in which the force is
being projected. _

A second-order tensor T using indicial notation can be written as

T = Tijéiéj
= (118, + ©jé; + 13jé3)¢;
= (71161 + ™16 + 13183) €1 + (T1281 + T22és + T3283) €2 + (T1381 + ™38, + T33€3) €3
In matrix form the second-order tensor is

. T Ti2 T3
T=|m ™ ™3
731 132 133

The (i)t component of tensor T is given by Tij.

5



Tensor properties

° E—F? = (S,’j + T,‘j) éié; i.e., the (ij)th component of E—F? is Sij+ Tij
° E—{—?:?—FE i.e., Sij+ Tij = Tij + Sij
o al = at;jéié; i.e., the (ij)™ component of aT is at;j

Symmetric and skew-symmetric tensors

A tensor T is called symmetric in the indices i and j if the components do not change when
i and j are interchanged, that is, if 7;; = 7;;. The matrix corresponding to this second-order
tensor is therefore symmetric about the diagonal and made up of only six distinct components.
A tensor is called skew-symmetric if 7;; = —7;;. Note that a skew-symmetric tensor must have
zero diagonal terms, and off-diagonal terms must be mirror images. It is therefore made up of
only three distinct components. Any tensor can be represented as the sum of a symmetric part
and a skew-symmetric part; for example,

T = (% + i) + 3(7 — i)

The operation of interchanging i and j does not change the first term, but changes the sign of
the second term. Therefore the first term is called the symmetric part of T and second term is
called skew-symmetric part of T.

Vector as a tensor

There is a very important relation between a vector in three dimensions and the skew-symmetric
second order tensor. It is easy to show that every vector can be associated with a skew-symmetric
tensor, and vise-versa. For example, we can associate the vector

1
V = %)
V3
with an skew-symmetric tensor defined by
B 0O —v3 wm
R = V3 0 —V1

—V) Vi 0

where the two are related as

Rij = —&jivi
1
Vie = —5&jiRij



Dyadic product

If V and W are two vectors, the dyadic product of these vectors is second order tensor, in which
the elements of the array are products of the components of the vectors. The dyadic product
is represented by VW.

VW= Viéinéj = Vinéiéj

= V1Wjél +VZWjé2+V3Wjé3) éj

= (viw181 +vaw1ér +vaw183) €1 + (Viwaé] + vowpés + v3wné3) é
+ (viw3é] +vawzéy + v3wsés) é3

Viwyp viwz Vw3
= | vaw1 Vvawz2 VW3
Vawy V3wz  V3w3

The (i)t component of the dyadic product VW is given by viw;. The order of the two vectors
that constitute the dyadic product is important. In general, VW £ WV.

Gradient of a vector

With the concept of the dyadic product between two vectors which produces a tensor a new
calculus operation can be performed on a vector to obtain a second order tensor. This new
operation is the gradient of a vector, resulting a second-order tensor.

— 8V a(évi) 8\/,'
VV:A'—: g - I = 0.0
ej 8xj ej 8xj elej axj'
T Jdvy dvi dvy ]
dx; dxy dx3
. V2 aV2 1%
N 8x1 aX2 aX3
vy dvz 0Jvi
L 8x1 a)Q aX3 _
The (ij)t™ component of the tensor VV is given by a—v’
Xj
Unit tensor
The base vectors é;, €;, and é; can be represented as
1 0 0
ée1=10 éH=11 é&3=10
0 0 1

and the unit tensor & as

[e%)

Il
=
S = O
- o O



The (ij)th component of the unit tensor 5 is given by Kronecker delta, 0;j. It may be noted
that the unit tensor §;; is an isotropic tensor in the sense that its components are unchanged
by a rotation of the frame of reference. (There is no isotropic tensor of first order. §;; is the
only isotropic tensor of second-order. There is also only one isotropic tensor of third order that
is the alternating tensor or permutation epsilon.)

Dyadic product between two unit tensors

The product of two unit vectors is referred to as a unit dyad.
8i€j = 8imOjn = 0j;
For example,

8162 = 0102y =

o O O

1 0
00
00

Note that the unit dyads é;é; and é;¢é; are different. There are nine quantities é¢;é; and each
of these is multiplied by the corresponding component of the dyadic product. It should also be
noted that the (ij)™ component is in general different from the (ji)" component. The unit
dyads play the same role in tensor analysis that the unit vectors played in vector analysis. The
notion of dyads can be generalized to tensors because all that matters is the entity which has
nine unit dyads multiplied by the corresponding components.

Inner product or double dot product
The double dot product between two tensors is a scalar and is defined as
§:T = (sijéiej) : (Tpgepéy)
= $ijTpq(€i-€p)(€)-&y)
= $ijTpq OipOjq

= 5 Tij
The term s;;7;; can be expanded as follows

SijTij = S1;T1j + $2jT2j + $3;713;

=S511T11 + S12T12 + 513713 + $21T21 + 522122 + 523123 + 531731 + §32732 + $33733

Thus, the double dot product between two tensors is obtained when their individual entries are
multiplied with each other and summed. Note that another product s;;7;; is also possible and

= :T pr—
is denoted by S: 7 . If T is a symmetric tensor, then s;;7;; = s;;T;; and hence

SijTij = S11TI1 + 522722 + 533733 + 2(512T12 + 513713 + $23T23)



The inner product s;;7;; = 0 if one of these tensors is symmetric and the other is skew-symmetric.
We also have,

?ZVW: Tijviw;
VWIY?Z Viw jXiy j
T: S = T,‘j6,‘j = Tj
= — 8vl~
T:VV =1,;—
l]ax]'

Dual vector of a tensor

The dual vector d; of a tensor Tj; is defined by the inner product
di = &jk Tjk

It may be proved that this product is vector.

Dot product of tensor and vector

The dot product between a tensor and a vector (contracted product) is a vector.

el

V = (Tij éiéj) . (Vkék)
= TjjVkéi0ijk
= ”L','jVjé,'

The it component of T-Vis given by 7;;v;.

Similarly, the jt component of V.Tis given by v;T;;.

Nl

V= V-? (for symmetric tensor)

Tensor product of two tensors

The single dot product between two tensors is a tensor. For example,

e
=
Qﬂ
<.
> ™
Q>

~
ﬁm

<

where R is a tensor. The (ij)™ component of R is, 7ij = s Tp;.



Differential operations involving tensors

The calculus of tensors also follows the same lines as vector calculus. Consider some operations
of tensor calculus. The divergence of a tensor is defined as the dot product of the gradient
operator V and the tensor. Consider evaluation in Cartesian coordinates:

V? = <€AJ%) . (Tkiékéi>

J

= oT;;
The it component of V-T is given by a—ﬂ If 7;; is symmetric,
Xj
81',‘]'

J

Note that while the divergence of a vector is a scalar the divergence of a tensor gives rise to a
vector.

va == (Wjéj)- <éka(;;€:l))
0V
:eina—Xk

&V,‘

T
J

6;

i
8xj'

Another useful relation involving a tensor T and vector V is as follows

The i*" component of W-VV is given by w;

v. (?-V) —V. (v-?) YT VY
0 8r,-,~ avi

—(T;;V;) = V,—— PR
8x,-( Y j) l&xj Y 8xj

For a symmetric tensor T, the above relation may be written as

0 .81',‘]' av,-

—(Ti;V;:) = V;—— PR
8x,~( Y j) lax]' Y 8xj
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