
An overview of Cartesian Tensors

A. Salih
Department of Aerospace Engineering

Indian Institute of Space Science and Technology, Thiruvananthapuram
February 2011

A brief overview of vectors and tensors is given here. A three dimensional vector V in Cartesian

coordinate system can be written as

V = uî + v ĵ + wk̂

where u, v, and w are the components of the vector along the three mutually perpendicular

directions x, y, and z respectively and i, j, and k are the unit vectors along the coordinate axes.

If x, y, and z axes are replaced respectively by x1, x2, and x3 and the unit vectors along these

directions are denoted by ê1, ê2, and ê3, then the vector V may be represented as

V = v1ê1 + v2ê2 + v3ê3

where v1, v2, and v3 are the components of vector along the three directions. Using summation

notation the above vector can be represented as

V =
3

∑
i=1

viêi = viêi, i = 1,2,3

where the repeating index i is called dummy index. Repetition of an index in a term implies a

summation with respect to that index over its range. This short hand notation for summation

is called Einstein’s summation convention.

The ith component of V can be written as vi. If nonrepeating index appears in a term it is

called a free index and summation is not implied in this case.

Kronecker delta

Kronecker delta, also known as identity tensor is defined as

δi j :=

{
1 if i = j

0 if i 6= j

Also, since the unit vectors are linearly independent,

êi · ê j =

{
1 if i = j

0 if i 6= j
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Thus, we have

êi · ê j = δi j

The most common use of the Kronecker delta is in the following operation: If we have terms

in which one of the indices of δi j is repeated, then it simply replaces the dummy index by the

other index of δi j. Consider

δi ju j = δi1u1 + δi2u2 + δi3u3

The right-hand side is u1 when i = 1, u2 when i = 2, u3 when i = 3. Therefore

δi ju j = ui

Dot product between two vectors

Let V and W are three-dimensional vectors, the dot product (inner product) between these

vector is

V ·W = (viêi) · (w jê j)

= viw jδi j i, j = 1,2,3

= viwi

= v1w1 + v2w2 + v3w3

Levy–Civita operator (permutation epsilon)

Levy–Civita operator, also known as permutation epsilon or alternating unit tensor is defined

to be 1, 0, or −1, according to

εi jk :=


1 if i jk are distinct and in cyclic order

−1 if i jk are distinct but not in cyclic order

0 if i jk are not distinct (repeats)

êi× ê j = εi jk êk

It follows directly from the definition of the Kronecker delta and the Levy–Civita operator, that

the equation

εi jk εilm = δ jl δkm − δ jm δkl

is valid.

Cross product between two vectors

The cross product (vector product) between two vector is defined as

V ×W =

∣∣∣∣∣∣
ê1 ê2 ê3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
= (v2w3− v3w2)ê1 + (v3w1− v1w3)ê2 + (v1w2− v2w1)ê3
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Using indicial notation,

V ×W = (v jê j)× (wkêk)

= v jwk ê j× êk

= v jwk εi jk êi

The ith component of V ×W is given by v jwk εi jk. if i = 1 we have

v2w3ε123 + v3w2ε132 = v2w3 − v3w2

Scalar triple product

The scalar triple product between three vectors U , V , and W is defined as

U · (V ×W ) =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
= u1(v2w3− v3w2) + u2(v3w1− v1w3) + u3(v1w2− v2w1)

Using indicial notation,

U · (V ×W ) = ui(V ×W )i

= uiv jwk εi jk

Vector differential operators

Gradient

The gradient operator is defined as

∇≡ ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3

= êi
∂

∂xi

Thus, the gradient of scalar is given by

∇φ = êi
∂φ

∂xi

= ê1
∂φ

∂x1
+ ê2

∂φ

∂x2
+ ê3

∂φ

∂x3

The ith component of ∇φ is given by
∂φ

∂xi
.
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Divergence

The divergence of a vector V is defined as

∇ ·V ≡
(

êi
∂

∂xi

)
· (v jê j) =

∂v j

∂xi
δi j

=
∂vi

∂xi

=
∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3

Curl

The curl of a vector V is defined as

∇×V ≡
(

ê j
∂

∂x j

)
× (vkêk)

= êi
∂vk

∂x j
εi jk

The ith component of ∇×V is given by
∂vk

∂x j
εi jk. If i = 1, we have

(∇×V )1 =
∂v3

∂x2
ε123 +

∂v2

∂x3
ε132 =

∂v3

∂x2
− ∂v2

∂x3

Laplacian operator

The Laplacian operator is defined as

∇
2 ≡ ∇ ·∇ =

(
êi

∂

∂xi

)
·
(

ê j
∂

∂x j

)
=

∂

∂xi

(
∂

∂x j

)
δi j =

∂

∂xi

(
∂

∂xi

)
=

∂ 2

∂x2
i

Thus, the Laplacian of a scalar φ is defined as

∇
2
φ =

∂ 2φ

∂x2
i
=

∂ 2φ

∂x2
1
+

∂ 2φ

∂x2
2
+

∂ 2φ

∂x2
3

and the Laplacian of a vector V is defined as

∇
2V =

∂ 2V
∂x2

j
=

∂ 2(viêi)

∂x2
j

= êi
∂ 2vi

∂x2
j

→ (in Cartesian coordinates)

= ê1
∂ 2v1

∂x2
j
+ ê2

∂ 2v2

∂x2
j
+ ê3

∂ 2v3

∂x2
j
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Substantial derivative

The Substantial derivative operator D/Dt is defined as

D
Dt
≡ ∂

∂ t
+ V ·∇ =

∂

∂ t
+ (viêi) ·

(
ê j

∂

∂x j

)
=

∂

∂ t
+ vi

∂

∂x j
δi j

=
∂

∂ t
+ vi

∂

∂xi

Thus, the substantial derivative of a scalar variable is defined as

Dφ

Dt
=

∂φ

∂ t
+ vi

∂φ

∂xi

and the substantial derivative of a vector field is defined as

DV
Dt

=
∂V
∂ t

+ v j
∂V
∂x j

= êi

[
∂vi

∂ t
+ v j

∂vi

∂x j

]
→ (in Cartesian coordinates)

The ith component of
DV
Dt

is given by
∂vi

∂ t
+ v j

∂vi

∂x j
.

Second-order tensors

We know that a scalar can be represented by a single number, and a Cartesian vector can

be represented by three numbers. However, there are other quantities, that need more than

three components for a complete description. For example, the stress at a point in a material

needs nine components for a complete specification because two directions are involved in its

description. One of the directions specifies the orientation of the surface on which the stress is

acting, and the other specifies the direction of the force on that surface. Because two directions

are involved, two indices are required to represent a second-order tensor. For example, if τi j

represents the (i j)th component of stress tensor, the first index i denotes the direction of the

unit normal to the surface, and the second index j denotes the direction in which the force is

being projected.

A second-order tensor T using indicial notation can be written as

T = τi j êiê j

= (τ1 jê1 + τ2 jê2 + τ3 jê3) ê j

= (τ11ê1 + τ21ê2 + τ31ê3) ê1 + (τ12ê1 + τ22ê2 + τ32ê3) ê2 + (τ13ê1 + τ23ê2 + τ33ê3) ê3

In matrix form the second-order tensor is

T =

 τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33


The (i j)th component of tensor T is given by τi j.
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Tensor properties

• S+T = (si j + τi j) êiê j i.e., the (i j)th component of S+T is si j + τi j

• S+T = T +S i.e., si j + τi j = τi j + si j

• aT = aτi j êiê j i.e., the (i j)th component of aT is aτi j

Symmetric and skew-symmetric tensors

A tensor T is called symmetric in the indices i and j if the components do not change when

i and j are interchanged, that is, if τi j = τ ji. The matrix corresponding to this second-order

tensor is therefore symmetric about the diagonal and made up of only six distinct components.

A tensor is called skew-symmetric if τi j =−τ ji. Note that a skew-symmetric tensor must have

zero diagonal terms, and off-diagonal terms must be mirror images. It is therefore made up of

only three distinct components. Any tensor can be represented as the sum of a symmetric part

and a skew-symmetric part; for example,

τi j =
1
2(τi j + τ ji)+

1
2(τi j− τ ji)

The operation of interchanging i and j does not change the first term, but changes the sign of

the second term. Therefore the first term is called the symmetric part of T and second term is

called skew-symmetric part of T .

Vector as a tensor

There is a very important relation between a vector in three dimensions and the skew-symmetric

second order tensor. It is easy to show that every vector can be associated with a skew-symmetric

tensor, and vise-versa. For example, we can associate the vector

V =

 v1

v2

v3


with an skew-symmetric tensor defined by

R =

 0 −v3 v2

v3 0 −v1

−v2 v1 0


where the two are related as

Ri j = −εi jkvk

vk =−
1
2

εi jkRi j
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Dyadic product

If V and W are two vectors, the dyadic product of these vectors is second order tensor, in which

the elements of the array are products of the components of the vectors. The dyadic product

is represented by V W .

V W = vi êiw j ê j = viw j êiê j

=
(
v1w jê1 + v2w jê2 + v3w jê3

)
ê j

= (v1w1ê1 + v2w1ê2 + v3w1ê3) ê1 + (v1w2ê1 + v2w2ê2 + v3w2ê3) ê2

+ (v1w3ê1 + v2w3ê2 + v3w3ê3) ê3

=

 v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

v3w1 v3w2 v3w3


The (i j)th component of the dyadic product V W is given by viw j. The order of the two vectors

that constitute the dyadic product is important. In general, V W 6=W V .

Gradient of a vector

With the concept of the dyadic product between two vectors which produces a tensor a new

calculus operation can be performed on a vector to obtain a second order tensor. This new

operation is the gradient of a vector, resulting a second-order tensor.

∇V = ê j
∂V
∂x j

= ê j
∂ (êivi)

∂x j
= êiê j

∂vi

∂x j

=


∂v1

∂x1

∂v1

∂x2

∂v1

∂x3
∂v2

∂x1

∂v2

∂x2

∂v2

∂x3
∂v3

∂x1

∂v3

∂x2

∂v3

∂x3


The (i j)th component of the tensor ∇V is given by

∂vi

∂x j
.

Unit tensor

The base vectors êi, ê j, and êk can be represented as

ê1 =

 1
0
0

 ê2 =

 0
1
0

 ê3 =

 0
0
1


and the unit tensor δ̂ as

δ̂ =

 1 0 0
0 1 0
0 0 1


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The (i j)th component of the unit tensor δ̂ is given by Kronecker delta, δi j. It may be noted

that the unit tensor δi j is an isotropic tensor in the sense that its components are unchanged

by a rotation of the frame of reference. (There is no isotropic tensor of first order. δi j is the

only isotropic tensor of second-order. There is also only one isotropic tensor of third order that

is the alternating tensor or permutation epsilon.)

Dyadic product between two unit tensors

The product of two unit vectors is referred to as a unit dyad.

êiê j = δimδ jn = δi j

For example,

ê1ê2 = δ1mδ2n =

 0 1 0
0 0 0
0 0 0


Note that the unit dyads êiê j and ê jêi are different. There are nine quantities êiê j and each

of these is multiplied by the corresponding component of the dyadic product. It should also be

noted that the (i j)th component is in general different from the ( ji)th component. The unit

dyads play the same role in tensor analysis that the unit vectors played in vector analysis. The

notion of dyads can be generalized to tensors because all that matters is the entity which has

nine unit dyads multiplied by the corresponding components.

Inner product or double dot product

The double dot product between two tensors is a scalar and is defined as

S : T = (si j êiê j) : (τpq êpêq)

= si jτpq(êi · êp)(ê j · êq)

= si jτpq δipδ jq

= si jτi j

The term si jτi j can be expanded as follows

si jτi j = s1 jτ1 j + s2 jτ2 j + s3 jτ3 j

= s11τ11 + s12τ12 + s13τ13 + s21τ21 + s22τ22 + s23τ23 + s31τ31 + s32τ32 + s33τ33

Thus, the double dot product between two tensors is obtained when their individual entries are

multiplied with each other and summed. Note that another product si jτ ji is also possible and

is denoted by S : T
T

. If T is a symmetric tensor, then si jτi j = si jτ ji and hence

si jτi j = s11τ11 + s22τ22 + s33τ33 + 2(s12τ12 + s13τ13 + s23τ23)
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The inner product si jτi j = 0 if one of these tensors is symmetric and the other is skew-symmetric.

We also have,

T : V W = τi jviw j

V W : X Y = viw jxiy j

T : δ̂ = τi jδi j = τii

T : ∇V = τi j
∂vi

∂x j

Dual vector of a tensor

The dual vector di of a tensor τ jk is defined by the inner product

di = εi jk τ jk

It may be proved that this product is vector.

Dot product of tensor and vector

The dot product between a tensor and a vector (contracted product) is a vector.

T ·V = (τi j êiê j) · (vkêk)

= τi jvkêiδ jk

= τi jv jêi

The ith component of T ·V is given by τi jv j.

Similarly, the jth component of V ·T is given by viτi j.

T ·V = V ·T (for symmetric tensor)

Tensor product of two tensors

The single dot product between two tensors is a tensor. For example,

R = S ·T
= (sipêiêp) ·

(
τq jêqê j

)
= sipτq jêiê jδpq

= sipτp jêiê j

where R is a tensor. The (i j)th component of R is, ri j = sip τp j.
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Differential operations involving tensors

The calculus of tensors also follows the same lines as vector calculus. Consider some operations

of tensor calculus. The divergence of a tensor is defined as the dot product of the gradient

operator ∇ and the tensor. Consider evaluation in Cartesian coordinates:

∇ ·T =

(
ê j

∂

∂x j

)
· (τkiêkêi)

= êi
∂τki

∂x j
δ jk

= êi
∂τ ji

∂x j

The ith component of ∇ ·T is given by
∂τ ji

∂x j
. If τi j is symmetric,

∇ ·T = êi
∂τi j

∂x j

Note that while the divergence of a vector is a scalar the divergence of a tensor gives rise to a

vector.

W ·∇V = (w jê j) ·
(

êk
∂ (êivi)

∂xk

)
= êiw j

∂vi

∂xk
δ jk

= êiw j
∂vi

∂x j

The ith component of W ·∇V is given by w j
∂vi

∂x j
.

Another useful relation involving a tensor T and vector V is as follows

∇ ·
(

T ·V
)
= V ·

(
∇ ·T

)
+T : ∇V

∂

∂xi
(τi jv j) = vi

∂τ ji

∂x j
+ τi j

∂vi

∂x j

For a symmetric tensor T , the above relation may be written as

∂

∂xi
(τi jv j) = vi

∂τi j

∂x j
+ τi j

∂vi

∂x j
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