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The stress at a point in a material needs nine components for its complete description be-
cause two directions (and therefore, two free indices) are involved in its description. One of the
directions specifies the orientation of the surface on which the stress is acting, and the other
specifies the direction of the force on that surface. Let us look at it in more detail.

Figure 1: Stress components on an infinitesimal rectangular parallelepiped.

Consider an infinitesimal rectangular parallelepiped with faces perpendicular to the coordi-
nate axes as shown in figure 1. On each face there is a normal stress and a tangential stress.
The tangential stress can be further resolved into two components in the directions of the axes.
The complete stress matrix is given below:

τ =

 τxx τxy τxz

τyx τyy τyz

τzx τzy τzz


The sign convention for the stress is that, on a surface whose outward normal points in the
positive direction of a coordinate axis, the normal and shear stresses are positive, if they point
in the positive direction of the axes. The (i j)th component of the stress tensor τ is given by τi j.
The first index of τi j indicate the direction of the normal to the surface on which the stress is
considered, and the second index indicates the direction in which the stress acts. The diagonal
elements τxx, τyy, τzz are the normal stresses and the off-diagonal elements are the tangential or
shear stresses. Although a parallelepiped is shown, its size actually is zero and the figure really
shows the stresses on three orthogonal planes passing through a point.
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Stress tensor is symmetric

An important property of τ is its symmetry, i.e. τ ji = τi j. this can be proved by the application of
angular momentum principle to a differential fluid element, taken as a rectangular parallelepiped.
The origin of the coordinate system is assumed to be at the center of the element.

Euler’s equation (for a rotating rigid body about z-axis) states that

Iz
dωz

dt
= Mz (1)

where

Iz = ρδV
δx2 +δy2

12
=

ρ

12
δxδyδ z

(
δx2 +δy2)

is the moment of inertia of the fluid element, ωz is the angular velocity about the positive z-axis,
and Mz is the moment of all forces about z-axis.

The moment about the z-axis due to τxy and τyx,

(τxyδyδ z)
δx
2
− (τyxδxδ z)

δy
2

=
1
2
(τxy − τyx)δxδyδ z

The shear stresses acting on the negative x- and y-surfaces contribute as well, so that the total
moment about the z-axis is

(τxy − τyx)δxδyδ z

The substitution of the above quantities into equation (1) gives

ρ

12
(
δx2 +δy2) dωz

dt
= τxy − τyx

In order that
dωz

dt
remains finite, we need (τxy − τyx)→ 0 when δx, δy→ 0. It follows that τxy = τyx.

Similar considerations establish that

τxy = τyx τyz = τzy τzx = τxz (2)

The above condition means that the stress tensor must be symmetric:

τ
T
= τ or τ ji = τi j

Note that the condition of stress symmetry is not valid if there is a significant body couple per
unit mass c in the field. In this case, we can easily show that,

ε : τ − ρc = 0

where ε is the third order alternating tensor. This gives a relationship between c and the off-
diagonal components of τ, but the stress is clearly not symmetric.
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Stress vector on a prescribed surface

On a prescribed surface (unit normal known), the stress is considered as a vector because it
can be completely described by just three components. The stress vectors in the planes normal
to x, y, and z axes are respectively given as

S(x) = τxx î + τxy ĵ + τxz k̂

S(y) = τyx î + τyy ĵ + τyz k̂ (3)

S(z) = τzx î + τzy ĵ + τzz k̂

The above relation may be written in a compact form as S(x)

S(y)

S(z)

 =

 τxx τxy τxz

τyx τyy τyz

τzx τzy τzz


 î

ĵ
k̂


By the principle of local stress equilibrium1, the stress vector on an arbitrary surface, whose

normal n̂, is given by
S(n) = S(x) nx + S(y) ny + S(z) nz (4)

where the unit normal
n̂ = nx î+ny ĵ+nz k̂

with nx, ny, nz being the direction cosines of the normal n̂.
Now, the stress vector on a surface having unit normal n̂ can be resolved into three mutually

perpendicular components as
S(n) = S(n)x î + S(n)y ĵ + S(n)z k̂ (5)

From equations (3), (4), and (5) it can be deduced that

S(n)x = τxx nx + τyx ny + τzx nz

S(n)y = τxy nx + τyy ny + τzy nz (6)

S(n)z = τxz nx + τyz ny + τzz nz

The above relation may be written in compact form as S(n)x

S(n)y

S(n)z

 =

 τxx τyx τzx

τxy τyy τzy

τxz τyz τzz


 nx

ny

nz


The ith component of the stress vector S(n) is given by

S(n)i = τ ji n j = τi j n j (since stress tensor is symmetric)

1It states that the surface forces must be in local equilibrium for any arbitrary small volume element. This is true

independent of the source or detailed form of the surface forces.
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or using vector notation
S(n) = τ

T· n̂ = τ · n̂ (7)

The above equation states that the dot (or inner) product of the stress tensor τ and the unit
outward normal gives the force per unit area (stress) on a surface. Equation (7) is analogous to
un = u · n̂, where un is the component of the vector u along unit normal n̂; however, whereas un is
a scalar, S(n) in the equation (7) is a vector.

From the above discussion, it follows that the surface stress vector on any arbitrarily oriented
surface through a point x is completely determined by specification of the nine independent
components of the stress tensor τ at that point. The total surface force acting on the entire
surface is given by

Fs =
∫

A
S(n) dA =

∫
A

τ · n̂dA .
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