Linear Regression

S. Sumitra

Notations: w;: ith data point; z”: transpose of x; z;; : ith data point’s jth
attribute.

Let {(x1,91), (x2,y2)...(xN,yn)} be the given data, x; € D and y; € Y. Here D
denote the space of input values and Y denote the space of output values.

If the target variable is continuous, the learning problem is known as regression.
If the target variable y takes only discrete values, it is a classification problem.

In this paper, D =R"™ and Y= R.

The simplest linear model is the representation of f as a linear combination of z.
That is,

f(l‘z) = W + W1Tj1 + Wakjo + ... WpTin (1)
where, 7; = (241, T2, ... Tin)T and w = (wg, w1, ..., w,)T € R*™1. Here, w)s are the
parameters, parameterizing the space of linear functions mapping from X to ).

(1) is the equation of a hyperplane.
By taking z;0 = 1, (1) can be written as

flw) =D wim; = w'z; (2)
=0

Given a training set, how to choose the values of wjs?
As there are N data points, we could write N equations such that,

fla) = way=w'r;i=1,2,...N (3)
3=0
Define the design matrix to be




Here, s are the training data (each z; is a n dimensional vector). X isa N xn+1
matrix, if we include the intercept term, that is if we set z; = (x;0, i1, :Bm)T and
set ;o = 1. Let y be the N dimensional vector that contains all the target values,
that is,

Y1
Y2

L YN
Now the matrix representation for (3) is

Xw=y (4)

The range space of X is spanned by the columns of X. If X is a square matrix
and inverse exists, w = X ~'y. This might not be the case always. (4) may have no
solution or more than one solution. The former case happens when X is not onto
and later case happens X is not one to one.

Next we consider the case of rectangular matrices.

1 vy is not in the range of X (n+1 < N)

We will first consider the case when y is not in the range of X. In this case we find
the preimage of the projection of y onto the range space of X. That is, the optimal
solution is
w* =arg min J(w
gwER"Jfl ( )

where
T(w) = Sd(Xw,))? = ]| Xw — y]? o)

J(w) is called the least square cost function.

Now J(w) = H(d(Xw,))* = 3| Xw — y|> = }(Xw —y, Xw —y)

At the minimum value of w, VJ = 0. That is ,

VJ = X"Xw—-XTy=0



Hence,

XTxXw=X"y (6)
(6) is called the normal equation. Hence,

w=(XTX)"'XxTy (7)

provided (X7X)'X7 exists. (X7X) 'X7T is called the pseudo-inverse. For
determining w using derivative method, the inverse of X7 X is to be found, which is
not computationally effective for large data sets. Hence we resort to iterative search
algorithms for finding w.

1.1 Least Mean Squares Algorithm

For finding w that minimizes J, we apply an iterative search algorithm. An iter-
ative search algorithm that minimizes J(w), starts with an initial guess of w and
then repeatedly change w to make J(w) smaller, until it converge to the values that
minimizes J(w). We consider gradient descent for finding w.

[Gradient descent: If a real valued function F(x) is defined and differentiable in
a neighbourhood of point a, then F(x) decreases fastest if one goes from a in the
direction of the negative gradient of F' at a, VF(a). The gradient of the function
is always perpendicular to the contour lines.(A contour line of a function of two
variables is a curve along which the function has a constant value. )]

(5) can also be written as

N

Tw) = 33 (4 - )’ ®)

For applying gradient descent, consider the following steps. Choose an initial
w = (wg, wy, ...w,)T € R, Then repeatedly performs the update

w:=w—aVJ 9)
Here, o > 0 is called the learning rate.
Since f is a function of wy, wy, ..., w,, J is a function of wqy, wy, ..., w,y.
Therefore,
oy (91 0J a7 \" (10)
 \dwy Ow, T dw,,
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Sub: (10) in (9),

Hence,
w] :wJ aaa%hj 20717 n (12)
J
Now
a.J 0 1 )
ow, — ow,2 ;(f(%) — Yi)
N a n
~ 30w - (S
i=1 7=0
N
= S (f ) — o)
=1
Therefore,
N
wj = wj+a Y (4= f(@:)wig, 5 =0,1,2,...n (13)
i=1

(13) is called LMS (least mean squares) update or Widrow -Hoff learning rule. Pseu-
docode of the algorithm can be written as:
Iterate until convergence {

N
wj = w; + OZZ(% — f(z:)zij,7 =0,1,2,...n
i=1

}

The magnitude of the update of parameter is proportional to the error term
(y; — f(x;)). Larger change to the parameter is made when the error is large and
vice versa.

For updating the parameter, the algorithm looks at every data point in the train-
ing set at every step and hence it called batch gradient descent. In general, gradient
descent does not guarantee a global minimum. However as J is a convex quadratic
function, the algorithm converges to the global minimum (assuming « is not too
large).



There is an alternative to batch gradient descent called stochastic gradient descent
which can be stated as follows:

Iterate until convergence {
for i=1 to N{

wj = wj + oy, — f(x;))xi;, 7 =0,1,2,...n

H

In contrast to batch gradient, stochastic gradient process only one training point
at each step. Hence when N becomes large, that is, for large data sets, stochastic
gradient descent is more computationally efficient than batch gradient descent.

2 y has more than one pre-image (N < (n+ 1))

The second case is when y is in the range of X but has more than one pre-image.
As there would be more than one w that satisfies the given equation, the following
constrained optimization problem has to be considered:

minimize  ||w||?
weRn+1 (14)
subject to Xw =1y

By applying lagrangian theory,

L(w, A) = [[w][* + X (Xw — y)

where AT = (A1, g, ... An). Aiyi = 1,2,... N are the lagrangian parameters. By

. 0L
equating e 0

2w+ XTA =0
Hence T
W= — 5 (15)
By equating g—i = 0 we get,
Xw—-—y=0 (16)



Using (15), the above equation becomes

~XXTA

5 Y

Therefore
A= —(XXT)"12y

Sub: (17) to (15),

w=X"(XXT) "y
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