
MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

MA122 - Computer Programming and
Apllications

Indian Institute of Space Science and Technology

January 27, 2017

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

Lecture 7

1 Compound Assignment

2 Operator Precedence

3 Compound types

4 array

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

Compound Assignment

Expression Equivalent to

y+ = x y = y + x

y− = 5 y = y − 5

x/ = y x = x/y

z∗ = y + 1 z = z ∗ (y + 1)

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

Lecture 7

1 Compound Assignment

2 Operator Precedence

3 Compound types

4 array

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

Operator Precedence

Precedence Operator Description Associativity

2 ++ Postfix increment L-R

−− Postfix decrement

3 ++ Prefix increment R-L

−− Prefix decrement

∗ Multiply

5 / Divide L-R

% Modulo

6 + Addition L-R

- Subtraction

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

Operator Precedence

Precedence Operator Description Associativity

< Less than

8 <= Less than or equal to L-R

>= greater than equal to

> Greater than

9 == Equal to L-R

! = Not equal to

13 && Logical AND L-R

14 || Logical OR L-R

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

Operator Precedence

Precedence Operator Description Associativity

15 :? Conditional R-L

= Simple assignment

∗ = Multiply and assign

/ = Divide and assign

16 % = modulo and assign R-L

+ = Add and asign

− = Subtract and assign

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

Lecture 7

1 Compound Assignment

2 Operator Precedence

3 Compound types

4 array

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

Introducing arrays

ptg7068951

117Introducing Arrays

ragnar

int ragnar[7];
subscripts
(or indices)

third element
second element
first element

ragnar is an array holding seven values,
each of which is a type int variable

0 1 2 3 4 5 6

Figure 4.1 Creating an array.

Much of the usefulness of the array comes from the fact that you can access array ele-
ments individually.The way to do this is to use a subscript, or an index, to number the ele-
ments. C++ array numbering starts with zero. (This is nonnegotiable; you have to start at
zero. Pascal and BASIC users will have to adjust.) C++ uses a bracket notation with the
index to specify an array element. For example, months[0] is the first element of the
months array, and months[11] is the last element. Note that the index of the last element
is one less than the size of the array (see Figure 4.1).Thus, an array declaration enables you
to create a lot of variables with a single declaration, and you can then use an index to
identify and access individual elements.

The Importance of Valid Subscript Values
The compiler does not check to see if you use a valid subscript. For instance, the compiler
won’t complain if you assign a value to the nonexistent element months[101]. But that
assignment could cause problems when the program runs, possibly corrupting data or code,
possibly causing the program to abort. So it is your responsibility to make sure that your pro-
gram uses only valid subscript values.

The yam analysis program in Listing 4.1 demonstrates a few properties of arrays,
including declaring an array, assigning values to array elements, and initializing an array.

Listing 4.1 arrayone.cpp

// arrayone.cpp -- small arrays of integers
#include <iostream>
int main()
{

using namespace std;
int yams[3]; // creates array with three elements
yams[0] = 7; // assign value to first element

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

Lecture 7

1 Compound Assignment

2 Operator Precedence

3 Compound types

4 array

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

Introducing arrays continued...

1 // arrayone.cpp -- small arrays of integers

2 #include <iostream>

3 int main()

4 {

5 using namespace std;

6 int yams[3]; // creates array with three elements

7

8 yams[0] = 7; // assign value to first element

9 yams[1] = 8;

10 yams[2] = 6;

11

12 int yamcosts[3] = {20, 30, 5}; // create, initialize

array

13

14 cout << "Total yams = ";

15 cout << yams[0] + yams[1] + yams[2] << endl;

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

Introducing arrays continued...

1 cout << "The package with " << yams[1] << " yams

costs ";

2 cout << yamcosts[1] << " cents per yam.\n";

3

4 int total = yams[0] * yamcosts[0] + yams[1] *

yamcosts[1];

5 total = total + yams[2] * yamcosts[2];

6

7 cout << "The total yam expense is " << total << "

cents.\n";

8

9 cout << "\nSize of yams array = " << sizeof yams;

10 cout << " bytes.\n";

11

12 cout << "Size of one element = " << sizeof yams[0];

13 cout << " bytes.\n";

14 return 0; }

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

array initialization

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5

6 int cards[4] = {3, 6, 8, 10}; // okay

7 int hand[4]; // okay

8

9 hand[4] = {5, 6, 7, 9}; // not allowed

10 hand = card; // not allowed

11

12 float hotelTips[5] = {5.0, 2.5}; //fewer values,

allowed

MA122 -
Computer

Programming
and

Apllications

Compound
Assignment

Operator
Precedence

Compound
types

array

array initialization continued ...

1

2 double earnings[4] {1.2e4, 1.6e4, 1.1e4, 1.7e4}; //

okay with C++11

3

4 unsigned int counts[10] = {}; // all elements set to 0

5 float balances[100] {}; // all elements set to 0

6

7 long plifs[] = {25, 92, 3.0}; // not allowed

8

9 char slifs[4]= {’h’, ’i’, 1122011, ’\0’}; // not

allowed

10

11 char tlifs[4] ={’h’, ’i’, 112, ’\0’}; // allowed

12

13 return 0; }

	Compound Assignment
	Operator Precedence
	Compound types
	array

