MA122 -
Computer
Programming
and
Apllications

MA122 - Computer Programming and
Apllications

Indian Institute of Space Science and Technology

January 25, 2017



Lecture 6

MA122 -
Computer
Programming
and
Apllications

Pt Arithmetic operators

operators



A glimpse of Operator Overloading

MA122 -
Computer
Programming
and

Apllications
P type int /type int type long /type long
Arithmetic 9 / 5 9L / 5L
operators
’ operator performs operator performs
int division long division
type double /type double type float /type float
9.0 / 5.0 9.0f / 5.0f
operator performs operator performs
double division Sfloat division




The Modulus Operator

MA122 -
Computer
Programming
and
Apllications

w N

&

Arithmetic
operators

o

14
15
16
17

//uses Y, operator to convert lbs to stone
#include <iostream>

int main()

{
using namespace std;

const int Lbs_per_stn = 14;

int 1bs;

cout << "Enter your weight in pounds: ";
cin >> 1bs;

int stone = lbs / Lbs_per_stn; // whole stone
int pounds = lbs J Lbs_per_stn; // remainder in

pounds

cout << 1lbs << " pounds are " << stone
<< " stone, " << pounds << " pound(s).\n";

return 0; }




MA122 -
Computer
Programming
and
Apllications

Type
Conversions

Lecture

Type Conversions



MA122 -
Computer
Programming
and
Apllications

Type
Conversions

Potential problems

Table 3.3 Potential Numeric Conversion Problems

Conversion Type

Bigger floating-point type to smaller float-
ing-point type, such as double to float

Floating-point type to integer type

Bigger integer type to smaller integer type,
such as long to short

Potential Problems

Loss of precision (significant figures); value
might be out of range for target type, in which
case result is undefined.

Loss of fractional part; original value might be
out of range for target type, in which case result
is undefined.

Original value might be out of range for target
type; typically just the low-order bytes are copied.




MA122 -
Computer
Programming
and
Apllications

Type
Conversions

Type changes on Initialization

oA W N

// init.cpp -- type changes on initialization
#include <iostream>
int main()
{
using namespace std;
// cout.setf(ios_base::fixed, ios_base::floatfield);

float tree = 3; // int converted to float
int guess(3.9832); // double converted to int
int debt = 7.2E12; // result not defined in C++

cout << "tree = " << tree << endl;
cout << "guess = " << guess << endl;
cout << "debt = " << debt << endl;
return O;




Initialization Conversions when {} are used

(C++11)

MA122 -
Computer
Programming
and
Apllications

m list-initialization: doesn't permit narrowing, which is when
the type of the variable may not be able to represent the
assigned value.

1|#include <iostream>
2| int main()
—Cr?;iersions ’ {
4 const int code = 66;
5 int x = 66;
6| char cl {31325}; // narrowing, not allowed
7| char c2 = {66}; // allowed because char can hold 66
s| char c3 {code}; // ditto
9

10 char c4 = {x}; // not allowed, x is not constant
1| x = 31325;

12| char ¢5 = x; // allowed (not a list-initialization)
13
14| return 0; }




Lecture 6

MA122 -
Computer
Programming
and
Apllications

type casts

type casts



MA122 -
Computer
Programming
and
Apllications

type casts

Forcing type changes

s> W

© o N o u

// typecast.cpp -- forcing type changes
#include <iostream>

int main()

{

using namespace std;

int auks, bats, coots;

// the following statement adds the values as double,
// then converts the result to int

auks = 19.99 + 11.99;
// these statements add values as int

bats = (int) 19.99 + (int) 11.99; // old C syntax

coots = int (19.99) + int (11.99); // new C++ syntax




MA122 -
Computer
Programming
and
Apllications

type casts

Forcing type changes

3l cout << "auks = " << auks << ", bats = " << bats;

4lcout << ", coots = " << coots << endl;

5

6|char ch = ‘Z’;

7| cout << "The code for " <<ch << " is "; // print as
char

8

9| cout << int(ch) << endl; // print as
int

10| cout << "Yes, the code is ";

14| return 0;

15[}




	Arithmetic operators
	Type Conversions
	type casts

