
MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

MA122 - Computer Programming and
Applications

Indian Institute of Space Science and Technology

January 20, 2017

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

Lecture 5

1 const

2 float

3 Arithmetic Operators

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

The const qualifier

1 #include <iostream>

2 int main()

3 {

4

5 const int months=12;;

6

7

8

9 return 0;}

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

Lecture 5

1 const

2 float

3 Arithmetic Operators

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

Floating-point numbers

A floating-point number is composed of four elements:

A sign: either negative or non-negative.

A base (or radix): which expresses the different numbers
that can be represented with a single digit (2 for binary, 10
for decimal, 16 for hexadecimal, and so on...).

A significand (or mantissa): which is a series of digits of
the aforementioned base. The number of digits in this
series is what is known as precision.

An exponent (also known as characteristic, or scale):
which represents the offset of the significand, affecting the
value in the following way:
value of floating-point = significand × baseexponent, with
its corresponding sign.

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

Writing floating-point numbers–first method

ptg7068951

92 Chapter 3 Dealing with Data

One difference relates to the scope rules, and Chapter 9 covers that point.The other main
difference is that in C++ (but not in C), you can use a const value to declare the size of
an array.You’ll see examples in Chapter 4.

Floating-Point Numbers
Now that you have seen the complete line of C++ integer types,let’s look at the floating-
point types,which compose the second major group of fundamental C++ types.These num-
bers let you represent numbers with fractional parts,such as the gas mileage of an M1 tank
(0.56 MPG).They also provide a much greater range in values.If a number is too large to be
represented as type long—for example, the number of bacterial cells in a human body (esti-
mated to be greater than 100,000,000,000,000)—you can use one of the floating-point types.

With floating-point types, you can represent numbers such as 2.5 and 3.14159 and
122442.32—that is, numbers with fractional parts.A computer stores such values in two
parts. One part represents a value, and the other part scales that value up or down. Here’s
an analogy. Consider the two numbers 34.1245 and 34124.5.They’re identical except for
scale.You can represent the first one as 0.341245 (the base value) and 100 (the scaling fac-
tor).You can represent the second as 0.341245 (the same base value) and 100,000 (a bigger
scaling factor).The scaling factor serves to move the decimal point, hence the term
floating-point. C++ uses a similar method to represent floating-point numbers internally,
except it’s based on binary numbers, so the scaling is by factors of 2 instead of by factors
of 10. Fortunately, you don’t have to know much about the internal representation.The
main points are that floating-point numbers let you represent fractional, very large, and
very small values, and they have internal representations much different from those of
integers.

Writing Floating-Point Numbers
C++ has two ways of writing floating-point numbers.The first is to use the standard deci-
mal-point notation you’ve been using much of your life:

12.34 // floating-point
939001.32 // floating-point
0.00023 // floating-point
8.0 // still floating-point

Even if the fractional part is 0, as in 8.0, the decimal point ensures that the number is
represented in floating-point format and not as an integer. (The C++ Standard does allow
for implementations to represent different locales—for example, providing a mechanism
for using the European method of using a comma instead of a period for the decimal
point. However, these choices govern how the numbers can appear in input and output,
not in code.)

The second method for representing floating-point values is called E notation, and it
looks like this: 3.45E6.This means that the value 3.45 is multiplied by 1,000,000; the E6
means 10 to the 6th power, which is 1 followed by 6 zeros.Thus 3.45E6 means

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

Writing floating-point numbers–second method

ptg7068951

93Floating-Point Numbers

+5.37E+16

decimal point
 is optional

no spaces

optional + or – sign
you can use e or E

sign can be + or – or omitted

Figure 3.3 E notation.

3,450,000.The 6 is called an exponent, and the 3.45 is termed the mantissa. Here are more
examples:

2.52e+8 // can use E or e, + is optional
8.33E-4 // exponent can be negative
7E5 // same as 7.0E+05
-18.32e13 // can have + or - sign in front
1.69e12 // 2010 Brazilian public debt in reais
5.98E24 // mass of earth in kilograms
9.11e-31 // mass of an electron in kilograms

As you might have noticed, E notation is most useful for very large and very small
numbers.

E notation guarantees that a number is stored in floating-point format, even if no deci-
mal point is used. Note that you can use either E or e, and the exponent can have a posi-
tive or negative sign (see Figure 3.3). However, you can’t have spaces in the number, so, for
example, 7.2 E6 is invalid.

To use a negative exponent means to divide by a power of 10 instead of to multiply by
a power of 10. So 8.33E-4 means 8.33 / 104, or 0.000833. Similarly, the electron mass
9.11e-31 kg means 0.000000000000000000000000000000911 kg.Take your choice.
(Incidentally, note that 911 is the usual emergency telephone number in the United States
and that telephone messages are carried by electrons. Coincidence or scientific conspiracy?
You be the judge.) Note that –8.33E4 means –83300.A sign in front applies to the num-
ber value, and a sign in the exponent applies to the scaling.

Note
The form d.dddE+n means move the decimal point n places to the right, and the form
d.dddE-n means move the decimal point n places to the left. This moveable decimal point
is the origin of the term “floating-point.”

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

E notation

ptg7068951

93Floating-Point Numbers

+5.37E+16

decimal point
 is optional

no spaces

optional + or – sign
you can use e or E

sign can be + or – or omitted

Figure 3.3 E notation.

3,450,000.The 6 is called an exponent, and the 3.45 is termed the mantissa. Here are more
examples:

2.52e+8 // can use E or e, + is optional
8.33E-4 // exponent can be negative
7E5 // same as 7.0E+05
-18.32e13 // can have + or - sign in front
1.69e12 // 2010 Brazilian public debt in reais
5.98E24 // mass of earth in kilograms
9.11e-31 // mass of an electron in kilograms

As you might have noticed, E notation is most useful for very large and very small
numbers.

E notation guarantees that a number is stored in floating-point format, even if no deci-
mal point is used. Note that you can use either E or e, and the exponent can have a posi-
tive or negative sign (see Figure 3.3). However, you can’t have spaces in the number, so, for
example, 7.2 E6 is invalid.

To use a negative exponent means to divide by a power of 10 instead of to multiply by
a power of 10. So 8.33E-4 means 8.33 / 104, or 0.000833. Similarly, the electron mass
9.11e-31 kg means 0.000000000000000000000000000000911 kg.Take your choice.
(Incidentally, note that 911 is the usual emergency telephone number in the United States
and that telephone messages are carried by electrons. Coincidence or scientific conspiracy?
You be the judge.) Note that –8.33E4 means –83300.A sign in front applies to the num-
ber value, and a sign in the exponent applies to the scaling.

Note
The form d.dddE+n means move the decimal point n places to the right, and the form
d.dddE-n means move the decimal point n places to the left. This moveable decimal point
is the origin of the term “floating-point.”

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

cfloat/float.h

1) Number of decimal digits that are guaranteed to be preserved in
text
2) Number of base RADIX digits that can be represented without
losing precision

ptg7068951

94 Chapter 3 Dealing with Data

Floating-Point Types
Like ANSI C, C++ has three floating-point types: float, double, and long double.
These types are described in terms of the number of significant figures they can represent
and the minimum allowable range of exponents. Significant figures are the meaningful digits
in a number. For example, writing the height of Mt. Shasta in California as 14,179 feet
uses five significant figures, for it specifies the height to the nearest foot. But writing the
height of Mt. Shasta as about 14,000 feet tall uses two significant figures, for the result is
rounded to the nearest thousand feet; in this case, the remaining three digits are just place-
holders.The number of significant figures doesn’t depend on the location of the decimal
point. For example, you can write the height as 14.179 thousand feet.Again, this uses five
significant digits because the value is accurate to the fifth digit.

In effect, the C and C++ requirements for significant digits amount to float being at
least 32 bits, double being at least 48 bits and certainly no smaller than float, and long
double being at least as big as double.All three can be the same size.Typically, however,
float is 32 bits, double is 64 bits, and long double is 80, 96, or 128 bits.Also the range
in exponents for all three types is at least –37 to +37.You can look in the cfloat or
float.h header files to find the limits for your system. (cfloat is the C++ version of the
C float.h file.) Here, for example, are some annotated entries from the float.h file for
Borland C++Builder:

// the following are the minimum number of significant digits
#define DBL_DIG 15 // double
#define FLT_DIG 6 // float
#define LDBL_DIG 18 // long double

// the following are the number of bits used to represent the mantissa
#define DBL_MANT_DIG 53
#define FLT_MANT_DIG 24
#define LDBL_MANT_DIG 64

// the following are the maximum and minimum exponent values
#define DBL_MAX_10_EXP +308
#define FLT_MAX_10_EXP +38
#define LDBL_MAX_10_EXP +4932

#define DBL_MIN_10_EXP -307
#define FLT_MIN_10_EXP -37
#define LDBL_MIN_10_EXP -4931

Listing 3.8 examines types float and double and how they can differ in the precision
to which they represent numbers (that’s the significant figure aspect).The program pre-
views an ostream method called setf() from Chapter 17,“Input, Output, and Files.”
This particular call forces output to stay in fixed-point notation so that you can better see
the precision. It prevents the program from switching to E notation for large values and
causes the program to display six digits to the right of the decimal.The arguments

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

example

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5 cout.setf(ios_base::fixed, ios_base::floatfield);

6 float tub = 10.0 / 3.0; // good to about 6 places

7

8 double mint = 10.0 / 3.0; // good to about 15 places

9 const float million = 1.0e6;

10

11 cout << "tub = " << tub;

12 cout << ", a million tubs = " << million * tub;

13 cout << ",\nand ten million tubs = ";

14

15 cout << 10 * million * tub << endl;

16 cout << "mint=" << mint << "and a million mints= ";

17 cout << million * mint <<endl;

18 return 0; }

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

ptg7068951

96 Chapter 3 Dealing with Data

The ostream class to which cout belongs has class member functions that give you
precise control over how the output is formatted—field widths, places to the right of the
decimal point, decimal form or E form, and so on. Chapter 17 outlines those choices.This
book’s examples keep it simple and usually just use the << operator. Occasionally, this
practice displays more digits than necessary, but that causes only aesthetic harm. If you do
mind, you can skim Chapter 17 to see how to use the formatting methods. Don’t, how-
ever, expect to fully follow the explanations at this point.

Reading Include Files
The include directives found at the top of C++ source files often take on the air of a magical
incantation; novice C++ programmers learn, through reading and experience, which header
files add particular functionalities, and they include them solely to make their programs
work. Don’t rely on the include files only as a source of mystic and arcane knowledge; feel
free to open them up and read them. They are text files, so you can read them easily. All the
files you include in your programs exist on your computer or in a place where your computer
can use them. Find the includes you use and see what they contain. You’ll quickly see that
the source and header files you use are an excellent source of knowledge and information—
in some cases, the best documentation available. Later, as you progress into more complex
inclusions and begin to use other, nonstandard libraries in your applications, this habit will
serve you well.

Floating-Point Constants
When you write a floating-point constant in a program, in which floating-point type does
the program store it? By default, floating-point constants such as 8.24 and 2.4E8 are type
double. If you want a constant to be type float, you use an f or F suffix. For type long
double, you use an l or L suffix. (Because the lowercase l looks a lot like the digit 1, the
uppercase L is a better choice.) Here are some samples:

1.234f // a float constant
2.45E20F // a float constant
2.345324E28 // a double constant
2.2L // a long double constant

Advantages and Disadvantages of Floating-Point Numbers
Floating-point numbers have two advantages over integers. First, they can represent values
between integers. Second, because of the scaling factor, they can represent a much greater
range of values. On the other hand, floating point operations usually are slightly slower
than integer operations, and you can lose precision. Listing 3.9 illustrates the last point.

Listing 3.9 fltadd.cpp

// fltadd.cpp -- precision problems with float
#include <iostream>
int main()
{

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

precision problem

1 // fltadd.cpp -- precision problems with float

2 #include <iostream>

3 int main()

4 {

5 using namespace std;

6 float a = 2.34E+22f;

7 float b = a + 1.0f;

8 cout << "a = " << a << endl;

9 cout << "b - a = " << b - a << endl;

10 return 0;

11 }

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

Lecture 5

1 const

2 float

3 Arithmetic Operators

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

precision problem

1 // arith.cpp -- some C++ arithmetic

2 #include <iostream>

3 int main()

4 {

5 using namespace std;

6 float a, b;

7 cout.setf(ios_base::fixed, ios_base::floatfield);

8 cout << "Enter a number: ";

9 cin >> a;

10 cout << "Enter another number: ";

11 cin >> b;

12 cout << "a= " << a<< "; b = " << b << endl;

13 cout << "a + b = " << a + b << endl;

14 cout << "a - b = " << a - b << endl;

15 cout << "a * b = " << a * b << endl;

16 cout << "a / b = " << a/ b << endl;

17 return 0; }

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

Division diversions

1 #include <iostream>

2 #include <iomanip>

3 int main()

4 {

5 using namespace std;

6 cout.setf(ios_base::fixed, ios_base::floatfield);

7 cout << "Integer division: 9/5 = " << 9 / 5 << endl;

8

9 cout << "Floating-point division: 9.0/5.0 = ";

10 cout << 9.0 / 5.0 << endl;

11

12 cout << "Mixed division: 9.0/5 = " << 9.0 / 5 <<

endl;

13 cout << "double constants: 1e7/9.0 = ";

14 cout << 1.e7 / 9.0 << endl;

MA122 -
Computer

Programming
and

Applications

const

float

Arithmetic
Operators

Division diversions

1 cout << "float constants: 1e7f/9.0f = ";

2 cout << 1.e7f / 9.0f << endl;

3 cout << setprecision(17);

4

5

6

7 int f=383, m=3;

8 double a;

9 a=double(f)/m;

10

11

12 cout<< a<<endl;

13 return 0;

14 }

	const
	float
	Arithmetic Operators

