MA122 -
Computer
Programming
and
Applications

MA122 - Computer Programming and
Applications

Indian Institute of Space Science and Technology

January 20, 2017

Lecture 5

MA122 -
Computer
Programming
and
Applications

const

The const qualifier

MA122 -
Computer
Programming
and
Applications

#include <iostream>
int main()

{

N

I

5 const int months=12;;

© © ~N o

return 0;}

Lecture

MA122 -
Computer
Programming
and
Applications

float

Floating-point numbers

MA122 -
Computer

oyl A floating-point number is composed of four elements:

and

Applications m A sign: either negative or non-negative.

m A base (or radix): which expresses the different numbers
that can be represented with a single digit (2 for binary, 10
for decimal, 16 for hexadecimal, and so on...).

m A significand (or mantissa): which is a series of digits of
the aforementioned base. The number of digits in this
series is what is known as precision.

m An exponent (also known as characteristic, or scale):
which represents the offset of the significand, affecting the
value in the following way:
value of floating-point = significand x base®™Porent ith
its corresponding sign.

Writing floating-point numbers—first method

MA122 -
Computer
Programming
and
Applications

12.34 // floating-point
939001.32 // floating-point
0.00023 // floating-point

8.0 // still floating-point

MA122 -
Computer
Programming
and
Applications

Writing floating-point numbers—second method

2.52e+8
8.33E-4
7E5
-18.32e13
1.69el2
5.98E24
9.11le-31

//
/!
/!
/!
//
//
//

can use E or e, + is optional
exponent can be negative

same as 7.0E+05

can have + or - sign in front

2010 Brazilian public debt in reais
mass of earth in kilograms

mass of an electron in kilograms

E notation

MA122 -
Computer
Programming
and
Applications

you can use € or E

optional + or — sign sign can be + or — or omitted

| |
+5.37E+16

o H_J

decimal point no spaces
is optional

cfloat/float.h

YA = 1) Number of decimal digits that are guaranteed to be preserved in

Computer

Programming text
and

peplictts 2) Number of base RADIX digits that can be represented without
losing precision

// the following are the minimum number of significant digits

#define DBL_DIG 15 // double
#define FLT DIG 6 // float
#define LDBL DIG 18 // long double

// the following are the number of bits used to represent the mantissa
#define DBL_MANT DIG 53
#define FLT MANT DIG 24
#define LDBL MANT DIG 64

// the following are the maximum and minimum exponent values
#define DBL_MAX 10 EXP +308

#define FLT MAX 10 EXP +38

#define LDBL_MAX_10_EXP +4932

MA122 -
Computer
Programming
and
Applications

example

N

~ o o &

#include <iostream>
int main()

{

using namespace std;

cout.setf(ios_base::fixed, ios_base::floatfield);
float tub = 10.0 / 3.0; // good to about 6 places

double mint = 10.0 / 3.0; // good to about 15 places
const float million = 1.0e6;

cout << "tub = " << tub;
cout << ", a million tubs = " << million * tub;
cout << ",\nand ten million tubs = ";

cout << 10 * million * tub << endl;

cout << "mint=" << mint << "and a million mints= ";
cout << million * mint <<endl;

return 0; }

MA122 -
Computer
Programming
and
Applications

1.234f a float constant
2.45E20F // a float constant
2.345324E28 // a double constant
2.2L // a long double constant

precision problem

MA122 -
Computer
Programming
and
Applications

w N

o

© o ~N o

10
11

// fltadd.cpp -- precision problems with float
#include <iostream>

int main()

{

using namespace std;

float a = 2.34E+22f;

float b = a + 1.0f;

cout << "a = " << a << endl;
cout << "b - a =" << b - a << endl;
return O;

MA122 -
Computer
Programming
and
Applications

Arithmetic
Operators

Lecture 5

Arithmetic Operators

MA122 -
Computer
Programming
and
Applications

Arithmetic
Operators

precision problem

w N

© o N o

// arith.cpp -- some C++ arithmetic
#include <iostream>

int main()

{

using namespace std;

float a, b;
cout.setf(ios_base::fixed, ios_base::floatfield);

cout << "Enter a number: ";

cin >> a;

cout << "Enter another number: ";

cin >> b;

cout << "a= " << a<< "; b =" << b << endl;
cout << "a + b =" << a + b << endl;

cout << "a - b =" << a - Db << endl;

cout << "a * b =" << a *x b << endl;

cout << "a / b =" << a/ b << endl;

return 0; }

Division diversions

MA122 -
Computer
W%mﬂmmg #include <iostream>
an
Applications

N

#include <iomanip>
int main()

{

s> W

5| using namespace std;
Pefsis 6 cout.setf(ios_base::fixed, ios_base::floatfield);
Operators 7| cout << "Integer division: 9/5 = " << 9 / 5 << endl;
8
9| cout << "Floating-point division: 9.0/5.0 = ";

10 cout << 9.0 / 5.0 << endl;

12| cout << "Mixed division: 9.0/5 = " << 9.0 / 5 <<
endl;

13 cout << "double constants: 1e7/9.0 = ";

14 cout << 1.e7 / 9.0 << endl;

MA122 -
Computer
Programming
and
Applications

Arithmetic
Operators

Division diversions

AW R

© o N o v

10
11
1

N

13
14

cout << "float constants: 1e7f/9.0f = ";
cout << 1.e7f / 9.0f << endl;
cout << setprecision(17);

int £=383, m=3;
double a;
a=double (f)/m;

cout<< a<<endl;
return O;

}

	const
	float
	Arithmetic Operators

