
MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

MA122 - Computer Programming and
Applications

Indian Institute of Space Science and Technology

January 18, 2017

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Lecture 3

1 Function 1

2 User-defined functions

3 Dealing with Data

4 int

5 char

6 escape sequences

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

sqrt

1 // sqrt.cpp -- using the sqrt() function

2 #include <iostream>

3 #include <cmath> // or math.h

4 int main()

5 {

6 using namespace std;

7 double area;

8 cout << "Enter the floor area, in square feet, of

your home: ";

9 cin >> area;

10 double side;

11 side = sqrt(area);

12 cout << " Thats the equivalent of a square " <<

side

13 << " feet to the side." << endl;

14 cout << "How fascinating!" << endl;

15 return 0;

16 }

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

explanation

ptg7068951

49Functions

int main()
{
 ...
 ...
 x = sqrt(6.25);
 ...
 ...

code for sqrt()
 ...
 ...
 ...
 ...
 ...
 ...

! "

$

Calling Function Called Function

%return to a calling function

func
tion

 cal
l

Figure 2.6 Calling a function.

“Adventures in Functions.” However, if we deal now with some basic characteristics of
functions, you’ll be more at ease and more practiced with functions later.The rest of this
chapter introduces you to these function basics.

C++ functions come in two varieties: those with return values and those without
them.You can find examples of each kind in the standard C++ library of functions, and
you can create your own functions of each type. Let’s look at a library function that has a
return value and then examine how you can write your own simple functions.

Using a Function That Has a Return Value
A function that has a return value produces a value that you can assign to a variable or use
in some other expression. For example, the standard C/C++ library includes a function
called sqrt() that returns the square root of a number. Suppose you want to calculate the
square root of 6.25 and assign it to the variable x.You can use the following statement in
your program:

x = sqrt(6.25); // returns the value 2.5 and assigns it to x

The expression sqrt(6.25) invokes, or calls, the sqrt() function.The expression
sqrt(6.25) is termed a function call, the invoked function is termed the called function, and
the function containing the function call is termed the calling function (see Figure 2.6).

The value in the parentheses (6.25, in this example) is information that is sent to the
function; it is said to be passed to the function.A value that is sent to a function this way is
called an argument or parameter (see Figure 2.7).The sqrt() function calculates the answer
to be 2.5 and sends that value back to the calling function; the value sent back is termed
the return value of the function.Think of the return value as what is substituted for the
function call in the statement after the function finishes its job.Thus, this example assigns
the return value to the variable x. In short, an argument is information sent to the func-
tion, and the return value is a value sent back from the function.

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

more details

ptg7068951

50 Chapter 2 Setting Out to C++

x = sqrt(6.25);

function
 name

function return
value assigned

to x

closing
parenthesis

semicolon marks
end of
statement

opening
parenthesis

argument-
information
passed to
function

Figure 2.7 Function call syntax.

That’s practically all there is to it, except that before the C++ compiler uses a function,
it must know what kind of arguments the function uses and what kind of return value it
has.That is, does the function return an integer? a character? a number with a decimal
fraction? a guilty verdict? or something else? If it lacks this information, the compiler
won’t know how to interpret the return value.The C++ way to convey this information
is to use a function prototype statement.

Note
A C++ program should provide a prototype for each function used in the program.

A function prototype does for functions what a variable declaration does for variables:
It tells what types are involved. For example, the C++ library defines the sqrt() function
to take a number with (potentially) a fractional part (like 6.25) as an argument and to
return a number of the same type. Some languages refer to such numbers as real numbers,
but the name C++ uses for this type is double. (You’ll see more of double in Chapter 3.)
The function prototype for sqrt() looks like this:

double sqrt(double); // function prototype

The initial double means sqrt() returns a type double value.The double in the
parentheses means sqrt() requires a double argument. So this prototype describes
sqrt() exactly as used in the following code:

double x; // declare x as a type double variable
x = sqrt(6.25);

The terminating semicolon in the prototype identifies it as a statement and thus makes
it a prototype instead of a function header. If you omit the semicolon, the compiler inter-
prets the line as a function header and expects you to follow it with a function body that
defines the function.

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Lecture 3

1 Function 1

2 User-defined functions

3 Dealing with Data

4 int

5 char

6 escape sequences

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

my first function

1 // ourfunc.cpp -- defining your own function

2 #include <iostream>

3 void apples(int);//function prototype for apple()

4

5 int main()

6 {

7 using namespace std;

8 apples(3); //call the apple() function

9 cout << "Pick an integer: ";

10 int count;

11 cin >> count;

12 apples(count);// call it again

13 cout << "Done!"<<endl;

14 return 0;

15 }

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

my first function continued...

1

2 void apples(int n)

3 {

4 using namespace std;

5

6 cout << "my first function: " << n << " apples."

<< endl;

7

8 // void functions dont need return statements

9

10 }

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

function continued...

1 // convert.cpp -- converts stone to pounds

2 #include <iostream>

3 int stonetolb(int); // function prototype

4 int main()

5 {

6

7 using namespace std;

8 int stone;

9 cout << "Enter the weight in stone: ";

10 cin >> stone;

11 int pounds = stonetolb(stone);

12 cout << stone << " stone = ";

13 cout << pounds << " pounds." << endl;

14 return 0;

15 }

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

function continued...

1

2

3 int stonetolb(int sts)

4 {

5 return 14 * sts;

6 }

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Lecture 3

1 Function 1

2 User-defined functions

3 Dealing with Data

4 int

5 char

6 escape sequences

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Integer Types

1 A short integer is at least 16 bits wide

2 An int integer is at least as big as short.

3 A long integer is at least 32 bits wide and at least as big
as int.

4 A long long integer is at least 64 bits wide and at least as
big as long.

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Integer Types

1 A short integer is at least 16 bits wide

2 An int integer is at least as big as short.

3 A long integer is at least 32 bits wide and at least as big
as int.

4 A long long integer is at least 64 bits wide and at least as
big as long.

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Integer Types

1 A short integer is at least 16 bits wide

2 An int integer is at least as big as short.

3 A long integer is at least 32 bits wide and at least as big
as int.

4 A long long integer is at least 64 bits wide and at least as
big as long.

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Integer Types

1 A short integer is at least 16 bits wide

2 An int integer is at least as big as short.

3 A long integer is at least 32 bits wide and at least as big
as int.

4 A long long integer is at least 64 bits wide and at least as
big as long.

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Integer Types

1 A short integer is at least 16 bits wide

2 An int integer is at least as big as short.

3 A long integer is at least 32 bits wide and at least as big
as int.

4 A long long integer is at least 64 bits wide and at least as
big as long.

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Integer continued...

1 #include <iostream>

2 #include <climits> // use limits.h for older systems

3 int main()

4 {

5 using namespace std;

6 int n_int = INT_MAX; // initialize n_int to max int

value

7 short n_short = SHRT_MAX; // symbols defined in

climits file

8 long n_long = LONG_MAX;

9 long long n_llong = LLONG_MAX;

10

11 // sizeof operator yields size of type or of variable

12 cout << "int is " << sizeof (int) << " bytes." << endl

;

13 cout << "short is " << sizeof n_short << " bytes." <<

endl;

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Integer continued...

1 cout << "long is " << sizeof n_long << " bytes." <<

endl;

2 cout << "long long is " << sizeof n_llong << " bytes."

<< endl;

3 cout << endl;

4 cout << "Maximum values:" << endl;

5 cout << "int: " << n_int << endl;

6 cout << "short: " << n_short << endl;

7

8 cout << "long: " << n_long << endl;

9 cout << "long long: " << n_llong << endl << endl;

10 cout << "Minimum int value = " << INT_MIN << endl;

11 cout << "Bits per byte = " << CHAR_BIT << endl;

12 return 0;}

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Climits

ptg7068951

72 Chapter 3 Dealing with Data

Table 3.1 Symbolic Constants from climits

Symbolic Constant Represents

CHAR_BIT Number of bits in a char

CHAR_MAX Maximum char value

CHAR_MIN Minimum char value

SCHAR_MAX Maximum signed char value

SCHAR_MIN Minimum signed char value

UCHAR_MAX Maximum unsigned char value

SHRT_MAX Maximum short value

SHRT_MIN Minimum short value

USHRT_MAX Maximum unsigned short value

INT_MAX Maximum int value

INT_MIN Minimum int value

UINT_MAX Maximum unsigned int value

LONG_MAX Maximum long value

LONG_MIN Minimum long value

ULONG_MAX Maximum unsigned long value

LLONG_MAX Maximum long long value

LLONG_MIN Minimum long long value

ULLONG_MAX Maximum unsigned long long value

summarizes the symbolic constants defined in the climits file; some pertain to types you
have not yet learned.

Symbolic Constants the Preprocessor Way
The climits file contains lines similar to the following:

#define INT_MAX 32767

Recall that the C++ compilation process first passes the source code through a preproces-
sor. Here #define, like #include, is a preprocessor directive. What this particular directive
tells the preprocessor is this: Look through the program for instances of INT_MAX and
replace each occurrence with 32767. So the #define directive works like a global search-
and-replace command in a text editor or word processor. The altered program is compiled
after these replacements occur. The preprocessor looks for independent tokens (separate
words) and skips embedded words. That is, the preprocessor doesn’t replace PINT_MAXIM

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Lecture 3

1 Function 1

2 User-defined functions

3 Dealing with Data

4 int

5 char

6 escape sequences

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Initialization

1 // Initialization

2 #include <iostream>

3 #include <cmath> // or math.h

4 int main()

5 {

6 using namespace std;

7 int uncles = 5; // initialize uncles to 5

8 int aunts = uncles; // initialize aunts to 5

9 int chairs = aunts + uncles + 4;

10 // initialize chairs to 14

11

12 int owls = 101; // traditional C initialization

13 int wrens(432); // alternative C++ syntax

14

15 int hamburgers = {24}; // C++98

16 int emus{7}; //C++11

17 return 0;}

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Unsigned

1 // listing3pt2.cpp -- exceeding some integer limits

2 #include <iostream>

3 #define ZERO 0 // makes ZERO symbol for 0 value

4 #include <climits> // defines INT_MAX as largest int

5 int main()

6 {

7 using namespace std;

8 short sam = SHRT_MAX; // initialize a variable to

max value

9

10 unsigned short sue = sam;// okay if variable sam

already defined

11

12 cout << "Sam has " << sam << " dollars and Sue has "

<<sue;

13

14 cout << " dollars deposited." << endl

15 << "Add $1 to each account." << endl << "Now ";

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Unsigned

1 sam=sam+1;

2 sue = sue + 1;

3 cout << "Sam has " << sam << " dollars and Sue has "<<

sue;

4 cout << " dollars deposited.\nPoor Sam!" << endl;

5 sam = ZERO;

6 sue = ZERO;

7 cout << "Sam has " << sam << " dollars and Sue has "<<

sue;

8 cout << "Take $1 from each account." << endl << "Now "

;

9 sam = sam - 1;

10 sue = sue - 1;

11 cout << "Sam has " << sam << " dollars and Sue has "<<

sue;

12 cout << " dollars deposited." << endl << "Lucky Sue!"

<< endl;

13 return 0;}

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Lecture 3

1 Function 1

2 User-defined functions

3 Dealing with Data

4 int

5 char

6 escape sequences

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

The char type: Characters and Small Integers

1 // chartype.cpp -- the char type

2 #include <iostream>

3 int main()

4 {

5 using namespace std;

6

7 char ch; // declare a char variable

8 cout << "Enter a character: " << endl;

9

10 cin >> ch;

11 cout << "Hola! ";

12

13 cout << "Thank you for the " << ch << " character."

<< endl;

14

15 return 0;}

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

more on char

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5 char ch=’M’; //assign ASCII code for M to ch

6 int i =ch; //store same code

7

8 cout << "The ASCII code for " << ch << " is " << i

<< endl;

9 cout << "Add one to the character code:" <<endl;

10

11 ch=ch+1;

12 i=ch;

13 cout << "The ASCII code for " << ch << " is " << i

<< endl;

14

15 return 0; }

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

Lecture 3

1 Function 1

2 User-defined functions

3 Dealing with Data

4 int

5 char

6 escape sequences

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

escape sequences

ptg7068951

85Simple Variables

Table 3.2 C++ Escape Sequence Codes

Character
Name

ASCII
Symbol

C++
Code

ASCII Decimal
Code ASCII Hex Code

Newline NL (LF) \n 10 0xA

Horizontal tab HT \t 9 0x9

Vertical tab VT \v 11 0xB

Backspace BS \b 8 0x8

Carriage return CR \r 13 0xD

Alert BEL \a 7 0x7

Backslash \ \\ 92 0x5C

Question mark ? \? 63 0x3F

Single quote ’ \' 39 0x27

Double quote ” \" 34 0x22

char alarm = '\a';
cout << alarm << "Don't do that again!\a\n";
cout << "Ben \"Buggsie\" Hacker\nwas here!\n";

The last line produces the following output:

Ben "Buggsie" Hacker
was here!

Note that you treat an escape sequence, such as \n, just as a regular character, such as Q.
That is, you enclose it in single quotes to create a character constant and don’t use single
quotes when including it as part of a string.

The escape sequence concept dates back to when people communicated with comput-
ers using the teletype, an electromechanical typewriter-printer, and modern systems don’t
always honor the complete set of escape sequences. For example, some systems remain
silent for the alarm character.

The newline character provides an alternative to endl for inserting new lines into out-
put.You can use the newline character in character constant notation ('\n') or as charac-
ter in a string ("\n").All three of the following move the screen cursor to the beginning
of the next line:

cout << endl; // using the endl manipulator
cout << '\n'; // using a character constant
cout << "\n"; // using a string

You can embed the newline character in a longer string; this is often more convenient
than using endl. For example, the following two cout statements produce the same output:

cout << endl << endl << "What next?" << endl << "Enter a number:" << endl;
cout << "\n\nWhat next?\nEnter a number:\n";

MA122 -
Computer

Programming
and

Applications

Function 1

User-defined
functions

Dealing with
Data

int

char

escape
sequences

escape sequences

1 // bondini.cpp -- using escape sequences

2 #include <iostream>

3 int main()

4 {

5

6 using namespace std;

7

8 cout << "\aOperation \"HyperHype\" is now activated

!\n";

9 cout << "Enter your agent code:________\b\b\b\b\b\b\

b\b";

10

11 long code;

12 cin >> code;

13

14 cout << "\aYou entered " << code << "...\n";

15 cout << "\aCode verified! Proceed with Plan Z3!\n";

16 return 0; }

	Function 1
	User-defined functions
	Dealing with Data
	int
	char
	escape sequences

