
MA122 -
Computer

Programming
and

Applications

My first
program

Variables

Input

Function 1

MA122 - Computer Programming and
Applications

Indian Institute of Space Science and Technology

January 13, 2017

MA122 -
Computer

Programming
and

Applications

My first
program

Variables

Input

Function 1

Lecture 2

1 My first program

2 Variables

3 Input

4 Function 1

MA122 -
Computer

Programming
and

Applications

My first
program

Variables

Input

Function 1

My first program

1 #include <iostream> // a PREPROCESSOR directive

2 int main() // function header

3 { // start of function body

4 using namespace std;

5 // make definitions visible

6

7 cout << "Come up and C++ me some time."; // message

8

9 cout << endl; // start a new line

10

11 cout << "You wont regret it!" << endl;

12 // more output

13

14 return 0; // terminate main()

15

16 } // end of function body

MA122 -
Computer

Programming
and

Applications

My first
program

Variables

Input

Function 1

Lecture 2

1 My first program

2 Variables

3 Input

4 Function 1

MA122 -
Computer

Programming
and

Applications

My first
program

Variables

Input

Function 1

My first variable

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5 int carrots; // declare an integer variable

6 carrots = 25; // assign a value to the variable

7

8 cout << "I have ";

9 cout << carrots; //display the value of the

variable

10 cout << " carrots.";

11 cout << endl;

12 carrots = carrots - 1; // modify the variable

13

14 cout << "Crunch, crunch. Now I have " << carrots

<< " carrots." << endl;

15 return 0;

16 }

MA122 -
Computer

Programming
and

Applications

My first
program

Variables

Input

Function 1

Lecture 2

1 My first program

2 Variables

3 Input

4 Function 1

MA122 -
Computer

Programming
and

Applications

My first
program

Variables

Input

Function 1

cin

1 #include <iostream>

2 int main()

3 {

4 using namespace std;

5

6 int carrots;

7

8 cout << "How many carrots do you have?" << endl;

9

10 cin >> carrots; // C++ input

11 cout << "Here are two more. ";

12 carrots = carrots + 2;

13

14 // the next line concatenates output

15 cout << "Now you have " << carrots << " carrots."

<< endl;

16 return 0;

17 }

MA122 -
Computer

Programming
and

Applications

My first
program

Variables

Input

Function 1

cin and cout: A touch of class

ptg7068951

48 Chapter 2 Setting Out to C++

Trust me

#include <iostream>
using namespace std;
int main()
{
 ...
 ...
 cout << "Trust me";
 ...
 ...
}

print message

object displays argument

message argument

cout object

Figure 2.5 Sending a message to an object.

that the language standard specifies.The class definitions are laid out in the iostream file
and are not built into the compiler.You can even modify these class definitions if you like,
although that’s not a good idea. (More precisely, it is a truly dreadful idea.) The iostream
family of classes and the related fstream (or file I/O) family are the only sets of class defi-
nitions that came with all early implementations of C++. However, the ANSI/ISO C++
committee added a few more class libraries to the Standard.Also most implementations
provide additional class definitions as part of the package. Indeed, much of the current
appeal of C++ is the existence of extensive and useful class libraries that support Unix,
Macintosh, and Windows programming.

The class description specifies all the operations that can be performed on objects of
that class.To perform such an allowed action on a particular object, you send a message to
the object. For example, if you want the cout object to display a string, you send it a mes-
sage that says, in effect,“Object! Display this!” C++ provides a couple ways to send mes-
sages. One way, using a class method, is essentially a function call like the ones you’ll see
soon.The other way, which is the one used with cin and cout, is to redefine an operator.
Thus, the following statement uses the redefined << operator to send the “display mes-
sage” to cout:

cout << "I am not a crook."

In this case, the message comes with an argument, which is the string to be displayed.
(See Figure 2.5 for a similar example.)

Functions
Because functions are the modules from which C++ programs are built and because they
are essential to C++ OOP definitions, you should become thoroughly familiar with
them. Some aspects of functions are advanced topics, so the main discussion of functions
comes later, in Chapter 7,“Functions: C++’s Programming Modules,” and Chapter 8,

MA122 -
Computer

Programming
and

Applications

My first
program

Variables

Input

Function 1

Lecture 2

1 My first program

2 Variables

3 Input

4 Function 1

MA122 -
Computer

Programming
and

Applications

My first
program

Variables

Input

Function 1

sqrt

1 // sqrt.cpp -- using the sqrt() function

2 #include <iostream>

3 #include <cmath> // or math.h

4 int main()

5 {

6 using namespace std;

7 double area;

8 cout << "Enter the floor area, in square feet, of

your home: ";

9 cin >> area;

10 double side;

11 side = sqrt(area);

12 cout << " Thats the equivalent of a square " <<

side

13 << " feet to the side." << endl;

14 cout << "How fascinating!" << endl;

15 return 0;

16 }

MA122 -
Computer

Programming
and

Applications

My first
program

Variables

Input

Function 1

explanation

ptg7068951

49Functions

int main()
{
 ...
 ...
 x = sqrt(6.25);
 ...
 ...

code for sqrt()
 ...
 ...
 ...
 ...
 ...
 ...

! "

$

Calling Function Called Function

%return to a calling function

func
tion

 cal
l

Figure 2.6 Calling a function.

“Adventures in Functions.” However, if we deal now with some basic characteristics of
functions, you’ll be more at ease and more practiced with functions later.The rest of this
chapter introduces you to these function basics.

C++ functions come in two varieties: those with return values and those without
them.You can find examples of each kind in the standard C++ library of functions, and
you can create your own functions of each type. Let’s look at a library function that has a
return value and then examine how you can write your own simple functions.

Using a Function That Has a Return Value
A function that has a return value produces a value that you can assign to a variable or use
in some other expression. For example, the standard C/C++ library includes a function
called sqrt() that returns the square root of a number. Suppose you want to calculate the
square root of 6.25 and assign it to the variable x.You can use the following statement in
your program:

x = sqrt(6.25); // returns the value 2.5 and assigns it to x

The expression sqrt(6.25) invokes, or calls, the sqrt() function.The expression
sqrt(6.25) is termed a function call, the invoked function is termed the called function, and
the function containing the function call is termed the calling function (see Figure 2.6).

The value in the parentheses (6.25, in this example) is information that is sent to the
function; it is said to be passed to the function.A value that is sent to a function this way is
called an argument or parameter (see Figure 2.7).The sqrt() function calculates the answer
to be 2.5 and sends that value back to the calling function; the value sent back is termed
the return value of the function.Think of the return value as what is substituted for the
function call in the statement after the function finishes its job.Thus, this example assigns
the return value to the variable x. In short, an argument is information sent to the func-
tion, and the return value is a value sent back from the function.

MA122 -
Computer

Programming
and

Applications

My first
program

Variables

Input

Function 1

more details

ptg7068951

50 Chapter 2 Setting Out to C++

x = sqrt(6.25);

function
 name

function return
value assigned

to x

closing
parenthesis

semicolon marks
end of
statement

opening
parenthesis

argument-
information
passed to
function

Figure 2.7 Function call syntax.

That’s practically all there is to it, except that before the C++ compiler uses a function,
it must know what kind of arguments the function uses and what kind of return value it
has.That is, does the function return an integer? a character? a number with a decimal
fraction? a guilty verdict? or something else? If it lacks this information, the compiler
won’t know how to interpret the return value.The C++ way to convey this information
is to use a function prototype statement.

Note
A C++ program should provide a prototype for each function used in the program.

A function prototype does for functions what a variable declaration does for variables:
It tells what types are involved. For example, the C++ library defines the sqrt() function
to take a number with (potentially) a fractional part (like 6.25) as an argument and to
return a number of the same type. Some languages refer to such numbers as real numbers,
but the name C++ uses for this type is double. (You’ll see more of double in Chapter 3.)
The function prototype for sqrt() looks like this:

double sqrt(double); // function prototype

The initial double means sqrt() returns a type double value.The double in the
parentheses means sqrt() requires a double argument. So this prototype describes
sqrt() exactly as used in the following code:

double x; // declare x as a type double variable
x = sqrt(6.25);

The terminating semicolon in the prototype identifies it as a statement and thus makes
it a prototype instead of a function header. If you omit the semicolon, the compiler inter-
prets the line as a function header and expects you to follow it with a function body that
defines the function.

	My first program
	Variables
	Input
	Function 1

