
MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

MA122 - Computer Programming and
Apllications

Indian Institute of Space Science and Technology

February 23, 2017

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

Lecture 16

1 pointers and const

2 2D array

3 Using Structures with functions

4 Recursion

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

pointers and const

1 //intcont.cpp

2 #include <iostream>

3 int main()

4 {

5 int x=16;

6 int y=20;

7

8 const int *pt1;

9 pt1=&y;

10 // *pt1=22;

11

12 int* const pt2;

13

14 *pt2=55;

15 //pt2=&x;

16

17 return 0;

18 }

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

Lecture 16

1 pointers and const

2 2D array

3 Using Structures with functions

4 Recursion

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

1. int data[3][4]: data is pointer-to-array-of-four-int

2. appropriate prototype: int sum(int (*ar2)[4], int size);

3. same as: int sum(int ar2[][4], int size);

4. int *ar2[4]: four pointers-to-int instead of a single
pointer-to-array-of-four-int

5. ar2[r][c] == *(*(ar2 + r) + c)

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

ptg7068951

339Functions and C-Style Strings

the data.The simplest way is to use brackets twice, as in ar2[r][c]. But it is possible, if
ungainly, to use the * operator twice:

ar2[r][c] == *(*(ar2 + r) + c) // same thing

To understand this, you can work out the meaning of the subexpressions from the
inside out:

ar2 // pointer to first row of an array of 4 int
ar2 + r // pointer to row r (an array of 4 int)
*(ar2 + r) // row r (an array of 4 int, hence the name of an array,

// thus a pointer to the first int in the row, i.e., ar2[r]

*(ar2 +r) + c // pointer int number c in row r, i.e., ar2[r] + c
((ar2 + r) + c // value of int number c in row r, i.e. ar2[r][c]

Incidentally, the code for sum() doesn’t use const in declaring the parameter ar2
because that technique is for pointers to fundamental types, and ar2 is a pointer to a
pointer.

Functions and C-Style Strings
Recall that a C-style string consists of a series of characters terminated by the null charac-
ter. Much of what you’ve learned about designing array functions applies to string func-
tions, too. For example, passing a string as an argument means passing an address, and you
can use const to protect a string argument from being altered. But there are a few special
twists to strings that we’ll unravel now.

Functions with C-Style String Arguments
Suppose you want to pass a string as an argument to a function.You have three choices for
representing a string:

n An array of char
n A quoted string constant (also called a string literal)
n A pointer-to-char set to the address of a string

All three choices, however, are type pointer-to-char (more concisely, type char *), so
you can use all three as arguments to string-processing functions:

char ghost[15] = "galloping";
char * str = "galumphing";
int n1 = strlen(ghost); // ghost is &ghost[0]
int n2 = strlen(str); // pointer to char
int n3 = strlen("gamboling"); // address of string

Informally, you can say that you’re passing a string as an argument, but you’re really pass-
ing the address of the first character in the string.This implies that a string function proto-
type should use type char * as the type for the formal parameter representing a string.

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

2D array

1 //2darray.cpp

2 #include <iostream>

3

4 using namespace std;

5 int sum(int (*ar2)[4],int size);

6 int main()

7 {

8 int data[3][4]={{1,2,3,4},{9,8,7,6},{12,14,16,18}};

9

10

11 cout<<endl;

12

13 cout<<(*data)<<" "<<(*data)+1<<" "<<*(data)+2

14 <<" "<<*(data)+3<<endl<<endl;

15

16 cout<<*(data+1)<<" "<<*(data+1)+1<<" "

17 <<*(data+1)+2<<" "<<*(data+1)+3<<endl<<endl;

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

2D array

1 cout<<*(data+2)<<" "<<*(data+2)+1<<" "

2 <<*(data+2)+2<<" "<<*(data+2)+3<<endl<<endl;

3

4

5

6 cout<<*((*data))<<" "<<*((*data)+1)<<" "

7 <<*(*(data)+2)<<" "<<*(*(data)+3)<<endl<<endl;

8

9

10

11 cout<<*(*(data+1))<<" "<<*(*(data+1)+1)<<" "

12 <<*(*(data+1)+2)<<" "<<*(*(data+1)+3)<<endl<<endl;

13

14

15 cout<<*(*(data+2))<<" "<<*(*(data+2)+1)<<" "

16 <<*(*(data+2)+2)<<" "<<*(*(data+2)+3)<<endl;

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

2D array

1

2 cout<<endl<<"sum= "<<sum(data,4)<<endl;

3

4 return 0;

5 }

6

7 int sum(int (*ar2)[4], int size)

8 {

9 int sum=0.0;

10 for(int i=0;i<3;i++)

11 {

12 for(int j=0;j<size;j++)

13 {

14 sum=sum+ar2[i][j];

15 }

16 }

17 return sum;

18 }

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

Lecture 16

1 pointers and const

2 2D array

3 Using Structures with functions

4 Recursion

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

Structures with functions

1 //structureswithfunctions.cpp

2 #include <iostream>

3 struct travel_time

4 {

5 int hours;

6 int mins;

7 };

8

9 const int Mins_per_hr = 60;

10

11 travel_time sum(travel_time t1, travel_time t2);

12

13 void show_time(travel_time t);

14

15 int main()

16 {

17 using namespace std;

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

Structures with functions

1

2 travel_time day1 = {5, 45};

3

4 travel_time day2 = {4, 55};

5

6 travel_time trip = sum(day1, day2);

7

8 cout << "Two-day total: ";

9 show_time(trip);

10

11 travel_time day3= {4, 32};

12 cout << "Three-day total: ";

13

14 show_time(sum(trip, day3));

15

16 return 0;

17 }

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

Structures with functions

1 travel_time sum(travel_time t1, travel_time t2)

2 {

3 travel_time total;

4

5 total.mins = (t1.mins + t2.mins) % Mins_per_hr;

6

7 total.hours = t1.hours + t2.hours +

8 (t1.mins + t2.mins) / Mins_per_hr;

9

10 return total;

11 }

12 void show_time(travel_time t)

13 {

14 using namespace std;

15

16 cout << t.hours << " hours, "

17 << t.mins << " minutes\n";

18 }

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

Lecture 16

1 pointers and const

2 2D array

3 Using Structures with functions

4 Recursion

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

single recursive call

1 // recursivefunction.cpp -- using recursion

2 #include <iostream>

3 void countdown(int n);

4 int main()

5 {

6 countdown(4); // call the recursive function

7 return 0;

8 }

9 void countdown(int n)

10 {

11 std::cout << "Counting down ... " << n <<" "<<&n<<

std::endl;

12

13 if (n > 0)

14 countdown(n-1); // function calls itself

15 std::cout << n << ": back out!\n";

16 }

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

Multiple recursion

1 //multiplerecursion.cpp

2 #include <iostream>

3 const int Len = 66;

4 const int Divs = 6;

5 void subdivide(char ar[], int low, int high, int level

);

6

7 int main()

8 {

9 char ruler[Len];

10 int i;

11

12 for (i = 1; i < Len - 2; i++)

13 ruler[i] = ’ ’;

14

15 ruler[Len - 1] = ’\0’;

16 int max = Len - 2;

17 int min = 0;

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

Multiple recursion

1

2 ruler[min] = ruler[max] = ’|’;

3

4 std::cout << ruler << std::endl;

5

6 for (i = 1; i <= Divs; i++)

7 {

8 subdivide(ruler,min,max, i);

9

10 std::cout << ruler << std::endl;

11

12 for (int j = 1; j < Len - 2; j++)

13 ruler[j] = ’ ’;

14 }

15 return 0;

16 }

MA122 -
Computer

Programming
and

Apllications

pointers and
const

2D array

Using
Structures
with functions

Recursion

Multiple recursion

1 void subdivide(char ar[], int low, int high, int level

)

2 {

3

4 if (level == 0)

5 return;

6

7 int mid = (high + low) / 2;

8

9 ar[mid] = ’|’;

10

11 subdivide(ar, low, mid, level - 1);

12 subdivide(ar, mid, high, level - 1);

13 }

	pointers and const
	2D array
	Using Structures with functions
	Recursion

