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This short note outlines the derivation of dynamic boundary condition at the interface be-

tween two immiscible fluids.

Associated with a surface of area A between two fluids, there is a free energy per unit area

which we denote by σ . If the surface area changes by an amount dA, then there is a correspond-

ing change in the energy, σdA. This is equivalent to considering that the interface behaves like

a stretched elastic membrane under tension which has a natural tendency to minimize their

surface area. This tension force per unit length tangential to the surface may be interpreted

as surface tension. The free energy per unit area may also be interpreted as the surface ten-

sion. Thus, the surface tension has two, seemingly different, interpretations. We now derive an

expression that relates the jump in the stress across the interface and the surface tension.

Figure 1: A fluid segment at the interface.

Consider a segment of fluid interface with surface area, A, as shown in figure 1. The bound-

ary of this segment is denoted by C. Let n be the unit normal to the surface, pointing from fluid 1

to fluid 2 and b be the unit tangent to C. The magnitude of the surface tension force acting over

the elemental length d` is given by, dFst = σd`. This force act in a direction normal to both n and

b. Thus the surface tension vector can be represented as

dFFFst = σd`b×n.

For the sake convenience in further manipulation, we rewrite the above equation using Cartesian

tensor notation:

dFst i = σεi jkb jnkd` (1)
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where εi jk is the Levy-Civita operator, defined by

εi jk =











1 if i, j,k are in cyclic order and distinct;

−1 if i, j,k are in noncyclic order and distinct;

0 if any of i, j,k repeats.

Now to calculate the total surface tension force, we integrate equation (1) along the boundary

C. Thus,

Fst i =
∮

C
σεi jkb jnkd`.

Define a j = σεi jknk, so that

Fst i =
∮

C
a jb jd`=

∮

C
a ·bd`=

∮

C
a ·d `̀̀.

Using Stokes’ theorem,
∮

C
a ·d `̀̀ =

∫

S
(∇×a) ·ndS

which can be written in Cartesian tensor notation as,
∮

C
a jb jd`=

∫

S
(∇×a)mnmdS =

∫

S
εmpq

∂aq

∂xp
nmdS.

Thus, the surface tension force is given by

Fst i =
∫

S
εmpq

∂aq

∂xp
nmdS

=
∫

S
εmpq

∂
∂xp

(σεiqknk)nmdS

=
∫

S
εmpq εiqk

∂
∂xp

(σnk)nmdS

=−

∫

S
εmpq εikq

(

∂σ
∂xp

nk +σ
∂nk

∂xp

)

nmdS. (2)

We now use the following identity (Aris [1]):

εmpq εikq = δmiδpk −δmkδpi

where δi j is the Kronecker delta, defined by

δi j =







1, if i = j;

0, if i 6= j.

Introducing the above identity in equation (2), we have

Fst i =
∫

S
δmk δpi

(

∂σ
∂xp

nk +σ
∂nk

∂xp

)

nmdS−
∫

S
δmi δpk

(

∂σ
∂xp

nk +σ
∂nk

∂xp

)

nmdS

=
∫

S

(

∂σ
∂xi

nk +σ
∂nk

∂xi

)

nkdS−
∫

S

(

∂σ
∂xk

nk +σ
∂nk

∂xk

)

nidS. (3)
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Since,

nknk = 1,
∂nk

∂xk
= ∇ ·n,

∂nk

∂xi
nk =

∂
∂xi

(nknk

2

)

= 0,

equation (3) can be written as

Fst i =
∫

S

[

∂σ
∂xi

−

(

∂σ
∂xk

nk

)

ni

]

dS−
∫

S
σ(∇ ·n)nidS. (4)

Equation (4) gives the ith component of the surface tension force. Reverting to the vector nota-

tion, the surface tension force vector is given by

FFFst =
∫

S
[∇σ − (n ·∇σ)n]dS−

∫

S
σ(∇ ·n)ndS

=
∫

S
∇σdS−

∫

S
σκndS (5)

where in the last step, n ·∇σ = ∂σ/∂n is set to zero, since σ being a surface property, does not

vary with respect to n. κ is the mean curvature of the interface given by

κ = ∇ ·n =
1

R1
+

1
R2

where R1 and R2 are the principle radii of curvature of the interface in any two orthogonal planes

containing n, being reckoned here as positive when the corresponding center of curvature lies

on the opposite side of the interface to which n points. In the limit, as area A → 0, the equation

(5) becomes

lim
A→0

FFFst

A
= ∇σ −σκn. (6)

Now consider an elemental control volume with a thickness h around the surface S as shown

Figure 2: Control volume enclosing the interface.

in figure 2. The forces that act on the surface of this control volume are the surface traction t(1)
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and t(2) which act on either side of the control volume surface, and the surface tension force σ
which acts along the direction of vector b×n. By Newton’s second law, the mass × acceleration

of the control volume is equal to the net force acting on the control volume, i.e.,

ρV a = ΣFFF

= (t(1)+ t(2))A+FFFst +ρV g

where V = Ah is the volume of the control volume. Using Cauchy’s relation (see Batchelor [2]),

the traction vector can be related to the stress tensor, TTT . Thus, t(1) = TTT (1) ·n1 and t(2) = TTT (2) ·n2.

Now, the force balance equation can be written as

TTT (1) ·n1 +TTT (2) ·n2 +
FFFst

A
=

ρV

A
(a−g).

In the limit, as the thickness h → 0 and the area A → 0, the right-hand side of the above equation

goes to zero. Thus, we have

lim
A→0

FFFst

A
= TTT (2) ·n1 − TTT (1) ·n1 (since n2 =−n1). (7)

Letting n1 = n (i.e., n is assumed to points from fluid 1 to fluid 2), and using equations (6) and

(7), we get the following relation
[

TTT (2)−TTT (1)
]

·n = ∇σ −σκn. (8)

This is the general form of the dynamic boundary condition at the interface, which gives the

fundamental relationship between the jump in stress across an interface and the surface tension

force. As pointed out by Landau and Lifshitz [3], this condition can be satisfied only for a viscous

fluid. The ith component of the equation may be written as

τ(2)i j n j − τ(1)i j n j =
∂σ
∂xi

−σκni.

Taking the dot product of both sides of equation (8) with n, setting n ·∇σ = 0, we get the jump in

normal stress as

[τnn] = τ(2)nn − τ(1)nn =−σκ. (9)

For fluid under static equilibrium, equation (9) reduces to the classic Young-Laplace equation

[p] = p(2)− p(1) = σκ, (10)

which states that the pressure jump across the interface is balanced by the interfacial surface

tension.

The jump in shear stress is obtained analogously by taking the dot product of both sides of

the equation (8) with s, where s is one of the unit tangents to surface S; we get

[τns] = τ(2)ns − τ(1)ns =
∂σ
∂ s

. (11)

Note that, if the surface tension coefficient σ does not vary along the interface, the jump in

shear stress is zero and hence, the shear stress is continuous across the interface. Surface

tension can be assumed to be uniform, in the absence of temperature variation or gradient of

any surfactant along the interface.
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