Dimensionless Numbers in Fluid Mechanics and Heat Transfer

A. Salih

Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram 30 January 2025

Nondimensionalization of the governing equations of fluid flow and heat transfer is important for both theoretical and computational reasons. Nondimensional scaling provides a method for developing dimensionless groups that can provide physical insight into the importance of various terms in the system of governing equations. Computationally, dimensionless forms have the added benefit of providing numerical scaling of the system discrete equations, thus providing a physically linked technique for improving the ill-conditioning of the system of equations. Moreover, dimensionless forms also allow us to present the solution in a compact form. Some of the important dimensionless numbers used in fluid mechanics and heat transfer are given below.

• Archimedes Number:

$$Ar = \frac{gL^3\rho(\rho_s - \rho)}{\mu^2} = \frac{Re^2}{Fr}$$

• Atwood Number:

$$A = \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$$

Atwood Number is useful in the study of density stratified flows.

• Biot Number:

$$Bi = \frac{hL}{k_s} = \frac{\text{conductive resistance in solid}}{\text{convective resistance in thermal boundary layer}}$$

• Bond Number:

$$Bo = \frac{\rho g L^2}{\sigma} = \frac{We}{Fr}$$

• Brinkman Number:

$$Br = \frac{\mu U^2}{k(T_w - T_o)} = PrEc$$

Brinkman number is related to heat conduction from a wall to a flowing viscous fluid. It is commonly used in polymer processing. If $Br \ll 1$, the viscous dissipation can be neglected.

• Capillary Number:

$$Ca = \frac{\mu U}{\sigma} = \frac{We}{Re}$$

• Cauchy Number:

$$Ca = \frac{\rho U^2}{K} = M^2$$

• Centrifuge Number:

$$Ce = rac{
ho \Omega^2 L^3}{\sigma} = rac{We}{Ro^2}$$

• Dean Number:

$$De = \frac{Re}{\sqrt{R/h}}$$

Dean number deals with the stability of two-dimensional flows in a curved channel with mean radius R and width 2h.

• Deborah Number:

$$De = rac{ au}{t_p} = rac{ ext{relaxation time}}{ ext{characteristic time scale}}$$

Deborah Number commonly used in rheology to characterize how "fluid" a material is. The smaller the De, the more the fluid the material appears.

• Eckert Number:

$$Ec = \frac{U^2}{c_p \Delta T} = \frac{\text{dynamic temperature induced by fluid}}{\text{characteristics temperature difference in the fluid}}$$

Eckert number represents the kinetic energy of the flow relative to the boundary layer enthalpy difference. Ec plays an important role in high speed flows for which viscous dissipation is significant.

• Ekman Number:

$$Ek = rac{\mu}{
ho \sigma L^2} = rac{ ext{viscous force}}{ ext{Coriolis force}}$$

• Eötvös Number:

$$Eo = \frac{\Delta \rho g L^2}{\sigma} = \frac{We}{Fr}$$

• Euler Number:

$$Eu = \frac{\Delta p}{\rho U^2} = \frac{\text{pressure force}}{\text{inertial force}}$$

• Fourier Number:

$$Fr = rac{lpha t}{L^2} = rac{ ext{rate of heat conduction}}{ ext{rate of thermal energy stored}}$$

Fourier number represents the dimensionless time. It may be interpreted as the ratio of current time to time to reach steady-state.

• Froude Number:

$$Fr = \frac{U^2}{gL} = \frac{\text{inertial force}}{\text{gravitational force}}$$

• Galileo Number:

$$Ga = \frac{\rho^2 g L^3}{\mu^2} = \frac{Re^2}{Fr}$$

• Graetz Number:

$$Gz = \frac{Ud_h}{v} = \frac{d_h Pe}{L}$$

• Grashof Number:

$$Gr = \frac{g\beta(T_{hot} - T_{\infty})L^3}{v^2} = \frac{buoyancy force}{viscous force}$$

• Hagen Number:

$$Hg = -\frac{dp}{dx}\frac{\rho L^3}{\mu^2} =$$

Hagen Number is the forced flow equivalent of Grashof number.

• Jakob Number:

$$Ja = rac{c_p(T_w - T_{\mathsf{sat}})}{h_{fg}} =$$

Jakob number represents the ratio of sensible heat to latent heat absorbed (or released) during the phase change process.

• Knudsen Number:

$$Kn = rac{\lambda}{L} = rac{ ext{length of mean free path}}{ ext{characteristic length}}$$

• Laplace Number:

$$La = \frac{\rho \sigma L}{\mu^2} = \frac{Re^2}{We}$$

• Lewis Number:

$$Le = rac{lpha}{D_{AB}} = rac{ ext{thermal diffusivity}}{ ext{mass diffusivity}}$$

• Mach Number:

$$M = \frac{U}{a} = \frac{\text{inertia force}}{\text{elastic (compressibility) force}}$$

• Marangoni Number:

$$Ma = -\frac{d\sigma}{dT}\frac{L\Delta T}{\mu\alpha}$$

Marangoni number is the ratio of thermal surface tension force to the viscous force.

• Morton Number:

$$Mo = \frac{g\mu^4}{\Delta\rho\sigma^3} = \frac{We^2}{FrRe^4}$$

• Nusselt Number:

$$Na = \frac{hL}{k_f}$$

Nusselt number represents the dimensionless temperature gradient at the solid surface.

• Ohnesorge Number:

$$Oh = \frac{\mu}{\sqrt{\rho\sigma L}} = \frac{\sqrt{We}}{Re}$$

• Peclet Number:

$$Pe = \frac{UL}{\alpha} = RePr = \frac{\text{inertia (convection)}}{\text{diffusion}}$$

• Prandtl Number:

$$Pr = rac{v}{lpha} = rac{ ext{momentum diffusivity}}{ ext{thermal diffusivity}}$$

• Rayleigh Number:

$$Ra = \frac{g\beta(T_{hot} - T_{\infty})L^3}{\nu\alpha} = GrPr = \frac{\text{buoyancy}}{\text{viscous} \times \text{rate of heat diffusion}}$$

_

• Reynolds Number:

$$Re = rac{
ho UL}{\mu} = rac{ ext{inertial force}}{ ext{viscous force}}$$

• Richardson Number:

$$Ri = rac{geta(T_{
m hot} - T_{\infty})L}{U^2} = rac{Gr}{Re^2} = rac{{
m buoyancy force}}{{
m inertial force}}$$

• Rossby Number:

$$Ro = \frac{U}{\Omega L} = \frac{\text{inertial force}}{\text{Coriolis force}}$$

• Rotating Froude Number:

$$Fr_R = rac{\Omega^2 L}{g} = rac{Fr}{Ro^2}$$

• Schmidt Number:

$$Sc = \frac{V}{D_{AB}} = LePr = \frac{\text{momentum diffusivity}}{\text{mass diffusivity}}$$

• Sherwood Number:

$$Sh = \frac{h_m L}{D_{AB}}$$

Sherwood number represents the dimensionless concentration gradient at the solid surface.

• Stanton Number:

$$St = \frac{h}{\rho U c_p} = \frac{Nu}{RePr}$$

Stanton number is the modified Nusselt number. It is used in analogy between heat transfer and viscous transport in boundary layers.

• Stefan Number:

$$St = rac{c_p dT}{L_m} = rac{ ext{specific heat}}{ ext{latent heat}}$$

Stefan number is useful in the study of heat transfer during phase change.

• Stokes Number:

$$Stk = \frac{\tau U_o}{d_c} = \frac{\text{stopping distance of a particle}}{\text{characteristic dimension of the obstacle}}$$

Stokes number is commonly used in particles suspended in fluid. For $Stk \ll 1$, the particle negotiates the obstacle. For $Stk \gg 1$, the particle travels in straight line and eventually collides with obstacle.

• Strouhal Number (for oscillatory flow) Number:

$$St = \frac{L}{Ut_{ref}} = \frac{\text{inertia (local)}}{\text{inertia (convection)}}$$

If $t_{\rm ref}$ is taken as the reciprocal of the circular frequency ω of the system, then

$$St = \frac{\omega L}{U}$$

• Taylor Number:

$$Ta = \frac{\rho^2 \Omega_i^2 L^4}{\mu^2}$$

where $L = \left[r_i(r_o - r_i)^3\right]^{1/4}$

• Weber Number:

$$We = rac{
ho U^2 L}{\sigma} = rac{ ext{inertial force}}{ ext{surface tension force}}$$

• Womersley Number:

$$\alpha = L\sqrt{\frac{\rho\omega}{\mu}} = \sqrt{\pi ReSt}$$

Womersley number is used in biofluid mechanics. It is a dimensionless expression of the pulsatile flow frequency in relation to the viscous effects.

Nomenclature:

а	\rightarrow speed of sound
c_p	\rightarrow specific heat at constant pressure
D_{AB}	\rightarrow mass diffusivity coefficient
dT	\rightarrow temperature difference between phases
d_c	\rightarrow characteristic dimension of the obstacle
d_h	\rightarrow hydraulic diameter of the duct
g	\rightarrow gravitational acceleration
ĥ	\rightarrow heat transfer coefficient
h	ightarrow width of the channel
h_{fg}	ightarrow latent heat of condensation
h_m	ightarrow mass transfer coefficient
Κ	ightarrow bulk modulus of elasticity
k	ightarrow thermal conductivity of fluid
k_f	ightarrow thermal conductivity of fluid
k_s	ightarrow thermal conductivity of solid
L	ightarrow characteristic length scale
L_m	ightarrow latent heat of melting
R	ightarrow radius of the channel
r _i	ightarrow radius of the inner cylinder
r_o	ightarrow radius of the outer cylinder
T_{hot}	ightarrow temperature of the hot wall
T_{ref}	ightarrow reference temperature
T_o	ightarrow bulk fluid temperature
$T_{\sf sat}$	ightarrow saturation temperature
T_w	ightarrow wall temperature
T_{∞}	ightarrow quiescent temperature of the fluid
	\rightarrow time
$t_{\sf ref}$	ightarrow reference time
r	ightarrow characteristic time scale
	ightarrow characteristic velocity scale
	ightarrow fluid velocity far away from the object
~ /	z ightarrow pressure gradient
,	$T \rightarrow$ rate of change of surface tension with temperature
α	\rightarrow thermal diffusivity of fluid
β	\rightarrow volumetric thermal expansion coefficient
-	\rightarrow characteristic pressure difference of flow
	\rightarrow characteristic temperature difference
-	\rightarrow difference in density of the two phases
	\rightarrow mean free path distance
•	\rightarrow viscosity of fluid
v	ightarrow kinematic viscosity of fluid

- $ho \qquad o$ density of fluid
- $ho_1 \longrightarrow {\sf density}$ of heavier fluid
- $ho_2
 ightarrow ext{density}$ of lighter fluid
- $ho_s
 ightarrow {
 m density}$ of solid
- $\sigma ~~
 ightarrow$ surface tension
- $au \longrightarrow {\sf relaxation time}$
- $\Omega \qquad \rightarrow \text{ angular velocity}$
- $\omega ~~
 ightarrow$ circular frequency
- $\omega_i \longrightarrow ext{angular velocity of inner cylinder}$