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We discuss some of the basic properties of the generalized functions, viz., Dirac-delta func-
tion and Heaviside step function.

Heaviside step function

The one-dimensional Heaviside step function centered at a is defined in the following way

0 if x<a,
H(x—a)= 1a
( ) {1 if x> a. (13

For a = 0 the discontinuity is at Xx= 0, thus we have

0 ifx<O
H(x) = ’ 1b
) {1 if x> 0. (1b)
The heaviside function is displayed in Fig. 1.
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Figure 1: The Heaviside functions H(x—a) and H(X).

Dirac-delta function

To understand the behaviour of Dirac-delta function (or delta function, for short) &(x), we
consider the rectangular pulse function

h if a—i < X< a+i
A(x,a) = 2h 2h’ 2

0 otherwise.
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Figure2: The pulse function.

From figure 2, it can be seen that as h — oo, the amplitude of pulse becomes very large and
its width becomes very small so that for any value of h, the integral of the rectangular pulse

B
/ A(x,a)dx = 1
a

if the the integral of definition (a— 2_1h’ a+ 2_1h) lies in the interval (a, ), and zero if range of
integration does not contain the pulse. Now, we can define the Dirac-delta function d(x—a)
located at the point X=a as

o(x—a) = limA(x,a) imA(x—a). (3)

=1
h— oo h—c0

To understand the significance of d(x— a), let us consider the integral

B
/ f(X)A(x,a) dx

where f(X) is an arbitrary continuous function defined over o < x < 8. From mean value
theorem, we have

at 4
1

/aﬁ f(X)A(x—a)dx= [ f(x)A(x,a)dx= KaJr 2_1h) — (a—%)} f(E)D(§) = ~hf(§) =

a—

N

where & is an unknown point within the interval (a— 2—1h, a+ 2_1h) As h — o, we have A(X—
a) — O0(Xx—a), and the point & in the interval (a— 2—1h, a+ 2_1h) moves closer to @, and hence
f(&) — f(a). Thus we have the fundamental property of the delta function

/Bf(x)5(X—a)dx: {”a) ta<a<p. ()

0 otherwise.

For example,

/16(3x— 1)3(x—2)dx = 5.
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This shows the filtering property of the delta function when it occurs under the integral sign,
because from all the values of f(X) in the interval of integration, delta function d(X—a) has
selected the value f(a) at the location where it is acting. Delta functions are not ordinary
functions in the sense that we can ask for the value of d(X—a) at say X=7. They are examples
of what are called “generalized functions”, and they are characterized by their effect on other
functions through integral (4).

If f(x) =1, we obtain the following relation

B 1 ifa
/ d(x—a)dx = ta<x<p (5a)
a 0 otherwise.

where the limit of the integration can be extended from —o to c. Thus, we have
/ S(x—a)dx = 1. (5b)

The fact that the delta function is not an ordinary function and thus cannot be represented
on a graph is clearly apparent from definition (2), because

o if X=a,

Olx—a) = {0 if X # a. ©

such that ©
/ S(x—a)dx = 1.

If we replace the upper limit of the integral o, by a finite value X, then we have the following

property
X 0 ifx<a,
/ o(x—a)dx = ' (7
—oo0 1 ifx>a

Comparing equations (1a) and (7) we get the following relation between Heaviside function and
delta function

X
H(x—a) = / o(x—a)dx. (8)
Differentiation of equation (8) with respect to X, yields the following relation
dH(x—a)
——— = 9Jd(x—a). 9
o = ox-a) ©)
If the delta function is acting at the origin, i.e., if a= 0, we have the fundamental property
of the delta function
B f(0) ifa<0<p,
/ F3(dx = 4 (O TFa<0<p (10)
a 0 otherwise.

and if f(X) =1 in the above equation, we have

/Bé(x)dx:{l fa<0<B 4 /mé(x)dx:l. (1)

a 0 otherwise



The delta function can then be defined as

if x=20
sx) =4 "7 (12)
0 ifx#0.
and the relationship between Heaviside function and delta function is given by
dH (x)
=0 13
= (13
and
X 0 ifx<O
H(x) = / S(x)dx = ’ 14
) —oo() {1 if x> 0. (19

Regularized Dirac-delta function

Instead of using the limit of ever-narrowing rectangular pulse of unit area when defining delta
function, any similar functions can be used, provided their integral is unity and their amplitude
increase as their pulse-like property narrows. For example, a regularized (smeared-out) delta
function in an interval (a—€,a+ €) is given by

Zlaz[ljtcos(Mﬂ if a—€&<X<a+eg,

O%(x—a) = (15)

0 otherwise

where € is a parameter that determines the size of the width of smearing. The variation of
0¢(X) with X for different values of € is shown in figure. Note that the function value of the
peak (which is at the point x=a) is 1/¢.

The property given by equation (5) is also valid for regularized delta function. To show this,
we integrate Og(X) over the interval [a—€,a+¢];

/:Zgée(x)dx_/:j 21 [1+cos(@)} dx

/ 1+ COS Zy)} dy (putting y = x—a)

1
2 ! n/s »

:2— [(e+0)—(—€+0)]
=1

A useful property of the regularized delta function is given by

lim f(X)de(x—a)dx = f(a). (16)

e—0/—



If the delta function is acting at the origin, i.e., if a= 0, the regularized delta function
defined by (15) becomes

1 . .
3 (X) = { 2¢ [1+cos(F)] if —e<x<eg

0 otherwise.

(17)

Another example of regularized delta function is a sequence of bell-shaped pulses defined as

1  1/xa)2
- ¢@ 2(—k_>
kv/2m

where K is a parameter. This regularized delta function approaches to delta function d(x—a)
as k— 0. That is,

&(x—a) = (18)

- 1 1(xa)?
o(x—a) = L%k\/ﬁe ()", (19)

Note that the integral of &(X—a), i.e.,
© 1 1/x-a\2
—e_?(T> = 1
/—oo kv 21
for all values of k> 0, and the bell-shaped pulses defined in this way becomes narrower as kK — 0

as displayed in Fig. 3. If the delta function is acting at the origin, i.e., if a= 0, the regularized
delta function defined by (18) becomes

1 1/x)\2
[ _?(R>
& (X) k\/ﬁe : (20)
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Figure 3: The regularized delta function as defined in (20).



