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We discuss some of the basic properties of the generalized functions, viz., Dirac-delta func-

tion and Heaviside step function.

Heaviside step function

The one-dimensional Heaviside step function centered at a is defined in the following way

H(x−a) =

{

0 if x < a,

1 if x > a.
(1a)

For a = 0 the discontinuity is at x = 0, thus we have

H(x) =

{

0 if x < 0,

1 if x > 0.
(1b)

The heaviside function is displayed in Fig. 1.
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Figure 1: The Heaviside functions H(x−a) and H(x).

Dirac-delta function

To understand the behaviour of Dirac-delta function (or delta function, for short) δ (x), we
consider the rectangular pulse function

∆(x,a) =







h if a− 1
2h

< x < a+
1

2h
,

0 otherwise.
(2)
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Figure 2: The pulse function.

From figure 2, it can be seen that as h → ∞, the amplitude of pulse becomes very large and

its width becomes very small so that for any value of h, the integral of the rectangular pulse

∫ β

α
∆(x,a)dx = 1

if the the integral of definition (a− 1
2h , a+ 1

2h) lies in the interval (α,β ), and zero if range of

integration does not contain the pulse. Now, we can define the Dirac-delta function δ (x−a)
located at the point x = a as

δ (x−a) = lim
h→∞

∆(x,a) = lim
h→∞

∆(x−a). (3)

To understand the significance of δ (x−a), let us consider the integral

∫ β

α
f (x)∆(x,a)dx

where f (x) is an arbitrary continuous function defined over α < x < β . From mean value

theorem, we have

∫ β

α
f (x)∆(x−a)dx =

a+ 1
2h

∫

a− 1
2h

f (x)∆(x,a)dx =

[(

a+
1

2h

)

−
(

a− 1
2h

)]

f (ξ )D(ξ ) =
1
h

h f (ξ ) = f (ξ )

where ξ is an unknown point within the interval (a− 1
2h , a+ 1

2h). As h → ∞, we have ∆(x−
a)→ δ (x−a), and the point ξ in the interval (a− 1

2h , a+ 1
2h) moves closer to a, and hence

f (ξ )→ f (a). Thus we have the fundamental property of the delta function

∫ β

α
f (x)δ (x−a)dx =

{

f (a) if α < a < β ,
0 otherwise.

(4)

For example,
∫ 6

1
(3x−1)δ (x−2)dx = 5.
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This shows the filtering property of the delta function when it occurs under the integral sign,

because from all the values of f (x) in the interval of integration, delta function δ (x−a) has

selected the value f (a) at the location where it is acting. Delta functions are not ordinary

functions in the sense that we can ask for the value of δ (x−a) at say x = 7. They are examples

of what are called “generalized functions”, and they are characterized by their effect on other

functions through integral (4).
If f (x) = 1, we obtain the following relation

∫ β

α
δ (x−a)dx =

{

1 if α < x < β ,
0 otherwise.

(5a)

where the limit of the integration can be extended from −∞ to ∞. Thus, we have
∫ ∞

−∞
δ (x−a)dx = 1. (5b)

The fact that the delta function is not an ordinary function and thus cannot be represented

on a graph is clearly apparent from definition (2), because

δ (x−a) =

{

∞ if x = a,

0 if x 6= a.
(6)

such that
∫ ∞

−∞
δ (x−a)dx = 1.

If we replace the upper limit of the integral ∞, by a finite value x, then we have the following

property
∫ x

−∞
δ (x−a)dx =

{

0 if x < a,

1 if x > a.
(7)

Comparing equations (1a) and (7) we get the following relation between Heaviside function and

delta function

H(x−a) =
∫ x

−∞
δ (x−a)dx. (8)

Differentiation of equation (8) with respect to x, yields the following relation

dH(x−a)
dx

= δ (x−a). (9)

If the delta function is acting at the origin, i.e., if a = 0, we have the fundamental property

of the delta function
∫ β

α
f (x)δ (x)dx =

{

f (0) if α < 0 < β ,
0 otherwise.

(10)

and if f (x) = 1 in the above equation, we have

∫ β

α
δ (x)dx =

{

1 if α < 0 < β ,
0 otherwise

and
∫ ∞

−∞
δ (x)dx = 1. (11)
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The delta function can then be defined as

δ (x) =

{

∞ if x = 0,

0 if x 6= 0.
(12)

and the relationship between Heaviside function and delta function is given by

dH(x)
dx

= δ (x) (13)

and

H(x) =
∫ x

−∞
δ (x)dx =

{

0 if x < 0,

1 if x > 0.
(14)

Regularized Dirac-delta function

Instead of using the limit of ever-narrowing rectangular pulse of unit area when defining delta

function, any similar functions can be used, provided their integral is unity and their amplitude

increase as their pulse-like property narrows. For example, a regularized (smeared-out) delta

function in an interval (a− ε,a+ ε) is given by

δε(x−a) =







1
2ε

[

1+ cos
(

π(x−a)
ε

)]

if a− ε < x < a+ ε,

0 otherwise
(15)

where ε is a parameter that determines the size of the width of smearing. The variation of

δε(x) with x for different values of ε is shown in figure. Note that the function value of the

peak (which is at the point x = a) is 1/ε .
The property given by equation (5) is also valid for regularized delta function. To show this,

we integrate δε(x) over the interval [a− ε,a+ ε];
∫ a+ε

a−ε
δε(x)dx =

∫ a+ε

a−ε

1
2ε

[

1+ cos

(

π(x−a)
ε

)]

dx

=
∫ ε

−ε

1
2ε

[

1+ cos
(πy

ε

)]

dy (putting y = x−a)

=
1

2ε

[

y+
sin

(πy
ε
)

π/ε

]ε

−ε

=
1

2ε
[(ε +0)− (−ε +0)]

= 1.

A useful property of the regularized delta function is given by

lim
ε→0

∫ ∞

−∞
f (x)δε(x−a)dx = f (a). (16)

4



If the delta function is acting at the origin, i.e., if a = 0, the regularized delta function

defined by (15) becomes

δε(x) =







1
2ε

[

1+ cos
(πx

ε
)]

if − ε < x < ε,

0 otherwise.
(17)

Another example of regularized delta function is a sequence of bell-shaped pulses defined as

δk(x−a) =
1

k
√

2π
e−

1
2(

x−a
k )

2

(18)

where k is a parameter. This regularized delta function approaches to delta function δ (x−a)
as k → 0. That is,

δ (x−a) = lim
k→0

1

k
√

2π
e−

1
2(

x−a
k )

2

. (19)

Note that the integral of δk(x−a), i.e.,

∫ ∞

−∞

1

k
√

2π
e−

1
2(

x−a
k )

2

= 1

for all values of k > 0, and the bell-shaped pulses defined in this way becomes narrower as k → 0
as displayed in Fig. 3. If the delta function is acting at the origin, i.e., if a = 0, the regularized

delta function defined by (18) becomes

δk(x) =
1

k
√

2π
e−

1
2(

x
k)

2

. (20)
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Figure 3: The regularized delta function as defined in (20).
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