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1 Introduction

Weighted residual method is a generic class of method developed to obtain approximate solution to the

differential equations of the form

L (φ)+ f = 0 in D (1)

where φ(x) is the dependent variable and is unknown and f (x) is a known function. L denotes the

differential operator involving spatial derivative of φ , which specifies the actual form of the differential

equation.

Weighted residual method involves two major steps. In the first step, an approximate solution based

on the general behavior of the dependent variable is assumed. The assumed solution is often selected so

as to satisfy the boundary conditions for φ . This assumed solution is then substituted in the differential

equation. Since the assumed solution is only approximate, it does not in general satisfy the differential

equation and hence results in an error or what we call a residual. The residual is then made to vanish

in some average sense over the entire solution domain to produce a system of algebraic equations. The

second step is to solve the system of equations resulting from the first step subject to the prescribed

boundary condition to yield the approximate solution sought.

Let ψ(x) ≈ φ(x), is an approximate solution to the differential equation (15). When ψ(x) is

substituted in the differential equation (15), it is unlikely that the equation is satisfied. That is, we

have

L (ψ)+ f 6= 0.

Or we may write

L (ψ)+ f = R (2)

where R(x) is a measure of error commonly referred to as the residual.

Multiply equation (15) by an arbitrary weight function w(x) and integrating over the domain D to

obtain
∫

D
w [L (φ)+ f ]dD = 0. (3)

Equations (15) and (3) equivalent. Replacing φ by ψ in equation (3) results in

∫

D
w(x) [L (ψ)+ f ] dD =

∫

D
w(x)R(x) dD 6= 0. (4)
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The integral in (4) gives the weighted average of the residual over the solution domain. In weighted

residual method we force this integral to vanish over the solution domain. That is,

∫

D
w(x)R(x) dD = 0. (5)

We now seek the approximate solution in the form a generalized Fourier series, say

ψ(x) =
n

∑
i=1

ciNi(x) = c1N1(x)+ c2N2(x)+ · · · · · ·+ cnNn(x). (6a)

In vector form

ψ(x) = CT NT = (NC)T = NC (6b)

where N is the row vector

N =
[

N1 N2 · · · · · · Nn

]

and C is the column vector

C =













c1

c2
...

cn













.

Here ci’s are unknown coefficients called fitting coefficients and n is the number of fitting coefficients.

Ni(x)’s are assumed to be linearly independent functions of x and are called trial functions. The trial

functions can be polynomials, trigonometric functions etc. The trial functions are usually chosen in

such a way that the assumed function ψ(x) satisfies the global boundary conditions for φ(x), although
this not strictly necessary and certainly not always possible.

Polynomial Approximation. One of the simplest choices for a trial function is a polynomial, for a

one-dimensional problem which can be obtained by taking Ni(x) = xi. The result is

ψ(x) =
n

∑
i=0

ci x
i = c0 + c1x+ · · ·+ cnxn.

This produces a smooth solution, but it suffers the same limitations as Lagrange interpolation. A

particularly significant flaw is that this choice need not converge to φ(x) as n increases.

Trigonometric Approximation. Another often used set of trial function is trigonometric approxima-

tion based on Fourier series. An example is a Fourier sine series obtained by taking Nk(x) = sin kπx
L . For

a one-dimensional problem,

ψ(x) =
n

∑
k=1

ck sin
kπx
L

.

Because sin(kπx/L) at x = 0 and sin(kπx/L) at x = L, this expansion requires the boundary conditions

y(0) = y(L) = 0. This is not much of a restriction, because one can always make the change of variables

so that the boundary conditions become homogeneous.

With the selection of ψ(x) as the series expansion (6), it is evident that the residual R depends on

the unknown parameters ci’s in the expansion:

R = R(x;C).
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If the number of trial functions n is sufficiently large, then in principle, the unknown parameters ci’s

can be chosen so that the residual R is small over the domain.

Weight functions. In general the weight function w(x) may be written as

w(x) =
n

∑
i=1

aiwi = a1w1 +a2w2 + · · · · · ·+anwn = aw (7)

where a and w are row and column vector given respectively by

a =
[

a1 a2 · · · · · · an

]

, w =













w1

w2
...

wn













.

Here wi’s are known functions of x and ai’s are constant parameters. Substituting w(x) = aw in the

weighted residual equation (5) to yield

a
∫

D
wR dD = 0.

Since a is a constant vector, we have
∫

D
wR dD = 0 (8a)

or
∫

D
w1 R dD = 0

...
... (8b)

∫

D
wn R dD = 0

Now we have n equations to determine unknown coefficients ci’s. Finally, inserting ψ = NC in equation

(2) yields

R = L (NC)+ f = L (N)C+ f (9)

and hence the condition (8a) becomes
[

∫

D
wL (N) dD

]

C = −

∫

D
w f dD. (10a)

Introducing matrix K and f as

K =
∫

D
wL (N) dD , f = −

∫

D
w f dD

allows us to write equation (8) in compact form as

KC = f (10b)

which may be expanded as











∫

D w1L (N1)dD
∫

D w1L (N2)dD · · ·
∫

D w1L (Nn)dD

· · · · · · · · · · · ·

· · · · · · · · · · · ·
∫

D wnL (N1)dD
∫

D wnL (N2)dD · · ·
∫

D wnL (Nn)dD























c1

c2
...

cn













= −













∫

D w1 f dD
∫

D w2 f dD
...

∫

D wn f dD













. (10c)
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The system of equation given by (10) can be solved for n unknown coefficients ci’s provided that a

suitable weight function w is selected.

With regards to the selection of weight function, we have several choices. Hence, depending upon

nature of weight function, we have different types of weighted residual methods. Some of the standard

methods are:

1. Point Collocation Method

2. Subdomain Collocation Method

3. Least Square Method

4. Galerkin Method

2 Point Collocation Method

In point collocation method, the weight function is selected in such a way that the residual can be set

equal to zero at n distinct points in the domain. This can be achieved by choosing weight function as

the displaced Dirac delta function. So, for one-dimensional case,

wi = δ (x− xi) =







∞, if x = xi

0, else
(11)

where the fixed points xi ∈ [a,b], (i = 1,2, · · · ,n) are called collocation points. The number of collo-

cation points selected must be equal to the number of unknown coefficients ci’s in the definition of

approximating function, ψ(x).

b b b b b

i−1 i i+1

Figure 1: Collocation points in a one-dimensional domain.

The displaced Dirac delta function has the property that

(wi,R) =
∫ b

a
δ (x− xi)R dx = R(xi).

Thus, from equation (8) we have

R(xi) = 0, i = 1,2, · · · ,n (12)

i.e., the residual R(x) is forced to be zero at n collocation points. For the point collocation method the

linear system of equation (10) takes the form











L (N1(x1)) L (N2(x1)) · · · L (Nn(x1))

· · · · · · · · · · · ·

· · · · · · · · · · · ·

L (N1(xn)) L (N2(xn)) · · · L (Nn(xn))























c1

c2
...

cn













= −













f (x1)

f (x2)
...

f (xn)













. (13)

Note: It can be shown that the point collocation method is equivalent to the classical finite difference

method.
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Example 1

Let us illustrate the application of point collocation method using a simple physical problem. We

consider a simply supported beam subjected to concentrated moments at both ends. The problem is

governed by the following differential equation

EI
d2y
dx2 −M0 = 0, x ∈ [0,L] (14)

with boundary conditions (support condition in this case)

y(0) = 0 & y(L) = 0.

Here, the coefficient EI represents the resistance of the beam to deflection, M0 is the applied moment,

and L is the length of the beam.

y(x) =
M0

2EI
x(x−L) (15)

The analytical solution of the problem in the interval [0,L] is

x

y

M0 M0

Figure 2: Simply supported beam subject to bending moments

y(x) = −
M0

2EI
x(L− x). (16)

The negative sign in the expression shows that the displacement is negative for positive values of

bending moment, M0.

Trigonometric approximation to deflection curve. Let us pretend that we do not know the solution

and select the approximating function u(x) as a sinusoidal function of the form

u(x) = AsinBx

where A and B are constants. The function which satisfies the prescribed boundary conditions can be

obtained by the application of boundary conditions to the chosen approximating function. Thus, we

have

u(x) = Asin
πx
L

= c1N1 (17)

where c1 = A and N1 = sin πx
L . The second derivative of the assumed function,

d2u
dx2 = c1

d2N1

dx2 = −
Aπ2

L2 sin
πx
L

Substitution the above expression for the second derivative into the (14) gives the residual R. That is,

R(x;A) = −EI
Aπ2

L2 sin
πx
L

−M0.
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Since the approximating function contains just one fitting coefficient, we need to select only one

collocation point in the domain [0,L] and force residual to zero there. We do not know which point

will be the best choice, so we arbitrarily select collocation point at x = L/2. By equation (12), we have

R(L/2) = −EI
Aπ2

L2 sin
π
2
−M0 = 0.

Solving for the unknown coefficient A, we obtain

A = −
M0L2

EIπ2 .

Thus, the approximate solution in the interval [0,L] is

u(x) = −
M0L2

EIπ2 sin
πx
L
. (18)

Figure 3 shows that the approximate solution u(x) agrees well with the exact solution y(x) over the

interval [0,L]. Note that if we had selected the collocation point other than at x = L/2, a different

approximate solution would have been obtained.

y(x)
u(x)

x

Figure 3: Beam deflection problem – result of point collocation method.

Polynomial approximation to deflection curve. Here we select a second degree polynomial of the

form

u(x) = a + bx + cx2.

The function which satisfies the prescribed boundary conditions can be obtained by the application of

boundary conditions to the chosen approximating function. Thus, we have

u(x) = cx(x−L) = c1N1 (19)

where c1 = c and N1 = x(x−L). The second derivative,

d2u
dx2 = 2c

The residual R is then given by

R(x;c) = EI×2c − M0.

Here R(x) is independent of x, so that the residual can be set to zero at every point in the interval

automatically. Therefore,

EI×2c − M0 = 0.
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Solving for the unknown coefficient c, we get

c =
M0

2EI
.

Thus, the approximate solution is

u(x) = −
M0

2EI
x(L− x). (20)

It may be noted that selection of a second degree polynomial yields exact solution since the selected

polynomial represents the exact behaviour of the deflection curve.

Example 2

It is interesting to note that one-dimensional steady state heat conduction problem with uniform heat

generation is similar to the beam deflection problem discussed above. The governing differential equa-

tion for the heat conduction problem is given by

k
d2T
dx2 +S = 0, x ∈ [0,L] (21)

with the boundary conditions

T (0) = T (L) = 0

where S is the uniform the rate of heat generation per unit volume of the material with thermal constant

conductivity k. The exact solution of the problem is

T (x) =
S
2k

x(L− x) (22)

Exact solution will be obtained if second degree polynomial is selected as the trial function.

Example 3

We will now take a fluid mechanics problem which is governed by a second-order linear ordinary differ-

ential equation similar to that of beam deflection problem and steady state heat conduction problem

discussed earlier. Consider the fully developed flow between infinite parallel plates. The plates are

separated by a distance h, as shown in figure. The length of the plates in z-direction is assumed to be

very large compared to h, with no variation of any fluid property in this direction. With this assumption,

we have ∂/∂ z = 0. The flow is assumed to be steady, incompressible, and unidirectional with velocity

components v = w = 0. Since the flow under consideration is unidirectional it satisfies the condition

for parallel flows. The continuity and x-momentum equation are given by

∂u
∂x

= 0

ρ
∂u
∂ t

= ρgx −
∂ p
∂x

+ µ
(

∂ 2u
∂y2 +

∂ 2u
∂ z2

)

0 = ρgy −
∂ p
∂y

0 = ρgz −
∂ p
∂ z

7



For steady flow in the absence of gravitational force, the system reduces to

0 = −
∂ p
∂x

+ µ
∂ 2u
∂y2

0 =
∂ p
∂y

0 =
∂ p
∂ z

From the continuity equation we can infer that the velocity u is not a function of stream-wise direction,

x. In other words, the flow is same in any x-location. The phrase fully developed flow is often used to

describe this situation. Thus, in the fully developed flow, u is function of only y; i.e., u = u(y).

The y and z-momentum equations show that the pressure is independent of y and z coordinates.

Thus, pressure could be a function of x alone, i.e.,

p = p(x)

The x-momentum equation can be written as

d2u
dy2 −

1
µ

d p
dx

= 0 x ∈ [0,h] (23)

Since the left-hand side varies only with y and the right-hand side varies only with x, it follows that

both sides must be equal to the same constant. Hence, the pressure gradient d p/dx is a constant.

This equation can be integrated twice and no-slip boundary conditions can then be applied to obtain

the analytical solution

u(y) = −
1

2µ
d p
dx

y(h− y) (24)

Figure shows the parabolic velocity profile. Exact solution will be obtained if second degree polynomial

is selected as the trial function.

Example 4

Solve the differential equation
d2y
dx2 + y = x, x ∈ [0,2]

with the boundary conditions

y(0) = 0, y(2) = 5

using point collocation method. The exact solution of the problem is

y(x) =
3

sin2
sinx+ x

over the interval [0,2].

To solve the problem using point collocation method, we use a polynomial trial function u(x) of

degree 3 in the form

u(x) = 2.5x+ c2x(x−2)+ c3x2(x−2) = 2.5N1 + c2N2 + c3N3.
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Here we have three linearly independent trial functions N1 = x, N2 = x(x−2), and N3 = x2(x−2). The

boundary conditions are met by the first term, and other terms are so selected that they are equal to

zero at the boundaries so that u(x) also meets the boundary conditions.1

The residual is obtained after substituting u(x) for y(x) in the differential equation,

R(x) =
d2u
dx2 +u− x.

From the u(x) defined, we have
d2u
dx2 = 2c2+ c3(6x−4).

Therefore, the residual becomes

R(x) = 2c2+ c3(6x−4)+2.5x+ c2x(x−2)+ c3x2(x−2)− x.

Since the trial function contains two unknown fitting coefficients, we can force the residual to be zero

at two distinct points in [0,2]. We do not know which two points will be the best choices, so we

arbitrarily select collocation points at x = 0.7 and x = 1.3. (Note that these points are more or less

equally spaced in the interval). Setting the residual zero at these points gives a pair of equation for the

constants c2 and c3:

1090c2−437c3+1050 = 0,

1090c2+2617c3+1950 = 0.

or in matrix form
(

1.09 −0.437

1.09 2.617

)[

c2

c3

]

= −

[

1.05

1.95

]

.

Solving the above set of equations for c2 and c3 and substitute in the assumed trial function to obtain

u(x) =

(

5
2

)

x−

(

60000
55481

)

x(x−2)−

(

900
3054

)

x2(x−2)

= −

(

900
3054

)

x3 −

(

13895700
28239829

)

x2 +

(

517405
110962

)

x.

Figure 4 shows that the approximate solution u(x) agrees well with the exact solution y(x) over the

interval [0,2].

It is instructive to note the following points about point collocation method:

• Point collocation method does not automatically produce symmetric coefficient matrix which is

a desirable property when the solution of the equation is sought. Also, symmetry has nothing to

do with the type of approximate solution φ selected.

• Setting the residual to zero at discrete points does not mean that the errors in those points are

actually zero.

• Computational effort required in the point collocation method is minimal.

1It is customary to match the boundary conditions with the initial term(s) of u(x) and then make the succeeding

terms equal to zero at the boundaries.
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Exact
Collocation

x

Figure 4: Comparison of point collocation and exact solutions of problem #4.

3 Subdomain Collocation Method

In the subdomain collocation method, we divide the physical domain into a number of non-overlapping

subdomains. Number of subdomain n is taken as equal to the number of unknown coefficients in the

approximating function. Now, each weight function is selected as unity over a specific subdomain and

set equal to zero over other the other parts. That is, for one-dimensional problems,

wi =







1, if xi ≤ x ≤ xi+1

0, else
(i = 1,2, · · · ,n) (25)

Thus, equation (10) may be written as

∫ b

a
wiR(x) dx =

∫ xi+1

xi

R(x) dx = 0, (i = 1,2, · · · ,n). (26)

This means that the average of the residual over each of n subdomains is forced to be zero. Or, in other

words, differential equation is satisfied on the average in each of the n subdomains. For the subdomain

collocation method the linear system of equation (8) takes the form











∫ x2
x1

L (N1)dx
∫ x2

x1
L (N2)dx · · ·

∫ x2
x1

L (Nn)dx

· · · · · · · · · · · ·

· · · · · · · · · · · ·
∫ xn+1

xn
L (N1)dx

∫ xn+1
xn

L (N2)dx · · ·
∫ xn+1

xn
L (Nn)dx























c1

c2
...

cn













= −













∫ x2
x1

f dx
∫ x3

x2
f dx
...

∫ xn+1
xn

f dx













. (27)

Note: It can be shown that the subdomain collocation method is equivalent to the widely used finite

volume method in computational fluid dynamics.

Example 5

Now, let us illustrate the application of subdomain collocation method using the beam deflection

problem considered earlier. The governing differential equation is given by

EI
d2y
dx2 −M0 = 0
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with boundary conditions

y(0) = 0 & y(L) = 0.

Trigonometric approximation to deflection curve. The sinusoidal trial function that satisfies the

specified boundary conditions is given by

u(x) = Asin
πx
L

= c1N1

where N1 = sin πx
L and the residual

R(x;A) = −EI
Aπ2

L2 sin
πx
L

−M0.

Since there is just one unknown coefficient in the approximating function, we have only one subdomain

which is the domain itself. Thus, equation (26) becomes

∫ L

0
R(x)dx =

∫ L

0

(

−EI
Aπ2

L2 sin
πx
L

−M0

)

dx = 0.

The integration yields the following equation

−

(

2EIπ
L

)

A−M0L = 0

which can be solved for A to obtain

A = −
M0L2

2πEI
.

Thus, the approximate solution is

u(x) = −
M0L2

2πEI
sin

πx
L
.

This approximate solution is also found to be in close agreement with the exact solution. However,

a comparison of the above results with that of point collocation method shows that the approximate

solutions are different.

y(x)
u(x)

x

Figure 5: Beam deflection problem – result of subdomain collocation method.

Polynomial approximation to deflection curve. The second degree polynomial trial function that

satisfies the specified boundary conditions is given by

u(x) = cx(x−L) = c1N1

where N1 = x(x−L) and the residual

R(x;c) = EI ×2c−M0.
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Integrating the residual over [0,L]

∫ L

0
R(x)dx =

∫ L

0
(2EIc−M0)dx = 0

which yields

(2EIc−M0)L = 0.

Solving for c, we have

c =
M0

2EI
.

and thus, the approximate solution is

u(x) = −
M0

2EI
x(L− x).

As in the case of point collocation method, selection of a second degree polynomial as approximating

function results in exact solution.

4 Least Square Method

In the least square weighted residual method, the weight functions are chosen to be the derivatives of

residual with respect to unknown fitting coefficients ci’s of the approximate solution. So, we set

wi =
∂R
∂ci

, (i = 1,2, · · · ,n). (28)

Thus, for a one-dimensional problem in the interval [a,b], the weighted residual integral given by

equation (8) becomes

∫ b

a
wiR(x) dx =

∫ b

a

∂R
∂ci

R(x) dx = 0, (i = 1,2, · · · ,n). (29)

The motivation for this choice of weight function is that we have the following equation

∂
∂ci

∫ b

a
R2(x) dx = 0

which implies that the ‘average squared residual’ in the interval [a,b] is to be minimized with respect

to fitting coefficients ci. Driving the average squared residual to zero will drive the residual R to zero.

Since, we have from equation (9), ∂R/∂ci = L (Ni),

∂R
∂ci

= L (Ni)

for the least square method the linear system of equation (10) takes the form











∫ b
a L (N1)L (N1)dx

∫ b
a L (N1)L (N2)dx · · ·

∫ b
a L (N1)L (Nn)dx

· · · · · · · · · · · ·

· · · · · · · · · · · ·
∫ b

a L (Nn)L (N1)dx
∫ b

a L (Nn)L (N2)dx · · ·
∫ b

a L (Nn)L (Nn)dx























c1

c2
...

cn













= −













∫ b
a L (N1) f dx
∫ b

a L (N2) f dx
...

∫ b
a L (Nn) f dx













.

(30)
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Example 6

Trigonometric approximation to deflection curve. We again consider the beam deflection problem. The

trigonometric trial function is given by

u(x) = Asin
πx
L

= c1N1

where N1 = sin πx
L and the residual

R(x;A) = −EI
Aπ2

L2 sin
πx
L

−M0

and its derivative,
∂R
∂A

= −EI
π2

L2 sin
πx
L
.

The weighted residual equation (25) can now be written as

∫ L

0

∂R
∂A

R(x)dx =
∫ L

0
−EI

π2

L2 sin
πx
L

(

−EI
Aπ2

L2 sin
πx
L

−M0

)

dx = 0.

The integration yields the following equation

(

EIπ2

2L

)

A+
2M0L

π
= 0.

Solving for A, we have

A = −
4M0L2

π3EI
and thus, the approximate solution is

u(x) = −
4M0L2

π3EI
sin

πx
L
.

Figure 6 shows that the approximate solution u(x) agrees well with the exact solution y(x) over the

interval [0,L] and is found to be slightly more accurate than the solution using point collocation method.

y(x)
u(x)

x

Figure 6: Beam deflection problem – result of least square method.

Polynomial approximation to deflection curve. We use the second degree polynomial trial function

u(x) = cx(x−L) = c1N1

where N1 = x(x−L) and the residual

R(x;c) = EI×2c−M0
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and its derivative,
∂R
∂c

= 2EI.

The weighted residual equation (25) can now be written as
∫ L

0

∂R
∂c

R(x)dx =
∫ L

0
2EI (2EIc−M0)dx = 0.

The integration yields the following equation

2EI (2EIc−M0)L = 0.

Solving for c, we have

c =
M0

2EI
and thus, the approximate solution is

u(x) = −
M0

2EI
x(L− x).

As in the case of other two methods, selection of a second-order polynomial as approximating function

results in exact solution.

Following points about least square method may be noted:

• Least square method always produces symmetric coefficient matrix regardless of the differential

operator L and approximate solution φ . Further, this method also produces positive definite

matrix since diagonal entries are always positive.

• Least square method is often computationally expensive.

5 Galerkin Method

In Galerkin version of weighted residual method, the weight functions are chosen to be the trial func-

tions themselves. This is the method we usually used for developing finite element equations for field

problems. So, in Galerkin method we set

wi = Ni, (i = 1,2, · · · ,n). (31)

The unknown coefficients in the approximate solution are determined by setting the integral over D of

the weighted residual to zero. For one-dimensional problem in the interval [a,b], this procedure will

results
∫ b

a
wiR(x) dx =

∫ b

a
NiR(x) dx = 0, (i = 1,2, · · · ,n). (32)

For the Galerkin method the linear system of equation (8) takes the form










∫ b
a N1L (N1)dx

∫ b
a N1L (N2)dx · · ·

∫ b
a N1L (Nn)dx

· · · · · · · · · · · ·

· · · · · · · · · · · ·
∫ b

a NnL (N1)dx
∫ b

a NnL (N2)dx · · ·
∫ b

a NnL (Nn)dx























c1

c2
...

cn













= −













∫ b
a N1 f dx
∫ b

a N2 f dx
...

∫ b
a Nn f dx













. (33)

Following points about Galerkin method may be noted:

• Galerkin method produces symmetric positive definite coefficient matrix if the differential operator

is self-adjoint.

• Galerkin method requires less computational effort compared to the least square method.
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Example 7

Trigonometric approximation to deflection curve. Yet again we consider the now familiar beam deflec-

tion problem. The trigonometric trial function is given by

u(x) = Asin
πx
L

= c1N1

where N1 = sin πx
L and the residual

R(x;A) = −EI
Aπ2

L2 sin
πx
L

−M0.

The unknown coefficients in the approximate solution are determined by setting the integral over [0,L]

of the weighted residual to zero. The weighted residual equation give by (32) can now be written as

∫ L

0
N1R(x)dx =

∫ L

0
sin

πx
L

(

−EI
Aπ2

L2 sin
πx
L

−M0

)

dx = 0.

The integration yields the following equation

(

EIπ2

2L

)

A+
2M0L

π
= 0.

Solving for A, we have

A = −
4M0L2

π3EI
and thus, the approximate solution is

u(x) = −
4M0L2

π3EI
sin

πx
L
.

Figure 7 shows that the approximate solution u(x) agrees well with the exact solution y(x) over the

interval [0,L] and is found to be slightly more accurate than the solution using point collocation method.

y(x)
u(x)

x

Figure 7: Beam deflection problem – result of Galerkin method.

Polynomial approximation to deflection curve. We use the second degree polynomial trial function

u(x) = cx(x−L) = c1N1

where N1 = x(x−L) and the residual

R(x;c) = EI ×2c−M0.
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Integrating the weighted residual over [0,L]
∫ L

0
N1R(x)dx =

∫ L

0
x(x−L)(2EIc2c−M0)dx = 0

to obtain the following equation

(2EIc−M0)

(

L3

3
−

L3

2

)

= 0.

Solving for c, we have

c =
M0

2EI
and thus, the approximate solution is

u(x) = −
M0

2EI
x(L− x).

As in the case of other methods, selection of a second-order polynomial as approximating function

results in exact solution.

Example 8

Solve the differential equation
d2y
dx2 + y = x, x ∈ [0,2]

with the boundary conditions

y(0) = 0, y(2) = 5

using Galerkin method.

We use the same trial function u(x) as with the point collocation method:

u(x) = 2.5x+ c2x(x−2)+ c3x2(x−2) = 2.5N1 + c2N2 + c3N3

so that N2 = x(x−2) and N3 = x2(x−2). The residual of the differential equation is given by

R(x) =
d2u
dx2 +u− x.

After duly substituting u and u′′ in the above residual equation, we get

R(x) = 2c2+ c3(6x−4)+2.5x+ c2x(x−2)+ c3x2(x−2)− x.

The unknown coefficients in the approximate solution are determined by using equation (32):
∫ 2

0
x(x−2)R(x)dx = 0

∫ 2

0
x2(x−2)R(x)dx = 0

which gives the two algebraic equations for c2 and c3:

4c2 +4c3 = −5

2c2 +4c3 = −3

16



Solving the above set of equations for c2 and c3 and substitute in the assumed trial function to obtain

u(x) =

(

5
2

)

x− x(x−2)−

(

1
4

)

x2(x−2)

= −

(

1
4

)

x3 −

(

1
2

)

x2 +

(

9
2

)

x.

Exact
Galerkin

x

Figure 8: Comparison of Galerkin and exact solutions of problem #8.

Figure 8 shows that the approximate solution u(x) agrees very well with the exact solution y(x) over

the interval [0,2].

So we have used several types of weighted residual method for solving boundary value problems.

It can be seen that, for the beam deflection problem, the application of all the method yield the

exact solution, if second or higher degree polynomial is selected as the approximating function. This

is because, the actual behavior of the deflection curve is parabolic, i.e., a second degree polynomial.

However, the selection of a sinusoidal function as approximating function yield different solutions for

different method except for leat square and Galerkin methods. Now, the question naturally arises is

which method gives the most accurate results. Unfortunately, there is no conclusive answer for this.

The error depend on the approximating function and the differential equation to be solved. However,

for most problems, the Galerkin method gives the best results.

Before we close this discussion, we will develop the Galerkin formulation for the boundary-value

problem governed by the generic second-order linear ordinary differential equation. Those differential

equations which we have already considered are all could be viewed as special cases of this generic

equation.

Example 9

Consider the following linear boundary value problem governed by the following generic second-order

linear ordinary differential equation:

d2y
dx2 +Q(x)y = F(x), x ∈ [0,1] (34)
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with the Dirichlet boundary conditions

y(0) = 0, y(1) = Y

To use Galerkin method to solve the above boundary value problem, we use a polynomial trial

function u(x) of degree 3 in the form

u(x) = c1N1(x)+ c2N2(x)+ c3N3(x) = c1x+ c2x(x−1)+ c3x2(x−1)

The trial functions N1, N2, and N3 are linearly independent. Applying the boundary conditions yields

c1 =Y . Thus, the approximate solution is given by

u(x) = Y x+ c2x(x−1)+ c3x2(x−1) = u(x;c2,c3) (35)

The residual is obtained after substituting u(x) for y(x) in the differential equation (20)

R(x) =
d2u
dx2 +Q(x)u−F(x) (36)

The second derivative u′′ is obtained from equation (21):

d2u
dx2 = 2c2 + c3(6x−2)

Therefore, the residual becomes

R(x) = 2c2 + c3(6x−2)+Q
[

Y x+ c2x(x−1)+ c3x2(x−1)
]

−F (37)

In Galerkin method, we choose the weighting function as the trial functions, thus:

w2 = N2 = x(x−1) and w3 = N3 = x2(x−1)

The unknown coefficients in the approximate solution are determined by setting the integral of the

weighted residual to zero.

∫ 1

0
x(x−1)

{

2c2 + c3(6x−2)+Q
[

Y x+ c2x(x−1)+ c3x2(x−1)
]

−F
}

dx = 0 (38a)
∫ 1

0
x2(x−1)

{

2c2 + c3(6x−2)+Q
[

Y x+ c2x(x−1)+ c3x2(x−1)
]

−F
}

dx = 0 (38b)

Integration can be performed after substituting the functions Q(x) and F(x) to obtain the algebraic

equations for unknowns c2 and c2. If Q and F are constants, it is easy to carry out the integration.

The result is:

c2

(

1
3
−

Q
30

)

+ c3

(

1
6
−

Q
60

)

= −
QY
12

+
F
6

(39a)

c2

(

1
6
−

Q
60

)

+ c3

(

2
15

−
Q

105

)

= −
QY
20

+
F
12

(39b)

Note: It must be emphasized that the Galerkin method is not FEM. In fact, Galerkin method was

available much before the concept of FEM is introduced. The essential difference between the Galerkin

method and FEM is that unlike in Galerkin method, the approximating function in FEM is not defined

over the whole physical domain; it is only defined over the individual elements which constitutes the

physical domain. In standard FEM the Galerkin method is often used to derive the element equations.

.
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