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The principal difficulty in solving the Navier–Stokes equations (a set of nonlinear partial

differential equations) arises from the presence of the nonlinear convective term (V ·∇)V .

Since there are no general analytical methods for solving nonlinear partial differential

equations exist, each problem must be considered individually. For most practical flow

problems, convective acceleration of fluid particles cannot be ignored. However, in general,

exact solutions are possible only when the nonlinear terms vanishes identically. There are

a few special cases for which the convective acceleration vanish because of the nature of

the geometry of the flow system. In these cases exact solutions are usually possible and

below we consider one of such problems.

Pipe Flow Induced by Movement of Wall

Here we consider an infinitely long horizontal circular pipe filled with a Newtonian fluid

of density ρ and viscosity µ . For t < 0 both pipe and fluid are at rest. At time t = 0,

the pipe impulsively starts moving in the axial direction with a uniform velocity U . As

a consequence of this, the fluid movement is induced in the axial direction as sketched in

figure 1. The momentum equation for incompressible flow in cylindrical coordinate system

Figure 1: Fluid flow in a pipe induced by the motion of pipe walls.
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For the conditions of the present unsteady parallel flows in the absence of body forces,

many terms disappear and the axial velocity uz is the only nonzero velocity component.

Therefore the first two equations become trivial and the last equation (axial momentum

equation) reduces to
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Since the flow is rotationally symmetric, equation (1) reduces to
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The initial and boundary conditions are

uz(r, 0) = 0 (initial condition)

uz(0, t) is bounded (3)

uz(R, t) = U (no-slip condition)

For convenience, we introduce the following dimensionless quantities:

u =
U−uz

U
η =

r
R
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Thus the differential equation (2) can be written in dimensionless quantities as follows:
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Corresponding dimensionless initial and boundary conditions are

u(η , 0) = 1 (initial condition)

u(0, τ) is bounded (5)

u(1, τ) = 0 (no-slip condition)

2



Note that the new boundary conditions are homogeneous.

Although the problem defined by (4) and (5) is time dependent, it is linear in u and

confined to the bounded spatial domain, 0≤ η ≤ 1. Thus it can be solved by the method of

separation of variables. In this method we first find a set of eigensolutions that satisfy the

differential equation (5) and the boundary condition at η = 0 and η = 1; then we determine

the particular sum of those eigensolutions that also satisfies the initial condition at τ = 0.

The problem (4) and (5) comprises one example of the general class of so-called Sturm–

Liouville problems for which an extensive theory is available that ensures the existence and

uniqueness of solutions constructed by means of eigenfunction expansions by the method

of separation of variables. We begin with the basic hypothesis that a solution of (5) exists

in the separable form and choose the following ansatz:

u(η , τ) = F(η)G(τ) (6)

Substituting this ansatz into equation (4) to obtain

F
dG
dτ

= G
d2F
dη2 +

G
η

dF
dη

(7)

As G depends only on τ and F only on η , by separation of variables the following ordinary

differential equations for G and F result:
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Hence the original problem governed by a PDE has now been transformed into two related

auxiliary problems governed by ODEs. The choice of a negative constant λ 2 is due to

the fact that the solution will decay to zero as time increases, i.e., u→ 0 as τ → ∞. The

solution for the differential equation (8) can be derived by integration:

G = c0 e−λ 2τ (10)

where c0 is an integration constant to be determined. In order to determine the solution

of the differential equation for F(η), equation (9) can be written as follows:

d2F
dη2 +

1
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+ λ
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or

η
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2
η
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or, on introducing a change of independent variables,

y = λη

we obtain

y2 d2F
dy2 + y

dF
dy

+ y2F = 0 (12)

This is Bessel differential equation of order 0. It has two linearly independent solutions,

J0(y) and Y0(y)

which are known as Bessel functions of the first and second kinds of order 0. Thus the

most general solution of equation (12) can be written as

F(y) = c1J0(y) + c2Y0(y) (13)

A plot showing the behavior of these two functions is shown in figure (2). Both oscillate

Figure 2: The Bessel functions of the first and second kinds of order 0.

back and forth across zero, but Y0(y)→ ∞ as y→ 0.

Substituting equations (10) and (13) into (6), we obtain the general solution of the form

u(y, τ) = e−λ 2τ [c1J0(y)+ c2Y0(y)] (14)

Note that the constant c0 has been dropped since it is redundant here. The solution is

bounded at y = 0. This condition is satisfied only when the constant c2 = 0. Hence, the

general solution (14) (that is bounded at y = 0) takes a form:

u(y, τ) = c1J0(y)e−λ 2τ (15)
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Therefore, the solution u, after substituting y = λη , may be written as

un(η , τ) = An J0(λnη)e−λ 2
n τ (16)

The subscript n is added in anticipation of the fact that there is an infinite, but discrete, set

of values possible for λ such that the general solution (15), satisfies the boundary condition

u = 0 at η = 1. This set of values of λ = λn is known as the eigenvalues of the problem,

and the corresponding un are called the eigenfunctions.

To determine the eigenvalues λn, we apply the boundary condition at η = 1 to equation

(16), that is,

0 = An J0(λn)e−λ 2
n τ for all τ

Since setting An = 0 would results in a trivial solution, one must require

J0(λn) = 0 (17)

for the non-trivial solution. Therefore, one obtains multiple values of λn (eigenvalues) that

satisfy the boundary conditions at the wall. Clearly these eigenvalues are equal to the

infinite set of zeroes of the Bessel function of order zero, J0(z). Referring to figure 2, we

have denoted those zeroes as sn, with the first crossing for the smallest value of z being s1,

namely,

λn = sn, n = 1, 2, 3, . . . , ∞ (18)

and their values are obtained as

sn = 2.405, 5.520, 8.654, 11.792, 14.931, 18.071, 21.212, 24.353, 27.494 (19)

Each of the solutions of λn now constitutes an individual solution. Considering the linearity

of the governing equation and boundary conditions (4) and (5), the complete solution for

un(η , τ) is obtained by linear superposition:

u =
∞

∑
n=1

un(η , τ) =
∞

∑
n=1

An e−λ 2
n τ J0(λnη) (20)

where An are arbitrary, constant coefficients. Equation (20) is called the Fourier–Bessel

series. This solution satisfies the differential equation (4) and the boundary condition u = 0

at η = 1 for any choice of the constant coefficients An.

The final step is to choose the An so that u(η , τ) satisfies the initial condition u(η , 0) =

1. The general Sturm–Liouville theory guarantees that the eigenfunctions (16) form a

complete set of orthogonal functions. Thus it is possible to express the smooth initial

condition 1 by means of the Fourier–Bessel series (20) with τ = 0, that is,

u(η , 0) =
∞

∑
n=1

An J0(λnη) = A1 J0(λ1η) + A2 J0(λ2η) + . . . An J0(λnη) + . . . = 1 (21)
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To determine the An, we will take advantage of orthogonality properties of J0:∫ 1

0
J0(λmη)J0(λnη)η dη =

1
2J2

1(λn) if n = m

0 if n 6= m
(22)

where J1 is the Bessel function of first kind of order 1. Multiplying both sides of (21) by

ηJ0(λmη) and integrating over η from 0 to 1, we obtain

∞

∑
n=1

An

∫ 1

0
η J0(λmη)J0(λnη)dη =

∫ 1

0
η J0(λmη)dη

Due to the orthogonality property (22), the only nonzero term on the left hand side is that

for m = n hence,
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0 η J2

0(λnη)dη
=

∫ 1
0 η J0(λnη)dη

1
2J2

1(λn)
(23)

For evaluating the numerator of (23) we make use of the following property of Bessel

function: ∫
η

p+1 Jp(λη)dη =
1
λ

η
p+1Jp+1(λη) (24)

Therefore ∫
η J0(λnη)dη =
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and thus, the numerator of equation (23) becomes∫ 1
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Substitution of equation (26) into (23) yields an expression for An:

An =

1
λn

J1(λn)

1
2J2

1(λn)
=

2
λn

[J1(λn)]
−1 (27)

Thus for the velocity distribution according to (20), the following expression results:

u(η , τ) = 2
∞

∑
n=1

1
λn J1(λn)

e−λ 2
n τ J0(λnη) (28)

The above Fourier–Bessel series has the property of converging very quickly when the

dimensionless time τ = νt/R2 is large. On the other hand, the convergence is slow when

τ is small. Reverting to dimensional variables, we can express the solution of the full,

original problem in terms of the axial velocity profile:

uz(r, t) = U

[
1 − 2

∞

∑
n=1

1
λn J1(λn)

e−λ 2
n νt/R2

J0

(
λn

r
R

)]
(29)

Obviously, as t → ∞, this solution reverts to the steady-state uniform flow profile. To

obtain other details of this velocity profile, it is necessary to evaluate the infinite series

numerically for each value of t and r. A typical numerical example of the results is shown

in figure 3, where uz has been plotted versus r for several values of t.
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Figure 3: Transient velocity profiles in a pipe induced by the motion of the pipe walls.

Shear stress distribution

The shear stress distribution in the flowfield can be easily obtained from the velocity

distribution as follows

τrx = µ

(
∂ur

∂x
+

∂uz

∂ r

)
= µ

duz

dr

In dimensionless form

τ̄rx =
du
dη

where dimensionless shear stress τ̄rx = τrx
µU/R . For evaluating the derivative of velocity

profile, we make use of the following property of Bessel function:

d
dη

[
η
−pJp(λη)

]
= −λη

−pJp+1(λη) (30)

Therefore
d

dη
[J0(λη)] = −λJ1(λη) (31)

and thus the shear stress profile is given by

τ̄rx =
du
dη

= −2
∞

∑
n=1

[J1(λn)]
−1 e−λ 2

n τ J1(λnη) (32)

For the value of wall shear stress at the pipe wall, i.e. at η = 1, one obtains

τ̄wall = τ̄rx|η=1 =
du
dη

∣∣∣∣
η=1

= −2
∞

∑
n=1

e−λ 2
n τ (33)

Reverting to dimensional variables, we can express the wall shear stress in terms of original

variables:

τwall =
duz

dr

∣∣∣∣
r=R

= −2µU
R

∞

∑
n=1

e−λ 2
n νt/R2

(34)
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It can be seen that the wall shear stress has a finite value, even for time t = 0. This is

a surprising result when comparing to other cases where flow is induced by impulsively

motion of the boundary. Note also that the wall shear stress τwall→ 0 as t → ∞. This is

obvious because the steady-state velocity profile is uniform.
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