
MA122 -
Computer

Programming
and

Applications

Classes MA122 - Computer Programming and
Applications

Indian Institute of Space Science and Technology

March 23, 2017

MA122 -
Computer

Programming
and

Applications

Classes

Lecture 23

1 Classes

MA122 -
Computer

Programming
and

Applications

Classes

example 1

1 #include <iostream>

2

3 using namespace std;

4

5 class Box {

6 public:

7 double length; // Length of a box

8 double breadth; // Breadth of a box

9 double height; // Height of a box

10 };

MA122 -
Computer

Programming
and

Applications

Classes

example

1 int main() {

2 Box Box1; // Declare Box1 of type Box

3 Box Box2; // Declare Box2 of type Box

4 double volume = 0.0; // Store the volume of a box

here

5

6 // box 1 specification

7 Box1.height = 5.0;

8 Box1.length = 6.0;

9 Box1.breadth = 7.0;

10

11 // box 2 specification

12 Box2.height = 10.0;

13 Box2.length = 12.0;

14 Box2.breadth = 13.0;

MA122 -
Computer

Programming
and

Applications

Classes

example

1

2 // volume of box 1

3 volume = Box1.height * Box1.length * Box1.breadth;

4 cout << "Volume of Box1 : " << volume <<endl;

5

6 // volume of box 2

7 volume = Box2.height * Box2.length * Box2.breadth;

8 cout << "Volume of Box2 : " << volume <<endl;

9

10 return 0;

11 }

MA122 -
Computer

Programming
and

Applications

Classes

example 2

1 // classes example

2 #include <iostream>

3 using namespace std;

4

5 class Rectangle {

6 int width, height;

7 public:

8 void set_values (int,int);

9 int area() {return width*height;}

10 };

MA122 -
Computer

Programming
and

Applications

Classes

example 2

1 void Rectangle::set_values (int x, int y) {

2 width = x;

3 height = y;

4 }

5

6 int main () {

7 Rectangle rect;

8 rect.set_values (3,4);

9 cout << "area: " << rect.area();

10 return 0;

11 }

MA122 -
Computer

Programming
and

Applications

Classes

example 3

1 #include <iostream>

2 class Test

3 {

4 private:

5 int data1;

6 float data2;

7

8 public:

9

10 void insertIntegerData(int d)

11 {

12 data1 = d;

13 std::cout << "Number: " << data1;

14 }

MA122 -
Computer

Programming
and

Applications

Classes

example 3

1

2 float insertFloatData()

3 {

4 cout << "\nEnter data: ";

5 cin >> data2;

6 return data2;

7 }

8 };

MA122 -
Computer

Programming
and

Applications

Classes

example 3

1

2 int main()

3 {

4 Test o1, o2;

5 float secondDataOfObject2;

6

7 o1.insertIntegerData(12);

8 secondDataOfObject2 = o2.insertFloatData();

9

10 cout << "You entered " << secondDataOfObject2;

11 return 0;

12 }

MA122 -
Computer

Programming
and

Applications

Classes

example 4

1 #include <iostream>

2 #include <string>

3 class Stock // class declaration

4 {

5 private:

6 std::string company;

7 long shares;

8 double share_val;

9 double total_val;

10 void set_tot() { total_val = shares * share_val; }

11 public:

12 void acquire(const std::string & co, long n,

double pr);

13 void buy(long num, double price);

14 void sell(long num, double price);

15 void update(double price);

16 void show();

17 }; // note semicolon at the end

MA122 -
Computer

Programming
and

Applications

Classes

example 4

1 void Stock::acquire(const std::string & co, long n,

double pr)

2 {

3 company = co;

4 if (n < 0)

5 {

6 std::cout << "Number of shares cant be negative; "

7 << company << " shares set to 0.\n";

8 shares = 0;

9 }

10 else

11 shares = n;

12 share_val = pr;

13 set_tot();

14 }

MA122 -
Computer

Programming
and

Applications

Classes

example 4

1 void Stock::buy(long num, double price)

2 {

3 if (num < 0)

4 {

5 std::cout << "Number of shares purchased cant be

negative. "

6 << "Transaction is aborted.\n";

7 }

8 else

9 {

10 shares += num;

11 share_val = price;

12 set_tot();

13 }

14 }

MA122 -
Computer

Programming
and

Applications

Classes

example 4

1 void Stock::sell(long num, double price)

2 {

3 using std::cout;

4 if (num < 0)

5 {

6 cout << "Number of shares sold cant be negative. "

7 << "Transaction is aborted.\n";

8 }

9 else if (num > shares)

10 {

11 cout << "You cant sell more than you have! "

12 << "Transaction is aborted.\n";

13 }

14 else

15 {

16 shares -= num;

17 share_val = price;

18 set_tot(); } }

MA122 -
Computer

Programming
and

Applications

Classes

example 4

1 void Stock::update(double price)

2 {

3 share_val = price;

4 set_tot();

5 }

6 void Stock::show()

7 {

8 std::cout << "Company: " << company <<

9 " Shares: " << shares << std::endl<<

10 " Share Price: $" << share_val

11 << " Total Worth: $" << total_val << std::endl;

12 }

MA122 -
Computer

Programming
and

Applications

Classes

example 4

1 int main()

2 {

3 Stock fluffy_the_cat;

4 fluffy_the_cat.acquire("NanoSmart", 20, 12.50);

5 fluffy_the_cat.show();

6 fluffy_the_cat.buy(15, 18.125);

7 fluffy_the_cat.show();

8 fluffy_the_cat.sell(400, 20.00);

9 fluffy_the_cat.show();

10 fluffy_the_cat.buy(300000,40.125);

11 fluffy_the_cat.show();

12 fluffy_the_cat.sell(300000,0.125);

13 fluffy_the_cat.show();

14 return 0;

15 }

MA122 -
Computer

Programming
and

Applications

Classes

ptg7068951

512 Chapter 10 Objects and Classes

keyword public identifies class members
that constitute the public interface for
the class (abstraction)

keyword class
identifies
class definition

the class name becomes the
name of this user-defined type class members can be

data types or functions

keyword private identifies class members
that can be accessed only through the public
member functions (data hiding)

class Stock
{
private:
 char company[30];
 int shares;
 double share_val;
 double total_val;
 void set_tot() { total_val = shares * share_val; }
public:
 void acquire(const char * co, int n, double pr);
 void buy(int num, double price);
 void sell(int num, double price);
 void update(double price);
 void show();
};

Figure 10.1 The Stock class.

A class design attempts to separate the public interface from the specifics of the imple-
mentation.The public interface represents the abstraction component of the design. Gath-
ering the implementation details together and separating them from the abstraction is
called encapsulation. Data hiding (putting data into the private section of a class) is an
instance of encapsulation, and so is hiding functional details of an implementation in the
private section, as the Stock class does with set_tot().Another example of encapsulation
is the usual practice of placing class function definitions in a separate file from the class
declaration.

OOP and C++
OOP is a programming style that you can use to some degree with any language. Certainly,
you can incorporate many OOP ideas into ordinary C programs. For example, Chapter 9 pro-
vides an example (see Listings 9.1, 9.2, 9.3) in which a header file contains a structure pro-
totype along with the prototypes for functions to manipulate that structure. The main()
function simply defines variables of that structure type and uses the associated functions to
handle those variables; main() does not directly access structure members. In essence,
that example defines an abstract type that places the storage format and the function proto-
types in a header file, hiding the actual data representation from main().

MA122 -
Computer

Programming
and

Applications

Classes

ptg7068951

519Abstraction and Classes

creates two objects,
each with its own
data, but uses just
one set of member
functions

uses show() member
function with kate data

uses show() member
function with joe data

joekate

show() member function

Stock kate("Woof, Inc.", 100, 63);
Stock joe("Pryal Co.", 120, 30);

joe.show();kate.show();

void Stock::show(void)
{
 cout << "Company: " << company ...
 ...
}

Woof, Inc.
100
63
6300

Pryal Co.
120
30
3600

Figure 10.2 Objects, data, and member functions.

class type.You can pass objects as arguments, return them as function return values, and
assign one object to another. C++ provides facilities for initializing objects, teaching cin
and cout to recognize objects, and even providing automatic type conversions between
objects of similar classes. It will be a while before you can do all those things, but let’s start
now with the simpler properties. Indeed, you’ve already seen how to declare a class object
and call a member function. Listing 10.3 provides a program to use the interface and
implementation files. It creates a Stock object named fluffy_the_cat.The program is
simple, but it tests the features built in to the class.To compile the complete program, use
the techniques for multifile programs described in Chapter 1,“Getting Started with
C++,” and in Chapter 9. In particular, compile it with stock00.cpp and have stock00.h
present in the same directory or folder.

Listing 10.3 usestok0.cpp

// usestck0.cpp -- the client program
// compile with stock00.cpp
#include <iostream>
#include "stock00.h"

	Classes

