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The method of separation variables for solving the heat equation often leads transformation of

PDEs to ODEs. The ODE thus obtained will be in the form of an eigenvalue problem. Four

types of eigenvalue problems are commonly encountered as discussed below.

1 The First (Dirichlet) Eigenvalue Problem

Consider the second order differential equation

d2X
dx2 + λX = 0, 0 < x < L (1a)

with Dirichlet type boundary conditions

X(0) = 0, X(L) = 0 (1b)

The problem here is to find the values of λ and the nontrivial solutions X(x) of (1). All the

conditions in this problem are linear and homogeneous, and so any nonzero constant times a

nontrivial solution X(x) is essentially the same as X(x). This problem is called an eigenvalue

problem. The Dirichlet eigenvalue problem involves the determination of a solution X(x) of (1)
in a domain [0,L] for some λ that satisfies the boundary conditions X(0) = X(L) = 0. This is
a special case of more general problem called Sturm-Liouville problem. The possible solutions

of (1) fall into the following three cases:

Case 1 (λ = 0)
If λ = 0, the differential equation (1a) reduces to

X ′′ = 0

and its general solution is

X(x) = c1 + c2x

where c1 and c2 are constants. The boundary condition X(0) = 0 requires that c1 = 0. So

X(x) = c2x. Further, the boundary condition X(L) = 0 requires that c2 = 0. So the eigenvalue

problem (1) has only trivial solution X(x)≡ 0 if λ = 0 and hence λ = 0 is not an eigenvalue.

Case 2 (λ < 0)
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If λ < 0, we write λ =−ω2 (ω > 0) and the differential equation (1a) becomes

X ′′
− ω2X = 0

This equation has the general solution

X(x) = c1eωx + c2e−ωx

The condition X(0) = 0 requires that

c2 = −c1

Hence

X(x) = c1
(

eωx
− e−ωx) = 2c1 sinhωx

But the condition X(L) = 0 requires that

2c1 sinhωL = 0

This implies that c1 = 0. Again we see that the eigenvalue problem (1) has only trivial solution
X(x)≡ 0 if λ < 0 and hence negative values of λ are not eigenvalues.

Case 3 (λ > 0)
If λ > 0, we write λ = ω2 (ω > 0) and the differential equation becomes

X ′′ + ω2X = 0

This equation has the general solution

X(x) = c1 cosωx + c2 sinωx

The condition X(0) = 0 requires that c1 = 0. Hence

X(x) = c2 sinωx

Further, the boundary condition X(L) = 0 requires that

c2 sinωL = 0

We see that c2 = 0 results in trivial solution of (1). Hence for nontrivial solution ω must be

positive roots of the equation

sinωL = 0

from which we have

ω =
nπ
L

(n = 1, 2, · · ·)

So, except for the constant factor c2

X(x) = sin
nπx

L
(n = 1, 2, · · ·)
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and the corresponding values of λ are

λ = ω2 =
(nπ

L

)2
(n = 1, 2, · · ·)

Thus the discrete values

λn =
(nπ

L

)2
(n = 1, 2, · · ·) (2)

of λ for which problem (1) has nontrivial solutions are called eigenvalues of that problem, and

the solutions

Xn(x) = sin
nπx

L
(n = 1, 2, · · ·) (3)

are the corresponding eigenfunctions.

2 The Second (Neumann) Eigenvalue Problem

The second eigenvalue problem (Sturm-Liouville problem) that comes up frequently is

d2X
dx2 + λX = 0, 0 < x < L (4a)

with Neumann type boundary conditions

X ′(0) = 0, X ′(L) = 0 (4b)

This problem is called a Neumann eigenvalue problem. By the Neumann eigenvalue problem

we mean the determination of a solution X(x) of (4) in a domain [0,L] for some λ that satisfies

the boundary conditions X ′(0) = X ′(L) = 0. The possible solutions of (4) fall into the following

three cases:

Case 1 (λ = 0)
If λ = 0, the differential equation (4a) has the general solution

X(x) = c1 + c2x

where c1 and c2 are constants. Application of boundary conditions requires the first derivative

of X :

X ′ = c2

The boundary condition X ′(0) = 0 requires that c2 = 0. So

X(x) = c1

Further, the boundary condition X ′(L) = 0 automatically satisfied. So the eigenvalue problem

(4) has a nontrivial solution if λ = 0 and hence λ0 = 0 is an eigenvalue.
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Case 2 (λ < 0)
If λ < 0, we write λ =−ω2 (ω > 0) and the differential equation (4a) becomes

X ′′
− ω2X = 0

This equation has the general solution

X(x) = c1eωx + c2e−ωx

and its derivative is given by

X ′ = c1ωeωx
− c2ωe−ωx

The condition X ′(0) = 0 requires that

c2 = c1

Hence

X(x) = c1
(

eωx + e−ωx) = 2c1 coshωx and X ′ = 2c1ω sinhωx

But the condition X ′(L) = 0 requires that

2c1ω sinhωL = 0

This implies that c1 = 0 and thus the eigenvalue problem (4) has only trivial solution X(x)≡ 0
if λ < 0 and hence the eigenvalues cannot be negative.

Case 3 (λ > 0)
If λ > 0, we write λ = ω2 (ω > 0) and the differential equation becomes

X ′′ + ω2X = 0

This equation has the general solution

X(x) = c1 cosωx + c2 sinωx

and its derivative is given by

X ′ = −c1ω sinωx + c2ω cosωx

The condition X ′(0) = 0 requires that c2 = 0. Hence

X(x) = c1 cosωx and X ′ = −c1ω sinωx

The boundary condition X ′(L) = 0 requires that

c1ω sinωL = 0

We see that c1 = 0 results in trivial solution of (4). Hence for nontrivial solution ω must be

positive roots of the equation

sinωL = 0
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from which we have

ω =
nπ
L

(n = 1, 2, · · ·)

So, except for the constant factor c1

X(x) = cos
nπx

L
(n = 1, 2, · · ·)

and the corresponding values of λ are

λ = ω2 =
(nπ

L

)2
(n = 1, 2, · · ·)

Thus the discrete eigenvalues are

λn =
(nπ

L

)2
(n = 1, 2, · · ·) (5)

and the corresponding eigenfunctions are given by

Xn(x) = cos
nπx

L
(n = 1, 2, · · ·) (6)

3 The Third (Mixed Dirichlet-Neumann) Eigenvalue Problem

The first version

The third eigenvalue problem (Sturm-Liouville problem) that comes up frequently is

d2X
dx2 + λX = 0, 0 < x < L (7a)

with the boundary conditions of the type

X(0) = 0, X ′(L) = 0 (7b)

where the differential equation and the domain is same as in problem (1) and the possible

solutions of (7) fall into the following three cases:

Case 1 (λ = 0)
If λ = 0, the differential equation (7a) has the general solution

X(x) = c1 + c2x

where c1 and c2 are constants. The boundary condition X(0) = 0 requires that c1 = 0. So

X(x) = c2x and X ′ = c2

The boundary condition X ′(L) = 0 requires that c2 = 0. So the eigenvalue problem (7) has only
a trivial solution if λ = 0 and hence λ = 0 is not an eigenvalue.
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Case 2 (λ < 0)
If λ < 0, we write λ =−ω2 (ω > 0) and the differential equation (7a) becomes

X ′′
− ω2X = 0

This equation has the general solution

X(x) = c1eωx + c2e−ωx

and its derivative is given by

X ′ = c1ωeωx
− c2ωe−ωx

The condition X(0) = 0 requires that

c2 = −c1

Hence

X(x) = c1
(

eωx
− e−ωx) = 2c1 sinhωx and X ′ = 2c1ω coshωx

But the condition X ′(L) = 0 requires that

2c1ω coshωL = 0

This implies that c1 = 0 and thus the eigenvalue problem (7) has only trivial solution X(x)≡ 0
if λ < 0 and hence the eigenvalues cannot be negative.

Case 3 (λ > 0)
If λ > 0, we write λ = ω2 (ω > 0) and the differential equation becomes

X ′′ + ω2X = 0

This equation has the general solution

X(x) = c1 cosωx + c2 sinωx

The condition X(0) = 0 requires that c1 = 0. Hence

X(x) = c2 sinωx and X ′ = c2ω cosωx

The boundary condition X ′(L) = 0 requires that

c2ω cosωL = 0

We see that c2 = 0 results in trivial solution of (7). Hence for nontrivial solution ω must be

positive roots of the equation

cosωL = 0

from which we have

ω =

(

n− 1
2

)

π
L

(n = 1, 2, · · ·)
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So, except for the constant factor c2

X(x) = sin

(

n− 1
2

)

πx

L
(n = 1, 2, · · ·)

and the corresponding values of λ are

λ = ω2 =

[

(

n− 1
2

)

π
L

]2

(n = 1, 2, · · ·)

Thus the discrete eigenvalues are

λn =

[

(

n− 1
2

)

π
L

]2

(n = 1, 2, · · ·) (8a)

and the corresponding eigenfunctions are given by

Xn(x) = sin

(

n− 1
2

)

πx

L
(n = 1, 2, · · ·) (8b)

The second version

This a variation of the third eigenvalue problem (Sturm-Liouville problem) of the first version.

d2X
dx2 + λX = 0, 0 < x < L (9a)

with the boundary conditions of the type

X ′(0) = 0, X(L) = 0 (9b)

The possible solutions of (9) fall into the following three cases:

Case 1 (λ = 0)
If λ = 0, the differential equation (9a) has the general solution

X(x) = c1 + c2x

where c1 and c2 are constants. Application of boundary conditions requires the first derivative

of X :

X ′ = c2

The boundary condition X ′(0) = 0 requires that c2 = 0. So

X(x) = c1

The boundary condition X(L) = 0 requires that c1 = 0. So the eigenvalue problem (9) has only
a trivial solution if λ = 0 and hence λ = 0 is not an eigenvalue.
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Case 2 (λ < 0)
If λ < 0, we write λ =−ω2 (ω > 0) and the differential equation (9a) becomes

X ′′
− ω2X = 0

This equation has the general solution

X(x) = c1eωx + c2e−ωx

and its derivative is given by

X ′ = c1ωeωx
− c2ωe−ωx

The condition X ′(0) = 0 requires that

c2 = c1

Hence

X(x) = c1
(

eωx + e−ωx) = 2c1 coshωx

But the condition X(L) = 0 requires that

2c1 coshωL = 0

This implies that c1 = 0 and thus the eigenvalue problem (9) has only trivial solution X(x)≡ 0
if λ < 0 and hence the eigenvalues cannot be negative.

Case 3 (λ > 0)
If λ > 0, we write λ = ω2 (ω > 0) and the differential equation becomes

X ′′ + ω2X = 0

This equation has the general solution

X(x) = c1 cosωx + c2 sinωx

and its derivative is given by

X ′ = −c1ω sinωx + c2ω cosωx

The condition X ′(0) = 0 requires that c2 = 0. Hence

X(x) = c1 cosωx

The boundary condition X(L) = 0 requires that

c1 cosωL = 0

We see that c1 = 0 results in trivial solution of (9). Hence for nontrivial solution ω must be

positive roots of the equation

cosωL = 0
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from which we have

ω =

(

n− 1
2

)

π
L

(n = 1, 2, · · ·)

So, except for the constant factor c1

X(x) = cos

(

n− 1
2

)

πx

L
(n = 1, 2, · · ·)

and the corresponding values of λ are

λ = ω2 =

[

(

n− 1
2

)

π
L

]2

(n = 1, 2, · · ·)

Thus the discrete eigenvalues are

λn =

[

(

n− 1
2

)

π
L

]2

(n = 1, 2, · · ·) (10a)

and the corresponding eigenfunctions are given by

Xn(x) = cos

(

n− 1
2

)

πx

L
(n = 1, 2, · · ·) (10b)

4 The Fourth (Periodic) Eigenvalue Problem

Consider the second order differential equation

d2X
dx2 + λX = 0, 0 < x < L (11a)

with the boundary conditions

X(0) = X(L), X ′(0) = X ′(L) (11b)

This problem is called a periodic eigenvalue problem. By the periodic eigenvalue problem we

mean the determination of a solution X(x) of (11) in a periodic domain [0,L] for some λ that

satisfies the periodic boundary conditions (11b). This is a special case of more general problem

called periodic Sturm-Liouville problem. The possible solutions of (11) fall into the following

three cases:

Case 1 (λ = 0)
If λ = 0, the differential equation (11a) has the general solution

X(x) = c1 + c2x
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where c1 and c2 are constants. The boundary condition X(0) = X(L) requires that c2 = 0 and

X(x) = c1. So the eigenvalue problem (11) has a nontrivial solution if λ = 0 and hence λ0 = 0
is an eigenvalue with a corresponding eigenfunction 1.

Case 2 (λ < 0)
If λ < 0, we write λ =−ω2 (ω > 0) and the differential equation (11a) becomes

X ′′
− ω2X = 0

This equation has the general solution

X(x) = c1eωx + c2e−ωx

The condition X(0) = X(L) gives

c1 + c2 = c1eωL + c2e−ωL

and condition X ′(0) = X ′(L) gives

c1 − c2 = c1eωL
− c2e−ωL

On simplification the above two equations gives

eωL = e−ωL

which cannot be satisfied by any nonzero values of ω and hence λ < 0 are not eigenvalues of

(11).

Case 3 (λ > 0)
If λ > 0, we write λ = ω2 (ω > 0) and the differential equation becomes

X ′′ + ω2X = 0

This equation has the general solution

X(x) = c1 cosωx + c2 sinωx

The condition X(0) = X(L) gives

c1 = c1 cosωL + c2 sinωL

and condition X ′(0) = X ′(L) gives

c2 = c2 cosωL − c1 sinωL

For nonzero values of c1 and c2, on simplification the above two equations yields

sinωL = 0 and cosωL = 1
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both of which are satisfied if

ω =
2nπ

L
(n = 1, 2, · · ·)

Therefore the discrete eigenvalues are

λn =

(

2nπ
L

)2

(n = 1, 2, · · ·)

and we obtain two linearly independent eigenfunctions

cos
2nπx

L
and sin

2nπx
L

(n = 1, 2, · · ·)

corresponding to the same eigenvalue λn.

In conclusion, the solution of the periodic eigenvalue problem (11) is the following infinite

sequence of eigenvalues

λ0 = 0, λn =

(

2nπ
L

)2

(n = 1, 2, · · ·) (12a)

and the corresponding eigenfunctions

X0(x) = 1, Xn(x) = cos
2nπx

L
, sin

2nπx
L

(n = 1, 2, · · ·) (12b)

It may be noted that for the eigenvalue problems previously considered (Dirichlet, Neumann,

and mixed Dirichlet-Neumann), we saw that there exists only one linearly independent eigen-

function Xn corresponding to the eigenvalue λn, which is called an eigenvalue of multiplicity

one (or a simple eigenvalue). On the contrary, for the periodic eigenvalue problem, the eigen-

functions cos(2nπx/L) and sin(2nπx/L) correspond to the same eigenvalue (2nπ/L)2. Thus,

this eigenvalue is of multiplicity two.

Summary

We give a summary of the results of various eigenvalue problems:

1. First (Dirichlet) eigenvalue problem:

X(0) = X(L) = 0 =⇒ Xn(x) = sin
nπx

L
(n = 1, 2, · · ·)

2. Second (Neumann) eigenvalue problem:

X ′(0) = X ′(L) = 0 =⇒ Xn(x) = cos
nπx

L
(n = 0, 1, 2, · · ·)
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3. Third (mixed Dirichlet-Neumann) eigenvalue problem I:

X(0) = X ′(L) = 0 =⇒ Xn(x) = sin

(

n− 1
2

)

πx

L
(n = 1, 2, · · ·)

4. Third (mixed Dirichlet-Neumann) eigenvalue problem II:

X ′(0) = X(L) = 0 =⇒ Xn(x) = cos

(

n− 1
2

)

πx

L
(n = 1, 2, · · ·)

5. Fourth (periodic) eigenvalue problem:

X(0) = X(L), X ′(0) = X ′(L) =⇒ X0 = 1, Xn(x) = cos
2nπx

L
, sin

2nπx
L

(n = 1, 2, · · ·)
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