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It is sometimes useful to resolve the instantaneous motion of a fluid into a translation, a

dilation along three perpendicular axes, and a rigid rotation of those axes. Consider the nature

of a flow field in the neighborhood of some point P which is moving with an instantaneous

velocity V . Let r(t) be the position vector P. The instantaneous velocity at point P is given by

V P = V (x, y, z, t)

Let Q be a neighboring point of P, with a position vector r(t)+dr. The instantaneous velocity

at point Q may be written as

V Q = V Q(x+dx, y+dy, z+dz, t)

Using Taylor series expansion, V Q can be written as

V Q = V (x, y, z, t) +
∂V
∂x

dx +
∂V
∂y

dy +
∂V
∂ z

dz + · · ·

The above equation is a vector equation. After neglecting the higher terms, its components

are given by

uQ = u +
∂u
∂x

dx +
∂u
∂y

dy +
∂u
∂ z

dz

vQ = v +
∂v
∂x

dx +
∂v
∂y

dy +
∂v
∂ z

dz

wQ = w +
∂w
∂x

dx +
∂w
∂y

dy +
∂w
∂ z

dz
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Figure 1: Velocity vectors at two neighboring points separated by a short distance.
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In matrix form
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The above equation can be written in vector form as

V Q = V + G ·dr (1)

where G = ∇V , the velocity gradient tensor and dr = dx î+dy ĵ+dz k̂. The velocity gradient

tensor can be decomposed into two parts; the symmetric tensor, E, and the skew-symmetric

tensor, R. That is, G = E +R. Therefore, the equation (1) can be written as

V Q = V + (E +R) ·dr

= V + E ·dr + R ·dr (2)

The symmetric tensor, E, can be identified with the strain rate tensor defined by
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and the skew-symmetric tensor, R, can be identified with the rotation tensor defined by
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Using indicial notation, the ith component of the equation (2) is given by

ViQ = Vi + εi j dx j + ri j dx j

Since, ri j = −εi jkωk = εik jωk, the above equation can be written as

ViQ = Vi + εi j dx j + εik j ωk dx j

Reverting to the vector form, we have

V Q = V + E ·dr + ω ×dr (3)
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Finally, we write the above equation using the definition of the vorticity. Since, the vorticity,

ζ = 2ω , we have

V Q = V + E ·dr +
1
2

ζ ×dr (4)

Equation (4) represents the most general form of the movement of a fluid element. The first

term V represents the translational velocity which indicates the rate of displacement of the

element. The second term represents the deformation rate of the fluid element, while the third

term represents the rigid body rotation of the fluid element.

Thus, at each point in the flow the instantaneous fluid motion may be resolved into a

translation, a dilation along three perpendicular axes, and a rigid rotation of those axes. The

resolution of the general motion of a fluid element into these three separate effects is called the

Cauchy–Stokes decomposition.

Depending upon the nature of velocity gradient tensor, some special cases of fluid motion

can be identified as follows.

Pure translation

For the case of pure translation, the velocity field can only be the function of time and the

corresponding velocity gradient vanish. That is

V (x,y,z, t) = V 0(t)

and

G =







0 0 0

0 0 0

0 0 0







Pure rotation

For the case of pure rotation, the strain rates vanish and hence the velocity field is given by

V = R · r =
1
2

ζ × r =
[

(ωyz−ωzy) î + (ωzx−ωxz) ĵ + (ωxy−ωyx) k̂
]

and the velocity gradient tensor becomes

G = R =







0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0







In this case, G is skew-symmetric; that is, gi j = −g ji.
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Pure extensional flow

For the case of pure extensional flow, shear strain rates and rotation vanish and hence the

velocity field is given by

V = Diag
[

E
]

· r = εxx x î + εyy y ĵ + εzz z k̂

=
∂u
∂x

x î +
∂v
∂y

y ĵ +
∂w
∂ z

z k̂

and the velocity gradient tensor becomes

G = Diag
[

E
]

=







εxx 0 0

0 εyy 0

0 0 εzz







Pure shear flow

For the case of pure shearing flow, normal strain rates and rotation vanish and hence the velocity

field is given by

V =
(

E −Diag
[

E
])

· r = εxy y ĵ + εxz z k̂ + εyx x î + εyz z k̂ + εzx x î + εzy y ĵ

= (εyx+ εzx)x î + (εzy + εxy)y ĵ + (εxz + εyz)z k̂

and the velocity gradient tensor becomes

G =
(

E −Diag
[

E
])

=
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0 εxy εxz

εyx 0 εyz

εzx εzy 0






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