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Exponential distributions

The exponetial distribution of rate λ is given by

P(X ≤ x) = 1− e−λx .

In Markov processes, time between occurance of events is exponetial.
Too restrictive for many practical purposes.
How to get more flexibility without losing tractability!
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Phase type (PH) distributions

Distributions of absorption times in a Markov Process with p <∞
transient states (the phases) and one absorbing state.

Phase type distributions were first considered by Neuts.
M.F. Neuts. Probability distributions of Phase type. In Liber Amicorum
Prof. Emeritus H. Florin, Pages 173-206, 1975.
M.F. Neuts. Matrix Geometric Solutions in Stochastic Models, John
Hopkins University press, 1981.
O’ Cinneide characterized PH distributions as
A distribution with rational LT is of PH iff it is either the point mass at

zero or it has a continuous density on the positive reals and LT has a
unique pole of maximum real part (which is therefore real).
C.A. O’ Cinneide. charecterization of Phase-type distributions. Comm.
Statist. Stohastic Models, 6:1-57, 1990.
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Motivations

Dense, in the metric of weak convergence of distributions, in all
distributions on [0,∞).

PH distributions act as the computational vehicle for many applied
probability models since they constitute a very versatile class of
distributions defined on the non negative real line that lead to models
which are algorithmically tractable.
Their formulation allow us to retain the Markov structure of Stochastic
Models while being act as a reasonable approximation to a general
distribution.

T.G.Deepak (IIST) January 25, 2018 4 / 33



Motivations

Dense, in the metric of weak convergence of distributions, in all
distributions on [0,∞).
PH distributions act as the computational vehicle for many applied
probability models since they constitute a very versatile class of
distributions defined on the non negative real line that lead to models
which are algorithmically tractable.

Their formulation allow us to retain the Markov structure of Stochastic
Models while being act as a reasonable approximation to a general
distribution.

T.G.Deepak (IIST) January 25, 2018 4 / 33



Motivations

Dense, in the metric of weak convergence of distributions, in all
distributions on [0,∞).
PH distributions act as the computational vehicle for many applied
probability models since they constitute a very versatile class of
distributions defined on the non negative real line that lead to models
which are algorithmically tractable.
Their formulation allow us to retain the Markov structure of Stochastic
Models while being act as a reasonable approximation to a general
distribution.

T.G.Deepak (IIST) January 25, 2018 4 / 33



Continuous Phase type distributions

Let {Xt : t ≥ 0} be a CTMC on the finite state space
E = {1, 2, ...., p, p + 1}, where the states 1,2,....,p are transient (i.e given
that we start in any one of these states, there is a non-zero probability
that we will never return to it) and the state p+1 is absorbing.

Then {Xt : t ≥ 0} has an intensity matrix of the form

Λ =

[
T t
0 0

]
where T is a p × p matrix (satisfying Tii < 0 andTij ≥ 0, for i 6= j), and t
is a p-dimensional column vector satisfying Te + t = 0.
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Let πi = P{X0 = i}.
Then (π1, π2, ...., πp, πp+1) is called the initial probablility vector of
{Xt : t ≥ 0}.

Let τ = inf {t : Xt = p + 1}.
Then τ ∼ PH(π,T ) where π = (π1, π2, ...., πp).
Let P(s) be the transition matrix of {Xt : t ≥ 0}.
Then

P(s) = exp(Λs) = I +
∞∑
n=1

Λnsn

n!
=

[ ∑∞
n=0

(Ts)n

n! −
∑∞

n=1
(Ts)ne

n!
0 1

]

=

[
exp(Ts) e − exp(Ts)e

0 1

]
.

The restriction of P(s) to the transient states is given by exp(Ts).
∴ Ps

ij = P(Xs = j | X0 = i) = exp(Ts)ij for i,j = 1,2,...,p.
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Density of PH(π, T):

f (s) = πexp(Ts)t.

Proof:

f (s)ds = P(τ ∈ [s, s + ds))

=

p∑
j=1

P(τ ∈ [s, s + ds)/Xs = j)P(Xs = j)

=

p∑
j=1

P(τ ∈ [s, s + ds)/Xs = j)

p∑
i=1

P(Xs = j/X0 = i)πi

=

p∑
j=1

tjds

p∑
i=1

Ps
ijπi =

p∑
i=1

p∑
j=1

πiexp(Ts)ij tjds.
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Distribution function of τ :

F (s) = 1− πexp(Ts)e.

Proof:

P(τ > s) = P(Xs ∈ {1, 2, . . . , p})

=

p∑
j=1

P(Xs = j)

=

p∑
i=1

p∑
j=1

P(Xs = j/X0 = i)πi

=

p∑
i=1

p∑
j=1

Ps
ijπi

=

p∑
i=1

p∑
j=1

exp(Ts)ijπi

= πexp(Ts)e.

Obvious multi-state analogue of the exponential distribution.
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Moments:

E (τn) = (−1)nn!πT−ne.

Moment generating function :

E (esτ ) = π(−sI − T )−1t.

Laplace Transform

E (e−sτ ) = π(sI − T )−1t = π(s(−T )−1 + I )−1e.
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Properties of Phase type distributions

The family of PH distributions is closed under finite number of
convolutions.
In particular if X ∼ PHm(α,T ) and Y ∼ PHn(β,S), both being
independent , then Z = X + Y ∼ PH(γ, L) where γ = (α, αm+1β),

L =

[
T t.β
0 S

]
and t = −Te.

Example(Generalized Erlang k distribution)
Let Z =

∑k
i=1 Xi with Xi ∼ exp(λi ) , then

γ = (1, 0, 0, ..., 0), L =


−λ1 λ1 0 · · · 0 0

0 −λ2 λ2 · · · 0 0
· · · · · · · ·
0 0 0 · · · −λk−1 λk−1
0 0 0 · · · 0 −λk


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Any finite convex mixture of PH variates is a PH variate.
Let Xi ∼ PH(αi ,Ti ), i = 1, 2, ..., k such that Z = Xi with probability
pi . Then Z ∼ PH(γ, L) where

γ = (p1α1, p2α2, ..., pkαk) and L =


T1 0 · · · · 0
0 T2 · · · · 0
· · · · · · ·
0 0 · · · · Tk

 .

Example(Hyper-exponential distribution)
Let Xi ∼ exp(λi ) and Z takes the value of Xi with probability pi .
Then Z has the representation (γ, L) where

γ = (p1, p2, ..., pk), and L =


−λ1 0 · · · · 0

0 −λ2 · · · · 0
· · · · · · ·
0 0 · · · · −λk

 .

T.G.Deepak (IIST) January 25, 2018 11 / 33



Any finite convex mixture of PH variates is a PH variate.
Let Xi ∼ PH(αi ,Ti ), i = 1, 2, ..., k such that Z = Xi with probability
pi . Then Z ∼ PH(γ, L) where

γ = (p1α1, p2α2, ..., pkαk) and L =


T1 0 · · · · 0
0 T2 · · · · 0
· · · · · · ·
0 0 · · · · Tk

 .
Example(Hyper-exponential distribution)
Let Xi ∼ exp(λi ) and Z takes the value of Xi with probability pi .
Then Z has the representation (γ, L) where

γ = (p1, p2, ..., pk), and L =


−λ1 0 · · · · 0

0 −λ2 · · · · 0
· · · · · · ·
0 0 · · · · −λk

 .
T.G.Deepak (IIST) January 25, 2018 11 / 33



If Y1 ∼ PHk(β,S) and Y2 ∼ PHm(π,T ), then
min(Y1,Y2) ∼ PH(γ, L), where γ = β ⊗ π and L = S ⊕ T .

Proof:
Let FYi

, i= 1,2 denote the respective survival functions. Since
F (u) = P(Y1 > u,Y2 > u) = FY1(u)FY2(u), the density function of
the minimum, f is given by

f (x) = −fY1(x)FY2(x)− FY1(x)fY2(x)

= −βeSxsπeTxT−1t − βeSxS−1sπeTx t
= −(β ⊗ π)e(S⊕T )x(S ⊕ T )e
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Max(X ,Y ) ∼ PH(δ,U) where δ = (α⊗ β, αβm+1, αk+1β),

U =

 T ⊗ Im + Ik ⊗ S Ik ⊗ s t ⊗ Im
0 T 0
0 0 S


t= -Te and s= -Se.

More closure properties of PH distributions can be seen in

G.Latouche and V. Ramaswami, Introduction to Matrix Analytic
Methods in Stochastic Modeling, SIAM,1999.

R.S. Maier and C.A.O’ Cinneide, A Closure characterization of Phase
type distributions, J. App. Prob., 29:92-103, 1992.
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Fitting Phase Type Distribution(Complete Sample)

Given random sample yi , 16 i6 n from a PH(β,S) distribution of order
m.

For each yi , there is a trajectory of the underlying Markov chain.
Suppose we can observe that entire trajectory.

Bi = number of trajectories out of the n that start in phase i,
i=1,2,..,m.

Ni = number of trajectories for which absoption occurs from phase i,
i=1,2,..,m.

Nij = number of jumps in all the n trajectories combined that occur
from phase i to j, 1≤ i, j≤ m, i 6= j.

Zi = total sojourn time in phase i for all the n trajectories combined,
i=1,2,..,m.

Joint likelihood function of the sample:

L =
m∏

k=1

βBk
k

m∏
i=1

m∏
j 6=i

S
Nij

ij e−SijZi

m∏
l=1

(s0l )Nl e−s
0
l Zl
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Fitting Phase Type Distribution(Complete Sample)
continued......

These statistics jointly form a set of sufficient statistics for the parameters
β and S .

ML estimates of β and S :
For

1 ≤ i , j ≤ m, i 6= j

β̂i =
Bi

n

Ŝij =
Nij

Zi

ŝ0i =
Ni

Zi

Ŝii = −
∑
j 6=i

Ŝij − ŝ0i .
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Fitting PH distribution (Incomplete Sample) using EM
algorithm

S. Asmussen, O. Nerman, and M. Olsson. Fitting phase-type distributions
via the EM algorihtm. Scandinavian Journal of Statistics, 23:419-441,
1996.

Conditional expections given y , of the sufficient statistics for the
parameters are

B̂i (y , β, S) = βie
′
i e

Sy s0/βeSy s0 (1)

Ẑi (y , β, S) = Mii (y , β, S)/βeSy s0 (2)

N̂i (y , β, S) = s0i βe
Syei/βe

Sy s0 (3)

N̂ij(y , β, S) = SijMji (y , β, S)/βeSy s0, i 6= j (4)

M(y , β, S) =

∫ y

0
eS(y−u)s0βeSudu =

∞∑
r=0

e−cy
(cy)r+1

(r + 1)!

r∑
m=0

PmpβP r−m

where
c = max(−Sii ),P = (1/c)S + I , p = (1/c)s0.
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A General way of constructing PH variates

V. G. Kulkarni. A new class of multivariate phase-type distributions.
Operations Research, 37:151-158, 1989.

Let {X (t), t ≥ 0} be a CTMC with state space 1, 2, ...,m + 1.
Suppose the initial distribution is (α, αm+1) and the generator matrix is[

Q −Qe ′

0 0

]
Define τ = inf {t ≥ 0|X (t) = m + 1}.
Let r = (r(1), r(2), ..., r(m))

′
be a non negative m vector.

r(i) is the rate at which a reward is obtained when the system is in the
state i.
Define, Y =

∫ τ
0 r(X (t))dt.

Y is the total reward obtained until absorption in the state m + 1.
If r(i)= 1 for 1 ≤ i ≤ m, then Y = τ .
Theorem: Y has a phase type distribution.
Proof: let {Xn : n ≥ 0} be the uderlying DTMC with one step transition
probability matrix
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A General way of constructing PH variates continued...

[
P a′

0 1

]

where P = [Pij ], 1 ≤ i , j ≤ m, a = (a1, a2, ...am)

Pij =

{ qij
−qii if i 6= j

0 if i = j

ai = 1−
∑n

j=1 Pij .

Let Ni be the number of times {Xn; n ≥ 0} visits state i until it gets
absorbed.

Let {Yi ,n : 1 ≤ i ≤ m, n ≥ 1} be a collection of independent random
variables with Yi ,n ∼ exp(−−qiir(i) ).

Yi ,n can be thought of as the total reward earned by the
{X (t), t ≥ 0} process during its n th visit to state i .

Y ∼
∑m

i=1

∑Ni
n=1 Yi ,n
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S+ = {i : 1 ≤ i ≤ m, r(i) > 0}

S0 = {i : 1 ≤ i ≤ m, r(i) = 0}
Partition P and a over S+ and S0 as

P =

[
P++ P+0

P0+ P00

]
and a = (a+, a0).

Construct a DTMC with state space S∗ = S+ ∪ {m + 1} and one step
transition probability matrix

P∗ =

[
P∗+ a∗

′
+

0 1

]
where P∗+ = P++ + P+0(I − P00)−1P0+

and a∗
′

+ = (I − P∗+)e
′
+

Let N∗i be the number of visits to state i by this DTMC
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Y ∼
∑

i∈S+
∑N∗i

n=1 Yi ,n

Construct a continuous time Markov process {X ∗(t) : t ≥ 0} with
state space S∗ as follows:

The distribution of X ∗(0) is (β∗+, β
∗
m+1)

where
β∗+ = α+ + α0(I − P00)−1P0+

and β∗m+1 = 1− β∗+e
′
+.

The sojourn time in i ∈ S∗ is exp(−−qiir(i) ).

Define T ∗ = inf{t ≥ 0 : X ∗(t) = m + 1}

T ∗ ∼
∑

i∈S+
∑N∗i

n=1 Yi ,n ∼ Y

Y ∼ PH(β∗+,Q
∗
+) where

[Q∗+]ij =

{ qii (1−[P∗+]ii )
r(i) if i = j

−qii [P∗+]ij
r(i) if i 6= j
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Matrix-exponential distributions

S.Asmussan and M.Bladt . Renewal theory and queuing algorithms for
matrix-exponential distributions. Matrix -analytic methods in stochastic
models. pages 313-341, 1997.
M.Bladt and M.F.Neuts, Matrix exponential distributions: calculus and
interpretations via flows. Stochastic Models, 19: 113-124, 2003.
LST of a PH(π,T ) variate is π(sI − T )−1t.
Definition 1
A non-negative random variable Y is said to have a matrix-exponential
distribution if the Laplace transform of Y, E (e−Sy ) , is a rational function
in s.
The general form of a rational Laplace transform of an absolutely
continuous non-negative random variable Y, having no atom at zero, is
given by
LY (s) = f1sm−1+f2sm−2+...+fm

sm+g1sm−1+....+fm
.

Another characterization of the class of matrix-exponential distributions is
given by Asmussen and Bladt.
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Definition 2
A random variable Y is matrix-exponentially distributed if and only if there
exists a triplet (β,D, d) such that the density f of Y can be expressed as
f (y) = βeDyd , and we write Y ∼ ME (β,D, d).

Here, β is a row vector of dimension some m, d is a column vector of the
same dimension, and D is an m ×m matrix.
Like PH, representations corresponding to ME distributions are not unique.
For example, consider the ME distribution with density
f (u) = 2e−u − 6e−2u + 6e−3u and LST

φ(λ) = 2λ2+4λ+6
λ3+6λ2+11λ+6

This distribution has following three distinct representation
(α,T , t), (β,S , s), (γ,R, r)
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α =
[
−1 1 −1

]
,T =

 −4 0 −1
2 −1 0
2 0 −1

 , t =

 0
−4
6



β =
[

6 4 2
]
,S =

 0 1 0
0 0 1
−6 −11 −6

 , s =

 0
0
1



γ =
[

1
2 0 0 1

2

]
,R =


−1 1 0 0
0 −2 2 0
0 0 −3 3
0 0 0 −4

 , r =


0
0
0
1


See
Mark William Fackrell, Characterization of matrix-exponential
distributions, Doctoral Thesis, 2003.
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1



γ =
[

1
2 0 0 1

2

]
,R =


−1 1 0 0
0 −2 2 0
0 0 −3 3
0 0 0 −4

 , r =


0
0
0
1


See
Mark William Fackrell, Characterization of matrix-exponential
distributions, Doctoral Thesis, 2003.
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Continued..

If d= - De and β is a probability vector, then the above representation
reduces to the algebraic form of the phase type representation.

PH distributions form a proper subset of the set of ME distributions.

Equivalent to Cox’s class of distributions with rational LT.

Distribution function of Y: F (y) = 1 + βeDyD−1d

Laplace transform of Y: LY (s) = E (esY ) = β(sI − D)−1d

Moments: Mi = E (Y i ) = i !β(−D)−(i+1)d ,i=0,1,2,...
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Theorem:

Consider a Matrix-exponential distributed random variable Y with reduced

moments µi = E(Y i )
i! = Mi

i! .

Then , the rational moment generating function of Y can be written as a
finite and regular C-continued fraction
1 + c1s|

|p + c2s|
|p + c3s|

|p + ....+ c2ns|
|p .

The coefficients ci can be calculated in terms of the Hankel determinants

φn =


µ1 µ2 · · · µn
µ2 µ3 · · · µn+1

· · · · · ·
µn µn+1 · · · µ2n−1

 for n = 1, 2, ...
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ψn =


µ2 µ3 · · · µn
µ3 µ4 · · · µn+1

· · · · · ·
µn µn+1 · · · µ2n−2

 for n = 2, 3, ...

as follows:
c1 = φ1, c2n = −ψn+1φn−1

ψnφn
, c2n+1 = −ψn+1φn

ψnφn+1
where φ0 = 1, φm = 0 for

m > n, and ψm = 0 for m > n + 1.

Foe the proof, see
M.Bladt and B.F.Nielsen. Multivariate matrix- exponential distributions.
Stochastic Models, 26:1-26, 2010.
Also, refer Esparza, L. J. R., Nielsen, B. F., and Bladt, M. Maximum
likelihood estimation of phase-type distributions., 2011. Kgs. Lyngby,
Denmark: Technical University of Denmark (DTU).
(IMM-PHD-2010-245).

T.G.Deepak (IIST) January 25, 2018 26 / 33



ψn =


µ2 µ3 · · · µn
µ3 µ4 · · · µn+1

· · · · · ·
µn µn+1 · · · µ2n−2

 for n = 2, 3, ...

as follows:
c1 = φ1, c2n = −ψn+1φn−1

ψnφn
, c2n+1 = −ψn+1φn

ψnφn+1
where φ0 = 1, φm = 0 for

m > n, and ψm = 0 for m > n + 1.
Foe the proof, see
M.Bladt and B.F.Nielsen. Multivariate matrix- exponential distributions.
Stochastic Models, 26:1-26, 2010.

Also, refer Esparza, L. J. R., Nielsen, B. F., and Bladt, M. Maximum
likelihood estimation of phase-type distributions., 2011. Kgs. Lyngby,
Denmark: Technical University of Denmark (DTU).
(IMM-PHD-2010-245).

T.G.Deepak (IIST) January 25, 2018 26 / 33



ψn =


µ2 µ3 · · · µn
µ3 µ4 · · · µn+1

· · · · · ·
µn µn+1 · · · µ2n−2

 for n = 2, 3, ...

as follows:
c1 = φ1, c2n = −ψn+1φn−1

ψnφn
, c2n+1 = −ψn+1φn

ψnφn+1
where φ0 = 1, φm = 0 for

m > n, and ψm = 0 for m > n + 1.
Foe the proof, see
M.Bladt and B.F.Nielsen. Multivariate matrix- exponential distributions.
Stochastic Models, 26:1-26, 2010.
Also, refer Esparza, L. J. R., Nielsen, B. F., and Bladt, M. Maximum
likelihood estimation of phase-type distributions., 2011. Kgs. Lyngby,
Denmark: Technical University of Denmark (DTU).
(IMM-PHD-2010-245).

T.G.Deepak (IIST) January 25, 2018 26 / 33



Properties of matrix-exponential distributions

If Y1 ∼ ME (β,S , s) and Y2 ∼ (π,T , t), then Y1 + Y2 is
matrix-exponential with representation(

(β, 0),

(
S sπ
0 T

)
,

(
0
t

))

Let p ∈ (0, 1). Then the mixture f = pfY1 + (1− p)fY2 is again a
matrix- exponential density with representation(

(pβ, (1− p)π),

(
S 0
0 T

)
,

(
s
t

))
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Min(Y1,Y2) is matrix-exponential with representation
(β ⊗ π,S ⊕ T , s ⊗ (−T )−1t + (−S)−1s ⊗ t)

If Y1 and Y2 are independent matrix-exponentially distributed variates
with representation (π,T , t) such that t=-Te. Then min(Y1,Y2)is
matrix - exponentially distributed with representation
(π ⊗ π,T ⊕ T , (t ⊕ t)e), and max(Y1,Y2) is matrix - exponentially
distributed with representation(

(π ⊗ π, 0),

(
T ⊕ T t ⊕ t

0 T

)
,

(
0
t

))
Given the LT of an ME distribution, is it possible to find a minimal
representation?
The ANSWER is YES (unlike in the PH case!).
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Matrix-exponential representations

Theorem: If the LT of a ME distribution is expressed as

φ(λ) =
apλp−1+ap−1λ

p−2+...+a1
λp+bpλp−1+bp−1λp−2+...+b1

+ α0

where p ≥ 1, a1, a2, ..., ap, b1, b2, ..., bp are all real and 0 ≤ α0 < 1, then
the ME distribution has a minimal representation (α,T , t) where
α = (a1, a2, ..., ap)

T =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
· · · · · · · ·
0 0 0 · · · 0 1
−b1 −b2 −b3 · · · −bp−1 −bp

 , t =



0
0
0
·
·
1

 = ep.
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This theorem shows that

A representation with only real parameters can be found for any ME
distribution.

Eigen values of T are identical to the poles of the LT.

There is a one-one correspondence between the LT of a ME
distribution and a minimal representation of the above form for it.

Example: Consider the density f (u) = 2e−u − 6e−2u + 6e−3u.

φ(λ) = 2λ2+4λ+6
λ3+6λ2+11λ+6

Then

α = (6, 4, 2),T =

 0 1 0
0 0 1
−6 −11 −6

 , t =

 0
0
1


form a minimal representation for ME distribution.
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Matrix-exponential representations continued....

How can we know whether a given LT corresponds to an ME distribution
or not?

SEE.....
Theorem:
Let a = (a1, a2, ..., ap), b = (b1, b2, ..., bp),
b(λ) = λp + bpλ

p−1 + bp−1λ
p−2 + ....+ b1 and

B =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
· · · · · · · ·
0 0 0 · · · 0 1
−b1 −b2 −b3 · · · −bp−1 −bp

 .

Then a and b correspond to a non trivial ME distribution if and only if

f (u) = aeBue ≥ 0 for u > 0
0 < a1

b1
≤ 1

there exists a zero of b(λ) of maximal real part that is both real and
negative.
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Comparing the classes of Matrix exponential and Phase
type distributions

The class of PH distributions is a proper subset of the class of ME
distributions

But how much larger is the latter one than the former?
The ANSWER is .......

The set of all ME distributions of algebraic degree p that are not PH
distributions has measure zero in the set of all ME distributions of
algebraic degree p.

For the proof and more details on matrix exponential distributions, see
Mark William Fackrell, Characterization of matrix-exponential
distributions, Doctoral Thesis, 2003.
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