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1 The Burgers’ Equation

Burgers’ equation is obtained as a result of combining nonlinear wave motion with linear diffusion

and is the simplest model for analyzing combined effect of nonlinear advection and diffusion. The

presence of viscous term helps suppress the wave-breaking, smooth out shock discontinuities,

and hence we expect to obtain a well-behaved and smooth solution. Moreover, in the inviscid

limit, as the diffusion term becomes vanishingly small, the smooth viscous solutions converge

non-uniformly to the appropriate discontinuous shock wave, leading to an alternative mechanism

for analyzing conservative nonlinear dynamical processes. The advection equation

∂u
∂ t

+ c
∂u
∂x

= 0 (1)

propagates an initial waveform or signal at velocity c while maintaining the precise form of the

initial waveform. On the other hand, the nonlinear equation

∂u
∂ t

+ u
∂u
∂x

= 0 (2)

propagates signals in such a way that distortion occurs in the waveform profile; that is, the

nonlinear advection term uux causes either a shocking or rarefaction effect. It is well known

that the heat equation
∂u
∂ t

− α
∂ 2u
∂x2 = 0, α > 0 (3)

contains a diffusion term αuxx responsible for smoothing out the initial profile. For an initial

condition of the form

u(x,0) = Ueikx

and an assumed solution of the form

u(x, t) = f (t)eikx,

it is easy to obtain the solution of (3) by substitution. The solution is given by

u(x, t) = Ue−αk2t sinkx. (4)
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We see here that during the time evolution of the temperature profile, it remains as a sinusoidal

wave but its amplitude exponentially decreases with time as displayed in Fig. 1. Further, the

waves of smaller wavelengths (or larger k) decay faster than the waves of longer wavelengths.

On the other hand, for a fixed wavelength (k constant) the decay time decreases as α increases

so that waves of a given wavelength attenuate faster in a medium with a larger α .

t = 0,0.2,0.4,0.6

x

u

0

Figure 1: Transient solution (4) of heat equation.

Another useful solution of heat equation (3) in an infinite domain is obtained when the

initial condition is given by a step change in u

u(x,0) = g(x) =

{

ul if −∞ < x ≤ 0

ur if 0 < x < ∞

subject to the boundary conditions

u(−∞, t) = ul 0 ≤ t < ∞
u(∞, t) = ur 0 ≤ t < ∞

Analytical solution can be easily obtained using the method of similarity transformation. It is

given by

u(x, t) =
1
2
(ur +ul) +

1
2
(ur −ul)erf

(

x√
4αt

)

(5)

This shows that the presence of the diffusion term is to smooth out the initial distribution as

displayed in Fig. 2.

Frequently, insight can be gained into the nature of the various terms in an evolution

equation by attempting to find either traveling wave solutions

u(x, t) = U cos(kx−ωt) (6a)

or else complex exponential solutions of the form

u(x, t) = Uei(kx−ωt) (6b)

where U is the amplitude, k the wave number, and ω the frequency.
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t = 0.005,0.06,0.36,1.8

x

u

0

ul

ur

Figure 2: Transient solution (5) of heat equation.

1.1 Linear convection-diffusion equation

Consider the linear partial differential equation

∂u
∂ t

+ c
∂u
∂x

− ν
∂ 2u
∂x2 = 0, (c, ν > 0) (7)

which contains a linear convection term cux and a diffusion term νuxx. For an initial condition

of the form

u(x,0) = Ueikx

and an assumed solution of the form

u(x, t) = f (t)eikx,

it is easy to obtain the solution of (7) by substitution. Thus, we have

u(x, t) = Ue−νk2teik(x−ct). (8a)

Since the real (or imaginary) part of the above equation is the solution, we write

u(x, t) = Ue−νk2t sink(x− ct). (8b)

The solution (8) is shown in Fig. 3. This represents a diffusive traveling wave with wavenumber

k and phase velocity c. Specifically, the factor eik(k−ct) represents a harmonic right traveling

wave with wave number k, and the factor Ue−νk2t represents a decaying amplitude. As with

the case of heat equation, the waves of smaller wavelengths decay faster than the waves of

longer wavelengths. On the other hand, for a fixed wavelength (k constant) the decay time

decreases as ν increases so that waves of a given wavelength attenuate faster in a medium

with a larger ν. So, the quantity ν may be regarded as a measure of diffusion. Finally, after

a sufficiently long time, only disturbances of long wavelength will survive, whereas all waves of

short wavelength will decay very rapidly.

Analytical solution to (7) can also be obtained for the initial condition of the form

u(x, 0) =

{

1 if x < 0,

0 if x > 0
(9)
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t = 0,0.2,0.4,0.6

x

u

Figure 3: Traveling wave solution (8) of convection-diffusion equation.

which represents a jump discontinuity at x = 0. The wave front convects to the right with a

speed c and its profile loses its sharpness under the influence of the diffusivity ν.
For sufficiently small values of time, the following boundary conditions may be prescribed:

u(−L/2, t) = 1, u(L/2, t) = 0. (10)

Using the method separation of variables with (9) as the initial condition and (10) as the

boundary conditions, an exact solution may be found:

u(x, t) =
1
2
− 2

π

∞

∑
n=1

sin

[

(2n−1)
π(x− ct)

L

]

e−ν(2n−1)2π2t/L2

2n−1
. (11)

We note that (7) is parabolic, whereas (7) with ν = 0 is hyperbolic. More importantly, the

properties of the solution of the parabolic equation are significantly different from those of the

hyperbolic equation.

1.2 The Burgers’ equation: Travelling wave solution

Consider the nonlinear convection-diffusion equation equation

∂u
∂ t

+ u
∂u
∂x

− ν
∂ 2u
∂x2 = 0, ν > 0 (12)

which is known as Burgers’ equation. This equation is balance between time evolution, nonlin-

earity, and diffusion. This is the simplest nonlinear model equation for diffusive waves in fluid

dynamics. Burgers (1948) first developed this equation primarily to throw light on turbulence

described by the interaction of two opposite effects of convection and diffusion.

The term uux will have a shocking up effect that will cause waves to break and the term

νuxx is a diffusion term like the one occurring in the heat equation. We attempt to find a

traveling wave solution of (9) of the form

u(x, t) = f (ξ ) = f (x− ct) (13)
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where ξ = x− ct and the unknowns f and c are to be determined. By the chain rule,

∂u
∂ t

= −c f ′(ξ ),
∂u
∂x

= f ′(ξ ),
∂ 2u
∂x2 = f ′′(ξ ).

Substituting these expressions into (12) gives the ordinary differential equation

−c f ′(ξ ) + f (ξ ) f ′(ξ ) − ν f ′′(ξ ) = 0. (14)

Noting that f f ′ = 1
2d f 2/ds and performing an integration with respect to ξ yields

−c f +
1
2

f 2 − ν f ′ = B

where B is a constant of integration. Hence

2ν
d f
dξ

=
(

f 2 −2c f −2B
)

= ( f − f1)( f − f2) (15)

where

f1 = c +
√

c2 +2B and f2 = c −
√

c2 +2B.

We assume that f1 and f2 are real and hence f1 > f2. Integrating (15) after separating the

variables to obtain
ξ
2ν

=

∫

d f
( f − f1)( f − f2)

=
1

f1 − f2
ln

f1 − f
f − f2

where we have f2 < f < f1. This leads to the solution for f (ξ ) of the form

f (ξ ) =
f1 + f2e

(

f1− f2
2ν

)

ξ

1+ e

(

f1− f2
2ν

)

ξ
(16a)

or

f (ξ ) = f2 +
f1 − f2

1+ e

(

f1− f2
2ν

)

ξ
. (16b)

Another useful expression can be written from (16a) in the form

f (ξ ) =
1
2
( f1 + f2) +

f1 + f2e

(

f1− f2
2ν

)

ξ

1+ e

(

f1− f2
2ν

)

ξ
− 1

2
( f1 + f2)

=
1
2
( f1 + f2) −

1
2
( f1 − f2) tanh

[

1
4ν

( f1 − f2)ξ
]

. (17)

Thus, the explicit form of traveling wave solution to (12) is

u(x, t) = c − 1
2
( f1 − f2) tanh

[

1
4ν

( f1 − f2)(x− ct)

]

(18)

where the wave speed c is determined from the definition of f1 and f2 to be

c =
1
2
( f1 + f2). (19)
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Note that the solution (18) is independent of t in the frame of coordinates moving with x−ct.
Observe from (17) that

lim
ξ→−∞

f (ξ ) = f1, lim
ξ→∞

f (ξ ) = f2

and f ′(ξ ) < 0 for all ξ . Hence the solution f (ξ ) decreases monotonically with ξ from the

constant value f1 to the constant value f2 as shown in Fig. 4. At ξ = 0, u = 1
2( f1 + f2) = c.

The wave profile f (ξ ) travels from left to the right, unchanged in form, with speed c equal

to the average of its asymptotic values. The solution (17) of Burgers’ equation is called the

shock structure solution because it resembles the actual profile of a shock wave as it joins the

asymptotic states f1 and f2. Without the viscous term the solutions of Burgers’ equation would

allow shocks to be formed and finally breaks. The presence of the diffusion term prevents the

gradual distortion of the wave and its breaking by countering the nonlinearity. The result is a

balance between the nonlinear advection term and the linear diffusion term much the same way

as occurs in a real shock wave in the narrow region where the gradient is steep. The shape of

the waveform (17) is significantly affected by the diffusion coefficient ν. Figure 5 shows wave

profiles corresponding to f1 = 3.6, f2 = 1.2 for four different values of the diffusion coefficient,

viz., ν = 1.0, 0.4, 0.16, and 0.064. Note that the smaller ν is, the sharper the transition layer

between the two asymptotic values of the solution. In the inviscid limit ν → 0, the solutions

converge to the step shock wave wave solution to the inviscid Burgers’equation (2).

1
2( f1 + f2)

ξ

f (ξ )

f1

f2

Figure 4: A typical traveling wave solution of Burgers’ equation.

For the special case of f1 = 2 and f2 = 0, the traveling wave solution (16) (and (18))
becomes

f (ξ ) =
2

1+ e
ξ
ν
= 1− tanh

(

ξ
2ν

)

Note that the above solution is independent of t in the frame of coordinates moving with x− t.
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ν = 1.0
0.4
0.16
0.064

ξ

f (ξ )

f1

f2

Figure 5: Traveling wave solution (17) of Burgers’ equation.

1.2.1 Shock thickness

It possible to define a shock thickness δ in the traveling wave solution. To do this, we multiply

both numerator and denominator of (16) by e
−
(

f1− f2
2ν

)

ξ
to obtain

f (ξ ) =
f2 + f1e

−
(

f1− f2
2ν

)

ξ

1+ e
−
(

f1− f2
2ν

)

ξ
. (20)

and for f1 = 2 and f2 = 0, we have

f (ξ ) =
2e−

ξ
ν

1+ e−
ξ
ν
.

The exponential factor in this solution indicates the existence of a thin thin layer of thickness

δ of the order ν/( f1 − f2). This thickness δ can be referred to as the shock thickness, which

tends to zero as ν → 0 for fixed f1 and f2. Also δ increases as f1 → f2 for a fixed ν. If δ is

small compared with other typical length scales of the problem, the rapid shock transition can

satisfactorily be approximated by a discontinuity. The idea of obtaining the limiting solution of

(12) as ν → 0 is called the vanishing-viscosity approach to defining a sensible solution to the

hyperbolic equation.

1.3 The Burgers’ equation: The Cole-Hopf transformation

It is remarkable that Burgers’ equation may be solved exactly using a trick discovered inde-

pendently by Eberhard Hopf (1950) and Julian Cole (1951). They showed that the Burgers’

equation may be transformed to the linear diffusion equation by a nonlinear transformation. This

discovery, known as Cole-Hopf transformation, was a milestone in the modern era of nonlinear

partial differential equations.

We consider the Burgers’ equation

∂u
∂ t

+ u
∂u
∂x

= ν
∂ 2u
∂x2 (21)
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Finding a way to transform a nonlinear differential equation into a linear equation is not an easy

task. However, nonlinearizing a linear equation is quiet easy; any nonlinear transformation of

variables can accomplish this task. Therefore, our starting point is the linear heat equation of

the form (3)
∂w
∂ t

= ν
∂ 2w
∂x2 (22)

where w = w(x, t). One of the simplest nonlinear transformation possible here is to use the

exponential function as follows

w = eαφ (23)

where φ = φ(x, t). Solving (23) for φ yields

φ =
1
α

lnw, w(x, t)> 0 (24)

By the chain rule, we calculate

∂w
∂ t

= α
∂φ
∂ t

eαφ ∂w
∂x

= α
∂φ
∂ t

eαφ ,
∂ 2w
∂x2 =

[

α
∂ 2φ
∂x2 +α2

(

∂φ
∂x

)2
]

eαφ

Using the above result, the heat equation (22) can be written as

α
∂φ
∂ t

eαφ = ν

[

α
∂ 2φ
∂x2 +α2

(

∂φ
∂x

)2
]

eαφ

which simplifies to

∂φ
∂ t

= ν
∂ 2φ
∂x2 + να

(

∂φ
∂x

)2

(25)

We differentiate (25) with respect to x to obtain

∂ 2φ
∂ t∂x

= ν
∂ 3φ
∂x3 + 2να

∂φ
∂x

(

∂φ
∂x

)2

(26)

If we now set
∂φ
∂x

= u (27)

so that φ has the status of a potential function, then the resulting partial differential equation

∂u
∂ t

= ν
∂ 2u
∂x2 + 2ναu

∂u
∂x

Setting α =−1/2ν transforms the above equation into the Burgers’ equation

∂u
∂ t

+ u
∂u
∂x

= ν
∂ 2u
∂x2

Thus, the Cole-Hopf transformation

u =
∂φ
∂x

=
∂
∂x

(−2ν lnw) = −2ν
wx

w
(28)
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reduces the Burgers’ equation (21) to the diffusion equation (22).
Let us illustrate the Cole-Hopf transformation with following example. To make things

simple, let us first try to obtain the solution of Burgers’ equation for a specified solution of the

corresponding heat equation
∂w
∂ t

= ν
∂ 2w
∂x2

with initial condition

w(x,0) = b + acoskx

The solution of the heat equation for the specified initial condition is given by (see (4))

w(x, t) = b + ae−νk2t coskx. (29)

where b > |a| to ensure that w(x, t)> 0 for all time. This solution at various times is plotted in

Fig. 6. The solution of the Burgers’ equation can now be easily obtained using the Cole-Hopf

x

u

Figure 6: A solution of heat equation.

transformation:

u(x, t) = −2ν
wx

w
=

2νake−νk2t sinkx

b+ae−νk2t coskx
(30)

This highly diffusive solution at various times is plotted in Fig. 7.

1.4 General solution of Burgers’ equation for in an infinite domain

Let us now consider the general problem of solving the Burgers’ equation using Cole-Hopf

transformation:

∂u
∂ t

+ u
∂u
∂x

= ν
∂ 2u
∂x2 (31a)

u(x,0) = F(x), −∞ < x < ∞ (31b)

According to (28), the new variable w(x, t) must initially satisfy

u(x,0) = F(x) = −2ν
wx(x,0)
w(x,0)

(32a)
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x

u

Figure 7: A solution of Burgers’ equation.

This is a linear first-order ordinary differential equation for (x,0) and can be written as

1
w(x,0)

dw(x,0)
dx

= − 1
2ν

F(x) (32b)

The general solution of this equation is

w(x,0) = e
− 1

2ν

x
∫

0
F(s)ds

= f (x) (33)

Note that the lower limit of the integral can be changed from 0 to any other convenient value

without affecting the final form of u(x, t) in (28). As a result of the transformation, we only

need to solve the linear problem for w(x, t):

∂w
∂ t

= ν
∂ 2w
∂x2 (34a)

w(x,0) = f (x), −∞ < x < ∞ (34b)

The linear heat equation (34) can be solved using Fourier transform or any other standard

techniques. The general solution can be expressed using the heat kernel

g(x, t) =
1√

4πνt
e−

x2
4νt (35)

as

w(x, t) =
∫ ∞

−∞
f (η)g(x−η, t)dη (36a)
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Therefore, the general solution (34) is given by

w(x, t) =
1√

4πνt

∫ ∞

−∞
f (η)e−

(x−η)2

4νt dη (36b)

where f (η) is given by (33). It then follows that

∂w
∂x

=
−1√
4πνt

∫ ∞

−∞
f (η)

(x−η)
2νt

e−
(x−η)2

4νt dη (37)

Therefore, the exact solution of the Burgers’ initial value problem is obtained using the trans-

formation (28) in the form

u(x, t) =

∫ ∞

−∞
f (η)

(x−η)
t

e−
(x−η)2

4νt dη
∫ ∞

∞
f (η)e−

(x−η)2

4νt dη
(38)

The solution given by (37) is continuous and single valued and for all values of t. It is very hard
to give a physical interpretation of this exact solution unless a suitable simple form of F(x) is
specified. Even in many problems, an exact evaluation of the integrals involved in (37) is almost

a formidable task. It is then necessary to resort to asymptotic methods. We next consider the

following example to investigate the formation of discontinuities or shock waves.

The solution to Burgers’ equation (38) can be written in a more convenient way as follows.

We substitute equation (33) for f (η) into (36) to obtain

w(x, t) =
1√

4πνt

∫ ∞

−∞
e−G dη (39)

where

G(x, t,η) =
1

2ν

∫ η

0
F(θ)dθ +

(x−η)2

4νt
(40)

It then follows that
∂w
∂x

= − 1

2ν
√

4πνt

∫ ∞

−∞

x−η
t

e−G dη (41)

Therefore, the alternate form of exact solution of the Burgers’ initial value problem is obtained

using the transformation (28):

u(x, t) =

∫ ∞

−∞

x−η
t

e−G(x,t,η) dη
∫ ∞

−∞
e−G(x,t,η) dη

(42)

It is useful to note that the lower limit in the integral in (40) is arbitrary since it cancels out in

(42).
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1.4.1 Single hump solution

Find the solution of the Burgers’ equation with initial condition

u(x,0) = F(x) = Aδ (x) (43)

where δ (x) is the Dirac delta function at the origin and A is a constant.

In the equation (40), the lower limit at 0 of integral for G(x, t,η) is problematic, but this

difficulty can easily be overcome by selecting a different lower limit of integration. Here we take

−∞ as the lower limit. We first calculate,

G(x, t,η) =
1

2ν

∫ η

−∞
Aδ (θ)dθ +

(x−η)2

4νt
=











(x−η)2

4νt
, η < 0

(x−η)2

4νt
+

A
2ν

, η > 0

Substituting the above equation into (42), we can evaluate the upper integral in elementary

terms, while the lower integral involves the error function (14.63); after some algebraic manip-

ulations, we obtain (see Whitham [5])

u(x, t) =

√

ν
t







(

e
A

2ν −1
)

e−
x2
4νt

√
π +

(

e
A
2ν −1

)√

π
2 erfc

(

x√
4νt

)






(44)

where the complimentary error function

erfc(z) = 1 − erf(z) = 1 − 2√
π

∫ z

0
e−r2

dr =
2√
π

∫ ∞

z
e−r2

dr. (45)

This is a case of an initial single hump propagating in the x direction and simultaneously diffuses

out as shown in Fig. 8. The effect of the nonlinear advection term is to steepen the front side of

hump as it propagates. Eventually the triangular wave spreads out as the diffusion progresses.

ν = 1.0

0
x

u

ν = 0.08

0
x

u

Figure 8: Single hump solution of Burgers’ equation for high (left) and low (right) viscosity.
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Using method of similarity transformation, we could obtain the form of the solutions as

u(x, t) =

√

ν
t

g

(

x√
νt

,
A
ν

)

(46)

which has the same form as (44). Note that there is no separate length and time with which

to scale x and t separately. Define the similarity variable

z =
x√
4νt

and the Reynolds number

R =
A

2ν
the solution (44) can be written in dimensionless form as

v(z, t) =

(

eR −1
)

e−z2

√
π + (eR −1)

√

π
2 erfc(z)

(47)

where v = u/
√

ν/t is the dimensionless velocity. The form of the triangular wave solution for

different R is shown in Fig. 9.

R = 3
6
12

0
z = x/

√
4νt

v =
√

t/νu

Figure 9: Triangular wave (single hump) solution of Burgers’ equation – dimensionless form.

For this problem, two limiting cases can be brought out. The first is the case when ν → ∞
and second is ν → 0. In the first case we expect diffusion term to dominate than that of

nonlinear advection. Therefore, in the limit as ν → ∞, we have

erfc

(

x√
4νt

)

→ 0 and e

A
2ν → 1+

A
2ν

the solution (44) tends to the limiting value

u(x, t) =
A√

4πνt
e−

x2
4νt (48)
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0
x

u

Figure 10: Solution of linear heat equation

which is infinitely differentiable for positive t. This is the fundamental solution of the heat

equation (35). For all time t, the hump shaped solution remains Gaussian as shown in Fig. 10.

The height of hump decreases inversely with
√

νt, whereas the width of the hump increases

with
√

νt.
In the second case as ν → 0, we expect the nonlinear advection term to dominate than that

of linear diffusion. Therefore, in the limit as ν → 0, it possible to show that (44) reduces to

the shock wave solution of inviscid Burgers’ equation

u(x, t) ∼







x
t
, 0 < x <

√
2At

0, otherwise.
(49)

which is the asymptotic solution of Burgers’ equation with single hump as the initial profile

(see Whitham [5]). This result represents a shock wave at x =
√

2At, and the shock speed

U =
√

A/2t. The solution jumps from 0 to
√

A/2t.

1.4.2 Asymptotic behaviour of Burgers’ Solution

The behavior of the exact solution of Burgers’ equation (42) can be obtained for ν → 0 while

x, t and F(x) are held fixed. As the dominant contributions to the integrals in (42) come from

the neighborhood of the stationary points of G. A stationary point is where

∂G
∂η

= F(θ) − x−η
t

= 0. (50)

Suppose that η = ξ (x, t) is a solution of (49) representing a stationary point. The contribution

from the neighborhood of a stationary point, η = ξ an integral

∫ ∞

−∞
g(η)e−G(η)dη

is

g(ξ )

√

2π
|G′′(ξ )| e−G(ξ ).
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This is the standard formula of the method of steepest descents. Suppose first that there is

only one stationary point ξ (x, t) which satisfies (49). Then

∫ ∞

−∞

x−η
t

e−G(x,t,η) dη ∼ x−ξ
t

√

2π
|G′′(ξ )| e−G(ξ ), (51)

∫ ∞

−∞
e−G(x,t,η) dη ∼

√

2π
|G′′(ξ )| e−G(ξ ), (52)

and in (42) we have

u ∼ x−ξ
t

(53)

where ξ (x, t) is defined by (50). This asymptotic solution may be rewritten

u(x, t) = F(ξ )
ξ = x − F(ξ )t.

}

(54)

This is identical with the solution of the Burgers’ equation without the diffusion term ν = 0.
Here, the stationary point ξ corresponds to the characteristic variable in the context of the

first-order, quasilinear equation. Although the exact solution of Burgers’ equation is a single-

valued and continuous function for all time t, the asymptotic solution (54) exhibits instability.
It has already been shown that this progressively distorts itself and becomes multiple-valued

after sufficiently long time. Eventually, it would break with the development of discontinuity as

a shock wave. When this state is reached, there will be two stationary pints of (50), and then,

some modification is required to complete the asymptotic analysis.

1.4.3 Discontinuous initial profile

Find the solution of the Burgers’ equation with piece-wise initial condition

u(x,0) = F(x) = aH(−x) + bH(x) =

{

a, x < 0

b, x > 0
(55)

where H(x) is the Heaviside function. We assume that a > b, which would correspond to a

shock wave in the inviscid limit ν = 0.

We first calculate,

G(x, t,η) =
1

2ν

∫ η

0
F(θ)dθ +

(x−η)2

4νt
=











(x−η)2

4νt
− a

2ν
η, η < 0

(x−η)2

4νt
− b

2ν
η, η > 0

Substituting the above equation in (42) and integration independently from −∞ to 0 and from

0 to ∞, we obtain

u(x, t) =
e

b−a
2ν (x−ct)aerfc

(

x−bt√
4νt

)

+ berfc
(

x−at√
4νt

)

e
b−a
2ν (x−ct)erfc

(

x−bt√
4νt

)

+ erfc
(

x−at√
4νt

) (56)

15



where

c =
a+b

2
and erfc(.) the complimentary error function. The solution to Burgers’ equation (56) can be

written in a more convenient way as follows:

u(x, t) = a − a − b

1+q(x, t)e−
a−b
2ν (x−ct)

(57a)

where

q(x, t) =
erfc

(

x−bt√
4νt

)

erfc
(

x−at√
4νt

) .

For the special case of b = 0, the solution (57a) simplifies to

u(x, t) = a − a

1+q(x, t)e−
c
ν (x−ct)

(57b)

where

q(x, t) =
erfc

(

x√
4νt

)

erfc
(

x−at√
4νt

) .

0
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0
x

u

0
x

u

Figure 11: Shock wave solution (57) of Burgers’ equation for low viscosity.
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0
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Figure 12: Shock wave solution (57) of Burgers’ equation for high viscosity.

The solution in (57) is plotted in figures 11 and 12 at times t = 0.05, 0.7, 1.4. Note that the
sharp discontinuity is immediately smoothed, and the solution rapidly settles into the form of

a continuously varying transition layer between the two discontinuous velocity. The smoothing

effect is more for larger viscosity.
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Example: The N-wave solution

An N-wave solution is an exact solution of Burgers’ equation which is created if a rarefaction-

compression pulse is specified as the initial waveform. Note that, for the single hump problem,

we could have taken the solution of diffusion equation (22) corresponding to an initial step

function. To obtain an N-wave for u, we choose the source solution of the heat equation (22)
of the form

w(x, t) = 1 +

√

τ
t

e−
x2
4νt (58)

where τ is a constant. Using Cole-Hopf transformation (28), we obtain

u(x, t) = −2ν
wx

w
=

x
t

√

τ/t e−
x2
4νt

1+
√

τ/t e−
x2
4νt

(59a)

=
x
t

[

1+
√

τ/t e−
x2
4νt

]−1

. (59b)

For any time t > 0, this solution is shown in Fig. 11 and has the inverted N-shaped form with a

positive and negative phases. Note that since w has the behavior of a delta-function as t → 0,
this cannot be interpreted as an initial value problem on u.

0
x

u

Figure 13: N-wave solution of the Burgers’ equation

The area under the positive phase of the wave profile is given by
∫ ∞

0
u(x, t)dx = −2ν [lnw(x, t)]∞0 = 2ν ln(1+

√

τ/t). (60)

The magnitude of the area of the negative phase is the same. As we can see, the area of the

positive phase tends to zero as t → ∞. Let the value of area given by (60) at the initial time t0
is denoted by A. We now introduce an initial Reynolds number

R0 =
A
2ν

= ln(1+
√

τ/t0) (61)

and the effective Reynolds number at ant time t,

R(t) =
1

2ν

∫ ∞

0
u(x, t)dx = ln(1+

√

τ/t) (62)
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R(t) tends to zero as t → ∞. An expression for the constant τ can be obtained by rearranging

(61),

τ = t0
(

eR0 −1
)1/2

.

With this, the solution (59) can be written as

u(x, t) =
x
t



1+

√

t
t0

e−
Rx2
2At

eR0−1





−1

. (63)

For the case of R ≪ 1, we have eR0−1 ∼ eR
0 , therefore (63) reduces to the form

u(x, t) ∼ x
t

[

1+

√

t
t0

e
R0

(

x2
2At−1

)]−1

(64)

for all x and t.
In the limit, as R0 → ∞ with t fixed, (64) gives the shock wave solution of inviscid Burgers’

equation (2) in the form

u(x, t) ∼







x
t
, −

√
2At < x <

√
2At

0, |x|>
√

2At.
(65)

Note that, in the limit as t → ∞, for fixed values of ν and τ , solution (59a) takes the form

u(x, t) ∼ x
t

√

τ
t

e
−x2
4νt (66)

This corresponds to the dipole solution of the heat equation (3). The diffusion dominates the

nonlinear term in the final decay. It should be remembered, though, that this final period of

decay is for extremely large times and the inviscid theory is adequate in this case.
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