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Abstract
‘Controllability’ is a fundamental feature of dynamical systems introduced by R.E. Kalman
in the 1960s. Various notions of controllability, such as state controllability, structural con-
trollability, and so on, are proposed in the literature, and controllability conditions for both
linear and non-linear systems were obtained by many authors. State controllability deals
with the ability of the system to steer itself from an arbitrary initial state to a desired final
state using suitable control functions, whereas structural controllability, introduced by C.T.
Lin aims at setting some values to the non-zero parameters in the system matrices so that
the resultant system is state controllable in the sense of Kalman. Another important feature
of a control system introduced by Kalman is Observability, which focusses on the ability
of reconstructing the internal states of the system from the knowledge of its outputs during
an interval. Over the last few decades, investigations on controllability and observability
of dynamical systems have drawn the interest of many scholars, who have made tremen-
dous progress and acquired many new insights. Majority of these discoveries pertain to
single higher-dimensional control systems. However, the prevalence of networked control
systems in the actual world is far higher than that of single stand-alone control systems.
In general, modelling complex systems necessitates the use of a group of separate systems
linked together via an interconnection structure. The controllability and observability of
large-scale complex networked systems presents fascinating research problems. There is a
lot of interest in the study of controllability and observability of networked systems, since
it has applications in many different scientific and technological disciplines. These studies
include a range of system characteristics, including structural complexity, node dynamics
and interactions between distinct nodes. Despite significant research in this area, there is
no general result about the controllability and observability of networked systems in the
literature that shows how the intrinsic features of the network and the dynamics of the in-
dividual nodes affect the controllability and observability of the networked system. The
majority of the available results in the literature are for networked systems having identi-
cal individual nodes. However, in practice, not all individual nodes may possess the same
dynamics. The objective of this thesis is to investigate the controllability and observability
of networked systems having non-identical individual nodes with a focus on the effects
of individual node dynamics and network topology. The obtained theoretical results are
substantiated with numerical examples.
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Chapter 1

Introduction

The mathematical theory of control encompasses a diverse and intricate set of principles
that seeks to understand and manipulate the behavior of dynamic systems. Control theory,
which has its roots in linear algebra, differential equations, and optimization, offers a foun-
dation for creating systems that display desired characteristics or responses favorably to
external inputs. With its broad reach and impact, control theory has several applications in
the engineering and technological domains, encompassing a variety of fields and industries.
Our goal in this thesis is to derive easily verifiable controllability conditions and to inves-
tigate how different system attributes and network connections affect the controllability of
networked systems.

1.1 Stand-Alone Control Systems

Systems that function independently without direct influence by external factors are called
stand-alone control systems. In other words, it functions autonomously and is self-contained,
capable of carrying out its control tasks without relying on coordination with other devices.
These systems are made to run independently, using internal feedback and control mech-
anisms to make decisions and regulate processes. Stand-alone control systems are com-
monly employed in various applications, including industrial automation, robotics, and
consumer electronics. In control theory, controllability is a fundamental concept when
dealing with autonomous dynamical systems as it comes in many applications. Controlla-
bility in the context of dynamic systems — which include a wide variety of mechanical,
electrical, and biological processes refers to the ability of the system to be directed from
any starting state to a desired state using external inputs. To guarantee the flexibility, re-
sponsiveness, and efficiency of stand-alone dynamic systems, it is crucial to comprehend
and maximize their controllability behavior. This concise overview lays the groundwork
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for an in-depth investigation into the rules and factors governing the controllability of inde-
pendent dynamic systems, illuminating their fundamental properties and consequences for
scientific and engineering applications.

Let us consider a real-life example of a dynamical system and elucidate the concept of
controllability. Consider an electrical circuit consisting of a resistor (R) and a capacitor
(C) connected in series.

Figure 1.1: A simple RC circuit (resistor-capacitor circuit)

The capacitor is initially charged and then allowed to discharge through the resistor. By
Ohm’s law, the rate of decay is proportional to the voltage V and inversely proportional
to the product of resistance R and capacitance C, which together determine the decay
time constant, the voltage across the capacitor (V(t)) can be described using the following
equation:

dV(t)
dt

= −V(t)
RC

(1.1)

Assume that at t = 0, the initial voltage across the capacitor is V(0) = V0. Solving (1.1),
with respect to the initial condition, we get

V(t) = V0e
− t

RC (1.2)

In particular, suppose that R = 1000Ω, C = 0.001F and V(0) = 10v. Then V(t) = 10e−t.

2
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Figure 1.2: V(t) = 10e−t

Now, suppose that the RC circuit is supplied with an external current source, say I(t),
as shown in the figure 1.3. Then by Kirchoff’s law, (1.1) changes to

dV(t)
dt

= −V(t)
RC

+
I(t)
C

(1.3)

Now, take R = 1000Ω, C = 0.001F and V(0) = 10v as earlier. Also, let I(t) = tet.

Figure 1.3: RC circuit with an external current source

Solving (1.3), we get
V(t) = 11e−t + t− 1 (1.4)
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Figure 1.4: V(t) = 11e−t + t− 1

Observe how the voltage across the capacitor has changed as a result of the existence
of an external current source. This suggests that we can alter the course of a dynamical
system by adding a forcing factor. Using this concept, we can manipulate the dynamics of
a system so that, at a particular time, its trajectory passes through a specific point.

Let us generalize the dynamical system in equation (1.1) to a broader scope and intro-
duce what a control problem is. Consider a control system characterized by a differential
equation of the form

ẋ(t) = ax(t) + bu(t), x(t0) = x0 (1.5)

where a, b (b ̸= 0) are constants. The controllability problem is to check the existence of
a forcing term or control function u(t) such that the corresponding solution of the system
will pass through a desired point x(t1) = x1.

Choose a differentiable function z(t) satisfying z(t0) = x0 and z(t1) = x1. For exam-
ple, take

z(t) = x0 +
(x1 − x0)

t1 − t0
(t− t0) (1.6)

Clearly z(t0) = x0 and z(t1) = x1. Define a control term using the function z by

u =
1

b
[ż − az] (1.7)

substituting in (1.5), we get

ẋ = ax+ b

{
1

b
[ż − az]

}

4



This implies,
ẋ− ż = a (x− z)

That is,
d

dt
(x− z) = a (x− z)

Also,
(x− z) (t0) = x(t0)− z(t0) = x0 − x0 = 0

Taking y(t) = x(t)− z(t), (1.5) becomes of the form,

ẏ = ay, y(0) = 0 (1.8)

We know that the unique solution of (1.8) is y(t) = x(t) − z(t) = 0. That is, x(t) = z(t)

is the solution of the control system satisfying the required condition x(t0) = x0 and
x(t1) = x1.

For example, consider the system given in (1.3), with the conditions R = 1000Ω,
C = 0.001F and V(0) = 10v. Now, suppose that we need the voltage across the capacitor
to be 2v after 4 seconds. That is, V(4) = 2v. In this case, z(t) as defined in (1.6) can be
found as follows;

z(t) = x0 +
(x1 − x0)

t1 − t0
(t− t0)

= 10 +

(
2− 10

4− 0

)
(t− 0)

= 10− 2t

Now, define
I(t) = 0.001(8− 2t)

Then we get V(t) = 10−2t as a solution of (1.3). Thus we can say that (1.3) is an example
for a controllable dynamical system. In fact, we have proven that any system of the form
(1.5) is controllable with the control function defined as in (1.6). Note that, here the system
is not only controllable but also trajectory controllable. That is, system can be steered along
a given trajectory z(t).

Now, consider an n−dimensional dynamical system defined on the time interval [t0, tf ]
characterized by the following equation:

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0 (1.9)

5



where, x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the control input vector. A(t) =

[aij(t)] ∈ Rn×n and B(t) = [bij(t)] ∈ Rn×m are continuous in some interval [t0, tf ] and are
called state matrix and control matrix, respectively.

Remark 1.1. If the state and control matrices of (1.9) do not change with time, then the
system is called linear time invariant(LTI) system. Otherwise, it is called linear time vari-
ant(LTV) system.

Let {xi
0 : i = 1, 2, . . . , n} be a basis of Rn. For each i, let ϕi(t) ∈ Rn be the unique

solution to the homogeneous system

ẋ(t) = A(t)x(t) (1.10)

with initial condition x(t0) = xi
0. Now, {ϕi(t) : i = 1, 2, . . . , n} is a basis of the solution

space of the homogeneous system (1.10). Consider the n× n matrix

Φ(t) = [ϕ1(t) | ϕ2(t) | . . . | ϕn(t)] (1.11)

with n linearly independent solutions of (1.10) as columns. Φ(t) is called fundamental

matrix solution(Coddington and Levinson, 1955) and it satisfies Φ̇(t) = A(t)Φ(t). Clearly,
Φ(t) is non-singular for each t. It is clear that, any matrix Φ̂(t) is a fundamental matrix
solution to the homogeneous system (1.10) if and only if Φ̂(t) is a solution matrix to the
correspondinding matrix differential equation Ẋ(t) = A(t)X(t) and the columns of Φ̂(t)
are linearly independent. For any non-singular matrix M ∈ Rn×n, consider the matrix
Φ(t)M . We have

d(Φ(t)M)

dt
= Φ̇(t)M = (A(t)Φ(t))M = A(t) [Φ(t)M ]

Also, the columns of Φ(t)M are linearly independent. Thus, for any non-singular ma-
trix M ∈ Rn×n, Φ(t)M is also a fundamental matrix solution of (1.10). Then, the state

transition matrix of the homogeneous system is defined by

Φ(t, t0) = Φ(t)Φ−1(t0), t0 ≤ t ≤ tf < ∞ (1.12)

The state transition matrix Φ(t, t0) has the following properties:

1) Φ(t, t) = In, ∀t ∈ [t0,∞), where In denote the n× n identity matrix.

2) Φ−1(t, t0) = Φ(t0, t)
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3) Φ(., .) satisfies the semi-group property

Φ(t, s) = Φ(t, τ)Φ(τ, s), ∀t0 ≤ τ ≤ s ≤ tf < ∞

4) Φ̇(t, t0) = A(t)Φ(t, t0)

5) Φ(t, t0) is the unique solution of the matrix initial value problem

Ẋ(t) = A(t)X(t), X(t0) = In

Remark 1.2. The state transition matrix Φ(t, t0) for (1.9) is given by the Peano-Baker se-

ries:

Φ(t, t0) = In +

∫ t

t0

A(σ1)dσ1 +

∫ t

t0

A(σ1)

∫ σ1

t0

A(σ2)dσ2dσ1

+

∫ t

t0

A(σ1)

∫ σ1

t0

A(σ2)

∫ σ2

t0

A(σ3)dσ3dσ2dσ1 + . . .

This series converges uniformly and absolutely for all t0 ≤ t ≤ tf < ∞ (See Chapter 1 in
Brockett (2015)). If (1.9) is a LTI system, i.e., if A(t) = A, then the state transition matrix
reduces to the matrix exponential given by

Φ(t, t0) = eA(t−t0) = In + A(t− t0) + A2 (t− t0)
2

2!
+ A3 (t− t0)

3

3!
+ . . .

If Φ(t, t0) is the state transition matrix of (1.10) with initial condition x(t0) = x0, then
any future state x(t) can be written by using the state transition matrix Φ(t, t0) as

x(t) = Φ(t, t0)x0

Hence the name transition matrix for Φ(t, t0). Now, a solution to the non-homogeneous
system (1.9) can be obtained by using the transition matrix as follows. Let Φ(t, t0) be the
transition matrix of the homogeneous system ẋ = A(t)x. Consider the transformation

z(t) = Φ(t0, t)x(t)

Then
x(t) = Φ(t, t0)z(t) (1.13)
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Differentiating with respect to t,

ẋ(t) = Φ̇(t, t0)z(t) + Φ(t, t0)ż(t)

This implies that

A(t)x(t) +B(t)u(t) = A(t)Φ(t, t0)z(t) + Φ(t, t0)ż(t)

= A(t)x(t) + Φ(t, t0)ż(t)

Thus, we have
B(t)u(t) = Φ(t, t0)ż(t)

and hence
ż(t) = Φ(t0, t)B(t)u(t)

Integrating over t0 to t,

z(t)− z(t0) =

∫ t

t0

Φ(t0, τ)B(τ)u(τ)dτ

which implies,

z(t) = z(t0) +

∫ t

t0

Φ(t0, τ)B(τ)u(τ)dτ

Since z(t0) = x0,

z(t) = x0 +

∫ t

t0

Φ(t0, τ)B(τ)u(τ)dτ

Using (1.13), we have

x(t) = Φ(t, t0)x0 + Φ(t, t0)

∫ t

t0

Φ(t0, τ)B(τ)u(τ)dτ

By using the semi-group property, we have

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ

as the required solution to the non-homogeneous system.

Definition 1.1 (Controllability). The system (1.9) is controllable in a time interval [t0, tf ]
if, given any two states x0, xf ∈ Rn, there exists an admissible control function u ∈
L2([t0, tf ],Rm), such that the corresponding solution of (1.9) with the initial condition
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x(t0) = x0 also satisfies the desired final state x(tf ) = xf .

From the definition, (1.9) is controllable if and only if there exists u ∈ L2([t0, tf ],Rm)

such that

xf = x(tf ) = Φ(tf , t0)x0 +

∫ tf

t0

Φ(tf , τ)B(τ)u(τ)dτ

Then,

xf − Φ(tf , t0)x0 =

∫ tf

t0

Φ(tf , τ)B(τ)u(τ)dτ

Denote xf − Φ(tf , t0)x0 = w, then

w =

∫ tf

t0

Φ(tf , τ)B(τ)u(τ)dτ (1.14)

Thus, the system (1.9) is controllable if and only if for every w ∈ Rn, there exists u ∈
L2([t0, tf ],Rm) such that (1.14) is satisfied. Define an operator C : L2([t0, tf ];Rm) → Rn

by

Cu =

∫ tf

t0

Φ(tf , τ)B(τ)u(τ)dτ (1.15)

Thus, the system (1.9) is controllable if and only if the operator C is onto. Obviously, C is
a bounded linear operator and C defines its adjoint operator C∗ : Rn → L2([t0, tf ],Rm) in
the following way:

⟨C∗v, u⟩L2 = ⟨v, Cu⟩Rn ,∀ u ∈ L2([t0, tf ],Rm), v ∈ Rn

=

〈
v,

∫ tf

t0

Φ(tf , τ)B(τ)u(τ)dτ

〉
Rn

=

∫ tf

t0

⟨v,Φ(tf , τ)B(τ)u(τ)⟩Rndτ

=

∫ tf

t0

⟨B∗(τ)Φ∗(tf , τ)v, u(τ)⟩Rmdτ

= ⟨B∗(.)Φ∗(tf , .)v, u⟩L2

Hence, the adjoint operator of C is the linear operator C∗ : Rn → L2([t0, tf ];Rm), given by

(C∗v) (t) = B∗(t)Φ∗(tf , t)v (1.16)
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The composition of C and C∗ defines a bounded linear operator CC∗ : Rn → Rn by,

CC∗v =

∫ tf

t0

Φ(tf , τ)B(τ)B∗(τ)Φ∗(tf , τ)vdτ (1.17)

Clearly, the operator CC∗ can be realized as a n×n matrix, called Controllability Gramian

of the system (1.9) and is denoted by W(t0, tf ). The following theorem relates controlla-
bility of (1.9) and the properties of linear operators C, C∗ and CC∗.

Theorem 1.1. The following statements are equivalent:

(i) The system (1.9) is controllable.

(ii) The operator C is onto.

(iii) The adjoint operator C∗ is one-one.

(iv) The Controllability Grammian W (t0, tf ) = CC∗ is invertible.

Proof. Clearly, (i) ⇐⇒ (ii) by definition of the operator C in (1.15).
Now, let us show (ii) ⇒ (iii). Suppose that C is onto. We have to show that C∗ is

one-one. It is enough to show that C∗v = 0 if and only if v = 0. Let v ∈ Rn such that
C∗v = 0. As C is onto, there exists u ∈ L2([t0, tf ] : Rm) such that Cu = v. Then

⟨v, v⟩ = ⟨Cu, v⟩ = ⟨u, C∗v⟩ = ⟨u, 0⟩ = 0

This implies that v = 0. Hence C∗ is one-one.
To prove (iii) ⇒ (iv), suppose that C∗ is one-one. Let v ∈ Rn be such that CC∗v = 0.

Then,
0 = ⟨0, v⟩ = ⟨CC∗v, v⟩ = ⟨C∗v, C∗v⟩

This implies,
∥C∗v∥2L2 = 0

and hence
∥C∗v∥L2 = 0

We know that ∥C∗v∥L2 = 0 if and only if C∗v = 0. Since C∗ is one-one,

C∗v = 0 ⇒ v = 0
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Thus CC∗ is one-one. As CC∗ is a mapping from Rn to itself one-oneness implies that
CC∗ = W (t0, tf ) is invertible.

(iv) =⇒ (i) Suppose that CC∗ = W(t0, tf ) is invertible.
Define a control function

u(t) = B∗(t)Φ∗(tf , t)W−1(t0, tf )[xf − Φ(tf , t0)x0] (1.18)

Using this control, the state of the system is given by

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)B∗(τ)Φ∗(tf , τ)W−1(t0, tf )[xf − Φ(tf , t0)x0]dτ

Then

x(t0) = Φ(t0, t0)x0+

∫ t0

t0

Φ(t0, τ)B(τ)B∗(τ)Φ∗(tf , τ)W−1(t0, tf )[xf−Φ(tf , t0)x0]dτ = x0

and

x(tf ) = Φ(tf , t0)x0 +

∫ tf

t0

Φ(tf , τ)B(τ)B∗(τ)Φ∗(tf , τ)W−1(t0, tf )[xf − Φ(tf , t0)x0]dτ

= Φ(tf , t0)x0 +W(t0, tf )W−1(t0, tf )[xf − Φ(tf , t0)x0]

= Φ(tf , t0)x0 + xf − Φ(tf , t0)x0

= xf

Since, x0 and xf are arbitrary, the system is controllable.

Remark 1.3. There may be multiple control functions that guide a system from its initial
state x0 to a desired final state xf . Nonetheless, it can be easily shown that, among of all of
those steering controller functions, the one described in (1.18) has the minimum L2 norm.
Thus, (1.18) provides minimum energy control.

The conditions given in Theorem 1.1 for the controllability of the system (1.9) can
be simplified for the time invariant case. That is, when A(t) = A and B(t) = B are
not time dependent matrices. The condition was obtained in terms of the matrices A and
B by the Hungarian-American electrical engineer, mathematician, and inventor Rudolf E.

Kálman(1930-2016). The condition is named after him as Kalman’s rank condition for the
controllability of LTI systems.
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Theorem 1.2. If the system (1.9) is LTI, then it is controllable if and only if the controlla-

bility matrix

Q(A,B) = [B|AB| · · · |An−1B]

is of full rank. That is, Q(A,B) = n.

Proof. Suppose that the system (1.9) is controllable. That is, Rangespace(C) = Rn.
As Q(A,B) can be considered as a bounded linear operator from Rmn → Rn, to show
that Q is of full rank it is enough to prove that Rangespace [Q(A,B)] = Rn. Clearly,
Rangespace [Q(A,B)] ⊂ Rn. Now, let v ∈ Rn. By Theorem 1.1, there exists u ∈
L2([t0, tf ];Rm) such that Cu = v

Cu = v =⇒
∫ tf

t0

Φ(tf , τ)Bu(τ)dτ = v

=⇒
∫ tf

t0

eA(tf−t)Bu(τ)dτ = v

Expanding eA(tf−t) and by using Cayley-Hamilton theorem, we have∫ tf

t0

[P0(τ)I + P1(τ)A+ ...+ Pn−1(τ)A
n−1]Bu(τ)dτ = v

where, each Pi(τ) is a polynomial function of τ that appears during the expansion of
eA(tf−t). This implies that v ∈ Rangespace [Q(A,B)]. Therefore Rn ⊂ Rangespace [Q(A,B)]

and hence Rank [Q(A,B)] = n.
Conversely suppose that the system (1.9) is not controllable. Then by Theorem 1.1

W(t0, tf ) is not invertible and hence there exists v ̸= 0 ∈ Rn such that W(t0, tf )v = 0.
This implies that v∗W(t0, tf )v = 0. Therefore

⟨Wv, v⟩ =
〈∫ tf

t0

eA(tf−t)BB∗u(τ)eA
∗(tf−t)vdτ, v

〉
= 0

This implies that∫ tf

t0

v∗eA(tf−t)BB∗eA
∗(tf−t)v =

∫ tf

t0

∥B∗eA
∗(tf−t)v∥2 = 0

As B∗eA
∗(tf−t)v is a continuous function on [t0, tf ], this implies

B∗eA
∗(tf−t)v = 0,∀ t ∈ [t0, tf ] =⇒ v∗eA(tf−t)B = 0,∀ t ∈ [t0, tf ]
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In particular, for t = tf , v∗B = 0. Further, differentiating v∗eA(tf−t)B w.r.t. t and evaluat-
ing at t = tf , we get v∗AB = 0. Successively differentiating and evaluating at t = tf , we
get

v∗B = v∗AB = · · · = v∗An−1B = 0

That is, v ⊥ Rangespace([B|AB| · · · |An−1B]). This implies that Rank[B|AB| · · · |An−1B] <

n. Hence the result follows by contraposition.

Let us consider an example to illustrate the result. Consider a spring mass damper
system. Let m denote the mass, κ and α, respectively, denote the spring constant and the
damping coefficient.

α

κ

Mass u(t)

Figure 1.5: Spring Mass Damper system

Let x(t) be the position of the mass at time t. Then ẋ(t) gives the velocity and ẍ(t) is
the acceleration of the mass at time t. The external force applied to the mass is denoted by
u(t).

αẋ

κx
u(t)

Figure 1.6: Forces acting on m

By Newton’s second law of motion, the above system can be modeled as follows;

mẍ = u− αẋ− κx (1.19)

If we take x1 = x and x2 = ẋ1, the second order equation (1.19) can be reduced to a system
of two first-order differential equations known as the state space representation as follows;

ẋ1 = x2

ẋ2 =
1

m
(u− αx2 − κx1)
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which further can be represented as[
ẋ1

ẋ2

]
=

[
0 1

− κ
m

− α
m

][
x1

x2

]
+

[
0
1
m

]
u

The controllability matrix Q is given by

Q(A,B) = [B|AB] =

[
0 1

m
1
m

−α
m2

]

Clearly, Q(A,B) has rank 2 and hence system (1.19) is controllable. Controllability is an
important notion in the analysis and design of LTI systems because it provides insight into
the ability to steer the state of the system from any initial condition to any desired state
within a certain time frame. The controllability requirements are critical for guarantee-
ing that all state variables may be modified using appropriate control inputs, allowing for
the construction of effective control strategies to achieve desired system performance and
stability. Later, Kalman proposed that an LTI system can be transformed into a specific
canonical form, called controllability normal form, to facilitate the analysis of controlla-
bility properties. The controllability normal form is designed to have a block-triangular
structure, making it easier to analyze and determine the controllability of the system. The
transformation involves finding a similarity transformation matrix that diagonalizes the sys-
tem’s controllability matrix. The resulting controllability normal form provides valuable
insights into the controllability properties of the system, allowing for a more straightfor-
ward assessment of its controllable modes(See Chapter 4 in (Terrell, 2009)). Using this
notion, we have the following controllability results known as the Popov-Belevitch-Hautus

controllability test named after the control scientists V.M.Popov(1928-), V.Belevitch(1921-

1999) and M.L.J.Hautus(1940-).

Theorem 1.3. If the system (1.9) is LTI, then it is controllable if and only if for every λ ∈ C
the only n× 1 vector v that satisfies

v∗A = λv∗

v∗B = 0
(1.20)

is the zero vector, v = 0.
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Proof. Suppose that there exists v ̸= 0 such that (1.20) is satisfied. Then,

v∗Q(A,B) = v∗[B|AB| · · · |An−1B]

= [v∗B|v∗AB| · · · |v∗An−1B]

= [0|λv∗B| · · · |λn−1v∗B] = 0

which implies that rank [Q(A,B)] < n. Hence, the system (1.9) is not controllable.
Conversely, suppose that system (1.9) is not controllable. That is, rank [Q(A,B)] =

r < n. By Kalman controllability decomposition(Terrell, 2009) there exists a non-singular
matrix T such that

T−1AT =

[
A11 A12

0 A22

]
= Â and T−1B =

[
B1

0

]

Now, we will construct a non-zero v that satisfies (1.20). Let ṽ be an eigenvector of AT
22

corresponding to the eigenvalue λ. That is AT
22ṽ = λṽ. This implies that ṽ∗A22 = λṽ∗. As

A22 is a real matrix both λ and λ are eigenvalues of A22 and because of the similarity of A
and Â both λ and λ are eigenvalues of A also. Now, define v∗ =

[
01×r ṽ∗

]
T−1. Then,

v∗A = v∗T

[
A11 A12

0 A22

]
T−1

=
[
01×r ṽ∗

]
T−1T

[
A11 A12

0 A22

]
T−1

=
[
0 ṽ∗A22

]
T−1

=
[
0 λṽ∗

]
T−1 = λv∗

Also,

v∗B =
[
01×r ṽ∗.

]
T−1T

[
B1

0

]
T−1 = 0
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Observability Problem

Observability is another core notion in control systems theory that focuses on the ability
to derive a system’s internal state from its output measurements. A system is considered
observable in control theory if its complete state can be uniquely inferred from the given
output information. Because an observable system enables for reliable monitoring and
assessment of its internal dynamics, it is critical in devising successful control strategies.
Consider the system (1.9) with an output equation as follows;

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)
(1.21)

where y(t) ∈ Rp and C(t) ∈ Rp×n are the output vector and output matrix respectively.
Now, we have the following formal definition for observability.

Definition 1.2 (Observability). The system (1.21) is said to be observable over a time
period [t0, tf ] if it is possible to determine uniquely the initial state x(t0) = x0 from the
knowledge of the output y(t) over the time period [t0, tf ].

Let Φ(t, t0) be the state transition matrix of the homogeneous system ẋ(t) = Ax(t) .
The unique solution is given by

x(t) = Φ(t, t0)x0

Then, the observability problem can be written as

y(t) = C(t)x(t) = C(t)Φ(t, t0)x0, t0 ≤ t ≤ tf

As we have seen in the case for controllability of (1.9), we define an operator M : Rn →
L2 ([t0, tf ] : Rm) by,

(Mx0)(t) = C(t)Φ(t, t0)x0 (1.22)

That is, (Mx0)(t) = y(t). The initial state is mapped to the observed function. As we
need to uniquely determine x0 from y(.), the system (1.21) is observable if and only if M
is one-one. Here, the adjoint operator of M is M∗ : L2([t0, tf ] : Rm) → Rn given by

M∗v =

∫ tf

t0

Φ∗(τ, t0)C
∗(τ)v(τ)dτ (1.23)
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The observability Gramian M∗M : Rn → Rn is given by

M∗Mv = M(t0, tf ) =

∫ tf

t0

Φ∗(τ, t0)C
∗(τ)C(τ)Φ(τ, t0)vdt (1.24)

From any initial state x0, we have a unique state given by

x(t) = Φ(t, t0)x0

Thus, observability problem reduces to finding the unique initial state x0 from the knowl-
edge of y observed on [t0, tf ]. Like Theorem 1.1, for the controllability of system (1.9) we
have the following theorem for observability of system (1.20).

Theorem 1.4. The following statements are equivalent:

(i) The system (1.20) is observable.

(ii) The operator M is one-one.

(iii) The adjoint operator M∗ is onto.

(iv) The Observability Gramian M(t0, tf ) = M∗M is invertible.

Proof. Proof is similar to that of Theorem 1.1.

Some kind of interconnections between controllability and observability can be ob-
served. This interconnection is called duality. To delve into the notion of duality we define
the notion of adjoint systems.

Definition 1.3 (Adjoint Systems). A system with state x(t) is said to be adjoint to a system

with state p(t) if ⟨x(t), p(t)⟩ is a constant. That is, if
d

dt
⟨x(t), p(t)⟩ = 0.

Theorem 1.5. The systems

ẋ(t) = A(t)x(t) (1.25)

and

ṗ(t) = −A∗(t)p(t) (1.26)

are adjoint to each other.
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Proof. By the product rule for differentiation concerning inner-product, we have

d

dt
(⟨x(t), p(t)⟩) = ⟨ẋ(t), p(t)⟩+ ⟨x(t), ṗ(t)⟩

= ⟨A(t)x(t), p(t)⟩+ ⟨x(t),−A∗(t)p(t)⟩

= ⟨x(t), A∗(t)p(t)⟩+ ⟨x(t),−A∗(t)p(t)⟩

= ⟨x(t), 0⟩ = 0

Hence ⟨x(t), p(t)⟩ is a constant, proving that the systems (1.25) and (1.26) are adjoint to
each other.

The state transition matrices of the above systems are also related as shown in the
following theorem.

Theorem 1.6. If Φ(t, t0) is the transition matrix of the system ẋ(t) = A(t)x(t), then

Φ∗(t0, t) is the transition matrix of ṗ(t) = −A∗(t)p(t).

Proof. By using the properties of transition matrix, we have I = Φ(t, t0)Φ(t0, t).
Differentiating w.r.t. t,

0 = Φ̇(t, t0)Φ(t0, t) + Φ(t, t0)Φ̇(t0, t)

= A(t)Φ(t, t0)Φ(t0, t) + Φ(t, t0)Φ̇(t0, t)

= A(t) + Φ(t, t0)Φ̇(t0, t)

This implies that Φ(t, t0)Φ̇(t0, t) = −A(t) and hence Φ̇(t0, t) = −Φ(t0, t)A(t). Thus, we
have

d[Φ∗(t0, t)]

dt
= −A∗(t)Φ∗(t0, t)

Therefore, Φ∗(t0, t) satisfies ṗ(t) = −A∗(t)p(t). Further, Φ∗(t0, t0) = I . Thus,
Φ∗(t0, t) is the transition matrix to the adjoint system ṗ(t) = −A∗(t)p(t).

Theorem 1.7. Consider the linear control system

ẋ(t) = A(t)x(t) +B(t)u(t) (1.27)

and the input-free observation system

ẋ(t) = −A∗(t)x(t)

y(t) = B∗(t)x(t)
(1.28)
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System (1.27) is controllable if and only if adjoint system (1.28) is observable.

Proof. Suppose that the adjoint system (1.28) is observable.

System (1.28) is observable ⇐⇒ M(t0, tf ) =

∫ tf

t0

[Φ∗(t0, τ)]
∗ [B∗(τ)]∗B∗(τ)Φ∗(t0, τ)dτ is invertible

⇐⇒
∫ tf

t0

Φ(t0, τ)B(τ)B∗(τ)Φ∗(t0, τ)dτ is invertible

⇐⇒
∫ tf

t0

Φ(tf , t0)Φ(t0, τ)B(τ)B∗(τ)Φ∗(tf , t0)Φ
∗(t0, τ)dτ is invertible

as both Φ(tf , t0) and Φ∗(tf , t0) are invertible

⇐⇒
∫ tf

t0

Φ(tf , τ)B(τ)B∗(τ)Φ∗(tf , τ)dτ is invertible

⇐⇒ W(t0, tf )is invertible

⇐⇒ System (1.27) is controllable

Thus, system (1.27) is controllable if and only if adjoint system (1.28) is observable.

The notion of duality asserts that if a linear system is controllable, it shares similar
structural properties with its dual, observable system. This means that the matrices as-
sociated with controllability and observability exhibit analogous patterns. Understanding
duality is essential in designing balanced and well-behaved control systems, ensuring that
controllability and observability are appropriately matched for optimal performance and
stability. The concept of duality aids in the translation of similar LTI system conditions
from the case of controllability to the case of observability for adjoint systems.

Theorem 1.8. If the system (1.21) is LTI, then it is observable if and only if the observability

matrix

O(C,A) = rank


C

CA
...

CAn−1


has full column rank. That is, rank[O(C,A)] = n.

Proof. Suppose (C,A) is observable. Then, (−A∗, C∗) is controllable and hence

rank[Q(−A∗, C∗)] = n
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That is,
rank

[
C∗| − A∗C∗|(A∗)2C∗| · · · |(−1)n−1(A∗)n−1C∗] = n

As a matrix and its transpose have the same rank, we get

rank


C

CA
...

CAn−1

 = n

Similarly, the converse follows.

We can also obtain the following PBH observability condition for the LTI system (1.21)
in terms of eigenvalues and eigenvectors.

Theorem 1.9. If the system (1.21) is LTI, then it is observable if and only if for every

complex λ the only 1× n vector w that satisfies

Aw = λw

Cw = 0

is the zero vector, w = 0.

Proof. Suppose that the system (1.21) is observable. Then, (−A∗, C∗) is controllable. By
Theorem 1.3, for any λ ∈ C the only solution to

w∗(−A∗) = λw∗

w∗(C∗) = 0

is the zero vector. Taking conjugate transpose, for any λ ∈ C the only solution to

−Aw = λw

Cw = 0

is w = 0. Similarly, the converse follows.

Controllability refers to the ability to influence the behavior of a dynamical system by
applying control inputs. Various notions of controllability, such as state controllability,
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structural controllability, and so on, are proposed in the literature, and controllability con-
ditions for both linear and nonlinear systems are established by numerous authors. State
controllability of a system deals with its ability to steer the state from an arbitrary ini-
tial state to a desired final state using suitable control functions, whereas, Lin’s structural
controllability(Lin, 1974) attempts to set some values to the nonzero parameters in the sys-
tem matrices such that the resulting system is state controllable in the sense of Kalman.
Controllability, whether state or structural, has been intensively investigated for a variety
of systems, and numerous controllability criteria have been found during the last several
decades(Callier and Nahum, 1975; Hautus, 1969; Lin, 1977; Linnemann, 1986; Rahmani
and Mesbahi, 2007; Rahmani et al., 2009; Tanner, 2004; Tarokh, 1992). The majority of
these discoveries pertain to single higher-dimensional control systems. When it comes to
semi-linear and nonlinear dynamical control systems, particularly those with various im-
pulses, delays in state and control variables the bibliography is not as extensive as that
of linear systems(Joshi and George, 1989; Mirza and Womack, 1971, 1972; Sukavanam,
2000; Vidyasagar, 1972). Many researchers have focused their attention on such systems
in recent decades, proposing various adequate conditions on system parameters, leading to
conditions of controllability of semi-linear and non-linear systems.

1.2 Networked Systems

The need for networked systems has become paramount, owing to the increasing inter-
connectivity of our world. Networked system comprises of several components or sub-
systems that interact and collaborate to achieve common objectives. Because the behavior
of one component can affect the entire network, this interconnectedness brings new chal-
lenges and opportunities for control theory. As a result, the mathematical underpinnings of
control theory are critical in tackling the complexities of networked systems and assuring
stability, performance, and reliability in the face of changing technological environments.

In general, representing complex systems necessitates the use of a group of separate
systems linked together via an interconnection structure. The controllability problem of
large-scale complex networked systems presents exciting research possibilities. These re-
search include a variety of system elements such as structural complexity, node dynamics,
interaction among nodes, and so on. The study of controllability of networked systems
is gaining popularity because it has applications in many domains of science and tech-
nology(Bassett and Sporns, 2017; Farhangi, 2009; Gu et al., 2015; Müller and Schuppert,
2011; Wang and Chen, 2003; Wuchty, 2014). Depending upon the dynamics of the indi-
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vidual nodes, networked systems can be broadly divided into two; namely, homogeneous
networks and heterogeneous networks. If all the individual nodes have the same dynamics,
the networked system is said to be homogeneous and heterogeneous otherwise.

Let us consider an example to show the significance of the study of controllability
of networked systems. We have seen the example of a RC circuit as a stand-alone control
system in the previous section. Now, let us connect two such systems to obtain a networked
system as follows:

Figure 1.7: Network of Two RC Circuits

Then by Kirchoff’s law, the voltage across the capacitors C1 and C2 are given by

dV1(t)

dt
= − V1

C1R1

− V1

C1R2

+
V2

C1R2

dV2(t)

dt
=

V1

C2R2

− V2

C2R2

+
I

C2

(1.29)

The system can be written in the form (1.9) of a stand-alone system as

V̇(t) =

[
V̇1(t)

V̇2(t)

]
=

[
−
(

1
C1R1

+ 1
C1R2

)
1

C1R2

1
C2R2

− 1
C2R2

][
V1(t)

V2(t)

]
+

[
0
1
C2

]
I(t)

Then we can discuss the controllability of the given system (1.29) by using methods like
Kalman’s rank condition or PBH conditions. However, these results do not provide much
information on individual systems or the connection between them. If we rewrite system
(1.29) as

V̇1(t) = a1V1 + h1V1 + h2V2

V̇2(t) = a2V2 + h3V1 + b1I
(1.30)

where a1 = − 1
C1R1

, a2 = − 1
C2R2

, h1 = − 1
C1R2

, h2 = 1
C1R2

, h3 = 1
C2R2

and b1 = 1
C2 ,

we can identify the factors affecting the controllability of the system more easily. If we
consider each RC circuit as an individual system we can observe that a1, a2 are the state
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matrices of the individual nodes, b1 the control input matrix and h1, h2, h3 represent the
interconnections between the ‘individual systems’. These are some of the factors that affect
the controllability of a networked system. Therefore, if we consider system (1.29) as two
individual systems connected together we can study the controllability of the given system
in a detailed manner and we may be able to manipulate or control the system in a more
feasible manner.

Now, we give a few numerical examples to demonstrate the complexities of studying
networked systems. Consider a networked linear time invariant system with N nodes,
where each node system is of dimension n. The dynamical system corresponding to the
node i is described by

ẋi(t) = Axi(t) +
N∑
j=1

βijHyj(t) + diBui(t)

yi(t) = Cxi(t)

(1.31)

where, for each t ∈ [t0, tf ], xi(t) ∈ Rn is a state vector; ui(t) ∈ Rm is an external control
input vector; yi(t) ∈ Rm is an output vector; A ∈ Rn×n is the state matrix, B ∈ Rn×m is the
input matrix and C ∈ Rm×n is the output matrix of node i. For a node i under control, di =
1, otherwise di = 0. βij ∈ R represents the communication strength between the nodes i
and j. A communication from node j to node i ensures that βij ̸= 0, otherwise βij = 0, for
all i, j = 1, 2, . . . , N . The inner coupling matrix describing the interconnections among
the components xj, j = 1, 2, . . . , N is denoted by H ∈ Rn×n. With output along with th
state, system (1.31) becomes of the form

ẋi(t) = Axi(t) +
N∑
j=1

βijHCxj(t) + diBui(t), i = 1, 2, . . . , N (1.32)

Let L = [βij] ∈ RN×N represents the network topology and D = diag{d1, d2, . . . , dN},
the external input channels of the networked system (1.32). For example, if

L =

 0 0 β13

β21 0 0

β31 β32 0

 and D =

1 0 0

0 0 0

0 0 0

 (1.33)

then the network graph is given as in the following figure.
Also, let X =

[
xT
1 , . . . , x

T
N

]T denotes the network state and U =
[
uT
1 , . . . , u

T
N

]T , the total
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β21 β32d11

β31

β13

u1 v2v1 v3

Figure 1.8: Network graph with L and D as given in (1.33).

external control input of the networked system. Then, using Kronecker product(Horn and
Johnson, 1994) the networked system (1.32) can be rewritten in the compact form as

Ẋ(t) = ΩX(t) + ΨU(t) (1.34)

with
Ω = IN ⊗ A+ L⊗HC, Ψ = D ⊗B

Example 1.1. Consider a homogeneous networked system with two individual nodes with
dynamics;

A =

[
1 1

1 1

]
, B =

[
1

0

]
, C =

[
1 0

]
The network topology matrix, inner-coupling matrix and the external control matrix are,
respectively,

, L =

[
0 1

1 0

]
, H =

[
1

1

]
and D =

[
1 0

0 1

]

β21

β12

v1u1 u2v2

Figure 1.9: Networked system with two individual nodes and both nodes having external
control inputs.

Observe that,

⊙ Both node 1 and 2 have external control inputs. That is, d1 = d2 = 1.

⊙ (A,B) is controllable as the controllability matrix

Q(A,B) =
[
B | AB

]
=

[
1 1

0 1

]
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has rank 2.

⊙ (A,C) is observable as the observability matrix

O(C,A) =

[
C

CA

]
=

[
1 0

1 1

]

has rank 2.

The system can be written in the compact form (1.34), where

Ω =


1 1 1 0

1 1 1 0

1 0 1 1

1 0 1 1

 and Ψ =


1 0

0 0

0 1

0 0


As the controllability matrix,

Q = [Ψ | ΩΨ | Ω2Ψ | Ω3Ψ] =


1 0 1 1 3 3 9 9

0 0 1 1 3 3 9 9

0 1 1 1 3 3 9 9

0 0 1 1 3 3 9 9


has rank 3, by Kalman’s Rank Condition, we have that the networked system (Ω,Ψ) is not
controllable even though the individual node system (A,B) is controllable.

Example 1.2. Consider a homogeneous networked system with two individual nodes with
dynamics;

A =

[
1 1

1 1

]
, B =

[
1

1

]
, C =

[
1 0

]
The network topology matrix, inner-coupling matrix and the external control matrix are,
respectively,

L =

[
0 1

1 0

]
, H =

[
0

1

]
and D =

[
1 0

0 0

]

Observe that,

⊙ Only node 1 has external control input. That is d1 = 1 and d2 = 0.
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β21

β12

v1u1 v2

Figure 1.10: Networked system with two individual nodes and only node 1 having external
control input.

⊙ (A,B) is not controllable as the controllability matrix

Q =
[
B | AB

]
=

[
1 2

1 2

]

has rank 1.

The system can be written in the compact form (1.34), where

Ω =


1 1 0 0

1 1 1 0

0 0 1 1

1 0 1 1

 and Ψ =


1

1

0

0


As the controllability matrix,

Q = [Ψ | ΩΨ | Ω2Ψ | Ω3Ψ] =


1 2 4 8

1 2 4 9

0 0 1 4

0 1 3 8


has rank 4, by Kalman’s Rank Condition, we have that the networked system (Ω,Ψ) is
controllable even though the individual node system (A,B) is not controllable.

Example 1.3. Consider a homogeneous networked system with two individual nodes with
dynamics;

A =

[
1 1

0 1

]
, B =

[
1

1

]
, C =

[
0 1

]
The network topology matrix, inner-coupling matrix and the external control matrix are,
respectively,

L =

[
0 1

1 0

]
, H =

[
1

1

]
and D =

[
1 0

0 1

]
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β21

β12

v1u1 u2v2

Figure 1.11: Networked system with two individual nodes and both nodes having external
control inputs.

Observe that,

⊙ Both node 1 and 2 have external control inputs. That is, d1 = d2 = 1.

⊙ (A,C) is not observable as the observability matrix

O =

[
C

CA

]
=

[
0 1

0 1

]

has rank 1.

The system can be written in the compact form (1.34), where

Ω =


1 1 0 1

0 1 0 1

0 1 1 1

0 1 0 1

 and Ψ =


1 0

1 0

0 1

0 1


As the controllability matrix,

Q = [Ψ | ΩΨ | Ω2Ψ | Ω3Ψ] =


1 0 2 1 4 3 8 7

1 0 1 1 2 2 4 4

0 1 1 2 3 4 7 8

0 1 1 1 2 2 4 4


has rank 4, by Kalman’s Rank Condition, we have that the networked system (Ω,Ψ) is
controllable even though the individual node system (A,C) is not observable.

We can see from the preceding examples that the controllability or observability of the
individual system cannot ensure the controllability of the networked system. Individual
node dynamics, network topology, and factors of such type play crucial roles in the con-
trollability of a networked system. This makes studying controllability and observability
of networked systems both difficult and interesting.
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Research on the controllability of networked systems continues to be a dynamic and
evolving field. Researchers are actively investigating how to manipulate and regulate the
behavior of interconnected systems, including social networks, biological networks, and
technological networks. The focus is on understanding the structural properties that influ-
ence the controllability of these systems, as well as developing practical algorithms and
strategies for effective control. Ongoing efforts aim to address challenges related to scal-
ability, adaptability, and robustness of control methods in the context of rapidly changing
and complex network dynamics. The interdisciplinary nature of this research underlines its
significance in tackling real-world problems arising in diverse domains, from power grids
and transportation systems to information networks and beyond. Given the rapid techno-
logical advancements and the interconnectivity of systems, exploring the controllability in
networked systems remains a vibrant and essential area of study.

1.3 Thesis outline and contributions overview

In this thesis, we investigate the controllability and observability of networked systems.
The existing literature focuses mostly on results related to the controllability of homoge-
neous networked systems. The goal of this thesis is to provide a better understanding on
the impact of individual dynamics, network topology and inner-coupling matrices on the
controllability of heterogeneous networked systems and thereby providing verifiable con-
trollability conditions for such systems. Another objective is to provide a method to make
an uncontrollable system into a controllable system by manipulating its components, if
possible. In Chapter 2, we give the preliminaries.

Chapter 3 introduces the concept of controllability for both homogeneous and het-
erogeneous networked systems. The controllability problem of homogeneous networked
system (1.34) was first addressed by Wang et al. (Wang et al., 2016b). Wang et al. (Wang
et al., 2016b) obtained a necessary and sufficient condition for controllability of such sys-
tems which involved solving matrix equations. Along with this result, Wang et al. (Wang
et al., 2016b) derived some necessary conditions for the controllability of a homogeneous
networked system which shows the effect of individual dynamics, inner coupling matrix
and network topology on the controllability of the networked system. Among these, one
particular result was that the observability of the individual node is necessary for the con-
trollability of (1.34). Later Wang P. et al.(Wang et al., 2017b) and Xiang et al.(Xiang et al.,
2019b) tried to provide conditions where the observability of the individual nodes is neces-
sary for the controllability of heterogeneous networked systems. Xiang et al.(Xiang et al.,

28



2019b) asserted that observability of each node is necessary for the controllability of a
heterogeneous system when the state matrices are similar, the output matrices are scalar
multiples of each other, and the rank of the input matrix of the networked system is less
than the total number of nodes in the system. In this chapter, we provide an example to
show that this result is not always true in general and also provide a corrected version of
the result by Xiang et al.(Xiang et al., 2019b). Furthermore, we give some necessary con-
ditions for the controllability of a heterogeneous networked system with aforementioned
properties.(Ajayakumar and George, 2022b)

In Chapter 4, we discuss the controllability of heterogeneous networked systems with
identical control input matrices. The controllability result obtained by Wang et al. (Wang
et al., 2016b) does not give much information on the effect of node dynamics and network
topology in the controllability of homogeneous networked system (1.34). Also, the result
by Wang et al. involved solving matrix equations which makes the result a bit hard to verify.
Later Hao et al.(Hao et al., 2018) studied the controllability of homogeneous networked
systems with diagonalizable network topology matrix and obtained a set of conditions that
are necessary and sufficient for the controllability of homogeneous networked systems.
In this chapter, we extend this result for the controllability of heterogeneous networked
systems with identical control input matrices and having triangularizable network topology
matrix(Ajayakumar and George, 2023b). Here, we do not assume that the state matrices are
identical. However, the controllability input matrix with the individual nodes is the same in
all nodes. The results obtained give much more information regarding the involvement of
node dynamics and network topology in the controllability of a networked system. Using
this information we can manipulate the system to make an uncontrollable system into a
controllable system. We will also show that the derived result will boil down to the result
by Hao et al.(Hao et al., 2018), when the system is homogeneous and the network topology
is triangularizable. In other words, we will show that the derived result is applicable to a
larger class of systems when compared with the existing results in literature. Additionally,
we derive controllability conditions for a few types of network topologies.

Chapter 5 deals with the controllability of heterogeneous networked systems with non-
identical control input matrices and non-identical state matrices. In the previous chapter,
the control input matrix in each node is considered to be the same in all nodes which is a
limitation in many real-life applications. In this chapter, we tackle this limitation and extend
the main result obtained in Chapter 4 to a larger class of systems. Also, a necessary and
sufficient condition for the controllability of a networked system over traingular network
topology is obtained. The obtained results are substantiated with numerical examples.

29



In Chapter 6, we discuss the controllability of networked systems in which each node
have both linear and non-linear parts. The linear part of the networked system is assumed to
be controllable and non-linear component in each node satisfies Lipschitz conditions. The
controllability of the system is established by employing Generalized Banach Contraction
Principle. Examples are provided to support the obtained results.

Chapter 7 deals with the notion of generic controllability of networked systems. In
both homogeneous and heterogeneous networked system models discussed in previous
chapters, we know apriori all the parameter values of the component matrices. However,
in generic controllability, we do not know the weights of the interconnection links between
the nodes. We only know the exact parameter values of system matrices for each node.
Here, the system matrices are considered to be fixed for each node but the interconnection
link between the nodes have unknown weights. Commault et al.(Commault and Kiban-
gou, 2019) in 2019 proposed a set of conditions that are necessary and sufficient for the
generic controllability of homogeneous networked systems. In this chapter, we investigate
the generic controllability of heterogeneous networked systems and obtain some necessary
conditions. Numerical examples are provided for the obtained results.

The thesis concludes in Chapter 8 with the conclusions derived from our study and a
proposal for future research.
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Chapter 2

Preliminaries

In this chapter, we will give some basic definitions and results that are used in this thesis as
prerequisites.

2.1 Tools from Matrix Analysis

2.1.1 Eigenvalues and Eigenvectors

Definition 2.1. Let A ∈ Cn×n. A non-zero vector v ∈ Cn is called a right eigenvector of
A, if there exists a scalar λ such that Av = λv. The scalar λ is called a right eigenvalue of
A.

In other words, λ is a right eigenvalue of A, if there exists a non-zero vector v such that

(A− λI)v = 0

This is only possible if det(A− λI) = 0. Thus, we can say that λ is an eigenvalue of A if
and only if it is a root of the polynomial equation det(A− λI) = 0.

Definition 2.2. Let A ∈ Cn×n. A non-zero vector v ∈ Cn is called a left eigenvector of A,
if there exists a scalar λ such that vTA = λvT . The scalar λ is called a left eigenvalue of A.

Similar to right eigenvalue of A, λ is a left eigenvalue of A, if there exists a non-zero
vector v such that

vT (A− λI) = 0

Taking transpose on both sides, we get

(
vT (A− λI)

)T
= (A− λI)T

(
vT
)T

= (A− λI)Tv = 0
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Again, this is possible only if det(A − λI)T = 0. As det(A) = det(AT ), we can see that
the left and right eigenvalues of A are equal.

Remark 2.1. Even-though the right and left eigenvalues of a matrix are the same the cor-
responding right and left eigenvectors need not be the same. For example, consider the
matrix

A =

[
1 2

0 −1

]

We can see that the right eigenvectors of A are v1 =

[
1

0

]
corresponding to the eigenvalue

1 and v2 =

[
−1

1

]
corresponding to the eigenvalue −1. However, the left eigenvectors of

A are v3 =

[
1

1

]
corresponding to the eigenvalue 1 and v4 =

[
0

1

]
corresponding to the

eigenvalue −1.

2.1.2 Similar Matrices

Definition 2.3. Two n×n matrices A1 and A2 are said to be similar if there exists a matrix
T such that T−1A1T = A2.

Example 2.1. Consider the matrices

A1 =

[
1 2

3 1

]
and A2 =

[
10 15

−5 −8

]

For T =

[
1 1

2 3

]
, we have

T−1A1T =

[
3 −1

−2 1

][
1 2

3 1

][
1 1

2 3

]
=

[
10 15

−5 −8

]
= A2

Thus, A1 and A2 are similar matrices.

Theorem 2.1. (Horn and Johnson, 2012) Let A1, A2 be two n × n similar matrices, i.e.,

there exists an invertible matrix P such that P−1A1P = A2. If (λ, v) is a right eigenpair

of A2, then (λ, Pv) is a right eigenpair of A1.
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Proof. Since (λ, v) is a right eigenpair of A2, we have A2v = λv. Now,

P−1A1Pv = A2v = λv ⇒ A1(Pv) = P (λv) = λ(Pv).

That is, (λ, Pv) is a right eigenpair of A1.

Theorem 2.2. (Horn and Johnson, 2012) Let A1, A2 be two n × n similar matrices, i.e.,

there exists an invertible matrix P such that P−1A1P = A2. If (λ, v) is a left eigenpair of

A2, then (λ, vTP−1) is a left eigenpair of A1.

Proof. Since (λ, v) is a right eigenpair of A2, we have vTA2 = λv. Now,

vTP−1A1P = vTA2 = λvT ⇒
(
vTP−1

)
A1 = (λvT )P−1 = λ(vTP−1)

That is, (λ, vTP−1) is a left eigenpair of A1.

From Theorem 2.1 and 2.2, it is clear that similar matrices have the same eigenvalues.
However, they need not have the same eigenvectors corresponding to an eigenvalue.

Definition 2.4. If A ∈ Cn×n is similar to a diagonal matrix, then A is said to be diagonaliz-
able. That is, A is diagonalizable if there exists a diagonal matrix D such that P−1AP = D

for some invertible matrix P ∈ Cn×n.

Remark 2.2. The columns of P are formed by the eigenvectors of A, and the diagonal
elements of D are the eigenvalues of A.

Example 2.2. Consider the matrix A =

[
1 2

0 3

]
. If we take P =

[
1 1

0 1

]
, then we have

P−1AP =

[
1 −1

0 1

][
1 2

0 3

][
1 1

0 1

]
=

[
1 0

0 3

]

Thus, A is diagonalizable.

Remark 2.3. Not all matrices are diagonalizable. For example, consider the matrix A =[
1 1

0 1

]
. Suppose that A is diagonalizable. Then, there exist a matrix P =

[
a b

c d

]
, with

ad− bc ̸= 0 such that

P−1AP =
1

ad− bc

[
d −b

−c a

][
1 1

0 1

][
a b

c d

]
=

[
e 0

0 f

]
= D
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This implies that, [
ad+ dc− bc d2

−c2 −bc− dc+ ad

]
=

[
e 0

0 f

]
That is,

ad+ dc− bc = e

d2 = 0

c2 = 0

−bc− dc+ ad = f

This gives c = d = 0, which is in contradiction with ad − bc ̸= 0. Hence A is not
diagonalizable.

Definition 2.5. If A ∈ Cn×n is similar to a triangular matrix, then A is said to be trian-
gularizable. That is, A is triangularizable if there exists a triangular matrix J such that
P−1AP = J for some invertible matrix P ∈ Cn×n.

Definition 2.6. A Jordan block corresponding to λ of size m is an m × m matrix of the

form Jm
λ =



λ 1

λ 1
. . . . . .

. . . 1

λ


, where λ lies on the diagonal entries, 1 lies on the

super diagonal and the remaining entries are all zeros.

Definition 2.7. A square matrix is said to be in Jordan canonical form, if it is a block
diagonal matrix where each block is a Jordan block.

Remark 2.4. Every n × n complex matrix is similar to a matrix in Jordan canonical form.
That is, every n × n complex matrix is triangularizable(See Chapter 4 in (George and
Ajayakumar, 2024)).

Example 2.3. Consider the matrix A =

[
1 1

0 1

]
. We have shown that the matrix is not

diagonalizable in Remark 2.5. However, A is triangularizable as it is a Jordan block of
order 2(J2

1 ).

34



2.1.3 Kronecker Product of Matrices and its Properties

Definition 2.8. Let A =
[
aij

]
m×n

and B =
[
bij

]
p×q

be any two matrices, then the Kro-

necker product of A and B, denoted by A⊗B, is the block matrix

A⊗B =


a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

... . . . ...
am1B am2B . . . amnB


mp×nq

Example 2.4. Let A =

[
1 2

0 −1

]
and B =

[
1 1 0

−1 0 2

]
. Then the Kronecker product of

A and B is given by

A⊗B =


1 1 0 2 2 0

−1 0 2 −2 0 4

0 0 0 −1 −1 0

0 0 0 1 0 −2


and the Kronecker product of B and A is given by

B ⊗ A =


1 2 1 2 0 0

0 −1 0 −1 0 0

−1 −2 0 0 2 4

0 1 0 0 0 −2


Clearly A⊗B ̸= B ⊗ A.

The following properties of Kronecker product will be employed in this thesis.

Theorem 2.3. (Horn and Johnson, 1994) Let A ∈ Km×n, B ∈ Kp×q, C ∈ Kn×k and

D ∈ Kq×r. Then,

(A⊗B)(C ⊗D) = (AC ⊗BD)

Theorem 2.4. (Horn and Johnson, 1994) If A ∈ Km×m and B ∈ Kn×n are non-singular,

then so is A⊗B and

(A⊗B)−1 = A−1 ⊗B−1

Theorem 2.5. (Horn and Johnson, 1994) Let A,B and C be matrices be matrices of ap-

propriate order. Then,
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(i) (A+B)⊗ C = A⊗ C +B ⊗ C

(ii) A⊗ (B + C) = A⊗B + A⊗ C

(iii) A⊗B = 0 if and only if A = 0 or B = 0.

2.2 Tools from Functional Analysis

Definition 2.9. Let V be a normed space and K be an operator such that K : V → V . Then
v ∈ V is a fixed point of K if Kv = v.

Definition 2.10. A mapping K : V → V is said to be a contraction if there exists a real
number α ∈ (0, 1), such that

∥ Kv −Kw ∥ ≤ α ∥ v − w ∥ ∀ v, w ∈ V

Theorem 2.6 (Generalized Banach Contraction Principle). (Joshi and Bose, 1985) If V is

a Banach space and K : V → V is such that Kn : V → V is a contraction for some

n, then K has a unique fixed point. The unique fixed point can be computed iteratively by

vk+1 = Knvk, where v0 is arbitrary.

Definition 2.11. A proper algebraic variety is the zero set of some non-trivial polynomial
with real coefficients in the n parameters of the system.

Definition 2.12. A property is said to be generic (or structural) if it is true for all values of
the parameter vector, outside a proper algebraic variety in the parameter space Rn.

Example 2.5. For example, consider a stand-alone system ẋ = Ax + Bu, where A =

[aij]n×n and B = [bij]n×m. We say that (A,B) is generically controllable if (A,B) is
controllable for “almost all” values of aij, i, j = 1, 2, . . . , n and bij, i = 1, 2, . . . , n, j =

1, 2, . . . ,m.

Consider a stand-alone system with state matrix A =

[
a11 0

a21 0

]
and control matrix

B =

[
b11

0

]
. The system is generic controllable as the controllability matrix

Q = [B | AB] =

[
b11 a11b11

0 a21b11

]
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has rank 2 for almost all values of a11, a21 and b11 as the determinant of Q is b211a21 and it
is zero only when b11 = 0 or a21 = 0.

Consider a stand-alone system with state matrix A =

[
a11 a12

0 0

]
and control matrix

B =

[
b11

0

]
. The system is not generic controllable as the controllability matrix

Q = [B | AB] =

[
b11 a11b11

0 0

]

has rank 1 for any values of a11, a12 and b11.

2.3 Tools from Graph Theory

A graph G consists of a finite nonempty set V of objects called vertices or nodes and a set
E of 2-element subsets of V called edges. The sets V and E are the vertex set and edge
set of G, respectively. So a graph G is an ordered pair of two sets V and E represented as
G = (V,E). A graph can also be represented by a diagram in the plane as in the following
figure where the vertices are represented by points or by small circles (open or solid) and
whose edges are indicated by the presence of a line segment or curve between the two
points in the plane corresponding to the appropriate vertices. If the edges in a graph have
a direction associated with them, indicating a one-way relationship between vertices, then
the graph is called a directed graph or digraph.

1

2 3

4

1

2 3

4

Figure 2.1: Example of a simple directed graph (left) and an undirected graph (right).

Definition 2.13. Let G = (V,E) be a graph, where V = {v1, v2, . . . , vk} is the vertex set.
A path in G from a vertex vi0 to viq , is a sequence of edges (vi0 , vi1), (vi1 , vi2), . . . , (viq−1 , viq)
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such that vil ∈ V for l = 0, 1, . . . , q and (vil−1
, vil) ∈ E for l = 1, 2, . . . , q. The vertices

vi0 , vi1 , . . . , viq are said to be covered by the path.

Remark 2.5. When representing a networked system, if a path starts from a control node
and ends at a state node, such paths are called control-state paths.

Definition 2.14. A stem is a control-state path which does not meet the same vertex twice.

Definition 2.15. A networked system is said to be control-connected if any state vertex is
the end vertex of a stem.

Definition 2.16. A path (vi0 , vi1), (vi1 , vi2), . . . , (viq−1 , viq) for which vi0 = viq is called a
circuit.

Definition 2.17. A cycle is a circuit which does not meet the same vertex twice, except for
the initial/end vertex.

Remark 2.6. Two paths are mutually disjoint when they cover disjoint sets of vertices.
When some stems and cycles are mutually disjoint, they constitute a disjoint set of stems
and cycles.
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Chapter 3

Controllability of Homogeneous and Het-
erogeneous Networked Systems

3.1 Introduction

In our increasingly interconnected world, understanding the controllability of networked
systems is critical. Learning how to preserve the controllability of these complex systems
becomes crucial as we shift from stand-alone systems to networked systems such as smart
grids, transportation networks and social networks etc. Because these systems are inter-
connected, they present new difficulties and opportunities, necessitating a thorough under-
standing of how control signals and inter connections can be efficiently utilized to influence
the behavior of the entire network. The topic of controllability in such a networked multi-
agent system within the so-called ‘leader-follower’ framework was first addressed by Tan-
ner (Tanner, 2004), where the problem is characterized as the classical state controllability
of a single-input linear system. Tanner(Tanner, 2004) proposed several network topology
requirements that assured the controllability of a set of nodes with a single leader by split-
ting the nodes into leaders and followers. Despite the fact that this criteria was derived for
a single-leader system, they can be simply extended to multi-leader systems(see Rahmani
et al. (Rahmani and Mesbahi, 2006)). Furthermore, Ji et al.(Ji et al., 2006) provides a
necessary condition for multi-leader controllability based on the algebraic properties of a
submatrix of the incidence matrix of the network. Hara et al.(Hara et al., 2009) investi-
gated networks in which each node is a copy of the same single-input-single-output (SISO)
system and discovered necessary and sufficient criteria for controllability and observabil-
ity. The controllability criteria given by Tanner (Tanner, 2004) is not graph-theoretic in the
sense that controllability cannot be derived directly based on network topology. Rahmani
et al.(Rahmani and Mesbahi, 2006) examined the complex relationship between state con-
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trollability and graph symmetry, and then provided a suitable graph-theoretic criterion for
determining uncontrollability. Many further studies followed based on the graph-theoretic
properties of the network topology (Ji and Egerstedt, 2007; Lou and Hong, 2012; Mar-
tini et al., 2010; Mousavi and Haeri, 2016; Najafi and Shaikholeslam, 2013; Rahmani and
Mesbahi, 2007; Rahmani et al., 2009).

It is evident that, in addition to network topology, the node system (nodal dynamics)
is an important component influencing controllability. Wang et al.(Wang et al., 2016b) in-
vestigated networked MIMO LTI dynamical node systems with a directed and weighted
topology without requiring an external control input on each subsystem. Some controlla-
bility constraints on network structure, node dynamics, external control inputs, and net-
work topology are established so that effective criteria for defining the controllability of
large-scale networked systems may be derived. Wang et al.(Wang et al., 2016b) derived
a necessary and sufficient condition on the controllability of networked MIMO systems
which involved finding the matrix solution of a set of matrix equations. It was proved that,
under certain moderate conditions, node controllability and observability are necessary but
not sufficient for networked system controllability. The importance of network topology
for the controllability of the integrated networked system was also demonstrated. In partic-
ular, Wang et al.(Wang et al., 2016b) proved that when the rank of the input matrix of the
networked system is less than the number of nodes of the networked system, the observ-
ability of each node is required for the controllability of a homogeneous networked system.
Wang P. et al.(Wang et al., 2017b) further tried to extend the controllability results obtained
by Wang et al.(Wang et al., 2016b) to heterogeneous networked systems and later, Xiang
et al. (Xiang et al., 2019b) integrated these results along with a necessary and sufficient
condition for the controllability of a heterogeneous networked system. When the state ma-
trices are similar, the output matrices are scalar multiples of one another, and the rank of
the input matrix of the networked system is less than the number of nodes in the system,
Xiang et al. (Xiang et al., 2019b) proved that the observability of each node is required
for the controllability of the heterogeneous system. However, this is not always the case.
In Section 3.5, we provide a counter example to show that the result obtained by Xiang et
al.(Xiang et al., 2019b) is not always true. We have also rectified this result by providing
some additional conditions.

In Section 3.2, we formulate the homogeneous and heterogeneous networked system
models under discussion. Controllability of homogeneous and heterogeneous networked
systems are introduced and some available results in literature are discussed in Section
3.3 and Section 3.4 respectively with numerical examples to substantiate the results. In
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Section 3.5, we derive some necessary conditions for the controllability of heterogeneous
networked systems. Conclusions based on the study are given in Section 3.6.

3.2 Problem Formulation

Consider a linear time-invariant networked system with N nodes, where each node is an
n−dimensional system. The dynamical system corresponding to the node i is described byẋi(t) = Axi(t) +

∑N
j=1 βijHyj(t) + diBui

yi(t) = Cxi(t)
(3.1)

where, xi(t) ∈ Rn is the state vector of the ith node; ui(t) ∈ Rm is the external control input
vector applied to the ith node; yi(t) ∈ Rm is the output vector of the ith node; A ∈ Rn×n

is the state matrix, B ∈ Rn×m is the input matrix and C ∈ Rm×n is the output matrix of
node i. If node i under external control, then di = 1, otherwise di = 0. βij ∈ R represents
the communication strength between the nodes i and j. A communication from node j

to node i ensures that βij ̸= 0, otherwise βij = 0, for all i, j = 1, 2, . . . , N . The inner
coupling matrix describing the interconnections among the components xj, j = 1, 2, . . . , N

is denoted by H ∈ Rn×n. With control inputs, system (3.1) will take the form

ẋi(t) = Axi(t) +
N∑
j=1

βijHCxj(t) + diBui(t), i = 1, 2, . . . , N (3.2)

Let L = [βij] ∈ RN×N represent the network topology and D = diag{d1, d2, . . . , dN},
the external input channels of the networked system (3.2). Also, let X =

[
xT
1 , . . . , x

T
N

]T
denote the network state and U =

[
uT
1 , . . . , u

T
N

]T , the total external control of the net-
worked system. Using Kronecker product, the homogeneous networked system (3.2) can
be rewritten in the compact form as

Ẋ(t) = ΩX(t) + ΨU(t) (3.3)

with

Ω = IN ⊗ A+ L⊗HC

Ψ = D ⊗B
(3.4)
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Now suppose that the individual nodes have different dynamics. That is, the networked
system is heterogeneous. Let the dynamics of the ith node is given byẋi(t) = Aixi(t) +

∑N
j=1 βijHyj(t)

yi(t) = Cixi(t)
(3.5)

where Ai is the state matrix, Bi is the control input matrix and Ci is the output matrix of
node i. All the other terms are as explained earlier. With control inputs, heterogeneous
system (3.5) has the form

ẋi(t) = Aixi(t) +
N∑
j=1

βijHCjxj(t) + diBiui(t), i = 1, 2, . . . , N (3.6)

and the heterogeneous system can be written in the compact form as

Ẋ(t) = ΩX(t) + ΨU(t) (3.7)

where,

Ω = Λ + Γ

Ψ = diag{d1B1, . . . , dNBN}
(3.8)

where,
Λ = diag{A1, . . . , AN}

and
Γ =

[
βijHCj

]
∈ RnN×nN

3.3 Controllability of Homogeneous Networked Systems

In this section, we briefly discuss the controllability results obatained by Wang et al.(Wang
et al., 2016b), for homogeneous networked systems. Over the past fifty years, a great
deal of research has been done on the topic of system controllability. Thus far, numer-
ous criteria have been established, such as distinct matrix rank conditions and graphical
features(Davison and Wang, 1975; Davison, 1977; Gilbert, 1963; Glover and Silverman,
1976; Hautus, 1969; Kalman, 1960, 1962; Lin, 1974; Mayeda, 1981; Shields and Pear-
son, 1976). Notably, a large number of these controllability results are obtained with the
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supposition that each node is of state dimension one. Most real-world dynamical system
networks, however, feature higher-dimensional node states, and many multi-input/multi-
output (MIMO) nodes are linked together via multi-dimensional channels. Wang et al.
(Wang et al., 2016b) studied the controllability of networked higher-dimensional systems
with higher-dimensional connections for the MIMO setting and obtained the following
necessary and sufficient condition.

Theorem 3.1. (Wang et al., 2016b) The networked system (3.2)-(3.4) is controllable if and

only if, for any complex number s, the matrix solution F ∈ CN×n of the simultaneous

equations DTFB = 0

LTFHC = F (sI − A)
(3.9)

is F = 0.

Consider the following examples.

Example 3.1. (Ajayakumar and George, 2022a) Consider the homogeneous networked
system with two individual nodes described by;

A =

[
1 1

0 1

]
, B =

[
1

1

]
, H =

[
1

0

]
, C =

[
1 0

]
The network topology and the external control input channel matrices are given by

L =

[
0 1

1 0

]
and D =

[
1 0

0 1

]

Theorem 3.1 can be used to verify the controllability of the networked system. Let F =[
a11 a12

a21 a22

]
. Then,

DTFB = 0 ⇒

[
1 0

0 1

][
a11 a12

a21 a22

][
1

1

]
=

[
0

0

]
⇒ a11 + a12 = 0, a21 + a22 = 0

⇒ a12 = −a11, a22 = −a21
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and for s ∈ C,

LTFHC = F (sI − A) ⇒

[
0 1

1 0

][
a11 −a11

a21 −a21

][
1

0

] [
1 0

]
=

[
a11 −a11

a21 −a21

][
s− 1 −1

0 s− 1

]

⇒

[
a21 0

a11 0

]
=

[
a11(s− 1) −a11s

a21(s− 1) −a21s

]

When s = 0, a11 = 1 and a21 = −1, the matrix equation LTFHC = F (sI−A) is satisfied.
Thus F = 0 is not a unique solution to the equations (3.9) and hence the networked system
is not controllable.

We can also use Kalman’s rank condition to see that the networked system is not con-
trollable. The given system can be written in the compact form (3.3), where

Φ =


1 1 1 0

0 1 0 0

1 0 1 1

0 0 0 1

 and Ψ =


1 0

1 0

0 1

0 1


The controllability matrix

Q(Φ,Ψ) = [Ψ | ΦΨ | Ω2Ψ | Ω3Ψ] =


1 0 2 1 4 3 8 7

1 0 1 0 1 0 1 0

0 1 1 2 3 4 7 8

0 1 0 1 0 1 0 1


has rank 3 and hence the networked system is not controllable.

Example 3.2. (Ajayakumar and George, 2022a) Consider the homogeneous networked
system with two individual nodes described by;

A =

[
1 1

0 1

]
, B =

[
0

1

]
, H =

[
0

1

]
, C =

[
1 0

]
The network topology and the external control input channel matrices are given by

L =

[
0 1

1 0

]
and D =

[
1 0

0 0

]
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Let F =

[
a11 a12

a21 a22

]
. Then,

DTFB = 0 ⇒

[
1 0

0 0

][
a11 a12

a21 a22

][
0

1

]
=

[
0

0

]
⇒ a12 = 0

and for s ∈ C,

LTFHC = F (sI − A) ⇒

[
0 1

1 0

][
a11 0

a21 a22

][
0

1

] [
1 0

]
=

[
a11 0

a21 a22

][
s− 1 −1

0 s− 1

]

⇒

[
a22 0

0 0

]
=

[
a11(s− 1) −a11

a21(s− 1) −a21 + a22(s− 1)

]
⇒ a11 = a21 = a22 = 0

Thus, F = 0 is the unique solution to the equations (3.9) and hence the networked system
is controllable.

Here also we can use Kalman’s rank condition to verify the controllability of the net-
worked system. The given system can be written in the compact form (3.3), where

Φ =


1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

 and Ψ =


0 0

1 0

0 0

0 0


The controllability matrix

Q(Φ,Ψ) = [Ψ | ΦΨ | Ω2Ψ | Ω3Ψ] =


0 0 1 0 2 0 3 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 1 0 3 0


has rank 4 and hence the networked system is controllable.

Although, the result is valid, it is not that easy to verify the controllability of a net-
worked system using Theorem 3.1, as finding the matrix solution of Equation (3.9) is
computationally demanding. Also, the result does not give much information regarding
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the effect of individual node dynamics, network topology, etc. in the controllability of the
networked system. Along with Theorem 3.1, Wang et al.(Wang et al., 2016b) derived the
following necessary conditions for controllability of the homogeneous networked system
(3.2)-(3.4).

Theorem 3.2. (Wang et al., 2016b) Suppose that the networked system (3.2)-(3.4) is con-

trollable.

(a) If there exists one node without incoming edges, it is necessary that (A,B) is con-

trollable and moreover an external control input is applied onto this node which has

no incoming edges.

(b) If there exists one node without external control inputs, it is necessary that (A,HC)

is controllable.

(c) If the number of individual nodes is N and the number of nodes with external control

is m with N > m.rank(B), then it is necessary that (A,C) is observable.

(d) (L,D) is a controllable pair.

We can see that controllability and observability of the individual nodes are necessary
for the controllability of networked systems under some moderate conditions, but they are
not sufficient. Also, the pair of network topology matrix and the external input channel
matrix must be a controllable pair for the controllability of the integrated networked sys-
tem. Further, the controllability of networked system (3.2)-(3.4) was studied by Wang L et
al.(Wang et al., 2017a) and obtained necessary and sufficient conditions for controllability
where the higher dimensional states of the node systems are integrated into one dimen-
sional input and and output. To state the result the following notations are needed. The set
of nodes with external control inputs is denoted by U. That is,

U = {i | di ̸= 0, i = 1, 2, . . . , N} (3.10)

Let σ(A) denote the spectrum of the matrix A. For any s ∈ σ(A), define the matrix set

Γ(s) =
{[

αT
1 , . . . , α

T
N

]
| αT

i ∈ Γ1(s) for i /∈ U, αT
i ∈ Γ2(s) for i ∈ U

}
(3.11)

where
Γ1(s) =

{
ξ ∈ C1×n | ξ(sI − A) = 0

}
(3.12)
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and
Γ2(s) =

{
ξ ∈ C1×n | ξB = 0, ξ ∈ Γ1(s)

}
(3.13)

The following result gives us a glimpse how the network topology, individual node dy-
namics, inner interactions and external inputs influence the controllability of the whole
networked system.

Theorem 3.3. (Wang et al., 2017a) Suppose that | U |< N . Then the networked system

(3.2)-(3.4) is controllable if and only if the following conditions hold.

(a) (A,H) is controllable;

(b) (A,C) is observable;

(c) For any s ∈ σ(A) and κ ∈ Γ(s), κL ̸= 0 if κ ̸= 0;

(d) For any s /∈ σ(A), rank[I − Lγ | Dη] = N , where γ = C(sI − A)−1H and

η = C(sI − A)−1B.

The result is a not easy to verify. However, over certain network topologies, we have
verifiable versions of the above theorem. Consider the following corollary.

Corollary 3.1. (Wang et al., 2017a) Suppose that the network topology matrix L is a cycle.

That is, L is of the form 
0 0 . . . β1N

β21 0 . . . 0
... . . . ...

0 . . . βN(N−1) 0


Under the assumption that B ∈ Rn×1 ,C ∈ R1×n, and d1 = 1, di = 0 ∀i = 2, 3, . . . , N the

networked system is controllable if and only if the following conditions hold.

(a) (A,H) is controllable;

(b) (A,C) is observable;

(c) For any s /∈ σ(A), rank(I−bHC(sI−A)−1, B) = n, where b = β1NΠ
N−1
i=1 β(i+1)iγ

N−1

with γ = C(sI − A)−1H .

The following examples substantiate the efficiency of the above result.
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Example 3.3. (Ajayakumar and George, 2022a) Consider a homogeneous networked sys-
tem with 3 nodes, where the dynamics is given as follows;

A =

[
1 1

0 1

]
, B =

[
1

0

]
, H =

[
0

1

]
, C =

[
1 0

]
The network topology and the external control input channel matrices are given by,

L =

0 0 1

1 0 0

0 1 0

 and D =

1 0 0

0 0 0

0 0 0



v1 v2

v3

u1

Figure 3.1: A cyclic network with 3 nodes and control input on node 1.

Clearly, σ(A) = {1, 1}. Now,

(a) (A,H) is controllable as the controllability matrix

Q(A,H) =

[
0 1

1 1

]

has rank 2.

(b) (A,C) is observable as the controllability matrix

Q(A,C) =

[
1 0

1 1

]

has rank 2.

(c) For any s ̸= 1, we have b = (s− 1)−4 and

rank[I − bHC(sI − A)−1 | B] = rank

([
1 0 1

−(s− 1)−5 1− (s− 1)−5 0

])
= 2
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Thus by Corollary 3.1, the given system is controllable.

Example 3.4. (Ajayakumar and George, 2022a) Consider a networked system with 3 iden-
tical nodes, where the dynamics of system is given as follows;

A =

1 8 7

4 5 6

1 2 3

 , B =

10
1

 , C =
[
4 3 6

]

The network topology matrix, inner-coupling matrix and the external control matrix are,
respectively given by

L =

0 0 −1

1 0 0

0 1 0

 , H =

11
1

 and D =

1 0 0

0 0 0

0 0 0


For s = 2 /∈ σ(A) = {2(3 +

√
7),−2(

√
7− 3),−3},

rank[I − bHC(2I − A)−1 | B] = rank


1 −1 0 1

0 0 0 0

0 −1 1 1


 = 2 < 3

Thus, by Corollary 3.1 the given system is not controllable.

All the above mentioned results are true for a homogeneous networked system. How-
ever, some additional conditions are required for the above results to hold true in the case
of heterogeneous networked systems. We see this in the following section.

3.4 Controllability of Heterogeneous Networked Systems

In homogeneous networks, all components or nodes share similar attributes, whereas, in
heterogeneous networks individual nodes need not posses same characteristics. Wang P. et
al.(Wang et al., 2017b) obtained a necessary and sufficient condition on the controllability
of the heterogeneous networked MIMO system (3.6)-(3.8).

Theorem 3.4. (Wang et al., 2017b) The heterogeneous networked system (3.6)-(3.8) is con-

trollable if and only if, for any complex numbers the solution αi ∈ C1×n of the simultaneous
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equations
αi(sIn − Ai)− ΣN

j=1,j ̸=iβjiαjHCi = 0

diαiBi = 0, i = 1, . . . , N
(3.14)

is αi = 0, i = 1, 2, . . . , N .

Example 3.5. Consider a heterogeneous networked system with 2 nodes, where the state
matrices, control matrices and output matrices are given by;

A1 =

[
1 3

0 1

]
, A2 =

[
1 1

0 3

]
, B1 =

[
1

0

]
, B2 =

[
0

1

]
, C1 =

[
0 1

1 0

]
, C2 =

[
1 0

1 1

]

The network topology matrix, inner-coupling matrix and the external control matrix are,
respectively given by

L =

[
0 1

1 0

]
, H =

[
0 1

1 0

]
and D =

[
1 0

0 0

]

Consider the simultaneous equations given in (3.14). Let α =
[
α1 α2

]
be a solution of

v1u1 v2

Figure 3.2: Networked system with two individual nodes and only node 2 having external
control input.

(3.14), where αi =
[
α1
i α2

i

]
, i = 1, 2. Then,

[
α1
1 α2

1

] [s− 1 −3

0 s− 1

]
−
[
α1
2 α2

2

] [1 0

0 1

]
=
[
0 0

]
[
α1
2 α2

2

] [s− 1 −1

0 s− 3

]
−
[
α1
1 α2

1

] [1 1

1 0

]
=
[
0 0

]
[
α1
1 α2

1

] [1
0

]
= 0

Clearly, α1
1 = 0 and hence from above equations, we have[

0 α2
1(s− 1)

]
−
[
α1
2 α2

2

]
=
[
0 0

]
[
α1
2(s− 1) −α1

2 + α2
2(s− 3)

]
−
[
α2
1 0

]
=
[
0 0

]
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Solving, we get α2
1 = α1

2 = α2
2 = 0. Thus, both α1 = α2 = 0. Thus, by Theorem 3.4, the

given system is controllable.
We can use Kalman’s rank condition to verify the controllability of this system. The

given system can be converted into the compact form (3.7)-(3.8), where,

Φ =


1 3 1 1

0 1 1 0

1 0 1 1

0 1 0 3

 and Ψ =


1

0

0

0


The controllability matrix

Q(Φ,Ψ) = [Ψ | ΦΨ | Ω2Ψ | Ω3Ψ] =


1 1 2 7

0 0 1 3

0 1 2 4

0 0 0 1


has rank 4 and hence the networked system is controllable.

Example 3.6. Consider a heterogeneous networked system with 2 nodes, where the state
matrices, control matrices and output matrices are given by;

A1 =

[
1 1

0 1

]
, A2 =

[
0 1

1 1

]
, B1 =

[
1

0

]
, B2 =

[
0

1

]
, C1 =

[
1 0

0 1

]
, C2 =

[
0 1

1 0

]

The network topology matrix, inner-coupling matrix and the external control matrix are,
respectively given by

L =

[
0 1

1 0

]
, H =

[
1 0

0 0

]
and D =

[
1 0

0 1

]

Consider the simultaneous equations given in (3.14). Let α =
[
α1 α2

]
be a solution of

v1u1 u2v2

Figure 3.3: Networked system with two individual nodes and both nodes having external
control input.
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(3.14), where αi =
[
α1
i α2

i

]
, i = 1, 2. Then,

[
α1
1 α2

1

] [s− 1 −1

0 s− 1

]
−
[
α1
2 α2

2

] [1 0

0 0

]
=
[
0 0

]
[
α1
2 α2

2

] [ s −1

−1 s− 1

]
−
[
α1
1 α2

1

] [0 1

0 0

]
=
[
0 0

]

[
α1
1 α2

1

] [1
0

]
= 0

[
α1
2 α2

2

] [0
1

]
= 0

Clearly, α1
1 = α2

2 = 0 and hence from above equations, we have[
0 α2

1(s− 1)
]
−
[
α1
2 0

]
=
[
0 0

]
[
α1
2s −α1

2

]
−
[
0 0

]
=
[
0 0

]
Solving, we get α1

2 = 0. Thus, α2 = 0. However, when s = 1, α2
1 can take any non-zero

values. That is, there exist non-zero solutions of the form α =
[
0 α2

1 0 0
]
, α2

1 ∈ C for
the simultaneous equations (3.14) when s = 1. Hence, by Theorem 3.4, the given system
is not controllable.

We can use Kalman’s rank condition to verify the controllability of this system. The
given system can be converted into the compact form (3.7)-(3.8), where,

Φ =


1 1 0 1

0 1 0 0

1 0 0 1

0 0 1 1

 and Ψ =


1 0

0 0

0 0

0 1


The controllability matrix

Q(Φ,Ψ) = [Ψ | ΦΨ | Ω2Ψ | Ω3Ψ] =


1 0 1 1 1 2 2 4

0 0 0 0 0 0 0 0

0 0 1 1 1 2 2 4

0 1 0 1 1 2 2 4


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has rank 3 and hence the networked system is not controllable.

The preceding theorem is also computationally intensive and is quite similar to the
PBH eigenvector test. Along with the above Theorem, Wang P. et al.(Wang et al., 2017b)
extended the results in Theorem 3.2 of Wang et al.(Wang et al., 2016b) to the heterogeneous
case and obtained the following results.

Theorem 3.5. (Wang et al., 2017b) Suppose that the heterogeneous networked system

(3.6)-(3.8) is controllable.

(a) If there exists a node k without incoming edges, then it is necessary that (Ak, Bk) is

controllable, and for any complex number s ∈ C, the solution αi ∈ C1×n of both

equations αi(sIn − Ai)− ΣN
j=1,j ̸=i,j ̸=kβjiαjHCi = 0

diαiBi = 0, i = 1, . . . , N, i ̸= k

is αi = 0.

(b) If there exists a node k without external control inputs, then it is necessary that[
−βk1HC1 −βk2HC2 . . . sI − Ai . . . −βkNHCN

]
has full rank.

(c) If the number of nodes with external control inputs is m, and N > Σm
i=1rank(Bi), it

is necessary that (Ai, Ci) is observable for i = 1, 2, . . . , N .

(d) If A1 + s0HC1 = . . . = AN + s0HCN for all s0 ∈ σ(L), it is necessary that (L,D)

is controllable.

However, Theorem 3.5(c) need not be true in general. Later, Xiang et al.(Xiang et al.,
2019b) restated 3.5(c) as follows.

Theorem 3.6. (Xiang et al., 2019b) Suppose N > Σm̃
i=1rank(Bi)(m̃ is the number of

external control inputs), A1, . . . , AN are similar to each other, and there exists ki ̸= 0, i =

1, 2, . . . , N, such that k1C1 = k2C2 = . . . = kNCN . For the heterogeneous networked

system (3.6)-(3.8) to be controllable, it is necessary that (Ai, Ci) is observable for i =

1, 2, . . . , N .

In Section 3.5, we will give an example to show that the above result is also not true
in general. Also, we provide a situation where the above result can be true. Along with
the above result Xiang et al.(Xiang et al., 2019b) derived some necessary and sufficient
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conditions for some special class of heterogeneous networked systems. Consider a hetero-
geneous networked system (3.6)-(3.8) with

Ai =



0 1 0 . . . 0

0 0 0 . . . 0
...

...
... . . . ...

0 0 0 . . . 1

−ai0 −ai1 −ai2 . . . −ai(n−1)


∈ Rn×n, Bi = B =



0

0
...
0

1


∈ Rn, Ci = C

and di = 1, i = 1, 2, . . . , N . Let ui = aTi xi+doiuoi, where ai =
[
ai0 ai1 ai2 . . . ai(n−1)

]T
∈

Rn, uoi ∈ R is the external control input, and doi = 1 if ith node is under control and is
zero otherwise. Then (3.5) can be rewritten in the compact form as

ẋi(t) = Axi(t) +
N∑
j=1

βijHCxj(t) + doiBuoi(t), i = 1, 2, . . . , N (3.15)

where

A = Ai +BaTi = Ai =



0 1 0 . . . 0

0 0 0 . . . 0
...

...
... . . . ...

0 0 0 . . . 1

0 0 0 . . . 0


If X =

[
xT
1 , . . . , x

T
N

]T denote the network state, uo =
[
uT
o1, . . . , u

T
oN

]T , the total external
control input of the networked system and D = {doi, . . . , doN} the networked system can
be written in the compact form.

Ẋ = ΩX +Ψu0 (3.16)

where,
Ω = I ⊗ A+ L⊗HC

and
Ψ = D ⊗B

Let C ∈ Rn. That is, input and output of each nodes are one dimensional. Let

ν̃ = {i = 1, 2, . . . , m̃ | doi = 1}, 1 ≤ m̃ ≤ N
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For s ∈ σ
(
Ai +BaTi

)
, define the set

Γ(s) = {(v1, v2, . . . , vN) | vi ∈ Γ1(s) for vi /∈ ν̃, | i ∈ Γ2(s) for i ∈ ν̃}

where,

Γ1(s) =
{
v ∈ Cn | vT

(
sI − A−BaTi

)
= 0
}
,

Γ2(s) =
{
v ∈ Cn | vTB = 0, v ∈ Γ1(s)

}
Xiang et al.(Xiang et al., 2019b) derived the following controllabily result for the particular
class of networked systems defined in (3.15)-(3.16).

Theorem 3.7. (Xiang et al., 2019b) Suppose that |ν̃| < N . The networked system (3.15)-
(3.16) with C ∈ Rn is controllable if and only if the following conditions hold:

(i)
(
Ai +BaTi , H

)
is controllable.

(ii)
(
Ai +BaTi , C

)
is observable.

(iii) For s ∈ σ
(
Ai +BaTi

)
and v ∈ Γ(s),

vL ̸= 0 if v ̸= 0

and

(iv) For s /∈ σ
(
Ai +BaTi

)
,

rank[I − γL | ηD] = N

where, γ = C
(
sI − A−BaTi

)−1
H and η = C

(
sI − A−BaTi

)−1
B.

We can clearly observe that there are no easily verifiable controllability results for a
general heterogeneous networked system.

3.5 Necessary Conditions for Controllability of Heteroge-
neous Networked Systems

In this Section, we discuss some necessary conditions for the controllability of heteroge-
neous networked systems. First, we provide an example which shows that Theorem 3.6 by
Xiang et al.(Xiang et al., 2019b) is not necessarily true in general.
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Example 3.7. (Ajayakumar and George, 2022b) Consider a homogeneous networked sys-
tem with 2 nodes, where the state matrices, control matrices and output matrices are given
by;

A1 =

[
1 0

2 3

]
, A2 =

[
3 0

2 1

]
, B1 = B2 =

[
1

0

]
, C1 = C2 =

[
1 0

]
The network topology matrix, inner-coupling matrix and the external control matrix are,
respectively,

L =

[
0 1

1 0

]
, H =

[
1

1

]
and D =

[
0 0

0 1

]

v1 u2v2

Figure 3.4: Networked system with two individual nodes and only node 2 having external
control input.

⊙ For P =

[
1 1

2 1

]
, we have PA1P

−1 = A2. Thus, A1 is similar to A2.

⊙ Here C1 = C2. That is, k1 = k2 = 1.

⊙ The number of controlled nodes, m̃ = 1, and hence

2 = N >
m̃∑
i=1

rank(Bi) = 1

Thus, all the conditions of Theorem 3.6 are satisfied. Now, the observability matrices

O(A1, C1) =

[
C1

C1A1

]
=

[
1 0

1 0

]

and

O(A2, C2) =

[
C2

C2A2

]
=

[
1 0

3 0

]
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are of rank 1. Thus both (A1, C1) and (A2, C2) are not observable. The system can be
written in the compact form (3.3), where

Ω =


1 0 1 0

2 3 1 0

1 0 3 0

1 0 2 1

 ,Ψ =


0 0

0 0

0 1

0 0


Now, by Kalman’s rank condition for controllability, the heterogeneous networked system
is controllable as the controllability matrix,

Q(Ω,Ψ) =
[
Ψ | ΩΨ | Ω2Ψ | Ω3Ψ

]
=


0 0 0 1 0 4 0 14

0 0 0 1 0 8 0 42

0 1 0 3 0 10 0 34

0 0 0 2 0 9 0 33


is of rank 4.

This discrepancy occured due to the fact that in the proof of Theorem 3.6, Xiang et
al.(Xiang et al., 2019b) considered that similar matrices have identical eigenvectors for
the same eigenvalue. However, this may not be the case always, which is evident from
Theorem 2.1. We derived the following theorem incorporating this fact.

Theorem 3.8. (Ajayakumar and George, 2022b) Suppose N >
∑m̃

i=1 rank(Bi). Let

A1, A2, . . . , AN be similar to each other. That is, for each Ai there exists an invertible

matrix P k
i such that

(
P k
i

)−1
AiP

k
i = Ak, for all i = 1, 2, . . . , N and k = 1, 2, . . . , N . Also

there exists ki ̸= 0, i = 1, 2, . . . , N, such that k1C1 = · · · = kNCN . For the controlla-

bility of the heterogeneous networked system (3.6) - (3.8), the observability of (Ai, Ci) is

necessary for all i = 1, 2, . . . , N , if the matrix P k
i commutes with Ci.

Proof. Assume that there exists a node i0, such that (Ai0 , Ci0) is unobservable. Then there
exists s ∈ σ(Ai0) and a non-zero vector vi0 ∈ Cn such that

Ci0vi0 = 0

and
(sIn − Ai0)vi0 = 0.
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Let Ωs = sINn − Ω =
[
Ω1

s | . . . | ΩN
s

]
, where

Ωi
s =

[
−β1i(HCi)

T | . . . | (sIn − Ai)
T | . . . | −βNi(HCi)

T
]T

.

Then Ωi0
s vi0 = 0, which implies that rank (Ωi0

s ) ≤ n− 1.
Since there exists matrices P i0

k such that
(
P i0
k

)−1
AkP

i0
k = Ai0 , for all k = 1, 2, . . . , N , by

Theorem 2.1, P i0
k vi0 is a right eigenvector of Ak with the eigenvalue s and as P i0

k commutes
with Ck for all k = 1, 2, . . . , N , CkP

i0
k vi0 = 0, where k1C1 = k2C2 = . . . = kNCN is

employed. That is,
CkP

i0
k vi0 = 0

and
(sIn − Ak)P

i0
k vi0 = 0.

Therefore, rank
(
Ωk

s

)
≤ n − 1 for all k = 1, 2, . . . , N . That is, rank (Ωs) ≤ N(n − 1).

As
∑m̃

i=1 rank(Bi) < N , we have rank(sINn − Ω,Ψ) < Nn, which implies that the
heterogeneous networked system (3.6) - (3.8) is not controllable.

The following examples demonstrate the applicability of Theorem 3.8.

Example 3.8. (Ajayakumar and George, 2022b) Consider a homogeneous networked sys-
tem with 2 nodes, where the state matrices, control matrices and output matrices are given
by;

A1 =

[
1 2

2 1

]
, A2 =

[
−1 0

4 3

]
, B1 = B2 =

[
1

0

]
, C1 = C2 =

[
1 1

0 0

]
The network topology matrix, inner-coupling matrix and the external control input matrix
are, respectively given by

L =

[
0 1

0 0

]
, H =

[
0 1

0 1

]
and D =

[
1 0

0 0

]

v1u1 v2

Figure 3.5: Networked system with two individual nodes and only node 1 having external
control input.

⊙ For P 2
1 =

[
2 1

0 1

]
, we have PA1P

−1 = A2. Thus, A1 and A2 are similar.
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⊙ Clearly, C1 = C2. That is, k1 = k2 = 1.

⊙ The number of controlled nodes, m̃ = 1, and hence

2 = N >
m̃∑
i=1

rank(Bi) = 1

⊙ Also, P 2
1 =

[
2 1

0 1

]
and P 1

2 = 1
2

[
1 −1

0 2

]
commutes with C1, C2.

Thus, all the conditions of the Theorem 3.8 are satisfied. Now,

O(A1, C1) =

[
C1

C1A1

]
=


1 1

0 0

3 3

0 0


is of rank 1. Hence (A1, C1) is not observable. Then by Theorem 3.8 the system is not
controllable. We can verify this using Kalman’s rank condition for controllability. The
system can be written in the compact form as in Equation (3.7), where

Ω =


1 2 1 1

2 1 0 0

0 0 −1 0

0 0 4 3

 and Ψ =


1 0

0 0

0 0

0 0


Then the system is not controllable as the controllability matrix

Q(Ω,Ψ) =
[
Ψ | ΩΨ | Ω2Ψ | Ω3Ψ

]
=


1 0 1 0 5 0 13 0

0 0 2 0 4 0 14 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


is of rank 2.

Observe that the eigenvectors of A1 and A2 in Example 3.8, corresponding to the eigen-
value 3 are distinct. The eigenvectors of A1 and A2 corresponding to the eigenvalue 3 are[
1

1

]
and

[
0

1

]
, respectively. Theorem 3 of Xiang et al.(Xiang et al., 2019b) is true, if the
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associated eigenvectors of the same eigenvalues are identical for the similar state matrices
A1, . . . , AN . It is clear that, this result cannot be used to show the uncontrollability of
the system in Example 3.8 as the identical eigenvector for same eigenvalue criteria is not
satisfied.

Example 3.9. (Ajayakumar and George, 2022b) Consider a homogeneous networked sys-
tem with 2 nodes, where the state matrices, control matrices and output matrices are given
by;

A1 =

[
1 0

2 3

]
, A2 =

[
3 0

2 1

]
, B1 = B2 =

[
1

0

]
, C1 = C2 =

[
1 0

0 1

]
The network topology matrix, inner-coupling matrix and the external control input matrix
are, respectively given by

L =

[
0 1

0 0

]
, H =

[
0 1

1 0

]
and D =

[
0 0

0 1

]

⊙ A1 and A2 are the same matrices from Example 3.8 and we have seen that they are
similar.

⊙ Clearly, C1 = C2. That is, k1 = k2 = 1.

⊙ The number of controlled nodes, m̃ = 1, and hence

2 = N >
m̃∑
i=1

rank(Bi) = 1

⊙ Also, P 2
1 =

[
1 −1

0 1

]
and P 1

2 =

[
1 1

0 1

]
commutes with C1, C2.

Thus, all the conditions of Theorem 3.8 are satisfied. The system can be written in the
compact form as in (3.7), where,

Ω =


1 0 0 1

2 3 1 0

0 0 3 0

0 0 2 1

 and Ψ =


0 0

0 0

0 1

0 0


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Then the networked system is controllable as the controllability matrix,

Q(Ω,Ψ) =
[
Ψ | ΩΨ | Ω2Ψ | Ω3Ψ

]
=


0 0 0 0 0 2 0 10

0 0 0 1 0 6 0 31

0 1 0 3 0 8 0 27

0 0 0 2 0 9 0 26


is of rank 4. Clearly both (A1, C1) and (A2, C2) are observable.

If D =

[
1 0

0 0

]
, with all other matrices unchanged, the matrix can be written in the

compact form as in Equation (3.7), where

Ω =


1 0 0 1

2 3 1 0

0 0 3 0

0 0 2 1

 and Ψ =


1 0

0 0

0 0

0 0


Then, the system is not controllable as the matrix

Q(Ω,Ψ) =
[
Ψ | ΩΨ | Ω2Ψ | Ω3Ψ

]
=


1 0 1 0 1 0 1 0

0 0 2 0 8 0 26 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


is of rank 2. Here, both (A1, C1) and (A2, C2) are also observable.

The above examples show that the observability of (Ai, Ci) for all i = 1, 2, . . . , N is
a necessary condition, but not sufficient. We can waive of the requirement that the state
matrices A1, . . . , AN are similar and strengthen Theorem 3.4 of Xiang et al.(Xiang et al.,
2019b), as follows also.

Theorem 3.9. (Ajayakumar and George, 2022b) Suppose N >
∑m̃

i=1 rank(Bi) and there

exists ki ̸= 0, i = 1, 2, . . . , N, such that k1C1 = · · · = kNCN . If the state matrices

A1, . . . , AN have a common eigenpair (s0, v) with Civ = 0 for some i ∈ {1, 2, . . . , N},

then the heterogeneous networked system (3.6)-(3.8) is uncontrollable.

Proof. Suppose that the state matrices A1, . . . , AN have a common eigenpair (s0, v) with
Civ = 0 for some i ∈ {1, 2, . . . , N}. As there exist ki ̸= 0, i = 1, 2, . . . , N, such that
k1C1 = · · · = kNCN , we get Civ = 0 for all i = 1, 2, . . . , N . Also (s0In − Ai)v = 0 for
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all i = 1, 2, . . . , N . Therefore, if we consider Ωs = sINn − Ω =
[
Ω1

s | . . . | ΩN
s

]
, where,

Ωi
s =

[
−β1i(HCi)

T | . . . | (sIn − Ai)
T | . . . | −βNi(HCi)

T
]T

.

Then Ωi
sv = 0 for all i = 1, 2, . . . , N . This implies that rank (Ωi

s) ≤ n − 1 for all
i = 1, 2, . . . , N and hence rank (Ωs) ≤ N(n − 1). As

∑m̃
i=1 rank(Bi) < N , we have

rank(sINn − Ω,Ψ) < Nn, which implies that the heterogeneous networked system (3.6)
- (3.8) is not controllable.

Example 3.10. (Ajayakumar and George, 2022b) Consider a homogeneous networked sys-
tem with 2 nodes, where the state matrices, control matrices and output matrices are given
by;

A1 =

[
1 2

0 3

]
, A2 =

[
1 5

0 4

]
, B1 = B2 =

[
1

0

]
, C1 = C2 =

[
0 1

]
The network topology matrix, inner-coupling matrix and the external control input matrix
are, respectively given by

L =

[
0 1

1 0

]
, H =

[
1

1

]
and D =

[
0 0

0 1

]

v1 u2v2

Figure 3.6: Networked system with two individual nodes and only node 2 having external
control input.

⊙ Here m̃ = 1 and

2 = N >
m̃∑
i=1

rank(Bi) = 1

⊙ Clearly, C1 = C2. That is, k1 = k2.

Thus, all the requirements of Theorem 3.9 are satisfied. Observe that, both A1 and A2

have 1 as an eigenvalue with v =

[
1

0

]
as an eigenvector. Also, C1v = C2v = 0. Then

by Theorem 3.9, the system is not controllable. We can verify this using Kalman’s rank
condition for controllability. The system can be written in the compact form as in Equation
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(3.7), where,

Ω =


1 2 0 1

0 3 0 1

0 1 1 5

0 1 0 4

 and Ψ =


0 0

0 0

0 1

0 0


Then the system is not controllable as the controllability matrix,

Q(Ω,Ψ) =
[
Ψ | ΩΨ | Ω2Ψ | Ω3Ψ

]
=


0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0


is of rank 1.

We can obtain a corrected version of Theorem 3.6 of Xiang et al.(Xiang et al., 2019b)
as a corollary of Theorem 3.9.

Corollary 3.2. (Ajayakumar and George, 2022b) Suppose N >
∑m̃

i=1 rank(Bi), and the

matrices A1, . . . , AN be similar to each other, where, the associated eigenvectors of the

same eigenvalue are identical and there exist ki ̸= 0, i = 1, 2, . . . , N, such that k1C1 =

· · · = kNCN . For the heterogeneous networked system (3) to be controllable, it is necessary

that (Ai, Ci) is observable for all i = 1, 2, . . . , N .

Proof. Suppose that (Ai, Ci) is not observable for some node i, say i0. Then there exists a
complex number s0 ∈ σ(Ai0) and a non-zero vector v ∈ Cn such that

Ci0v = 0

and
(s0In − Ai0)v = 0.

As the eigenvectors of the same eigenvalue are identical for the state matrices , (s0, v) is
a common eigenpair for all A1, . . . , AN . Then by Theorem theorem3.8, the heterogeneous
networked system (3) is uncontrollable.

3.6 Conclusions

This chapter presents the concept of networked system controllability and explored some of
the existing controllability results in the literature for both homogeneous and heterogeneous
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systems. Wang et al.(Wang et al., 2016b) examined networked MIMO LTI dynamical node
systems with a directed and weighted topology that did not require an external control in-
put for each subsystem. Some controllability constraints are set on network topology, node
dynamics, external control inputs, and inner coupling matrices, allowing effective criteria
for checking the controllability of large-scale networked systems. Wang et al.(Wang et al.,
2016b) developed a necessary and sufficient condition on the controllability of networked
MIMO systems by solving a series of equations. It was demonstrated that node controlla-
bility and observability are necessary but not sufficient for networked system controllability
under certain moderate conditions. Later, Wang P. et al.(Wang et al., 2017b) and Xiang et
al.(Xiang et al., 2019b) studied the controllability of heterogeneous networked systems and
obtained some controllability results.

Xiang et al.(Xiang et al., 2019b) derived a necessary condition for the controllability
of a special type of heterogeneous networked system, which states that the observability of
each node is necessary for the controllability of a heterogeneous networked system satis-
fying: 1) similar state matrices; 2) that output matrices are scalar multiples of one another;
and 3) that the rank of the input matrix of the networked system is less than the number
of nodes in the system. In this chapter, we have given a counterexample to show that this
claim is not true in general. We were able to identify the discrepancy and rectify it in the
form of Theorem 3.8 and 3.9. Furthermore, we have derived some necessary conditions for
the controllability of a heterogeneous networked system with aforementioned properties.
The obtained results are substantiated with numerical examples.
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Chapter 4

Controllability of Heterogeneous Networked
Systems with Identical Control Input Ma-
trices

4.1 Introduction

The controllability criteria discussed earlier are typically inapplicable for many situations
because of the complicated structures and tremendous computing overheads of large-scale
networked systems. Various measures have been devised for the controllability of complex
networks, where most are derived under the premise that the dimension of each node is
one(Liu et al., 2011; Lou and Hong, 2012; Nabi-Abdolyousefi and Mesbahi, 2013). How-
ever, in real-world networks, nodes frequently have higher-dimensional states that are con-
nected by multidimensional channels(Du et al., 2017; Wang et al., 2017a). In such cases,
the question of controllability becomes more sophisticated and intricate. Hao et al.(Hao
et al., 2018) studied the controllability of homogeneous networked systems where the net-
work topology is directed and weighted and the node systems have higher-dimensional dy-
namics, with multiple inputs and multiple outputs. When compared to the result obtained
by Wang et al.(Wang et al., 2016b) and Xiang et al.(Xiang et al., 2019b), the conditions
are more direct and easier to verify as it does not call for the solution of matrix equations.
Also, the corresponding conditions are obtained more precisely for networked MIMO sys-
tems in several typical topologies, such as cycles, undirected trees, and globally coupled
networks. Our objective is to generalize the result known to a class of heterogeneous net-
worked systems where the state matrices can be different in each node, whereas the control
input matrices are identical. The obtained results can be used to re-design an uncontrollable
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system into a controllable one.
The heterogeneous networked system model under discussion is formulated in Section

4.2. Controllability results obtained by Hao et al.(Hao et al., 2018) are discussed in Section
4.3. Section 4.4 contains our main results as well as numerical examples to support the
findings. Controllability of heterogeneous networked systems over some special network
topologies are also discussed in Section 4.5 and conclusions are given in Section 4.6.

4.2 Problem formulation

Consider a heterogeneous networked linear time-invariant system with N nodes, where the
ith node is described by the following differential equation:

ẋi(t) = Aixi(t) +
N∑
j=1

βijHxj(t) + diBui(t), i = 1, 2, . . . , N (4.1)

where, xi(t) ∈ Rn is the state vector; ui(t) ∈ Rm is the external control vector; Ai ∈ Rn×n

is the state matrix of node i; B ∈ Rn×m is the control matrix, with di = 1 if node i is
under control, otherwise di = 0. βij ∈ R represents the coupling strength between the
nodes i and j with βij ̸= 0 if there is a communication from node vj to node vi, otherwise
βij = 0, i, j = 1, 2, . . . , N and H ∈ Rn×n is the inner coupling matrix describing the
interconnections among the states xj, j = 1, 2, . . . , N of the nodes.
Let

L = [βij] ∈ RN×N and D = diag{d1, d2, . . . , dN} (4.2)

denote the network topology and external input channels of the networked system (4.1),
respectively. Denote the whole state of the networked system by X =

[
xT
1 , . . . , x

T
N

]T and
the total external control input vector by U =

[
uT
1 , . . . , u

T
N

]T .
Now, using the Kronecker product notation, the networked system (4.1) can be reduced

into the following compact form:

Ẋ(t) = ΩX(t) + ΨU(t) (4.3)

where,

Ω = A+ L⊗H

Ψ = D ⊗B
(4.4)
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and A = blockdiag{A1, A2, . . . , AN}. If the state node matrices A1, A2, . . . , AN are iden-
tical, that is, Ai = A, i = 1, 2, . . . , N , then the system (4.1) becomes a homogeneous
networked system.

4.3 Controllability of Homogeneous Networked Systems
over Diagonalizable Network Topology

In this section, we discuss the controllability results obtained by Hao et al.(Hao et al.,
2018). The idea of Hao et al.(Hao et al., 2018) was to identify the eigenvalues and eigen-
vectors of the state matrix Ω and then use PBH eigenvector test to derive necessary and
sufficient conditions for the controllability of a homogeneous networked system. Consider
the following theorem.

Theorem 4.1. (Hao et al., 2018) Assume that L is diagonalizable with the set of the eigen-

values σ(L) = {λ1, λ2, . . . , λN}. Let Mi = {µ1
i , µ

2
i , . . . , µ

qi
i } be the set of the eigenvalues

of A+ λiH, i = 1, 2, . . . , N . Then

σ(Ω) =
{
µ1
1, µ

2
1, . . . , µ

qi
1 , . . . , µ

1
N , µ

2
N , . . . , µ

qi
N

}
Moreover, the left eigenvectors of Ω associated with µj

i are ti ⊗ ξ1ij, ti ⊗ ξ2ij, . . . , ti ⊗ ξ
γij
ij

where ti is the left eigenvector of L corresponding to eigenvalue λi: γij ≥ 1 is the geometric

multiplicity of µj
i for A + λiH; ξkij(k = 1, . . . , γij) are the left eigenvectors of A + λiH

corresponding to µj
i , j = 1, 2, . . . , qi, i = 1, 2, . . . , N .

Using the above result Hao et al.(Hao et al., 2018) have proved the following neces-
sary and sufficient conditions for controllability of homogeneous networked systems over
a diagonalizable network topology.

Theorem 4.2. (Hao et al., 2018) Consider a homogeneous networked system with a diag-

onalizable network topology matrix L. Let σ(L) = {λ1, λ2, . . . , λN}. Then the networked

system (4.3)-(4.4) is controllable if and only if the following conditions are satisfied.

(i) (L,D) is controllable;

(ii) (A+ λiH,B) is controllable, for i = 1, 2, · · · , N ; and

(iii) If matrices A + λi1H, . . . , A + λipH (λik ∈ σ(L), for k = 1, . . . , p, p > 1) have

a common eigenvalue ρ, then (ti1D) ⊗ (ξ1i1B), . . . , (ti1D) ⊗ (ξ
γi1
i1

B), . . . , (tipD) ⊗
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(ξ1ipB), . . . , (tipD)⊗ (ξ
γip
ip

B) are linearly independent, where tik is the left eigenvec-

tor of L corresponding to the eigenvalue λik; γik ≥ 1 is the geometric multiplicity of

ρ for A+λikH; ξlik(l = 1, . . . , γik) are the left eigenvectors of A+λikH correspond-

ing to ρ, k = 1, . . . , p.

4.4 Controllability of Heterogeneous Networked Systems
with Identical Control Input Matrices

In this section, we investigate the controllability of (4.1) under certain network topologies.
Suppose that the network topology matrix L is triangularizable. That is, there exists a
non-singular matrix T such that TLT−1 = J , where J = uppertriang{λ1, λ2, . . . , λN}
is the Jordan Canonical Form of L. Let σ(Ai + λiH) = {µ1

i , . . . , µ
qi
i } denotes the set of

eigenvalues of Ai + λiH, i = 1, 2, . . . , N and ξkij, k = 1, . . . , γij be the left eigenvectors of
Ai + λiH corresponding to µj

i , j = 1, . . . , qi, i = 1, . . . , N , where γij ≥ 1 is the geometric
multiplicity of the eigenvalue µj

i .
We investigate the controllability of the original system (4.1) in terms of the eigenvalues

and left eigenvectors of the state matrix Ω in the compact form (4.3). When the network
topology matrix L is triangularizable with triangulizing matrix T and if T ⊗ I commutes
with A, we characterize the eigenvalues and left eigenvectors of Ω in terms of the eigenval-
ues and left eigenvectors of Ai + λiH, i = 1, 2, . . . , N as shown in the following theorem.

Theorem 4.3. (Ajayakumar and George, 2023b) Let T be the triangulizing matrix for the

network topology matrix L and suppose T ⊗ I commutes with A. Let (µj
i , ξ

k
ij) denotes the

left eigenpair of Ai + λiH . Then the following statements hold true.

(i) The eigenspectrum of Ω is the union of eigenspectrum of Ai + λiH , where, i =

1, 2, . . . , N . That is,

σ(Ω) = ∪N
i=1σ(Ai + λiH) = {µ1

1, . . . , µ
q1
1 , . . . , µ

1
N , . . . , µ

qN
N }

(ii) If J is a diagonal matrix, then eiT ⊗ ξkij, k = 1, . . . , γij are the left eigenvectors of

Ω corresponding to the eigenvalue µj
i , j = 1, . . . , qi, i = 1, . . . , N , where {ei : i =

1, 2, . . . , N} is the canonical basis for RN .

(iii) If J contains a Jordan block of order l ≥ 2 for some eigenvalue λi0 of L with ξkijH =

0 for all i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij , then eiT ⊗
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ξkij, k = 1, . . . , γij are the left eigenvectors of Ω corresponding to the eigenvalue

µj
i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi.

Proof. (i) By hypothesis, T is a non-singular matrix such that TLT−1 = J , where
J = uppertriang{λ1, λ2, . . . , λN} is the Jordan Canonical form of L. We will define
a matrix Ω̃ similar to Ω so that we can characterize the eigenvalues of Ω using the
eigenvalues of Ω̃. Also, we will compute the eigenvectors of Ω using the eigenvectors
of Ω̃. Define

Ω̃ = (T ⊗ I)Ω(T−1 ⊗ I) = (T ⊗ I)(A+ L⊗H)(T−1 ⊗ I)

As T ⊗ I commutes with A, we have

Ω̃ = A(T ⊗ I)(T−1 ⊗ I) + (T ⊗ I)(L⊗H)(T−1 ⊗ I) (using Theorem 2.3)

= A+ (TLT−1 ⊗H)

= A+ J ⊗H

= A+ uppertriang{λ1, λ2, . . . , λN} ⊗H

= blockuppertriang{A1 + λ1H, · · · , AN + λNH}

As the eigenvalues of a block upper triangular matrix are the union of the eigenvalues
of the matrices on the diagonal blocks, we have

σ(Ω̃) = ∪N
i=1σ(Ai + λiH) = {µ1

1, . . . , µ
q1
1 , . . . , µ

1
N , . . . , µ

qN
N }

By Theorem 2.1, similar matrices have same eigenvalues. Thus, both Ω̃ and Ω have
same eigenvalues and hence

σ(Ω) = ∪N
i=1σ(Ai + λiH) = {µ1

1, . . . , µ
q1
1 , . . . , µ

1
N , . . . , µ

qN
N }

(ii) Let ξkij, k = 1, . . . , γij be the left eigenvectors of Ai + λiH corresponding to µj
i , j =

1, . . . , qi, i = 1, . . . , N . If J is a diagonal matrix, then Ω̃ is a block diagonal matrix
and hence ei ⊗ ξkij, k = 1, . . . , γij are left eigenvectors of Ω̃ corresponding to µj

i , j =

1, . . . , qi, i = 1, . . . , N . Then, by Theorem 2.1

(
ei ⊗ ξkij

)
(T ⊗ I) = eiT ⊗ ξkij, k = 1, . . . , γij

are the left eigenvectors of Ω corresponding to the eigenvalue µj
i , j = 1, . . . , qi, i =
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1, . . . , N , where {ei : i = 1, 2, . . . , N} is the canonical basis for RN .

(iii) Suppose that J contains a Jordan block of order 2, corresponding to the eigenvalue
λi0 of L. Then the matrix Ω̃ contains the block matrix of the form

J =

[
Ai0 + λi0H H

0 Ai0+1 + λi0+1H

]
(4.5)

It follows easily that, ei0+1 ⊗ ξki0+1j, k = 1, 2, . . . , γi0+1j are eigenvectors of Ω̃ cor-
responding to the eigenvalues µj

i0+1, j = 1, 2, . . . , qi0+1. If ξki0j0H = 0 for all
k = 1, 2, . . . , γi0j0 , then ei0⊗ξki0j0 , k = 1, 2, . . . , γi0j0 are left eigenvectors of Ω̃ corre-
sponding to the eigenvalue µj0

i0
. Now suppose that J contains a Jordan block of order

l ≥ 2 for some eigenvalue λi0 of L, then again we can consider (l−1) block matrices
of the form (4.5) and by using the fact that ξkijH = 0 for all i = i0, i0+1, . . . , i0+ l−
1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij we get ei ⊗ ξkij, k = 1, 2, . . . , γij are left eigen-
vectors of Ω̃ corresponding to the eigenvalue µj

i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi.

We will prove that these are the only eigenvectors of Ω̃. Suppose that Ω̃ does not have
any Jordan blocks and let ξ =

[
ξ1 ξ2 . . . ξN

]
∈ RNn be a left eigenvector of Ω̃

corresponding to the eigenvalue µ, where ξ1, ξ2, . . . , ξN ∈ Rn. Then ξT Ω̃ = µξT

implies that 
ξ1 (A1 + λ1H)

ξ2 (A2 + λ2H)
...

ξN (AN + λNH)


T

= µ


ξ1

ξ2
...
ξN


T

This in-turn implies that µ is an eigenvalue of Ai + λiH for all i with ξi as an eigen-
vector. Suppose that Ω̃ has a block of type (4.5). Then ξT Ω̃ = µξT implies that

ξ1 (A1 + λ1H)
...

ξi (Ai + λiH)

ξiH + ξi+1H (A2 + λ2H)
...

ξ1 (AN + λNH)



T

= µ



ξ1
...
ξi

ξi+1

...
ξN



T

As ξi (Ai + λiH) = µξi, ξi is a left eigenvector of Ai+λiH . Then by our hypothesis,
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ξiH = 0. Hence µ is an eigenvalue of Ai + λiH for all i with ξ as an eigenvector.
Thus, if Ai + λiH, i = 1, 2, . . . , N does not have a common eigenvalue, then the left
eigenvectors of Ω̃ are of the form ei ⊗ ξ, where ξ is a left eigenvector of Ai + λiH

for some i. If they have a common eigenvalue, the eigenvectors are either of the
form ei ⊗ ξ, where ξ is a left eigenvector of Ai + λiH for some i or of the form∑r

α=1 eiα ⊗ ξiα , where Ai + λiH, i ∈ {i1, i2, . . . , ir} have a common eigenvalue µ

with eigenvector ξiα for each i1, i2, . . . , ir.

Thus in both cases,
(
ei ⊗ ξkij

)
(T ⊗ I) = eiT ⊗ ξkij(k = 1, . . . , γij) are the left eigen-

vectors of Ω corresponding to µj
i , j = 1, . . . , qi, i = 1, . . . , N .

Using the above result, we will prove the following necessary and sufficient conditions
for controllability of the heterogeneous networked system (4.3).

Theorem 4.4. (Ajayakumar and George, 2023b) Let T be a non-singular matrix triag-

ularizing matrix L such that T ⊗ I commutes with A. If J contains a Jordan block

of order l ≥ 2 corresponding to the eigenvalue λi0 of L, then assume that ξkijH = 0

for all i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij , where ξkij, i =

1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij are the left eigenvectors of Ai + λiH cor-

responding to the eigenvalues µj
i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi. Then the networked

system (4.3) is controllable if and only if

(i) eiTD ̸= 0 for all i = 1, . . . , N

(ii) (Ai + λiH,B) is controllable, for i = 1, 2, · · · , N ; and

(iii) If matrices Ai1 + λi1H,Ai2 + λi2H, . . . , Aip + λipH(λik ∈ σ(L), k = 1, . . . , p,

where p > 1) have a common eigenvalue ρ, then (ei1TD)⊗ (ξ1i1B), · · · , (ei1TD)⊗
(ξ

γi1
i1

B), . . . , (eipTD)⊗(ξ1ipB), . . . , (eipTD)⊗(ξ
γip
ip

B) are linearly independent vec-

tors, where γik ≥ 1 is the geometric multiplicity of σ for Aik + λikH and ξlik(l =

1, . . . , γik) are the left eigenvectors of Aik + λikH corresponding to σ, k = 1, . . . , p.

Proof. (Necessary part) From Theorem 4.3 it follows that, eiT ⊗ ξkij(k = 1, . . . , γij) are
left eigenvectors of Ω corresponding to µj

i , j = 1, . . . , qi, i = 1, . . . , N . If the networked
system (4.3) is controllable, then by PBH eigenvector test

(eiT ⊗ ξlij)(D ⊗B) ̸= 0, for l = 1, . . . , γij, j = 1, . . . , qi, i = 1, . . . , N

71



which implies that
eiTD ̸= 0, i = 1, . . . , N,

and
ξlijB ̸= 0, for l = 1, . . . , γij, j = 1, . . . , qi, i = 1, . . . , N

Since ξlij is an arbitrary left eigenvector of Ai + λiH , the controllability of (Ai + λiH,B),
for i = 1, . . . , N follows.

Assume that the matrices Ai1+λi1H, · · · , Aip+λipH(λik ∈ σ(L), k = 1, . . . , p, where p >

1) have a common eigenvalue ρ. Then all the left eigenvectors of Ω corresponding to ρ can
be expressed in the form of

∑p
k=1

∑γik
l=1 αkl(eikT ⊗ ξlik), where αkl ∈ R(k = 1, . . . , p, l =

1, . . . , γik) are scalars, not all are zero and ξ1ik , . . . , ξ
γik
ik

, are the eigenvectors of Aik +λikH

corresponding to the eigenvalue ρ, where k = 1, . . . , p. If the networked system is control-
lable, then [

p∑
k=1

γik∑
l=1

αkl(eikT ⊗ ξlik)

]
(D ⊗B) ̸= 0

Consequently, we have
p∑

k=1

γik∑
l=1

αkl(eikTD)⊗ (ξlikB) ̸= 0

for any scalars αkl ∈ R(k = 1, . . . , p, l = 1, . . . , γik), not all of them are zero. Therefore,
(ei1TD)⊗ (ξ1i1B), . . . , (ei1TD)⊗ (ξγi1i1 B), . . . , (eipTD)⊗ (ξ1ipB), . . . , (eipTD)⊗ (ξ

γip
ip B)

are linearly independent vectors in RNn.
(Sufficiency part) Suppose that the networked system is uncontrollable, then we will

prove that at least one condition in Theorem 4.4 does not hold. If the networked system is
not controllable, then there exists a left eigenpair of Ω, denoted as (µ̃, ṽ), such that ṽΨ = 0.

If µ̃ ∈ σ(Ai0 + λi0H) and µ̃ /∈ σ(A1 + λ1H) ∪ . . . ∪ σ(Ai0−1 + λi0−1H) ∪ σ(Ai0+1 +

λi0+1H) ∪ . . . ∪ σ(AiN + λiNH). Again ṽ can be written as a linear combination, ṽ =∑γi0j0
l=1 αl

0(ei0T ⊗ ξli0j0
), where ξ1i0j0

, . . . , ξ
γi0j0
i0j0

of left eigenvectors of Ai0 + λi0H corre-

sponding to µ̃, where,
[
α1
0, . . . , α

γi0j0
0

]
is some non-zero vector. Now ṽΨ = 0 implies

γi0j0∑
l=1

αl
0(ei0T ⊗ ξli0j0

)(D ⊗B) =

γi0j0∑
l=1

αl
0(ei0TD)⊗ (ξli0j0

B)

= (ei0TD)⊗

γi0j0∑
l=1

αl
0ξ

l
i0j0

B

 = 0
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This implies that ei0TD = 0 or
∑γi0j0

l=1 αl
0ξ

l
i0j0

B = 0. If
∑γi0j0

l=1 αl
0ξ

l
i0j0

B = 0, then

(Ai0 + λi0H,B) is uncontrollable as
∑γi0j0

l=1 αl
0ξ

l
i0j0

is a left eigenvector of Ai0 + λi0H .
Thus, if the networked system is uncontrollable, then either there exists λi0 ∈ σ(L) such
that (Ai0 + λi0H,B) is uncontrollable or ei0TD = 0 for some i0.

Let ρ be the common eigenvalue of the matrices Ai1 + λi1H, . . . , Aip + λipH(λik ∈
σ(L), for k = 1, . . . , p, p > 1) and the corresponding eigenvectors of Aik + λik are
ξ1ik , . . . , ξ

γik
ik

, where k = 1, . . . , p. Since ṽ can be expressed in the form
∑p

k=1

∑γik
l=1 α

kl
0

(
eikT ⊗ ξlik

)
,

where αkl
0 (l = 1, . . . , γik , k = 1, . . . , p) are some scalars, which are not all zero. Then

ṽΨ = 0 implies that there exists a non-zero vector
[
α11
0 , . . . , α

1γi1
0 , . . . , αp1

0 , . . . , α
pγip
0

]
such that[

p∑
k=1

γik∑
l=1

αkl
0

(
eikT ⊗ ξlik

)]
(D ⊗B) =

p∑
k=1

γik∑
l=1

αkl
0

[
(eikTD)⊗ (ξlikB)

]
= 0

This implies that (ei1TD)⊗(ξ1i1B), . . . , (ei1TD)⊗(ξ
γi1
i1

B), . . . , (eipTD)⊗(ξ1ipB), . . . , (eipTD)⊗
(ξ

γip
ip

B) are linearly dependent.
Therefore, if the networked system is uncontrollable, then at least one condition in

Theorem 4.4 does not hold, true.

The following examples demonstrate the application of the result for testing controlla-
bility of heterogeneous networked systems.

Example 4.1. (Ajayakumar and George, 2023b) Consider a heterogeneous networked sys-
tem as shown in Figure 4.1 composed of 3 nodes in which two nodes are identical. The
state matrices of each node (A1, A2, A3), control matrix B and inner coupling matrix H are
given by

A1 = A3 =

 1 −1 1

−1 1 0

1 1 1

 , A2 =

 1 0 0

−1 1 0

0 0 1

 , B =

12
1

 , H =

0 1 0

1 0 1

0 0 0

 (4.6)

The network topology matrix and the external input channel matrix are given by

L =

0 0 1

0 1 1

0 0 1

 and D =

1 0 0

0 1 0

0 0 1


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v1 v2

v3

u2

u3

u1

Figure 4.1: Controllable heterogeneous networked system with triangularizable network
topology L and node dynamics as given in (4.6).

For the network topology matrix L, there exists a non-singular matrix T =

1 0 −1

0 1 0

0 0 1


such that

TLT−1 =

1 0 −1

0 1 0

0 0 1


0 0 1

0 1 1

0 0 1


1 0 1

0 1 0

0 0 1

 =

0 0 0

0 1 1

0 0 1

 = J

Clearly, T ⊗ I commutes with A. The eigenvalues of L are λ1 = 0, λ2 = 1 and λ3 = 1

and J contains a Jordan block of order 2 corresponding to the eigenvalue λ2 = 1. Thus,

we have to verify whether the left eigenvectors of A2 + H =

1 1 0

0 1 1

0 0 1

 are orthogonal

to the columns of H . Observe that the eigenvalues of the matrix A2 + H are 1,1,1 and
ξ121 =

[
0 0 1

]
is the only left eigenvector of A2 +H corresponding to the eigenvalue 1.

Also, it satisfies ξ121H = 0. Then, we can easily verify the following:

(i) As TD = T =

1 0 −1

0 1 0

0 0 1

, eiTD ̸= 0 for all i = 1, 2, 3.

(ii) (A1, B), (A2 +H,B) and (A3 +H,B) are controllable.

(iii) ρ = 1 is a common eigenvalue of the matrices A2 + H and A3 + H have with left
eigenvectors ξ121 =

[
0 0 1

]
and ξ131 =

[
1 −1 0

]
, respectively. Also, the vectors

e2TD ⊗ ξ121B =
[
0 1 0

]
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and
e3TD ⊗ ξ131B =

[
0 0 −1

]
are linearly independent vectors.

As all the conditions (i)− (iii) of Theorem 4.4 are verified, the heterogeneous networked
system is controllable. The controllability of the given system by also using Kalman’s rank
condition. The system can be written in the compact form (4.3), with

Ω =



1 −1 1 0 0 0 0 1 0

−1 1 0 0 0 0 1 0 1

1 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 1 0

0 0 0 0 1 1 1 0 1

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 1


and Ψ =



1 0 0

2 0 0

1 0 0

0 1 0

0 2 0

0 1 0

0 0 1

0 0 2

0 0 1


We can see that the controllability matrix Q(Ω,Ψ) has rank 9 and hence the given system
is controllable.

Example 4.2. (Ajayakumar and George, 2023b) Consider a heterogeneous networked sys-
tem shown in Figure 4.2, which is composed of 3 nodes in which two nodes are identical.
The state matrices of each node (A1, A2, A3), control matrix B and inner coupling matrix
H are given by

A1 =

0 0 0

0 1 −2

0 0 −1

 , A2 = A3 =

0 1 1

2 1 −1

0 2 −1

 , B =

11
0

 , H =

1 1 0

0 1 1

0 1 1

 (4.7)

The network topology matrix and the external input channel matrix are given by

L =

1 1 1

0 0 1

0 1 0

 and D =

1 0 0

0 1 0

0 0 0


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v1u1 u2v2

v3

Figure 4.2: Controllable heterogeneous networked system with triangularizable network
topology L and node dynamics as in (4.7).

For the network topology matrix L, there exists a triangularizing non-singular matrix

T =

1 0 0

0 1 1

0 1
2

−1
2

 such that

TLT−1 =

1 0 0

0 1 1

0 1
2

−1
2


1 1 1

0 0 1

0 1 0


1 0 0

0 1
2

1

0 1
2

−1

 =

1 1 0

0 1 0

0 0 −1

 = J

Clearly, T ⊗ I commutes with A. The eigenvalues of L are, λ1 = 1, λ2 = 1 and λ3 = −1.
Also, J contains a Jordan block of order 2 corresponding to the eigenvalue 1. Observe that

the eigenvalues of the matrix A1 + H =

1 1 0

0 2 −1

0 1 0

 are 1,1,1 and ξ111 =
[
0 1 −1

]
is

the only left eigenvector of the matrix A1 + H corresponding to the eigenvalue 1. Also,
ξ111H = 0. Further, we can verify that

(i) eiTD ̸= 0 for all i = 1, 2, 3.

(ii) (A1 +H,B), (A2 +H,B) and (A3 −H,B) are controllable.

(iii) As the matrices A1 +H ,A2 +H and A3 −H do not have a common eigenvalue, the
condition (iii) in Theorem 4.4 is satisfied.

Thus all the conditions (i) − (iii) of Theorem 4.4 are verified. Hence, the heterogeneous
system is controllable. We can verify the controllability of the given system by also using
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Kalman’s rank condition. The system can be written in the compact form (4.3), with

Ω =



1 1 0 1 1 0 1 1 0

0 2 −1 0 1 1 0 1 1

0 1 0 0 1 1 0 1 1

0 0 0 0 1 1 1 1 0

0 0 0 0 2 −1 0 1 1

0 0 0 0 0 1 0 1 1

0 0 0 1 1 0 0 1 1

0 0 0 0 1 1 2 1 −1

0 0 0 0 1 1 0 2 −1


and Ψ =



1 0 0

1 0 0

0 0 0

0 1 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0


We can see that the controllability matrix Q(Ω,Ψ) has rank 9 and hence the given system
is controllable.

Hao et al.’s(Hao et al., 2018) result cannot be used to verify the controllability of the
systems in the above examples as the networked system follows heterogeneous dynamics
and the network topology matrix is non-diagonalizble. Now, we consider another example
of a controllable networked system having heterogeneous dynamics with diagonalizable
network topology matrix.

Example 4.3. (Ajayakumar and George, 2023b) Consider a heterogeneous networked sys-
tem composed of 3 nodes in which two nodes are identical. The state matrices of each node
(A1, A2, A3), control matrix B and inner coupling matrix H are given by

A1 =

0 1 0

0 0 1

0 0 1

 , A2 = A3 =

0 1 0

0 0 1

0 0 0

 , B =

10
1

 , H =

1 0 0

0 1 0

0 0 1


The network topology matrix and the external input channel matrix are given by

L =

1 0 0

0 1 0

0 1 0

 and D =

1 0 0

0 1 0

0 0 0



There exists a non-singular matrix T =

1 0 0

0 −1 1

0
√
2 0

 such that TLT−1 =

1 0 0

0 0 0

0 0 1

 = J .
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J has no Jordan block of order ≥ 2 and T ⊗ I commutes with A. λ1 = 1, λ2 = 0 and
λ3 = 1 are the eigenvalues of L. Also,

(i) eiTD ̸= 0 for all i = 1, 2, 3.

(ii) (A1 +H,B), (A2, B) and (A3 +H,B) are controllable.

(iii) The matrices A1+H and A3+H have a common eigenvalue 1 with left eigenvectors
ξ111 =

[
0 1 −1

]
and ξ131 =

[
0 0 1

]
respectively. Further,

e1TD ⊗ ξ111B =
[
−1 0 0

]
and

e3TD ⊗ ξ131B =
[
0

√
2 0

]
are linearly independent vectors.

Thus, all the conditions (i) − (iii) of Theorem 4.4 are verified. Hence, the heterogeneous
network system is controllable. We can also verify the controllability of the given system
using Kalman’s rank condition as the given system can be written in the compact form
(4.3), with

Ω =



1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0


and Ψ =



1 0 0

0 0 0

1 0 0

0 1 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0


This approach enable as to find the nodes to which a control can be applied to make an

uncontrollable system to a controllable system.

Remark 4.1. (Ajayakumar and George, 2023b) If eiTD = 0 for some i = 1, 2, . . . , N ,
then the given system is not controllable. For, we have, eiT ⊗ ξkij(k = 1, · · · , γij) are left
eigenvectors of Ω corresponding to µj

i , j = 1, . . . , qi, i = 1, . . . , N . If eiTD = 0 for some
i, say i0, then (ei0T ⊗ ξki0j)(D ⊗ B) = (ei0TD ⊗ ξki0jB) = 0 for all j = 1, 2, . . . , qi0 , k =

1, 2, . . . , γi0j . Then by PBH eigenvector test, the given system is not controllable.
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Now we may be able to modify the external input matrix D, so that eiTD ̸= 0, i =

1, . . . , N as shown in the following example.

Example 4.4. (Ajayakumar and George, 2023b) Consider a homogeneous network system
composed of 3 nodes. The state matrices of each node (A1, A2, A3), control matrix B and
inner coupling matrix H are given by

A1 = A2 = A3 = A =

0 1 0

0 0 1

0 0 0

 , B =

11
1

 , H =

1 0 0

0 1 0

0 0 1

 (4.8)

The network topology matrix and the external input channel matrix are given by

L =

0 0 1

1 0 0

1 0 0

 and D =

0 0 0

0 1 0

0 0 0



v1 v2

v3

u2

Figure 4.3: Heterogeneous networked system which is not controllable with a triangu-
larazible network topology L and node dynamics given in (4.8).

There exists a non-singular matrix T =

 0 1 −1
√
3
2

0
√
3
2

−
√
3
2

0
√
3
2

 such that TLT−1 =

0 0 0

0 1 0

0 0 −1

 =

J . Clearly, T ⊗ I commutes with A. From Remark 4.1, it is easy to verify that the net-
worked system is not controllable as

e2TD =
[
0 1 0

]0 1 0

0 0 0

0 0 0

 = 0

Observe that either d1 or d3 must be 1 so that eiTD ̸= 0 for all i = 1, 2, 3. Modify D as
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v1 v2

v3

u2

u3

Figure 4.4: The networked system becomes controllable with node dynamics as in (4.8),
if the external control input matrix is D̃.

D̃ =

0 0 0

0 1 0

0 0 1

. In other words, either node v1 or node v3 is supplied with a control input.

Then eiTD̃ ̸= 0 for all i = 1, 2, 3. For the modified network system, we can verify the
conditions (ii) and (iii) of Theorem 4.4. The eigenvalues of L are λ1 = 0, λ2 = 1 and
λ3 = −1. Clearly, (A,B), (A+H,B), (A−H,B) are controllable and these matrices do
not have a common eigenvalue. Thus, all the conditions of Theorem 4.4 are satisfied and
hence the modified heterogeneous system is controllable.

The condition that the matrix T ⊗ I commutes with A in Theorem 4.4 is automati-
cally satisfied when the networked system is homogeneous as we can see in the following
proposition.

Proposition 4.1. (Ajayakumar and George, 2023b) If the networked system (4.1) is a ho-

mogeneous system, that is, Ai = A for i = 1, 2, . . . , N , then T ⊗ I commutes with A.

Proof. The compact form of the networked system (4.1) is

Ẋ(t) = ΩX(t) + ΨU(t)

where,

Ω = A+ L⊗H

Ψ = D ⊗B

If the networked system (4.1) is a homogeneous system, then

A = blockdiag{A1, A2, . . . , AN} = blockdiag{A,A, . . . , A} = I ⊗ A
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Clearly,

(T ⊗ I)A = (T ⊗ I)(I ⊗ A)

= T ⊗ A

= (I ⊗ A)(T ⊗ I)

= A(T ⊗ I)

Thus, T ⊗ I commutes with A.

Consequently, for a homogeneous networked system, we have the following result.

Theorem 4.5. (Ajayakumar and George, 2023b) Suppose that the networked system (4.3)
is a homogeneous system, that is, Ai = A for all i = 1, . . . , N with

(a) a triangularizable network topology. That is, TLT−1 = J = uppertriang{λ1, . . . , λN},

where J is the Jordan Canonical Form of L; and

(b) if J contains a Jordan block of order l ≥ 2 corresponding to the eigenvalue λi0

of L and ξkijH = 0 for all i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi, k =

1, 2, . . . , γij , where ξkij, i = 1, 2, . . . , k = 1, 2, . . . , γij are the left eigenvectors of

A + λiH corresponding to the eigenvalues µj
i and γij ≥ 1 represents the geometric

multiplicity of µj
i .

Then the networked system (4.3) is controllable if and only if the following conditions are

satisfied.

(i) eiTD ̸= 0 for all i = 1, . . . , N , where {ei} is the canonical basis for RN .

(ii) (A+ λiH,B) is controllable, for i = 1, 2, · · · , N ; and

(iii) If matrices A + λi1H, . . . , A + λipH(λik ∈ σ(L), for k = 1, . . . , p, p > 1) have a

common eigenvalue ρ, then (ei1TD)⊗(ξ1i1B), . . . , (ei1TD)⊗(ξ
γi1
i1

B), . . . , (eipTD)⊗
(ξ1ipB), . . . , (eipTD) ⊗ (ξ

γip
ip

B) are linearly independent vectors where γik ≥ 1 is

the geometric multiplicity of the eigenvalue ρ for the matrix A + λikH and ξlik(l =

1, . . . , γik) are the left eigenvectors of A+ λikH corresponding to σ, k = 1, . . . , p.

In the following example, we verify the conditions of (i)− (iii) Theorem 4.5 to obtain
the controllability of a homogeneous networked system.
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Example 4.5. (Ajayakumar and George, 2023b) Consider a networked system with two
identical nodes. The state matrix A, control matrix B and inner coupling matrix H are
given by

A1 = A2 =

[
1 1

0 1

]
, B =

[
0

1

]
, H =

[
1 0

0 0

]
The network topology matrix and the external input channel matrix are given by

L =

[
0 1

1 0

]
and D =

[
1 0

0 0

]

Then, there exists a non-singular matrix T =

[
−1 1

1 1

]
such that TLT−1 =

[
−1 0

0 1

]
.

Here, λ1 = −1 and λ2 = 1 are the eigenvalues of L. Observe that

(i) eiTD ̸= 0 for all i = 1, 2.

(ii) (A1 −H,B), (A2 +H,B) are controllable. As the matrices A1 −H and A2 +H do
not have a common eigenvalue, condition (iii) is automatically satisfied.

Thus, all the conditions of Theorem 4.5 are verified. Hence, the homogeneous networked
system is controllable.

Remark 4.2. (Ajayakumar and George, 2023b) Verification of the following conditions
restrict the application of Theorem 4.4 to a general heterogeneous networked system.

(i) T ⊗ I commutes with A.

(ii) If the Jordan canonical form J of the network topology matrix L contains a Jordan
block of order l ≥ 2 corresponding to the eigenvalue λi0 of L, then assume that
ξkijH = 0 for all i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij ,
where ξkij, i = 1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij are the left eigenvectors
of Ai + λiH corresponding to the eigenvalues µj

i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi.

However, condition (i) is trivially satisfied in the case for a homogeneous networked system
and condition (ii) is automatically satisfied when the network topology is diagonalizable.
The network topology being triangularizable is an advantage over the existing results as the
available results are only for systems with a diagonalizable network topology. If a trian-
gularizable network topology is applied to a homogeneous system, Hao et al.’s(Hao et al.,
2018) result does not ensure controllability of the system as the network topology matrix
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is not diagonalizable. But, we have seen in Example 4.4 that our result can be applied to a
homogeneous networked system with non-diagonalizable network topology. Also, as seen
in Examples 4.1 - 4.3, our result can be applied to heterogeneous networked systems with
triangularizable network topology matrix. From the given examples it is evident that our
result is applicable to a larger class of networked systems. Another advantage is that, as
shown in Example 4.4, we can identify nodes of an uncontrollable system in which one
can apply control to a node to make the modified networked system controllable. Thus, the
results have application in design of network topology.

Hao et al. (Hao et al., 2018) have proved Theorem 4.1 as a necessary and sufficient
condition for the controllability of a homogeneous networked system with a diagonalizable
network topology matrix. With the help of the following proposition, we now show that
Theorem 4.4 is a generalization of Theorem 4.1 of Hao et al.(Hao et al., 2018).

Proposition 4.2. (Ajayakumar and George, 2023b) Suppose that the network topology ma-

trix L is diagonalizable. That is, there exists a matrix T such that TLT−1 = J , where J =

diag{λ1, . . . , λN}. Then (L,D) is controllable if and only if eiTD ̸= 0, i = 1, 2, . . . , N .

Proof. Given that there exists a matrix T such that TLT−1 = J , where J = diag{λ1, . . . , λN}.
Now,

TLT−1 = J ⇒ TL = JT

⇒ eiTL = eiJT ∀ i = 1, 2, . . . , N

⇒ (eiT )L = λi(eiT ) ∀ i = 1, 2, . . . , N

That is, eiT is a left eigenvector of L corresponding to the eigenvalue λi, i = 1, 2, . . . , N .
Then by PBH eigenvector test, (L,D) is controllable if and only if eiTD ̸= 0, i = 1, 2, . . . , N .

Thus by Proposition 4.2, we can now deduce the necessary and sufficient condition
for the controllability of a homogeneous networked system with a diagonalizable network
topology matrix L, established by Hao et al.(Hao et al., 2018) as a corollary of Theorem
4.5 as follows.

Corollary 4.1. (Hao et al., 2018) Consider a homogeneous networked system, that is,

Ai = A for all i = 1, . . . , N with a diagonalizable network topology matrix L. Let

σ(L) = {λ1, λ2, . . . , λN}. Then the networked system (4.1) is controllable if and only

if the following conditions are satisfied:
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(i) (L,D) is controllable;

(ii) (A+ λiH,B) is controllable, for i = 1, 2, · · · , N ; and

(iii) If matrices A + λi1H, . . . , A + λipH (λik ∈ σ(C), for k = 1, . . . , p, p > 1) have

a common eigenvalue ρ, then (ti1D) ⊗ (ξ1i1B), . . . , (ti1D) ⊗ (ξ
γi1
i1

B), . . . , (tipD) ⊗
(ξ1ipB), . . . , (tipD)⊗ (ξ

γip
ip

B) are linearly independent, where tik is the left eigenvec-

tor of L corresponding to the eigenvalue λik; γik ≥ 1 is the geometric multiplicity of

the eigenvalue ρ for the matrix A+λikH; ξlik(l = 1, . . . , γik) are the left eigenvectors

of A+ λikH corresponding to ρ, k = 1, . . . , p.

In view of Proposition 4.2, the condition (i) of Theorem 4.5 and condition (i) of Corol-
lary 4.1 are equivalent. The condition (ii) in Theorem 4.5 and Corollary 4.1 coincide. As
per the result of Hao et. al (Hao et al., 2018), if (λi, ti) and (µ, ξ) are the left eigenpairs of
L and A+λiH , respectively, then (µ, ξ(ti ⊗ In)) is a left eigenpair of Ω = IN⊗Ã+L⊗H .
This inturn implies that, the condition (iii) in Theorem 4.5 is equivalent to condition (iii)

in Corollary 4.1.

Remark 4.3. The existence of the matrix T satisfying all the required conditions is crucial
in applying the theorem. If the given system is such that Ai ̸= Aj for all i ̸= j, then for
A = blockdiag{A1, A2, . . . , AN} to commute with (T ⊗ I), T must be a diagonal matrix.
If Ai = Aj for some i ̸= j, then Tij and Tji are the only possible non-zero elements besides
the diagonal entries.

4.5 Controllability of Heterogeneous Systems over Spe-
cific Network Topologies

Now we investigate controllability properties of networked systems with some specific
network topologies. In a networked system, if there exists a node vj having no incoming
edge, we obtain a necessary condition for controllability as shown below.

Theorem 4.6. (Ajayakumar and George, 2023b) Suppose that there exists a node vj with

no edge from any other nodes. If (Aj, B) is not controllable, then the networked system

(4.3) is not controllable.

Proof. If there exists a node vj with no edge from any other nodes, the network topology
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matrix L is of the form

L =



β11 β12 . . . β1N

β21 β22 . . . β2N

...
...

...
...

β(j−1)1 β(j−1)2 . . . β(j−1)N

0 0 . . . 0

β(j+1)1 β(j+1)2 . . . β(j+1)N

...
...

...
...

βN1 βN2 . . . βNN


Suppose that (Aj, B) is not controllable. Then by PBH eigenvector test, there exists a non-
zero eigenvector ξ of Aj such that ξB = 0. The state matrix of the networked system Ω is
given by

Ω =



A1 + β11H β12H . . . . . . . . . β1NH

β21 A2 + β22H . . . . . . . . . β2NH
...

...
...

...
...

...
0 0 . . . Aj . . . 0
...

...
...

...
...

...
βN1H βN2H . . . . . . . . . AN + βNNH


and hence ej ⊗ ξ is a left eigenvector of Ω. Since ξB = 0,

(ej ⊗ ξ)(D ⊗B) = ejD ⊗ ξB = 0

Thus by the PBH eigenvector test the networked system is not controllable.

Example 4.6. (Ajayakumar and George, 2023b) Consider a heterogeneous network system
composed of 2 nodes. The state matrices of each node (A1, A2), control matrix B and inner
coupling matrix H are given by;

A1 =

[
2 1

3 0

]
, A2 =

[
1 1

0 3

]
, B =

[
1

0

]
and H =

[
1 1

0 1

]
(4.9)
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The network topology matrix and the external input channel matrix are given by;

L =

[
0 1

0 0

]
and D =

[
1 0

0 0

]

v1 v2u1

Figure 4.5: The networked system is not controllable with parameters given in (4.9). Ob-
serve that there are no edge to node v2 from node v1.

There is no edge to node v2 from node v1. Also, (A2, B) is not controllable as the control-
lability matrix

Q(A2, B) = [B | A2B] =

[
1 1

0 0

]
has rank 2. Hence by Theorem 4.6 the networked system is not controllable.

We can verify this by using Kalman’s rank condition. The given system can be written
in the compact form (4.3), where

Ω =


2 1 1 1

3 0 0 1

0 0 1 1

0 0 0 3

 and Ψ =


1

0

0

0


Then, the controllability matrix,

Q(Ω,Ψ) = [Ω | ΩΨ | Ω2Ψ | Ω3Ψ] =


1 2 7 20

0 3 6 21

0 0 0 0

0 0 0 0


has rank 2 and hence the given networked system is not controllable.

We have seen that the controllability of an individual node is necessary when there are
no incoming edges to that node. But this is not the case when there are no outgoing edges
from a node. Example 4.7 shows that controllability of an individual node is not necessary
for network controllability, even if there are no outgoing edges from that node.

Remark 4.4. (Ajayakumar and George, 2023b) If there exists some node vj with no edge
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to other nodes, the controllability of (Aj, B) is not necessary for the controllability of the
networked system.

Example 4.7. (Ajayakumar and George, 2023b) Consider a heterogeneous network system
composed of 2 nodes. The state matrices of each node (A1, A2), control matrix B and inner
coupling matrix H are given by;

A1 =

[
1 2

1 3

]
, A2 =

[
1 1

0 0

]
, B =

[
1

0

]
and H =

[
0 1

1 0

]
(4.10)

The network topology matrix and the external input channel matrix are given by;

L =

[
0 0

1 0

]
and D =

[
1 0

0 1

]

v1 v2 u2u1

Figure 4.6: The networked system is controllable with parameters given in (4.10). Observe
that there are no edge from node v2 to node v1.

There is no edge from node v2 to v1, and (A2, B) is not controllable as the controllability
matrix

Q(A2, B) = [B | A2B] =

[
1 1

0 0

]
has rank 1. The given system can be written in the compact form (4.3), where

Ω =


1 2 0 0

1 3 0 0

0 1 1 1

1 0 0 0

 and Ψ =


1 0

0 0

0 1

0 0


Then, the controllability matrix,

Q(Ω,Ψ) = [Ω | ΩΨ | Ω2Ψ | Ω3Ψ] =


1 0 1 0 3 0 11 0

0 0 1 0 4 0 15 0

0 1 0 1 2 1 7 1

0 0 1 0 1 0 3 0


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has rank 4 and hence the given networked system is controllable.

The following theorem addresses a situation where there is an individual node with no
outgoing edges. Here controllability of the mentioned individual node becomes a necessary
condition for the controllability of the networked system.

Theorem 4.7. (Ajayakumar and George, 2023b) Suppose that there exists a node vj from

which there is no edge to any other nodes. If ξH = 0 for all left eigenvectors ξ of Aj , then

the controllability of (Aj, B) is necessary for the controllability of the networked system.

Proof. If there exists some node vj from which no edge to any other nodes, then the net-
work topology matrix L takes the form,

L =


β11 β12 . . . β1(j−1) 0 β1(j+1) . . . β1N

β21 β22 . . . β2(j−1) 0 β2(j+1) . . . β2N

...
... . . .

...
...

... . . .
...

βN1 βN2 . . . βN(j−1) 0 βN(j+1) . . . βNN


The state matrix of the networked system Ω is given by,

Ω =



A1 + β11H β12H . . . 0 . . . β1NH

β21H A2 + β22H . . . 0 . . . β2NH
...

... . . . ... . . .
...

βj1H βj2H . . . Aj . . . βjNH
...

... . . .
... . . . ...

βN1H βN2H . . . 0 . . . AN + βNNH


Suppose that (Aj, B) is not controllable. Then by PBH eigenvector test there exists a left
eigenvector ξ of Aj such that ξB = 0. From the hypothesis of the theorem, ξH = 0 for all
left eigenvectors of Aj , ej ⊗ ξ is a left eigenvector of Ω. Also,

(ej ⊗ ξ)(D ⊗B) = ejD ⊗ ξB = 0

Hence by PBH eigenvector test the networked system is not controllable.

Example 4.8. (Ajayakumar and George, 2023b) Consider a heterogeneous network system
composed of 2 nodes. The state matrices of each node (A1, A2), control matrix B and inner
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coupling matrix H are given by;

A1 =

[
1 1

1 0

]
, A2 =

[
1 1

0 1

]
, B =

[
−1

0

]
and H =

[
1 2

0 0

]
(4.11)

The network topology matrix and the external input channel matrix are given by;

L =

[
0 0

1 0

]
and D =

[
1 0

0 0

]

v1 v2u1

Figure 4.7: The networked system is controllable with parameters given in (4.11). Observe
that there are no edge from node v2 to node v1.

There is no edge from node v2 to v1. Observe that the only left eigenvector of A2 is ξ =[
0 1

]
and

ξH =
[
0 1

] [1 2

0 0

]
=
[
0 0

]
(A2, B) is not controllable as the controllability matrix

Q(A2, B) = [B | A2B] =

[
−1 −1

0 0

]

has rank 1. Then by Theorem 4.7, the given networked system is not controllable.
We can verify this by using Kalman’s rank condition. The given system can be written

in the compact form (4.3), where

Ω =


1 1 0 0

1 0 0 0

1 2 1 1

0 0 1 0

 and Ψ =


−1

0

0

0


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Then, the controllability matrix,

Q(Ω,Ψ) = [Ω | ΩΨ | Ω2Ψ | Ω3Ψ] =


−1 −1 −2 −3

0 −1 −1 −1

0 −1 −4 −8

0 0 0 0


has rank 3 and hence the given networked system is not controllable.

4.6 Conclusions

Wang et al.(Wang et al., 2016b) derived a necessary and sufficient condition for the con-
trollability of homogeneous networked systems which was later extended to the class of
heterogeneous networked systems by Xiang et al.(Xiang et al., 2019b) However, this result
was computationally demanding and it had a resemblance with the PBH eigenvector test.
Also, the results do not provide much information regarding the effect of network topol-
ogy, nodal dynamics etc. on the controllability of networked systems. Hao et al.(Hao et al.,
2018) proposed a set of conditions that are necessary and sufficient for the controllability
of homogeneous networked systems which provided some information regarding the effect
of these factors. The obtained results were comparatively easy to verify.

In this chapter, a set of conditions that are necessary and sufficient for the controllability
of a class of heterogeneous networked systems where the state matrices can be distinct in
each node and the control matrices are identical, is derived. Furthermore, our result extends
the study scope to a broader class of systems from the available literature by generalizing
the work of Hao et al.(Hao et al., 2018) on controllability of homogeneous LTI networked
systems to heterogeneous systems. In addition, controllability results over specific network
topologies have been derived for a general heterogeneous networked system. Our result is
easy to verify compared to previous findings in the literature. It provides more information
about how subsystem dynamics, network topology, and other factors affect the controlla-
bility of a networked system. Also, our result can be used to modify a networked system by
identifying the nodes that require a control input to make an uncontrollable system into a
controllable system, as shown in Example 4.4. Even though our result applies to a broader
class of systems, there are some limitations, as mentioned in Remark 4.2, which we hope to
rectify in further research. The theoretical results are illustrated using numerical examples.
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Chapter 5

Controllability of Heterogeneous Networked
Systems with Non-Identical Control In-
put Matrices

5.1 Introduction

The controllability of networked systems with individual nodes possessing identical control
matrices and non-identical state matrices was investigated in the preceding chapter. Having
the same control matrix in each individual node was considered as a constraint on the
previous results. Nonetheless, the controllability of heterogeneous networked systems —
where each node has a different state and control matrix — is studied in this chapter. We use
the same methodology as in the previous chapter. First, we will compute the eigenvalues
and eigenvectors of the state matrix Ω and then we will use PBH eigenvector test to obtain
necessary and sufficient conditions for the controllability of such systems. The obtained
results generalizes the results obtained by Hao et al.(Hao et al., 2019) and Ajayakumar et
al.(Ajayakumar and George, 2023b). The same methodology is used to obtain simplified
controllability conditions for networked systems having an upper/lower triangular matrix
as its network topology matrix L.

The heterogeneous networked system models under consideration is formulated in Sec-
tion 5.2. Controllability of heterogeneous networked systems with non-identical control
matrices is discussed in and the controllability results for such systems having non-identical
inner coupling matrices and triangular network topology matrix are obtained in Section 5.4.
Derived results are substantiated with numerical examples. Conclusions are given in Sec-
tion 5.5.
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5.2 Problem formulation

Consider a heterogeneous networked linear time-invariant system with N nodes, where the
ith node is described by the following differential equation:

ẋi(t) = Aixi(t) +
N∑
j=1

βijHxj(t) + diBiui(t), i = 1, 2, . . . , N (5.1)

where, xi(t) ∈ Rn is the state vector and ui(t) ∈ Rm is the external control vector. Ai is an
n × n matrix and Bi is an n × m matrix called the state matrix and the control matrix of
node i respectively.

di =

1, if node i is under control

0, otherwise

The connection strength between the nodes j and i is given by βij ∈ R. If there is a
communication from node j to node i, βij ̸= 0 and otherwise, βij = 0, i, j = 1, 2, . . . , N .
The n × n matrix H denotes the inner coupling matrix describing the interconnections
among the states xj, j = 1, 2, . . . , N of the nodes.

The network topology and external input channels of the networked system (5.1), are
given by the N ×N matrices

L = [βij] and D = diag{d1, d2, . . . , dN} (5.2)

respectively. If we denote the network state matrix and the total external control input of
the networked system (5.1) by X =

[
xT
1 , . . . , x

T
N

]T and U =
[
uT
1 , . . . , u

T
N

]T
, respectively,

using the Kronecker product notation, the system (5.1) can be reduced into the following
compact form:

Ẋ(t) = ΩX(t) + ΨU(t) (5.3)

with,

Ω = A+ L⊗H

Ψ = (D ⊗ I)B
(5.4)

where A = blockdiag{A1, A2, . . . , AN} and B = blockdiag{B1, B2, . . . , BN}. If the
inner coupling matrix is also different in each node, i.e., if the dynamics of the ith node is
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given by

ẋi(t) = Aixi(t) +
N∑
j=1

βijHixj(t) + diBiui(t), i = 1, 2, . . . , N (5.5)

The networked system can be reduced to the compact form (5.3), where

Ω =


A1 + β11H1 β12H1 . . . β1NH1

β21H2 A2 + β22H2 . . . β2NH2

...
... . . . ...

βN1HN βN2HN . . . AN + βNNHN


and Ψ = (D ⊗ I)B with B = blockdiag{B1, B2, . . . , BN}.

5.3 Controllability of Heterogeneous Networked Systems
with Non-Identical Control Matrices

In the previous chapter, we studied the controllability of (5.3) when the network topology
is triangularizable, and the system parameter matrices satisfy certain conditions. There the
control input matrices were assumed to be identical in each node. Here, we will extend this
result to a system where each node has different control matrix.

Suppose that the network topology matrix L is triangularizable. That is, there exists a
non-singular matrix T such that TLT−1 = J , where J = uppertriang{λ1, λ2, . . . , λN}
is the Jordan Canonical Form of L. Let σ(Ai + λiH) = {µ1

i , . . . , µ
qi
i } denotes the set of

eigenvalues of Ai + λiH, i = 1, 2, . . . , N and ξkij, k = 1, . . . , γij be the left eigenvectors of
Ai + λiH corresponding to µj

i , j = 1, . . . , qi, i = 1, . . . , N , where γij ≥ 1 is the geometric
multiplicity of the eigenvalue µj

i . With the aid of Theorem 4.3, we can prove the following
necessary and sufficient conditions for controllability of the networked system (5.3).

Theorem 5.1. (Ajayakumar and George, 2023a) Let T be a non-singular matrix triag-

ularizing matrix L such that T ⊗ I commutes with A. If J contains a Jordan block

of order l ≥ 2 corresponding to the eigenvalue λi0 of L, then assume that ξkijH = 0

for all i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij , where ξkij, i =

1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij are the left eigenvectors of Ai + λiH cor-

responding to the eigenvalues µj
i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi. Then the networked

system (5.3) is controllable if and only if
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(i) eiTD ̸= 0 for all i = 1, . . . , N

(ii) For a fixed i, each left eigenvector ξ of Ai+λiH , ξBj ̸= 0 for some j ∈ {1, 2, · · · , N}
with [eiTD]j ̸= 0 ; and

(iii) If matrices Ai1+λi1H,Ai2+λi2H, . . . , Aip+λipH(λik ∈ σ(C), k = 1, . . . , p, where p >

1) have a common eigenvalue ρ, then (ei1TD⊗ξ1i1)B, · · · , (ei1TD⊗ξ
γi1
i1

)B, . . . , (eipTD⊗
ξ1ip)B, . . . , (eipTD ⊗ ξ

γip
ip

)B are linearly independent vectors, where γik ≥ 1 is the

geometric multiplicity of the eigenvalue ρ for the matrix Aik + λikH and ξlik(l =

1, . . . , γik) are the left eigenvectors of Aik + λikH corresponding to ρ, k = 1, . . . , p.

Proof. (Necessary part) Fix i. Let ξ be an arbitrary left eigenvector of Ai + λiH . From
Theorem 4.3, we have that that eiT ⊗ ξ is a left eigenvector of Ω. By PBH eigenvector test,
for the networked system (5.3) to be controllable, we must have

(eiT ⊗ ξ)(D ⊗ I)B = (eiTD ⊗ ξ)B ̸= 0

This implies that eiTD ̸= 0 and ξBj ̸= 0 for some j ∈ {1, 2, . . . , N} with [eiTD]j ̸= 0.
Now, suppose that the matrices Ai1 + λi1H, . . . , Aip + λipH(λik ∈ σ(L), k = 1, . . . , p,

where p > 1) have a common eigenvalue ρ. Then the left eigenvectors of Ω corresponding
to ρ can be expressed as a linear combination in the form

∑p
k=1

∑γik
l=1 αkl(eikT⊗ξlik), where

αkl ∈ R(k = 1, . . . , p, l = 1, . . . , γik) are scalars, not all are zero and ξ1ik , . . . , ξ
γik
ik

, are the
eigenvectors of Aik + λikH corresponding to the eigenvalue ρ, where k = 1, . . . , p. If the
networked system is controllable, then[

p∑
k=1

γik∑
l=1

αkl(eikT ⊗ ξlik)

]
(D ⊗ I)B ̸= 0

Consequently, we have

p∑
k=1

γik∑
l=1

αkl

{[
(eikTD)⊗ (ξlik)

]
B
}
̸= 0

for any scalars αkl ∈ R(k = 1, . . . , p, l = 1, . . . , γik), not all of them are zero. This implies
that the vectors [(ei1TD)⊗ (ξ1i1)]B, . . . , [(ei1TD)⊗ (ξγi1i1 )]B, . . . ,

[
(eipTD)⊗ (ξ1ip)

]
B, . . . ,[

(eipTD)⊗ (ξ
γip
ip )
]
B are linearly independent in RNn.

(Sufficiency part) To prove the converse part, we will show that if the networked sys-
tem is uncontrollable, at least one condition in Theorem 5.1 does not hold. Suppose that
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the networked system (5.3) is not controllable. Then by PBH eigenvector test, there exists
a left eigenpair (µ̃, ṽ) of Ω, such that ṽΨ = 0.

If µ̃ ∈ σ(Ai0 + λi0H) and µ̃ /∈ σ(A1 + λ1H) ∪ . . . ∪ σ(Ai0−1 + λi0−1H) ∪ σ(Ai0+1 +

λi0+1H) ∪ . . . ∪ σ(AiN + λiNH). Again ṽ can be written as a linear combination, ṽ =∑γi0j0
l=1 αl

0(ei0T ⊗ ξli0j0
), where ξ1i0j0

, . . . , ξ
γi0j0
i0j0

of left eigenvectors of Ai0 + λi0H corre-

sponding to µ̃, where,
[
α1
0, . . . , α

γi0j0
0

]
is some non-zero vector. Now ṽΨ = 0 implies

γi0j0∑
l=1

αl
0(ei0T ⊗ ξli0j0

)(D ⊗ I)B =

(ei0TD)⊗

γi0j0∑
l=1

αl
0ξ

l
i0j0

B = 0

This implies that either ei0TD = 0 or
(∑γi0j0

l=1 αl
0ξ

l
i0j0

)
Bj = 0 for all j ∈ {1, 2, · · · , N}

with [eiTD]j ̸= 0. Keep in mind that
∑γi0j0

l=1 αl
0ξ

l
i0j0

is a left eigenvector of Ai0 + λi0H .
Thus, if the networked system is uncontrollable, then either condition (i) or condition (ii)

does not hold true.
Let µ̃ be the common eigenvalue of the matrices Ai1 + λi1H, . . . , Aip + λipH(λik ∈

σ(L), for k = 1, . . . , p, p > 1). Also, let the eigenvectors of Aik + λik corresponding to µ̃

are ξ1ik , . . . , ξ
γik
ik

, where k = 1, . . . , p. Since ṽ can be expressed in the form

ṽ =

p∑
k=1

γik∑
l=1

αkl
0

(
eikT ⊗ ξlik

)
where αkl

0 (l = 1, . . . , γik , k = 1, . . . , p) are some scalars, which are not all zero. Then
ṽΨ = 0 implies that there exists a non-zero vector

[
α11
0 , . . . , α

1γi1
0 , . . . , αp1

0 , . . . , α
pγip
0

]
such that[

p∑
k=1

γik∑
l=1

αkl
0

(
eikT ⊗ ξlik

)]
(D ⊗ I)B =

p∑
k=1

γik∑
l=1

αkl
0

{[
(eikTD)⊗ (ξlik)

]
B
}
= 0

This implies that (ei1TD⊗ξ1i1)B, . . . , (ei1TD⊗ξ
γi1
i1

)B, . . . , (eipTD⊗ξ1ip)B, . . . , (eipTD⊗
ξ
γip
ip

)B are linearly dependent. Thus at least one condition in Theorem 5.1 does not hold
true, when the networked system is not controllable.

The following numerical examples illustrate the controllability result obtained in The-
orem 5.1.

Example 5.1. (Ajayakumar and George, 2023a) Consider a heterogeneous networked sys-
tem with 3 nodes with the following dynamics; The state matrices and control matrices of
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each nodes are given by,

A1 =

1 1 1

0 1 1

0 0 1

 , A2 = A3 =

1 2 1

0 1 1

1 1 2

 , B1 =

10
1

 , B2 =

 1

−1

−1

 , B3 =

11
1

 (5.6)

The network topology matrix, inner-coupling matrix and the external control input matrix
are respectively,

L =

0 0 1

0 1 1

0 0 0

 , H =

1 1 0

1 1 1

0 0 0

 and D =

1 0 0

0 0 0

0 0 1

 (5.7)

v1u1

u3

v2

v3

Figure 5.1: Controllable heterogeneous networked system with triangularizable network
topology L and node dynamics as in (5.6)-(5.7).

There exists a non-singular matrix T =

1 0 0

0 0 1

0 1 1

 such that TLT−1 =

0 1 0

0 0 0

0 0 1

. We

have, λ1 = 0, λ2 = 0 and λ3 = 1. Clearly, J contains a Jordan block of order 2 corre-
sponding to 0. ξ111 =

[
0 0 1

]
is the only left eigenvector of the matrix A1 + λ1H = A1

and ξ111H = 0. Also T ⊗ I commutes with A. Then,

(i) as TD =

1 0 0

0 0 1

0 0 1

, eiTD ̸= 0 for all i = 1, 2, 3.

(ii) for A1 + λ1H = A1 =

1 1 1

0 1 1

0 0 1

, the only left eigenvector is ξ111 =
[
0 0 1

]
. We

have [e1TD]1 ̸= 0 and ξ111B1 ̸= 0.
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For the matrix A2 + λ2H = A2 =

1 2 1

0 1 1

1 1 2

 the left eigenvectors are respectively

ξ121 =
[
0.44062 0.828911 1

]
ξ122 =

[
−0.72031− 0.784805i −0.914456 + 1.47641i 1

]
and

ξ123 =
[
−0.72031 + 0.784805i −0.914456− 1.47641i 1

]
We have [e2TD]3 ̸= 0 and ξ121B3, ξ

1
22B3, ξ

1
23B3 ̸= 0.

For the matrix A3 + λ3H = A3 +H =

2 3 1

1 2 2

1 1 2

, the left eigenvectors are respec-

tively

ξ131 =
[
0.720551 1.09001 1

]
ξ132 =

[
−0.0875483− 0.34424i −0.681369 + 0.450503i 1

]
and

ξ133 =
[
−0.0875483 + 0.34424i −0.681369− 0.450503i 1

]
We have [e3TD]3 ̸= 0 and ξ131B3, ξ

1
32B3, ξ

1
33B3 ̸= 0.

(iii) as the matrices A1, A2 and A3 + H do not have any common eigenvalues, third
condition of Theorem 5.1 is automatically satisfied.

Thus all the conditions of Theorem 5.1 are satisfied and hence the given networked system
is controllable.

We can also use the Kalaman’s rank condition to verify the controllability of the given
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networked system. The system can be written in the compact form (5.3), where

Ω =



1 1 1 0 0 0 1 1 0

0 1 1 0 0 0 1 1 1

0 0 1 0 0 0 0 0 0

0 0 0 2 3 1 1 1 0

0 0 0 1 2 2 1 1 1

0 0 0 1 1 2 0 0 0

0 0 0 0 0 0 1 2 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 2


and Ψ =



1 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 1

0 0 1


We can see that the controllability matrix Q(Ω,Ψ) has rank 9 and hence the given net-
worked system is controllable.

The following illustration demonstrates how Theorem 5.1 can be used to make an un-
controllable system controllable.

Example 5.2. (Ajayakumar and George, 2023a) Consider a heterogeneous networked sys-
tem with 3 nodes with the following dynamics; The state matrices and control matrices of
each nodes are given by,

A1 =

0 0 0

0 1 −2

0 0 −1

 , A2 = A3 =

0 1 1

2 1 −1

0 2 −1

 , B1 =

01
1

 , B2 =

01
0

 , B3 =

01
1


(5.8)

The network topology matrix, inner-coupling matrix and the external control input matrix
are respectively,

L =

1 1 1

0 0 1

0 1 0

 , H =

1 1 0

0 1 1

0 1 1

 and D =

1 0 0

0 0 0

0 0 0

 (5.9)

There exists T =

1 0 0

0 1 1

0 1
2

−1
2

 such that TLT−1 =

1 1 0

0 1 0

0 0 −1

. The eigenvalues

of L are, λ1 = 1, λ2 = 1 and λ3 = −1. Clearly, J contains a Jordan block of order 2.
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v1u1 v2

v3

Figure 5.2: Uncontrollable heterogeneous networked system with triangularizable network
topology L and node dynamics as in (5.8)-(5.9).

Observe that ξ111 =
[
0 1 −1

]
is the only left eigenvector corresponding to the matrix

A1+H and ξ111H = 0. Also T ⊗I commutes with A. Here, as TD =

1 0 0

0 0 0

0 0 0

, we have

e2TD = e3TD = 0. Then, by Theorem 5.1, the networked system is not controllable. It
is easy to observe that, either node v2 or v3 must be supplied with a control input, so that
eiTD ̸= 0 for all i = 1, 2, 3. Suppose that node v2 is supplied with an external control

input matrix. That is, D =

1 0 0

0 1 0

0 0 0

. Then the network graph is as follows:

v1u1 u2v2

v3

Figure 5.3: Network graph of the given system with control inputs in mode v1 and v2.

Even after giving a control input in node v2 the networked system is not controllable as
[e1TD]1 is the only non-zero entry in e1TD and ξ111B1 = 0. If we could change the control
input matrix B1 so that ξ111B1 ̸= 0, we can make this uncontrollable system to a controllable

system. For example, consider B1 =

11
0

. Then,

(i) as TD =

1 0 0

0 1 0

0 1
2

0

, eiTD ̸= 0 for all i = 1, 2, 3.
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(ii) for A1 +H =

1 1 0

0 2 −1

0 1 0

, the only left eigenvector is ξ111 =
[
0 −1 1

]
. We have

[e1TD]1 ̸= 0 and ξ111B1 ̸= 0.

For A2 +H =

1 2 1

2 2 0

0 3 0

, the left eigenvectors are

ξ121 =
[
3.90547 5.67363 1

]
ξ122 =

[
−0.452737 + 1.15383i −0.336813− 1.0993i 1

]
and

ξ123 =
[
−0.452737− 1.15383i −0.336813 + 1.0993i 1

]
We have [e2TD]2 ̸= 0 and ξ121B2, ξ

1
22B2, ξ

1
23B2 ̸= 0.

and for the matrix A3 −H =

−1 0 1

2 0 −2

0 1 −2

, the left eigenvectors are

ξ131 =
[
2 1 0

]
ξ132 =

[
−0.25 + 0.661438i −0.375− 0.330719i 1

]
and

ξ133 =
[
−0.25− 0.661438i −0.375 + 0.330719i 1

]
We have [e3TD]2 ̸= 0 and ξ131B2, ξ

1
32B2, ξ

1
33B2 ̸= 0.

(iii) as the matrices A1 +H,A2 +H and A3 −H do not have any common eigenvalues,
third condition of Theorem 5.1 is satisfied.

Thus all the conditions of Theorem 5.1 are satisfied and hence the system is controllable.

Thus, with the help of conditions in Theorem 5.1 we can modify the system components
in order to make an uncontrollable system controllable. Now, suppose that (Ai + λiH,Bj)

is controllable for some j ∈ {1, 2, · · · , N} with [eiTD]j ̸= 0. Then by PBH eigenvector
test, for each left eigenvector ξ of Ai + λiH , ξBj ̸= 0. From this idea, we can derive
the following result as a corollary of Theorem 5.1, which gives a sufficient condition for
controllability.
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Corollary 5.1. (Ajayakumar and George, 2023a) Let T be a non-singular matrix triag-

ularizing matrix L such that T ⊗ I commutes with A. If J contains a Jordan block

of order l ≥ 2 corresponding to the eigenvalue λi0 of L, then assume that ξkijH = 0

for all i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij , where ξkij, i =

1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij are the left eigenvectors of Ai + λiH cor-

responding to the eigenvalues µj
i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi. Then the networked

system (5.3) is controllable if the following conditions are satisfied.

(i) eiTD ̸= 0 for all i = 1, . . . , N

(ii) For a fixed i, (Ai + λiH,Bj) is controllable for some j ∈ {1, 2, · · · , N} with

[eiTD]j ̸= 0 ; and

(iii) If matrices Ai1+λi1H,Ai2+λi2H, . . . , Aip+λipH(λik ∈ σ(L), k = 1, . . . , p, where p >

1) have a common eigenvalue ρ, then (ei1TD⊗ξ1i1)B, · · · , (ei1TD⊗ξ
γi1
i1

)B, . . . , (eipTD⊗
ξ1ip)B, . . . , (eipTD ⊗ ξ

γip
ip

)B are linearly independent vectors, where γik ≥ 1 is the

geometric multiplicity of the eigenvalue ρ for the matrix Aik + λikH and ξlik(l =

1, . . . , γik) are the left eigenvectors of Aik + λikH corresponding to ρ, k = 1, . . . , p.

Example 5.3. (Ajayakumar and George, 2023a) Consider a networked system with 3
nodes, where the dynamics of the system is given as follows;

A1 = A2 = A3 =

1 1 0

2 1 2

0 2 1

 , B1 =

11
0

 , B2 =

10
0

 , B3 =

10
1

 (5.10)

The network topology matrix, inner-coupling matrix and the external input matrix are given
by ,

L =

0 0 1

1 0 0

1 0 0

 , H =

0 1 0

1 0 1

0 1 1

 and D =

1 0 0

0 1 0

0 0 0

 (5.11)

L is diagonalizable with T =

 0 1 −1
√
3
2

0
√
3
2

−
√
3
2

0
√
3
2

, such that TLT−1 =

0 0 0

0 1 0

0 0 −1

 = J .

We have λ1 = 0, λ2 = 1 and λ1 = −1. Clearly, J does not contain any Jordan blocks and
T ⊗ I commutes with A. Then,
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(i) as TD =

 0 1 0
√
3
2

0 0

−
√
3
2

0 0

, eiTD ̸= 0 for all i = 1, 2, 3.

(ii) We have [e1TD]2 , [e2TD]1 , [e3TD]1 ̸= 0. Here (A1, B2), (A2 +H,B1) and (A1 −
H,B2) are controllable.

(iii) Here A1 and A3 − H has a common eigenvalue, ρ = 1. The corresponding left
eigenvectors are respectively, ξ =

[
−2 0 1

]
and ν =

[
1 0 0

]
. Clearly, (e1TD⊗

ξ)B ̸= 0 and (e3TD ⊗ ν)B ̸= 0.

Thus all the conditions of Corollary 5.1 are satisfied and hence the given system is control-
lable.

We can also use the Kalaman’s rank condition to verify the controllability of the given
networked system. The system can be written in the compact form (5.3), where

Ω =



1 1 0 0 0 0 0 1 0

2 1 2 0 0 0 1 0 1

0 2 1 0 0 0 0 1 1

0 1 0 1 1 0 0 0 0

1 0 1 2 1 2 0 0 0

0 1 1 0 2 1 0 0 0

0 1 0 0 0 0 1 1 0

1 0 1 0 0 0 2 1 2

0 1 1 0 0 0 0 2 1


and Ψ =



1 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0


We can see that the controllability matrix Q(Ω,Ψ) has rank 9 and hence the given net-
worked system is controllable.

If Bi = B for all i = 1, 2, . . . , N , then the Theorem 4.4 can be obtained as a conse-
quence of Corollary 5.1.

Theorem 5.2. (Ajayakumar and George, 2023b) Let T be a non-singular matrix triag-

ularizing matrix L such that T ⊗ I commutes with A. If J contains a Jordan block

of order l ≥ 2 corresponding to the eigenvalue λi0 of L, then assume that ξkijH = 0

for all i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij , where ξkij, i =

1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij are the left eigenvectors of Ai + λiH cor-

responding to the eigenvalues µj
i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi. Then the networked

system (5.3) is controllable if and only if
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(i) eiTD ̸= 0 for all i = 1, . . . , N

(ii) (Ai + λiH,B) is controllable, for i = 1, 2, · · · , N ; and

(iii) If matrices Ai1+λi1H,Ai2+λi2H, . . . , Aip+λipH(λik ∈ σ(L), k = 1, . . . , p, where p >

1) have a common eigenvalue ρ, then (ei1TD)⊗(ξ1i1B), . . . , (ei1TD)⊗(ξ
γi1
i1

B), . . . , (eipTD)⊗
(ξ1ipB), . . . , (eipTD) ⊗ (ξ

γip
ip

B) are linearly independent vectors, where γik ≥ 1 is

the geometric multiplicity of the eigenvalue ρ for the matrix Aik + λikH and ξlik(l =

1, . . . , γik) are the left eigenvectors of Aik + λikH corresponding to ρ, k = 1, . . . , p.

5.4 Controllability of Heterogeneous Networked Systems
with Triangular Network Topology

Now we will discuss the controllability of system (5.5), when the network topology is given
by an upper/lower triangular matrix and the state matrices have certain properties. Here
also, we will characterize the controllability of networked system interms of eigenvalues
and eigenvectors of the state matrix Ω.

Theorem 5.3. (Ajayakumar and George, 2023a) Assume that L is an upper triangular

matrix. Let σ(Ai + βiiHi) = {µ1
i , . . . , µ

qi
i } be the set of eigenvalues of Ai + βiiHi, i =

1, 2, . . . , N . Then the set of all eigenvalues of Ω is given by

σ (Ω) = {µ1
1, µ

2
1, . . . , µ

q1
1 , . . . , µ

1
N , µ

2
N , . . . , µ

qN
N }

Let ξkij, k = 1, 2, . . . , γij be the left eigenvectors of Ai+βiiHi associated with the eigenvalue

µj
i , where γij is the geometric multiplicity of the eigenvalue µj

i for the matrix Ai + βiiHi.

If ξkijHi = 0, for i = 1, 2, . . . , N − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij , then ei ⊗ ξ1ij, ei ⊗
ξ1ij, . . . ei ⊗ ξ

γij
ij , are the left eigenvectors of Ω associated with the eigenvalues µj

i .

Proof. Suppose that L is an upper triangular matrix, say L =


β11 β12 . . . β1N

0 β22 . . . β2N

...
... . . . ...

0 0 . . . βNN

.
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Then,

Ω =


A1 0 . . . 0

0 A2 . . . 0
...

... . . . 0

0 0 . . . AN

+


β11H1 β12H1 . . . β1NH1

0 β22H2 . . . β2NH2

...
... . . . ...

0 0 . . . βNNHN



=


A1 + β11H1 β12H1 . . . β1nH1

0 A2 + β22H2 . . . β2nH2

...
... . . . ...

0 0 . . . AN + βNNHN


is a block upper triangular matrix. Therefore the eigenvalues of Ω are precisely the eigen-
values of the matrices Ai+βiiHi, i = 1, 2, . . . , N . That is, if σ(Ai+βiiHi) = {µ1

i , µ
2
i , . . . , µ

qi
i }

are the eigenvalues of Ai + βiiHi, i = 1, 2, . . . , N , then

σ(Ω) = ∪N
i=1σ(Ai + βiiHi) =

{
µ1
1, µ

2
1, . . . , µ

q1
1 , . . . , µ

1
N , µ

2
N , . . . , µ

qN
N

}
are the eigenvalues of Ω. Now, if ξkij, k = 1, 2, . . . , γij represents the left eigenvectors of
Ai + βiiH associated with the eigenvalue µj

i , then clearly eN ⊗ ξ1Nj, eN ⊗ ξ2Nj, . . . , eN ⊗
ξ
γNj

Nj are left eigenvectors of Ω corresponding to the eigenvalue µj
N . If ξkijHi = 0, k =

1, 2, . . . , γij, i = 1, 2, . . . , N − 1, j = 1, 2, . . . , qi, then ei⊗ ξ1ij, ei⊗ ξ2ij, . . . ei⊗ ξ
γij
ij are left

eigenvectors of Ω associated with the eigenvalue µj
i .

Now, we will prove that the the only linearly independent left eigenvectors of Ω are
of the form ei ⊗ ξ, where ξ is a left eigenvector of Ai + βiiHi for some i. For, take
ξ1, ξ2, . . . , ξN ∈ Rn, such that ξ =

[
ξ1 ξ2 . . . ξN

]
∈ RNn is a left eigenvector of Ω. Then

ξΩ = µξ for some eigenvalue µ of Ω implies that


ξ1 (A1 + β11H1)

ξ1H + ξ2 (A2 + β22H2)
...∑N−1

i=1 ξiH + ξN (AN + βNNHN)


T

= µ


ξ1

ξ2
...
ξN


Then, clearly µ is an eigenvalue of A1 + β11H1 with left eigenvector ξ1. Then by our
hypothesis, ξ1H1 = 0. Thus

ξ1H1 + ξ2 (A2 + β22H2) = ξ2 (A2 + β22H2) = µξ2
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implies that µ is an eigenvalue of A2+β22H2 with left eigenvector ξ2. Proceeding like this,
we get µ is an eigenvalue of Ai + βiiHi for all i = 1, 2, . . . , N with ξi as left eigenvector.
Then ξ can be expressed as ξ =

∑N
i=1 ei ⊗ ξi, and we have already seen that ei ⊗ ξi are

left eigenvectors of Ω for any left eigenvector ξi of Ai + βiiHi. Thus if Ai + βiiHi, i =

1, 2, . . . , N does not have any common eigenvalue, the only left eigenvectors of Ω are
ei ⊗ ξkij, i = 1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij , where ξkij, k = 1, 2, . . . , γij are
the linearly independent left eigenvectors of Ai+βiiH corresponding to the eigenvalue µj

i .
Now suppose that Ai1 +βi1i1H,Ai2 +βi2i2H, . . . , Air +βirirH have a common eigenvalue
µ with left eigenvectors ξi1 , ξi2 , . . . , ξir respectively, where i0, i1, . . . , ir ∈ {1, 2, . . . , N}.
Then

∑r
α=1 eiα ⊗ ξiα is a left eigenvector of Ω corresponding to the eigenvalue µ.

Theorem 5.4. (Ajayakumar and George, 2023a) Let L be an upper\lower triangular ma-

trix. Suppose the eigenvectors of Ai + βiiHi satisfy the conditions given in Theorem 5.3,

then the networked system (5.3) is controllable if and only if

(i) Every node have external control input.

(ii) (Ai + βiiHi, Bi) is controllable for all i = 1, 2, . . . N .

Proof. Suppose that the networked system (5.3) is controllable and suppose that di = 0 for
some i, say i0, i.e., di0 = 0. Then the control matrix for the networked system (5.3) is given
by

G =



d1B1 0 . . . 0 . . . 0

0 d2B2 . . . 0 . . . 0
...

... . . . ...
...

...
0 0 . . . di0Bi0 . . . 0
...

...
...

... . . . ...
0 0 . . . 0 . . . dNBN



=



d1B1 0 . . . 0 . . . 0

0 d2B2 . . . 0 . . . 0
...

... . . . ...
...

...
0 0 . . . 0 . . . 0
...

...
...

... . . . ...
0 0 . . . 0 . . . dNBN


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We have proved that ei0 ⊗ ξki0j, k = 1, 2, . . . , γi0j are left eigenvectors of Φ corresponding
to the eigenvalue µj

i0
, where j = 1, 2, . . . , qi0 . Observe that for any j = 1, 2, . . . , qi0 , k =

1, 2, . . . , γi0j ,
(
ei0 ⊗ ξki0j

)
Ψ = 0. Then by PBH eigenvector test, the given system is not

controllable, which is a contradiction.
Now suppose that (Ai + βiiHi, Bi) is not controllable for some i, say i1. Again by PBH

eigenvector test, for some eigenvalue µj1
i1

(where j1 ∈ {1, 2, . . . , qi1}) of Ai1+βi1i1Hi1 there
exists a left eigenvector ξk1i1j1 (where k1 ∈ {1, 2, . . . , γi1j1}) such that ξk1i1j1Bi1 = 0. Then
clearly

(
ei1 ⊗ ξk1i1j1

)
G = 0, which is a contradiction. Conversely, suppose that both (i) and

(ii) are satisfied. We have the left eigenvectors of Φ are ei⊗ξkij , where i = 1, 2, . . . , N, j =

1, 2, . . . , qi, k = 1, 2, . . . , γij or their linear combinations. Now
(
ei ⊗ ξkij

)
G = 0 if and

only if either di = 0, ξkijBi = 0 or both for some i. Both these situations contradicts our
hypothesis. Then by PBH eigenvector test, system (5.3) is controllable.

Example 5.4. (Ajayakumar and George, 2023a) Consider a heterogeneous networked sys-
tem with 3 nodes, where the state matrices and control matrices are given by;

A1 =

1 2 1

1 1 −1

0 1 2

 , A2 =

 1 0 0

−1 1 0

0 −1 1

 , A3 =

1 1 −1

0 1 0

0 −1 1

 ,

B1 =

 1

0

−1

 , B2 =

 1

1

−1

 , B3 =

01
1


The inner-coupling matrices are given by,

H1 =

1 1 −1

0 0 0

1 1 −1

 , H2 =

 0 0 0

1 2 0

−1 0 1

 , H3 =

1 0 2

0 0 0

2 −1 1



From Figure 5.4,

L =

0 1 1

0 0 1

0 0 1

 and D =

1 0 0

0 1 0

0 0 1


The left eigenvectors of A1 are ξ111 =

[
−1 −1 1

]
, ξ112 =

[
−1 1 1

]
and the only left

eigenvector of A2 is ξ121 =
[
1 0 0

]
. We have, ξ111H1 = ξ112H1 = ξ121H2 = 0.
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v1u1

u3

v2

v3

u2

Figure 5.4: Take β12 = β13 = β23 = β33 = 1, otherwise βij = 0 and d1 = d2 = d3 = 1.

(i) From Figure 5.4, it is clear that all the nodes have external control input.

(ii) (A1, B1), (A2, B2) and (A3 +H3, B3) are controllable.

Thus, all the conditions of Theorem 5.4 are satisfied. Therefore the given networked system
is controllable.

We can also use the Kalaman’s rank condition to verify the controllability of the given
networked system. The system can be written in the compact form (5.3), where

Ω =



1 2 1 1 1 −1 1 1 −1

1 1 −1 0 0 0 0 0 0

0 1 2 1 1 −1 1 1 −1

0 0 0 1 0 0 0 0 0

0 0 0 −1 1 0 1 2 0

0 0 0 0 −1 1 −1 0 1

0 0 0 0 0 0 2 1 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 2 −2 2


and Ψ =



1 0 0

0 0 0

−1 0 0

0 1 0

0 1 0

0 −1 0

0 0 0

0 0 1

0 0 1


We can see that the controllability matrix Q(Ω,Ψ) has rank 9 and hence the given net-
worked system is controllable.

5.5 Conclusions

In Chapter 4, we established a comprehensive set of necessary and sufficient conditions
for the controllability of heterogeneous networked systems with identical control input ma-
trices. In this chapter, we broaden our analysis to include heterogeneous systems with
non-identical control matrices at each node, and we derive a set of criteria to go with it.
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This result has an apparent benefit of being able to pinpoint nodes that require external
control inputs in order to change an initially uncontrollable system into a controllable one.
Beyond node identification, this result makes it easier to determine the exact control in-
put matrices required for controllability. Theorem 5.1 is a generalization of Theorem 4.4,
increasing its scope and applicability over a broader spectrum of systems. The present lit-
erature on controllability of heterogeneous networked systems is limited. Kong et al.(Kong
et al., 2021) obtained a necessary and sufficient condition for controllability of heteroge-
neous networked systems having non-identical inner-coupling matrices using the notion of
determinant factor and Smith normal form of a matrix. However, the result is computa-
tionally demanding and it does not give any information regarding the effect of the system
components on controllability of networked systems. Existing studies tell us less about how
subsystem dynamics, network topology, and so on affect the controllability of a networked
system than ours do, and our results are simple to verify. In addition, controllability results
for a more general class of heterogeneous networked systems are obtained over particular
network topology, where the inner coupling matrices in each node are distinct.
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Chapter 6

Controllability of Networked Systems with
Non-linearities

6.1 Introduction

The study of networked systems is critical for comprehending complex interactions and be-
haviors that emerge in interconnected entities ranging from technological networks to bio-
logical systems(Bassett and Sporns, 2017; Farhangi, 2009; Gu et al., 2015; Wang and Chen,
2003; Wuchty, 2014). The prior chapters focused on linear networked systems, providing
foundational insights. This chapter, on the other hand, presents a critical extension by inte-
grating non-linear components at each node of the system. This expansion is important be-
cause it more properly reflects real-world circumstances in which nonlinear dynamics play
a prominent role. The incorporation of non-linearities adds another degree of complexity,
making the study of networked systems much more relevant, since it allows for a greater
understanding of the intricate dynamics inherent in interconnected systems. This compre-
hensive investigation adds vital knowledge necessary for tackling real-world difficulties
and optimizing the performance of various systems. In this chapter, we consider networked
systems with individual nodes having both linear and non-linear parts. There are numerous
studies on controllability of stand-alone systems having non-linear components(Joshi and
George, 1989; Mirza and Womack, 1971, 1972; Nandakumaran et al., 2017; Vidyasagar,
1972); however, there needs to be more literature in the area of controllability of networked
systems having non-linear components. All of these findings are obtained using fixed point
theorems. Mainly, we are using the Banach Fixed Point theorem in this Chapter.

The chapter is organized as follows; Controllability problem is formulated in Section
6.2 and in Section 6.3, controllability result for nonlinear networked systems is obtained.
Examples are provided to substantiate the result. Conclusions are given in Section 6.4.
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6.2 Problem Formulation

Consider a networked linear time invariant system with N nodes, where each node sys-
tem is of dimension, n. Specifically, the dynamical system corresponding to the node i is
described by

ẋi(t) = Aixi(t) +
N∑
j=1

βijHxj(t) + diBiui(t) + fi(t, xi(t)), i = 1, 2, . . . , N (6.1)

where xi(t) ∈ Rn is the state vector; ui(t) ∈ Rm is the external control input vector; Ai ∈
Rn×n and Bi ∈ Rn×m are the state matrix and control input matrix of node i respectively.
di indicates whether the node i has a control input or not.

di =

1, if node i is under control

0, otherwise

βij ∈ R represents the coupling strength between the nodes i and j with βij ̸= 0 if there is
a communication from node j to node i, but otherwise βij = 0, for all i, j = 1, 2, . . . , N .
H ∈ Rn×n is the inner coupling matrix describing the interactions among the components
of xj, j = 1, 2, . . . , N . Let fi : [t0, tf ]×Rn → Rn, i = 1, 2, . . . , N be nonlinear functions
such that t → fi(t, .) is measurable and x → fi(., x) is continuous. We also assume that
fi, i = 1, 2, . . . , N are Lipschitz continuous with respect to x and is uniformly bounded.
That is, there exists M > 0 such that ∥fi(t, xi(t))∥ ≤ Mi for each i. Let

L = [βij] ∈ RN×N and D = diag{d1, d2, . . . , dN} (6.2)

represent the network topology and external input channels of the networked system (6.1),
respectively. Denote the whole state of the networked system by x =

[
xT
1 , . . . , x

T
N

]T and
the total external control input vector by u =

[
uT
1 , . . . , u

T
N

]T . Then by using the Kronecker
product the networked system (6.1) can be rewritten in a compact form as

ẋ(t) = Ωx(t) + Ψu(t) + F (t, x(t)) (6.3)

with
Ω = A+ L⊗H

Ψ = blockdiag{d1B1, . . . dNBN}
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and F (t, x(t)) =
[
f1(t, x1(t))

T , . . . , fN(t, xN(t))
T
]

where A = blockdiag{A1, . . . , AN}.

6.3 Controllability of Networked Systems with Non-Linearities

In this section, we consider the controllability problem of networked systems having non-
linearities in each individual nodes and linear part of each node is assumed to be control-
lable.

Suppose that the linear part of (6.3) is controllable. Then by Theorem 1.1, the Control-
lability Gramian matrix is invertible. That is, the matrix

W(t0, tf ) =

∫ tf

t0

Φ(tf , τ)ΨΨTΦT (tf , τ)dτ

is non-singular in the interval [t0, tf ], where Φ is the state transition matrix corresponding
to Ω in (6.3). With initial condition x(t0) = x0, the solution of the non-linear system can
be written as:

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ) [Ψu(τ) + F (τ, x(τ))] dτ (6.4)

Define a control function

ũ(t) = ΨTΦT (tf , t)W−1

[
x1 − Φ(tf , t0)x0 −

∫ tf

t0

Φ(t, τ)F (τ, x(τ))dτ

]
(6.5)

If we substitute, (6.5) in (6.4), we have

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)ΨΨTΦT (tf , t)W−1

[
x1 − Φ(tf , t0)x0 −

∫ tf

t0

Φ(t, τ)F (τ, x(τ))dτ

]
dτ

+

∫ t

t0

Φ(t, τ)F (τ, x(τ))dτ

Then, we can see that

x(t0) = Φ(t0, t0)x0 +

∫ t0

t0

Φ(t0, τ)ΨΨTΦT (tf , t)W−1

[
x1 − Φ(tf , t0)x0 −

∫ tf

t0

Φ(t0, τ)F (τ, x(τ))dτ

]
dτ

+

∫ t0

t0

Φ(t0, τ)F (τ, x(τ))dτ = Ix0 = x0
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as Φ(t0, t0) = I . Also,

x(tf ) = Φ(tf , t0)x0 +

∫ t

t0

Φ(tf , τ)ΨΨTΦT (tf , t)W−1

[
x1 − Φ(tf , t0)x0 −

∫ tf

t0

Φ(tf , τ)F (τ, x(τ))dτ

]
dτ

+

∫ tf

t0

Φ(tf , τ)F (τ, x(τ))dτ

= Φ(tf , t0)x0 + x1 − Φ(tf , t0)x0 −
∫ tf

t0

Φ(tf , τ)F (τ, x(τ))dτ +

∫ tf

t0

Φ(tf , τ)F (τ, x(τ))dτ

= x1

Now it is enough to show that the operator

(Kx)(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ) [Ψũ(τ) + F (τ, x(τ))] dτ (6.6)

has a fixed point, where ũ(t) is as given in (6.5). We will show that Kn is a contraction map and use

Generalized Banach Contraction Principle. As fi(t, xi(t)) satisfies Lipschitz condition with respect

to xi for each i, we have that F in (6.6) is Lipschitz with Lipschitz constant α. Let, α0, β, γ and δ

denote bounds for ∥Φ(t0, t)∥ ,
∥∥ΨΨT

∥∥ , ∥∥ΦT (tf , t)
∥∥ , and

∥∥W−1
∥∥ respectively. Then,

∥Kx−Ky∥ ≤
∥∥∥∥∫ t

t0

Φ(t, τ)ΨΨTΦT (tf , τ)W
−1

[∫ tf

t0

Φ(t, τ)[F (τ, y(τ))− F (τ, x(τ))]dτ

]
dτ

∥∥∥∥
+

∥∥∥∥∫ t

t0

Φ(t, τ)[F (τ, y(τ))− F (τ, x(τ))]dτ

∥∥∥∥
≤
∫ t

t0

∥Φ(t, τ)∥2
∥∥ΨΨT

∥∥∥∥ΦT (tf , τ)
∥∥∥∥W−1

∥∥ ∥F (τ, y(τ))− F (τ, x(τ))∥ (tf − t0)dτ

+

∫ t

t0

∥Φ(t, τ)∥ ∥F (τ, y(τ))− F (τ, x(τ))∥ dτ

≤
[
αα2

0βγδ(tf − t0) + αα0

]
∥ x− y ∥ (t− t0)

= K ∥ x− y ∥ (t− t0)

where K = αα2
0βγδ(tf − t0) + αα0. Similarly,

|(K2x)(t)− (K2y)(t)| ≤ αα2
0βγδK ∥ x− y ∥

(tf − t0)
2

2
(t− t0) + αα0K ∥ x− y ∥ (t− t0)

2

2

Thus

∥ K2x−K2y ∥≤ K2h
2

2
∥ x− y ∥
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Proceeding in the same way, for any n ≥ 1

∥ Knx−Kny ∥≤ Knh
n

n!
∥ x− y ∥

For sufficiently large n, Kn hn

n! can be made less than 1. Thus Kn is a contraction. Hence by

Generalized Banach Contraction Principle K has a unique fixed point.

Example 6.1. (Ajayakumar and George, 2023c) Consider a non-linear networked system with 2

individual nodes, where the state matrices and control matrices are given by;

A1 =

[
1 0

1 1

]
, A2 =

[
1 1

0 1

]
, B1 =

[
1

0

]
, B2 =

[
0

1

]

Let D =

[
1 0

0 1

]
. Also, take

L =

[
1 1

0 1

]
and H =

[
0 1

0 0

]

v1 v2 u2u1

Figure 6.1: Network graph of the given system.

Let the first node be having the non-linearity

f1(t, x1(t)) =

[
t
k1
sin x11(t)

t
k1
cos x12(t)

]

and second node be having the non-linearity

f2(t, x2(t)) =

[
t2

k2
|x21(t)|

t2

k2
cos x22(t)

]
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where k1, k2 > 0 are constants. Now,

∥f1(t, x1(t))− f1(t, x2(t))∥2 = max
0≤t≤1

(
t

k1

)2 [
(sinx11(t)− siny11(t))

2 + (cosx11(t)− cosy11(t))
2
]

≤
(

1

k1

)2

max
0≤t≤1

[
(sinx11(t)− siny11(t))

2
]
+(

1

k1

)2

max
0≤t≤1

[
(cosx11(t)− cosy11(t))

2
]

≤
(

1

k1

)2

max
0≤t≤1

[
(x11(t)− y11(t))

2 + (x12(t)− y12(t))
2
]

=

(
1

k1

)2

∥x1(t)− y1(t)∥2

Thus f1 satisfy Lipschitz condition with respect to x1 in the interval [0, 1] with Lipschitz constant
1
k1

. Similarly, we can prove that f2 satisfy Lipschitz condition with respect to x2 in the interval

[0, 1] with Lipschitz constant 1
k2

. Then, F (t, x(t)) satisfy Lipschitz condition with respect to x in

the interval [0, 1] with Lipschitz constant α = max
{

1
k1
, 1
k2

}
. The system can be written in the

compact form as

ẋ(t) =


1 1 0 1

1 1 0 0

0 0 1 2

0 0 0 1

x(t) +


1 0

0 0

0 0

0 1

u(t) +


t
k1
sin x11(t)

t
k1
cos x12(t)
t2

k2
|x21(t)|

t2

k2
cos x22(t)


We can see that the controllability matrix,

Q(Ω,Ψ) = [Ψ | ΩΨ | Ω2Ψ | Ω3Ψ] =


1 0 1 1 2 2 4 4

0 0 1 0 2 1 4 3

0 0 0 2 0 4 0 6

0 1 0 1 0 1 0 1


has rank 4. Thus by Kalman’s rank condition the linear part of the given system is controllable. The

state transition matrix is

eΩt =


1
2

(
e2t + 1

)
1
2

(
e2t − 1

)
0 1

2

(
e2t − 1

)
1
2

(
e2t − 1

)
1
2

(
e2t + 1

)
0 1

2

(
e2t + 1

)
− et

0 0 et 2tet

0 0 0 et


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The controllability gramian matrix, W(0, 1) and its inverse are given by,

W(0, 1) =


7.1998 3.8780 3.5746 2.3218

3.8780 2.3142 1.3800 0.8455

3.5746 1.3800 6.3891 4.1945

2.3218 0.8455 4.1945 3.1945


and

W−1(0, 1) =


2.4722 −3.8201 −0.3059 −0.3841

−3.8201 6.4010 0.3202 0.6619

−0.3059 0.3202 1.2189 −1.4630

−0.3841 0.6619 −1.4630 2.3379


Also, eΩ

T t equals 
1
2

(
e2t + 1

)
1
2

(
e2t − 1

)
0 0

1
2

(
e2t − 1

)
1
2

(
e2t + 1

)
0 0

0 0 et 0
1
2

(
e2t − 1

)
1
2

(
e2t + 1

)
− et 2tet et


and

ΨΨT =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


Then we can find the value of K. We have

K = αα2
0βγδ(tf − t0) + αα0 = α

[
α2
0βγδ(tf − t0) + α0

]
Here

α0 = 12.8256

β = 1

γ = 10.5835

and

δ = 11.2032

We can choose k1 and k2 in such a way that Kn is a contraction for sufficiently large n. Hence K
has a unique fixed point which proves the controllability of the given non-linear system.
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6.4 Conclusions

In this Chapter, Generalized Banach Contraction Principle is used to derive a sufficient condition

for obtaining the controllability of a non-linear networked system with nodes that include both

linear and non-linear components. It is specifically assumed that the linear part of the networked

system is controllable. The study makes a substantial contribution to the subject by proving that the

controllability of the networked system is assured when the non-linear components within each node

adhere to Lipschitz conditions and are uniformly bounded. This important result not only validates

controllability but also allows for the evaluation of the control function for the given system using

the iterative scheme provided by the Banach Contraction Principle. The study contains illustrative

example that highlight and validate the derived conditions in practical networked environments to

improve the clarity and application of the theoretical results.
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Chapter 7

Generic Controllability of Networks with
Non-Identical SISO Dynamical Nodes

7.1 Introduction

Controllability research advanced to complex networks, reflecting the idea that the real-world sys-

tems demanded sophisticated modeling. The studies of individual systems connected together can

be traced back to the work done by Gilbert (Gilbert, 1963) which was then followed by many others

as the controllability and observability of interconnected systems became a topic of interest (Callier

and Nahum, 1975; Chen and Desoer, 1967; Davison, 1977; Fuhrmann, 1975). Large-scale networks

posed difficulties in getting precise parameter values for system dynamics, motivating the use of

structural controllability in order to overcome this limitation. Glover et al.(Glover and Silverman,

1976) and Shields et al.(Shields and Pearson, 1976) contributed to the extensive research of these

situations as they progressed from single-input to multi-input systems. Linnemann(Linnemann,

1986) simplified Lin’s structural controllability theorem, which he first proposed in 1974. Mayeda

et al.(Li et al., 2015) established strong structural controllability, which ensures system controlla-

bility for every parameter value, with Hosoe et al.(Hosoe and Matsumoto, 1979) strengthening the

algebraic criteria. Mayeda(Mayeda, 1981) investigated graph-theoretic interpretations, which pro-

vided insights into the full rank condition of structured matrices. The presence of complex networks

in numerous scientific and technical domains has resulted in an increase in study on the controllabil-

ity of networks of dynamical systems(Blackhall and Hill, 2010; Chapman and Mesbahi, 2013; Liu

et al., 2013; Pequito et al., 2015; Xue and Roy, 2019; Zhang et al., 2021). New tools and approaches

were introduced, and structural controllability of networks is still being researched. The timeline of

structural system study can be tracked through the works of Dion et al.(Dion et al., 2003), Ramos et

al.(Ramos et al., 2020), and Xiang et al.(Xiang et al., 2019a).

Commault et al.(Commault and Kibangou, 2019) established the concept of generic control-

lability, in which system matrices for each node stay constant but link weights across nodes are
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unknown, providing a new dimension to controllability research. This is a relatively new concept in

the area of controllability of inter connected systems. However, the conditions obtained are struc-

tural as they are based on the composition of the network graph. Commault et al.(Commault and

Kibangou, 2019) examined the generic controllability of inter connected systems where individ-

ual systems having same dynamics are connected together and obtained a necessary and sufficient

condition for generic controllability of networked systems.

In this Chapter, we prove that the conditions derived by Commault et al.(2019)(Commault and

Kibangou, 2019) for the generic controllability of homogeneous networked systems are necessary

for the generic controllability of networked systems having heterogeneous dynamics. The sections

are arranged as follows: Formulation of the controllability problem is given in section 7.2. Some

necessary conditions for generic controllability of networked systems is obtained in Section 7.3.

The obtained results are illustrated with examples. Concluding remarks and future works are stated

in section 7.4.

7.2 Problem Formulation

Consider a networked system, with N state nodes and m control nodes interacting via weighted

directed connections. The weighted directed graph G (N ) = (VN , EN ), called the network graph

can be used to represent the network, N . The vertex set of the network graph is given by, VN =

{v1, v2, . . . , vN}∪{u1, u2, . . . , um}, where v′is and u′is represent the state nodes and control nodes,

respectively. The directed connections between the nodes is represented by the edge set EN . Edge

weights assigned to the network graph quantifies the strength of the communication between the

individual nodes.

The node vi represents a dynamical system with n states, a scalar input wi, and a scalar output

yi. The dynamics of the node vi is given by

ẋi(t) = Aixi(t) +Biwi(t)

yi(t) = Cixi(t)
(7.1)

where Ai ∈ Rn×n for each i and Bi(respectively, Ci) is a n− dimensional column vector (re-

spectively, a row vector) for each i. The dynamic state of each node is denoted by the matrices

(Ai, Bi, Ci).

Combining the state space model representing the dynamics of each node with the composition

of the network graph, we get a global system
∑

N of state space dimension Nn and m control

inputs. The input signal for the node i is given by the weighted combination of control signals in
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line with the network graph

wi(t) =

N∑
i=1

βijyj(t) +

m∑
l=1

δilul(t) (7.2)

where βij represents the connection strength of the link from node vj to node vi, δil represents the

connection strength of the link from control node ul to the state node vi. βij and δil becomes zero

when there is no edge in the network graph between the state nodes or from a control node to a state

node respectively. Let L = [βij ]N×N , i = 1, 2, . . . , N, j = 1, 2, . . . , N and ∆ = [δil]N×m , i =

1, 2, . . . , N, l = 1, 2, . . . ,m represent network topology.

β21 β32

δ11 δ31

β31

u1

v2v1 v3

Figure 7.1: Example of a networked system with 3 state nodes and one control node.

Then the compact form of
∑

N is given by∑
N

: ẋ(t) = Ωx(t) + Ψu(t) (7.3)

where x(t) = (x1(t), . . . , xm(t))T and u(t) = (u1(t), . . . , um(t))T , with (.)T indicates the trans-

pose of a matrix. The matrices Ω and Ψ representing the state and control matrices of
∑

N , respec-

tively, have dimensions Nn×Nn and Nn×m. They are of the following form:

Ω =


A1 + β11B1C1 β12B1C2 . . . β1NB1CN

...
...

. . .
...

βN1BNC1 βN2BNC2 . . . AN + βNNBNCN


and

Ψ =


δ11B1 δ12B1 . . . δ1mB1

...
...

. . .
...

δN1BN δN2BN . . . δNmBN


In this work, our aim is to analyse the controllability of

∑
N , using the dynamics of the individual

systems. That is, using the matrices (Ai, Bi, Ci)
′s, and structure of the networked system. The ma-

trices (Ai, Bi, Ci)
′s are assumed to be exact and known, but the network communication strengths

are not fixed precisely. That is, we know whether the entries are zero or non-zero, but we do not
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know the exact parameter values.

7.3 Necessary Conditions for Generic Controllability of
Heterogeneous Networked Systems

In (Commault and Kibangou, 2019), Commault et al. give the following set of conditions which

are necessary and sufficient for the generic controllability of interconnected systems with identical

dynamical nodes.

Theorem 7.1. (Commault and Kibangou, 2019) Consider a network N with N internal nodes,

m control nodes with N > m, and its graph G (N ). Assume that all nodes are identical, SISO,

nth-order dynamical systems defined by matrices A,B,C. The global system ΣN is generically

controllable if and only if the following conditions hold:

(i) The pair (A,B) is controllable.

(ii) The pair (C,A) is observable.

(iii) The graph G (N ) is control-connected.

(iv) The internal nodes of G (N ) can be covered by a disjoint set of stems and cycles.

We will show that the first three conditions in Theorem 7.1 are necessary for the generic con-

trollability of networked systems with non-identical nodes.

Theorem 7.2. (Ajayakumar and George, 2023d) If the pair (Ai, Bi) is not controllable for some i,

say i0, then the global system is not generic controllable.

Proof: Suppose that (Ai, Bi) is not controllable for some i, say i0 , then by PBH criterion there

exists a scalar λ and a row vector v such that

v (Ai0 − λI) = 0 and vBi0 = 0

Now consider the vector ei0 ⊗v, where ei0 ∈ R1×N with ith0 entry 1 and all other entries zero. Then

(ei0 ⊗ v) (Ω− λI) = 0 and (ei0 ⊗ v)G = 0

That is, (Ω,Ψ) is not controllable.

Example 7.1. Consider a heterogeneous networked system with two nodes, with state matrices

A1 =

[
1 0

1 1

]
, A2 =

[
1 1

0 1

]
and control matrices B1 = B2 =

[
0

1

]
. The output matrices are given
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by C1 = C2 =
[
1 0

]
. Take,

L =

[
β11 β12

β21 β22

]
and ∆ =

[
δ11

δ21

]

Here, (A1, B1) is not controllable as the controllability matrix,

Q(A1, B1) = [B1 | A1B1] =

[
0 0

1 1

]

has rank 1. (A2, B2) is controllable as the controllability matrix,

Q(A2, B2) = [B2 | A2B2] =

[
0 1

1 1

]

has rank 2. By Theorem7.2, the given system is not controllable as (A1, B1) is not controllable. We

can verify this using PBH rank criterion. The given system can be written in the compact form (7.3)

with

Ω =


1 0 0 0

1 1 + β11 β12 0

0 0 1 1

0 β21 β22 1

 and Ψ =


0

δ11

0

δ12


As the matrix

[Ω− I,Ψ] =


0 0 0 0 0

1 β11 β12 0 δ11

0 0 0 1 0

0 β21 β22 0 δ21


has rank at-most 3 only for any values of βij and δil, by PBH rank criterion the given networked

system is not controllable.

Theorem 7.3. (Ajayakumar and George, 2023d) If N > m, for the global system to be generic

controllable atleast one of the pairs (Ai, Ci) , i = 1, 2, . . . , N must be observable.

Proof: Suppose that (Ai, Ci) is not observable for all i = 1, 2, . . . , N . Then by PBH criteria

there exists a scalar λ and a column vector vi such that (Ai − λI) vi = 0 and Civi = 0. Now

consider the vector (ei ⊗ vi), where ei ∈ R1×N with ith entry 1 and all other entries zero. Then

(Ω− λI) (ei ⊗ vi) = 0

Then

rank [Ω− λI,Ψ] ≤ N(n− 1) +m < Nn
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Therefore, (Ω,Ψ) is not controllable.

Example 7.2. Consider a heterogeneous networked system with two nodes, with state matrices

A1 =

[
1 0

1 1

]
, A2 =

[
1 1

0 1

]
and control matrices B1 =

[
1

1

]
, B2 =

[
0

1

]
. The output matrices are

given by C1 =
[
1 0

]
and C2 =

[
0 1

]
. Take,

L =

[
β11 β12

β21 β22

]
and∆ =

[
δ11

δ21

]

Here both (A1, C1) and (A2, C2) are not observable as both observability matrices

O(A1, C1) =

[
C1

C1A1

]
=

[
1 0

1 0

]

and

O(A2, C2) =

[
C2

C2A2

]
=

[
0 1

0 1

]
have rank 1. Also N > m. Therefore by Theorem 7.3 the given system is not controllable. We can

verify this using PBH rank criterion. The given system can be written in the compact form (7.3),

with

Ω =


1 + β11 0 0 β12

1 + β11 1 0 β12

0 0 1 1

β21 0 0 1 + β22

 and Ψ =


δ11

δ11

0

δ12


As the matrix

[Ω− I,Ψ] =


β11 0 0 β12 δ11

1 + β11 0 0 β12 δ11

0 0 0 1 0

β21 0 0 β22 δ21


has rank at-most 3 only for any values of βij and δil, by PBH rank criterion the given networked

system is not controllable.

Theorem 7.4. (Ajayakumar and George, 2023d) If the graph G (N ) is not control connected, then

the global system is not generic controllable.

Proof: Suppose that G (N ) is not control connected. Rearrange the nodes so that the first k

nodes represent the non control connected nodes. Then the matrices L and ∆ can be expressed as

L =

[
L11 0

L21 L22

]
and ∆ =

[
0k×k

∆2

]
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where L11 is a k × k matrix. Then Ω and Ψ are of the form

Ω =

[
Ω11 0

Ω21 Ω22

]
and Ψ =

[
0kn×kn

Ψ

]

where Ω11 is a kn× kn matrix. Now for any left eigenvector v of Ω11, ṽ =
[
v 0n(N−k)

]
is a left

eigenvector of Ω with vΨ = 0. Therefore, (Ω,Ψ) is not controllable.

Example 7.3. Consider a heterogeneous networked system with two nodes, with state matrices

A1 =

[
1 0

1 1

]
, A2 =

[
1 1

0 1

]
and control matrices B1 =

[
1

1

]
, B2 =

[
0

1

]
. The output matrices are

given by C1 =
[
0 1

]
and C2 =

[
1 0

]
. Take,

L =

[
0 β12

0 0

]
and ∆ =

[
δ11

0

]

Here (A1, B1) and (A2, B2) are controllable as both controllability matrices

Q(A1, B1) = [B1 | A1B1] =

[
1 1

1 2

]

and

Q(A2, B2) = [B2 | A2B2] =

[
0 1

1 1

]
have rank 2. Also, both (A1, C1) and (A2, C2) are observable as both observability matrices

O(A1, C1) =

[
C1

C1A1

]
=

[
0 1

1 1

]

and

O(A2, C2) =

[
C2

C2A2

]
=

[
1 0

1 1

]
have rank 2. G (N ) is not control connected as there does not exist a control-state path from u1 to

u1 v1 v2

Figure 7.2: Clearly, G (N ) is not control connected.

v2. Then, by Theorem 7.4 the given system is not controllable. We can verify this using PBH rank
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criterion. The given system can be written in the compact form (7.3), with

Ω =


1 0 β12 0

1 1 β12 0

0 0 1 1

0 0 0 1

 and Ψ =


δ11

δ11

0

0


As the matrix

[Ω− I,Ψ] =


0 0 β12 0 δ11

1 0 β12 0 δ11

0 0 0 1 0

0 0 0 0 0


has rank at-most 3 only for any values of βij and δil, by PBH rank criterion the given networked

system is not controllable.

7.4 Conclusions

In this Chapter, generic controllability of interconnected linear systems with heterogeneous dynam-

ics is studied. It has been shown that some of the necessary conditions for the generic controllability

of homogeneous networked systems obtained by Commault et al.(Commault and Kibangou, 2019)

like the controllability of the individual nodes, observability of the individual nodes and the control

connectedness of the netork graph stay necessary for heterogeneous networked systems also. The

advantage of the derived results is that we can discuss the controllability of a networked system

without having full knowledge of the network topology. The obtained results are supplemented

with suitable examples.
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Chapter 8

Summary of the Thesis and Future Work

In this section, we provide the significant contributions of the thesis as well as future plan of research

based on the current work. Controllability studies have grown in popularity in recent decades, with

the notion being proposed by R.E. Kalman in the latter half of the twentieth century(Kalman, 1960,

1962). According to Kalman, controllability is the ability of a dynamical system to reach a desired

final state from any arbitrary initial state within a finite time period. Initially focused on single

higher-dimensional systems with known parameter values, practical applications demonstrated the

necessity for a broader framework due to variances or inaccurate knowledge of these parameters.

The notion of structural controllability by C.T. Lin(Lin, 1974, 1977) addressed this difficulty by

highlighting the importance of network structures in the controllability of a dynamical system. In

recent years, controllability research expanded to complex networks, reflecting the idea that real-

world systems necessitate sophisticated modeling. The objective of this thesis is to study the con-

trollability and observability of such networked systems with a special focus on the factors such as

individual node dynamics, network topology and inner-coupling matrices. The contributions of the

thesis are summarized as follows.

In Chapter 3, the notion of controllability for the homogeneous networked system

ẋi(t) = Axi(t) +

N∑
j=1

βijHCxj(t) + diBui(t), i = 1, 2, . . . , N (8.1)

is introduced, where, xi(t) ∈ Rn is a state vector of the ith node; ui(t) ∈ Rm is an external control

input vector applied to the ith node; yi(t) ∈ Rn is an output vector of the ith node; A ∈ Rn×n

is the state matrix, B ∈ Rn×m is the input matrix and C ∈ Rm×n is the output matrix of node

i. If node i under external control, then di = 1, otherwise di = 0. βij ∈ R represents the

communication strength between the nodes i and j. A communication from node j to node i ensures

that βij ̸= 0, otherwise βij = 0, for all i, j = 1, 2, . . . , N . The inner coupling matrix describing the

interconnections among the components xj , j = 1, 2, . . . , N is denoted by H ∈ Rn×m.

Let L = [βij ] ∈ RN×N represent the network topology and D = diag{d1, d2, . . . , dN}, the
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external input channels of the networked system (8.1). Also, let X =
[
xT1 , . . . , x

T
N

]T denote the

network state and U =
[
uT1 , . . . , u

T
N

]T , the total external control of the networked system. Using

Kronecker product, the homogeneous networked system (8.1) can be rewritten in the compact form

as

Ẋ(t) = ΩX(t) + ΨU(t) (8.2)

with

Ω = IN ⊗A+ L⊗HC and Ψ = D ⊗B (8.3)

Wang et al. (Wang et al., 2016b) derived the following necessary and sufficient condition for

the controllability of the homogeneous networked system (8.2)-(8.3).

Theorem 8.1. (Wang et al., 2016b) The networked system (8.2)-(8.3) is controllable if and only if,

for any complex number s, the matrix solution F ∈ CN×n of the simultaneous equationsDTFB = 0

LTFHC = F (sI −A)
(8.4)

is F = 0.

Also, the following necessary conditions for the controllability of networked system (8.2)-(8.3)

were obtained, which indicates the effect of the components of the networked system on controlla-

bility of the networked system.

Theorem 8.2. (Wang et al., 2016b) Suppose that the networked system (8.2)-(8.3) is controllable.

(a) If there exists one node without incoming edges, it is necessary that (A,B) is controllable

and moreover an external control input is applied onto this node which has no incoming

edges.

(b) If there exists one node without external control inputs, it is necessary that (A,HC) is con-

trollable.

(c) If the number of individual nodes is N and the number of nodes with external control is m

with N > m.rank(B), then it is necessary that (A,C) is observable.

(d) (L,D) is a controllable pair.

Later, Wang P. et al.(2017)(Wang et al., 2017b) and Xiang et al.(Xiang et al., 2019b) tried

to extend the results by Wang et al.(2016) (Wang et al., 2016b) for the heterogeneous networked

system

ẋi(t) = Aixi(t) +

N∑
j=1

βijHCjxj(t) + diBiui(t), i = 1, 2, . . . , N (8.5)
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The above system can be written in the compact form as

Ẋ(t) = ΩX(t) + ΨU(t) (8.6)

where,

Ω = Λ+ Γ and Ψ = diag{d1B1, . . . , dNBN} (8.7)

where,

Λ = diag{A1, . . . , AN} and Γ =
[
βijHCj

]
∈ RnN×nN (8.8)

Xiang et al.(Xiang et al., 2019b) derived that for the controllability of certain networked systems

the observability of the node system is necessary.

Theorem 8.3. (Xiang et al., 2019b) Suppose N > Σm̃
i=1rank(Bi)(m̃ is the number of external

control inputs), A1, . . . , AN are similar to each other, and there exists ki ̸= 0, i = 1, 2, . . . , N,

such that k1C1 = k2C2 = . . . = kNCN . For the heterogeneous networked system (8.6)-(8.7) to be

controllable, it is necessary that (Ai, Ci) is observable for i = 1, 2, . . . , N .

We have given an example to show that this result is not true in general and restated the theorem

as follows.

Theorem 8.4. (Ajayakumar and George, 2022b) Suppose N >
∑m̃

i=1 rank(Bi). Let A1, A2, . . . , AN

be similar to each other, i.e., for each Ai there exists an invertible matrix P k
i such that

(
P k
i

)−1
AiP

k
i =

Ak, for all i = 1, 2, . . . , N and k = 1, 2, . . . , N . Also there exists ki ̸= 0, i = 1, 2, . . . , N, such

that k1C1 = · · · = kNCN . For the controllability of the heterogeneous networked system (8.6) -

(8.7), the observability of (Ai, Ci) is necessary for all i = 1, 2, . . . , N , if the matrix P k
i commutes

with Ci.

We have also given certain situations where observability of the networked system is necessary

for the controllability of (8.6) - (8.7) in Chapter 3.

In Chapter 4, we consider heterogeneous networked systems of the form:

ẋi(t) = Aixi(t) +

N∑
j=1

βijHxj(t) + diBui(t), i = 1, 2, . . . , N (8.9)

the networked system (8.9) can be reduced into the following compact form:

Ẋ(t) = ΩX(t) + ΨU(t) (8.10)

where,

Ω = A+ L⊗H and Ψ = D ⊗B (8.11)
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and A = blockdiag{A1, A2, . . . , AN}. If the state node matrices A1, A2, . . . , AN are identical, that

is, Ai = A, i = 1, 2, . . . , N , then the system (8.9) becomes a homogeneous networked system of

the form (8.1) with the output matrix C = I . Hao et al.(Hao et al., 2018) studied the controllability

of such systems by characterizing the eigenvalues and eigenvectors of the component matrices as

follows:

Theorem 8.5. (Hao et al., 2018) Assume that is L diagonalizable with the set of the eigenvalues

σ = {λ1, λ2, . . . , λN}. Let Mi = {µ1
i , µ

2
i , . . . , µ

qi
i } be the set of the eigenvalues of A + λiH, i =

1, 2, . . . , N . Then σ(Ω) =
{
µ1
1, µ

2
1, . . . , µ

qi
1 , . . . , µ

1
N , µ2

N , . . . , µqi
N

}
. Moreover, the left eigenvec-

tors of Ω associated with µj
i are ti ⊗ ξ1ij , ti ⊗ ξ2ij , . . . , ti ⊗ ξ

γij
ij where ti is the left eigenvector

of L corresponding to eigenvalue λi: γij ≥ 1 is the geometric multiplicity of µj
i for A + λiH;

ξkij(k = 1, . . . , γij) are the left eigenvectors of A+ λiH corresponding to µj
i , j = 1, 2, . . . , qi, i =

1, 2, . . . , N .

Using this result and PBH eigenvector test, Hao et al.(Hao et al., 2018) derived the following

controllability result for the homogeneous networked system (8.1) with C = I .

Theorem 8.6. (Hao et al., 2018) Consider a homogeneous networked system with a diagonalizable

network topology matrix L. Let σ(L) = {λ1, λ2, . . . , λN}. Then the networked system (8.1) with

output matrix C = I is controllable if and only if the following conditions are satisfied.

(i) (L,D) is controllable;

(ii) (A+ λiH,B) is controllable, for i = 1, 2, · · · , N ; and

(iii) If matrices A+λi1H, . . . , A+λipH (λik ∈ σ(L), for k = 1, . . . , p, p > 1) have a common

eigenvalue ρ, then (ti1D)⊗(ξ1i1B), . . . , (ti1D)⊗(ξ
γi1
i1

B), . . . , (tipD)⊗(ξ1ipB), . . . , (tipD)⊗
(ξ

γip
ip

B) are linearly independent, where tik is the left eigenvector of L corresponding to the

eigenvalue λik ; γik ≥ 1 is the geometric multiplicity of ρ for A + λikH; ξlik(l = 1, . . . , γik)

are the left eigenvectors of A+ λikH corresponding to ρ, k = 1, . . . , p.

We extended the result by Hao et al.(Hao et al., 2018) to the networked systems of the form (8.9),

where the state matrices are distinct in each node, however the control matrices are the same in each

node. We proceeded by characterizing the eigenvectors of the state matrix of the heterogeneous

system (8.10) as follows:

Theorem 8.7. (Ajayakumar and George, 2023b) Let T be the triangulizing matrix for the network

topology matrix L and suppose T ⊗ I commutes with A. Let (µj
i , ξ

k
ij) denotes the left eigenpair of

Ai + λiH . Then the following statements hold true.

(i) The eigenspectrum of Ω is the union of eigenspectrum of Ai + λiH , where, i = 1, 2, . . . , N .

That is, σ(Ω) = ∪N
i=1σ(Ai + λiH) = {µ1

1, . . . , µ
q1
1 , . . . , µ1

N , . . . , µqN
N }.
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(ii) If J is a diagonal matrix, then eiT ⊗ ξkij , k = 1, . . . , γij are the left eigenvectors of Ω corre-

sponding to the eigenvalue µj
i , j = 1, . . . , qi, i = 1, . . . , N , where {ei : i = 1, 2, . . . , N} is

the canonical basis for RN .

(iii) If J contains a Jordan block of order l ≥ 2 for some eigenvalue λi0 of L with ξkijH =

0 for all i = i0, i0 + 1, . . . , i0 + l − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij , then eiT ⊗
ξkij , k = 1, . . . , γij are the left eigenvectors of Ω corresponding to the eigenvalue µj

i , i =

1, 2, . . . , N, j = 1, 2, . . . , qi.

We used the PBH eigenvector test to derive the following controllability result for the heteroge-

neous system (8.10).

Theorem 8.8. (Ajayakumar and George, 2023b) Let T be a non-singular matrix triagularizing ma-

trix L such that T ⊗ I commutes with A. If J contains a Jordan block of order l ≥ 2 corresponding

to the eigenvalue λi0 of L, then assume that ξkijH = 0 for all i = i0, i0 + 1, . . . , i0 + l − 1, j =

1, 2, . . . , qi, k = 1, 2, . . . , γij , where ξkij , i = 1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij are the

left eigenvectors of Ai+λiH corresponding to the eigenvalues µj
i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi.

Then the networked system (8.10) is controllable if and only if

(i) eiTD ̸= 0 for all i = 1, . . . , N

(ii) (Ai + λiH,B) is controllable, for i = 1, 2, · · · , N ; and

(iii) If matrices Ai1 +λi1H,Ai2 +λi2H, . . . , Aip +λipH(λik ∈ σ(L), k = 1, . . . , p, where p >

1) have a common eigenvalue ρ, then (ei1TD)⊗(ξ1i1B), · · · , (ei1TD)⊗(ξ
γi1
i1

B), . . . , (eipTD)⊗
(ξ1ipB), . . . , (eipTD)⊗ (ξ

γip
ip

B) are linearly independent vectors, where γik ≥ 1 is the geo-

metric multiplicity of σ for Aik + λikH and ξlik(l = 1, . . . , γik) are the left eigenvectors of

Aik + λikH corresponding to σ, k = 1, . . . , p.

This result generalizes Theorem 8.6 by Hao et al.(Hao et al., 2018) and extend it to a larger

class of heterogeneous systems. Also, Theorem 8.8 provides a method to make certain uncontrol-

lable systems controllable by manipulating the components. Numerical examples are provided in

Chapter 4.

In Chapter 4, heterogeneous systems with distinct state matrices and identical control matrices

were considered. However, in Chapter 5, we consider heterogeneous networked systems of the

form:

ẋi(t) = Aixi(t) +

N∑
j=1

βijHxj(t) + diBiui(t), i = 1, 2, . . . , N (8.12)

Then, the above system can be reduced into the compact form

Ẋ(t) = ΩX(t) + ΨU(t) (8.13)
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with,

Ω = A+ L⊗H and Ψ = (D ⊗ I)B (8.14)

where A = blockdiag{A1, A2, . . . , AN} and B = blockdiag{B1, B2, . . . , BN}. Using Theorem

8.7, we derived the following controllability result for the heterogeneous system (8.13)-(8.14).

Theorem 8.9. (Ajayakumar and George, 2023a) Let T be a non-singular matrix triagularizing ma-

trix L such that T ⊗ I commutes with A. If J contains a Jordan block of order l ≥ 2 corresponding

to the eigenvalue λi0 of L, then assume that ξkijH = 0 for all i = i0, i0 + 1, . . . , i0 + l − 1, j =

1, 2, . . . , qi, k = 1, 2, . . . , γij , where ξkij , i = 1, 2, . . . , N, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij are the

left eigenvectors of Ai+λiH corresponding to the eigenvalues µj
i , i = 1, 2, . . . , N, j = 1, 2, . . . , qi.

Then the networked system (8.13)-(8.14) is controllable if and only if

(i) eiTD ̸= 0 for all i = 1, . . . , N

(ii) For a fixed i, each left eigenvector ξ of Ai+λiH , ξBj ̸= 0 for some j ∈ {1, 2, · · · , N} with

[eiTD]j ̸= 0 ; and

(iii) If matrices Ai1 +λi1H,Ai2 +λi2H, . . . , Aip +λipH(λik ∈ σ(C), k = 1, . . . , p, where p >

1) have a common eigenvalue ρ, then (ei1TD⊗ ξ1i1)B, · · · , (ei1TD⊗ ξ
γi1
i1

)B, . . . , (eipTD⊗
ξ1ip)B, . . . , (eipTD⊗ξ

γip
ip

)B are linearly independent vectors, where γik ≥ 1 is the geometric

multiplicity of the eigenvalue ρ for the matrix Aik +λikH and ξlik(l = 1, . . . , γik) are the left

eigenvectors of Aik + λikH corresponding to ρ, k = 1, . . . , p.

This result generalizes Theorem 8.6 and Theorem 8.8 and provide a more general framework

which establishes the impact of individual node dynamics, network topology, inner coupling matri-

ces, etc., on the controllability of networked systems .

Along with Theorem 8.9, we derived the following sufficient condition for a general heteroge-

neous networked system in Chapter 5 where the inner-coupling matrices are also distinct in each

node and the network topology matrix is triangular.

Theorem 8.10. (Ajayakumar and George, 2023a) Assume that L is an upper triangular matrix. Let

σ(Ai + βiiHi) = {µ1
i , . . . , µ

qi
i } be the set of eigenvalues of Ai + ciiHi, i = 1, 2, . . . , N . Then

the set of all eigenvalues of Ω is given by σ (Ω) = {µ1
1, µ

2
1, . . . , µ

q1
1 , . . . , µ1

N , µ2
N , . . . , µqN

N }. Let

ξkij , k = 1, 2, . . . , γij be the left eigenvectors of Ai+βiiHi associated with the eigenvalue µj
i , where

γij is the geometric multiplicity of the eigenvalue µj
i for the matrix Ai + βiiHi. If ξkijHi = 0, for

i = 1, 2, . . . , N − 1, j = 1, 2, . . . , qi, k = 1, 2, . . . , γij , then ei ⊗ ξ1ij , ei ⊗ ξ1ij , . . . ei ⊗ ξ
γij
ij , are the

left eigenvectors of Ω associated with the eigenvalues µj
i .

In Chapter 6, we considered the controllability problem of networked systems with individual
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nodes having both linear and non-linear components. The individual node dynamics is given by:

ẋi(t) = Aixi(t) +

N∑
j=1

βijHxj(t) + diBiui(t) + fi(t, xi(t)), i = 1, 2, . . . , N (8.15)

The non-linear system can be rewritten in a compact form as

Ẋ(t) = ΩX(t) + Ψu(t) + F (t,X(t)) (8.16)

with

Ω = A+ L⊗H, Ψ = blockdiag{d1B1, . . . dNBN}

and

F (t, x(t)) =
[
f1(t, x1(t))

T , . . . , fN (t, xN (t))T
)

where A = blockdiag{A1, . . . , AN}. The linear part of the networked system was assumed to be

controllable and non-linear components were assumed to satisfy Lipschitz condition. We derived a

controllability condition for such systems by employing Generalized Banach Contraction Principle.

Chapter 7 explores the notion of generic controllability in networked systems, which is a type

of structural controllability. Here the individual node dynamics is given by

ẋi(t) = Aixi(t) +Biwi(t)

yi(t) = Cixi(t)
(8.17)

where the input signal for the node i is given by the weighted combination of control signals in line

with the network graph

wi(t) =
N∑
i=1

βijyj(t) +
m∑
l=1

δilul(t) (8.18)

Then the compact form of
∑

N is given by∑
N

: ẋ(t) = Ωx(t) + Ψu(t) (8.19)

where x(t) = (x1(t), . . . , xm(t))T and u(t) = (u1(t), . . . , um(t))T . The matrices Ω and Ψ repre-

senting the state and control matrices of
∑

N , respectively, have dimensions Nn×Nn and Nn×m.

They are of the following form:

Ω =


A1 + β11B1C1 β12B1C2 . . . β1NB1CN

...
...

. . .
...

βN1BNC1 βN2BNC2 . . . AN + βNNBNCN


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and

Ψ =


δ11B1 δ12B1 . . . δ1mB1

...
...

. . .
...

δN1BN δN2BN . . . δNmBN


In this model, the matrices (Ai, Bi, Ci)

′s are assumed to be exact and known, but the network

communication strength are not fixed precisely. That is, we know whether the entries are zero

or non-zero, but we do not know the exact parameter values. Commault et al. (Commault and

Kibangou, 2019) give the following set of conditions which are necessary and sufficient for the

generic controllability of interconnected systems with identical dynamical nodes.

Theorem 8.11. (Commault and Kibangou, 2019) Consider a network N with N internal nodes,

m control nodes with N > m, and its graph G (N ). Assume that all nodes are identical, SISO,

nth-order dynamical systems defined by matrices A,B,C. The global system ΣN is generically

controllable if and only if the following conditions hold:

(i) The pair (A,B) is controllable.

(ii) The pair (C,A) is observable.

(iii) The graph G (N ) is control-connected.

(iv) The internal nodes of G (N ) can be covered by a disjoint set of stems and cycles.

In Chapter 7, we show that the conditions (i), (ii) and (iii) of Theorem 8.11 are necessary for

the heterogeneous networked system (8.17)-(8.19).

Apart from the results reported in the thesis, there are a few interesting and challenging re-

search problems that necessitate additional investigation. They are summarized as follows. The

controllability analysis for a general heterogeneous networked system where the individual nodes

have distinct node dimensions has not been explored much in the existing literature. We have ob-

tained some necessary conditions for controllability of general heterogeneous networked systems in

Thomas et al.(Thomas et al., 2023) and we are currently exploring this problem further. We have

also established a necessary and sufficient condition for observability of networked systems in this

work. Investigating the controllability of networked systems with delays in both state and control

matrices also presents a compelling research area for future research. In the thesis, all the models

considered are LTI systems. Controllability of linear time variant networked systems is another key

area of research that we intend to explore in near future.

132



List of Publications
1. Ajayakumar, A., & George, R. K. (June 2023). A Note on Controllability of Directed Net-

worked System with Heterogeneous Dynamics, IEEE Transactions on Control of Network

Systems, vol. 10, no. 2, pp. 575-578.

2. Ajayakumar, A., & George, R. K. (2023). Controllability of networked systems with hetero-

geneous dynamics. Math. Control Signals Syst. 35, 307-326.

3. Ajayakumar, A., & George, R. K. (2023). Controllability of a Class of Heterogeneous Net-

worked Systems. Foundations, 3(2), 167-180.

4. Ajayakumar, A., & George, R. K. (2023). Controllability of networked systems with non-

linearities. Indain Journal of Mathematics, 65(2), 267-277.

5. Ajayakumar, A., & George, R. K. (2022). Controllability of Linear Time Invariant Net-

worked Systems: A Review. chetana: An Ivanian Journal for Scientific Research, 1(1),

26-34.

6. Ajayakumar, A., & George, R. K. (2023). A Note on Generic Controllability of Networks

with Identical SISO Dynamical Nodes. Journal of Mathematical Control Science and Appli-

cations, 9(2), 1-8.

List of Papers Presented

1. ‘A Note on Generic Controllability Networks with Identical SISO Dynamical Nodes’, Inter-

national Conference on Differential Equations and Control Problems, Organized by School

of Mathematical and Statistical Sciences, IIT Mandi, June 2023.

2. ‘Controllability of LTI Networked Systems’, International e-Conference on Number Theory

and Differential Equations, Organized by Central University, Karnataka, December 2021.

3. ‘Controllability of LTI Networked Systems with Heterogeneous Dynamics’, Symposium on

Differential Equations; Analysis, Computation and Applications, Organized by IIT, Roorkee,

December 2021.

133



4. ‘Generic Controllability of Networked Systems with Heterogeneous Dynamics’, Interna-

tional Conference on Recent Advances in Pure and Applied Algebra, Organized by Inter-

national Academy of Physical Sciences and NIT, Jamshedpur, October 2021.

5. ‘Controllability of Networked Control Systems with Triangular Network Topology’, Interna-

tional Virtual Conference on Mathematical Modelling, Analysis and Computing, Organized

by Thiruvalluvar University, July 2021.

6. ‘Controllability of LTI Networked Systems with Heterogeneous Dynamics’, National Con-

ference on Mathematical Control Theory, Organized by NIT, Puducherry and IIST, Thiru-

vananthapuram, December 2020.

List of Conferences Attended

1. National Conference on Applied Mathematics and Numerics, Organized by Department of

Mathematics, Mar Ivanios College, Thiruvananthapuram and IIST, Thiruvananthapuram,

March 2022.

2. National Seminar on Differential Equations and its Applications, Organized by Department

of Mathematics, University College, Thiruvananthapuram, November 2019.

3. National Conference on Stochastic Differential Equations and Applications, Organized by

IIST, Thiruvananthapuram and IIT, Roorkee, June 2019.

Awards

• Best Oral Presentation Award for ‘A Note on Generic Controllability Networks with Identical

SISO Dynamical Nodes’, presented at the International Conference on Differential Equations

and Control Problems, Organized by School of Mathematical and Statistical Sciences, IIT

Mandi, June 2023.

134



Bibliography

[Aguilar and Gharesifard 2014] AGUILAR, Cesar O. ; GHARESIFARD, Bahman: A graph-

theoretic classification for the controllability of the Laplacian leader-follower dynamics. In: 53rd

IEEE conference on decision and control IEEE (Veranst.), 2014, S. 619–624

[Ajayakumar and George 2022a] AJAYAKUMAR, Abhijith ; GEORGE, Raju K.: Controllability

of Linear Time Invariant Networked Systems: A Review. In: Chetana: An Ivanian Journal for

Scientific Research (2022), S. 26–34

[Ajayakumar and George 2022b] AJAYAKUMAR, Abhijith ; GEORGE, Raju K.: A Note on

Controllability of Directed Networked MIMO Systems With Heterogeneous Dynamics. In: IEEE

Transactions on Control of Network Systems 10 (2022), Nr. 2, S. 575–578

[Ajayakumar and George 2023a] AJAYAKUMAR, Abhijith ; GEORGE, Raju K.: Controllability

of a Class of Heterogeneous Networked Systems. In: Foundations 3 (2023), Nr. 2, S. 167–180

[Ajayakumar and George 2023b] AJAYAKUMAR, Abhijith ; GEORGE, Raju K.: Controllability

of networked systems with heterogeneous dynamics. In: Mathematics of Control, Signals, and

Systems 35 (2023), Nr. 2, S. 307–326

[Ajayakumar and George 2023c] AJAYAKUMAR, Abhijith ; GEORGE, Raju K.: Controllability

of networked systems with non-linearities. In: Indain Journal of Mathematics 65 (2023), Nr. 2,

S. 267–277

[Ajayakumar and George 2023d] AJAYAKUMAR, Abhijith ; GEORGE, Raju K.: A Note on

Generic Controllability of Networks with Identical SISO Dynamical Nodes. In: Journal of Math-

ematical Control Science and Applications 9 (2023), Nr. 2, S. 1–8

[Bassett and Sporns 2017] BASSETT, Danielle S. ; SPORNS, Olaf: Network neuroscience. In:

Nature neuroscience 20 (2017), Nr. 3, S. 353–364

[Blackhall and Hill 2010] BLACKHALL, Lachlan ; HILL, David J.: On the structural controllabil-

ity of networks of linear systems. In: IFAC Proceedings Volumes 43 (2010), Nr. 19, S. 245–250

135



[Brockett 2015] BROCKETT, Roger W.: Finite dimensional linear systems. SIAM, 2015

[Bullmore and Sporns 2009] BULLMORE, Ed ; SPORNS, Olaf: Complex brain networks: graph

theoretical analysis of structural and functional systems. In: Nature reviews neuroscience 10

(2009), Nr. 3, S. 186–198

[Callier and Nahum 1975] CALLIER, F ; NAHUM, C: Necessary and sufficient conditions for the

complete controllability and observability of systems in series using the coprime factorization of

a rational matrix. In: IEEE Transactions on Circuits and Systems 22 (1975), Nr. 2, S. 90–95

[Chapman and Mesbahi 2013] CHAPMAN, Airlie ; MESBAHI, Mehran: On strong structural

controllability of networked systems: A constrained matching approach. In: 2013 American

control conference IEEE (Veranst.), 2013, S. 6126–6131

[Chen and Desoer 1967] CHEN, Chi-Tsong ; DESOER, C.: Controlability and observability of

composite systems. In: IEEE Transactions on Automatic Control 12 (1967), Nr. 4, S. 402–409

[Coddington and Levinson 1955] CODDINGTON, Earl A. ; LEVINSON, Norman: Theory of

ordinary differential equations. Bd. 158. McGraw-Hill New York, 1955

[Commault and Kibangou 2019] COMMAULT, Christian ; KIBANGOU, Alain: Generic control-

lability of networks with identical SISO dynamical nodes. In: IEEE Transactions on Control of

Network Systems 7 (2019), Nr. 2, S. 855–865

[Davison and Wang 1975] DAVISON, E ; WANG, S: New results on the controllability and

observability of general composite systems. In: IEEE Transactions on Automatic Control 20

(1975), Nr. 1, S. 123–128

[Davison 1977] DAVISON, Edward J.: Connectability and structural controllability of composite

systems. In: Automatica 13 (1977), Nr. 2, S. 109–123

[Dion et al. 2003] DION, Jean-Michel ; COMMAULT, Christian ; WOUDE, Jacob Van der: Generic

properties and control of linear structured systems: a survey. In: Automatica 39 (2003), Nr. 7,

S. 1125–1144

[Du et al. 2017] DU, Dajun ; QI, Bo ; FEI, Minrui ; WANG, Zhaoxia: Quantized control of dis-

tributed event-triggered networked control systems with hybrid wired–wireless networks com-

munication constraints. In: Information Sciences 380 (2017), S. 74–91

[Farhangi 2009] FARHANGI, Hassan: The path of the smart grid. In: IEEE power and energy

magazine 8 (2009), Nr. 1, S. 18–28

136



[Fuhrmann 1975] FUHRMANN, Paul A.: On controllability and observability of systems con-

nected in parallel. In: IEEE Transactions on Circuits and Systems CAS-22 (1975), Nr. 1

[George and Ajayakumar 2024] GEORGE, Raju K. ; AJAYAKUMAR, Abhijith: A Course in

Linear Algebra. Springer, 2024

[Gilbert 1963] GILBERT, Elmer G.: Controllability and observability in multivariable control

systems. In: Journal of the Society for Industrial and Applied Mathematics, Series A: Control 1

(1963), Nr. 2, S. 128–151

[Glover and Silverman 1976] GLOVER, K ; SILVERMAN, L: Characterization of structural con-

trollability. In: IEEE Transactions on Automatic control 21 (1976), Nr. 4, S. 534–537

[Gu et al. 2015] GU, Shi ; PASQUALETTI, Fabio ; CIESLAK, Matthew ; TELESFORD, Qawi K. ;

YU, Alfred B. ; KAHN, Ari E. ; MEDAGLIA, John D. ; VETTEL, Jean M. ; MILLER, Michael B. ;

GRAFTON, Scott T. et al.: Controllability of structural brain networks. In: Nature communica-

tions 6 (2015), Nr. 1, S. 8414

[Haghighi and Cheah 2016] HAGHIGHI, Reze ; CHEAH, Chien C.: Topology-based controlla-

bility problem in network systems. In: IEEE Transactions on Systems, Man, and Cybernetics:

Systems 47 (2016), Nr. 11, S. 3077–3088

[Hao et al. 2018] HAO, Yuqing ; DUAN, Zhisheng ; CHEN, Guanrong: Further on the control-

lability of networked MIMO LTI systems. In: International Journal of Robust and Nonlinear

Control 28 (2018), Nr. 5, S. 1778–1788

[Hao et al. 2019] HAO, Yuqing ; DUAN, Zhisheng ; CHEN, Guanrong ; WU, Fen: New control-

lability conditions for networked, identical LTI systems. In: IEEE Transactions on Automatic

Control 64 (2019), Nr. 10, S. 4223–4228

[Hara et al. 2009] HARA, Shinji ; HAYAKAWA, Tomohisa ; SUGATA, Hikaru: LTI systems with

generalized frequency variables: A unified framework for homogeneous multi-agent dynamical

systems. In: SICE Journal of Control, Measurement, and System Integration 2 (2009), Nr. 5,

S. 299–306

[Hautus 1969] HAUTUS, Malo L.: Controllability and observability conditions of linear au-

tonomous systems. In: Ned. Akad. Wetenschappen 72 (1969), S. 443–448

[Horn and Johnson 1994] HORN, Roger A. ; JOHNSON, Charles R.: Topics in matrix analysis.

Cambridge university press, 1994

[Horn and Johnson 2012] HORN, Roger A. ; JOHNSON, Charles R.: Matrix analysis. Cambridge

university press, 2012

137



[Hosoe and Matsumoto 1979] HOSOE, Shigeyuki ; MATSUMOTO, Kojyun: On the irreducibility

condition in the structural controllability theorem. In: IEEE Transactions on Automatic Control

24 (1979), Nr. 6, S. 963–966

[Jackson et al. 2008] JACKSON, Matthew O. et al.: Social and economic networks. Bd. 3. Prince-

ton university press Princeton, 2008

[Jarczyk et al. 2011] JARCZYK, Jan C. ; SVARICEK, Ferdinand ; ALT, Benedikt: Strong structural

controllability of linear systems revisited. In: 2011 50th IEEE Conference on Decision and

Control and European Control Conference, 2011, S. 1213–1218

[Ji and Egerstedt 2007] JI, Meng ; EGERSTEDT, Magnus: A graph-theoretic characterization of

controllability for multi-agent systems. In: 2007 American control conference IEEE (Veranst.),

2007, S. 4588–4593

[Ji et al. 2006] JI, Meng ; MUHAMMAD, Abubakr ; EGERSTEDT, Magnus: Leader-based multi-

agent coordination: Controllability and optimal control. In: 2006 American Control Conference

IEEE (Veranst.), 2006, S. 6–pp

[Ji and Yu 2016] JI, Zhijian ; YU, Haisheng: A new perspective to graphical characterization of

multiagent controllability. In: IEEE transactions on cybernetics 47 (2016), Nr. 6, S. 1471–1483

[Joshi and Bose 1985] JOSHI, Mohan C. ; BOSE, Ramendra K.: Some topics in nonlinear

functional analysis. Wiley Eastern Limited, 1985

[Joshi and George 1989] JOSHI, Mohan C. ; GEORGE, Raju K.: Controllability of nonlinear

systems. In: Numerical Functional Analysis and Optimization 10 (1989), Nr. 1-2, S. 139–166

[Kailath 1980] KAILATH, Thomas: Linear systems. Bd. 156. Prentice-Hall Englewood Cliffs,

NJ, 1980

[Kalman 1960] KALMAN, Rudolf E.: On the general theory of control systems. In: Proceedings

first international conference on automatic control, Moscow, USSR, 1960, S. 481–492

[Kalman 1962] KALMAN, Rudolf E.: Canonical structure of linear dynamical systems. In:

Proceedings of the National Academy of Sciences 48 (1962), Nr. 4, S. 596–600

[Klamka 2019] KLAMKA, Jerzy: Controllability and minimum energy control. Springer, 2019

[Kong et al. 2021] KONG, Zhi ; CAO, Lianqian ; WANG, Lifu ; GUO, Ge: Controllability of het-

erogeneous networked systems with nonidentical inner-coupling matrices. In: IEEE Transactions

on Control of Network Systems 9 (2021), Nr. 2, S. 867–878

138



[Ladde and Sambandham 2003] LADDE, Gangaram S. ; SAMBANDHAM, Masilamani: Stochastic

versus deterministic systems of differential equations. CRC Press, 2003

[Li et al. 2015] LI, Xiang ; YAO, Peng ; PAN, Yujian: Towards structural controllability of

temporal complex networks. In: Complex Systems and Networks: Dynamics, Controls and Ap-

plications. Springer, 2015, S. 341–371

[Limaye 1996] LIMAYE, Balmohan V.: Functional analysis. New Age International, 1996

[Lin 1974] LIN, Ching-Tai: Structural controllability. In: IEEE Transactions on Automatic

Control 19 (1974), Nr. 3, S. 201–208

[Lin 1977] LIN, Ching-Tai: System structure and minimal structure controllability. In: IEEE

Transactions on Automatic Control 22 (1977), Nr. 5, S. 855–862

[Linnemann 1986] LINNEMANN, A: A further simplification in the proof of the structural con-

trollability theorem. In: IEEE transactions on automatic control 31 (1986), Nr. 7, S. 638–639

[Liu et al. 2013] LIU, Xiaomeng ; LIN, Hai ; CHEN, Ben M.: Graph-theoretic characterisations

of structural controllability for multi-agent system with switching topology. In: International

Journal of Control 86 (2013), Nr. 2, S. 222–231

[Liu et al. 2011] LIU, Yang-Yu ; SLOTINE, Jean-Jacques ; BARABÁSI, Albert-László: Control-

lability of complex networks. In: nature 473 (2011), Nr. 7346, S. 167–173

[Lombardi and Hörnquist 2007] LOMBARDI, Anna ; HÖRNQUIST, Michael: Controllability

analysis of networks. In: Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 75

(2007), Nr. 5, S. 056110

[Lou and Hong 2012] LOU, Youcheng ; HONG, Yiguang: Controllability analysis of multi-agent

systems with directed and weighted interconnection. In: International Journal of Control 85

(2012), Nr. 10, S. 1486–1496

[Martini et al. 2010] MARTINI, Simone ; EGERSTEDT, Magnus ; BICCHI, Antonio: Controllabil-

ity analysis of multi-agent systems using relaxed equitable partitions. In: International Journal

of Systems, Control and Communications 2 (2010), Nr. 1-3, S. 100–121

[Mayeda 1981] MAYEDA, Hirokazu: On structural controllability theorem. In: IEEE Transac-

tions on Automatic Control 26 (1981), Nr. 3, S. 795–798

[Mirza and Womack 1971] MIRZA, K. ; WOMACK, B.: On the controllability of a class of

nonlinear systems. In: IEEE Transactions on Automatic Control 16 (1971), Nr. 5, S. 497–498

139



[Mirza and Womack 1972] MIRZA, K. ; WOMACK, B.: On the controllability of nonlinear

time-delay systems. In: IEEE Transactions on Automatic Control 17 (1972), Nr. 6, S. 812–814

[Mousavi and Haeri 2016] MOUSAVI, Shima S. ; HAERI, Mohammad: Controllability analysis

of networks through their topologies. In: 2016 IEEE 55th Conference on Decision and Control

(CDC) IEEE (Veranst.), 2016, S. 4346–4351

[Mu et al. 2022] MU, Jianbin ; WU, Jing ; LI, Ning ; ZHANG, Xiaohu ; LI, Shaoyuan: Structural

controllability of networked systems with general heterogeneous subsystems. In: Asian Journal

of Control 24 (2022), Nr. 3, S. 1321–1332

[Müller and Schuppert 2011] MÜLLER, Franz-Josef ; SCHUPPERT, Andreas: Few inputs can

reprogram biological networks. In: Nature 478 (2011), Nr. 7369, S. E4–E4

[Muni and George 2018] MUNI, V ; GEORGE, Raju K.: Controllability of networked higher-

dimensional systems with one-dimensional communications having multiple constant time-

delays in control. In: International Conference on Advances in Pure and Applied Mathematics,

2018

[Nabi-Abdolyousefi and Mesbahi 2013] NABI-ABDOLYOUSEFI, Marzieh ; MESBAHI, Mehran:

On the controllability properties of circulant networks. In: IEEE Transactions on Automatic

Control 58 (2013), Nr. 12, S. 3179–3184

[Nair 2021] NAIR, M T.: Functional analysis: A first course. PHI Learning Pvt. Ltd., 2021

[Najafi and Shaikholeslam 2013] NAJAFI, Majdeddin ; SHAIKHOLESLAM, Farid: Graph theoret-

ical methods to study controllability and leader selection for dead-time systems. In: Transactions

on Combinatorics 2 (2013), Nr. 4, S. 25–36

[Nandakumaran et al. 2017] NANDAKUMARAN, AK ; DATTI, PS ; GEORGE, Raju K.: Ordinary

differential equations: Principles and applications. Cambridge University Press, 2017

[Nepusz and Vicsek 2012] NEPUSZ, Tamás ; VICSEK, Tamás: Controlling edge dynamics in

complex networks. In: Nature Physics 8 (2012), Nr. 7, S. 568–573

[Pequito et al. 2015] PEQUITO, Sérgio ; KAR, Soummya ; AGUIAR, A P.: On the complexity of

the constrained input selection problem for structural linear systems. In: Automatica 62 (2015),

S. 193–199

[Rahmani et al. 2009] RAHMANI, Amirreza ; JI, Meng ; MESBAHI, Mehran ; EGERSTEDT,

Magnus: Controllability of multi-agent systems from a graph-theoretic perspective. In: SIAM

Journal on Control and Optimization 48 (2009), Nr. 1, S. 162–186

140



[Rahmani and Mesbahi 2006] RAHMANI, Amirreza ; MESBAHI, Mehran: On the controlled

agreement problem. In: 2006 American Control Conference IEEE (Veranst.), 2006, S. 6–pp

[Rahmani and Mesbahi 2007] RAHMANI, Amirreza ; MESBAHI, Mehran: Pulling the strings

on agreement: anchoring, controllability, and graph automorphisms. In: 2007 American Control

Conference IEEE (Veranst.), 2007, S. 2738–2743

[Ramos et al. 2020] RAMOS, Guilherme ; AGUIAR, A P. ; PEQUITO, Sergio: Structural systems

theory: an overview of the last 15 years. In: arXiv preprint arXiv:2008.11223 (2020)

[Rugh 1996] RUGH, Wilson J.: Linear system theory. Prentice-Hall, Inc., 1996

[Shields and Pearson 1976] SHIELDS, Robert ; PEARSON, J: Structural controllability of multi-

input linear systems. In: IEEE Transactions on Automatic control 21 (1976), Nr. 2, S. 203–212

[Sontag 2013] SONTAG, Eduardo D.: Mathematical control theory: deterministic finite dimen-

sional systems. Bd. 6. Springer Science & Business Media, 2013

[Strogatz 2001] STROGATZ, Steven H.: Exploring complex networks. In: nature 410 (2001),

Nr. 6825, S. 268–276

[Sukavanam 2000] SUKAVANAM, Nagarajan: Solvability of semilinear operator equations with

growing nonlinearity. In: Journal of mathematical analysis and applications 241 (2000), Nr. 1,

S. 39–45

[Tanner 2004] TANNER, Herbert G.: On the controllability of nearest neighbor interconnections.

In: 2004 43rd IEEE conference on decision and control (CDC)(IEEE Cat. No. 04CH37601) Bd. 3

IEEE (Veranst.), 2004, S. 2467–2472

[Tarokh 1992] TAROKH, M: Measures for controllability, observability and fixed modes. In:

IEEE Transactions on Automatic Control 37 (1992), Nr. 8, S. 1268–1273

[Terrell 2009] TERRELL, William J.: Stability and stabilization: an introduction. Princeton

University Press, 2009

[Thomas et al. 2023] THOMAS, Aleena ; AJAYAKUMAR, Abhijith ; GEORGE, Raju K.: On

the Controllability and Observability of Heterogeneous Networked Systems with distinct node

dimensions and inner-coupling matrices. In: 2023 International Conference on Control, Artificial

Intelligence, Robotics & Optimization (ICCAIRO) IEEE (Veranst.), 2023, S. 67–73

[Vidyasagar 1972] VIDYASAGAR, M: A controllability condition for nonlinear systems. In: IEEE

Transactions on Automatic Control 17 (1972), Nr. 4, S. 569–570

141



[Wang et al. 2016a] WANG, Le-Zhi ; SU, Ri-Qi ; HUANG, Zi-Gang ; WANG, Xiao ; WANG, Wen-

Xu ; GREBOGI, Celso ; LAI, Ying-Cheng: A geometrical approach to control and controllability

of nonlinear dynamical networks. In: Nature communications 7 (2016), Nr. 1, S. 11323

[Wang et al. 2016b] WANG, Lin ; CHEN, Guanrong ; WANG, Xiaofan ; TANG, Wallace K.:

Controllability of networked MIMO systems. In: Automatica 69 (2016), S. 405–409

[Wang et al. 2017a] WANG, Lin ; WANG, Xiaofan ; CHEN, Guanrong: Controllability of net-

worked higher-dimensional systems with one-dimensional communication. In: Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375

(2017), Nr. 2088, S. 20160215

[Wang et al. 2017b] WANG, Peiru ; XIANG, Linying ; CHEN, Fei: Controllability of heteroge-

neous networked MIMO systems. In: 2017 International Workshop on Complex Systems and

Networks (IWCSN) IEEE (Veranst.), 2017, S. 45–49

[Wang and Chen 2003] WANG, Xiao F. ; CHEN, Guanrong: Complex networks: small-world,

scale-free and beyond. In: IEEE circuits and systems magazine 3 (2003), Nr. 1, S. 6–20

[Whalen et al. 2015] WHALEN, Andrew J. ; BRENNAN, Sean N. ; SAUER, Timothy D. ; SCHIFF,

Steven J.: Observability and controllability of nonlinear networks: The role of symmetry. In:

Physical Review X 5 (2015), Nr. 1, S. 011005

[Wuchty 2014] WUCHTY, Stefan: Controllability in protein interaction networks. In: Proceed-

ings of the National Academy of Sciences 111 (2014), Nr. 19, S. 7156–7160

[Xiang et al. 2019a] XIANG, Linying ; CHEN, Fei ; REN, Wei ; CHEN, Guanrong: Advances in

network controllability. In: IEEE Circuits and Systems Magazine 19 (2019), Nr. 2, S. 8–32

[Xiang et al. 2019b] XIANG, Linying ; WANG, Peiru ; CHEN, Fei ; CHEN, Guanrong: Control-

lability of directed networked MIMO systems with heterogeneous dynamics. In: IEEE Transac-

tions on Control of Network Systems 7 (2019), Nr. 2, S. 807–817

[Xue and Roy 2019] XUE, Mengran ; ROY, Sandip: Structural controllability of linear dynamical

networks with homogeneous subsystems. In: IFAC-PapersOnLine 52 (2019), Nr. 3, S. 25–30

[Yang et al. 2023] YANG, Zixuan ; WANG, Xiaofan ; WANG, Lin: Controllability of Networked

Sampled-data Systems. In: IEEE Transactions on Automatic Control (2023)

[Yazıcıoğlu et al. 2016] YAZICIOĞLU, AY ; ABBAS, Waseem ; EGERSTEDT, Magnus: Graph

distances and controllability of networks. In: IEEE Transactions on Automatic Control 61 (2016),

Nr. 12, S. 4125–4130

142



[Zamani and Lin 2009] ZAMANI, Mohsen ; LIN, Hai: Structural controllability of multi-agent

systems. In: 2009 American control conference IEEE (Veranst.), 2009, S. 5743–5748

[Zañudo et al. 2017] ZAÑUDO, Jorge Gomez T. ; YANG, Gang ; ALBERT, Réka: Structure-based

control of complex networks with nonlinear dynamics. In: Proceedings of the National Academy

of Sciences 114 (2017), Nr. 28, S. 7234–7239

[Zhang et al. 2021] ZHANG, Yuan ; XIA, Yuanqing ; ZHAI, Di-Hua: Structural controllability of

networked relative coupling systems. In: Automatica 128 (2021), S. 109547

[Zhang and Zhou 2016] ZHANG, Yuan ; ZHOU, Tong: Controllability analysis for a networked

dynamic system with autonomous subsystems. In: IEEE Transactions on Automatic Control 62

(2016), Nr. 7, S. 3408–3415

[Zhao et al. 2020] ZHAO, Bin ; CHEN, Michael Z. ; GUAN, Yongqiang ; WANG, Long: Control-

lability of heterogeneous multiagent systems. In: International Journal of Robust and Nonlinear

Control 30 (2020), Nr. 2, S. 512–525

[Zhou 2015] ZHOU, Tong: On the controllability and observability of networked dynamic sys-

tems. In: Automatica 52 (2015), S. 63–75

143


	List of Figures
	Abbreviations
	Nomenclature
	Introduction
	Stand-Alone Control Systems
	Networked Systems
	Thesis outline and contributions overview

	Preliminaries
	Tools from Matrix Analysis
	Tools from Functional Analysis
	Tools from Graph Theory

	Controllability of Homogeneous and Heterogeneous Networked Systems
	Introduction
	Problem Formulation
	Controllability of Homogeneous Networked Systems
	Controllability of Heterogeneous Networked Systems
	Necessary Conditions for Controllability of Heterogeneous Networked Systems
	Conclusions

	Controllability of Heterogeneous Networked Systems with Identical Control Input Matrices
	Introduction
	Problem formulation
	Controllability of Homogeneous Networked Systems over Diagonalizable Network Topology
	Controllability of Heterogeneous Networked Systems with Identical Control Input Matrices
	Controllability of Heterogeneous Systems over Specific Network Topologies
	Conclusions

	Controllability of Heterogeneous Networked Systems with Non-Identical Control Input Matrices
	Introduction
	Problem formulation
	Controllability of Heterogeneous Networked Systems with Non-Identical Control Matrices
	Controllability of Heterogeneous Networked Systems with Triangular Network Topology
	Conclusions

	Controllability of Networked Systems with Non-linearities
	Introduction
	Problem Formulation
	Controllability of Networked Systems with Non-Linearities
	Conclusions

	Generic Controllability of Networks with Non-Identical SISO Dynamical Nodes
	Introduction
	Problem Formulation
	Necessary Conditions for Generic Controllability of Heterogeneous Networked Systems
	Conclusions

	Summary of the Thesis and Future Work
	List of Publications
	Bibliography

