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Abstract

The detection and estimation of entanglement in the optical domain have been exten-
sively explored, drawing inspiration from formal methods developed in quantum theory and
quantum information. However, these approaches often introduce complexities in terms of
achieving entanglement and necessitate the use of additional devices in the experimental
setup. We aim to study entanglement in optics using elementary interferometric setups.

First, we focus on investigating polarization-spatial Gaussian entanglement in a coher-
ent vectorial paraxial light field. We outline a method for detecting polarization-spatial
Gaussian entanglement through fringe movement when a linear polarizer is rotated, with
the light field passing through the polarizer. The fringe movement is identified as a suf-
ficient condition for detecting polarization-spatial entanglement in coherent paraxial vec-
tor light fields. We demonstrate that two Gaussian light fields exhibiting a small rela-
tive tilt, substantial spatial overlap, and orthogonal polarizations possess close to 1 ebit
of polarization-spatial entanglement. Furthermore, we experimentally demonstrate tunable
polarization-spatial Gaussian entanglement using a folded Mach-Zehnder interferometer.

We then move on to address bipartite entanglement in partially coherent paraxial vector
light fields. A generalized uncertainty principle suited for the polarization-spatial degrees
of freedom is introduced. Partial transpose is implemented through the obtained gener-
alized uncertainty principle. Partial transpose is shown to be necessary and sufficient in
detecting entanglement for a class of partially coherent vector light fields which have their
spatial part to be Gaussian. Also, an experimental realization of the studied entangled states
using classical optical interferometry is outlined.

Next the study delves into the detection of polarization-spatial entanglement by imple-
menting partial transpose on measured intensities. A sufficient criterion for polarization-
spatial entanglement in partially coherent light fields based on intensities measured at vari-
ous orientations of the polarizer, as implied through partial transpose, is outlined. Further-
more, we experimentally demonstrate the detection of polarization-spatial entanglement
through the proposed method, using a Mach-Zehnder interferometer setup.

Finally, though a scalar singular paraxial light field does not possess polarization-spatial
entanglement, it could possess entanglement between other degrees of freedom such as
radial-angular entanglement. Detection and estimation of the same requires the knowledge
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of both amplitude and phase of the light field. While the amplitude can be easily measured,
the phase has to be retrieved from intensity measurements. Once the phase is successfully
retrieved, important properties such as mode expansion, orbital angular momentum, and
radial-angular entanglement of the light field can be directly determined based on the esti-
mated field amplitudes. We demonstrate the estimation of the phase of a singular paraxial
light field from experimentally measured intensities using a Gerchberg–Saxton type algo-
rithm. A combination of cylindrical lenses which does not conserve the orbital angular
momentum of the light field is used in obtaining the measured intensities. Consistent ex-
traction of the phases in regard of the orbital angular momentum is demonstrated both at
the input and output transverse planes, using the measured intensities.
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Û(S,d) Most general Gaussian unitary in the operators x̂ and p̂x including
translations
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Chapter 1

Introduction

1.1 Entanglement in optics

Quantum mechanical systems and classical optic systems share the commonality of the
superposition principle. As a result, it is possible to find instances when one mimics the
other. For instance, in Refs. [1–5] quantum random walks have been effectively simulated
using classical light, and in Refs. [6, 7] the classical optic analogue of teleportation has
been demonstrated. Similarly, quantum mechanical matter has been found to reproduce
standard classical optical phenomena such as interference and diffraction [8–13]. A funda-
mental consequence of the superposition principle when two or more degrees of freedom
are involved is the notion of entanglement.

Entanglement is defined as inseparability of sums of product states that exist in different
vector spaces. The concept of entanglement has been well explored both in the quantum
domain [14–24] as well as in the classical domain [6, 7, 25–59]. The various similari-
ties and differences between the quantum optical and classical optical entanglement were
discussed in Refs. [28, 31, 32, 35, 50, 55]. Classical light fields having entangled degrees
of freedom have been of much interest lately, and have found various applications in the
possible simulation of quantum phenomena [6, 7, 39–44]. They have also been used in
encoding information for optical communication [6, 7, 37, 38], and polarization metrol-
ogy [29]. Polarization spatial entangled light fields helped resolve the problem of defining
Mueller matrices in a consistent manner [45].

Bipartite entanglement has been well explored in several works and there exist sev-
eral methods towards their detection such as violation of Bell-type inequalities [33, 34,
36, 53, 55–59], and the use of positive maps [15, 21–23, 60–64]. Experimental detec-
tion of polarization-spatial entanglement by violation of Bell-type inequality, implemented
through intensity measurements, was demonstrated in Refs. [33, 36, 55, 56, 58]. Note that
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implementation of Bell inequality in the polarization-spatial context, requires the estima-
tion of expectation values of observables pertaining to both polarization and spatial degrees
of freedom, which is in principle obtained through multiple intensity measurements (see for
instance Refs. [33, 57]). Maximal violation of Bell-type inequality is obtained on a maxi-
mally polarization-spatial entangled light field as shown in Refs. [33, 36, 56, 58]. The case
of violation of Bell-type inequality in partially coherent polarization-spatial entangled light
fields was considered in Refs. [36, 58].

Bell-type inequalities witness entanglement through expectation values of local ob-
servables. Positive maps on the other hand are implemented on the density operator, and
entanglement is inferred through violation of positivity conditions. A method to detect bi-
partite entanglement has been through the use of the partial transpose map [60]. This map
has been found to be necessary and sufficient in detecting bipartite entanglement in certain
finite dimensional [14,61,62,64] as well as infinite dimensional contexts [21–23,63]. The
presence of bipartite entanglement not detected by partial transpose is well known, and the
separability problem is still open in a generic bipartite setting [14, 15]. Bipartite entan-
glement not detected by partial transpose has interesting physical consequence such as the
existence of bound entanglement [21, 24].

1.2 Quantum entanglement and its classical analogue

The association between entanglement and quantum mechanics is so strong that the prefix
“quantum” is often considered redundant; entanglement is inherently quantum. However,
the defining characteristic of entangled quantum states is their non-separability, a trait not
exclusive to the quantum domain.

Let us consider a quantum system S consisting of two subsystems denoted by S1 and S2,
respectively. For instance, a scenario where two particles with massm are confined to move
along a line, with coordinates x1 and x2, respectively, connected to the equilibrium point
by two identical springs of spring constant k = mω2, with ω being the angular frequency.
This forms a bipartite quantum system governed by the Hamiltonian Ĥ = Ĥ1 + Ĥ2, where

Ĥi=1,2 =
1

2m
p̂2
i +

1

2
mω2x̂2

i , (1.1)

with p̂i and x̂i being the momentum and position operators, respectively. In this case, the
two subsystems S1 and S2 are associated with the two particles.

Now contemplate a second scenario where a single particle of mass m is moving across
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a plane (x1, x2), connected to the equilibrium point x1 = 0 = x2 by a spring of spring
constant k. Here we have a two-dimensional harmonic oscillator with Hamiltonian

Ĥ =
1

2m
(p̂2

1 + p̂2
2) +

1

2
mω2(x̂2

1 + x̂2
2)

= Ĥ1 + Ĥ2, (1.2)

where Ĥi is given by Eq. (1.1). In this case, the two subsystems S1 and S2 are associated
with the two Cartesian coordinates of the single particle. In both cases the Hamiltonian
Ĥ is the same. The general state vector |Ψ〉 which satisfies the Schrödinger equation
i/κ∂|Ψ〉/∂t = Ĥ|Ψ〉, belongs to a Hilbert space H which in turn is the tensor product
of two Hilbert spaces associated with the two subsystems S1 and S2: H = H1 ⊗H2.

On comparing the two cases considered above, the main difference lies in the fact that
in the first case the two subsystems are associated with two distinct physical objects (two
particles) that can have spatial separation, whereas, in the second case the two subsystems
are associated with the orthogonal coordinates of a single physical object (single particle).
This difference has serious consequences when the state vector |Ψ〉 is entangled, that is,

|Ψ〉 6= |ψ1〉 ⊗ |ψ2〉. (1.3)

Here, |ψ1〉 and |ψ2〉 represent the states of the subsystems S1 and S2, respectively.

The entanglement in both cases considered above can be classified as two different
types of entanglement [26, 28, 35]: (i) intersystem or multiparticle entanglement and (ii)
intrasystem or entanglement between different degrees of freedom of a single particle. Note
that, although these look deceptively similar, only type (i) yield non-local correlations and
only type (ii) has a classical analogy. Non-locality is a fundamental aspect of quantum
mechanics and should not be confused with quantum entanglement. Intrasystem entangle-
ment can manifest in both quantum and classical systems, and it inherently possesses a
local nature by definition. This is because the two or more entangled degrees of freedom
are confined within the same physical object. In our work, we deal with classical optical
analogue of intrasystem entanglement. A typical example would be a paraxial vector light
field non-separable in the polarization and spatial degrees of freedom. Such entangled light
fields are discussed in detail in the next chapter.

A minimal definition of entanglement between different degrees of freedom of a classi-
cal system as given in Ref. [55] is: “If in a physical system described by the laws of clas-
sical wave mechanics, an observable quantity that depends on two (or more) independent
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degrees of freedom, say x and y, can be mathematically represented by a non-separable
function f(x, y) such that f(x, y) 6= u(x)v(y), then such a system is said to display clas-
sical entanglement”. In Ref. [35], on exploring an analogous model system for quantum
information processing using classical wave optics, researchers have discovered that while
the classical model can effectively mimic many aspects of entanglement, it falls short in
replicating quantum non-locality.

1.3 Summary of results obtained in the thesis

In this section we will outline the results obtained in this thesis. Numerous works have
been done towards detection and estimation of entanglement in the optical context, by
importing and implementing formal methods developed in quantum theory/quantum infor-
mation [34, 56, 59, 65]. Typically this renders the experiment cumbersome in terms of the
means to achieve entanglement, and also in terms of the use of additional devices in the
setup. In this thesis, we demonstrated using an elementary interferometric setup, gener-
ation, detection and estimation of pure state entanglement. Tunable polarization-spatial
Gaussian entangled light fields were generated using a folded Mach-Zehnder setup. Fringe
movement was shown to be a sufficient criterion in detecting entanglement. Estimation
of entanglement was demonstrated using polarimetry. As understood formally from the
Schmidt decomposition [66], orthogonal modes were a necessity for maximal entangle-
ment and sophisticated experimental setups, that use devices such as spatial light modu-
lators (SLMs), dove prisms and digital micromirror devices [34, 56, 59, 65], were required
in achieving it. Nevertheless, we were able to show that two Gaussian light fields with a
small relative tilt (of the order of 10−4 radians), but with substantial spatial overlap, and
orthogonal polarizations, can have close to maximal entanglement. This is attributed to the
inherent wavelength dependent scale in the problem.

As mentioned earlier, partial transpose map has been found to be both necessary and
sufficient for detecting entanglement in certain finite and infinite dimensional systems. In
our work, we specifically study bipartite entanglement in 2×∞ dimensional systems. We
settled the issue of separability between the polarization and spatial degrees of freedom for
a particular class of states which have their spatial part to be Gaussian. Negativity under
partial transpose was shown to be necessary and sufficient in detecting entanglement. To
implement the partial transpose, we introduced a generalized uncertainty principle tailored
to our specific context. Furthermore, we propose an experiment using the Mach-Zehnder
interferometer to realize these entangled states. This setup provides us with a versatile
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tool for engineering polarization-spatial entanglement, which holds potential applications
in fields such as polarization metrology and optical communication that utilize vector light
fields.

Moreover, we have introduced a technique for detecting polarization-spatial entangle-
ment in partially coherent vector light fields based on intensity measurements. The im-
plementation of partial transpose involves sequentially adding intensities measured at dif-
ferent polarizer orientations. We establish that the negativity of the combined intensities
serves as a sufficient criterion for detecting polarization-spatial entanglement. To experi-
mentally demonstrate the detection of polarization-spatial entanglement using this method,
we use a Mach-Zehnder interferometer setup. Generating partially coherent vector light
fields by simulating them as a sequence of pure input polarization-spatial entangled states,
we show that these light fields violate the established criterion, thus indicating the presence
of polarization-spatial entanglement. Although the considered examples are restrictive, the
method itself is applicable to any arbitrary partially coherent polarization-spatial states for
entanglement detection.

Further, we have successfully conducted experiments to extract phases with dislocations
from singular light fields using a Gerchberg Saxton (GS) type algorithm. The phases of field
amplitudes at the output, which possess fractional orbital angular momentum (OAM), were
also extracted. These experimental results validate the theoretical approach outlined in Ref.
[67]. An important aspect of our method is its generality in extracting dislocated phases
from intensity measurements without imposing constraints on the mode expansion of the
light field. Consequently, the mode expansion, OAM, and the radial-angular entanglement
[68] of the light field can be straightforwardly derived from the estimated field amplitudes
at both the input and output transverse planes. This demonstrates the versatility and broad
applicability of our approach in extracting various properties of the light field.

1.4 Organization of the thesis

We have given an outline of the thesis in Chapter 1. Chapter 2 provides an overview of
the fundamental concepts in optics. Section 2.1 discusses ray transfer matrices that corre-
spond to various symmetric and asymmetric optical transformations in the paraxial limit.
In Section 2.2, we delve into Maxwell’s equations, the paraxial wave equation, and their
solutions. This section establishes the groundwork for understanding wave propagation in
optical systems. Section 2.3 explains the Huygen’s Fresnel diffraction principle and the
Fresnel approximation for free space propagation. These play a crucial role in the devel-
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opment of an algorithm for free space propagation as outlined in Ref. [69]. Section 2.4
outlines thin lens as a phase transformation, whereas the unitary representation of various
optical transformations is discussed in Section 2.5. Furthermore, Sections 2.6, 2.7, 2.8 and
2.9 explores the Wigner distribution function, variance matrix, uncertainty principle and
OAM associated with a paraxial light field, respectively. This highlights the interconnect-
edness of different aspects of the light field and their implications in optical systems. In
Section 2.10 we provide a brief overview of partial coherence in scalar paraxial light fields.
Vector light fields are introduced in Section 2.11. Partial coherence in vector paraxial light
fields is outlined here. Also, a generalized uncertainty principle suited for the polarization
spatial degrees of freedom of a paraxial light field is obtained. Finally in Section 2.12, light
fields having entangled degrees of freedom is discussed. Polarization-spatial entanglement
in coherent and partially coherent light fields is discussed here. Through these discussions,
Chapter 2 provides a solid foundation of knowledge on optics, enabling a deeper under-
standing of the subsequent chapters in the thesis.

Chapter 3 focuses on polarization-spatial entanglement in coherent paraxial light fields.
In Section 3.2, we explore the detection of polarization-spatial entanglement through fringe
movement. Section 3.3 presents a comprehensive overview of the method used for esti-
mating polarization-spatial entanglement. This estimation method involves employing a
quarter wave plate (QWP) and a linear polarizer to analyze the entangled light fields. In
Section 3.4, we delve into a theoretical analysis that showcases an intriguing finding. We
demonstrate that even with a small relative tilt between two Gaussian light fields, substan-
tial spatial overlap, and orthogonal polarizations, a close to 1 ebit (entanglement bit) of
polarization-spatial entanglement can be achieved. This phenomenon can be attributed to
the inherent wavelength dependent scale within the problem. The experimental demon-
stration of the detection of polarization-spatial entanglement using fringe movement, and
the estimation of this entanglement are outlined in the same section. These experimental
demonstrations further validate the theoretical concepts discussed. Finally, we conclude
with some closing remarks in Section 3.5.

Chapter 4 explore bipartite entanglement in 2×∞ dimensional systems, that have their
spatial part to be Gaussian. In Section 4.2, we introduce a specific category of states for
which we investigate the separability problem. To address the polarization-spatial entan-
glement, we employ the generalized uncertainty principle suitable for the present context to
implement the partial transpose. The key outcome of the research discussed in this chapter
is summarized here. In Section 4.3, we explore the experimental realization of the stud-
ied entangled states using classical optical interferometry. Finally, we conclude with some
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closing remarks in Section 4.4.
Chapter 5 presents an approach for detecting entanglement in a partially coherent vec-

tor light fields by implementing partial transpose using intensities measured at different
orientations of the polarizer on the incoming light field. In Section 5.2, we explain the
implications of partial transpose on the measured intensities obtained from varying polar-
izer orientations. Section 5.3 focuses on discussing the detection of polarization-spatial
entanglement through the partial transpose map implemented using the measured intensi-
ties. Furthermore, we provide an outline of an experimental demonstration of the proposed
method in this section. The experimental results are subsequently discussed in Section 5.4.
Finally, we conclude the chapter with some closing remarks in Section 5.5.

In Chapter 6, we present an experimental demonstration of a GS-type phase retrieval
algorithm, for retrieving phases with dislocation. This algorithm uses a transformation out-
lined in Ref. [67]. The first-order optical system considered here consists of a combination
of three cylindrical lenses that do not conserve OAM. Once the phase is retrieved, the mode
expansion, OAM, and radial-angular entanglement [68] of the light field can be straightfor-
wardly extracted from the estimated field amplitudes. Section 6.2 provides an explanation
of the essential optical transformations and their corresponding realizations employed in
our algorithm. In Section6.3, we elaborate on our proposed algorithm and describe the
experimental setup. The results obtained from both the experiment and the algorithm are
outlined in this section. Finally, we conclude the chapter with some closing remarks in
Section 6.4.

Chapter 7 serves as the concluding section of the thesis, where we provide a concise
summary. We also take the opportunity to suggest potential areas for future research and
exploration.
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Chapter 2

Theoretical background

In this chapter, we provide a concise overview of the fundamental principles in classical
optics. We begin by presenting ray transfer matrices, which describe elementary optical
transformations including free propagation and thin lenses. Moving on, we delve into the
derivation of the paraxial wave equation from Maxwell’s equations and explore its solu-
tions. Next, we introduce an algorithm for free space propagation based on the Huygens-
Fresnel diffraction principle. We outline the concept of a thin lens as a phase transforma-
tion. Additionally, we explore the Wigner distribution function, variance matrix, uncer-
tainty principle and OAM associated with a paraxial light field. We then discuss the notion
of partial coherence for both scalar and vector light fields. A generalized uncertainty princi-
ple suited for the polarization-spatial degrees of freedom is obtained. Finally, we introduce
the concept of entanglement between different degrees of freedom of a paraxial light field.

2.1 Ray optics

The ray optics is likely the most straightforward theory that can adequately describe the
various phenomena of light in daily life. As light rays travel through two different media
with different refractive indices, three distinct optical phenomena can occur: reflection,
refraction, and transmission. These phenomena can be inferred as a result of Fermat’s
principle, which states that the optical path length of an actual ray between any two points
is shorter than the optical length of any other curve that joins the two points [70]

Let us consider the phenomenon of reflection of light at a surface as shown in Fig. 2.1.
Light ray from point A strikes the mirror MM′ and then gets reflected to point C. Let
us assume the point where the light ray strikes the mirror to be B′. According to Fermat’s
principle the optical path length traversed by the ray, i.e., n(AB′+B′C) should be minimum,
where n is the refractive index of the medium. Consider a point A′ which is a mirror image
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of the point A, such that AR = RA′ and consequently AB′ = A′B′. Thus, n(AB′+ B′C) =

n(A′B′ + B′C), and for n(A′B′ + B′C) to be minimum all three points should lie on the
straight line A′C. Consequently B′ coincides with B, i.e., by Fermat’s principle a light ray
traveling from A to C through mirror MM′ has the point of reflection at the interface to
be at B. Laws of reflection states that the angle of incidence (∠ABN) and the angle of
reflection (∠NBC) must be equal, and that the incident ray (AB), reflected ray (BC), and
the normal to the surface at the point of incidence (BN) must lie on the same plane.

A C

BB'

N

A'

R
M M'

Figure 2.1: Reflection of light from a plane mirror MM′.

Let us now consider the phenomenon of refraction of light through a two-medium sys-
tem of refractive indices n1 and n2 as shown in Fig. 2.2. Line PQ denotes the interface
between the two mediums. Light ray from point A in medium 1 strikes the interface PQ at
point B and then refract to point C in medium 2. In order to obtain the minimum optical
path length from A to C (Lop), we draw perpendiculars AM (= h1) and CN (= h2). From
Fig. 2.2, we have the optical path length from A to C as

Lop = n1AB + n2BC = n1

√
x2 + h2

1 + n2

√
(L− x)2 + h2

2 , (2.1)

where x =MB, L =MN. To minimize Lop we must have dLop

dx
= 0, which in turn implies

2n1x√
x2 + h2

1

− 2n2(L− x)√
(L− x)2 + h2

2

= 0. (2.2)

Equivalently, we have

n1 sin θi = n2 sin θr, (2.3)
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which is the Snell’s law of refraction.

n

A

C

B
P QM

N

Figure 2.2: Refraction of light through a two-medium system of refractive indices n1 and
n2.

2.1.1 Ray transfer matrices

Ray transfer matrices (ABCD matrices) are used to describe the propagation of paraxial
rays through optical systems consisting of various optical transformations [71, 72]. These
matrices also describe the propagation of Gaussian light fields through such optical sys-
tems. Let us assume the z-axis to be the optical axis of the system. A light ray is character-
ized by the distances from the optical axis in x and y coordinates, and by the angles made
by the ray with x-z and y-z planes. In the case of symmetric first-order optical systems,
such as free propagation and thin lens, the ray transforms symmetrically in x-z and y-z
planes. A thin cylindrical lens is an example for an asymmetric first-order optical system.
Let us first consider symmetric first-order optical systems.

Consider a light ray as shown in Fig. 2.3, where the z-axis is chosen as the optical axis.
As light ray in a given transverse plane (z = constant) of an optical system is characterized
by the displacement x from the optical axis as well as the angle or slope x′ with respect
to the optical axis. For paraxial rays the angle x′ is assumed to be small. On passage of a
paraxial ray through an optical system, the parameters x2 and x′2 of the outgoing light field
is found to be linearly dependent on the parameters x1 and x′1 of the incoming light field,
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Optical axis

Light ray

  
 

Figure 2.3: Light ray.

and the relation can be written in the matrix form as[
x2

x′2

]
=

[
A B

C D

][
x1

x′1

]
. (2.4)

(a) (b)

Figure 2.4: (a) Free propagation through a distance d. (b) Thin lens of focal length f .

The ray transfer matrix F(d) corresponding to free propagation through a distance
d [see Fig. 2.4 (a)] in the x-z plane is given by

F(d) =

[
1 d

0 1

]
. (2.5)

Similarly, the ray transfer matrix L(f) corresponding to a thin lens of focal length f [see
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Fig. 2.4 (b)] in the x-z plane is given by

L(f) =

[
1 0
−1
f

1

]
. (2.6)

Since both free propagation and thin lens are symmetric first-order optical systems the
light ray transforms the same way in the y-z plane. Thus, the ray transfer matrices of free
propagation by distance d, i.e., F(d), and thin lens of focal length f , i.e., L(f) are given by[

x2

y2

]
= F(d)

[
x1

y1

]
, where F(d) =

[
F(d) 0

0 F(d)

]
, and (2.7)[

x2

y2

]
= L(f)

[
x1

y1

]
, where L(f) =

[
L(f) 0

0 L(f)

]
. (2.8)

Here, xj = [xj, x
′
j]

T and yj = [yj, y
′
j]

T with j = 1, 2, and 0 denotes a 2×2 zero matrix. The
superscript T denotes matrix transpose. On passage through asymmetric first-order optical
systems the light ray transforms differently in the x-z plane and the y-z plane. For instance
consider a thin cylindrical lens of focal length f as shown in Fig. 2.5, having curvature in
the x-direction. This has the same effect as a thin lens of focal length f in the x-z plane
and has no effect in the y–z plane, i.e.,[

x2

y2

]
= Lx(f)

[
x1

y1

]
,where Lx(f) =

[
L(f) 0

0 1

]
. (2.9)

Here Lx(f) is the ray transfer matrix corresponding to the thin cylindrical lens having
curvature along the x-direction and 1 denotes 2× 2 identity matrix. Note that a thin cylin-

Figure 2.5: Thin cylindrical lens of focal length f , having curvature in the x-direction.

drical lens of focal length f having curvature along the y-direction has the ray transfer
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matrix given by

Ly(f) =

[
1 0

0 L(f)

]
. (2.10)

Now that we have discussed the ray transfer matrices corresponding to various optical
transformations such as free propagation and thin lens, we move on to obtaining these
transformations using wave optics in the paraxial limit.

2.2 Wave optics

Wave optics is a branch of physics that deals with the study of light as a wave phenomenon.
It focuses on understanding and analyzing the behaviour of light waves, including phenom-
ena such as interference, diffraction, polarization, and dispersion. In wave optics, light is
considered as an electromagnetic wave that propagates through space. This wave nature of
light is described by Maxwell’s equations, which govern the behaviour of electromagnetic
fields. These equations relate the electric and magnetic fields to each other and describe
how they propagate and interact with matter.

2.2.1 Maxwell’s Equations

Maxwell’s equations are a set of fundamental equations that describe the behaviour of
electric and magnetic fields in classical electromagnetism. They were formulated by the
Scottish physicist James Clerk Maxwell in the 19th century and played a crucial role in uni-
fying the previously separate theories of electricity and magnetism. Maxwell’s equations
in free space (in regions where electrostatic charges and current are absent) [73], can be
written as follows:

∇ · E = 0, (2.11)

∇ ·B = 0, (2.12)

∇× E = −∂B

∂t
, and (2.13)

∇×B = µ0ε0
∂E

∂t
, (2.14)

where∇ = î ∂
∂x

+ ĵ ∂
∂y

+ k̂ ∂
∂z

, E is the electric field (with units kg m s−2 C−1), B is magnetic
field (with units kg s−2 A−1), ε0 is permittivity of free space (8.85×10−12 m−3 kg−1 s4 A2),
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µ0 is permeability of free space (4π × 10−7 m kg s2 A−2), and t is time (with units s).

2.2.2 Wave equation in free space

The wave equation in free space describes the behaviour of a wave propagating through
a medium where there are no external forces or sources. It can be readily obtained from
Maxwell’s equations using vector calculus identities [74]. Applying curl operation on both
sides of Eq. (2.13), and then using Eqs. (2.11) and (2.14), we obtain

∇× (∇× E) = − ∂

∂t
(∇×B)

∇(∇ · E)−∇2E = −µ0ε0
∂2E

∂t2

∇2E = µ0ε0
∂2E

∂t2
. (2.15)

Similarly, applying curl operation on both sides of Eq. (2.14), and then using Eqs. (2.12)
and (2.13), we obtain

∇× (∇×B) = µ0ε0
∂

∂t
(∇× E)

∇(∇ ·B)−∇2B = −µ0ε0
∂2B

∂t2

∇2B = µ0ε0
∂2B

∂t2
. (2.16)

We have the velocity of light c = 1√
µ0ε0

= 3×108 ms−1, and thus the electric and magnetic
fields E and B satisfy the partial differential equation

∇2ϕ =
1

c2

∂2ϕ

∂t2
, (2.17)

where ϕ is a scalar function of space-time variables. Note that Eq. (2.17) is the three-
dimensional wave equation.

2.2.3 Paraxial wave equation

The paraxial wave equation can be derived by making specific assumptions about the wave
behaviour. It assumes that the wave is slowly varying in space and that the angles of
propagation are small, allowing for linear approximations. The paraxial wave equation is
typically derived from the more general wave equation by neglecting higher-order terms.
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Let us assume the scalar function ϕ in Eq. (2.17) is separable in space and time, that is,

ϕ(x, y, z, t) = ϕs(x, y, z)ϕt(t). (2.18)

Here ϕs and ϕt denote functions purely in space and time respectively. From Eqs. (2.17)
and (2.18), we have

1

ϕs
∇2ϕs =

1

c2

1

φt

d2ϕt
dt2

. (2.19)

The left-hand side (LHS) and right-hand side (RHS) of the above equation is purely a func-
tion of space and time respectively, and can be equated to some constant, say κ2. Thus we
obtain

∇2ϕs = −κ2ϕs, and (2.20)

d2ϕt
dt2

= −ω2ϕt. (2.21)

Here, Eq. (2.20) is known as Helmholtz’s equation and ω = κc. Note that for a monochro-
matic source (κ = 2π/λ with λ being the wavelength) the solution to Eq. (2.21) is given
by

ϕt(t) = exp(−iωt). (2.22)

Assuming ϕs(x, y, z) of Eq. (2.20) travels along the z-axis, we have [69]

ϕs(x, y, z) ≈ ψ(x, y; z) exp(iκz), (2.23)

where ψ(x, y; z) slowly varies with respect to z. On substituting Eq. (2.23) in Eq. (2.20) we
obtain (

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ exp(iκz) = −κ2ψ exp(iκz). (2.24)

We have

∂2(ψeiκz)

∂z2
=

(
∂2ψ

∂z2
+ 2iκ

∂ψ

∂z
− κ2ψ

)
eiκz

≈
(

2iκ
∂ψ

∂z
− κ2ψ

)
eiκz, (2.25)
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since under paraxial approximation ∂2ψ
∂z2
≈ 0. Equation (2.24) can now be rewritten as

∂2ψ

∂x2
+
∂2ψ

∂y2
+ 2iκ

∂ψ

∂z
= 0, (2.26)

which is nothing but the well known paraxial Helmholtz equation, or more commonly
known as the paraxial wave equation [69, 72].

2.2.4 Solutions to the paraxial wave equation

The paraxial wave equation describes the propagation of a wave in the paraxial approx-
imation, where the angles of propagation are small. Paraxial light fields are solutions to
the paraxial wave equation given in Eq. (2.26). Hermite Gaussian (HG) modes and La-
guerre Gaussian (LG) modes are examples of such solutions. HG modes are solutions to
the paraxial wave equation that have complex intensity distributions characterized by the
Hermite polynomials. These light fields exhibit distinct spatial patterns along the transverse
direction and are given by [72, 75]

ϕm1m2(x, y; z) = ψm1m2(x, y; z) exp[iφ(x, y; z)], with (2.27)

ψm1m2(x, y; z) = ψm1(x; z)ψm2(y; z), and (2.28)

φ(x, y; z) = −(x2 + y2)κ

2Rz

− (m1 +m2 + 1)ζz, where (2.29)

ψm1(x; z) =

(
2

π

) 1
4
(

1

2m1m1!wz

) 1
2

Hm1

(√
2x

wz

)
exp

(
− x

2

w2
z

)
. (2.30)

Here, ψm2(y; z) is the same as ψm1(x; z) with x and m1 replaced with y and m2, Hm1(·)
is the Hermite polynomial of order m1 with m1,m2 taking integer values ≥ 0, z is the
distance of propagation from the waist plane, wz is the width of the light field at a given z,
Rz is the radius of curvature at a given z, (m1 + m2 + 1)ζz is the Gouy phase picked by
the light field on propagation [71], ζz = tan−1(z/zr), Rayleigh range zr = κw2

0/2, and w0

is the width of the light field at z = 0. The width wz and the radius of curvature Rz of the
light field is given by

w2
z = w2

0

(
1 +

z2

z2
r

)
, and (2.31)

Rz = z

(
1 +

z2
r

z2

)
. (2.32)
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Figure 2.6: The amplitude and phase profiles of some HG modes [see Eq. (2.27)]. The first
row depicts the amplitude profiles of HG modes with m1 = 0 and m2 = 0, 1, 2, 3. The cor-
responding phase profiles are provided in the second row. Similarly, the third row depicts
the amplitude profiles of HG modes with m1 = 1 and m2 = 0, 1, 2, 3. The corresponding
phase profiles are provided in the fourth row.
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Figure 2.7: The amplitude and phase profiles of some LG modes [see Eq. (2.33)]. The
first row depicts the amplitude profiles of LG modes with j = 0, 1, 2, 3 and m = 0. The
corresponding phase profiles are provided in the second row. Similarly, the third row de-
picts the amplitude profiles of LG modes with j = 0.5, 1.5, 2.5, 3.5 and m = 0.5. The
corresponding phase profiles are provided in the fourth row.

LG modes are solutions to the paraxial wave equation that have azimuthal variations
characterized by the Laguerre polynomials. They exhibit a characteristic doughnut-shaped
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intensity profile with a dark central spot. An LG mode labeled by radial and azimuthal
indices j and m, respectively, can be written in the radial coordinates r =

√
x2 + y2 and

θ = tan−1(y/x), at a particular z, as [72, 76, 77]

ψjm(r, θ; z) =

√
2

πw2
z

[
(j − |m|)!
(j + |m|)!

] 1
2

[√
2r

wz

]2|m|

L
2|m|
j−|m|

(
2r2

w2
z

)
× exp

[
− r

2

w2
z

]
exp [iφjm(r, θ; z)] , where (2.33)

φjm(r, θ; z) = − κr
2

2Rz

+ 2mθ − (2j + 1)ζz. (2.34)

Here, L2|m|
j−|m|(·) is the Laguerre polynomial. Note that the radial index j can take half

integer values, i.e., 0, 1
2
, 1, ..., and azimuthal index m can take values −j,−(j− 1), ....j for

a given j. The LG mode given by Eq. (2.33) can also be denoted as ψlp(r, θ; z), where the
azimuthal and radial indices l and p can take purely integer values [72], with l = 2m, and
p = j − |m|.

2.3 Huygens-Fresnel diffraction principle and Fresnel ap-
proximation for free space propagation

This section is devoted to the development of an algorithm for free space propagation, as
outlined in [69]. The Huygens-Fresnel diffraction principle is a fundamental concept in
diffraction theory that provides a method for understanding how waves propagate and in-
teract with obstacles or apertures. It is named after Dutch physicist Christiaan Huygens and
French physicist Augustin-Jean Fresnel, who made significant contributions to the devel-
opment of this principle. According to this principle, when a wave encounters an obstacle
or passes through an aperture, each point on the wavefront acts as a source of secondary
wavelets. These wavelets interfere with each other, leading to constructive and destructive
interference patterns that determine the resulting wavefront shape beyond the obstacle or
aperture.

The diffraction geometry for free space propagation is as shown in Fig. 2.8, where the
diffracting aperture lies in the transverse coordinates (x′, y′) and is illuminated in positive z
direction. The light field is calculated across the observation plane defined by the transverse
coordinates (x, y). The z-axis is normal to both the aperture plane as well as the observation
plane.
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Figure 2.8: Diffraction geometry for free space propagation.

The Huygens-Fresnel principle can be stated as

ψ(p0) =
1

iλ

∫ ∫
S

ψ(p1)
eiκr01

r01

cos θ ds, (2.35)

where ψ(p1) is the field at point p1 on the aperture plane, ψ(p0) is the field at point p0 on
the observation plane, and θ is the angle between the outward normal and the vector ~r01

pointing from p0 to p1. The aperture plane surface S is illuminated by the light field.

Substituting cos θ = z/r01, Eq. (2.35) can be rewritten as

ψ(x, y) =
z

iλ

∫ ∫
S

ψ(x′, y′)
eiκr01

r2
01

dx′dy′, (2.36)

where the distance r01 is given by r01 =
√
z2 + (x− x′)2 + (y − y′)2. On binomial ap-

proximation, when the distance z >> (x− x′)2 + (y − y′)2,

r01 ≈ z

[
1 +

1

2

(
x− x′

z

)2

+
1

2

(
y − y′

z

)2
]
. (2.37)

Applying the binomial approximation only in the exponential part, we get

ψ(x, y) =
eiκz

iλz

∫ ∫ ∞
−∞

ψ(x′, y′) exp

{
iκ

2z

[
(x− x′)2 + (y − y′)2

]}
dx′dy′. (2.38)
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The convolution form of the above equation is given as

ψ(x, y) =

∫ ∫ ∞
−∞

ψ(x′, y′)h(x− x′, y − y′)dx′dy′, (2.39)

where the convolution kernel is given by

h(x, y) =
eiκz

iλz
exp

[
iκ

2z
(x2 + y2)

]
. (2.40)

The integral given by Eq. (2.38) is known as the Fresnel diffraction integral. Here we
remark that while Eq. (2.7) is the ray optic version of free propagation, Eq. (2.38) is the
wave optic version of the same.

The diffraction integral can also be realized by taking the Fourier transform of the prod-
uct of the complex field just to the right of the aperture and a quadratic phase exponential.
Thus, the propagated field ψ(x, y; z) can be written in terms of ψ(x, y; 0) and the Huygens-
Fresnel kernel h(x, y) as :

ψ(x, y; z) = ψ(x, y; 0) ∗ h(x, y), (2.41)

F{ψ(x, y; z)} = F{ψ(x, y; 0)} ×H(fx, fy), (2.42)

ψ(x, y; z) = F−1[F{ψ(x, y; 0)} ×H(fx, fy)], (2.43)

where F{·} and F−1{·} stand for the Fourier and inverse Fourier transformations, fx and fy
are the spatial frequency components along x- and y-directions, andH(fx, fy) is the Fourier
transform of Huygens-Fresnel kernel given by

H(fx, fy) = F{h(x, y)} = eiκz exp[−iπλz(f2
x + f2

y)]. (2.44)

2.4 Thin lens as a phase transformation

A lens is typically made of an optically dense material, such as glass, with a refractive
index around 1.5. This material exhibits a slower propagation velocity for optical distur-
bances compared to air. When a ray enters a thin lens at coordinates (x, y) on one face, it
approximately exits at the same coordinates on the opposite face, indicating minimal dis-
placement of the ray within the lens. As a result, a thin lens primarily introduces a delay in
the incident wavefront that is proportionate to the thickness of the lens at each point.

Let the thickness of the lens at its axis, i.e., the maximum thickness of the lens, be
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(a) (b)

Figure 2.9: (a) Front view of the lens, (b) side view of the lens.

denoted as ∆0, and the thickness at coordinates (x, y) be denoted as ∆(x, y) (see Fig. 2.9).
The total phase delay suffered by the light field at coordinates (x, y) on passage through
the lens can be written as

φ(x, y) = κn∆(x, y) + κ[∆0 −∆(x, y)], (2.45)

where n is the refractive index of the lens material. From Fig. 2.9 it is clear that, κn∆(x, y)

is the phase delay introduced by the lens, and κ[∆0−∆(x, y)] is the phase delay introduced
by the remaining region of free space between the two planes. Phase transformation due to
the thin lens is of the form [69]

Lf (x, y) = exp(iκ∆0) exp[iκ(n− 1)∆(x, y)]. (2.46)

The paraxial light field ψ′(x, y) at the exit plane is related to the paraxial light field ψ(x, y)

at the entry plane as

ψ′(x, y) = Lf (x, y)ψ(x, y). (2.47)

The lens can be assumed to be made up of three parts as shown in Fig. 2.10. Thus, the
thickness function ∆(x, y) can be written as

∆(x, y) = ∆01 −
(
R1 −

√
R2

1 − x2 − y2

)
+ ∆02 + ∆03 −

(
R2 −

√
R2

2 − x2 − y2

)
= ∆0 −R1

(
1−

√
1− x2 + y2

R2
1

)
−R2

(
1−

√
1− x2 + y2

R2
2

)
, (2.48)
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Figure 2.10: Side view of the lens in (b) of Fig. 2.9 is split into two curved parts and one
flat part as shown here, in order to calculate the thickness function ∆(x, y).

where ∆0 = ∆01 + ∆02 + ∆03. On paraxial approximation√
1− x2 + y2

R2
1

≈ 1− x2 + y2

2R2
1

, and (2.49)√
1− x2 + y2

R2
2

≈ 1− x2 + y2

2R2
2

. (2.50)

Thus, we have

∆(x, y) = ∆0 −
x2 + y2

2

(
1

R1

+
1

R2

)
. (2.51)

On substituting Eq. (2.51) in Eq. (2.46) we obtain

Lf (x, y) = exp(iκn∆0) exp

[
−iκ(n− 1)

x2 + y2

2

(
1

R1

+
1

R2

)]
= exp(iκn∆0) exp

[
− iκ

2f
(x2 + y2)

]
. (2.52)

Here the focal length of the lens f is given by

1

f
≡ (n− 1)

(
1

R1

+
1

R2

)
. (2.53)

Neglecting the constant phase factor, the phase transformation due to lens can be rewritten
as

Lf (x, y) = exp

[
− iκ

2f
(x2 + y2)

]
. (2.54)
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Here we remark that while Eq. (2.8) is the ray optic version of thin lens transformation,
Eq. (2.54) is the wave optic version of the same.

2.5 Unitary representation of linear canonical transfor-
mations

Under the action of a paraxial unitary transformation Û generated by the most general
quadratic in the operators x̂, p̂x, ŷ, and p̂y (first-order optical system) [78], a paraxial light
field ψ(x, y; z) transforms as

ψ(x, y; z) −→ Ûψ(x, y; z). (2.55)

As seen from Refs. [78, 79], the unitary transformation Û is in correspondence with a
symplectic matrix S ∈ Sp(4,R), i.e., Û ≡ Û(S). For instance, let ξ̂ξξ = [x̂, p̂x, ŷ, p̂y]

T, then

Û†(S)ξ̂ξξÛ(S) = Sξ̂ξξ, where (2.56)

SΣST = Σ, with Σ = Ω⊕ Ω, and (2.57)

Ω =

[
0 1

−1 0

]
. (2.58)

In other words, S is a linear canonical transformation [80]. We have, x̂ = x, ŷ = y, p̂x =

− i
κ
∂
∂x

, and p̂y = − i
κ
∂
∂y

in the position representation [81]. The definition for momentum
operator is identical to the quantum mechanical definition wherein the wavelength λ is
replaced with the Planck’s constant h.

Let us now consider two different examples of unitary transformations: free propaga-
tion by distance d, and thin lens of focal length f . First, we have the free propagation
unitary given by

Fd = exp

[
−idκ

2
(p̂2
x + p̂2

y)

]
. (2.59)

If Û = Fd, then Eq. (2.56) can be written as

F †dξ̂ξξFd = F(d)ξ̂ξξ, (2.60)

where F(d) is the ray transfer matrix corresponding to free propagation by distance d [see
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Eq. (2.7)]. Next, we have the unitary operator Lf corresponding to thin lens of focal length
f , given by

Lf = exp

[
− iκ

2f
(x̂2 + ŷ2)

]
≡ Lxf ⊗ L

y
f , (2.61)

where Lxf and Lyf act on operators [x̂, p̂x]
T and [ŷ, p̂y]

T alone. If Û = Lf , then

L†f ξ̂ξξLf = L(f)ξ̂ξξ, (2.62)

where L(f) is the ray transfer matrix corresponding to thin lens of focal length f [see
Eq. (2.8)]. The unitary transformations Lxf and Lyf have their associated ray transfer matri-
ces to be Lx(f) and Ly(f) corresponding to cylindrical lenses whose curvatures are in the
x- and y-directions, respectively [see Eq. (2.9)].

Let us say the unitary transformation Û(S) acts identically on the operators [x̂, p̂x]
T and

[ŷ, p̂y]
T. In that case, we have

Û(S) = Ûx(S)⊗ Ûy(S), and (2.63)

S = S ⊕ S, (2.64)

where Ûx(S) and Ûy(S) are the most general quadratic in x̂, p̂x and ŷ, p̂y, respectively, with
S ∈ Sp(2,R). For instance, let ξ̂ = [x̂, p̂x]

T, then

Û †(S) ξ̂ Û(S) = S ξ̂, where (2.65)

S ΩST = Ω, (2.66)

and Û(S) ≡ Ûx(S).

HG mode in a single variable at the waist plane, can be written as (see Section 2.2.4)

ψm(x)=〈x|m〉=
[

1

2mm!

√
c
π

] 1
2

exp

[
−cx2

2

]
Hm

(
x
√

c
)
. (2.67)

Here c = 2
w2

0
, |x〉 is the eigenstate of the position operator x̂, and |m〉 is the Fock state which

represents the wave function ψm(x). Under the action of a paraxial unitary transformation
Û generated by the most general quadratic in the operators x̂ and p̂x, the HG mode 〈x|m〉
for instance, transforms as 〈x|m〉 −→ 〈x|Û |m〉 [78].

Let us now move on to the situation when the unitary transformations include transla-
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tions as well. That is,

Û ≡ Û(S,d) = D̂(d)Û(S), (2.68)

where D̂(d) = exp[iδ2

√
cx̂− iκδ1√

c p̂x] with d =
[
δ1√

c ,
δ2
√

c
κ

]T
is the displacement operator,

and Û(·) is a unitary transformation generated by a quadratic Hamiltonian as in Eq. (2.65).
We have

Û †(S,d) ξ̂ Û(S,d) = S ξ̂ + d. (2.69)

Note that Û(S,d) is the most general Gaussianity preserving transformation on the spatial
degree of freedom.

2.6 Wigner distribution function

A paraxial coherent light field propagating along the z-direction can be represented as

ϕ(x, y, z, t) = ψ(x, y; z) exp[i(κz − ωt)], where (2.70)

ψ(x, y; z) = A(x, y; z) exp[iφ(x, y; z)], (2.71)

with A(x, y; z) being the amplitude, and φ(x, y; z) being the phase of the light field.

A system of lenses and free propagations is well represented by its ray transfer matrix
[67,82,83], and there is a corresponding unitary transformation acting on the paraxial light
field under its action [79,84,85]. This correspondence is well captured through the Wigner
distribution function [86]. The Wigner distribution function of the paraxial coherent light
field ψ(x, y; z) in terms of transverse position x = (x, y) and transverse momentum p =

(px, py) is defined as [79, 85–88] :

W (ξ) ≡ W (x,p)=
(κ
π

)2
∞∫

−∞

∞∫
−∞

ψ∗ (x− x′; z)ψ (x + x′; z) exp(−i2κx′.p)dx′dy′,

(2.72)

where ξ = [x, px, y, py]
T. All information regarding ψ(x, y; z) is contained in the Wigner

distribution function W (ξ). Under the action of a unitary transformation, corresponding to
the ray transfer matrix S, the resultant Wigner distribution function W ′(ξ) is related to the
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input Wigner distribution function W (ξ) as [79, 87] :

W ′(ξ) = W (S−1ξ). (2.73)

For instance, free propagation by distance d and thin lens of focal length f are two elemen-
tary unitary transformations realized on a coherent paraxial light field whose ray transfer
matrices are given by F(d) and L(f) respectively [see Eqs. (2.7) and (2.8)]. As seen in
Eq. 2.73, under the unitary transformations corresponding to ray transfer matrices F(d)

and L(f) on ψ(x, y; z), the Wigner distribution function transforms as W (F(d)−1ξ) and
W (L(f)−1ξ) respectively.

2.7 Variance matrix

A paraxial coherent light field ψ(x, y; z) can be characterized through its 4 × 4 variance
matrix V, whose entries V(i, j) are given by [63, 77, 89]

V(i, j) = 〈{∆ξ̂ξξi,∆ξ̂ξξj}〉 =

∫
∆ξξξi∆ξξξjW (ξξξ)d4ξξξ. (2.74)

Here, the operator array ∆ξ̂ξξ is defined as ∆ξ̂ξξ = [∆x̂,∆p̂x,∆ŷ,∆p̂y]
T, with ∆ξ̂ξξi = ξ̂ξξi−〈ξ̂ξξi〉,

and 〈ξ̂ξξi〉 =
∫∞
−∞

∫∞
−∞ ψ

∗(x, y; z) ξ̂ξξi ψ(x, y; z)dxdy. Also, {·} denotes the anti-commutator.
Under the action of a unitary transformation Û(S) the variance matrix V transforms as,

V −→ V′ = SVST, (2.75)

where S is the symplectic matrix corresponding to the unitary transformation Û(S).

2.8 Uncertainty principle

The uncertainties are defined as the expectations of the Hermitian operators {∆ξ̂ξξi,∆ξ̂ξξj} =

(∆ξ̂ξξi∆ξ̂ξξj + ∆ξ̂ξξj,∆ξ̂ξξi)/2:

〈{∆ξ̂ξξi,∆ξ̂ξξj}〉 =

∫
∆ξξξi∆ξξξjW (ξξξ)d4ξξξ. (2.76)

Note that on arranging the uncertainties or variances into a 4×4 matrix we have the variance
matrix V as defined in Eq. (2.74). Thus the uncertainty principle can be written in the
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compact form as [63, 79, 90]

V +
i

2κ
Σ ≥ 0, (2.77)

where Σ is as given by Eq. (2.57). Note that, by the inequality given above we mean
that the matrix on the LHS is positive semi-definite, that is, the matrix have non negative
eigenvalues.

2.9 Orbital angular momentum (OAM)

In the context of optics and electromagnetic waves, the OAM of a light field refers to
the rotational component of its angular momentum. It arises from the spatial distribution
of the wavefront and the phase structure of the light field. The OAM of the light field
is associated with the helical or twisting nature of the wavefront. The OAM states can
be generated using spiral phase plates (SPPs), computer-generated holograms, etc., which
imprint a specific phase pattern onto the light field.

The OAM τ as evaluated on the paraxial light field ψ(x, y; z) is [91] :

τ = κ
[〈

∆x̂∆p̂y
〉
−
〈
∆ŷ∆p̂x

〉]
and

= κ

∞∫
−∞

∞∫
−∞

(xpy − ypx)W (ξξξ)dxdy, (2.78)

as evaluated on its Wigner distribution function [89]. It can be readily seen that the OAM
τ can also be written as

τ = κ [V(1, 4)−V(2, 3)] , (2.79)

where V is the variance matrix. The variance matrix VLG corresponding to an LG mode
ψjm(r, θ; z) of Eq. (2.33) is given by [77]

VLG =


(2j+1)w2

z

4
(2j+1)z

κ2w2
0

0 m
κ

(2j+1)z

κ2w2
0

(2j+1)

κ2w2
0

−m
κ

0

0 −m
κ

(2j+1)w2
z

4
(2j+1)z

κ2w2
0

m
κ

0 (2j+1)z

κ2w2
0

(2j+1)

κ2w2
0

 . (2.80)
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On evaluating τ of such an LG mode, we obtain [77, 91]

τ = κ [VLG(1, 4)−VLG(2, 3)] = 2m. (2.81)

2.10 Partial coherence

For the sake of simplicity, we will refer to a one-dimensional optical light field. A spatially
partially coherent scalar light field, is described by its cross-spectral density Γ(x1, x2), or
equivalently its cross-spectral density operator [86]

Γ̂ =

∫ ∫
dx1dx2Γ(x1, x2)|x1〉〈x2|, (2.82)

where Γ(x1, x2) = 〈x1|Γ̂|x2〉. Γ̂ is Hermitian positive semi-definite and Γ(x, x) = I(x)

is the transverse plane intensity. We consider light fields of normalized intensity, that is,∫
Γ(x, x)dx = 1.

An equivalent representation of the light field is through the Wigner distribution func-
tion which captures all information contained in the cross-spectral density Γ(x1, x2) [92,
93]. The Wigner distribution functionW (x, px) corresponding to the cross-spectral density
operator Γ̂ can be written as

W (x, px) =
κ

π

∫ ∞
−∞
〈x+ x′|Γ̂|x− x′〉e−i2κx′pdx′. (2.83)

With W (x, px) ≡ W (ξ), where ξ = [x, px]
T, we have

Γ̂ −→ Û(S)Γ̂Û †(S) ⇐⇒ W (ξ) −→ W (S−1ξ). (2.84)

The uncertainty principle can be obtained as a consequence of the positivity of Γ̂. For
instance, by defining m̂s = a1∆x̂ + a2∆p̂x with a1 and a2 to be complex coefficients, and
constructing the positive operator m̂sm̂

†
s, we require

〈m̂sm̂
†
s〉 = tr(m̂sm̂

†
sΓ̂) ≥ 0. (2.85)

Here, for instance ∆x̂ = x̂ − 〈x̂〉, and tr(·) denotes trace. The positivity requirement in
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(2.85) can be equivalently written as

V +
i

2κ
Ω ≥ 0, (2.86)

where the entries of the 2× 2 variance matrix V are given by

V (i, j) = 〈{∆ξ̂i,∆ξ̂j}〉 = tr({∆ξ̂i,∆ξ̂j}Γ̂) =

∫
∆ξi∆ξjW (ξ)d2ξ. (2.87)

Here ∆ξ̂ = [∆x̂,∆p̂x]
T, with ∆ξ̂i = ξ̂i − 〈ξ̂i〉, and 〈ξ̂i〉 = tr(ξ̂iΓ̂). For states with 〈ξ̂i〉 = 0,

V (i, j) = 〈{ξ̂i, ξ̂j}〉.
Note that the inequality in (2.86) is the optical analogue of the quantum mechanical un-

certainty principle, where h has been replaced with λ (see for instance Ref. [79]). Further,
demanding the positivity of the determinant of the LHS of (2.86) will imply

(〈x̂2〉 − 〈x̂〉2)(〈p̂2
x〉 − 〈p̂x〉2) ≥ 1

4κ2
, (2.88)

the optical analogue of the Heisenberg uncertainty principle. In other words, the product
of the squares of the spreads in position and direction of propagation (momentum) of the
paraxial light field cannot be lower than a particular value determined by the wavelength.

Proceeding further, by Eq. (2.84), it is readily seen that when Γ̂ −→ Û(S) Γ̂ Û †(S), the
corresponding variance matrix

V −→ V ′ = SV ST. (2.89)

2.10.1 Gaussian cross-spectral density

A Gaussian cross-spectral density has its Γ(x1, x2) to be Gaussian and we may henceforth
denote it as ΓG(x1, x2) = 〈x1|Γ̂G|x2〉. The corresponding Wigner distribution function
WG(ξ) can be written as

WG(ξ) =
[det(VG)]−1/2

2π
exp

[
−1

2
ξTV −1

G ξ

]
. (2.90)

Here det(·) denotes determinant. As evident, the variance matrix VG completely deter-
mines the cross-spectral density operator. Further, from Eqs. (2.84) and (2.90), Û(S) is
Gaussianity preserving and can be labeled as a Gaussian unitary transformation.

A particular case of light sources with a Gaussian cross-spectral density are the Gaus-
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sian Schell-model (GSM) [86] light fields, which are readily produced experimentally, for
instance, using ground glass plates in Refs. [94, 95] and using SLMs by time varying the
coherent light fields in Refs. [96–98]. The cross-spectral density of a scalar GSM light
field at z = 0 can be written as

〈x1|Γ̂sc|x2〉 =

√
c(1− q)
π(1 + q)

exp

[
−c(1− q)

2(1 + q)
(x2

1 + x2
2)− cq

1− q2
(x1 − x2)2

]
, (2.91)

where Γ̂sc =
∑
m

λm|m〉〈m|, (2.92)

with λm = (1 − q)qm, c and q are positive parameters, and 0 ≤ q < 1. Note that∫∞
−∞〈x|Γ̂sc|x〉dx = 1. Using Eqs. 2.83 and 2.91, the corresponding Wigner distribution

function Wsc(ξ) is obtained as

Wsc(ξ) =
κ

π

∫ ∞
−∞
〈x+ x′|Γ̂sc|x− x′〉e−i2κx

′pdx′

=
κ(1− q)
π(1 + q)

exp

[
−c(1− q)

1 + q
x2 − κ2(1− q)

c(1 + q)
p2

]
. (2.93)

Note that the GSM light field has the first order moments 〈ξ̂i〉 = 0, and thus we have the
entries of its variance matrix Vsc(i, j) = 〈ξ̂i, ξ̂j〉. Thus the uncertainty principle for the
GSM light field can be written as

Vsc +
i

2κ
Ω =

[
1+q

2c(1−q)
i

2κ

− i
2κ

c
2κ2

1+q
1−q

]
≡

[
a i

2κ

− i
2κ

b

]
≥ 0, (2.94)

where the diagonal entries are relabeled as a and b for brevity.

We note in passing that corresponding to any normalized centered Gaussian cross-
spectral density operator Γ̂G

(
〈ξ̂i〉 = 0

)
, there is a normalized GSM density operator Γ̂sc

related through a Gaussian unitary Û0, preserving the spectrum. That is [79],

Γ̂G ≡ Û0Γ̂scÛ
†
0 , (2.95)

and consequently we have

VG = S0VscS
T
0 , (2.96)

where S0 is the symplectic matrix corresponding to Û0.
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2.11 Vector light fields

Consider a coherent paraxial vector light field propagating along the z-axis. Let us assign
a binary variable u to denote the state of polarization of the vector light field. Any coherent
polarization state can be written as [99]

|η〉 =
∑
u=0,1

cu|u〉, (2.97)

where |0〉 ≡ [1, 0]T and |1〉 ≡ [0, 1]T represent two orthogonal polarization states, say
horizontal and vertical polarization states, respectively, and cu are complex coefficients. A
paraxial vector light field |Ψ〉, propagating along the z-axis can be represented as

|Ψ〉 = c0|0〉|ψ1〉+ c1|1〉|ψ2〉 ≡

[
c0|ψ1〉
c1|ψ2〉

]
, (2.98)

where |ψ1〉 and |ψ2〉 represent the spatial states of the light field in respective polarizations.
In the position basis we have, |x, y〉 ≡ |x〉 ⊗ |y〉, where |x〉 and |y〉 are eigenstates of the
position operators x̂ and ŷ respectively, and they satisfy [76, 79, 99]

x̂|x〉 = x|x〉, and ŷ|y〉 = y|y〉. (2.99)

In the position representation a spatial state |ψi〉 can be represented as the field amplitude
ψi(x, y) ≡ 〈x, y|ψi〉, so that

Ψ(x, y) =

[
c0ψ1(x, y)

c1ψ2(x, y)

]
. (2.100)

2.11.1 Partially coherent vector light field

Let us now move on to partially coherent vector light fields. A spatially partially coherent
vector light field is characterized by its cross-spectral density operator

Γ̂ =
n∑
i

pi|Ψi〉〈Ψi|, (2.101)
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where in the polarization spatial state

|Ψi〉 =

[
c0i|ψ1i〉
c1i|ψ2i〉

]
(2.102)

occurs with probability pi.

Let us consider a partially coherent vector light field in single variable. {|u;x〉 =

|u〉⊗ |x〉} provide a natural basis in the polarization-spatial degrees of freedom. The cross-
spectral density operator Γ̂ which is Hermitian and positive semi-definite can be defined
as [100]

Γ̂ =
∑
u,v

dx1dx2Γuv(x1, x2)|u;x1〉〈v;x2|, (2.103)

where Γuv(x1, x2) = 〈u;x1|Γ̂|v;x2〉. Note that, in the position representation the point-
wise transverse plane intensity of the vector light field is given by Γ00(x, x) + Γ11(x, x) =

I(x). Henceforth we consider vector light fields having normalized intensity, that is,∫
[Γ00(x, x) + Γ11(x, x)] dx = 1.

A simple example of Γ̂ would be the product polarization-spatial Gaussian cross-spectral
density operator

Γ̂G = |η〉〈η| ⊗ Γ̂G =

[
|c0|2Γ̂G c0c

∗
1Γ̂G

c1c
∗
0Γ̂G |c1|2Γ̂G

]
, (2.104)

where |η〉 is a polarization state and Γ̂G is a Gaussian cross-spectral density operator.

2.11.2 Generalized uncertainty principle

Consider the operator m̂v = |0〉⊗ (a1x̂+ a2p̂x) + |1〉⊗ (a3x̂+ a4p̂x), where a1, a2, a3 and
a4 are complex coefficients, and construct the positive operator m̂vm̂

†
v. We have

〈m̂vm̂
†
v〉 = tr(m̂vm̂

†
vΓ̂G) ≥ 0, (2.105)
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and consequently we have the following matrix to be positive semi-definite, i.e., [101]
〈x̂2〉00 〈x̂p̂x〉00 〈x̂2〉01 〈x̂p̂x〉01

〈p̂xx̂〉00 〈p̂2
x〉00 〈p̂xx̂〉01 〈p̂2

x〉01

〈x̂2〉10 〈x̂p̂x〉10 〈x̂2〉11 〈x̂p̂x〉11

〈p̂xx̂〉10 〈p̂2
x〉10 〈p̂xx̂〉11 〈p̂2

x〉11

 ≥ 0, (2.106)

which is the generalized uncertainty principle for the vector case. Here the subscripts of
the matrix entries in the LHS of (2.106) denote the polarization components.

On considering unitary transformations that includes translations, we need an uncer-
tainty principle that involves the first order moments. To this end, we define the operator
m̂c = |0〉 ⊗ (a1 + a2x̂+ a3p̂x) + |1〉 ⊗ (a4 + a5x̂+ a6p̂x), where a1, a2, a3, a4, a5 and a6

are complex coefficients, and construct the positive operator m̂cm̂
†
c. We have

〈m̂cm̂
†
c〉 = tr(m̂cm̂

†
cΓ̂G) ≥ 0, (2.107)

and consequently

〈1〉00 〈x̂〉00 〈p̂x〉00 〈1〉01 〈x̂〉01 〈p̂x〉01

〈x̂〉00 〈x̂2〉00 〈x̂p̂x〉00 〈x̂〉01 〈x̂2〉01 〈x̂p̂x〉01

〈p̂x〉00 〈p̂xx̂〉00 〈p̂2
x〉00 〈p̂x〉01 〈p̂xx̂〉01 〈p̂2

x〉01

〈1〉10 〈x̂〉10 〈p̂x〉10 〈1〉11 〈x̂〉11 〈p̂x〉11

〈x̂〉10 〈x̂2〉10 〈x̂p̂x〉10 〈x̂〉11 〈x̂2〉11 〈x̂p̂x〉11

〈p̂x〉10 〈p̂xx̂〉10 〈p̂2
x〉10 〈p̂x〉11 〈p̂xx̂〉11 〈p̂2

x〉11


≥ 0, (2.108)

which is the generalized uncertainty principle for the vector case including translations.
Here the subscripts of the matrix entries in the LHS of (2.108) denote the polarization
components.

2.12 Entanglement

As mentioned in Chapter 1, the notion of entanglement emerges naturally from the super-
position principle when one deals with tensor product of vector spaces. It has been well
explored in the context of quantum mechanical systems [14]. More recently, the notion
has been explored in the context of optics and is generally referred to as classical entangle-
ment of optical field. It has been explored both in the scalar [59, 68, 102, 103] and vecto-
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rial [6, 7, 25–40, 104] regimes. Light fields having entangled degrees of freedom has been
used in polarization metrology [29] as well as in encoding information for optical commu-
nication [37, 38, 104]. They have been further used for characterizing channels [39] and
for computation [40].

Detection and estimation of entanglement in light fields having entangled degrees of
freedom has been demonstrated in several works [25,33,34,36,41–44,46,47,56,103–111].
Violation of Bell-type inequality to detect entanglement in the optical context has been
demonstrated in Refs. [25, 33, 34, 36, 103]. Similarly, violation of Mermin’s inequality
was demonstrated in Ref. [105], and the Clauser-Horne Shimony-Holt (CHSH) inequality
in Refs. [46, 47, 106]. The analogue of quantum tomography in the optical context has
been demonstrated in [41–44]. In Ref. [43], the notion of coherence was extended in the
most general manner through entanglement by considering the polarization, spatial, and
temporal degrees of freedom

2.12.1 Polarization-spatial entanglement

Consider a paraxial vector light field |Ψ〉 as in Eq. (2.98), propagating along the z-axis.
When |ψ1〉 = |ψ2〉 = |ψs〉, Ψ(x, y) of Eq. (2.100) is manifestly of the product form in the
polarization-spatial degrees of freedom and can be denoted as Ψs(x, y). That is, we have

Ψs(x, y) =

[
c0

c1

]
ψs(x, y). (2.109)

On the contrary, when |ψ1〉 6= |ψ2〉, Ψ(x, y) of Eq. (2.100) is polarization-spatial entangled.

Assuming that the source is quasi-monochromatic, the density matrix corresponding to
a coherent paraxial vector light field can be expressed as [112, 113] :

ρ(x, y) = Ψ(x, y)Ψ(x, y)†

=

[
|c0|2|ψ1(x, y)|2 c0c

∗
1ψ1(x, y)ψ∗2(x, y)

c1c
∗
0ψ2(x, y)ψ∗1(x, y) |c1|2|ψ2(x, y)|2

]
. (2.110)

The polarization-spatial entanglement of Ψ(x, y) can be evaluated, for instance, from the
reduced density matrix ρp (also the polarization matrix) resulting from ρ(x, y) by tracing
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away the spatial degrees of freedom. That is,

ρp =

[ ∫∫
|c0|2|ψ1(x, y)|2dxdy

∫∫
c0c
∗
1ψ1(x, y)ψ∗2(x, y)dxdy∫∫

c∗0c1ψ
∗
1(x, y)ψ2(x, y)dxdy

∫∫
|c1|2|ψ2(x, y)|2dxdy

]

≡

[
ρ00 ρ01

ρ10 ρ11

]
. (2.111)

The Stokes parameters S0, S1, S2 and S3 are obtained from the entries of ρp as [86] :

S0 = ρ00 + ρ11, (2.112)

S1 = ρ00 − ρ11, (2.113)

S2 = ρ01 + ρ10, (2.114)

S3 = i (ρ10 − ρ01) . (2.115)

Here S0 ≈ 1 since we have normalized the field intensity. The degree of polarization
S(ρp) =

√
S2

1 + S2
2 + S3

3 can be restated in terms of the eigenvalues λ± of ρp as [112] :

S(ρp) = λ+ − λ−. (2.116)

Note that (λ+ + λ−) = S0.

The degree of polarization-spatial entanglement can be quantified through concurrence
as defined on Ψ(x, y) and evaluated on ρp, i.e., C(ρp) =

√
2[1− tr(ρ2

p)] [43, 114, 115],
which in the present context reduces to

C(ρp) = 2
√
λ+λ−. (2.117)

Note that C2(ρp) + S2(ρp) = 1 [43].

The polarization-spatial entanglement as contained in Ψ(x, y) can also be quantified
through the von-Neumann entropy of the reduced density matrix ρp as [66, 116] :

E(ρp) = −λ+ log(λ+)− λ− log(λ−), (2.118)

where ‘log’ denotes logarithm to the base 2.
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2.12.2 Detection of polarization-spatial entanglement using partial trans-
pose map

Let us say we have a general state ρ̂ which acts on the Hilbert spaceH = HA⊗HB, where
HA andHB are the Hilbert spaces corresponding to the subsystems A and B, respectively.
If we write the state as a block matrix we have

ρ =


A11 A12 · · · A1n

A21 A22

... . . .

An1 Ann

 , (2.119)

where n = dim(HA), and each block Aij is a square matrix of dimension m = dim(HB).
On taking partial transpose (with respect to the subsystem B) we obtain

ρPTB =


AT

11 AT
12 · · · AT

1n

AT
21 AT

22
... . . .

AT
n1 AT

nn

 . (2.120)

If ρ̂ is separable then we have

ρPTB ≥ 0, (2.121)

also called as the Peres-Horodecki separability criterion [60,61]. In other words, if ρPTB has
a negative eigenvalue, then ρ̂ is non-separable. The result is independent of the subsystem
that was transposed.

Partial transpose map has been found to be necessary and sufficient in detecting bipartite
entanglement in certain finite dimensional [14, 61, 62, 64] as well as infinite dimensional
contexts [21–23, 63]. In order to apply partial transpose to the present context consider a
polarization-spatial density operator

ρ̂ =

[
|c0|2|ψ1〉〈ψ1| c0c

∗
1|ψ1〉〈ψ2|

c1c
∗
0|ψ2〉〈ψ1| |c1|2|ψ2〉〈ψ2|

]
. (2.122)
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On taking transpose on the spatial part alone we obtain

ρ̂PT =

[
|c0|2(|ψ1〉〈ψ1|)T c0c

∗
1(|ψ1〉〈ψ2|)T

c1c
∗
0(|ψ2〉〈ψ1|)T |c1|2(|ψ2〉〈ψ2|)T

]
. (2.123)

The partial transpose map has implications on the uncertainties or second moments.
On implementing transpose operation through the generalized uncertainty principle we
have (see Section 2.11.2)

tr(m̂cm̂
†
cρ̂

PT) ≥ 0. (2.124)

The above inequality has to be satisfied for ρ̂ to be separable in the polarization-spatial
degrees of freedom. In other words violation of (2.124) implies ρ̂ is entangled in the
polarization-spatial degrees of freedom.

We may recall that a spatially partially coherent vector light field is characterized by its
cross-spectral density operator Γ̂ as in

Γ̂ =
n∑
i

pi|Ψi〉〈Ψi|, (2.125)

as seen in Eq. (2.101). When every |Ψi〉 of the decomposition is of the product form, i.e.,
when |ψ1i〉 = |ψ2i〉 ∀ i, Γ̂ is said to be separable in the polarization and spatial degrees of
freedom. Detection of polarization-spatial entanglement in partially coherent vector light
fields by implementing partial transpose through the generalized uncertainty principle is
illustrated in Chapter 4.

2.13 Concluding remarks

To summarize, we covered a range of topics in this chapter. First, we examined ray transfer
matrices, corresponding to symmetric and asymmetric optical transformations including
free propagation, thin lenses, and thin cylindrical lenses, in the paraxial limit. We also
touched upon Maxwell’s equations and the paraxial wave equation, as well as their solu-
tions. Next, we explored the Huygen’s Fresnel diffraction principle and the Fresnel approx-
imation for free space propagation. The concept of a thin lens as a phase transformation
was also discussed. We further delved into the unitary representation of various optical
transformations. In addition, we explored the Wigner distribution function, variance ma-
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trix, uncertainty principle and OAM associated with a paraxial light field. We discussed
partial coherence in both scalar and vector light fields. A generalized uncertainty principle
suited for the polarization-spatial degrees of freedom is obtained in this chapter. Lastly, we
outlined the topic of entanglement between different degrees of freedom of a paraxial light
field.
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Chapter 3

Polarization-spatial Gaussian entanglement
in a folded Mach-Zehnder interferome-
ter

3.1 Introduction

In this chapter, we show that fringe movement in intensity of the light field on insertion
and rotation of a polarizer, is a sufficient criteria for polarization-spatial entanglement in
coherent paraxial vector light fields. Polarization-spatial entanglement is estimated by
tracing away the spatial degrees of freedom in order to obtain the reduced density ma-
trix (polarization matrix) whose eigenvalues then characterize the polarization-spatial en-
tanglement. We demonstrate close to 1 ebit [116, 117] of entanglement by coupling non-
orthogonal spatially overlapping Gaussian modes with slight relative tilts, with orthogonal
states of polarization, in a folded Mach-Zehnder interferometer, using a QWP and a linear
polarizer. Tunable polarization-spatial entanglement is demonstrated by varying the polar-
ization of the Gaussian light field at the input of the folded Mach-Zehnder interferometer.
We note that maximal polarization-spatial entanglement of 1 ebit is typically obtained by
coupling orthogonal spatial modes with orthogonal states of polarization [33, 56].

The chapter is organized as follows. In Section 3.2, we outline how detection of polarization-
spatial entanglement is possible through fringe movement. In Section 3.3, we review the
method towards the estimation of polarization-spatial entanglement using a QWP and a
linear polarizer. In Section 3.4, we outline a theoretical analysis wherein we show that two
Gaussian light fields with a small relative tilt but with substantial spatial overlap, and or-
thogonal polarizations, can have close to 1 ebit of polarization-spatial entanglement. This is
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attributed to the inherent wavelength dependent scale in the problem. Experimental demon-
stration of the detection of polarization-spatial entanglement through fringe movement and
its estimation is outlined in the same Section. We finally end with some concluding remarks
in Section 3.5.

3.2 Detection of coherent polarization-spatial entanglement
using fringe movement

We outline a procedure which detects polarization-spatial entanglement through fringe
movement. Consider the passage of a paraxial vector light field Ψ(x, y) as in Eq. (2.109)
through a rotated linear polarizer. We obtain the output to be[

C2
θ SθCθ

SθCθ S2
θ

][
c0

c1

]
ψ(x, y) = (c0Cθ + c1Sθ)

[
Cθ

Sθ

]
ψ(x, y). (3.1)

Here Cθ ≡ cos θ and Sθ ≡ sin θ. The intensity of light field after passage through the
polarizer is given by

Is(x, y)=
(
|c0|2C2

θ + |c1|2S2
θ + c0c

∗
1SθCθ + c1c

∗
0SθCθ

)
|ψ(x, y)|2

= |c0Cθ + c1Sθ|2|ψ(x, y)|2. (3.2)

That is, Is(x, y) is essentially |ψ(x, y)|2 modulated by an overall θ, c0, and c1 depen-
dent factor. Consequently when we rotate the polarizer (vary θ) there is no fringe move-
ment (movement of the zeros of the intensity) apart from an overall modulation of the in-
tensity.

On the contrary, on passage of a paraxial vector light field as in Eq. (2.100) [not separa-
ble as in Eq. (2.109)] through a rotated linear polarizer, we obtain[

C2
θ SθCθ

SθCθ S2
θ

][
c0ψ1(x, y)

c1ψ2(x, y)

]
= (c0Cθψ1(x, y) + c1Sθψ2(x, y))

[
Cθ

Sθ

]
. (3.3)
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The intensity of light field after passage through the polarizer is given by,

Iθ(x, y) = |c0|2C2
θ |ψ1(x, y)|2 + |c1|2S2

θ |ψ2(x, y)|2

+ c0c
∗
1SθCθψ1(x, y)ψ∗2(x, y) + c∗0c1SθCθψ

∗
1(x, y)ψ2(x, y)

= |c0Cθψ1(x, y) + c1Sθψ2(x, y)|2. (3.4)

That is, the resulting intensity is the consequence of the interference of the scalar ampli-
tudes c0Cθψ1(x, y) and c1Sθψ2(x, y), and the zeros of the superposition c0Cθψ1(x, y) +

c1Sθψ2(x, y) can vary as θ is varied. In other words, as the polarizer is rotated, the fringes
can move indicating the presence of polarization-spatial entanglement.

However, there are instances of polarization-spatial entangled light fields for which the
rotation of the polarizer causes no fringe movement. For instance, consider the paraxial
vectorial light field given by

Ψ (r, χ) =

[
ψ(r)eiχ

ψ(r)e−iχ

]
, (3.5)

where ψ(r) is the radial part of first-order LG modesψ±1 0(r, θ; z) (l = ±1, p = 0, see
Section 2.2.4) and e±iχ is the angular part. As evident, the orthogonal spatial modes are
coupled to the orthogonal states of polarization with equal Schmidt coefficients and hence
the vector light field is maximally polarization-spatial entangled. On passage of the paraxial
vectorial light field as in Eq. (3.5) through a rotated linear polarizer we obtain[

C2
θ SθCθ

SθCθ S2
θ

][
ψ(r)eiχ

ψ(r)e−iχ

]
= ψ(r)

(
Cθe

iχ + Sθe
−iχ) [Cθ

Sθ

]
. (3.6)

The intensity of the light field after passage through the polarizer is given by

I(r, χ, θ) = (1 + S2θC2χ) |ψ(r)|2. (3.7)

That is, I(r, χ, θ) is essentially |ψ(r)|2 modulated by an overall θ and χ dependent factor.
Consequently, when we rotate the polarizer (vary θ) there is no fringe movement (movement
of the zeros of the intensity), apart from an overall modulation of the intensity. In this sense,
fringe movement is a sufficient but not necessary condition for polarization-spatial entan-
glement, in the present context. In other words, fringe movement on insertion and rotation
of a linear polarizer indicates the presence of polarization-spatial entanglement in coherent
paraxial vector light fields, but fringe stationarity doesn’t necessarily indicate the absence
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of it. It is important to note that, though we cannot say that the light field is not entangled
on observing fringe stationarity, we can still use fringe movement as a method to detect
the presence of polarization-spatial entanglement and the same is demonstrated through
examples later in this chapter.

Let us say that we were able to detect polarization spatial entanglement in a light field
by observing fringe movement in the intensity of the light field on insertion and rotation of
a linear polarizer. However, this does not aid us in quantifying the degree of entanglement
present. As discussed in Section 2.12, polarization-spatial entanglement can be estimated
through evaluation of the reduced density matrix ρp of Eq. (2.111). The procedure for
evaluation of ρp through intensity measurements is discussed in the following section.

3.3 Estimation of polarization-spatial entanglement using
intensity measurements

We now review the procedure to estimate the reduced density matrix ρp of Eq. (2.111)
through intensity measurements, which is done by tracing away the spatial degrees of free-
dom, using a QWP and a linear polarizer [118]. On passage of Ψ(x, y) through a QWP at
0◦ and then through a rotated linear polarizer we obtain,

Ψ̃(x, y) =

[
C2
θ SθCθ

SθCθ S2
θ

][
1 0

0 i

][
c0ψ1(x, y)

c1ψ2(x, y)

]

= (c0Cθψ1(x, y) + ic1Sθψ2(x, y))

[
Cθ

Sθ

]
. (3.8)

The intensity of light field Ψ̃(x, y) is given by,

Ĩθ(x, y) = |c0|2C2
θ |ψ1(x, y)|2 + |c1|2S2

θ |ψ2(x, y)|2

− ic0c
∗
1SθCθψ1(x, y)ψ∗2(x, y) + ic∗0c1SθCθψ

∗
1(x, y)ψ2(x, y)

= |c0Cθψ1(x, y) + ic1Sθψ2(x, y)|2. (3.9)
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Using Eqs. (3.4) and (3.9) we can obtain the entries of ρp as

ρ00 =

∫∫
I0◦(x, y)dxdy, (3.10)

ρ01 =

∫∫
I45◦(x, y)− I135◦(x, y)

2
dxdy

+ i

∫∫
Ĩ45◦(x, y)− Ĩ135◦(x, y)

2
dxdy, (3.11)

ρ10 =

∫∫
I45◦(x, y)− I135◦(x, y)

2
dxdy

− i
∫∫

Ĩ45◦(x, y)− Ĩ135◦(x, y)

2
dxdy, (3.12)

ρ11 =

∫∫
I90◦(x, y)dxdy. (3.13)

Note that in the above equations we have neglected the transmission loss due to both the
polarizer and the QWP. As mentioned earlier in Section 2.12, once we have evaluated the
reduced density matrix ρp, the polarization spatial entanglement can be estimated from the
eigenvalues of ρp.

Lens LP1 at 

LP3

LP2 at 45°

PBS

CCD

QWP at 0°

M1

M2

LP1/LP2/LP3 - Linear polarizers

PBS - Polarizing beam splitter

M1/M2 - Mirrors

QWP - Quarter wave plate

Figure 3.1: Schematic diagram of a folded Mach-Zehnder interferometer setup using PBS.
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3.4 Experimental demonstration using a folded
Mach-Zehnder interferometer

In order to experimentally obtain a coherent paraxial vector light field as in Eq. (2.100)
we choose a folded Mach-Zehnder interferometer with a polarizing beam splitter (PBS) as
shown in Fig. 3.1. Experimental demonstration of detection and estimation of polarization-
spatial entanglement is carried out using this folded Mach-Zehnder interferometer setup.
Here, for our experiment, the coherent Gaussian light field coming from a 594.1 nm He-
Ne laser source is passed through a convex lens which controls the divergence. It is then
passed through a linear polarizer (LP1) oriented at φ and then through the PBS. The linearly
polarized light falls on the PBS which splits the light into its horizontal and vertical compo-
nents. The horizontal and vertical components take the clockwise and anti-clockwise paths
respectively in the folded Mach-Zehnder interferometer and recombine at the PBS. While
the two light fields traverse almost similar distances, they acquire slightly different tilts due
to the orientation of mirrors M1 and M2. The width of the Gaussian light field emerging
from the PBS was ≈ 1.3 mm in the present experiment. We now proceed to demonstrate
detection as well as estimation of polarization-spatial entanglement in this recombined light
field. But before doing so we first outline a theoretical analysis which suggests that it is
possible to obtain close to 1 ebit of polarization-spatial entanglement with a Gaussian light
field drawn from the same source with its orthogonal polarization components possessing
a small relative tilt.

3.4.1 Theoretical analysis of the proposed experimental setup

Assume the linearly polarized (at φ) paraxial light field entering the PBS to be a Gaussian
at the waist plane. That is,

Ψ(x, y) =

[
Cφ

Sφ

]
ψ0(x, y), where

ψ0(x, y) = a0 exp

(
−(x2 + y2)

w2
0

)
. (3.14)

45



Here a0 is the initial amplitude. ψ0(x, y) after propagating through a distance z can be
written as

ψ(x, y) = a0 exp

(
−(x2 + y2)

w2
z

)
exp

(
−iκ(x2 + y2)

2Rz

)
exp (iκz + iζz) . (3.15)

The horizontal and vertical components of the light field Ψ(x, y) on passage through the
folded Mach-Zehnder interferometer acquire a relative tilt such that the recombined light
field can be written as

Ψ(x, y) =

[
Cφψ1(x, y)

Sφψ2(x, y)

]
, (3.16)

where ψ1(x, y) = ψ(x, y) and ψ2(x, y) = ψ(x′, y′), with x′ = x + zδα, y′ = y and
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Figure 3.2: (a) plots the variation of polarization-spatial Gaussian entanglementE(ρp)
with relative tilt δα for various polarizer anglesφ (see Fig. 3.1). (b) plots the variation of
concurrence C2(ρp) (solid line) and degree of polarization S2(ρp) (dashed line) with polar-
izer angle φ for relative tilt δα = 2.4×10−4 radians. The solid line in (c) plots the variation
of polarization-spatial Gaussian entanglementE(ρp) with polarizer angleφ for the relative
tilt δα = 3× 10−4 radians, the dashed line plots the same for δα = 2.4× 10−4 radians, and
the dotted line for δα = 1.5× 10−4 radians.

z′ = z − xδα. We have assumed the tilt acquired to be along the x-z direction, and this
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can be done without loss of generality. Since the two light fields traverse almost similar
distances, we may further assume that wz, Rz and ζz is approximately same for ψ1(x, y)

and ψ2(x, y). Thus ψ2(x, y) can be written as

ψ2(x, y) =a0 exp

(
−((x+ zδα)2 + y2)

w2
z

)
exp

(
−iκ((x+ zδα)2 + y2)

2Rz

)
× exp (iκ(z − xδα) + iζz) . (3.17)

Substituting from Eqs. (3.15) - (3.17) in Eqs. (3.10) - (3.13), the entries of reduced density
matrix ρp after normalization is evaluated to be

ρ00 = C2
φ, (3.18)

ρ01 = CφSφ exp

(
−z

2δ2
α

2w2
z

− κ2δ2
αw

2
z

8

(
1 +

z

Rz

)2

− iκzδ2
α

2

)
, (3.19)

ρ10 = CφSφ exp

(
−z

2δ2
α

2w2
z

− κ2δ2
αw

2
z

8

(
1 +

z

Rz

)2

+
iκzδ2

α

2

)
, (3.20)

ρ11 = S2
φ. (3.21)

The eigenvalues of ρp are now given by,

λ± =
tr(ρp)±

√
tr2(ρp)− 4 det(ρp)

2
. (3.22)

In the present situation,

tr(ρp) =1, and (3.23)

det(ρp) =C2
φS

2
φ

[
1−exp

[
−z

2δ2
α

w2
z

− κ2δ2
αw

2
z

4

(
1− z

Rz

)2
]]

. (3.24)

Note that when the relative tilt δα = 0 determinant of reduced density matrix det(ρp)
equals 0 and the polarization-spatial entanglement is zero. However when δα 6= 0, the
exponent in the right-hand side of Eq. (3.24) is sufficiently close to one for a sufficiently
small but significant δα owing to the term proportional to κ2δ2

α in the exponent. Conse-
quently for such δα, det(ρp) ≈ C2

φS
2
φ. When Cφ = Sφ = 1√

2
, we have λ± ≈ 1

2
, and the

polarization-spatial entanglement is almost 1. To illustrate this we plot polarization-spatial
Gaussian entanglement E(ρp) as a function of relative tilt δα for various φ in Fig. 3.2 (a).
Here we choose the propagation distance z to be 30 cm, with relative tilt angle δα to be
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of the order of 10−4 radians. Figure 3.2 (b) plots the variation of C2(ρp) and S2(ρp) with
polarizer angle φ for relative tilt δα = 2.4 × 10−4 radians. Figure 3.2 (c) plots the vari-
ation of polarization-spatial Gaussian entanglementE(ρp) with polarizer angleφ for the
relative tilts δα = 3 × 10−4 radians, 2.4 × 10−4 radians and 1.5 × 10−4 radians. As ev-
ident from Fig. 3.2 (c), for a relative tilt as low as δα ≈ 2.4 × 10−4 radians we can have
the polarization-spatial Gaussian entangled light field to be almost in Schmidt form (i.e.,
the Gaussian spatial modes corresponding to the orthogonal polarization components have
their overlap integral to be approximately zero), even though the Gaussian light fields over-
lap spatially in a significant manner. For the above analysis w0 was assumed to be 1.5 mm
and λ = 594 nm.

3.4.2 Detecting polarization-spatial entanglement experimentally

The initial polarizer (LP1) is kept at 45◦ so that we may have comparable intensities for
the two interfering light fields thus ensuring better fringe contrast. In order to detect
polarization-spatial entanglement through fringe movement the output light field from the
PBS is passed through a single linear polarizer (LP3). Figures 3.3 (a1) - 3.3 (a5) shows
the output images recorded when LP3 is varied from 70◦ to 110◦ at intervals of 10◦. The
shift in fringes is visible from the figure [see Eq. (3.4)], and this suggests the presence of
polarization-spatial entanglement.

For zero entanglement case the fringes should remain stationary and this is demon-
strated by introducing another polarizer (LP2) at the output arm. The light field emerging
out of LP2 is linearly polarized and has a fixed spatial profile. Here, in order to get maxi-
mum intensity at the output we fix LP2 at 45◦. The output image is recorded by the charge-
coupled device (CCD) in the same manner as before. Figures 3.3 (c1) - 3.3 (c5) shows the
output images recorded when LP3 is varied from 70◦ to 110◦ at intervals of 10◦. Though
there is a variation in fringe contrast the stationarity of the fringes is clearly in agreement
with the fact that we have zero polarization-spatial entanglement [see Eq. (3.2)]. Figures 3.3
(b1) - 3.3 (b5) and Figs. 3.3 (d1) - 3.3 (d5) plots the fringes shown in Figs. 3.3 (a1) - 3.3
(a5) and Figs. 3.3 (c1) - 3.3 (c5), respectively reoriented along the x-axis (through a 45◦

coordinate transformation on the interferograms), so that the fringe shift (or fringe station-
arity) is readily seen. A white line is drawn across the intensity plots shown in Figs. 3.3
(b1) - 3.3 (b5) at precisely the same location. As seen from the figure, the line resides
over a dark fringe in Fig. 3.3 (b1), whereas it coincides with a bright fringe in Fig. 3.3 (b5),
clearly indicating a shift in fringes. Similarly a white line is plotted across intensity plots
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shown in Figs. 3.3 (d1) - 3.3 (d5), and it resides over the same dark fringe in all the figures
indicating fringe stationarity. Figures 3.3 (e1) and 3.3 (e2) plot the diagonal entries in the
interferograms 3.3 (a1), 3.3 (a3) and 3.3 (a5), and 3.3 (c1), 3.3 (c3) and 3.3 (c5), in order
to make the fringe shift (or stationarity) even more explicit. The solid line, dotted line and
dashed line of Fig. 3.3 (e1) correspond to diagonal entries of the interferograms in Figs. 3.3
(a1), 3.3 (a3) and 3.3 (a5) respectively [equivalently the x-axis entries of interferograms
Figs. 3.3 (b1), 3.3 (b3) and 3.3 (b5)]. It is seen that the maxima of the solid line almost co-
incide with the minima of the dashed line indicating clearly the fringe shift. Similarly the
solid line, dotted line and dashed line of Fig. 3.3 (e2) correspond to diagonal entries of the
interferograms in Figs. 3.3 (c1), 3.3 (c3) and 3.3 (c5) respectively [equivalently the x-axis
entries of interferograms Figs. 3.3 (d1), 3.3 (d3) and 3.3 (d5)]. The maxima and minima of
all three lines coincide in this case indicating fringe stationarity.
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(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

(d1) (d2) (d3) (d4) (d5)

(e1) (e2)

Figure 3.3: (a1) - (a5) plot the fringe pattern obtained on passage of the recombined light
field emerging from the PBS through the polarizer LP3 alone (refer Fig. 3.1). LP3 is rotated
from 70◦ to 110◦ in steps of 10◦. (c1) - (c5) plot the fringe pattern obtained on passage
of the recombined light field emerging from the PBS through the polarizers LP2 and LP3,
with polarizer LP2 (at 45◦) inserted between LP3 and the PBS. (b1) - (b5) and (d1) - (d5)
re plot the fringes shown in (a1) - (a5) and (c1) - (c5) reoriented through a 45◦ coordinate
transformation in order to make the fringe shift or fringe stationarity more explicit (observe
the white line). This is made even more clear in (e1) and (e2). Solid line of (e1) plots the
diagonal entries of (a1), dotted line plots the diagonal entries of (a3) and dashed line plots
the diagonal entries of (a5). Similarly solid line of (e2) plots the diagonal entries of (c1),
dotted line plots the diagonal entries of (c3) and dashed line plots the diagonal entries of
(c5). In all the experiments the initial polarizer LP1 is fixed at 45◦.

50



20 30 40 50 60 70

Degrees

-1

-0.6

-0.2

0.2

0.6

1 S
1

S
2

S
3

(a)

20 30 40 50 60 70

Degrees

0

0.2

0.4

0.6

0.8

1
(b)

20 30 40 50 60 70

Degrees

0

0.2

0.4

0.6

0.8

1
(c)

Figure 3.4: (a) plots the variation of estimated Stokes parameters S1 (solid line), S2 (dashed
line) and S3 (dotted line) with polarizer angle φ for a particular tilt, as obtained from ρp. (b)
plots the variation of C2(ρp) (solid line) and S2(ρp) (dashed line) with polarizer angle φ for
a particular tilt. The ◦ in (c) plot the estimated polarization-spatial entanglement E(ρp) for
three different tilts (shown by solid, dashed and dotted lines) when LP2 is not inserted after
the PBS, for varying φ. The � in (c) plot the estimated polarization-spatial entanglement
E(ρp) for a particular tilt when LP2 is inserted after the PBS (see Fig. 3.1).

3.4.3 Estimating polarization-spatial entanglement experimentally

A relative tilt is introduced in one of the mirrors (see Fig. 3.1), and the presence of polarization-
spatial entanglement is ensured through the fringe movement on rotation of polarizer LP3 (without
the insertion of LP2 or QWP). Having ensured the presence of polarization-spatial entan-
glement, polarizer LP1 is varied from 20◦ to 70◦ at intervals of 5◦ and the polarization-
spatial entanglement is estimated for each orientation using the procedure outlined in Sec-
tion 3.3 [see Eqs. (3.10) - (3.13)]. In order to estimate polarization-spatial entanglement us-
ing intensity measurements, first the output light field emerging from the PBS (for a fixed
LP1 angle) is passed through a single polarizer (LP3) and the output image is recorded for
every 45◦ rotation of LP3 from 0◦ to 135◦ (for example see Fig. 3.3). For the next step a
QWP at 0◦ is inserted between the PBS and polarizer LP3 and the output image is recorded
when LP3 is at 45◦ and 135◦. 50 intensity samples are taken at each orientation of LP3
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and averaged to suppress point wise intensity fluctuation. Using these intensity measure-
ments polarization-spatial entanglement is estimated as outlined in Eqs. (3.10) - (3.13) by
performing the integrals numerically. The experiment is repeated with the insertion of the
polarizer LP2 (at 45◦) just after the PBS in which case the polarization-spatial entangle-
ment is ideally zero. Figure 3.4 (a) plots the estimated Stokes parameters S1 (solid line),
S2 (dashed line) and S3 (dotted line) [see Eqs. (2.113) - (2.115)] for a particular tilt by vary-
ing the LP1 angle from 20◦ to 70◦ in steps of 5◦. Figure 3.4 (b) plots S2(ρp) (dashed line)
and C2(ρp) (solid line) [see Eqs. (2.116) - (2.117)] for a particular tilt by varying the LP1

angle from 20◦ to 70◦ in steps of 5◦. In Fig. 3.4 (c) the ◦ plot the estimated polarization-
spatial Gaussian entanglement [see Eq. (2.118)] for three different tilts (shown by solid,
dashed and dotted lines) by varying the LP1 angle from 20◦ to 70◦ in steps of 5◦. As evi-
dent, we obtain close to 1 ebit of entanglement when LP1 was oriented at 45◦, and by tuning
the orientation of LP1 we are able to vary the polarization-spatial entanglement. This may
be compared with the numerical results outlined in Fig. 3.2 (c). Further when polarizer
LP2 (at 45◦) was inserted after the PBS the estimated entanglement was close to zero for
varying LP1 orientation [see Fig. 3.4 (c)].

3.5 Concluding remarks

To conclude, we have outlined a method to detect polarization-spatial entanglement in co-
herent vectorial paraxial light fields using fringe movement, through rotation of a linear
polarizer. The fringe movement is shown to be a sufficient criteria for polarization-spatial
entanglement in coherent paraxial vectorial light fields. We have experimentally shown that
it is indeed possible to obtain close to 1 ebit of polarization-spatial entanglement purely
with Gaussian spatial modes in orthogonal states of polarization even though the spatial
modes overlap in a significant manner. We have also demonstrated tunable polarization-
spatial Gaussian entanglement by varying the polarization of the input to the folded Mach-
Zehnder interferometer. We believe the obtained results will be of definite consequence
to several applications wherein there is requirement for maximal entanglement, which we
have generated without using higher order spatial modes.
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Chapter 4

Polarization-spatial Gaussian entanglement
in partially coherent light fields

4.1 Introduction

In this chapter we address the problem of bipartite entanglement in 2 × ∞ dimensional
systems. That is, qubit-harmonic oscillator mode Gaussian entanglement as may be read in
the context of quantum mechanical systems, or equivalently, polarization-spatial Gaussian
entanglement as may be read in the polarization wave optics context. We settle the issue
of separability for a class of states with polarization-spatial degrees of freedom, with the
spatial part being Gaussian. Partial transpose is shown to be necessary and sufficient in
detecting entanglement. Partial transpose is implemented by introducing a generalized
uncertainty principle suited for the present context. An experimental realization of such
entangled states using classical optical interferometry is outlined.

The parallel that exists between qubit-harmonic oscillator mode systems and polariza-
tion wave optics is appreciated given the isomorphic relationship that exists, firstly between
a qubit and a polarization state [86, 119], and secondly between a single quantum har-
monic oscillator mode and a symmetric paraxial first-order optical system [79, 80]. While
qubit-harmonic oscillator mode systems are quantum, polarization wave optics is classi-
cal. Qubit-harmonic oscillator mode systems are well explored, and with several appli-
cations (see for instance, Refs. [16–20, 120–126]). In Ref. [20], entanglement in such a
system was demonstrated using a Bell-type inequality. Implementability of quantum oper-
ations in such systems was discussed in Refs. [16,18], and the thermodynamic aspects were
explored in Refs. [17,19]. Similarly, in Refs. [121–123] hybrid entanglement in such sys-
tems was explored. The entanglement so generated was deemed hybrid since the oscillator
mode was classical, but the combined system was quantum. This may be contradistincted
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with polarization-spatial entanglement which is purely classical. Polarization-spatial entan-
glement is well explored and with several applications [6, 7, 27, 29, 30, 37, 38, 45–47, 127–
129]. For instance, it has found application in encoding information for optical communi-
cation [6, 7, 37, 38, 127–129]. Further, polarization-spatial entanglement helped resolve a
long standing problem in classical optics [45].

While the present problem can be addressed using either of quantum or classical optics
terminology, we prescribe to the classical wave optics approach. In what follows we assume
that polarization gadgets and first-order optical systems act locally on the polarization and
spatial degrees of freedom respectively, as can be done without loss of generality in the
paraxial limit [130, 131].

The chapter is organized as follows. In Section 4.2, we introduce the class of states, for
which, we study the separability problem. The partial transpose is implemented through the
generalized uncertainty principle. The central result of the work discussed in this chapter
is outlined here. In Section 4.3, we discuss the experimental realization of the studied en-
tangled states using classical optical interferometry. We finally end with some concluding
remarks in Section 4.4.

4.2 Partial coherence and polarization-spatial Gaussian en-
tanglement

A partially coherent vector light field having Gaussian cross-spectral density Γ̂G is given
by [see Eq. (2.104)]

Γ̂G = |η〉〈η| ⊗ Γ̂G, (4.1)

where |η〉 is a polarization state and Γ̂G is a Gaussian cross-spectral density operator. We
may recall from Section 2.11.2 that the generalized uncertainty principle is

tr(m̂vm̂
†
vΓ̂G) ≥ 0. (4.2)

Consider the action of a polarization-conditional Gaussian unitary transformation Û12 which
implements the Gaussian unitary Û1 on the spatial degree of freedom when state of polar-
ization is |0〉, and implements the Gaussian unitary Û2 on the spatial degree of freedom
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when state of polarization is |1〉, that is

Û12 = |0〉〈0| ⊗ Û1 + |1〉〈1| ⊗ Û2 =

[
Û1 0

0 Û2

]
(4.3)

on Γ̂G. We obtain

Γ̂U12 = Û12 (|η〉〈η| ⊗ Γ̂G) Û †12

=

[
Û1 0

0 Û2

][
|c0|2Γ̂G c0c

∗
1Γ̂G

c1c
∗
0Γ̂G |c1|2Γ̂G

][
Û †1 0

0 Û †2

]

=

[
|c0|2Û1Γ̂GÛ

†
1 c0c

∗
1Û1Γ̂GÛ

†
2

c1c
∗
0Û2Γ̂GÛ

†
1 |c1|2Û2Γ̂GÛ

†
2

]
. (4.4)

As evident, the action of Û12 is generically not local and can generate entanglement be-
tween the polarization and spatial degrees of freedom. The goal here is to characterize
bipartite entanglement in Γ̂U12 across the polarization-spatial divide.

Before proceeding further, we have the following observations regarding a polarization-
conditional Gaussian unitary transformation Û12. First, it is very much within the scope of
physical realizability in quantum systems, see for instance Refs. [16–19, 120, 124–126].
Second, it is readily realized in classical optics using PBSs, mirrors, and lenses as outlined
in Fig. (4.1). See Section 4.3 for detailed discussion.

Now proceeding further, consider the case where Û1 = Û−1
0 and Û2 = ÛRθÛ

−1
0 . Here

ÛRθ = e
−iθ
2

(
cx̂2+κ2

c
p̂2x−1

)
. The symplectic ray transfer matrix Rθ corresponding to ÛRθ is

given by

Rθ =

[
cos θ κ

c
sin θ

− c
κ

sin θ cos θ

]
. (4.5)

Note that the variance matrix Vsc is invariant under the action ofRθ, that is,

RθVscRT
θ = Vsc. (4.6)

On substituting Û1 = Û−1
0 and Û2 = ÛRθÛ

−1
0 in Eq. (4.4) and by making use of Eqs. (2.92)
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and (2.95), we obtain

Γ̂U12 =
∑
m

λm (|αm〉〈αm| ⊗ |m〉〈m|) , where (4.7)

|αm〉 = c0|0〉+ c1eimθ|1〉, (4.8)

and |m〉 is the Fock state [see Eq. (2.67)]. Note that, when θ = π and c0 = c1 = 1√
2
,

in the above equation, we recover the cross-spectral density operator considered in Ref.
[99]. Evidently for the choice of Û1 = Û−1

0 and Û2 = ÛRθÛ
−1
0 the cross-spectral density

operator Γ̂U12 is separable, in the polarization-spatial degrees of freedom. We now proceed
to analyze the situation when the Gaussian unitaries Û1 and Û2 are more general.

Assuming Û = (Û1Û0)−1Û2Û0, it can be readily seen that the separability of Γ̂U12 is
equivalent to the separability of Γ̂U given by

Γ̂U =

[
1 0

0 Û

][
|c0|2Γ̂sc c0c

∗
1Γ̂sc

c1c
∗
0Γ̂sc |c1|2Γ̂sc

][
1 0

0 Û †

]

=

[
|c0|2Γ̂sc c0c

∗
1Γ̂scÛ

†

c1c
∗
0Û Γ̂sc |c1|2Û Γ̂scÛ

†

]
, (4.9)

where Γ̂U12 and Γ̂U are related by conjugation of the tensor product unitary operator
(|0〉〈0|+ |1〉〈1|)⊗ Û1Û0. That is,[

Û1Û0 0

0 Û1Û0

]
Γ̂U

[
Û †0 Û

†
1 0

0 Û †0 Û
†
1

]
=

[
|c0|2Û1Û0Γ̂scÛ

†
0 Û
†
1 c0c

∗
1Û1Û0Γ̂scÛ

†
0 Û
†
2

c1c
∗
0Û2Û0Γ̂scÛ

†
0 Û
†
1 |c1|2Û2Û0Γ̂scÛ

†
0 Û
†
2

]
= Γ̂U12 , (4.10)

since Γ̂G ≡ Û0Γ̂scÛ
†
0 by Eq. (2.95). On taking partial transpose on Γ̂U we obtain

Γ̂PT
U =

[
|c0|2Γ̂sc c0c

∗
1Û
∗Γ̂sc

c1c
∗
0Γ̂scÛ

T |c1|2Û∗Γ̂scÛT

]
. (4.11)

Note that, here we have made use of the fact that Γ̂sc = Γ̂T
sc. Since conjugation does not

affect the positivity of a matrix operator, positivity of Γ̂PT
U is same as positivity of Γ̂PT

Uc
, where
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Γ̂PT
Uc

=
(

1
c0
|0〉〈0| ⊗ 1 + 1

c1
|1〉〈1| ⊗ Û∗

)
Γ̂PT
U

(
1
c∗0
|0〉〈0| ⊗ 1 + 1

c∗1
|1〉〈1| ⊗ ÛT

)
, that is,

Γ̂PT
Uc =

[
1
c0

0

0 1
c1
Û∗

]
Γ̂PT
U

[
1
c∗0

0

0 1
c∗1
ÛT

]
=

[
Γ̂sc Û∗Γ̂scÛ

T

Û∗Γ̂scÛ
T Û∗Û∗Γ̂scÛ

TÛT

]
. (4.12)

If Γ̂U12 is separable, then we have

tr(m̂vm̂
†
vΓ̂

PT
U ) ≥ 0 ⇐⇒ tr(m̂vm̂

†
vΓ̂

PT
Uc) ≥ 0. (4.13)

By making use of Eq. (2.89) and (2.106), the inequality in (4.13) (the uncertainty principle
corresponding to Γ̂PT

Uc
) can be rewritten as[

Vsc + i
2κ

Ω S̃VscS̃
T + i

2κ
Ω

S̃VscS̃
T + i

2κ
Ω S̃2VscS̃

2T
+ i

2κ
Ω

]
≥ 0, (4.14)

where S̃ is the symplectic ray transfer matrix corresponding to the Gaussian unitary Û∗.
If the inequality in (4.14) is not satisfied, then Γ̂U12 is entangled in the polarization-spatial
degrees of freedom.

By Euler decomposition a general symplectic ray transfer matrix S̃ can be written as
[80]

S̃ = Rθ1ΛRθ2 , (4.15)

whereRθ is as defined by Eq. (4.5) and Λ is defined as Λ = diag(Λ, 1/Λ). On substituting
Eq. (4.15) in (4.14) and by making use of Eq. (4.6), we obtain[

Vsc + i
2κ

Ω Rθ1ΛVscΛRT
θ1

+ i
2κ

Ω

Rθ1ΛVscΛRT
θ1

+ i
2κ

Ω Rθ1ΛRφΛVscΛRT
φΛRT

θ1
+ i

2κ
Ω

]
≥ 0, (4.16)

whereRφ = Rθ2Rθ1 , and φ = θ1 + θ2. The inequality (4.16) can be rewritten as[
Rθ1 0

0 Rθ1

][
Vsc + i

2κ
Ω ΛVscΛ + i

2κ
Ω

ΛVscΛ + i
2κ

Ω ΛRφΛVscΛRT
φΛ + i

2κ
Ω

][
RT
θ1

0

0 RT
θ1

]
≥ 0, (4.17)
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which is equivalent to[
Vsc + i

2κ
Ω ΛVscΛ + i

2κ
Ω

ΛVscΛ + i
2κ

Ω ΛRφΛVscΛRT
φΛ + i

2κ
Ω

]
≡

[
A B

C D

]
≥ 0. (4.18)

Demanding positivity of the LHS of (4.18) is equivalent to demanding positivity of its
Schur compliment [132], that is,

D−CA−1B ≥ 0. (4.19)

We have,

D = ΛRφΛVscΛRT
φΛ +

i

2κ
Ω

=

[
a
[
Λ4 + sin2 φ(1− Λ4)

]
ac
κΛ2 sinφ cosφ(1− Λ4) + i

2κ
bκ
cΛ2 sinφ cosφ(1− Λ4)− i

2κ
b

Λ4

[
1− sin2 φ(1− Λ4)

] ]
, and (4.20)

CA−1B =
1

ab− 1
4κ2

[
aΛ2 i

2κ

− i
2κ

b
Λ2

][
b − i

2κ
i

2κ
a

][
aΛ2 i

2κ

− i
2κ

b
Λ2

]

=
1

ab− 1
4κ2

[
a
[
abΛ4 − Λ2

2κ2
+ 1

4κ2

]
i

2κ

[
ab
(
Λ2 + 1

Λ2

)
− ab− 1

4κ2

]
− i

2κ

[
ab
(
Λ2 + 1

Λ2

)
− ab− 1

4κ2

]
b
[

1
4κ2
− 1

2κ2Λ2 + ab
Λ4

] ]
.

(4.21)

Performing the necessary algebra and demanding the positivity of the lower diagonal entry
of the Schur compliment reduces to

b

Λ4

[
1− sin2 φ(1− Λ4)

]
− b

ab− 1
4κ2

[
1

4κ2
− 1

2κ2Λ2
+
ab

Λ4

]
≥ 0

−c(1 + q)(1− Λ4) sin2 φ

2κ2Λ4(1− q)
− c(1− q2)(1− Λ2)2

8κ2Λ4q
≥ 0. (4.22)

Since both c and q are positive parameters and 0 ≤ q < 1, this is not true for Λ 6= 1. When
Λ = 1, we have S̃ = Rφ. That is, Û∗ considered in Γ̂PT

U of Eq. (4.11), is Û∗ = ÛRφ . As
a result, Γ̂PT

U of Eq. (4.11) reduces to Γ̂U12 of Eq. (4.7), which is manifestly separable. We
thus have :

Theorem 1 : Negativity under partial transpose is a necessary and sufficient condition to
detect polarization-spatial entanglement in the cross-spectral density operator Γ̂U12 = Û12

(|η〉〈η| ⊗ Γ̂G) Û †12, where Û12 = |0〉〈0| ⊗ Û1 + |1〉〈1| ⊗ Û2 is a polarization-conditional
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Gaussian unitary transformation, with Û1 and Û2 to be Gaussian unitaries generated by
quadratic Hamiltonians.

The following remark is in order concerning Theorem 1. While every Gaussian cross-
spectral density Γ̂G is completely specified by its variance matrix VG, every cross-spectral
density Γ̂ possesses a variance matrix denoted by V which obeys the uncertainty principle
as in (2.86), and can be brought to diagonal form (Vsc) as in Eq. (2.96). Consequently, the
test for polarization-spatial entanglement as contained in (4.14) - (4.22) holds, and violation
of the inequality in (4.22) is a sufficient criterion for polarization-spatial entanglement in
the cross-spectral density operator of the form Γ̂U12 = Û12 (|η〉〈η| ⊗ Γ̂) Û †12.

Let us now move on to the situation when the polarization-conditional Gaussian uni-
taries Û1 and Û2 of Û12 include translations as well. That is, the polarization-conditional
Gaussian unitary can now be written as

Û12 = |0〉〈0| ⊗ Û1 + |1〉〈1| ⊗ Û2 =

[
Û1 0

0 Û2

]
, (4.23)

where Û1 and Û2 are of the form [see Eq. (2.68)]

Û1 ≡ Û1(S1,d1) = D̂(d1)Û(S1), and Û2 ≡ Û2(S2,d2) = D̂(d2)Û(S2). (4.24)

We are interested in detecting bipartite entanglement in the state Γ̂U12 given by

Γ̂U12 = Û12 (|η〉〈η| ⊗ Γ̂G) Û †12, (4.25)

where Û1 and Û2 are as given in (4.24). The generalized uncertainty principle suited for the
present context is discussed in Section 2.11.2, and can be recalled as

tr(m̂cm̂
†
cΓ̂G) ≥ 0. (4.26)

Without loss of generality we can assume that the initial state Γ̂G in Eq. (4.25) is cen-
tered (zero displacement), i.e., Û0 = Û(S0) [see Eq. (2.95)]. As in the previous situation,
to detect entanglement, we implement partial transpose using the procedure outlined in
Eqs. (4.9) - (4.12). We need to check if

tr(m̂cm̂
†
cΓ̂

PT
Uc) ≥ 0, (4.27)
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where Γ̂PT
Uc can now be written as

Γ̂PT
Uc =

[
1
c0

0

0 1
c1
Û∗

]
Γ̂PT
U

[
1
c∗0

0

0 1
c∗1
ÛT

]
=

[
Γ̂sc Û∗Γ̂scÛT

Û∗Γ̂scÛT Û∗Û∗Γ̂scÛTÛT

]
. (4.28)

The unitary transformation Û∗ in Eq. (4.12) is now given by

Û∗ =
[
Û∗1 (S1,d1)Û∗(S0)

]−1

Û∗2 (S2,d2)Û∗(S0)

=
(
D̂∗(d1)Û∗(S1)Û∗(S0)

)−1

D̂∗(d2)Û∗(S2)Û∗(S0)

= Û∗(S−1
0 )Û∗(S−1

1 )D̂∗(d−1
1 )D̂∗(d2)Û∗(S2)Û∗(S0). (4.29)

Using the fact that Û(S,d) form a semi-group [133], and by denoting D∗(d) ≡ D(d̃) and
U∗(S) ≡ U(S̃), the unitary composition outlined in Eq. (4.29) can be carried out and we
obtain

ÛTξ̂Û∗ =ÛT(S0)ÛT(S2)D̂T(d2)D̂T(d−1
1 )ÛT(S−1

1 )ÛT(S−1
0 )ξ̂Û∗(S−1

0 )Û∗(S−1
1 )

D̂∗(d−1
1 )D̂∗(d2)Û∗(S2)Û∗(S0)

=S̃−1
0 S̃−1

1 S̃2S̃0ξ̂ + S̃−1
0 S̃−1

1

(
d̃2 − d̃1

)
≡ S̃ξ̂ + d′, and (4.30)

ÛTÛTξ̂Û∗Û∗ =ÛT(S0)ÛT(S2)D̂T(d2)D̂T(d−1
1 )ÛT(S−1

1 )ÛT(S−1
0 )S̃ξ̂Û∗(S−1

0 )Û∗(S−1
1 )

D̂∗(d−1
1 )D̂∗(d2)Û∗(S2)Û∗(S0) + d′

=S̃S̃−1
0 S̃−1

1 S̃2S̃0ξ̂ + S̃S̃−1
0 S̃−1

1 d̃2 − S̃S̃−1
0 S̃−1

1 d̃1 + d′ ≡ S̃2ξ̂ + d′′. (4.31)

Note that, here

S̃ = S̃−1
0 S̃−1

1 S̃2S̃0, (4.32)

d′ = S̃−1
0 S̃−1

1

(
d̃2 − d̃1

)
, and (4.33)

d′′ = S̃−1
0 S̃−1

1 S̃2S̃
−1
1

(
d̃2 − d̃1

)
+ S̃−1

0 S̃−1
1

(
d̃2 − d̃1

)
, with (4.34)

d̃i = σ3di, and i = 1, 2, (4.35)

where σ3 is the Pauli matrix. By making use of Eqs. (4.28) - (4.31) and the inequality given
in (2.108), the inequality in (4.27) (the uncertainty principle corresponding to Γ̂PT

Uc) can be
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rewritten in block form as

M=



1
... 0T 1

... d′T

· · · · · · · · · · · ·

0
... Vsc + i

2κ
Ω d′

... S̃VscS̃
T + i

2κ
Ω + d′d′T

1
... d′T 1

... d′′T

· · · · · · · · · · · ·

d′
... S̃VscS̃

T + i
2κ

Ω + d′d′T d′′
... S̃2VscS̃

2T
+ i

2κ
Ω + d′′d′′T


≥0, (4.36)

where 0 = [0, 0]T. Substituting for
(
Vsc + i

2κ
Ω
)

from (2.94), and denoting d′ ≡
[
δ′1√
c
,
δ′2
√
c

κ

]T

and d′′ ≡
[
δ′′1√
c
,
δ′′2
√
c

κ

]T
, the above inequality can be explicitly written as

M=



1 0 0 1
δ′1√
c

δ′2
√
c

κ

0 a i
2κ

δ′1√
c

α +
δ′21
c

β +
δ′1δ
′
2

κ

0 − i
2κ

b
δ′2
√
c

κ
β∗ +

δ′1δ
′
2

κ
γ +

δ′22 c

κ2

1
δ′1√
c

δ′2
√
c

κ
1

δ′′1√
c

δ′′2
√
c

κ
δ′1√
c

α +
δ′21
c

β +
δ′1δ
′
2

κ

δ′′1√
c

α′ +
δ′′21

c
β′ +

δ′′1 δ
′′
2

κ
δ′2
√
c

κ
β∗ +

δ′1δ
′
2

κ
γ +

δ′22 c

κ2
δ′′2
√
c

κ
β′∗ +

δ′′1 δ
′′
2

κ
γ′ +

δ′′22 c

κ2


≡

[
A B
C D

]
≥ 0, (4.37)

where, [
α β

β∗ γ

]
≡ S̃VscS̃

T +
i

2κ
Ω, and

[
α′ β′

β′∗ γ′

]
≡ S̃2VscS̃

2T
+

i

2κ
Ω. (4.38)

If the inequality in (4.37) is not satisfied, then Γ̂U12 is entangled in the polarization-spatial
degrees of freedom. Now to explicitly determine the positivity of M, we evaluate the Schur
complement of M. There are two situations that arise here, first, Vsc does not saturate the
uncertainty principle in (2.94), i.e., ab− 1

4κ2
> 0, and second, Vsc saturates the uncertainty

principle, i.e., ab − 1
4κ2

= 0. Performing the Schur complement of M and demanding the
positivity of its (1, 1)th element reduces to

D(1, 1)− (CA−1B)(1, 1) ≥ 0. (4.39)
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For ab− 1
4κ2

> 0, we have

CA−1B=


1

δ′1√
c

δ′2
√
c

κ
δ′1√
c

α +
δ′21
c

β +
δ′1δ
′
2

κ
δ′2
√
c

κ
β∗ +

δ′1δ
′
2

κ
γ +

δ′22 c

κ2




1 0 0

0 b
ab− 1

4κ2

− i
2κ

ab− 1
4κ2

0
i
2κ

ab− 1
4κ2

a
ab− 1

4κ2




1
δ′1√
c

δ′2
√
c

κ
δ′1√
c

α +
δ′21
c

β +
δ′1δ
′
2

κ
δ′2
√
c

κ
β∗ +

δ′1δ
′
2

κ
γ +

δ′22 c

κ2

 .
(4.40)

The (1, 1)th of CA−1B for this situation is given by

(CA−1B)(1, 1) = 1 +
δ′1√

c

 bδ′1√
c −

iδ′2
√

c
2κ2

ab− 1
4κ2

+
δ′2
√

c
κ

 iδ′1
2κ
√

c +
aδ′2
√

c
κ

ab− 1
4κ2


= 1 +

(1− q2) (δ′21 + δ′22 )

2q
. (4.41)

Thus the inequality in (4.39) can now be rewritten as

−(1− q2)(δ
′2
1 + δ

′2
2 )

2q
≥ 0. (4.42)

For ab− 1
4κ2

= 0, we have

CA−1B=


1

δ′1√
c

δ′2
√
c

κ
δ′1√
c

α +
δ′21
c

β +
δ′1δ
′
2

κ
δ′2
√
c

κ
β∗ +

δ′1δ
′
2

κ
γ +

δ′22 c

κ2




1 0 0

0 a
(a+b)2

i
2κ

(a+b)2

0
− i

2κ

(a+b)2
b

(a+b)2




1
δ′1√
c

δ′2
√
c

κ
δ′1√
c

α +
δ′21
c

β +
δ′1δ
′
2

κ
δ′2
√
c

κ
β∗ +

δ′1δ
′
2

κ
γ +

δ′22 c

κ2

 .
(4.43)

The (1, 1)th of CA−1B is given by

(CA−1B)(1, 1) = 1 +
δ′1√

c

 aδ′1√
c +

iδ′2
√

c
2κ2

(a+ b)2

+
δ′2
√

c
κ

− iδ′1
2κ
√

c +
bδ′2
√

c
κ

(a+ b)2


= 1 +

2(1− q)
1 + q

(δ′21 κ
4 + δ′22 c4)

(κ2 + c2)2 . (4.44)

Thus the inequality in (4.39) can now be rewritten as

−2(1− q)
1 + q

(δ′21 κ
4 + δ′22 c4)

(κ2 + c2)2 ≥ 0. (4.45)
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As evident from (4.42) and (4.45), M violates positivity for any non zero translation d′,
since 0 ≤ q < 1. Note that this is independent of S1 and S2. As evident from Eqs. (4.30)
- (4.35), d′ is non zero if and only if d1 − d2 is non zero. That is, for any Û1 and Û2 as
in (4.24) with d1 − d2 6= 0, and with Û∗ as in Eq. (4.29), Γ̂PT

Uc of Eq. (4.28) is not positive,
and consequently, Γ̂U12 of Eq. (4.25) is entangled. When d1 − d2 = 0, i.e., d′ = 0, by
Eqs. (4.30) - (4.35), the positivity requirement in (4.36) reduces to the positivity require-
ment in (4.14), in which case, Theorem 1 holds. We have

Theorem 2 : Negativity under partial transpose is a necessary and sufficient condition to
detect polarization-spatial entanglement in the cross-spectral density operator Γ̂U12 = Û12

(|η〉〈η| ⊗ Γ̂G) Û †12, where Û12 = |0〉〈0| ⊗ Û1 + |1〉〈1| ⊗ Û2 is a polarization-conditional
Gaussian unitary transformation, with Û1 and Û2 to be the most general Gaussian unitaries.

We now have the following observation. Given that every cross-spectral density Γ̂ pos-
sesses a variance matrix denoted by V which obeys the uncertainty principle as in (2.86),
and can be brought to diagonal form (Vsc) as in Eq. (2.96), we can replace Γ̂G with Γ̂ in
Eq. (4.4), and the analysis in (4.26) - (4.45) goes through. We thus have

Theorem 3 : The cross-spectral density operator Γ̂U12 = Û12 (|η〉〈η| ⊗ Γ̂) Û †12 for any cross-
spectral density Γ̂ is entangled for Û1 and Û2 of Û12 with d1 − d2 non zero.

In the situation when the polarization-spatial cross-spectral density operator is of the
form

Γ̂U12 = Û12 (ρ̃p ⊗ Γ̂) Û †12, with (4.46)

ρ̃p = Σip̃i|ηi〉〈ηi|, (4.47)

a mixed state of polarization, the analysis outlined in (4.2) - (4.22) and (4.26) - (4.45) can
be carried out and we obtain modified versions of (4.22) and (4.42), (4.45). We find that
the modified inequalities in (4.22) and (4.42), (4.45) have additional positive terms in the
LHS, and the violation of the inequality is not strict. Even so, for ρ̃p with sufficiently
high degree of polarization (close to 1), it is possible to choose Û1 and Û2 such that the
modified inequalities (4.22) and (4.42), (4.45) are violated. For instance, in the modified
inequalities (4.42) and (4.45), it is possible to choose sufficiently large relative shift factor
d1 − d2 such that the modified inequalities are violated, and consequently the resulting
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Γ̂U12 is polarization-spatial entangled.

4.3 Experimental realization

Laser Linear
 polarizer

PBS1

M1

M2

CCD

PBS1/PBS2- Polarizing beam 

splitters

M1/M2 - Mirrors

            - First-order optics

PBS2

Figure 4.1: Schematic diagram of an experimental setup for realizing polarization-
conditional Gaussian unitary transformation Û12 [see Eq. (4.23)].

Figure 4.1 shows an experimental setup for realizing the polarization-conditional Gaus-
sian unitary transformation Û12. The incoming partially coherent vector Gaussian light
field is passed through a linear polarizer to obtain the cross-spectral density operator as
in Eq. (4.1). PBS1 achieves the polarization-conditional separation of the light field to the
two arms of the interferometer. A sequence of lenses and free propagations realize Û1 and
Û2 [67, 82, 83, 134–136] in the two arms of the interferometer. The displacement param-
eters d1, d2 of Û1 and Û2 of (4.24) are naturally produced through misalignment in the
lenses realizing Û1 and Û2 and tilts in mirrors M1 and M2. Further the coherence for each
pure state component in the ensemble is retained across the two arms. The light fields are
eventually recombined in PBS2 to obtain the equivalent Γ̂U12 of Eq. (4.25), with Û1 and
Û2 as in (4.24). As an example, a polarized GSM light field, say for instance generated
using SLM [96–98] with 45◦ polarization and entering PBS1 and propagating different
distances in the two arms of the interferometer and with the mirrors M1 and M2 having
relative tilt, readily produces partially coherent polarization-spatial entanglement on re-
combining at PBS2. This may be understood as follows. The GSM itself is realized using
a SLM by producing time varying spatially coherent light fields averaged over time (the
ensemble realizing GSM). Each spatially coherent light field at a given instance of time
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on passage through the setup and recombined at PBS2 is polarization-spatial entangled for
relative tilts (d1 − d2) introduced in mirrors M1 and M2, an implication of the Theorem 3.
Not only that, the time averaged (ensemble averaged) spatially coherent light fields recom-
bined at PBS2 is definitely polarization-spatial entangled, as seen through Theorems 2 and
3. In particular, when the GSM reduces to the fundamental Gaussian mode (limiting case),
there is polarization-spatial entanglement in the recombined light field for non zero relative
tilt in the two arms, which is readily confirmed through fringe movement as outlined in
Chapter 3.

The following remarks are in order concerning the obtained results in Theorems 1 to 3,
and in regard of the experimental setup outlined in Fig. 4.1. First, though the entanglement
of the concerned states is technically detected through the partial transpose map, the viola-
tion of positivity condition is inferred through the violation of the uncertainty principle [see
Eqs. (4.22), (4.42) and (4.45)], which is based on the first and second moments. We note
that these moments are readily measured for a scalar light field [137–139], and thus in
principle extendable to vector fields. This suggests that the polarization-spatial entangle-
ment generated through the setup of Fig. 4.1 can indeed be experimentally demonstrated
through appropriate measurement of the first and second moments. Second, the setup in
Fig. 4.1 effectively simulates the class of 2 × N dimensional quantum mechanical mixed
‘entangled’ states as stated in Eq. (4.46). This further suggests that the more general 2×N
states such as those well studied in the quantum optical context [16–20,120–126] can per-
haps be simulated through classical optic means. Third, the setup gives us a flexible tool to
engineer polarization-spatial entanglement through design of the unitaries Û1 and Û2, and
this could be useful for instance in applications such as optical communication [127–129],
polarization metrology [29], and sensing [30] where vector light fields are used. Fourth,
the fact that the polarization-spatial entanglement is a function of the relative tilt for coher-
ent inputs (as outlined in Chapter 3), could be effectively used to calibrate the relative tilt
in the interferometer by measuring polarization-spatial entanglement.

4.4 Concluding remarks

To conclude, we have studied polarization-spatial entanglement in partially coherent vector
light fields, or equivalently, mixed state qubit-harmonic oscillator mode entanglement. We
have introduced a generalized uncertainty principle, suited for the present context, through
which partial transpose is implemented. We have identified states for which partial trans-
pose is found to be necessary and sufficient in detecting bipartite entanglement. We have
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further proposed an experimental realization of such entangled states, which is very much
feasible, given that the same has been achieved in the case of purely coherent vector light
fields as seen in Chapter 3. While the presence of the phenomena of bound entangle-
ment in such states is ruled out, the wide spectrum of possibilities in the polarization-
spatial degrees of freedom, suggests that exotic quantum phenomena such as bound en-
tanglement can be effectively simulated using classical optic vector light fields through
the polarization-spatial degrees of freedom. For example, experimental demonstration of
bound entanglement using optics has been done in Ref. [140], and such a state can be
classically simulated by encoding the state into the polarization of the spatial modes of
a classical optic vector light field. The work discussed in this chapter is definitely rele-
vant given the current interest in bipartite entanglement, not only in vector paraxial wave
optics [6, 7, 27, 29, 30, 33, 34, 36–38, 45–47, 127–129] but also in quantum optical sys-
tems [16–20, 120–126].
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Chapter 5

Detection of polarization-spatial entangle-
ment in partially coherent light fields us-
ing intensity measurements

5.1 Introduction

The partial transpose map has been well explored due to its applicability to both finite and
infinite dimensional systems. In fact, it has been found to be necessary and sufficient in
detecting bipartite entanglement for certain class of mixed states in both finite [60, 61]
as well as infinite [21, 23, 63] dimensional settings. The partial transpose map can be
implemented directly on the state (density matrix) [60, 61], and bipartite entanglement is
then detected through violation of positivity of the resulting matrix. Alternatively, partial
transpose can be implemented through observable moments evaluated on the state [63], and
bipartite entanglement is then detected through violation of the uncertainty principle. In
Chapter 4, partial transpose was implemented through a generalized uncertainty principle
suited for the polarization-spatial context. Negativity under partial transpose was shown
to be necessary and sufficient in detecting polarization-spatial entanglement for a class of
partially coherent vector light fields, through the observable moments. It may be noted that
the observable moments of the state of the light field are in principle estimated from the
measured intensities.

In this chapter, we outline a method to implement partial transpose to detect entan-
glement in a partially coherent vector light field using intensities measured at various ori-
entations of the polarizer on the incoming light field. We obtain a sufficient criteria for
detecting polarization-spatial entanglement using the measured intensities. The present
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method makes no restriction on the intensity measurements, for instance, as being con-
fined to dichotomic observables on the spatial degree of freedom, in implementation of the
CHSH [141] Bell-type inequality in the polarization-spatial context [33, 57]. That is, the
method is applicable to partially coherent vector light fields, with no restriction on the spa-
tial modes to be confined to a two dimensional subspace. Further, entanglement detection
methods using uncertainty principle, as for instance outlined in Ref. [63] and in Chapter 4,
requires the estimation of moments of field intensities, as well as moments of intensities of
the field amplitude in the Fourier domain. The present method has no such requirements.

The chapter is organized as follows. In Section 5.2, we outline the implication of partial
transpose on intensities measured at various orientations of the polarizer. The detection of
polarization-spatial entanglement, through partial transpose map implemented using mea-
sured intensities, is discussed in Section 5.3. An experimental demonstration of the pro-
posed method is also outlined here. The experimental results are discussed in Section 5.4.
We finally end with some concluding remarks in Section 5.5.

5.2 Theoretical analysis

The cross-spectral density matrix or beam coherency matrix of a spatially partially coherent
vector light field is given by [45, 100, 142]

〈x1, y1|Γ̂|x2, y2〉 = Γ(x1, y1;x2, y2) = 〈Ψ(x1, y1)Ψ(x2, y2)†〉

=

〈|c0|2ψ1(x1, y1)ψ∗1(x2, y2)
〉 〈

c0c
∗
1ψ1(x1, y1)ψ∗2(x2, y2)

〉〈
c1c
∗
0ψ2(x1, y1)ψ∗1(x2, y2)

〉 〈
|c1|2ψ2(x1, y1)ψ∗2(x2, y2)

〉 . (5.1)

Here 〈· · ·〉 denotes ensemble average, for instance,〈
|c0|2ψ1(x1, y1)ψ∗1(x2, y2)

〉
≡
∑
i

pi|c0i|2ψ1i(x1, y1)ψ∗1i(x2, y2). (5.2)

Here, the frequency dependence has been suppressed since we are working with a quasi-
monochromatic source.

We may recall that on passage of light as described by the cross-spectral density matrix
in Eq. (5.1) through a polarizer oriented at θ, the resulting intensity at the coordinate (x, y)
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is

Iθ(x, y) = C2
θ

〈
|c0|2|ψ1(x, y)|2

〉
+ CθSθ

〈
c0c
∗
1ψ1(x, y)ψ∗2(x, y)

〉
+ SθCθ

〈
c1c
∗
0ψ2(x, y)ψ∗1(x, y)

〉
+ S2

θ

〈
|c1|2|ψ2(x, y)|2

〉
≥ 0. (5.3)

Further, the intensity at the coordinate (x, y) is given by the trace of the cross-spectral
density matrix Γ(x, y;x, y), that is, I(x, y) =

〈
|c0|2|ψ1(x, y)|2

〉
+
〈
|c1|2|ψ2(x, y)|2

〉
.

By definition Γ̂ is positive semi-definite. On taking the expectation value of Γ̂ with the
vector Cθ|0〉|x− α, y − β〉+ Sθ|1〉|x, y〉, we obtain

Iαβθ (x, y) = C2
θ

〈
|c0|2|ψ1(x−α, y−β)|2

〉
+CθSθ

〈
c0c
∗
1ψ1(x−α, y−β)ψ∗2(x, y)

〉
+SθCθ

〈
c1c
∗
0ψ2(x, y)ψ∗1(x−α, y−β)

〉
+S2

θ

〈
|c1|2|ψ2(x, y)|2

〉
≥ 0, (5.4)

where α and β are real numbers. Note that the intensity Iαβθ (x, y) of (5.4) is same as
the intensity Iθ(x, y) of (5.3), however with the x-component of the cross-spectral density
imparted a spatial shift of (α, β) in the x and y coordinates, in a polarization conditional
manner, before being passed through the polarizer.

By Peres-Horodecki separability criterion [60,61], the partial transpose operation takes
a separable cross-spectral density operator Γ̂ necessarily into a non-negative operator, i.e.,

Γ̂PT =
∑
i

pi [|Ψi〉〈Ψi|]PT ≥ 0, (5.5)

where the superscript PT denotes partial transpose. Performing the transpose on the spatial
states |ψ1i〉 and |ψ2i〉, i.e., |ψ1i〉〈ψ2i| → |ψ∗2i〉〈ψ∗1i| to obtain Γ̂PT, the expectation value of
Γ̂PT with the vector Cθ|0〉|x, y〉+ Sθ|1〉|x− α, y − β〉 is

Ĩαβθ (x, y) = C2
θ

〈
|c0|2|ψ1(x, y)|2

〉
+CθSθ

〈
c0c
∗
1ψ1(x−α, y−β)ψ∗2(x, y)

〉
+SθCθ

〈
c1c
∗
0ψ2(x, y)ψ∗1(x−α, y−β)

〉
+S2

θ

〈
|c1|2|ψ2(x−α, y−β)|2

〉
≥ 0. (5.6)

Consider the instance when Γ̂ = |Ψ〉〈Ψ|, with |Ψ〉 = (c0|0〉 + c1|1〉) ⊗ |ψ〉, i.e, a product
state, the inequality (5.6) then reduces to

|Cθc0ψ(x, y) + Sθc1ψ(x− α, y − β)|2 ≥ 0, (5.7)

which by definition is always true. Any violation of inequality (5.6) indicates the presence
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of polarization-spatial entanglement. Thus, if we are able to experimentally determine all
terms in the LHS of (5.6), then it is possible to detect the presence of polarization-spatial
entanglement in a light field represented by the cross-spectral density matrix Γ in Eq. (5.1).
A method to experimentally determine the LHS of (5.6) is discussed below.

Assume that a light field denoted by the cross-spectral density matrix Γ(x1, y1;x2, y2),
as in Eq. (5.1), is available to us. In order to detect the presence of polarization-spatial
entanglement in the given light field, we impart a spatial shift of (α, β) in the x and y

coordinates onto the x-component of the light field. It is then passed through a polarizer to
obtain the output intensity Iαβθ (x, y) as in (5.4). In order to evaluate the terms in the LHS
of (5.6), we measure Iαβθ (x, y) of (5.4) at θ = 0◦, 45◦, 90◦, and 135◦, and we have

Iαβ0 (x, y) =
〈
|c0|2|ψ1(x−α, y−β)|2

〉
, (5.8)

Iαβ45 (x, y)− Iαβ135(x, y) =
〈
c0c
∗
1ψ1(x−α, y−β)ψ∗2(x, y)

〉
+
〈
c1c
∗
0ψ2(x, y)ψ∗1(x−α, y−β)

〉
, and (5.9)

Iαβ90 (x, y) =
〈
|c1|2|ψ2(x, y)|2

〉
. (5.10)

Note that the point-wise Stokes parameters (generalized Stokes parameters) can be written
in terms of the measured intensities of Eqs. (5.8)-(5.10) as, S0(x, y) = Iαβ0 (x, y)+Iαβ90 (x, y),
S1(x, y) = Iαβ0 (x, y) − Iαβ90 (x, y), and S2(x, y) = Iαβ45 (x, y) − Iαβ135(x, y) [112]. Clearly
from Eq. (5.9), we can infer that the second and third terms in the LHS of (5.6) are readily
obtained from the intensities measured at θ = 45◦ and 135◦. The first term in the LHS
of (5.6) can be determined by numerically shifting the intensity Iαβ0 (x, y) [see Eq. (5.8)],
through the knowledge of α and β, i.e., Iαβ0 (x+α, y+β) ≡

〈
|c0|2|ψ1(x, y)|2

〉
. Likewise,

the last term in the LHS of (5.6) can be determined by numerically shifting the intensity
Iαβ90 (x, y) [see Eq. (5.10)]. As we shall see, it is possible to estimate the required shifts α
and β experimentally. Inequality (5.6) at θ = 45◦ can be rewritten as

Ĩαβ45 (x, y)=
1

2

[
Iαβ0 (x+α, y+β) + Iαβ45 (x, y)− Iαβ135(x, y) + Iαβ90 (x−α, y−β)

]
≥ 0. (5.11)

Here, Ĩαβ45 (x, y) denotes the intensity Ĩαβ45 (x, y) in (5.6) obtained through sequential addition
of measured and numerically shifted intensities. Though ideally we have Ĩαβ45 (x, y) =

Ĩαβ45 (x, y), experimentally this may not be true owing to various factors such as intensity
fluctuations that act as noise. As a further note, the LHS of (5.4) can be directly obtained
from measured intensity

[
Iαβ45 (x, y)

]
and by definition is point-wise positive, even so, it can
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also be obtained as the sum of the LHS of Eqs. (5.8)-(5.10), i.e.,

Iαβ45 (x, y) =
1

2

[
Iαβ0 (x, y) + Iαβ45 (x, y)− Iαβ135(x, y) + Iαβ90 (x, y)

]
. (5.12)

Here, Iαβ45 (x, y) denotes the intensity Iαβ45 (x, y) in (5.4) obtained through sequential addi-
tion of measured intensities. Ideally, Iαβ45 (x, y) = Iαβ45 (x, y). Nevertheless, experimental
evaluation in this manner can render negative values owing to noise caused by the fluctua-
tions of the light field during sequential intensity measurements.

5.3 Detection of polarization-spatial entanglement using
intensity measurements

We now discuss an experiment which will demonstrate the inequality (5.11). Here, for our
experiment, a coherent Gaussian light field coming from a 632.8 nm He-Ne laser source is
passed through a linear polarizer (LP1), and then through a PBS. The PBS splits the light
field into its horizontal and vertical components. The horizontal and vertical components,
traverse the two arms of the Mach-Zehnder interferometer through mirrors M1 and M2 and
recombine at the beam splitter BS as in Fig. 5.1. Owing to the different paths traversed
by the light fields, there exist a relative longitudinal displacement between the polarization
components. In addition to that, the difference in orientation of mirrors M1 and M2 result
in a relative tilt between the two polarization components. We may recall that in Chapters 3
and 4, such recombined light fields were shown to acquire polarization-spatial entangle-
ment, even for a small relative tilt between the two mirrors. We now outline the possible
detection of polarization-spatial entanglement in such light fields through violation of the
inequality (5.11). Figure 5.1 outlines the experimental setup.

The initial polarizer LP1 is oriented at an angle φ, and the light coming out of LP1 is
passed through a Mach-Zehnder interferometer as in Fig. 5.1. The mirrors M1 and M2 have
a relative tilt, so that the recombined field at the output of the Mach-Zehnder interferometer
is polarization-spatial entangled. Assume that the output light field is denoted by

Ψ(x, y) =

[
c0ψ1(x, y)

c1ψ2(x, y)

]
, (5.13)

as given in Eq. (2.100). The goal here is to detect polarization-spatial entanglement in
Ψ(x, y) through the measured intensities as in (5.11).
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Figure 5.1: Schematic diagram of the experimental setup.

Let us assume that the horizontal component of the recombined light field ψ1(x, y) is
centered with respect to the camera frame of reference, whereas the vertical component
ψ2(x, y) is slightly off-centered due to the relative tilt in the mirrors. In order to achieve
this in lab we visually center the intensity at θ = 0◦ on the camera, and slightly off-center
the intensity at θ = 90◦, by adjusting the mirrors M1 and M2. The camera position is
now fixed. The x and y moments of the intensity at θ = 0◦ is evaluated, and then the
camera coordinate system is recentered through the evaluated x and y moments. The x and
y moments numerically evaluated on a measured intensity I(x, y) is given by

〈x̂〉 =

∑N
i=1

∑N
j=1 x(i, j)I(i, j)∑N

i=1

∑N
j=1 I(i, j)

, and 〈ŷ〉 =

∑N
i=1

∑N
j=1 y(i, j)I(i, j)∑N

i=1

∑N
j=1 I(i, j)

, (5.14)

respectively, where x(i, j) = iδx and y(i, j) = jδy. Here we have δx = δy = 6.45µm, the
pixel size of the camera. The camera had 1392×1040 pixels, even so, we set N = 1024 by
cropping the image in a centered manner. Note that the recentering of the camera coordinate
system does not affect the relative tilt between the horizontal component ψ1(x, y) and the
vertical component ψ2(x, y). Also, for polarizer LP2 oriented at θ, the intensity at the
CCD is of the form Iθ(x, y) defined in Eq. (5.3). From (5.6) we can infer that, in order to
detect the presence of polarization-spatial entanglement between a centered ψ1(x, y) and a
slightly off-centered ψ2(x, y), we need to displace ψ1(x, y) by a deterministic amount. An

72



angular tilt on mirror M1 can be considered equivalently as a lateral shift of the horizontal
component ψ1(x, y) of the light field. Hence, we tilt mirror M1 to displace ψ1(x, y) and
thus obtain ψ1(x − α, y − β). Note that, the mirror M2 is not disturbed and hence the
vertical component ψ2(x, y) is not displaced. Thus for polarizer LP2 oriented at θ, the
intensity at the CCD after tilting mirror M1, is of the form Iαβθ (x, y) defined in (5.4). In
order to experimentally determine the displacement given to the horizontal component of
the light field ψ1(x, y), we measure the intensity Iαβ0 (x, y) for polarizer LP2 oriented at
θ = 0◦. The moments 〈x̂〉 and 〈ŷ〉 rounded off to the nearest pixel value, evaluated on the
intensity Iαβ0 (x, y) give the values of α and β respectively. Now that the values of α and
β are known, in order to evaluate Ĩαβ45 (x, y) of (5.11), we measure the intensities at θ =

0◦, 45◦, 90◦, and 135◦, i.e., Iαβ0 (x, y), Iαβ45 (x, y), Iαβ90 (x, y), and Iαβ135(x, y), respectively. The
first and last terms out of the four terms that constitute Ĩαβ45 (x, y) of (5.11), is determined
by numerically shifting the intensities Iαβ0 (x, y) and Iαβ90 (x, y) to obtain Iαβ0 (x+α, y+β)

and Iαβ90 (x−α, y−β), through the knowledge of α and β. Thus, on obtaining the intensities
Iαβ45 (x, y) and Iαβ135(x, y), along with the numerically shifted intensities Iαβ0 (x+α, y+β)

and Iαβ90 (x−α, y−β), we are able to determine Ĩαβ45 (x, y) of (5.11). We note that the same
procedure can be followed for any partially coherent light source available at the input of
Fig. 5.1. In what follows, we consider ‘effective’ partial coherent source as the input, which
is generated through sequential coherent inputs.

In order to experimentally replicate a partially coherent vector light field, we vary the
orientation of the initial polarizer LP1 sequentially, and consider them to be probabilistic
to obtain the ensemble. We also vary the tilt of mirror M2 in a LP1 controlled manner. The
probabilities themselves are varied numerically on a computer. Consider the mixture

Γ̂ =
n∑
i

pi|Ψi〉〈Ψi|, (5.15)

as in Eq. (2.101). Assume |ψ1i〉 are identical with |ψ2i〉 non-identical. Also, cji are vary-
ing. Then a mixture as in Eq. (5.15) can be thought of as |Ψi〉 generated sequentially by
varying the orientation of polarizer LP1, simultaneously varying the orientation of mir-
ror M2 for every orientation of polarizer LP1, while keeping the orientation of mirror M1

fixed, with the probabilities pi varied numerically. In what follows, we demonstrate how
polarization-spatial entanglement in such a mixture can be detected through sequential in-
tensity measurements.

As seen from (5.6), the displacements α and β are identical for all the constituting po-
larization components in the mixture. Thus to simulate the detection of entanglement in
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a mixture as in Eq. (5.15), once mirror M1 is tilted (horizontal component) and α and β
are determined for an initial polarization state, we do not disturb it further. Note that, the
vertical component need not be same for every orientation of the input polarizer LP1, and
hence the mirror M2 can have differential tilt depending on the input polarizer orientation.
Consider generating a state that is a mixture of n input polarization states, say LP1 oriented
at φ1, φ2,...,φn, with probabilities p1, p2,...,pn, respectively. For an input polarization state
with LP1 oriented at φi, the recombined light field at the output of the beam splitter is of
the form given by Eq. (5.13) and can be denoted as Ψi(x, y), where the subscript i denotes
the ith instance of orientation of polarizer LP1. For i = 1, the input polarizer LP1 is ori-
ented at φ1 and we have the recombined light field denoted as Ψ1(x, y). The mirror M1 is
given a tilt to impart a spatial shift of (α, β) onto the horizontal component ψ11(x, y) of
the light field in order to obtain ψ11(x − α, y − β). The values of α and β are evaluated
through the moments as outlined earlier. Once α and β are evaluated for the initial input
polarization state, position of mirror M1 is fixed. In order to evaluate Ĩαβ45 (x, y) of (5.11),
the intensities are measured at θ = 0◦, 45◦, 90◦, and 135◦, i.e., I1

0 (x, y), I1
45(x, y), I1

90(x, y),
and I1

135(x, y), respectively. For the input polarization state where polarizer LP1 is oriented
at φ2, mirror M1 is not disturbed, and mirror M2 is given an additional tilt to obtain the state
Ψ2(x, y) at the output of the beam splitter. The intensities at θ = 0◦, 45◦, 90◦, and 135◦,
i.e., I2

0 (x, y), I2
45(x, y), I2

90(x, y), and I2
135(x, y), respectively, are measured. Similarly, the

intensities I i0(x, y), I i45(x, y), I i90(x, y), and I i135(x, y), corresponding to the state Ψi(x, y)

for the next i, are measured without disturbing mirror M1. Now to obtain the intensity cor-
responding to the mixture for a particular θ of polarizer LP2, the intensities are multiplied
by their corresponding probabilities and then added, i.e.,

Iαβθ (x, y) =
n∑
i=1

piI
i
θ(x, y), (5.16)

and thereby determine the intensities given in Eqs. (5.8)-(5.10), for the partially coherent
case. Using this newly obtained set of intensities, Ĩαβ45 (x, y) of (5.11) is determined by
following the same procedure as in the case of coherent vector light fields. The intensities
Iαβ0 (x, y) and Iαβ90 (x, y) are numerically shifted through the knowledge of α and β, to obtain
Iαβ0 (x+α, y+β) and Iαβ90 (x−α, y−β). The intensities Iαβ45 (x, y) and Iαβ135(x, y) are directly
available to us, and thus Ĩαβ45 (x, y) of inequality (5.11) can be evaluated for the partially
coherent light field as in Eq. (5.15).
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5.4 Experimental results

Figure 5.2: (a1) plots Iαβ45 (x, y) of Eq. (5.12), for a coherent vector light field with initial
polarizer LP1 oriented at 43◦ with a particular relative tilt between mirrors M1 and M2.
(b1) plots N [Iαβ45 (x, y)], the negative values of Iαβ45 (x, y) plotted in (a1). (a2) and (b2)
repeats the exercise as in (a1) and (b1), but for another example with different relative tilt
between mirrors M1 and M2 and for polarizer LP1 oriented at 47◦. Note that, though ideally
Iαβ45 (x, y) is supposed to be positive there exists some negative values of the order of 0.001
due to noise, which emerges as a consequence of sequential intensity measurements.

The measurement of the intensities were carried out in the following manner. At every
instance, 100 images were taken manually, roughly at an interval of one second, and aver-
aged. This ensured that the intensity fluctuations are taken care of, and the measured inten-
sities are sufficiently stationary. We benchmark the stationarity of the measured intensities
as follows. The intensity Iαβ45 (x, y) as in (5.4), is readily available as a measurable inten-
sity, which by definition is point-wise positive. However, it is also obtained by sequentially
adding the intensities in Eqs. (5.8)-(5.10) [Iαβ45 (x, y) of Eq. (5.12)], which should also yield
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Figure 5.3: (a1) plots Ĩαβ45 (x, y) of (5.11) for the coherent vector light field considered in
Fig. 5.2 (a1). (b1) plots N [Ĩαβ45 (x, y)], the negative values of Ĩαβ45 (x, y) plotted in (a1). (a2)
and (b2) repeats the exercise as in (a1) and (b1), but for the example considered in Fig. 5.2
(a2). Note that in both the examples, the minimum of Ĩαβ45 (x, y) is an order lower than the
minimum of Iαβ45 (x, y), suggesting that the considered input light fields are polarization-
spatial entangled.
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Figure 5.4: Ten different examples of coherent vector light fields are considered here, with
P1 oriented at 43◦ for four of them, and at 47◦ for the remaining six. The relative tilt
between mirrors M1 and M2 is different for all ten. � plots the min[Iαβ45 (x, y)] and ◦ plots
the min[Ĩαβ45 (x, y)] for varying samples.

point-wise positive values. Iαβ45 (x, y) of Eq. (5.12) having negative values is an indicator
of the fluctuation of the light intensities. This is of relevance since a test for polarization-
spatial entanglement as in (5.11) is also obtained as a sequential addition of intensities, i.e.,
Ĩαβ45 (x, y), albeit with numerical shift on the intensities. Figure 5.2 (a1) plots Iαβ45 (x, y) of
Eq. (5.12), for an example with LP1 oriented at 43◦, with a particular relative tilt between
mirrors M1 and M2. N [Iαβ45 (x, y)] which plots only the negative values of Iαβ45 (x, y), is plot-
ted in Fig. 5.2 (b1). This is repeated in Figs. 5.2 (a2) and 5.2 (b2) for LP1 oriented at 47◦,
with slightly different relative tilt between M1 and M2. We can clearly see that the resulting
intensities plotted in Figs. 5.2 (a1) and 5.2(a2), does possess small negative values of the
order of 0.001, for peak intensity values of 0.5372 and 0.4961, respectively. This can be
attributed to noise due to the fluctuation of the light field and also to the non-uniform spa-
tial modulation of intensities as introduced by the polarizers. This suggests that in order to
detect entanglement through evaluation of Ĩαβ45 (x, y) of (5.11), we need to obtain negative
values significantly larger than those caused by intensity fluctuations.

Now to test for entanglement through measured intensities, as a first example, we con-
sider the case of coherent vector light fields. Figure 5.3 (a1) plot the resulting intensity
obtained on evaluation of Ĩαβ45 (x, y) of (5.11), for the coherent vector light field consid-
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ered in Fig. 5.2 (a1). N [Ĩαβ45 (x, y)] which plots only the negative values of Ĩαβ45 (x, y), is
plotted in Fig. 5.3 (b1). This is repeated in Figs. 5.3 (a2) and 5.3 (b2) for the example
considered in Fig. 5.2 (a2). The pixel values of (α, β) obtained for the two examples con-
sidered in Fig. 5.3 (a1) and (a2) are (-1,203) and (1,218), respectively. As evident from the
plots, there are significant negative values of the order of 0.1, indicating the presence of
polarization-spatial entanglement. To check further, we consider ten different examples of
coherent vector light fields, four of which have LP1 oriented at 43◦ and the remaining six
have LP1 oriented at 47◦. The relative tilt between the mirrors M1 and M2 is different in all
the considered examples. In Fig. 5.4, � plots the minimum value of Iαβ45 (x, y) denoted as
min[Iαβ45 (x, y)], whereas ◦ plots the corresponding minimum value of Ĩαβ45 (x, y) denoted as
min[Ĩαβ45 (x, y)]), for all ten examples. As evident from the plot, the min[Ĩαβ45 (x, y)] is lower
than the min[Iαβ45 (x, y)], indicating the presence of polarization-spatial entanglement in all
the considered examples.

As a second example we consider the case of partially coherent vector light fields ob-
tained by numerically mixing two pure state constituents. Figure 5.5 (a1) plots the resulting
intensity obtained on evaluation of Ĩαβ45 (x, y) of (5.11), for such an example of partially co-
herent light field, for the choice of probabilities p1 = p2 = 0.5 [see Eq. (5.15)]. Here,
|Ψ1〉 is obtained by orienting the polarizer LP1 at φ1 = 43◦ for a particular relative tilt
between mirrors M1 and M2, and |Ψ2〉 is obtained by orienting polarizer LP1 at φ2 = 47◦

with mirror M2 given an additional tilt. The negative values of Ĩαβ45 (x, y) plotted in Fig. 5.5
(a1), i.e., N [Ĩαβ45 (x, y)] is plotted in Fig. 5.5 (b1). This is repeated in Figs. 5.5 (a2) and 5.5
(b2) for another example of partially coherent light field with p1 = p2 = 0.5. Here, the
polarizer LP1 is initially oriented at φ1 = 47◦ with a different relative tilt between mirrors
M1 and M2, and then the polarizer LP1 is oriented at φ2 = 43◦ and mirror M2 is given
an additional tilt. Figures 5.6 (a) and 5.6 (b) plots the highest negative value obtained on
evaluating Ĩαβ45 (x, y) of (5.11) against the probability of occurrence p1 (varied from 0 to 1
in intervals of 0.1), for the same examples of mixed states considered in Figs. 5.5 (a1) and
5.5 (a2), respectively. Note that, in Fig. 5.6 (a) p1 denotes the probability of occurrence
of the input polarization state with LP1 oriented at 43◦, whereas in Fig. 5.6 (b) p1 denotes
the probability of occurrence of the input polarization state with LP1 oriented at 47◦. As
evident from the plots in Fig. 5.6, the strength of the negative values depend on the proba-
bilities as well as the relative tilt. Also, as seen from Fig. 5.6 (b), for the choice of p1 = 0.6

and 0.7 the highest negative value obtained is of the order of 0.02, which is still signifi-
cantly higher than 0.001 obtained due to intensity fluctuations, thus indicating the presence
of polarization-spatial entanglement in such mixtures.
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Figure 5.5: (a1) plots Ĩαβ45 (x, y) of (5.11) for a partially coherent light field, which is a
mixture of two input polarization states with LP1 oriented at φ1 = 43◦ with probability
p1 = 0.5, and at φ2 = 47◦ with probability p2 = 0.5. (a2) repeats the exercise for a similar
example of partially coherent light field, with LP1 oriented at φ1 = 47◦ with probability
p1 = 0.5, and at φ2 = 43◦ with probability p2 = 0.5. (b1) and (b2) plots N [Ĩαβ45 (x, y)], the
negative values of Ĩαβ45 (x, y) plotted in (a1) and (a2), respectively.

As a third example we consider the case of partially coherent vector light fields ob-
tained by numerically mixing three pure state constituents. Figure 5.7 plots the highest
negative value obtained on evaluating Ĩαβ45 (x, y) of (5.11) against probabilities p1 and p2,
for a mixture of three input polarization states with LP1 oriented at φ1 = 43◦ with prob-
ability p1, at φ2 = 45◦ with probability p2, and at φ3 = 47◦ with probability p3. |Ψ1〉 is
obtained by orienting LP1 at 43◦ with a particular relative tilt between mirrors M1 and M2,
|Ψ2〉 is obtained by orienting LP1 at 45◦ with mirror M2 given an additional tilt, and |Ψ3〉 is
obtained by orienting LP1 at 47◦ with mirror M2 again given an additional tilt. As evident
from the plot, we obtain significant negative values for the studied mixtures, suggesting
polarization-spatial entanglement in such mixtures.
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Figure 5.6: ◦ plots the highest negative value obtained on evaluating Ĩαβ45 (x, y) of (5.11)
for two different examples of partially coherent light fields, against the probability of oc-
currence p1 varied from 0 to 1 at intervals of 0.1. (a) corresponds to a mixture of two input
polarization states with LP1 oriented at φ1 = 43◦ with probability p1, and at φ2 = 47◦ with
probability p2. Likewise, (b) corresponds to a mixture with LP1 oriented at φ1 = 47◦ with
probability p1, and at φ2 = 43◦ with probability p2.

To summarize, for the present experimental settings, in all the studied examples, the
peak values of Iαβ45 (x, y) was of the order of ≈ 1, whereas the min[Iαβ45 (x, y)] was of the
order of ≈ 0.001. Even so, for the studied pure and mixed state examples, min[Ĩαβ45 (x, y)]

of one order higher, i.e., ≈ 0.01, could be obtained for min[Iαβ45 (x, y)]. This suggests that
for the present experimental settings, the error bar in Ĩαβ45 (x, y) is about 0.001. Thus, with a
negative value of min[Ĩαβ45 (x, y)] lower than this value, we can safely conclude the presence
of polarization-spatial entanglement. While these values are specific to the present experi-
mental settings, the studied examples strongly suggest that the experiment is repeatable for
a different experimental setting, such as use of a laser with different power rating, and a
camera with different pixel size as well as differing gray scale values.

5.5 Concluding remarks

To conclude, we have outlined a method to detect polarization-spatial entanglement in par-
tially coherent vector light fields through intensity measurements. Partial transpose is im-
plemented through sequential addition of intensities measured at various orientations of the
polarizer, and negativity of the added intensities (under partial transpose) is shown to be a
sufficient criteria in detecting polarization-spatial entanglement. An experimental demon-
stration of detection of polarization-spatial entanglement using the outlined method, is car-
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Figure 5.7: ◦ plots the highest negative value obtained on evaluating Ĩαβ45 (x, y) of (5.11),
against the probability of occurrences p1 and p2, for a partially coherent light field Γ̂, which
is a mixture of three different input polarization states, with LP1 oriented at 43◦ with prob-
ability p1, at 45◦ with probability p2, and at 47◦ with probability p3. Here, p1 is varied from
0 to 1 in intervals of 0.1 and p2 is varied from 0 to p1 in intervals of 0.1.

ried out using a Mach-Zehnder interferometer setup. Examples of partially coherent vec-
tor light fields, simulated through sequential generation of pure input polarization-spatial
entangled states, are shown to violate the obtained criteria thus indicating the presence
of polarization-spatial entanglement. While the considered examples are restrictive, the
method is general and can be applied to arbitrary partially coherent polarization-spatial
states, in detecting entanglement. Further, 2 × N dimensional ‘mixed’ entangled states,
such as those studied in the quantum mechanical context [16–20], can be effectively simu-
lated using partially coherent polarization-spatial entangled light fields, albeit without non-
locality, and the present method can be used to detect entanglement in such a scenario.
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Chapter 6

Estimation of dislocated phases in wave-
fronts through intensity measurements us-
ing a Gerchberg-Saxton type algorithm

6.1 Introduction

The complete description of a coherent light field requires the knowledge of both its am-
plitude as well as its phase. While the amplitude is readily available the phase has to
be retrieved from intensity measurements [67, 143–163]. The phase is typically retrieved
through iterative algorithms such as the GS algorithm [154] and its variants [67, 145–
152, 155, 163], or by solving the transport of intensity equation [156–160], or by mak-
ing use of a combination of both [161]. Phase can also be retrieved using ptychographic
methods as outlined in Refs. [153, 162]. Iterative methods inspired by the GS algorithm
have been explored in several works [67, 145–152, 155, 163] both numerically [67, 145–
147, 149–152, 155, 163] and experimentally [148]. For instance, in Refs. [146, 150, 151],
variants of GS algorithm through use of additional constraints have been explored. Simi-
larly in Refs. [145, 150], GS algorithm with random spatially varying phases modulating
the input paraxial light field have been explored. An iterative algorithm using the Shack-
Hartmann wavefront sensor has been numerically explored in Ref. [147]. Method using
a combination of both transport of intensity equation and GS type iterative algorithm has
been explored in Ref. [161]. Nevertheless, the aforementioned methods can suffer from
convergence issues, especially when phases with dislocations are present in the problem,
see for instance Refs. [143–146]. The methods typically use constraints [146, 150, 151],
boundary conditions [160], or guesses on the initial trial phases [146,150,161], in arriving
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at the solution. In Ref. [148], phase retrieval on a singular light field through measured in-
tensities was demonstrated using an astigmatic lens. The charge was estimated on the input
side. Ptychographic methods which use multiple coherent diffracted images of the object
towards phase estimation have been demonstrated experimentally in Refs. [153, 162], and
they are successful in retrieving phases with dislocations. For instance, in Ref. [153], a
non-linear crystal was used in generating multiple diffracted images of a singular light
field (in multiple wavelengths) from which the phase (dislocated) was retrieved. Numerical
correction of dislocated phases in retrieved phases was outlined in Ref. [164]. Paraxial light
fields whose phases have dislocations [67, 77, 91, 146–148, 153, 158, 160–162, 164–191]
are known to possess OAM [91], and this aspect has been well explored [67, 77, 148,
153, 162, 166, 167, 169–173, 175–177, 180, 182, 185, 187–191] due to its potential appli-
cations such as in free space optical communication [77, 187, 188, 190], imaging [167],
optical tweezing and microscopy [191]. Measurement of OAM of light has been explored
in Refs. [67, 77, 148, 153, 169, 171, 173, 175–177, 180]. It may be noted that if the phase is
unambiguously retrieved, then the OAM is readily evaluated from the measured intensity
and the estimated phase [67, 77, 148, 153].

The GS algorithm makes use of the Fourier transform in relating the input and output
light field amplitudes [154], which in practice is realized using a convex lens [69]. The
phase is then retrieved iteratively using the measured intensities which are the inputs to
the algorithm. However as observed in Ref. [67], Fourier transformation conserves the
OAM of light, and phases with dislocations do not build naturally in the algorithm, and
consequently the algorithm (and its variants) can have convergence issues in this regard,
as seen in Refs. [143–146]. To address this issue, an iterative algorithm based on partial
Fourier transformation was outlined in Ref. [67]. Partial Fourier transformation does not
conserve the OAM of light, and phases with dislocations build naturally in the algorithm.
Physical realization of the partial Fourier transformation was outlined in Refs. [67, 135],
and several numerical examples which demonstrated unambiguous retrieval of phases with
dislocations were presented in Ref. [67]. In this work, we experimentally demonstrate a
GS type phase retrieval algorithm using a transformation that is outlined in Refs. [67,135],
which uses a combination of cylindrical lenses that does not conserve OAM. The singular
light field is generated by passing a Gaussian light field through a SPP [183, 184] and on
free propagation, the light field acquires the charge corresponding to the phase plate which
introduces the phase dislocation. Consistent phase retrieval is demonstrated at both the
input and output, using three transverse plane intensity measurements. It is noted that the
light field emerging from the SPP on free propagation, is not a LG mode but a superposition
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of LG modes with the same phase dislocation [186, 192].

The chapter is organized as follows. In Section 6.2 we explain necessary optical trans-
formations and their corresponding realizations used in our algorithm. In Section 6.3 we
explain our proposed algorithm and experimental setup. The experimental and the algo-
rithm results are outlined in this section. Finally, we end up with some concluding remarks
in Section 6.4.

Laser Source 

(633 nm)

Spiral Phase 

Plate

Aperture
P1 P3

d d 

d'5 cm

P2

5 cm 20 cm

A
fx=d/2

fx=d/2 

fy=d f=20 cm 

Figure 6.1: Experimental setup. Box A gives the lens arrangement required to perform the
unitary transformation corresponding to the ray transfer matrix P̃y(d) [see Eq. (6.5)]. The
unitary transformation corresponding to P̃ simultaneously images the light field ψ(x, y; z)
in the x variable in an inverted manner, while Fourier transforming ψ(x, y; z) in the y
variable [see Eq. (6.4)]. The lens L1 is convex, whereas the cylindrical lenses L2, L3 and L4

are plano-convex. Intensity is measured at the three transverse planes P1, P2 and P3. In the
present experiment d = 10 cm. See Section 6.3 for the details.

6.2 Theoretical analysis

As is well known, Fourier transform in both the x and y variable is realized using a con-
vex lens and free propagation, that is, the ray transfer matrix corresponding to the two
dimensional Fourier transformation (unitary) is given by [69, 83, 135]

P(d) = F(d)L(d)F(d) =

[
0 d

−1/d 0

]
⊕

[
0 d

−1/d 0

]
, (6.1)

with d > 0. Here, F(d) and L(d) are ray transfer matrices corresponding to free propaga-
tion by distance d and thin lens of focal length d, respectively (see Section 2.1.1). Under
the transformation given in Eq. (6.1) a paraxial light field ψ(x, y; z) propagating along the
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z-direction, as in Eq. (2.71), is transformed as [69]

ψ̃(x̃, ỹ; z)=
1

iλd

∞∫
−∞

∞∫
−∞

ψ(x, y; z) exp

(
−iκ
d

(xx̃+ yỹ)

)
dxdy. (6.2)

Note that the GS algorithm uses Eq. 6.2 in retrieving the phase.

In Ref. [67], partial Fourier transform was used towards retrieving the phase, however
in the present experimental work we use the unitary transformation whose ray transfer
matrix is denoted as P̃, which is a constituent of the inverse partial-Fourier transformation
[67, 135]. The ray transfer matrix P̃ is given by :

P̃y(d) = −1⊕

[
0 d

−1/d 0

]
. (6.3)

The unitary transformation corresponding to P̃ simultaneously images the light fieldψ(x, y; z)

in the x variable in an inverted manner, while Fourier transforming ψ(x, y; z) in the y vari-
able. That is, ψ(x, y; z) is transformed as

ψ̃(x, ỹ; z) =

√
1

iλd

∞∫
−∞

ψ(−x, y; z) exp

(
−iκ
d

(yỹ)

)
dy. (6.4)

By Eq. (39) of Ref. [135], the physical realization of the ray transfer matrix P̃y(d) in terms
of free propagations and lenses is given by ray transfer matrix composition

P̃y(d) = F(d)Lx

(
d

2

)
Ly(d)F(d)Lx

(
d

2

)
, (6.5)

where Lx(d) and Ly(d) represent cylindrical lenses of focal length d with their curvatures
oriented along the x and y coordinates respectively (see Section 2.1.1). Note that, Lx(d)

corresponds to ψ(x, y; z) → exp[−i κ
2d

(x2)]ψ(x, y; z), and Ly(d) corresponds to the uni-
tary transformation ψ(x, y; z)→ exp[−i κ

2d
(y2)]ψ(x, y; z) [69]. The schematic of the real-

ization of P̃y(d) [Eq. (6.5)] is outlined in box A of Fig. 6.1. It is readily checked that the
unitary transformation corresponding to P̃ need not conserve OAM τ [see Eq. (2.78)] and
can distinguish the signature of τ , since light fields with opposing signatures of τ result in
different intensities on passage through P̃ [67] (see second column of Fig. 6.2). It may be
noted that τ is a free propagation invariant [193].
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(a1) (b1)
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(a3) (b3)

(a4) (b4)

(a5) (b5)

(a6) (b6)

Figure 6.2: Measured intensities at transverse plane P1 (first column) and transverse plane
P3 (second column) for d′ = 19 cm. Converged phase of the light field after 500 iterations
at transverse planes P1 for d′ = 19 and 20 cm (third and fourth column respectively) and P3

for d′ = 19 and 20 cm (fifth and sixth column respectively), for input singular light fields
of charge ±1 (first and second row respectively), ±2 (third and fourth row respectively)
and ±4 (fifth and sixth row respectively). For the first and second column yellow indicates
the peak value of the normalized intensities whereas blue indicates the least value which is
zero. For the converged phase plots in columns three to six the color map is as shown in
(f6). Frame size of all plots are 512× 512.
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Figure 6.3: Estimated OAM τ(ñ, zj) versus iteration number at transverse plane P1 (first
column) and transverse plane P3 (second column). Correlation C(ñ; zj) versus iteration
number at transverse plane P1 (third column) and transverse plane P3 (fourth column). Sin-
gular light fields of charge ±1 (first and second row respectively), ±2 (third and fourth row
respectively) and ±4 (fifth and sixth row respectively). All the plots are for d′ = 19 cm.
See the corresponding rows of Fig. 6.2 for the measured intensities and estimated phases.
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6.3 Proposed algorithm and experiment

The experimental setup is as outlined in Fig. 6.1. The Gaussian light field coming out
of a 633 nm laser is aligned and passed through a SPP (VPP-m633 from RPC photonics)
which reshapes the light field, and we obtain a singular light field on further propagation
[186, 192]. The emergent light field has zero intensity in the origin and its phase possesses
a dislocation depending on the charge of the SPP intersecting the Gaussian light field.
The emergent singular light field is passed through an aperture to filter out the diffractive
noise. It is then passed through a convex lens L1, of focal length 20 cm, which controls the
divergence of the light field. The light field coming out of lens L1 is then passed through
the cylindrical lens assembly L2, L3 and L4 in box A (realizing the paraxial transformation
P̃y(d), with d = 10 cm) which is at a distance of 30 cm from lens L1. The cylindrical lenses
are all plano-convex as outlined in Fig. 6.1 and have the focal lengths 5 cm for lenses L2 and
L3, and 10 cm for lens L4. Intensities are measured in planes P1, P2, and P3, as outlined in
the figure. While the planes P1 and P2 are fixed with the respective distances as outlined in
Fig. 6.1, the position of plane P3 is varied. That is, the distance d′ in Fig. 6.1 is taken as 19

cm and 20 cm which also give the location of plane P3 in the experiment. The intensities
measured in planes P1 (at z = z1), P2 (at z = z2), and P3 (at z = z3) are I(x, y; z1),
I(x, y; z2), and I(x, y; z3) respectively. Assuming that the light fields at these respective
planes are given by ψ(x, y; zj) =

√
I(x, y; zj) exp [iφ(x, y; zj)] with j = 1, 2, 3, the goal is

to extract the phases φ(x, y; zj) from the intensity measurements I(x, y; zj). This is done
using the iterative algorithm which is described as follows.

In the forward direction, we begin with the field amplitude
√
I(x, y; z1) at P1 with the

initial trial phase which is assumed to be zero. This field amplitude is numerically Fresnel
propagated through a distance of 5 cm in order to obtainψ1(x, y; z2) =

√
I1(x, y; z2)eiφ1(x,y;z2)

at plane P2. Now
√
I1(x, y; z2) is replaced by

√
I(x, y; z2) at P2, and the resulting field

amplitude is numerically Fresnel propagated through a distance of 20 cm, numerically
passed through a cylindrical lens of focal length fx = 5 cm, numerically Fresnel prop-
agated through a distance of 10 cm, numerically passed through a cylindrical lens com-
bination of focal length fx = 5 cm and fy = 10 cm, and finally Fresnel propagated
numerically through a distance of d′ cm. The obtained field amplitude is ψ1(x, y; z3) =√
I1(x, y; z3)eiφ1(x,y;z3) at plane P3 and

√
I1(x, y; z3) is replaced by

√
I(x, y; z3) at P3. The

process is inverted in the reverse direction to obtain ψ1(x, y; z1) =
√
I1(x, y; z1)eiφ1(x,y;z1)

at P1. Finally,
√
I1(x, y; z1) is replaced with

√
I(x, y; z1) at P1 to repeat the process. The

process is repeated ñ times such that Iñ(x, y; zj) ≈ I(x, y; zj), which would then suggest
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that the algorithm has converged, and that the estimated phases φñ(x, y; z1), φñ(x, y; z2),
and φñ(x, y; z3) are commensurate with the amplitudes

√
I(x, y; z1),

√
I(x, y; z2), and√

I(x, y; z3). Note that in the numerical implementation, we do not use Eq. (6.4), but
rather implement the transformation outlined in the setup of Fig. (6.1) explicitly in terms of
Fresnel propagations and action of thin lenses. This is done to avoid differential sampling
of the x and y variables present in the numerical implementation of Eq. (6.4).

Since only the measured intensities are available and the phases are unknown, in or-
der to check for the convergence of the algorithm, the correlationC(ñ; zj) between the
measured intensity I(x, y; zj), and the estimated intensity Iñ(x, y, zj), is evaluated at the
transverse planes P1, P2 and P3 for every iteration. The intensity correlation is defined
as [143, 155] :

C(ñ; zj) =
1

N1N2

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

I(x, y; zj)Iñ(x, y; zj)dxdy

∣∣∣∣ , (6.6)

where

N1 =

[∫ ∞
−∞

∫ ∞
−∞

I(x, y; zj)I(x, y; zj)dxdy

] 1
2

and (6.7)

N2 =

[∫ ∞
−∞

∫ ∞
−∞

Iñ(x, y; zj)Iñ(x, y; zj)dxdy

] 1
2

. (6.8)

The algorithm is said to have ‘converged’ when C(ñ; zj) ≈ 1 after ñ iterations. Similarly,
the OAM τ , outlined in Eq. 2.78, is evaluated at every iteration at transverse planes P1,
P2 and P3 and the estimated OAM is denoted as τ(ñ; zj). Consistency of the algorithm is
checked by comparing the estimated values of the OAM τ(ñ; zj) in planes P1 and P2, by
varying P3, for a given charge introduced by the SPP.

The intensities at the three planes were recorded using a CCD camera which has 1392×
1040 pixels with pixel size 6.45µm. The measured intensities were truncated to 512 ×
512 pixels, since the measured intensities were well captured in all the three planes in the
truncated region. Fifty intensity samples were taken at each transverse plane and averaged
to suppress point wise intensity fluctuation. A background zero frequency component was
subtracted from the measured intensities to suppress background noise and the intensity in
each of the three planes was normalized before being fed in to the algorithm. The length of
the grid was chosen to be 3.3024 mm with d = 10 cm and wavelength λ = 633 nm.

89



Table 6.1: Here we list the converged OAM values τ(500; zj) and intensity correlation
values after 500 iterations C(500; zj), corresponding to the input singular light field of
charge varying from −4 to 4, at planes P1, P2 and P3 for d′ = 19 and 20 cm.

Charge Transverse τ(500; zj) C(500; zj)

on SPP plane 19 20 19 20

P1 −3.90 −3.94 0.99 0.98

−4 P2 −3.90 −3.93 0.99 0.98

P3 0.85 0.78 0.99 0.98

P1 −2.90 −2.88 0.99 0.99

−3 P2 −2.90 −2.86 0.99 0.99

P3 0.26 0.20 0.99 0.98

P1 −1.98 −1.98 0.99 0.99

−2 P2 −1.99 −1.98 0.98 0.99

P3 −0.06 −0.03 0.98 0.98

P1 −0.97 −0.97 0.99 0.99

−1 P2 −0.96 −0.97 0.99 0.99

P3 −0.18 −0.20 0.99 0.99

P1 0.99 0.99 0.99 0.98

1 P2 0.99 0.99 0.99 0.99

P3 0.06 0.05 0.99 0.99

P1 1.98 1.98 0.98 0.98

2 P2 1.99 1.98 0.98 0.98

P3 −0.10 −0.05 0.99 0.99

P1 2.90 2.94 0.99 0.98

3 P2 2.93 2.95 0.99 0.98

P3 0.07 0.02 0.99 0.99

P1 3.92 3.93 0.98 0.99

4 P2 3.90 3.90 0.99 0.99

P3 −0.85 −0.92 0.97 0.97

Eight singular light fields with charge varying from −4 through 4 were studied and
for each such light field two variations with d′ = 19 and 20 cm were considered. Field
amplitudes with negative charges were obtained by reversing the orientation of the phase
plate. First and second column of Fig. 6.2 plot the intensities measured at transverse planes
P1 and P3 for d′ = 19 cm, respectively. Third and fourth column of Fig. 6.2 plot the
converged phases of the light field after 500 iterations at transverse plane P1 for d′ = 19

and 20 cm respectively, whereas fifth and sixth column of Fig. 6.2 plot the converged phases
at transverse plane P3 for d′ = 19 and 20 cm respectively. Rows one to six of Fig. 6.2
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correspond to input singular light fields of charge values ±1, ±2 and ±4 respectively. The
estimated OAM τ(ñ; zj) versus the iteration number ñ and the correlation C(ñ; zj) versus
the iteration number ñ is plotted in Fig. 6.3, for the examples considered in Fig. 6.2. The
rows of Fig. 6.2 are in correspondence with rows of Fig. 6.3. First and second column of
Fig. 6.3 plot the OAM τ at every iteration at transverse planes P1 and P3 respectively for
d′ = 19 cm, whereas third and fourth column of Fig. 6.3 plot correlationC(ñ; zj) at every
iteration at transverse planes P1 and P3 respectively for d′ = 19 cm. In all the considered
examples the values of the OAM τ(ñ; zj) and the intensity correlation values C(ñ; zj)

stagnated in less than 500 iterations, and the stagnated values of C(ñ; zj) were reasonably
close to 1 as seen in Fig. 6.3. The converged values of τ(ñ; zj) in planes P1 and P2 were also
found to be close to the charge value of the inserted SPP. Even so, fractional but consistent
values of τ(ñ; zj) were obtained in P3 for varying d′. The converged values of the OAM
τ(ñ; zj) and the correlation value C(ñ; zj) obtained at the 500th iteration for the studied
samples is summarized in Table 6.1. It may be noted that the OAM acquired by the light
field on insertion of the SPP is constant even if there is a slight misalignment between the in
coming laser light field and the SPP [185]. Even so, in the present experiment, the obtained
accuracy is only up to the second digit after the decimal in the estimated OAM τ(ñ; zj),
as seen in Table 6.1. This can be attributed to the fluctuation of the measured intensities.
Further, we have significantly lesser OAM τ(ñ; z3) in plane P3 as compared to planes P1 and
P2, and this is a consequence of the fact that the transformation corresponding to P̃, does
not conserve the OAM. Nevertheless, the fact it is non zero at plane P3 can be attributed
to the circular asymmetry of the input light field caused by the slight misalignment of the
incoming laser light field with the SPP.

6.4 Concluding remarks

To conclude, we have experimentally demonstrated the extraction of phases with disloca-
tions using a GS type algorithm from transverse plane intensity measurements on singular
light fields. We have also demonstrated the extraction of phases of field amplitudes at the
output, which possess fractional OAM. The work experimentally substantiates the method
outlined in Ref. [67]. Since the method does not impose any constraints on the mode ex-
pansion of the light field, it is generic in extracting the dislocated phases from intensity
measurements. Consequently, the mode expansion, the OAM, and the radial-angular en-
tanglement [68] of the light field, can be extracted from the estimated field amplitudes in a
straight forward manner, at both the input and output transverse planes.
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Chapter 7

Conclusion, possible applications, and fu-
ture scope

7.1 Conclusion

In this thesis we explored some aspects of entanglement in paraxial light fields using meth-
ods typically used in the classical domain. We have presented a method for detecting
polarization-spatial entanglement in coherent vectorial paraxial light fields by observing
fringe movement resulting from the rotation of a linear polarizer. This fringe movement
has been shown as a sufficient criterion for detection of polarization-spatial entanglement
in such light fields. Through experimental demonstration we have shown that close to 1 ebit
of polarization-spatial entanglement can be achieved using solely Gaussian spatial modes
with orthogonal polarizations, even when there is a significant overlap between the spatial
modes. Furthermore, we have showcased the tunability of polarization-spatial Gaussian
entanglement by varying the polarization of the input in a folded Mach-Zehnder interfer-
ometer setup.

We have studied polarization-spatial entanglement in partially coherent vector light
fields, which is equivalent to mixed state qubit-harmonic oscillator mode entanglement. We
introduced a generalized uncertainty principle that is suited for polarization spatial degrees
of freedom. Partial transpose, which was originally introduced in the quantum mechanical
context, was implemented through the obtained generalized uncertainty principle. It was
shown to be necessary and sufficient in detecting polarization- spatial entanglement for a
class of states which have their spatial part to be Gaussian. Additionally, we proposed an
experimental approach to realize such entangled states.

We have presented a method for detecting polarization-spatial entanglement in par-
tially coherent vector light fields using intensity measurements. The implementation of
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partial transpose is achieved by sequentially adding intensities obtained from measure-
ments at different polarizer orientations. We have established that the negativity of the
intensity thus obtained (after sequential addition), serves as a sufficient criterion for de-
tecting polarization-spatial entanglement. To demonstrate the effectiveness of our method,
we conducted an experimental verification of polarization-spatial entanglement detection,
using a Mach-Zehnder interferometer setup. By simulating partially coherent vector light
fields through the sequential generation of pure input polarization-spatial entangled states,
we observed violations of the criterion, indicating the presence of polarization-spatial en-
tanglement.

Our experimental study successfully demonstrated the extraction of phases with dislo-
cations from singular light fields by employing a GS type algorithm and utilizing trans-
verse plane intensity measurements. Additionally, we showcased the extraction of phases
associated with field amplitudes possessing fractional OAM. This experimental verification
provides substantial support to the methodology outlined in the Ref. [67]. One of the key
advantages of our method is its generality in extracting dislocated phases from intensity
measurements, as it does not impose any constraints on the mode expansion of the light
field. Consequently, the method allows for straightforward extraction of the mode expan-
sion, the OAM, and the radial-angular entanglement of the light field from the estimated
field amplitudes. This capability holds true for both the input and output transverse planes.

7.2 Possible applications and future scope

According to the Schmidt decomposition, the presence of orthogonal modes has tradition-
ally been considered necessary for achieving maximal entanglement. This requirement of-
ten necessitated complex experimental setups utilizing devices such as SLMs, dove prisms,
and digital micromirror devices. However, our research has demonstrated an alternative
approach. We have shown that two Gaussian light fields, with a small relative tilt and
substantial spatial overlap, along with orthogonal polarizations, can exhibit near-maximal
entanglement. This discovery has significant implications for various applications where
maximal entanglement is desired. Importantly, we were able to achieve this high degree of
entanglement without resorting to higher-order spatial modes or relying on complex exper-
imental setups. Our findings suggest that even with simple experimental setups and fun-
damental Gaussian beams, it is possible to achieve entangled states that closely approach
maximal entanglement. This opens up new possibilities for practical implementation and
simplifies the experimental requirements in areas where maximal entanglement is sought
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after.

We have studied polarization-spatial entanglement in partially coherent vector light
fields and have settled the issue of separability for a class of states that have their spa-
tial part to be Gaussian. Bound entanglement is not present in such states. However, the
broad range of possibilities offered by the polarization-spatial degrees of freedom suggests
that classical optical vector light fields can effectively simulate and exhibit exotic quantum
phenomena, including bound entanglement. This observation highlights the relevance of
our work, particularly in the current scientific interest surrounding bipartite entanglement,
not only in vector paraxial wave optics [6, 7, 27, 29, 30, 33, 34, 36–38, 45–47, 127–129] but
also in quantum optical systems [16–20, 120–126]. While our study has yielded definite
conclusions regarding bipartite entanglement for a specific class of states and their poten-
tial experimental generation, further work remains to be done. Specifically, it is necessary
to conduct experiments to generate the entanglement and verify it through the uncertainty
principle. These experimental aspects and validation of the generated entanglement need
to be explored.

We have introduced a method for detecting polarization-spatial entanglement in par-
tially coherent vector light fields by utilizing intensity measurements. Although the ex-
amples we considered were limited in scope, the method itself is applicable to arbitrary
partially coherent polarization-spatial states for entanglement detection. Furthermore, our
approach allows for the effective simulation of 2 × N dimensional ‘mixed’ entangled
states, similar to those studied in the quantum mechanical context [16–20]. These sim-
ulations, achieved using partially coherent polarization-spatial entangled light fields, lack
non-locality. Nonetheless, our method remains capable of detecting entanglement in such
scenarios.

Through our experimental work, we have provided a demonstration of successfully ex-
tracting phases with dislocations from singular light fields. This extraction was achieved
using a GS type algorithm that utilizes transverse plane intensity measurements. Our exper-
imental results validate the effectiveness of this algorithm in accurately capturing the phase
information associated with dislocations present in the light fields. The proposed method
is highly versatile as it does not impose any constraints on the mode expansion of the light
field. This generic approach allows for the straightforward extraction of various properties,
including the mode expansion, the OAM, and the radial-angular entanglement [68], from
the estimated field amplitudes. This extraction can be performed with ease at both the input
and output transverse planes, enabling a comprehensive understanding of the light field’s
characteristics. While the evaluation of OAM of the light field (from the estimated field
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amplitude) is already presented in Chapter 6, detection and evaluation of other properties
such as radial-angular entanglement and mode expansion of the light field needs to be ex-
plored. Also, other first-order optical systems known to not conserve OAM of the incoming
light field could in principle be used to retrieve phases with dislocations. Such an attempt
was done using a first-order optical system consisting of only two cylindrical lenses, and
we were not only able to estimate phases with dislocations, we were also able to generate
fractional (tunable) OAM [194].
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