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Abstract

The origin of turbulence in fluid flow fields has been a significant concern for many years.
Flow transition under steady inflow conditions over various geometries has been the subject
of extensive experimental, theoretical, and numerical studies. Transitional flows with an
unsteady inflow play a vital role in a broad range of applications, including biological fluid
transport to space applications, which still went unexplored due to experimental and com-
putational limitations. In such cases, the thickness of the boundary layer formed over the
solid surface varies in both space and time, causing a high level of complexity in the path of
vortical structures formed from the shear/boundary layer. Also, time and space-dependent
shear stress exerted by the fluid, separation, and associated instability phenomena are to be
better understood. Recent advances in numerical methods have enabled us to simulate fluid
flow under transitional conditions.

This study uses direct numerical simulations (DNS) to investigate the stability of vor-
tical flow structures that form in the transitional boundary layer under an adverse pressure
gradient over two different geometries. In the first case, a strong spatial pressure gradient
is created using a bell-shaped wall-attached bluff body, while in the second case, a weak
spatial pressure gradient is induced using a slowly diverging channel. A transient inflow
condition is enforced at the inlet through analytical velocity profiles of a trapezoidal pulse,
consisting of the acceleration phase from rest followed by the constant velocity phase and
deceleration phase to rest, similar to existing experimental studies [1, 2]. By selecting suit-
able inflow parameters, we isolate the individual effects of acceleration and deceleration
on the vortex evolution. Analytical inflow profiles for such a trapezoidal pulse have been
developed using the Laplace transform for a given flow rate [3].

An open-source DNS code (INCOMPACT3D [4]) is used for the flow simulation and
is a highly parallelized code that emerged as an efficient way to tackle complex flow sim-
ulations. It combines higher-order spatial discretization with spectral methods to simulate
incompressible flows over complex bodies enforced through immersed boundary methods
(IBM). The use of IBM allows the inclusion of complex geometries in Cartesian mesh with-
out any body-fitting considerations. Both spanwise and streamwise vorticity visualizations
depict the vortex growth and disintegration over both top and bottom channel walls. In ad-
dition, the spatial and temporal growth of shear layers and three-dimensional instabilities
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are investigated in detail for each case using both numerical and theoretical methods. The
underlying coherent flow features of the transitional flows and associated time dynamics
are extracted using the modal reduction method like dynamic mode decomposition (DMD)
and further corroborated with theoretical/numerical growth rate analysis.

In a bluff body wake, the flow development starts with the formation of a primary vor-
tex, followed by a two-dimensional circular array of spanwise vortex tubes by inflectional
shear-layer instability. At sufficiently high Reynolds numbers, the shear layer vortices orig-
inated from two-dimensional fluctuations deformed by three-dimensional instabilities, giv-
ing fragmented streamwise vorticity. In addition, long-wavelength, ‘tongue-like structures’
and short-wavelength, ‘rib-like structures’ are evident near the top wall and separation bub-
ble, respectively. The three-dimensional transition phase is further analyzed by the vorticity
generation mechanism for streamwise vorticity. Using the DMD algorithm, distinct flow
features, such as mode shape, frequency, and growth rate, are identified and compared with
significant maxima in the frequency spectrum of vertical velocity and momentum thickness
variations.

In a slowly diverging channel with a relatively low spatial pressure gradient combined
with a time-varying trapezoidal-shaped inflow boundary condition, the flow transition be-
gins with two-dimensional primary instability characterized by the formation of inflectional
velocity profiles, followed by local separation and the emergence of an array of shear layer
vortices. We systematically divide simulation cases into three categories based on the on-
set of secondary instability and the generation of streamwise vorticity. At low and medium
Reynolds numbers (type I), the spanwise vortex rolls formed by inflectional instability
remain two-dimensional and diffuse at the channel center without exhibiting further insta-
bilities. At high Reynolds numbers and deceleration rates (type II), the rolled shear layer
exhibits secondary instability during the zero mean inflow phase, followed by local incip-
ient turbulent structure formation. The streamwise vorticity that develops over the shear
layer structures causes oscillations with a spanwise wavelength similar to those associated
with the elliptic instability in a counter-rotating vortex pair. Using the Lamb-Oseen ap-
proximation of vortices in conjunction with the dynamic mode decomposition algorithm
of the three-dimensional flow field, we successfully identified the unstable nature of the
elliptical instability evolving over the secondary vortices. The third category (type III) is
characterized by periodic unsteady separation, secondary instability, and merging of shear
layer vortices, which occurs when Reynolds numbers are high and deceleration rates are
low.

In both geometries, flow separation, and vortex formation are caused by highly inflec-
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tional streamwise velocity profiles, which are induced in the acceleration phase of a bluff
body and during the constant velocity phase of a diverging channel. Shear layer instabili-
ties and sequential roll-ups in a bluff body wake develop from an unstable velocity shear
layer induced by early separation and high blockage ratios. Unsteady separation and vortex
shedding arise in a diverging channel, offering a low spatial gradient combined with low
deceleration rates. The three-dimensional transition is evident only at high inflow veloci-
ties for both geometries, whereas low inflow velocities inhibit spanwise oscillation growth,
and flow features diffuse during zero-mean inflow. The nature of the vortical structures that
develop in the wake of both geometries significantly impacts the onset and development
of three-dimensional transition. In the bluff-body wake, the secondary instability initiates
with the merging of the co-rotating body vortex structures ejected from the bottom bound-
ary layer due to the shear layer vortex interaction. Such a merging mechanism induces
small-wavelength rib-like braid instabilities similar to mode B instabilities in cylinder wake
studies. Simultaneously, the counter-rotating vortex pair in the top wall indicates a three-
dimensional transition with a relatively higher spatial wavelength. In a diverging channel,
the primary vortex that develops from the initial inflectional profile further induces bound-
ary layer vortices, forming a counter-rotating vortex pair susceptible to elliptic instability
due to mutual induction and can later lead to three-dimensional disintegration.
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Chapter 1

Introduction

The onset of turbulence of the wake vortices associated with separation from the transitional
boundary layer is a long-standing fluid dynamics problem that has intrigued researchers.
Periodic coherent structures formed from an unsteady separation under transient inlet con-
ditions can influence the performance of many engineering systems. A few practical situ-

(a) (b)

(c) (d)

Figure 1.1: (a) Vortex shedding process inside a solid rocket motor (SRM) with rigid
inhibitor contoured by instantaneous Mach number (top), vorticity field (middle), and pres-
sure field (bottom) from the simulations of Yang et al. [5], (b) λ2 structures identified
through simulation of boundary layer transition over an airfoil [6], (c) starting flow vortex
formation over a wedge experimentally visualized by Pullin and Perry [7], and (d) experi-
mental images of shear layer shedding over an accelerated plate by Pierce [8].

ations showing flow separation and associated instabilities originating in the wake of the
body are shown in figure 1.1. Other examples include internal flow in hydraulic devices and
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physiological flows (blood flow in the aorta), the sudden closure of valves in pipe flows,
turbo-machinery control, vortex shedding from ship funnels, and wind flow over hills. For
example, the vortex-shedding process from the inhibitor in a solid rocket motor (SRM) is
an essential concern for design engineers (figure 1.1 (a)). Such vortices generated from the
inhibitors can lead to thrust oscillations in launch vehicles and damage the payload.

Unsteady flow separation and associated flow transitions also significantly affect airfoil
and turbine performance, constituting a significant design concern (figure 1.1 (b)). For in-
stance, the performance of turbo-machines, including pumps, turbines, and compressors, is
adversely affected by the flow separation occurring from adverse pressure gradient (APG)
conditions [9, 10]. A recent review by Sandberg and Michelassi [9] summarizes the conse-
quences of flow separation and various modeling approaches in axial turbo-machines. Dur-
ing such complex real-world applications involving APG conditions, the boundary layer
thickness can vary spatially and temporally, bringing about a set of inflectional velocity
profiles at random times and points along the surface, making the investigation difficult.

Several computational, theoretical, and experimental studies have explored the flow
dynamics of a bluff body maintained in a constant velocity field. Extensive reviews eluci-
dating wake vortex dynamics of bluff bodies held in a uniform flow field utilizing diverse
standpoints have been reported in Roshko [11], Williamson [12], and Thompson et al. [13].
Conversely, the flow dynamics of the bluff body in oscillatory (zero mean) and pulsating
flows (non-zero mean) have received relatively lesser attention. Unlike a steady/oscillatory
inflow velocity, a transient inflow condition can induce a multitude of flow formations
like separation bubbles, transient vortex growth (figure 1.1 (c)), shear layer shedding (fig-
ure 1.1 (d)), and further transit into a highly complex three-dimensional flow.

A closer look into the three-dimensional oscillations evolving inside the vortex struc-
tures exhibits different interactions, like straining or stretching, between neighboring vor-
tices which leads to instability development and then transition. Investigations on the in-
stability development in counter-rotating vortex pairs in quiescent fluid have shown that
different instability patterns can occur, with significant variations in the spanwise wave-
length [14, 15, 16]. Similar studies of the merging of co-rotating vortical flow features that
develop from a velocity shear layer reveal an unstable braid region between consequent
vortex structures susceptible to spanwise oscillation growth[17, 18, 19]. Subsequently, the
investigations comparing the nature and transitional mechanism in wake vortices displayed
close similarities between three-dimensional instabilities in the cylinder wake with vortical
instability mechanisms [20, 21].

Early investigations of flow transition were restricted to academic geometries because
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of the limited availability of experimental and computational resources. Still, a large num-
ber of researchers relied on direct numerical simulations to identify the physical mechanism
involved in different wake transition problems [22, 23, 24]. The simulations, however, were
limited by simple shapes due to the complexity of the domains with body-fitted grids, mak-
ing numerical discretization time-consuming and computationally expensive. An approach
to modeling fluid-structure interactions in biological flows through a set of discrete points
that are considered "immersed" within the fluid, called the immersed boundary method
(IBM), was outlined by Peskin [25]. A recent consolidated review by Verzicco [26] pro-
vides a detailed explanation of the background for the development of IBM, its advantages,
and limitations over conventional methods.

A transient inflow can induce or alter the flow characteristics, even for flat plates or
streamlined bodies [27]. It is often the case that the temporal pressure gradient distribu-
tion varies with the nature of the pulse, causing inflectional profiles in the boundary layer,
with or without reverse flow. The effects of spatial and temporal pressure gradient con-
ditions on vortex formation and associated instabilities have been extensively examined
experimentally under trapezoidal mean flow conditions coupled with various geometrical
configurations [1, 2, 3, 28]. Trapezoidal flows, in contrast to pulsating ones, are appropri-
ate for investigating the effects of constant acceleration and deceleration on flow dynamics.
Das et al. [1] analyzed flow structures originating from bluff bodies and critical time scales
for similar mean flow conditions. Recently, Ramalingam and Das [28] performed a detailed
visualization study on the flow structures in a water channel flow using direct visualization
and particle image velocimetry.

Stability analysis of transitional flow fields involving spatiotemporal boundary layer
variations is more complex than conventional problems consisting only of spatial or tem-
poral variations. In order to gain further insight into the dynamics of coherent flow features,
the data assimilation algorithm makes it practical to determine the stability of a flow field
directly from the data. Dynamic mode decomposition (DMD) is a data-driven method to
identify the spatial and temporal coherent flow features underlying a fluid flow field. DMD
algorithm was initially proposed by Schmid [29] to identify coherent flow features in flow
field data from both numerical and experimental methods. In recent years, DMD has be-
come a popular dimensionality reduction technique due to its ability to factorize complex
data sets efficiently [30, 31, 32]. Decomposing a flow field into its elemental flow features
can help us to predict how the flow will develop in the future and how to control it. Dy-
namic mode decomposition is a simple and computationally flexible method that is ideal for
this task, especially in transitional data sets that are difficult to analyze with conventional
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methods.

The current investigation of the transition of the wake vortices due to a spatiotemporal
boundary layer variation is pivoted on two geometries. Geometries are carefully chosen to
represent adverse pressure gradient conditions developed in real-life engineering designs.
The first one represents the bodies offering a strong spatial gradient (bluff body) component
with a large velocity shear region with a short separation bubble. The second one offers a
low spatial pressure gradient (diverging channel), thus leading to a smaller velocity shear
region and a long separation bubble.

1.1 Overview of literature

Early studies on the transition dynamics of the vortex flow features were carried out using
isolated vortices [33] or using academic geometries like cylinder [20], or other axisymmet-
ric bodies [34]. Visualizations of different three-dimensional flows identify the common
traits in instability growth and further disintegration. Additionally, numerical simulations
are frequently employed to investigate the effects of periodic external oscillations on sepa-
ration flow dynamics [35]. In a stepped channel, Tutty and Pedley [36] analyzed the forma-
tion and propagation of ‘vortex waves’ generated during an oscillatory flow’s forward and
backward phase using two-dimensional simulations. Alternatively, Rosenfeld [37] exam-
ined the influence of the Reynolds number and Strouhal number on vortex formation and
propagation in a constricted channel. Wissink and Rodi [38] investigated the effect of os-
cillatory flow in transitional separated flow over a smooth converging and diverging section
by employing three-dimensional numerical simulations. Wissink et al. [39] further inves-
tigated the heat transfer aspects of a laminar separation bubble affected by the oscillating
external flow.

Similarly, the stability of flows with non-zero mean velocity has been investigated in
several studies. Through a quasi-steady approach, Hall and Parker [40] investigated the
growth of the disturbance velocity field associated with the inflectional velocity profiles in
a decaying laminar flow. Based on a linear instability analysis of the inflectional velocity
profiles generated in an oscillating pipe flow, a relationship between the flow stability and
inflection point was posited by Das and Arakeri [3]. The wave number associated with the
highest growth rate for such profiles is nearly constant. Additionally, a linear and weakly
nonlinear analysis of a laminar flow subjected to rapid acceleration/deceleration by Ghi-
daoui and Kolyshkin [41] reinterprets the stability region predicted by Das and Arakeri [3].
Furthermore, it was discovered that the Ginzburg-Landau equation governs the amplitude
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of the most unstable mode. Using optimal growth analysis of normal modes, Nayak and
Das [42] provides accurate growth rate predictions for unsteady channel flows. Recently,
Kannaiyan et al. [43] investigated the stability characteristics of laminar pipe flow with a
step-like flow rate increment by using a linear modal stability framework combined with a
quasi-steady assumption.

1.1.1 Bluff body wake

Some of the early works on the cylinder wake by Stokes [44] and von Kármán initiated the
quest of researchers to model the bluff body wakes. Despite the boundaries of experimental
and numerical resources, extensive research in the cylinder wake uncovers the vortex shed-
ding and shear layer instability mechanisms [45, 46, 47, 48, 49]. The effect of Reynolds
and Strouhal number on the wave formation and propagation of the primary and secondary
vortices on constricted channels with time-dependent inlet flow conditions (sinusoidal vari-
ation) was studied by Tutty and Pedley [50], and Rosenfeld[51]. A comparison of boundary
layer transition and coherent structures between steady and unsteady flows was performed
by Costamagna et al. [52]. They posited that the elementary process causing the turbulence
in oscillatory flows is analogous to the steady flow cases.

Multiple researchers have analyzed the secondary instability and the transition of shear
layer vortices resulting from separated flows [53, 54, 55, 56]. Shear layer vortices are
susceptible to secondary instability in the elliptic and hyperbolic regions (core and braid
regions, respectively), resulting in periodic streamwise vortex formation. For example,
Mode A and Mode B instabilities in the transitional cylinder wake correspond to elliptic and
hyperbolic instability in the wake vortices, respectively [20]. Caulfield and Kerswell [54]
mathematically described the braid region instability arising over the hyperbolic stagnation
points in mixing layer flows. Jones et al. [53] has confirmed the destabilization of the braid
region between vortex structures emerging from a separated flow over the surface of an
airfoil and relates it to the mode-B instability of hyperbolic streamlines in two dimensions;
the same is often true for bluff-body wakes.

Many aspects of flow transition in oscillatory and pulsating flows are delineated through
the analytical solution, exponent, and transient instability analyses. Through a laminar sta-
bility analysis of time-dependent flows combined with a momentary stability assumption,
Shen [57] investigated the destabilizing nature of decelerating flows. Detailed instability
analysis of inflectional velocity profiles formed during the decelerating phase of pulsat-
ing pipe flow was conducted by Das and Arakeri [3]. A good quantitative agreement with
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Figure 1.2: Schematic depiction of the main flow pattern at three different Reynolds num-
bers as in the study of Das et al. [1] Experimental figures are reproduced with permission
from Das et al., [1] Journal of Fluids and Structures 40 (2013). Copyright 2013 Elsevier.

experiment and linear instability analyses was obtained for decelerating flows containing
inflection points [3]. They posited that flow breakdown could be due to inflectional inviscid
instability. Similarly, Zhao et al. [58] analyzed the growth of the perturbation in different
transient pipe flow conditions by considering it as a linearized initial value problem. Xu
et al. [59] recently performed a non-modal analysis of unsteady internal flows to investigate
their stability characteristics.

Das et al.[1] conducted experiments in a closed-loop unsteady water tunnel to study
the initiation of separation from a bluff body for trapezoidal-type mean inflow variation
with flow time in a channel flow. The flow configuration and salient flow features of Das
et al.[1] experiments are depicted in figure 1.2. Flow characteristics around a bluff body
vary with respect to the Reynolds number, which is calculated using the diameter of the
top circular geometry

(
Reb =

Upb

ν

)
. In the experiments of Das et al.[1] at low Reynolds

number case (Rel ≈ 100), the flow separated in the leeward side of the body, and the size
of the separation bubble increased with flow time (figure 1.2). At a moderate Reynolds
number (Rem ≈ 700), the shear layer becomes unstable, leading to the formation of shear
layer vortices. At a high Reynolds number (Reh ≈ 2300), the shear layer breaks down
quickly. A fascinating circular array of shear layer vortices was observed on the circum-
ference of the primary large-scale vortex. Many features of the shear layer breakdown
mechanism were reminiscent of the two-dimensional Bloor-Gerrard instability/secondary
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Figure 1.3: Schematic depiction of the main flow pattern at three different Reynolds num-
bers as in the study of Das et al. The experimental figure is reproduced with permission
from Das et al., [2] European Journal of Mechanics - B/Fluids 55 (2013). Copyright 2016
Elsevier Masson. [2]

vortices[45, 60] observed in steady inflow cases.

1.1.2 Diverging channel flow

Existing studies are focused on the effect of the APG variation induced by spatial compo-
nents on the separation dynamics and flow stability under constant/oscillating inflow con-
ditions. Likewise, the earlier works describe flow stability in such flow conditions where
the adverse pressure gradient arises from the placement of a horizontal cylinder[45, 61] or
by a combination of spatial contours [38] or integrating blowing/suction [62, 63] onto the
wall. In such cases, the inflectional velocity profiles developed due to APG conditions can
lead to separation, instability, or both. Flow development in real-life scenarios involves an
unsteady boundary layer due to spatial as well as temporal variations.

The stability and transition mechanisms in the Adverse Pressure Gradient (APG) bound-
ary layer have been studied extensively [64, 65, 66], given their frequent appearance in
various engineering applications. Historically, separation bubble formation and growth
were isolatedly investigated employing blowing/suction [62, 63], spatially varying wall
contours [67], and attaching distinctive shapes to the wall [38, 68]. Further, the receptiv-
ity analysis is extensively used to delineate the mechanism that amplifies or decays the
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velocity field disturbances within the boundary layer of laminar and marginally separated
flows ([69, 70, 71]). These studies demonstrated the Lambda vortex-induced breakdown
of a separated shear layer occurs in short laminar bubbles and their absolute instability
nature. Despite the absence of disturbances upstream, the disintegration produced by sep-
aration bubbles was characterized by the evolution of low-frequency oscillations with a
high amplitude within itself [72]. A time-varying external flow or free-stream turbulence
may enhance or reduce an adverse pressure gradient and alter the separation location over
time, further complicating the problem. Hence the effect of unsteady inflow conditions on
non-uniform channels has been the subject of many studies [1, 2, 36, 37, 38, 39].

Das et al. [2] conducted a fascinating experimental investigation in a diverging water
channel to investigate the transition mechanism in APG conditions. A schematic illustra-
tion of the vortex flow structures observed in these experiments is shown in figure 1.3.
In response to two-dimensional inflectional instabilities, an apparent roll-up of the shear
layer is observed in both the lower and upper walls. Clear dye roll formation indicates
two-dimensional vortex formation for low inflow velocities. One crucial experimental ob-
servation in their study was the highly localized transition to turbulence of shear layer
vortices generated by primary instability. Further, in some cases, the formation of thick
vortex clouds spans all over the diverging section pointing to an advective nature of vor-
tices. Though a three-dimensional disintegration of vortices was identified, the spatial and
temporal nature of instability still remains a mystery due to experimental constraints.

A study by Abdalla and Yang [73] demonstrated that the onset of turbulence could be at-
tributed to a helical pairing of spanwise vortex rolls originating from Kelvin-Helmholtz in-
stability. For the vortices shed from laminar separation bubbles, Marxen et al. [74] posited
multiple instability mechanisms that lead to turbulent transitions. The first mechanism,
identified as elliptical instability, distorts the vortex structure with a spanwise wavelength
in the order of the vortex dimension. In contrast, the other instability develops in the braid
region with a higher spanwise wave number.

1.2 Motivation and Objectives

An extensive literature review revealed that there is a dearth of literature examining the
flow instabilities that arise following a transitional boundary layer. In the current investiga-
tion, the spatial component is taken into consideration by choosing two different bodies: a
wall-attached bluff body with a strong spatial gradient and a slowly diverging channel with
a weak spatial gradient component. The challenge of efficiently representing transitional
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flows in complex geometry is addressed by using the immersed boundary method in con-
junction with higher-order compact schemes. The computationally economical immersed
boundary method will allow the imposing of complex geometries using a Cartesian grid.
The free-stream velocity varies temporally, similar to the unsteady water tunnel experimen-
tal studies [1, 2]. However, Das et al. [1] did not explore three-dimensional wake dynamics
or the effect of acceleration and deceleration Reynolds numbers on flow instability.

Unlike sinusoidal variation of the mean flow, trapezoidal piston motion allows the anal-
ysis of flow transitions in constant acceleration/deceleration flow conditions. Here, the
boundary layer is contingent on an adverse pressure gradient because of both the temporal
and spatial components of the pressure gradient, which can obscure the flow dynamics and
escalate the level of complexity. By studying velocity profiles, we examine the primary
mechanism of instability, while streamwise vorticity analyses are used to study the sec-
ondary instability mechanism. The stability of coherent flow structures and their temporal
characteristics are further investigated using DMD analysis, a well-established reduced-
order modeling approach. In addition, the vortex’s stability analysis is conducted using
theoretical growth rate estimates using the vortex parameters identified from a compara-
ble Lamb-Oseen approximation. Through the use of modal decomposition strategies and
theoretical modeling, the current research aims to delineate three-dimensional instability
mechanisms of wake vortices associated with a transitional boundary layer.

1.3 Thesis Outline

Chapters of the current thesis are arranged into seven chapters. This thesis focuses on
identifying the vortex breakdown mechanisms in an unsteady boundary layer subjected to
adverse pressure gradient conditions. The details of the computational solver, along with
domain and boundary conditions, are described in Chapter 2. Additionally, this chapter
describes the methodologies adopted in the current investigation to characterize different
instability mechanisms. A discussion of the initial flow features is identified in the wake
of a wall-attached bluff body, and the effects of the temporal parameters are presented in
Chapter 3. Chapter 4 discusses in detail the three-dimensional flow features and coherent
flow features identified through DMD analysis. Chapter 5 discusses flow evolution in the
diverging channel, including the classification of flow cases based on secondary instabil-
ity initiation time. The various modes of DMD and the theoretical stability analysis of
the vortex flow features formed over a diverging channel are presented in chapter 6. As
a final chapter, Chapter 7 concludes the current investigation with a detailed discussion
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and comparison of the instability mechanisms and their salient features evidenced for both
geometries.
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Chapter 2

Computational Methodology and Insta-
bility Analysis

2.1 Introduction

In the present work, direct numerical simulations are employed to simulate the transitional
flow past a geometry under an unsteady inflow condition. Such transitional flows pose a
challenge for researchers since they require higher-order methods combined with extensive
computational resources to simulate a complex body embedded within the computational
domain. With the advancement of higher-order numerical schemes for simulating flow
development and the growth in computing power, simulations of transient flow problems
have become feasible. The higher-order compact schemes and the IBM method equip
INCOMPACT3D to efficiently associate complex geometries in Cartesian mesh for high-
fidelity DNS simulations [4]. Numerical simulations in the current study are carried out
in a high-performance cluster computing system using an open-source INCOMPACT3D,
which incorporates domain decomposition techniques for parallel processing.

High-dimensional data obtained through direct numerical simulations are further ana-
lyzed to identify the flow evolution and the underlying instability mechanisms. Dynamic
mode decomposition, similar to proper orthogonal decomposition (POD), is a data-driven
method to identify the underlying spatial and temporal coherent flow feature characteris-
tics in a fluid flow field. The algorithm initially proposed by Schmid [29] identifies the
modes equivalent to global stability analysis. For non-linear flows, the technique identifies
the linearly tangent flow features that will dominate during the flow sequence. DMD can
yield spatial modes based on their frequency values, making it a convenient technique for
investigating systems involving multiple frequency scales, as in the present study.

A comprehensive discussion on the spatial discretization scheme and modified pressure
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Poisson solver, along with a detailed description of the solution procedure to obtain the
temporal variation in the inflow velocity profile, is provided in section 2.2. Details on the
governing equations and solution procedures, along with velocity profiles imposed at the
inlet during different phases, can be found in section 2.3. In addition, this chapter also
includes a detailed explanation of Rayleigh’s instability criteria for identifying the primary
instability mechanism and spectra analysis to isolate the underlying temporal characteris-
tics of the fluctuations in the velocity field in section 2.4. Further, an in-depth explanation
of the mathematical approach for obtaining the DMD modes and their associated time dy-
namics is provided in the section 2.5 of the current chapter.

2.2 Computational methodology

The time-dependent three-dimensional flow field is obtained by solving the following gov-
erning equations. The continuity and momentum equations for a three-dimensional, in-
compressible, and viscous flow are given by,

∇ ·V = 0,

∂V

∂t
= −∇p− 1

2
[∇(V ⊗V) + (V · ∇)V] + ν∇2V + f.

(2.1)

In the above equation, V is the velocity vector with components u, v, and w in stream-
wise, wall-normal, and spanwise directions. Here, t, p, ν correspond to flow time, pres-
sure, and kinematic viscosity. Using a higher-order finite difference scheme may induce
aliasing errors to develop and perturb the solution field. Dealiasing can reduce such con-
ditions when using the spectral methods for the divergence and convective terms, while
the skew-symmetric and rotational forms are energy-conserving even without dealiasing
[75]. A forcing field is incorporated in the governing equation (equations 2.1) to employ
the immersed boundary method, and the details can be found in the following section.

2.2.1 Time advancement

Time advancement of the discretized governing equation is carried out using the following
formulation:

V∗ −Vk

∆t
= akF

k + bkF
k−1 + ckF

k−2 − dk∇p̃k + dk f̃
k+1,

V∗∗ −V∗

∆t
= dk∇p̃k,
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∇ · ∇p̃k+1 =
∇[(1− ϵ)V∗∗]

dk∆t
,

Vk+1 −V∗∗

∆t
= −dk∇p̃k+1, (2.2)

where Fk = −1
2
[∇(Vk ⊗Vk) + (Vk.∇)Vk] + ν∇2Vk, and forcing term dkf̃

k+1 = ϵ
(
−

akF
k − bkF

k−1 − ckF
k−2 + dk∇p̃k +

Vk+1
0 −Vk

∆t

)
. For third order Adam-Bashforth scheme

the coefficients ak, bk, ck, and dk are respectively 23
12

, −16
12

, 5
12

, 1. The immersed boundary
method is employed through the ϵ value; the ϵ takes the value 1 inside the body region,
while it is 0 elsewhere.

The simulation begins with the user-defined initial condition or by reading the previ-
ously saved restart file. This allows the user to start the simulation at any desired point
and see the results of the simulation progress over time. Further, any user-defined initial
conditions can be used to set up the parameters of the simulation so that they accurately
reflect the experimental conditions. The fractional step method advances in time as given
by equations 2.2. As per the first equation, an intermediate velocity field (V∗) is obtained
from the current time step values. Simulation moves forward by updating the intermediate
velocity by applying the boundary conditions (V∗∗), and then the pressure field for the next
time step is evaluated by solving the Poisson equation relating the divergence of the inter-
mediate velocity field to the divergence of the pressure gradient using spectral methods.
Finally, the velocity field for the next time step is calculated using the updated pressure
gradient and intermediate velocity field.

2.2.1.1 Time integration schemes

The current solver configuration supports different time integration schemes, including
Runge-Kutta (RK) and Adam-Bashforth (AB) schemes. In the Runge-Kutta method, each
time step value is computed using sub-steps instead of previous time step values. The
major drawback is the increased computational cost of calculating the sub-step values. In
contrast, Adam-Bashforth schemes rely on the previous time step values to calculate the
current time step values, an extension of Euler schemes. Comparing the simulation results
with both methods indicates that for the current problem, the Adam-Bashforth method
produces results with identical accuracy in a shorter computational period than the Runge-
Kutta method. Our current investigation uses third-order Adam-Bashforth as the time in-
tegration scheme. In the third-order Adam-Bashforth scheme, the next time step value is
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calculated as:
Uk+1 = Uk +

∆t

12
×
(
23Uk − 16Uk−1 + 5Uk−2

)
. (2.3)

2.2.2 Spatial discretization

The spatial discretization of the governing equation is carried out using compact scheme
formulation proposed by Lele [76]. The approximation of the first derivative (U ′) of a
function U(x) can be expressed in the form

αU ′
i−1 + U ′

i + αU ′
i+1 = a

Ui+1 − Ui−1

2∆x
+ b

Ui+2 − Ui−2

4∆x
, (2.4)

where α = 1/3, a = 14/9, b = 1/9 achieving a “quasi-spectral behaviour". For second-
order differentiation, the approximation is obtained as follows:

αU ′′
i−1+U ′′

i +αU ′′
i+1 = a

Ui+1 − 2Ui + Ui−1

∆x2
+b

Ui+2 − 2Ui + Ui−2

4∆x2
+c

Ui+3 − 2Ui + Ui−3

9∆x2
.

(2.5)
The scheme attains sixth-order accuracy with controlled aliasing errors by choosing α =

0.47959871686180711, a = 0.42090288706093404, b = 1 : 7020738409366740, c =

−0.16377929427399390. Free slip conditions are enforced by the use of ghost cells (U0,
U−1, Unx+1, Unx+2) by substitution of their counterparts (U1, U2, Unx−1, Unx−2). To enforce
the no-slip or Dirichlet boundary condition, third-order accurate single-sided formulations
are used for the boundary cells, while fourth-order accurate Padé schemes are used for their
adjacent nodes. The three-point implicit formulation of discretized convective and viscous
terms enables us to solve using the inverse tridiagonal matrix algorithm (TDMA).

2.2.3 Pressure computation

Unlike the classical fractional method in which the incompressibility condition is verified
at the end of each sub-time step through solving the Poisson equation, the implementation
of Immerse Boundary Method (IBM) requires a direct forcing method leading to a modified
pressure Poisson equation as given in equation 2.2 which will result in a conventional
Poisson equation when ϵ = 0. While the internal velocity inside the body is defined through
the placement of a mass source/sink inside the body region, and therefore the divergence
condition modifies into:

∇ ·Vk+1 = ∇ · (ϵVk+1
0 ). (2.6)
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Figure 2.1: Inflow boundary condition. (a) temporal variation of mean velocity; (b) inlet
velocity profiles (u∗ = u/Up) at four different flow times.

Such an artificial flow maintains the solution regularity when spatial discretization involves
high-order schemes.

The solution of the pressure Poisson equation involves high computation cost due to the
inversion of the Poisson equation combined with high-order finite difference schemes. The
current solution algorithm depends on the Fourier space for the equivalent operations. A
staggered pressure grid is used for the pressure treatment to avoid spurious pressure oscil-
lations [77]. 2Decomp&FFT [78], a domain decomposition library, performs Fast Fourier
Transforms involved in spectral techniques. The library also contains a domain decom-
position algorithm for efficient scaling and distribution of memory in high-performance
computing systems.

2.3 Inflow generation

The current study involves temporally varying mean inflow, akin to the piston motion in
the novel experiments of Das et al. [1]. Figure 2.1 shows the trapezoidal temporal inflow
variation used in the present study. The single pulse configuration (figure 2.1 (a)) has
four phases, as expressed in equation 2.7. In the initial phase of the trapezoidal pulse
(0 < t < t0), the mean flow undergoes a constant acceleration, followed by a constant-
velocity phase (t0 < t < t1), and a constant-deceleration phase (t1 < t < t2). The mean
velocity is zero for t > t2. Hence the effect of acceleration and deceleration can be studied
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separately in phases one and three, respectively, through the variation in parameters t0, t1,
and t2.

up(t) = Up
t

t0
for 0 ≤ t ≤ t0, (2.7)

= Up for t0 ≤ t ≤ t1,

= Up
(t2 − t)

(t2 − t1)
for t1 ≤ t ≤ t2,

= 0 for t > t2.

Since the velocity profiles will be fully developed at the body location, providing ana-
lytical solutions helps reduce computational costs. Also, the most straightforward way of
giving the mean flow at the inlet of the computational domain and calculating the velocity
profiles was computationally demanding. The general analytical solution of velocity pro-
files for trapezoidal mean flow variation in two-dimensional channel flow can be expressed
as an infinite series [27]. To reduce the size of the computational domain and associated
computational resources, the time-dependent boundary condition from the analytical solu-
tion given by Das and Arakeri [27] is imposed at the inlet of the computational domain
(equation 2.8). Figure 2.1 (b) shows the velocity profile given at the inlet corresponding to
each temporal point (P1-P4) highlighted in figure 2.1 (a). In addition, the non-dimensional
time based on the pulse period (t2) is also indicated in figure 2.1 (b). The usage of the
analytical solution has been found computationally robust.

Analytical velocity solutions are obtained through the technique proposed by Das and
Arakeri [3]. The governing partial differential equations with variable u(x, t) are converted
into ordinary differential equations with the Laplace transforms (ũ(x, s)). The ordinary
differential equation is solved for ũ(x, s), and the function is inverted to yield u(x, t) using
the Bromwich integral formula. Details of the derivations of analytical solutions and pro-
cedures are provided in the appendix (A). The velocity profiles obtained analytically during
different phases are shown in figure 2.1 (b).

For single pulse cases, the analytical solutions are:

for 0 ≤ t ≤ t0 (2.8)

u

Up

=
1

t0

(
A1t−

KA2

40

)
− 2K

t0

∞∑
nh=1

(
e

(
−v2nht

K

))
×Ψ,
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for t0 ≤ t ≤ t1

u

Up

= A1 −
2K

t0

∞∑
nh=1

(
e

(
−v2nht

K

)
− e

(
−v2nh(t−t0)

K

))
×Ψ,

for t1 ≤ t ≤ t2
u

Up

= A1

(
t2 − t

t2 − t1

)
+

KA2

40 (t2 − t1)

−2K
∞∑

nh=1

e

(
−v2nht

K

)
− e

(
−v2nh(t−t0)

K

)
t0

− e

(
−v2nh(t−t1)

K

)
t2 − t1

×Ψ,

for t2 ≤ t < ∞

u

Up

= −2K
∞∑

nh=1

e

(
−v2nht

K

)
− e

(
−v2nh(t−t0)

K

)
t0

− e

(
−v2nh(t−t2)

K

)
− e

(
−v2nh(t−t1)

K

)
t2 − t1

×Ψ,

where A1 =
3

2

(
1− c2h

)
, A2 = 5c4h − 6c2h + 1, K =

h2

ν
,

Ψ =

[
cos(chvnh)− cos(vnh)

v3
nhsin(vnh)

]
.

Here, h is the channel half height, y is the distance from the center line towards the wall of
the channel, ch = y

h
, and vnh, nh = 1,2,3,... ∞ are roots of tan(v) = v. Here, the first fifty

roots of tan(v) = v are used to obtain the sum of the above converging infinite series.

2.4 Instability characterization methodologies

The transition mechanism in an unsteady flow evolution involves various instability mech-
anisms. Different methods are employed in the analysis of instability mechanisms focusing
on the nature and temporal characteristics. Flow separation due to the primary inflectional
instability is identified through the velocity profile over the separation point. As the flow
progresses, the separated shear layer induces oscillation creating further shedding of vor-
tices. Shedding frequency is identified through probe analysis and corresponding spectra
analysis. In addition, data-driven methods like Dynamic Mode Decomposition (DMD) de-
veloped in recent years extract both the temporal and spatial characteristics of the coherent
flow features and are utilized to investigate the underlying flow features. Compared to the
more established POD method, the DMD algorithm extracts temporal information and can
reconstruct the system dynamics, making it more suitable for complex transient flows.
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2.4.1 Primary Instability or Flow separation

The classical linear stability theory by Rayleigh[79] identified a point of inflection as a
necessary condition in inviscid plane-parallel shear flows and was later established as a
sufficient condition for disturbance amplification by Tollmien [80]. Rayleigh’s equation,
also known as the friction-less stability equation, is obtained by considering a small ampli-
tude perturbation stream function substituted into the two-dimensional Euler equation for
shear flow and is given by:

(U − c)(D2 − k2)Ψs − UyyΨs = 0. (2.9)

Integrating equation 2.9 to determine the stability leads to identifying the necessary condi-
tion for stability as the change in sign of the term Uyy. An adverse pressure gradient arising
from geometry-induced or temporally-induced flow deceleration or both can further lead
to flow separation. The instability nature of such separated flows is examined through the
streamwise velocity profiles. In the current investigation, inflectional velocity profiles are
formed in both cases, which may lead to boundary layer separation, instability, or both.
The flow separation and inflectional instability are quantified through the velocity profile
through the zero wall shear stress point. In addition, the point of inflection is identified
through the analysis of the point of sign reversal in the second derivative of the velocity
profile.

2.4.2 Temporal characteristics

In the current investigation, the vortex shedding frequency is identified from the temporal
variation of the vertical velocity component and momentum thickness oscillations. Since
the vertical velocity component is imposed to be zero, the development of oscillations in
the vertical velocity component can be considered as a reflection of boundary layer os-
cillations, tailoring it to analyze the temporal characteristics. Also, the temporal window
selected for the frequency analysis is chosen between the constant velocity period to re-
move any temporal anomaly due to the change of the mean inflow phase. Boundary layer
integral parameters such as displacement and momentum thicknesses are calculated using
the left Riemann sum rule with dy as the interval length and grid point as the quadrature
point. Data from a probe taken over the shear layer is transformed using Fourier transforms
to determine the underlying frequency spectrum. Fast Fourier Transformation arises as a
computationally fast and efficient way to compute Discrete Fourier Transform (DFT) for
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a signal from its original domain to the frequency domain. DFT mathematically decom-
poses a sequence of values into their individual frequency components. Though the initial
development of the FFT algorithm is in the field of digital signal processing, the wide ap-
plicability of the method for extracting frequency information from sequential data makes
it ideal for secondary instability frequency calculation. The present study made use of
the inbuilt FFT algorithm in Tecplot software combined with a rectangular window func-
tion. Temporal data for the frequency calculation is extracted through data probing and
by calculating the momentum thickness across the shear layer avoiding the top and bottom
boundary layers.

2.5 Dynamic Mode Decomposition

The inherent limitations in the computational power also restricted the global stability anal-
ysis of the complex flow fields, especially when the flow field involves complex geometries.
Alternatively, for large data sets of complex flow fields, Proper Orthogonal Decomposition
(POD) is established to identify spatial orthogonal modes ranked by their energy but lacks
crucial temporal information and therefore loses the instability growth characteristics. In
a recent review paper by Rowley and Dawson [81], different model reduction techniques
were reviewed for analyzing various fluid flow problems. As observed in previous studies,
it is hard to select the dominant modes in unsteady inflow conditions using the DMD algo-
rithm since we are unsure whether to prioritize modes’ energy, frequency, or growth rate.
Dynamic mode decomposition can yield spatial modes based on their frequency values,
making it a convenient technique for investigating systems involving multiple frequency
scales, as in the present study.

Recently, DMD algorithms have been implemented successfully to identify coherent
structures and stability parameters in many pulsating flow conditions. In the work of Jang
et al. [82], coherent flow features evidenced in the oscillatory flow around a cylinder are
identified using the DMD algorithm. The algorithm determines the forcing frequency of
oscillatory flow as the primary wave frequency, taking the amplitude criterion. Liu et al.
[83] identified the coherent flow structures in cloud cavitating flow around the hydrofoil
using the DMD algorithm. The energy of each mode is calculated using the Frobenius
norm and sorted. Compared with other Reduced Order Models (POD), the DMD algorithm
identifies the flow features and the underlying frequency of flow formations. A recent
review by Taira et al. [84] depicts a detailed picture of different modal analysis techniques
applied to different fluid flow scenarios.

19



The DMD algorithm starts by arranging state vectors from simulation data snapshots
column-wise into two snapshot matrices, U1 and U2, with two consecutive time intervals
(∆τ ). DMD analysis identifies a best-fit linear operator A that relates matrix U1 with
matrix U2: DMD uses regression of data onto locally linear dynamics xk+1 = Axk, where
A is chosen to minimize ||xk+1 −Axk||2 over k=1,2,3,..., N-1. Snapshot data is arranged
in matrix format as:

U1 = [U1, U2, U3, U4...UN−1] =


u1
1 u2

1 ... uN−1
1

u1
2 u2

2 ... uN−1
2

...
...

...
...

u1
M u2

M ... uN−1
M

 ,

U2 = AU1. (2.10)

By taking the Singular Value Decomposition (SVD) of the snapshot matrix (U1), we obtain
left and right eigenvectors (S and D, respectively), along with the eigenvalue (Λ).

U ≈ SΛD. (2.11)

In order to build a best-fit linear operator correlating both matrices, we take the pseudo-
inverse of U1 (by taking the conjugate transpose of SVD vectors (S∗,D∗) together with U2

as follows:
A = U2D

∗Λ−1S∗. (2.12)

By eigendecomposition, the low-dimensional model is decomposed into eigenvector
(W) and eigenvalues(λD) by eigendecomposition. The temporal dynamics of the system
can be identified from the eigenvalues using the following relations for growth rate and
frequency:

σDMD =
log (Re (λD))

2π∆τ
, (2.13)

fDMD =
log (Im (λD))

2π∆τ
. (2.14)

In order to obtain the DMD modes (Φ), the low dimensional model is reconstructed
from its eigenvectors as follows:

Φ = U2DΛ−1W. (2.15)
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DNS simulation offers a series of data sets for identifying the stability of the vortical
structures in the wake. Since the frequency characteristics through the spectra analysis
are from the vertical velocity component oscillation, the DMD using the vertical velocity
also determines the coherent flow structures associated with frequency peaks of spectra
analysis. Three-dimensional disintegration of the vortex flow features developed in the
current investigation is closely related to the evolution of the streamwise and spanwise
vorticity development in the wake region. Therefore, the DMD analysis of the vorticity
components is also carried out to identify the secondary instability characteristics.

2.6 Summary

The current chapter discusses the different computational methodologies adopted in the
present thesis work for simulating a transient inflow over different body geometries. Nu-
merical simulations are carried out using a highly parallelized open-source DNS code IN-
COMPACT3D, which utilizes a higher-order compact scheme for spatial discretization
coupled with spectral methods for pressure field computation. Imposing a complex ge-
ometry in a Cartesian grid is addressed using an immersed boundary method without any
body orientation concerns. The transient inflow boundary condition is imposed through an-
alytical solutions for a trapezoidal pulse obtained by the mathematical approach proposed
by Das and Arakeri [27].

Different methodologies were adopted to investigate and characterize the development
of three-dimensional instabilities in the flow field. Through the analysis of velocity profiles,
the inflectional nature of the streamwise velocity profiles is investigated through Rayleigh’s
instability criterion. Further, the computational approach of the DMD method employed to
identify the underlying coherent flow structures and temporal characteristics is explained
in detail.
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Chapter 3

Bluff-body wake under a variable veloc-
ity inflow

3.1 Introduction

The wall-mounted bluff bodies kept in time-dependent boundary conditions can produce
a fascinating gamut of flow structures. In such cases, the thickness of the boundary layer
formed over the solid surface varies in both space and time, causing a high level of com-
plexity in the path of vortical structures formed from the shear/boundary layer. Numerical
simulation studies are extensively used to understand the development of the vortical flow
field and the subsequent generation of secondary structures. However, most numerical stud-
ies on flow transition in transient inflow conditions are performed on academic geometries.
Numerically predicting the transitional flows in complex geometries poses a significant
challenge.

This chapter focuses on vortex development within the wake of a wall-attached bluff
body under variable velocity inflow conditions. A computational domain and temporal
parameters are selected in accordance with the experiments of Das et al. [1]. By varying
the mean inflow velocity, the effect of Reynolds number

(
Reb =

Upb

ν

)
is studied for a

Reynolds number range 100 ≤ Reb ≤ 2500. The influence of temporal variation in the
inflow pulse is further examined by altering the acceleration and deceleration parameters.
The inflectional nature of the boundary layer is investigated through streamwise velocity
profiles. Further, shear layer instability features are identified through the vertical velocity
fluctuations and their frequency spectra. This chapter provides an overview of vortex flow
features, their temporal characteristics, and the fundamental instability nature of vorticity
development.

The chapter is organized into five different sections. The section 3.2 introduces the

22



15R

28.4 R

Inflow

20 R
40 R

Outflow

x
y

z
8R

R 2R
3R

(b)

(a)

Figure 3.1: Computational domain and boundary conditions. (a) three-dimensional view;
(b) details of the bluff body.

computational domain and non-dimensional parameters used for defining and explaining
the flow evolution. In the third section (section 3.3), we briefly describe the initial observa-
tions and flow patterns that develop behind the bluff-body wake under different inflow ve-
locities. The comparison of the flow evolution and three-dimensional disintegration under
different non-dimensional numbers is provided in section 3.4. Finally, section 3.5 summa-
rizes the discussions on flow evolution and the effect of the non-dimensional parameters.

3.2 Computational domain and simulation parameters

3.2.1 Computational Domain

Figure 3.1 shows the schematic diagram of the three-dimensional computational domain
and boundary conditions used for the bluff body wake simulations. The complex-shaped
bluff body used in the study of Das et al.[1] (figure 3.1) is modeled using the virtual or im-
mersed boundary technique. The desired bluff body is formed by combining three circular
arcs with a rectangular geometry. The maximum dimension of the bluff body is 8R × 6R,
where R is the radius of the top circular geometry. No-slip condition on the top and bottom
wall is assigned through the Dirichlet velocity condition. Free-slip condition is applied to
the right and left boundaries. Analytical solutions obtained by considering a time-varying
mean inflow in a 2D channel are enforced as the inlet condition at each time step (equa-
tions 2.8). Such practice is found to be an efficient way to reduce computational domain
and time. At the outlet (x = lx), the imposed exit velocity is deduced from the following
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equation:
∂u

∂t
|X=lx + Uc

∂u

∂X
|X=lx = 0. (3.1)

Here, the mean velocity of the inflow profile during the pulse phase is taken as the advection
velocity Uc.

3.2.2 Physical and numerical parameters

In order to quantify the effects due to variations in parameters, different non-dimensional
quantities are defined. The instantaneous flow time t is non-dimensionalized by pulse pe-
riod (t∗ = t

t2
). Non-dimensionalized streamwise distance is defined by x∗ = X−0.2

2R
. Wall

normal distance is non-dimensionalized by the body height (y∗ = Y
6R

). The following defi-
nitions are used to define the Reynolds number (Reb), acceleration Reynolds number (Rea),
and deceleration Reynolds number (Red). A flow Reynolds number is defined based on the
top circular geometry diameter (b), the mean inflow velocity during the constant velocity
phase (Up) and kinematic viscosity (ν).

Reb =
Upb

ν

Similarly, a standard non-dimensional number for studying flow dynamics in accelerat-

Case Up(m/s) Reb t0(s) t1(s) t2(s) Rea Red

BC1 0.0048 96 0.2 29.9 30.3 438 310
BC2 0.0359 718 7.5 8.92 11.92 196 450
BC3 0.0717 1434 1 4.33 5.33 756 756
BC4A 0.0956 1912 2.66 3.91 5.25 536 756
BC4B 0.0956 1912 1.33 3.25 4.58 756 756
BC4C 0.0956 1912 1.33 3.25 3.84 756 1138
BC4D 0.0956 1912 1.33 3.25 3.58 756 1522
BC4E 0.0956 1912 0.8 2.98 4.32 978 756
BC5 0.1195 2390 1.67 2.6 4.27 756 756

Table 3.1: Simulation parameters: Up mean inflow velocity in constant inflow phase, t0 end
of the acceleration phase, t1 end of constant velocity phase, and t2 end of the deceleration
phase. Reynolds numbers based on the mean inflow velocity, acceleration, and deceleration
parameters are respectively represented by Reb, Rea, and Red.

ing flows is the acceleration Reynolds number [85, 86]. Finaish et al. [86] successfully
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analyzed the dependency between the vortex patterns development and the acceleration
Reynolds number over an accelerating airfoil started from rest.

In an accelerating flow, an acceleration Reynolds number can be defined by considering
piston velocity (Up(t)).

Rea =
Up(t)b

ν
=

atb

ν
;

where, the acceleration can be defined as: a =
Up

t0
and b = 2R.

By taking a convective time scale t =

√
b

a
;

Rea =

√
ab3

ν2
.

The same procedure is followed in a decelerating flow to obtain

Red =

√
db3

ν2
,

where, deceleration rate is obtained by: d =
Up

t2 − t1
.

The non-dimensional vortex formation time [1] is represented by

t∗v =
1

2

Utvtv
b

.

Here, tv is the time when the vortex begins to form, and Utv is the mean inlet velocity
at the tv. The following non-dimensional time in terms of acceleration and deceleration
parameters are defined using the relation:

τ = t

√
a

b
,

t∗d =
t− t1
t2 − t1

=
(t− t1)d

Up

.

Numerical experiments were carried out for different flow parameters, as shown in ta-
ble 3.1. The computational domain with dimensions Lx ×Ly ×Lz = 60R× 15R× 28.4R

is discretized using uniform grid points; dimensions are taken based on the experiments of
Das et al.[1]. The grid independence was assessed by comparing the skin friction coeffi-
cient values at the midplane in a spanwise direction during the constant velocity phase for
grids with 513 × 129 × 241 (grid A), 1025 × 257 × 481 (grid B), and 1501 × 385 × 721
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(grid C) elements. The percentage of deviation in skin friction coefficient between grids A
and B was 10%, while it was below 1% for grids B and C. Figure 3.2 shows the stream-
wise variation of skin friction coefficient for grids A, B, and C. Results were reproduced

(a) (b)

Figure 3.2: Grid independence analysis: (a) Variation of skin-friction coefficient (Cf ),
and (b) variation of spanwise vorticity (ωz); with respect to non-dimensional streamwise
direction

(
x∗ = X−0.2

2R

)
for different grid sizes.

with negligible difference between grid B and C, as evidenced in Figure 3.2. The Reynolds
number employed in the grid independence study was the highest. Consequently, grid B is
used for further simulations.

Time step dependency analysis was performed by using three different time steps of
10−3 s, 10−4 s, and 10−5 s. In terms of accuracy and computational economy, a time step of
10−4 s (CFL = 0.02) was found to be satisfactory. Therefore a time step of 10−4 s is used for
all the cases. The numerical procedure is validated by comparing the vortex formation time
(tv) and separation angle (β) with the experimental results of Das et al.[1]. Here, the sepa-
ration angle is defined as the angle between the separation point and the axis of symmetry
of the bluff body (taken to the left of the axis of symmetry). The present simulations cal-
culate the vortex formation time by plotting the streamlines at different flow instances. In
contrast, Das et al.[1] used high-speed dye visualization techniques to measure the vortex
formation time.

Figures 3.3(a, b) show the comparison of simulation results with experimental results
of Das et al.[1]. The simulation result lies within a six percent deviation from experimental
results, as shown in figures 3.3(a, b). The slight difference between numerical simulation
and experiment could be because of the different methods used to evaluate the vortex for-
mation time. Also, there could be minor differences in the inlet conditions between an
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(a)

β

(b)

Figure 3.3: Validation of numerical scheme. (a) Comparison of vortex formation time; (b)
comparison of separation angle.

experiment and a simulation. It is not easy to maintain a perfect trapezoidal motion in an
experiment, which causes inlet fluctuations in the water tunnel. In many studies, computa-
tional noise related to numerical methods has been discussed, especially in transitional and
turbulent flows. These factors might account for the difference.

3.3 Two-dimensional flow structures

First, we present the numerical visualizations at different flow instances in x− y planes for
three Reynolds numbers (cases BC1, BC2, and BC5). The flow parameters are precisely
the same as in the water tunnel experiments of Das et al.[1] (cases X, I, and XI in Das
et al.[1]). Here, the evolution of flow structures from the bluff body at three different
Reynolds numbers (Reb = 96, 718, and 2390) are evidenced by instantaneous contour plot
of spanwise vorticity (ωz) in the center plane of spanwise direction (z = 14.2R) as shown in
figures 3.4, 3.5 and 3.6. In our numerical visualization, at the low-Reynolds number (Reb =
96), the recirculation region grows with the flow-time precisely like the experimental study,
as shown in figure 3.4. Here, the formed structure is laminar and two-dimensional, with
no sign of shear-layer instability. For similar flow conditions, the present simulations show
good agreement (less than six percent deviation) with experimental observation.

At moderate Reynolds number (Reb = 718), the initial formation of the primary vortex
(marked as SL0 in figure 3.5) is similar to the low Reynolds number case (figure 3.5,
t∗ = 0.28 and 0.39). A pair of steady laminar separation bubbles formed over the leeward
upper side of the bluff body vortices (marked as B1 and B2) is identifiable at t∗ ≈ 0.55. At
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Figure 3.4: Flow evolution at low Reynolds number (case BC1). The experimental figure
is reproduced with permission from Das et al., [1] Journal of Fluids and Structures 40
(2013). Copyright 2013 Elsevier.

this Reynolds number, the flow shows shear-layer instability. The primary vortex oscillates
at flow time t∗ ≈ 0.68. The origin of oscillations is near the steady separation bubbles.
shear layer roll-up causes the formation of numerous small-scale vortices (marked as SL1
to SL4), which move around the primary vortex (t∗ = 0.92). The newly formed shear-layer
vortices eventually dominate the flow field. The sequence of vortices formed from the shear
layer is analogous to that of a plane mixing layer (t∗ = 0.92). Flow features near the top
and bottom walls change significantly during the deceleration phase (t∗ = 0.92 and 1). In
addition, deceleration retards the motion of the vortex core (SL0). Deceleration creates
an adverse pressure gradient and destabilizes the boundary layer. Local boundary layer
separations are observed on the top and bottom walls (WT1 and WB1, respectively). The
flow deceleration enhances the detachment of vortices from the near-wall vorticity layer
(B2 and WB1). In later flow-time, these counter-vorticity regions shed into the core flow
from the top and bottom wall (WB1 and WT1).

A similar sequence of events is evidenced at a relatively high Reynolds number (Reb =

2390), with a higher shear layer shedding frequency, as depicted in figure 3.6. The shear
layer roll-up and shedding of vortices (initiated from the steady separation bubbles B1 and
B2) are observed at t∗ ≈ 0.44. At this Reynolds number, the shear layer breaks down
quickly. A fascinating circular array of shear-layer vortices (SL1 to SL5) is observed along
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Figure 3.5: Instantaneous spanwise vorticity depicting the flow evolution in medium
Reynolds number (case BC2).

the circumference of the primary large-scale vortex (t∗ = 0.60). The transition to the
decelerating phase is marked by a shift in the shedding pattern and the development of
wall vortices (t∗ = 0.75). With decaying streamwise velocity, momentum transfers into
the boundary layer (t∗ = 0.90), resulting in the amplification of positive vortices (WB1,
WB2, WT1, WT2). In addition, towards the end of the pulse, these wall vortices move
toward one another, causing pairing and the formation of three-dimensional structures (t∗ =
0.96, 1.01). These structures expand and coalesce, forming the final stages of the vortex
pulse. Multiple folding (mentioned as ‘fingers’) and the interconnections between vortices
in the cylinder wake experiments of Gerrard [87] are also evident.

Figure 3.7 illustrates the velocity vector field plotted over the spanwise vorticity at dif-
ferent phases for case BC5. Numerous velocity vectors are skipped in the x and y directions
from the obtained simulations for the clarity of the image. Rolled-up laminar separation
bubbles (B1 and B2) formed over the bluff body and primary vortex are shown in fig-
ures 3.7(a) and 3.7(b). The vortices created by the shear-layer instability (SL1-SL6) do not
show closed or spiraling streamline patterns, as shown in figures 3.7(b) and 3.7(c). Coher-
ent structures formed during the decelerating phase near the top and bottom wall proximity
are shown in figures 3.7(d) and 3.7(e), respectively. During this deceleration period, the
magnitude of other components of velocity escalates abruptly (figures 3.7(d) and 3.7(e)).
Continued shedding of the boundary layer vortices (WB1-WB3) from the bottom boundary
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Figure 3.6: Instantaneous spanwise vorticity depicting the flow evolution in high Reynolds
number (case BC5).

layer due to the shear layer vortex structures is evident.

3.4 Influence of non-dimensional numbers on flow evolu-
tion

Through the variation of the associated non-dimensional numbers, transient parameters’
influence on flow evolution is systematically analyzed. This analysis provides insight into
the effects of transient parameters on flow behavior and can aid in predicting the dynamics
of the flow. We can determine the influence of the mean inflow velocity by varying the
Reynolds number; a higher mean inflow velocity leads additional shear layer vortices to
develop, resulting in a higher shear layer frequency. Consequently, this ultimately leads to
an increase in vortex structures and, subsequently, the production of more turbulence. In
the same way, acceleration and deceleration parameters have similar effects on the shear
layer and three-dimensional integration. By examining the vertical velocity and momentum
thickness variations, we can better understand the behavior of the flow field and the under-
lying physical processes involved. In the subsections that follow, we examine in detail the
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Figure 3.7: Detailed view of the coherent structures observed during different phases of the
flow evolution. (a) separation bubble over the bluff body; (b) early stage of vortex shedding;
(c) an instance of periodic vortex shedding; (d) top-wall boundary layer separation; (e)
bottom-wall boundary layer separation.

effect of these non-dimensional numbers on the formation of flow patterns.

3.4.1 Effects of Reynolds number on flow evolution (cases BC3, BC4B
and BC5)

The effects of Reynolds numbers on flow dynamics are systematically analyzed by keep-
ing the acceleration and deceleration Reynolds numbers constant (BC3, BC4B, and BC5).
Important flow parameters obtained from the simulation are tabulated in table 3.2. An eval-
uation of the non-dimensional vortex formation time and separation angle is conducted,
and the results are found to agree well (within 10 percent) with those from experiments as
shown in table 3.2.

Case Reb t∗v t∗v,exp β βexp tsl fV fθ
fθθavg
Up

BC3 1434 0.39596 0.46623 25.45 28.37 1.18 5.46 4.94 0.718
BC4B 1912 0.39696 0.44925 34.33 31.14 1.50 7.5 7.32 0.659
BC5 2390 0.39517 0.44723 29.69 30.61 1.82 10.00 10.20 0.469

Table 3.2: Quantitative comparison of parameters non-dimensional vortex formation time
(t∗v), and separation angle (β) with experimental results of Das et al. [1]. fV and fθ respec-
tively represent vertical velocity and momentum thickness oscillation frequency.

31



(a) (b) (c)

(d) (e) (f)

Figure 3.8: Streamwise velocity profiles for different cases (x∗ = 2.3047). (a) case BC3;
(b) case BC4B; (c) case BC5. Second derivative profiles of velocity profile (d) case BC3;
(e) case BC4B; (f ) case BC5.

The inflectional nature of velocity profiles causing the instability are compared at lo-
cations near the bluff body and are plotted in figure 3.8. The velocity profiles observed
downstream of the bluff body are the superposition of the confluent mixing layer (wake
and shear layer) and boundary layer. Inflectional streamwise velocity profiles are observed
in all the cases (figure 3.8(a), 3.8(b), and 3.8(c)). Shear-layer instability is originated in
the vicinity of the inflection point on the velocity profile. This two-dimensional instability
results in an intermittent formation of a two-dimensional circular array of small vortices
(SL1, SL2, ...etc.). The inflectional nature of flow instability can be further explained using
the second derivative of the velocity profile (equation 2.9). Figures 3.8 (d), (e), and (f)
show the second derivative of the non-dimensional velocity profiles for cases BC3, BC4B,
and BC5, respectively. Here, figures 3.8 (d), (e), and (f) show inflection points for all the
cases, which are marked with circles in figures 3.8 (a), (b), and (c). These inflected points
are inviscidly unstable and prone to flow instability. As seen from the two-dimensional
contour graphs of the instantaneous spanwise vorticity (figures 3.5 and 3.6), the flow os-
cillations originate at these inflection points. Hence, flow instability appears to develop at
these inflection points in velocity profiles.

Some typical time series of vertical velocity are plotted for three Reynolds number
cases to probe the nature of the flow unsteadiness, as shown in figure 3.9(a). Here, the
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Figure 3.9: Temporal variation of velocity, momentum thickness, and corresponding fre-
quency spectra. (a) wall-normal velocity; (b) frequency spectra of wall-normal velocity; (c)
temporal variation of momentum thickness; (d) frequency spectra of momentum thickness.

measurement point is near the origin of shear layer oscillations. The shear-layer shedding
process can be seen from the time series data of vertical velocity. The shear-layer insta-
bility vortices/waves have a definite frequency, especially at a high Reynolds number. The
peak frequency of velocity fluctuation is determined using spectral analysis (figure 3.9(b)).
Further time series analysis is made by changing the location of the measurement points.
The newly selected measurement positions are at downstream locations but inside the shear
layer shedding regions. Similar time series sequences are obtained in the new measurement
locations. The local momentum thickness of the shear layer is calculated by removing the
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data near the top and bottom wall using the below expression.

θ =

∫ h2

h1

u

Umax

(
1− u

Umax

)
dy.

Instantaneous momentum thickness oscillates at a frequency (fθ) that is nearly equal to
the frequency obtained from the time-series data of the vertical velocity (fv), as shown in
figure 3.9(d). The non-dimensionalized frequency

(
fθθavg
Up

)
based on average momentum

thickness is tabulated in table 3.2. However, here the values do not remain constant.

3.4.2 Effects of acceleration Reynolds number on flow evolution (cases
BC4A, BC4B and BC4E)

The effects of acceleration Reynolds number on flow feature are analyzed for three cases
with varying Rea by keeping Reb and Red constant (cases BC4A, BC4B, and BC4E). The
development of the vortex core point (xc) trajectory for the primary vortex is traced for all
the Rea cases. The core is identified by probing the location with instantaneous minimum
local pressure in a two-dimensional x−y plane. Here the low-pressure criterion effectively
captures the core of the primary vortex structure. The location of the low-pressure point
for three acceleration Reynolds numbers at various flow times is calculated (as marked
in figure 3.11). The following non-dimensional parameters are defined to track the core
trajectory:

Xc =
xc − 0.2

8R

Figure 3.10 shows the variation of non dimensionalized vortex core position (Xc) against
the non-dimensionalized time scale (τ = t

√
a
b
). At early flow times (τ < 3), a reasonable

collapse of the location of the core of the primary eddy is obtained with the new scaling,
as shown in figure 3.10. This regime corresponds to the time of collapse (τ < 3), is two-
dimensional, and is unaffected by shear layer oscillations. With the increase in flow time
(τ > 3), the core trajectory significantly departs from each other. Furthermore, it appears
that the shear-layer instabilities and three-dimensional structures cause this departure, and
they are analyzed in detail below.

Flow evolution for three different acceleration Reynolds cases at the same non-dimensional
flow time (τ ) is shown in figure 3.11. At the early time (τ = 2.75), the primary vortex core
lies precisely at the same point for all three cases. For the case of the lowest acceleration
Reynolds number Rea = 536, as shown in figure 3.11(a1), the flow does not generate shear-
layer vortices. At this flow time, for medium and high acceleration Reynolds number cases
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Figure 3.10: Variation of vortex center position for cases BC4A, BC4B, and BC4E.

Case Rea tv(s) t∗v β tsl(s) fθ fV σmax fσmax

BC4A 536 0.66 0.39138 22.03 2.86 8.07 8.57 0.0380 8.26
BC4B 756 0.47 0.39696 34.33 1.50 7.32 7.5 0.0714 7.33
BC4E 978 0.37 0.40899 29.69 0.93 6.25 7.04 0.1047 6.93

Table 3.3: Effects of acceleration Reynolds number on flow features

(Rea = 756 and Rea = 978), the shear-layer instability triggers a series of small-scale
vortices, as shown in figures 3.11(b1) and 3.11(c1). The local separation bubble on the top
wall is formed further upstream for higher Rea cases (figures 3.11 (a2), (b2), and (c2)).
Another important feature worth mentioning is that the shear-layer instability features are
observed earliest in the high acceleration case, while three-dimensional instability features
are observed in the low acceleration case. The flow structures near the walls are relatively
complex at low acceleration Reynolds number cases (figures 3.11 (a3), (b3), and (c3)).
However, small-scale eddy formation near the bottom and top walls under the influence of
the local adverse pressure gradient is observed for all cases.

A quantitative comparison of vortex formation time, non-dimensionalized vortex for-
mation time, and separation angle is made in table 3.3. Here, the non-dimensional vortex
formation time (t∗v) is nearly constant. By using the boundary layer parameters, a univer-
sal time scale of separation independent of Reynolds number and acceleration Reynolds
number is obtained. The two-dimensional shedding frequencies are obtained from spectral
analysis of vertical velocity. As discussed in the preceding section, the instantaneous mo-
mentum thickness oscillates at a frequency that is nearly equal to the frequency obtained
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Figure 3.11: Flow evolution for different Rea cases (a) BC4A, (b) BC4B and (c) BC4E.

from the time-series data of the vertical velocity. The values of peak frequency so estimated
are listed in table 3.3. Here, the peak shear layer frequency decreases with an increase in
acceleration Reynolds number.

3.4.3 Effects of deceleration Reynolds number on flow evolution (cases
BC4B, BC4C and BC4D)

An analysis of the effects of the deceleration Reynolds number on flow evolution is per-
formed using two different approaches. In both approaches, significant differences in flow
characteristics were observed, indicating that the deceleration Reynolds number can greatly
influence flow dynamics. First, we examine the effects of deceleration on flow characteris-
tics. In the second, we study the mechanism of streamwise vorticity formation, which leads
to three-dimensional oscillations and transitions. This two-pronged approach allows a com-
prehensive analysis of the intertwined process of vortex structure disintegration. Although
the flow features formed during the deceleration period vary depending on the decelera-
tion parameters, the generation of the three-dimensional oscillation remains constant in all
cases.
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3.4.3.1 Evolution of flow structures during the deceleration phase

To illustrate the effects of deceleration on flow features, three cases are analyzed with vary-
ing Red by keeping Reb and Rea as constants. The effects of deceleration are analyzed by
plotting instantaneous vorticity at different non-dimensionalized flow times

(
t∗d =

t−t1
t2−t1

)
,

as shown in figure 3.12. Figure 3.12 shows vorticity data at the starting point (t∗d = 0),
quarter one (t∗d = 0.25), quarter two (t∗d = 0.5), and at the end of the deceleration phase
(t∗d = 1).

Figure 3.12: Evolution of spanwise vorticity during different deceleration phases.
(a) BC4B, (b) BC4C, and (c) BC4D.

The flow dynamics of the primary vortex (SL0) and shear-layer vortices are nearly
similar at t∗d = 0.25 for all the cases. However, the deceleration Reynolds number ef-
fects are seen in the dynamics of wall vortices. In the case of smooth deceleration (at low
Red), the detachment of vortices from the wall (B2 and WT1) is observed at an early
non-dimensionalized deceleration period (t∗d = 0.5) as shown in figure 3.12(a3). Higher
shedding characteristics of the low deceleration case owe to the momentum transfer to
the boundary layer due to shear layer vortex interactions. Further, the ejected boundary
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layer vortices move closer to each other, leading to merging phenomena as depicted in
figure 3.12(a3). Concomitantly, the evolution of separation bubble vortices also alters with
the change in deceleration parameters. A close-up view of the detachment of the separation
bubble is shown in the subplot in (figure 3.12(a3), 3.12(b3), and 3.12(c3)). As evidenced
in these figures, the decrease in the deceleration moves the separation point downstream by
reducing the separation angle.

As the primary vortex decelerates, the separated secondary structures (WT1) in the
top surface boundary layer develop rapidly, and rapid boundary layer growth occurs near
the secondary eddy (Wt1). Under the influence of the primary vortex structure, further
small-scale eddy structures soon develop near the top and bottom walls due to the adverse
pressure gradient induced by the vortex. At the end of the deceleration period (t∗d = 1,
figures 3.12(a4), 3.12(b4) and 3.12(c4)), an eruption of the viscous flow near the top wall
(near WT1) are observed for low Red case (figure 3.12(a4)). For medium and high Red

cases, the deceleration causes an increase in bubble volume (WT1 and WB1), but at the
end of the deceleration period, the vortical region would not wholly separate from the
surface (figure 3.12(b4) and 3.12(c4)) as in the low Red case.

3.5 Summary

The current chapter focuses on vortex dynamics in a bluff body wake under a variable
velocity inflow. The flow employed to study the dynamics was a channel with a wall-
attached bluff body kept in a trapezoidal pulse of mean velocity inflow. This configuration
is ideal for studying wake dynamics in the wake of a relatively complex bluff body under
a trapezoidal pulse, enabling a comprehensive analysis of the effects of acceleration and
deceleration separately.

A systematic study on effects due to change in Reynolds number, acceleration Reynolds
number, and deceleration Reynolds numbers on flow dynamics were carried out. Though
flow evolution has a strong dependence on the flow Reynolds number, the unsteadiness
has its effects on the flow-feature formation. The primary inflectional instability nature is
examined through Rayleigh inflection point criteria for the streamwise velocity profiles.
In addition, the secondary instability features are analyzed through the spanwise vortic-
ity contoured two-dimensional snapshots, and the associated temporal characteristics are
extracted from spectral analysis of probe data.

The results obtained from the DNS simulation suggest the following picture for the
development of wakes. Flow features such as laminar separation bubbles, shear layer os-
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cillations, and associated rollups are observed during the constant acceleration or constant
velocity phase. Subsequently, due to shear-layer instabilities, a two-dimensional circular
array of spanwise vortex tubes is developed from the primary vortex. During the decel-
eration phase, the evolving spanwise vortex rolls and induced near-wall circulating eddies
to encounter axial stretching, and flow transitioned from a two-dimensional to a three-
dimensional state. Vortex merging and strongly localized eruptions near the top and bottom
walls are observed.

The effect of the Reynolds number on shear layer frequency was analyzed using mo-
mentum thickness of inflectional velocity profiles, velocity, and momentum thickness spec-
tra. A non-dimensionalized timescale (τ ) tracks the primary vortex core in varying accel-
eration cases. The low acceleration Reynolds number case showed early signs of 2D-3D
transition in the non-dimensional time frame. Variations in deceleration parameters affect
the formation of wall vortices, resulting in the development of three-dimensional structures.
Qualitative and quantitative comparison of the flow evolution in different deceleration cases
strongly supports this observation.
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Chapter 4

Three-dimensional aspects of coherent flow
structures in bluff body wake

4.1 Introduction

A detailed discussion of the vortex flow dynamics and the shedding characteristics were
provided in the previous chapter. Spanwise oscillations and further disintegration pro-
cesses are strongly influenced by the nature of the vortices developed and their mutual in-
duction/interaction. Bluff body wake constitutes a higher number of the co-rotating vortex
structures, which interact with each other, resulting in the merging and further transition.
Similar to other wake vortex studies, the instabilities arising in a bluff body wake can be
classified into instability development in core and braid regions.

The current chapter aims to present a comprehensive analysis of underlying three-
dimensional coherent flow features in flow evolution and their stability characteristics us-
ing a reduced-order modeling approach. Dynamic mode decomposition is employed for
decomposing the coherent structures and flow patterns, whose dynamics provide a more
compact method for describing the flow process. In addition, the temporal characteris-
tics of the DMD modes identified are compared with the frequency spectra obtained from
probe analysis. Furthermore, the effect of the acceleration and deceleration parameters on
flow development is delineated through coherent features and their associated frequency
characteristics. Also, in this investigation, the streamwise vorticity generation equation is
employed to model the formation of streamwise vorticity during the dead inflow phase.

The three-dimensional aspects of flow features in the wake of bluff body are detailed
in this chapter. In section 4.2, a comparison of three-dimensional simulations with two-
dimensional simulation results shows the vortex disintegration during the zero mean inflow
phase captured in three-dimensional simulations. Section 4.3 discusses the spatial fea-
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tures of the three-dimensional flow structures that are identified using the λ2 method. The
temporal nature of coherent flow features is investigated using DMD analysis, as outlined
in section 4.4. By analyzing the evolution of the components in the streamwise vorticity
generation equation, the three-dimensional transition mechanism is further explained in
section 4.5. In section 4.6, we summarize the observations on the three-dimensional flow
features and the associated vorticity generation mechanism in the bluff-body wake.

4.2 Deviation in three-dimensional simulations

Figure 4.1: Comparison of three-dimensional and two-dimensional simulations for high
Reynolds number (case BC5). (a) two-dimensional simulation; (b) three-dimensional sim-
ulation.

Initially, a comparison of simulations in two and three dimensions is provided to better
understand the nature of the shear-layer instability mechanism. Figure 4.1 shows the flow
evolution of two-dimensional and three-dimensional simulations for high Reynolds number
(Reb = 2390). The flow features are analogous in two-dimensional and three-dimensional
simulations during acceleration and constant-velocity phases (t∗ = 0.58 and 0.94). Here,
two-dimensional perturbations are inherently unstable compared to three-dimensional per-
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turbations during the initial phase. Due to the two-dimensional nature of shear-layer insta-
bility, the amplification and shedding of the shear-layer vortices are evidenced in the two-
dimensional simulation, similar to three-dimensional simulations. With increasing flow
time, three-dimensional effects appear, which could be due to the secondary instability of
the separated shear layer, as seen in many steady flow transition conditions [56, 88]. For
case BC5, the two-dimensional simulation results reasonably agree with the experiment
results up to the deceleration phase.

A flow transition from a two-dimensional to a three-dimensional state can initially be
observed near the wall proximity. During the decelerating and zero mean-velocity phases,
three-dimensional flow characteristics such as axial stretching, tilting of vortices, and sub-
sequent instabilities in spanwise directions are dominant. Positive vortices are formed from
the body, which interacts with the core flow and eventually breaks down. Due to this in-
herent limitation, two-dimensional simulations do not capture the final disintegration of the
vortices. Drastic differences in flow dynamics occur during the zero mean-velocity phases
(t∗ = 1.17).

4.3 Three-dimensional flow structures

We further examine the instability’s three-dimensional nature using the λ2 method [89] in
the three-dimensional flow field. This method is rigorously applied to accurately depict the
topology of vortex cores in diverse classes of flows, including the wake patterns behind
bluff bodies, transitional, and turbulent flows.[13] For DNS data, λ2 has been found to as-
sess the size of the vortex core and the number of small scales. In this method, coherent
vortex structures in the flow field using the second-largest eigenvalue of the symmetric ten-
sor are created from the symmetric and anti-symmetric components of the velocity gradient
tensor. Detailed analysis of this method is available in the work of Jeong and Hussain. [89]

Isometric views of the vortices identified using the λ2 method at different flow instances
for medium Reynolds number (case BC2) are shown in figure 4.2. The isosurfaces are col-
ored according to spanwise (figures 4.2(a) and 4.2(b)) and streamwise vorticity (ωx) magni-
tude (figures 4.2(c) and 4.2(d)) to show the orientation of the three-dimensional structures.
At t∗ = 0.88, the flow field mainly consists of two-dimensional shear-layer structures (fig-
ures 4.2(a) and 4.2(c)). The value of streamwise vorticity is minimal at this flow instant.
The values are slightly higher near the side boundaries. The amplification of the stream-
wise vorticity (ωx) components (figures 4.2(b) and 4.2(d)) indicate the flow transition from
a two-dimensional to a three-dimensional state. Spanwise modulations of streamwise vor-
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(a) (b)

(c) (d)

Figure 4.2: Three-dimensional structures were identified using λ2 criteria, colored by vor-
ticity, for medium Reynolds number (case BC2). (a) ωz contour at t∗ = 0.881; (b) ωz

contour at t∗ = 1.535 ; (c) ωx contour at t∗ = 0.881; (d) ωx contour at t∗ = 1.535.

ticity and the tendency to generate three-dimensional structures are evident at later flow in-
stances. The shear-layer eddies from two-dimensional instabilities are deformed by three-
dimensional instabilities, as shown in figures 4.2(b) and 4.2(d). Alternate negative and
positive streamwise vorticity regions are observed in the spanwise direction (figure 4.2(d)).
Since the dynamics alter in time, conditions conducive to three-dimensional instability are
generally formed at the end of the decelerating phase. Here, the birth of streamwise vortic-
ity is due to the progressive development of the spanwise velocity component as the flow
time increases. Three-dimensional modulations are not evident in the immense core pri-
mary vortex (SL0).

Iso surfaces of λ2 structures colored by spanwise vorticity at different flow instances for
high Reynolds number (case BC5) are shown in figure 4.3. During the deceleration phase,
the flow changes from a two-dimensional state to a three-dimensional one (figures 4.3
(a),(b),(c) and (d)). Coherent three-dimensional modes are observed in the simulations, and
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(a) (b)

(c) (d)

Figure 4.3: Three-dimensional structures were identified using λ2 criteria, colored by
spanwise vorticity at different flow instances, for high Reynolds number (case BC5).
(a)t∗ = 0.937, (b) t∗ = 1.054; (c) t∗ = 1.171; (d) t∗ = 1.23.

the structures are similar to the other wake-transition studies[13, 46]. The spanwise vortex
rolls evolved by shear-layer instability, and near-wall vortices encounter axial stretching.
Dominating three-dimensional flow instabilities of the vortex sheets are realized for near-
wall structures. Clear distinctions in shape and spanwise wavelength are observed between
the bottom-wall and top-wall formed flow structures. Fragmented streamwise structures
and small-scale eddies generated from the spanwise vortex rolls are evident at later flow
time (t∗ = 1.23). The origin of small-scale structures from the shear rolls is observed in
the zero mean-velocity phases. The topology of streamwise vorticity is depicted in Fig-
ures 4.4 (a)-(d). Fundamentally unstable characteristics of strained vortex sheets cause the
formation of streamwise vorticity. The wavelength of the streamwise vortices (the spanwise
distance between adjacent streamwise vortex pairs) is measured for all the spanwise rolls.
Long-wavelength, tongue-like structures are observed near the top wall. Short-wavelength,
rib-like structures, characteristic of the mode B instability in the cylinder wake study, are
observed near the bluff body, as shown in figures 4.5(a). For mode B structures in the cylin-
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(a) (b)

(c) (d)

Figure 4.4: Three-dimensional structures were identified using λ2 criteria, colored by
spanwise vorticity at different flow instances, for high Reynolds number (case BC5). (a)
t∗ = 0.937; (b) t∗ = 1.054; (c) t∗ = 1.171; (d) t∗ = 1.23.

der wake, a spanwise wavelength of λz ≈ 40√
Re
R was proposed by Mansy et al.[90]. The

spanwise wavelength for mode B matches the value obtained from cylinder wake studies.
Signatures of modes A and B are evident in the top view contours of spanwise vorticity
figures 4.5 (a) and (b). The process of a three-dimensional breakdown associated with
streamwise vorticity is depicted in figure 4.5 (b). The difference in spanwise wavelength
is evident in the top views. Streamwise vortices are advected from the bottom wall and
generated from the top wall due to the boundary layer separations dominating the flow
field.

In steady flow cases, similar modes are observed, indicative of secondary instability.
Hence in the present case, two and three-dimensional secondary perturbations may lead to
a three-dimensional flow transition. A combination of more than one secondary instabil-
ity mechanism is present during the later flow time, as indicated by Mode A and Mode B
structures. The spanwise deformation of the separation bubble observed near the top wall
is caused by the elliptic instability of vortex cores, which results in a wavelength of the
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(a) (b)

Figure 4.5: Three-dimensional structures were identified using λ2 criteria, colored by span-
wise vorticity at different flow instances, for high Reynolds number (case BC5). Top-view
colored by ωz at t∗ = 1; (d) top-view colored by ωx at t∗ = 1.

order of the vortex size (mode A). This mode (mode A) occurs when three-dimensional
disturbances are amplified in regions of two-dimensional elliptical streamlines of counter-
rotating vortex pairs.[12] The flow structures that occur near the bottom wall are also char-
acterized by three-dimensionality that potentially arises due to the instability of flow arising
between two consecutive vortices. Short-wavelength hyperbolic instability (mode B) gen-
erally arises due to an unstable braid shear layer between two consecutive vortex structures.
Here, two-dimensional vortices become distorted in the spanwise direction soon after the
vortex pairing and eventually break up into small-scale vortices, and the related structure
(mode B) maintains a shorter spanwise wavelength than those amplified through mode A.

4.4 Coherent flow features

4.4.0.1 Shear layer shedding characteristics in bluff body wakes

DMD analyses are conducted to understand the shear-layer instability mechanism further
and identify the coherent structures more clearly. The method proposed by Schmid [31] is
used for analysis, which is based on the snapshots for decomposing the fluid structures.

Initially, the DMD algorithm is applied to three-dimensional vertical velocity data on a
sub-domain closer to the bluff body. The details of the time step, duration, and the number
of snapshots for all the cases are tabulated in table 4.1. The total number of snapshots
selected is large enough to ensure the DMD results converge. The obtained results for case
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Figure 4.6: Three-dimensional DMD analysis for case BC5. (a) Ritz circle; (b) growth
rate vs. frequency; (c) leading modes based on amplitude values; (d) leading modes based
on norm values; (e) leading modes based on growth rate values.
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Case tstart tfinal ∆t
No. of

snapshots σmax
frequency

(fσmax)
BC3 1.6 2.6 0.01 100 0.0163 4.43

BC4B 1.0 2.5 0.01 150 0.0714 7.33
BC5 1.87 2.60 0.01 73 0.0142 9.34

BC5(3D) 1.87 2.60 0.01 73 0.0132 9.34

Table 4.1: Dynamic mode decomposition analysis

BC5 are shown in figure 4.6. The Ritz values presented in figure 4.6 (a) show the stability of
the modes. Here, the real and imaginary parts of the eigenvalues are taken as horizontal and
vertical axes, respectively. Nearly all the values are clustered near the unit circle, hinting
that the dynamics settle on an attractor. The growth/decay rate and frequencies of different
modes are shown in figure 4.6 (b). Now, the mode having a frequency nearly equal to the
peak frequency (fv) is searched from the DMD analyses. Interestingly, the extracted peak
frequency of vertical velocity (fv) from the spectra analysis matches with DMD mode with
the highest growth rate, as shown in figure 4.6 (b).

The contours of DMD modes obtained from the analysis are now arranged according to
various criteria. The contours of the first three modes sorted based on amplitude, norm, and
growth/decay rate are shown In figure 4.6 (c), (d), and (e), respectively. The highest mode
obtained using amplitude, norm, and growth/decay rate are indicated by the subscript A, N,
and σ, respectively, as shown in figure 4.6 (b). Coherent structures with alternate positive
and negative regions can be seen in the contours. For simplicity, in many studies, the
modes are sorted based on the value of amplitude. However, a mode with initially high
amplitude can generally decay fast (first mode in figure 4.6 (c)). Also, such a method
can ignore a mode with a relatively low amplitude but fast growth. In the second DMD
mode, the frequency is equal to the shedding frequency. The third mode displays a similar
distribution to the first two but with a lower frequency.

In figure 4.6 (d)), the modes are sorted Frobenius norms values. Here, the mode with
the shedding frequency is not among the first three modes derived by norm calculation
(figure 4.6 (d)). It is interesting to note, using norm criteria, the first two modes are large-
scale structures with relatively low frequency. The third mode is the same as the first mode
obtained using amplitude criteria. The first three modes with the highest growth rate are
shown in (figure 4.6 (e)). The first two modes’ frequency is nearly equal to the shedding
frequency obtained from the spectra analysis. Here, the third mode is near the second
harmonic of the fundamental shedding frequency. In comparison with the first two modes,
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Figure 4.7: Two-dimensional DMD analysis for three Reynolds numbers (cases BC3,
BC4B, and BC5). (a− c) growth rate against frequency; (d) modes with the highest growth
rate.

the spatial scale of the third mode is relatively small. Hence, DMD analysis separated the
shear layer oscillations from the flow field using the growth rate criteria. Similar results are
obtained by repeating the DMD analysis with spanwise vorticity data.

DMD analyses are repeated for two-dimensional data in the x-y plane (at the center
of spanwise locations and full domain) obtained from the three-dimensional simulations
for cases BC3, BC4B, BC5. The two-dimensional DMD analysis is nearly identical to
the three-dimensional DMD analysis, as shown in table 4.1. The growth rate of different
modes is obtained from the DMD analysis and plotted in figure 4.7(d). For all the cases,
fv value matches with DMD mode with the highest growth rate, as shown in figure 4.7.
Here, all the leading modes exhibit a positive growth rate. For all the cases, alternate
vertical velocity fluctuations are observed in the leading mode (figure 4.7 (d)). The shear
layer oscillations in low Reynolds numbers (case BC3) are smaller and less developed than
those in higher Reynolds numbers. For cases BC4B and BC5, the leading mode tracks the
secondary shear layer vortex movement around the primary vortex. Due to the complex
flow field from multiple vortices induced in bluff body wake, further investigations on the
streamwise vorticity induction using the DMD method failed.
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Figure 4.8: An illustration of the flow feature near the wall over the top wall.

4.5 Vorticity generation mechanism

Finally, we focus on the formation of wall vortices and the disintegration mechanism of
the three-dimensional structures observed during the deceleration phase. It is likely that
the generation and roll-up of near-wall vorticity is via a two-dimensional parent-offspring
mechanism. Figures 4.8 and 4.9 illustrates the top and bottom wall vortex formation se-
quence. As evident from the simulation snapshots (4.1), initially, during the acceleration
phase, the thickness of the vorticity sheet near the top wall (positive ωz(t)) increases with
flow time (figure 4.8(a1) and (a2)). The advection and upward propagation of the primary
vortex and shear layer structures cause the lifting of the near-wall vorticity sheets similar
to the ’rebound’ mechanism suggested by Harris and Williamson [91], as depicted in fig-
ure 4.8(a3). Convective vortices induce a region of adverse pressure gradient in the bound-
ary layer in front of the moving vortex. Here, if the primary vortex is close enough to the
wall and stays for a sufficient period, the lifting of vortex sheets and vortex-induced bound-
ary layer separation is observed. During the deceleration phase (figure 4.8(a3)), patches
of negative vorticity are formed near the wall. The separation occurs in the form of a
small-sized eddy, which is of the opposite rotation to the primary convective vortex. Fur-
ther deceleration leads to the roll-up of vorticity sheets and detachment of vortices from
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Figure 4.9: An illustration of the flow feature near the bottom wall.

the top-wall surface and ultimately provokes an eruption (figure 4.8(a4)). However, in
two-dimensional simulations, the outbreak of small-scale vortices does not occur. Due to
the mutual action of moving vortices and temporarily varying boundary layers, a gamut
of complex and separation effects are observed in the wall proximity. The vortices detach
from the wall, culminating in fluid ejection from the wall region.

A schematic of the sequence of events near the bottom-wall proximity is depicted in
figure 4.9. The bottom-wall vortex generation mechanism is similar to the abovementioned
top-wall separation mechanism. However, the flow structures are complicated by the curva-
ture of the wall-attached bluff body. Here, the motion of the primary vortex causes the lift-
ing of the near-wall vortices, as sketched in figure 4.9(b1). Opposite-signed vorticity rolls
up near the curvature side of the bluff body immediately underneath the negative-signed
primary vortex(SL0). An increase in the vertical flow component causes the convection
of wall-generated positive vorticity (WB1) into the core flow. This is evidenced by the
propagation of newly formed positive vorticity. When the convected vortices are too close,
merging/pairing of positive vortices is observed (figure 4.9(b2)). With further decelera-
tion, intense, complex local interactions between merged positive wall-generated vorticity
with near-wall negative vorticity are observed. The passage of near-wall vortices and in-
teractions with opposite sign vortices cause the formation of new small-scale structures
(figure 4.9(b4)). For all cases considered, three-dimensional effects are observed during
the late stages of the decelerating phase. Further new simulations with extended steady or
accelerating phases might manifest three-dimensional evolution in the early pulse phase.
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As observed in many experiments and numerical studies, the flow transition from two-
dimensional to three-dimensional can be related to the generation of streamwise vorticity.
In order to understand the formation of three-dimensional structures, the incompressible
form of the vorticity equation is considered analyzed.

Dωx

Dt
=

stretching︷ ︸︸ ︷
ωx

∂u

∂x
+

tilting︷ ︸︸ ︷
ωy

∂u

∂y
+ ωz

∂u

∂z
+

diffusion︷ ︸︸ ︷
ν∇2ωx . (4.1)

In equation 4.1, the first term on the right side represents the production of ωx due to the
stretching of vorticity-line elements. The following two terms describe the vortex line
‘tilting’. The last term in equation 4.1 is the diffusion of vorticity due to viscous effects.
For three-dimensional flows, equation 4.1 can be rewritten as:

∂ωx

∂t
=

advection︷ ︸︸ ︷
−u

∂ωx

∂x
− v

∂ωx

∂y
− w

∂ωx

∂z
+

stretching︷ ︸︸ ︷
ωx

∂u

∂x
+

tilting︷ ︸︸ ︷
∂v

∂x

∂u

∂z
− ∂w

∂x

∂u

∂y
+

diffusion︷ ︸︸ ︷
ν∇2ωx . (4.2)

The production of ωx by tilting can occur through two mechanisms. The first mechanism
(Ti1) is due to the tilting of ∂v

∂x
by the spanwise shear (∂u

∂z
). The second mechanism (Ti2)

is the tilting of ∂w
∂x

by the wall-normal shear (∂u
∂y

). Hence, as evident from equation 4.2, the
spanwise end-conditions (tilting terms) significantly affect the three-dimensional vorticity
mechanism. It is important to note that the 3D simulations are performed using periodic
boundary conditions to eliminate the boundary layer effects from the side walls. Such
boundary conditions are intentionally imposed to match the inflow analytical boundary
conditions obtained by neglecting the spanwise velocity variation. As revealed in several
experimental studies [46, 92] in the past, the end conditions in the wind/water tunnel affect
the coherent structures. Hence, the absence of a side-wall boundary layer changes the three-
dimensional dynamics, which could be different from that obtained with a no-slip side-
wall boundary condition. Due to the strain field created by the evolving spanwise vortex
array and the wall effect, the vortices initially undergo tilting resulting in the formation
of streamwise vorticity. The net streamwise vorticity production further amplifies by the
vortex stretching process.

In order to analyze the contribution of each term in equation 4.2, the temporal variations
of stretching and tilting terms at points near the top wall (x∗ = 6.7, y∗ = 2.34) and bottom
wall (x∗ = 2.26, y∗ = 0.167) are plotted in figure 4.10(a) and 4.10(b) respectively. These
points are inside the three-dimensional structures formed at the end of the deceleration pe-
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Figure 4.10: Temporal variation of streamwise vorticity generation in case BC5. (a)
stretching and tilting terms at a point near the bottom wall; (b) stretching and tilting terms
at a point near the top wall; (c) tilting components at a point near the bottom wall; (d) tilting
components at a point near the top wall.

riod. A substantial increase in tilting and stretching terms is observed during the end of the
deceleration phase, as evident in figure 4.10(a) and 4.10(b). Deceleration induces velocity
variation along the streamwise direction, affecting the stretching term. The strong presence
of stretching terms is observed over the crippling parts of vortices. The tilting mechanism
can be seen as a result of two components (equation 4.1). Figures 4.10(c) and (d) show the
temporal evolution of the tilting term components at points near the top and bottom walls,
respectively. In each flow phase, s difference in temporal evolution is observed for each
tilting component. During the initial stages, the major contributors are the spanwise vortic-
ity and the spanwise shear. Due to deceleration, the spanwise vorticity magnitude reduces
in the later flow phase while the wall-normal vorticity and wall-normal shear components
increase. Simultaneous to three-dimensional breakdown, a spike in stretching and second
tilting term components can be identified.
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4.6 Summary

Three-dimensional transition in an unsteady wake of the body offering a strong spatial
gradient closely relies on the mean inflow velocity and temporal parameters. Unlike a two-
dimensional simulation producing advection of the vortex flow features, three-dimensional
simulations indicate a multitude of transition mechanisms inducing spanwise oscillations.
The major deviation is through the decay of the streamwise velocity during the deceleration
phase creating flow features susceptible to the spanwise oscillation growth.

An in-depth analysis of the spatial features of the underlying flow features is carried
out through the λ2 method. Though the two-dimensional vortex flow features provide a
preliminary picture of the transition mechanism developed in the bluff body wake, the
core structure of the flow field is identified through the λ2 method. Vortex flow structures
identified distinguish two different instability mechanisms induced inside the flow field
and are closely related to the vortex-pair nature. Due to the strong spatial gradient, the
leeward side instigates higher boundary layer vortices, which are shed due to the shear
layer vortex movement. Further, these vortex structures pair, creating an unstable braid
region producing a series of small three-dimensional loops with lower wavelengths (mode
B). Simultaneously, decelerating high-velocity region induces top boundary layer vortices
to eject into the flow, forming a counter-rotating vortex pair which later transit into high
wavelength instability (mode A).

The three-dimensional coherent flow features are investigated through a reduced-order
modeling approach. Important mode shapes, frequencies, and growth/decay rates were
identified using dynamic mode decomposition. Modes are arranged based on amplitude,
norm, and growth rate values. The dominant mode, as determined by amplitude criteria,
shows a high decay rate, whereas the dominant mode, as determined by norm value, is a
large-scale structure with relatively low frequency. With the DMD analysis, the primary
and secondary harmonics associated with the shear-layer instability are obtained, and flow
characteristics are separated from the flow field using the growth rate criterion.

Finally, the growth of the three-dimensional oscillation is analyzed based on streamwise
vorticity formation providing insight into the three-dimensional disintegration mechanism
and aiding in a better understanding of vorticity dynamics. Through a detailed analysis
of the temporal growth of each term in the streamwise vorticity generation equation, it
identifies the development of the tilting mechanism during the deceleration phase, which is
further amplified by the stretching term during the zero-mean inflow phase.

54



Chapter 5

Wake transition in a diverging channel

5.1 Introduction

This chapter discusses flow features evolving in a diverging channel under a trapezoidal
variation of the mean inflow condition. The flow parameters are selected based on the
experiments of Das et al. [2] and extended to isolate the effects of varying mean inflow
velocity and deceleration parameters. Further, the analysis of the three-dimensional vortex
disintegration evidenced three types of flow evolution. The simulation cases are categori-
cally placed into three different sets based on the non-dimensionalized three-dimensional
disintegration time. The first type of flow shows a two-dimensional nature with the vortex
flow features disintegrating through a diffusion process. In the second category, the coher-
ent structures indicate a stationary nature, and during the zero inflow phase, the counter-
rotating vortex pair leads to the development of an elliptically unstable nature. Later, a
locally chaotic structure is formed in the initial diverging section. The flow features in the
third group show a convective nature, and the three-dimensional instability is formed in
the decelerating phase. The chaotic structure formed during the deceleration phase also
evidences characteristics of the merging phenomenon.

Along with a detailed description of the three-dimensional flow evolution and classi-
fication, the current chapter also focuses on the development of the spanwise circulation,
the growth of boundary layers, and their inflectional nature. Discussions on the secondary
instability nature and coherent structures are introduced and are detailed in the subsequent
chapter. Specific information on the computational domain and numerical parameters are
given in section 5.2. Common traits of the flow features developed in the diverging channel
flow and the classification methodology adopted are discussed in section 5.3. Section 5.4
outlines the flow features developed in an advecting and decaying two-dimensional case
(Type I). The evolution of a locally turbulent three-dimensional structure in the second cat-
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Figure 5.1: Computational domain along with boundary conditions: (a) three-dimensional
view of the computational domain, (b) dimensions of the diverging section.

egory of cases is detailed in section 5.5. Section 5.6 provides a detailed picture of flow
features developing in spatially turbulent cases (Type III). Finally, a consolidation of the
flow evolution and the three-dimensional nature of flow features is presented in section 5.7.

5.2 Computational domain and simulation parameters

5.2.1 Computational Domain

A sketch of the computational setup of flow in a diverging channel is shown in figure 5.1.
The computational domain chosen for this study is a small segment of the experimental
setup employed by Das et al. [2]. Here, X , Y , and Z are streamwise, wall-normal, and
spanwise distances, respectively. In the simulation, the computational domain has a length
of 1.2 m, a width of 0.142 m, which is equal to half the width of the experimental section,
and a height of 0.15 m, as illustrated in figure 5.1(a). The embedded body section has a
height of 0.07 m at the constant channel section. After a length of 0.3464 m, the edge
starts to curve along an arc with a radius of 0.1 m. Later, the curve joins smoothly to the
diverging section with an angle of depression 6.2◦ (figure 5.1(b)). Similarly, the end of the
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Case
Up t0 t1 t2 ts Red Reh Reδs t∗3D(m/s) (s) (s) (s) (s)

A1 0.1372 0.6 2 3.00 2.15 8381 10976 750 –
A2 0.1372 0.6 2 5.00 2.55 4840 10976 810 –
A3 0.1372 0.6 2 8.00 3.15 3422 10976 861 –
B1 0.1830 0.8 1 1.55 1.18 13052 14640 544 –
B2 0.1830 0.8 1 2.33 1.50 8393 14640 613 –
B3 0.1830 0.8 1 5.00 2.25 4840 14640 865 –
C1 0.2745 1.2 2 2.83 2.09 13013 21960 1449 3.67
C2 0.2745 1.2 2 4.00 2.21 8383 21960 1530 1.58
C3 0.2745 1.2 2 8.00 2.48 4840 21960 1707 0.53
D1 0.3203 1.4 2 3.17 2.11 11839 25624 1666 2.26
D2 0.3203 1.4 2 4.08 2.21 8879 25624 1694 1.29
D3 0.3203 1.4 2 9.00 2.46 4840 25624 2020 0.38

Table 5.1: Simulation parameters (Rea = 10822). The boundary layer thickness (δs) is
calculated over the separation point of the diverging channel.

diverging part joins fluidly with the bottom wall of the channel.

The no-slip boundary condition is enforced on both top and bottom walls for devising
identical experimental setup conditions in the computational domain. A time-varying inlet
condition based on the analytical solution (equation 2.8) of trapezoidal mean flow variation
is imposed at the inlet of the computational domain. The free-slip condition is applied
to both the right and left boundaries. Similar to the bluff body case, the one-dimensional
advective outflow equation is implemented as the exit boundary condition given as:

∂u

∂t
|X=lx + Uc

∂u

∂X
|X=lx = 0. (5.1)

Where the mean velocity of the inlet velocity profile is taken as the advection velocity (Uc)
and lx is the domain length in the streamwise direction.

5.2.2 Physical and numerical parameters

In this chapter, flow features are illustrated using non-dimensional spatial scales. Stream-
wise distance is non-dimensionalized as x = X−Xs

hb
, where hb is the embedded body height

at the inlet and Xs denote the start of the diverging section (Xs = 0.3464). Wall-normal and
spanwise distances are non-dimensionalized by using the body height defined by y = Y

hb

and z = Z
hb

respectively. As in the experiments of Das et al. [2], the working fluid is se-
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lected to be water with a kinematic viscosity (ν) of 10−6 m2/s. The parameters provided
below are used to analyze the flow dynamics:

Reynolds number:

Reh =
Uph

ν
. (5.2)

Acceleration Reynolds number is defined as:

Rea =

√
ah3

ν2
. (5.3)

where h is the inlet channel height, and a is the acceleration
(

Up

t0

)
. Similarly, for varying

deceleration cases, a deceleration Reynolds number is defined by:

Red =

√
dh3

ν2
, (5.4)

here, d is the deceleration
(

Up

t2−t1

)
. In the present work, the Reynolds numbers based on

the viscous length scales are defined as follows:

Reδ =
Upδ

ν
and Reδ∗ =

Upδ
∗

ν
, (5.5)

where, δ and δ∗ represents boundary layer and displacement thicknesses respectively. Cir-
culation of vortices for a particular time instance is calculated by: Γωz =

∫∫
AΓ

ωz dA.
Here, the area AΓ is set appropriately to determine the circulation for top and bottom vor-
tex flow features while omitting the wall boundary region (as depicted in figure 5.1(b)), and
ωz indicates the spanwise vorticity

(
ωz =

∂v
∂X

− ∂u
∂Y

)
. Similar to other vortex flow evolution

studies [93, 94], the vortex Reynolds number based on spanwise circulation is estimated
by:

ReΓω,z =
Γωz

ν
. (5.6)

Table 5.1 shows the simulation parameters for 12 different flow cases. Each case is
assigned an alpha-numeric code to identify its simulation parameters. Of 12 simulations,
cases with identical mean inflow velocity (Up) are marked by alphabets A, B, C, and D, re-
spectively, for low, moderate, high, and very high inflow velocities. In addition, numerical
letters indicate cases with different deceleration parameters and the same Reynolds num-
ber; numbers 1, 2, and 3 refer to high, moderate, and low deceleration. For all the cases,
the acceleration Reynolds number (Rea) is kept constant at 10822. The Reynolds number
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Figure 5.2: Streamwise velocity variation in the inviscid region along the streamwise di-
rection (y = 1.4286, z = 1.0)

based on the boundary layer thickness (Reδs) for all cases at separation time is given in
Table 1.

As a measure of the spatial pressure distribution, the variation of the streamwise ve-
locity component in the inviscid region (Ux) along the streamwise direction is shown in
figure 5.2. The velocity profile is shown at half the constant velocity period. The velocity
variation in the diverging section (from X = 0.4 to X = 1.06) can be approximated by
using the relation:

Ux = αDx
βD , (5.7)

where the αD and βD are constants and vary with Reynolds number (Reh). Since the
acceleration and constant inflow velocity period remain the same, αD and βD remain the
same for varying deceleration cases. In figure 5.2, the continuous line represents the fitted
curve, while the symbols represent the velocity obtained from the simulation. The symbols
are placed at a distance of 15 grid point spaces between each. The obtained values for αD

and βD for all cases are marked in figure 5.2.

The following non-dimensionalized time scales are used to distinguish flow events. At
first, flow time is non-dimensionalized by t2 to differentiate between both the pulse phase
and the zero mean inflow period (t∗ = t

t2
). In order to compare different deceleration cases,

a non-dimensionalized time scale is identified as t∗d = t−t1
t2−t1

. Also, a critical flow time as-

sociated with three-dimensionally unstable cases t∗3D
(
t∗3D = t3D−t1

t2−t1

)
is identified from the

t3D, physical time at which a visible secondary instability initiates in three-dimensionally
unstable cases. The t∗3D observed for cases showing three-dimensional disintegration is
provided in table 5.1. In low and moderate Reynolds number cases, the flow stays in the
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two-dimensional regime; hence, the t∗3D is absent for these cases.

5.2.3 Grid independence and numerical validation

(a) (b)
δ

(c)

Figure 5.3: Computational model validation: (a) Streamwise velocity variation in stream-
wise direction (before separation (t∗ = 0.631)), (b) streamwise velocity variation in wall-
normal direction (after separation (t∗ = 0.946)) and (c) experimental comparison of ts.

The grid-independent analysis is performed by comparing the evolution of streamwise
velocity (Case D1) for different grids with elements of 961 × 193 × 181 (grid A), 1501 ×
301 × 289 (grid B), and 1921 × 385 × 361 (grid C). Figure 5.3(a) shows the streamwise
velocity through the central axis (y = 1.3143, z = 1.0) of the diverging channel at the
end of the constant velocity phase for different grid sizes. The velocity component is non-
dimensionalized by the maximum velocity magnitude for the flow instance

(
u∗ = u

umax

)
.

The velocity profiles for three different grid sizes are shown in figure 5.3(b) following the
onset of initial instability at x = 0.5, z = 1.0. Grids A and B differ by approximately
1.5%, three times greater than grids B and C. The root mean square deviation (RMS) of
the streamwise velocity component (urms) of the velocity field during the constant mean
inflow phase is calculated as:

urms =

(
1

N

l=N∑
l=1

(u′(l))2

)1/2

, (5.8)

where the velocity perturbation (u′) is calculated by:

u′(l) = u(l)− umean, and umean =
1

N

l=N∑
l=1

u(l), (5.9)

For N snapshots belonging to the constant velocity phase. A comparison of the root mean
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square deviation of the streamwise velocity component developed over the constant mean
inflow period reveals a difference of 8.4% between grids A and B, while the difference
between grids B and C is below 4%. Consequently, grid B is selected for the numerical
simulations due to the accuracy and computational economy. Based on time step depen-
dency analysis with time steps ranging from 1×10−3s to 1×10−5 s, a time step of 1×10−4 s
(CFL = 0.02) was found to be computationally and accurately affordable.

Comparison of time of flow separation (ts) with the results of Das et al. [2] (fig-
ure 5.3(b)) validates the computational method. The previous experimental works incorpo-
rated a two-dimensional simulation of vortex evolution to calculate flow separation time.
Here, by taking the flow time and position of zero wall shear stress, we determine the flow
separation time and separation point. All the cases show an excellent match with the re-
ported experimental values (less than 8%). An experimental and simulation comparison of
the flow field for a high-velocity case is provided in section 5.3.

5.3 Initial Observations and Flow Classification

Figure 5.4: Flow evolution at low Reynolds number case (Case A3): (a) boundary layer
thickening, (b) initial oscillation, (c) vortex formation, (d) vortex formation top wall,
(e) vortex detachment, and (f) interaction of top and bottom wall vortices.

Initially, the contour of non-dimensional spanwise vorticity
(
ω∗
z = ωzh

Up

)
at various flow

instances is used to analyze the evolution at low and high Reynolds number cases. Fig-
ure 5.4 illustrates the contours of spanwise vorticity at six flow instances for low-Reynolds
number (case A3). The boundary layer thickness increases temporally due to the tran-
sient inflow boundary condition (figures 5.4(a) and 5.4(b)). The flow generally remains at-
tached to the channel surface during the acceleration and constant velocity phases. Further,
the flow undergoes two-dimensional inflectional flow instability during the deceleration
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(a) (b)

Figure 5.5: Flow evolution at the high Reynolds number (Case C1) compared with the
experimental snapshots of Das et al. [2] (a) two-dimensional snapshots, and (b) three-
dimensional snapshots.

phase. Associated vortex formation occurs either during deceleration or zero mean veloc-
ity phases, as reported in previous experiments. The formation of the separation bubble is
evident in figure 5.4(b) at the initial part of the diverging section (x = 0 to 2). Initial insta-
bility amplifies with the flow time, resulting in shear layer roll-up (figure 5.4(c)). Due to
the reverse velocity profiles formed near the channel surface during the deceleration phase,
the shear layer vortices advect into the upstream region as the flow progresses.

Analogous to the bottom wall-flow features, the oscillation developed over the top wall
moves upstream during the deceleration phase (figure 5.4(d)). As a result of the primary
negative vortex developed during deceleration, a secondary positive vortex is induced from
the bottom wall. During the zero mean inflow phase, vortices eject from the top and bottom
channels as a result of the mutual induction of vortex pairs (figure 5.4(e)). Further, both
top and bottom wall vortices diffuse during the zero inflow phase (figure 5.4(f)). The ini-
tial development of flow instability in the case of a high Reynolds number is qualitatively
similar to the low Reynolds number case. At high Reynolds numbers, characteristic fea-
tures such as boundary layer thickening, inflectional instability, and shear layer roll-up are
observed. However, the subsequent evolution of vortices varies depending on the Reynolds
number and deceleration rate. The structures exhibit secondary instability at high Reynolds
numbers, and subsequently, the flow becomes turbulent. The spreading and development
of three-dimensional structures differ with the deceleration rate.

Figure 5.5 shows the comparison of flow evolution in numerical simulation with exper-
imental results of Das et al. [2]. At t = 3.13 s, dye visualization manifests the formation of
vortices in the diverging part, and similar flow formations are observable in the spanwise
vorticity contours of simulation results. Vortex structures spread locally over the initial
diverging section (x = 0.5 to 2). The maximum pressure gradient point also lies in the
initial diverging section (x ≈ 0.46). The upward movement of vortices is apparent dur-
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Figure 5.6: Velocity profiles across the separation point: (a) bottom wall (case A3,
x = 0.0615), (b) bottom wall (case C1, x = 0.0635), (c) top wall (case A3), and (d) top
wall (case C1).

ing the deceleration period. Simultaneously coalescence of multiple vortex structures is
also noticeable. At t = 5.6 s, the spanwise vorticity contour of numerical simulation also
demonstrates the secondary instability formations. However, a dense cloud of dye can
only be seen in the experimental visualization. A three-dimensional development of the
vortex interaction makes dye visualization challenging due to the difficulty in identifying
individual vortex structures. Localized turbulent vortex formations are observed near the
maximum pressure gradient region of the diverging section. Similar to the dye visualiza-
tion images, the onset of secondary instability over spanwise vortex structures at the end
of the constant area section of the channel is visible in the three-dimensional snapshot (fig-
ure 5.5(b)). The spanwise oscillation evolution is evident, indicating an onset of secondary
instability in flow evolution.

As a result of the APG conditions, inflectional profiles develop, which can eventually
lead to boundary layer separation, instability, or both. Figure 5.6 compares the inflectional
nature of flow instability associated with the two-dimensional primary instability for low
and high Reynolds number cases. Figures 5.6(a) and (b) indicate the temporal evolution of
instantaneous streamwise velocity profiles developed over the bottom wall in low Reynolds
number (case A3) and high Reynolds number (case C1) cases, respectively. During the
acceleration phase, the velocity profile is close to the wall surface without any reverse flow
region. Here, the velocity profiles are similar to the wall-jet profiles during the deceleration
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phase. Depending on the Reynolds number and the deceleration rate parameters, reverse
flow velocity profiles are observed at specific locations and instances. Since both cases
differ in deceleration characteristics, the profiles show slight variations in the initial phase
(t∗ = 0.5).

The flow enters into the deceleration phase resulting in a flow separation in case A3,
while case C1 lies in the constant velocity phase. A strong adverse pressure gradient de-
velops when the inflow decelerates, resulting in a reverse flow region. At t∗ = 0.8, both
cases indicate a reverse flow region, while for case A3, the profile is highly inflectional.
In the high deceleration case (case C1), the profile is highly inflectional, close to the end
of deceleration (t∗ = 0.95). The extent of the reverse flow zone declines in the zero mean
inflow region (t∗ = 1.15), and the velocity profiles also alter due to the spanwise vortices
passing through the selected point (t∗ = 1.5). The velocity profile developed over the top
wall is illustrated in figures 5.6(c) and (d) for cases A3 and C1, respectively. Similar to
the bottom wall velocity profiles, the top wall velocity profiles follow the same evolution
pattern. Top wall velocity profiles tend to show a higher boundary layer region than bottom
wall velocity profiles.

Based on secondary instability features and secondary instability initiation time (dis-
cussed in detail in the subsequent sections of the chapter), the simulation cases are clas-
sified into three categories. A schematic representation of the development of vortices at
two critical flow instances in each category is shown in figure 5.7. The type I category
represents low and moderate inflow velocity cases, which do not exhibit spanwise oscil-
lations and remain two-dimensional. Mutual induction of primary and secondary vortices
evolved during the flow progression is indicated in the right inset of figure 5.7(a). Vortex
pairs stretch, diffuse, and do not exhibit three-dimensional oscillations when in motion.

The second category, type II, a secondary vortex that emerges from the bottom bound-
ary in the zero mean inflow phase (after the deceleration phase, mean velocity of the inflow
velocity profile is zero), exhibits secondary instability and three-dimensional oscillations.
Vortex evolution in a locally unstable three-dimensional case (type II) is illustrated in fig-
ure 5.7(b). Here, the value of secondary instability initiation time (t∗3D) is significantly
higher than one. In a rapidly decelerating case, as depicted in the left inset of figure 5.7(b),
the flow generally takes a route similar to the two-dimensional instances during the ini-
tial stages. Flow structures evolve near the separation bubble and move upstream during
the zero mean inflow stage. However, shear layer vortices undergo secondary instability,
characterized by a spanwise oscillation with a wavelength λ, as indicated by the right inset
figure in figure 5.7(b). The spanwise oscillation intensifies with flow time, culminating in
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Figure 5.7: Illustration of flow evolution for: (a) type I: advecting and decaying two-
dimensional vortices, (b) type II: local instability formation, and (c) type III: spatially un-
stable flow scenarios.
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(a)

(b)

Figure 5.8: Temporally averaged streamwise vorticity in three-dimensional cases belong-
ing to (a) locally unstable flow evolution cases (type II), and (b) spatially unstable flow
evolution cases (type III).

a locally turbulent structure.

In the third category, the flow shifts from two-dimensional to three-dimensional during
the deceleration phase (t∗3D < 1). The extended deceleration period induces continuous
shedding of vortex structures from the separation bubble and advection of the vortex struc-
tures. Figure 5.7(c) illustrates the development of spatially unstable flow with multiple
vortices formed over the bottom wall. Due to the streamwise movement of primary vor-
tices over diverging sections, vortex structures downstream merge to form a large structure,
further instigating three-dimensional flow characteristics. Advecting three-dimensional
structures from the separation bubble and the associated three-dimensional vortices cre-
ates turbulent flow in the downstream diverging region.

Analogous to the bluff body wake, the contour of streamwise vorticity
(
ωx = ∂w

∂Y
− ∂v

∂Z

)
can reveal the onset and spread of turbulence. A temporally averaged two-dimensional
snapshot of non-dimensional streamwise vorticity

(
ω∗
x = ωxh

Up

)
for three-dimensional cases
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is presented in figure 5.8. For N number of snapshots, a temporally averaged streamwise
vorticity is obtained by:

ω∗
x, avg =

1

N

l=N∑
l=1

ω∗
x(l).

Flow field data between flow instances t∗st taken as the first snapshot and t∗fi taken as the
final snapshot are used to perform temporal averaging, and respective values for each case
are given in figure 5.8. For locally unstable cases (cases C1, C2, D1, and D2), a time-step
of 0.05 s is used, while for spatially unstable cases, a time-step of 0.1 s is used (cases C3
and D3). The first category of cases (Type I) represents two-dimensional spanwise vortices
that advect and decay in the channel region. Therefore, a temporal average of streamwise
vorticity does not yield valid results for this category (cases A1 - A3 and cases B1 - B3) and
is hence excluded in figure 5.8. The second category of cases illustrates the flow features
evolving near the separation region. In these cases, the spanwise flow formations remain
confined to the entrance of the diverging area and generate three-dimensional oscillations
on the secondary vortex structures during the zero mean flow stage. The formation of
streamwise vorticity also remains confined to a narrow region near the separation bubble.
The third flow category (type III) involves periodic vortex shedding, secondary instability,
and vortex merging. Flow features develop near the separation region and advect down-
stream during the deceleration phase. Such cases manifest three-dimensional oscillation
in the deceleration phase and disintegrate at a later flow instance. The streamwise vortic-
ity formed over the diverging section is indicative of turbulent advective flow for the third
category, as shown in figure 5.8(b). Near the top wall, streamwise vorticity production
indicates similar three-dimensional disintegration of top wall vortex structures.

5.4 Type I: advecting and decaying two-dimensional vor-
tices

We now investigate the effect of Reynolds number, and deceleration rate, on vortex flow
evolution characteristics in the first flow category. Figure 5.9 depicts the temporal variation
of the Reynolds number based on the displacement thickness calculated using the velocity
profile over the separation point for cases belonging to the first category. As the flow ac-
celerates, a thin boundary layer appears over the bottom wall. Broadening of the boundary
layer during the change in the mean inflow velocity phase causes an increase in displace-
ment thickness. The displacement thickness remains nearly constant during the constant
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Figure 5.9: Temporal evolution of Reynolds number based on displacement thickness for
advecting and decaying cases (filled circle: ts, open square: tv) over the separation point.

velocity phase (figure 5.9). For high deceleration Reynolds number cases (cases A1 and
B1), deceleration happens in a short period, resulting in a significant increase in displace-
ment thickness. During the zero mean inflow phase, the reverse flow region remains con-
stant, manifesting a constant Reδ∗ .

Both low and moderate Reynolds number cases show identical flow evolution and are
evidenced by the displacement thickness variation. A gradual increase in displacement
thickness for low deceleration cases (cases A3 and B3) is attributed to the more extended
deceleration period. The time at which wall shear stress is zero (ts) and vortex formation
time (tv) are marked with filled circles and hollow square symbols, respectively. Figure 5.9
shows that two-dimensional flow separations occur in the Reδ∗ band of 420 to 640, and
vortex formation occurs between 560 and 780. During the zero mean inflow phase, the
vortices pass across the separation point, causing the abnormality in the temporal variation
of displacement Reynolds number.

The three-dimensional vortex structures developed in zero mean inflow phase (t∗ = 2.0)
for advecting and decaying cases exhibit distinct two-dimensional evolution characteristics
(figure 5.10). The initial flow develops along the general route of broadening boundary
layer thickness, inflectional streamwise velocity profile, followed by flow separation. In
figure 5.10, the most amplified vortex pair formed due to the inflectional instability is la-
beled by BV and bv for primary and secondary vortices, respectively. Vortex structures
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Spanwise vortex roll up in two dimensional (type I) flow evolution cases:
(a) case A1, (b) case A2, (c) case A3, (d) case B1, (e) case B2, and (f) case B3.

advect upstream due to the reverse velocity in the boundary layer during the zero mean
inflow phase. In high and moderate deceleration cases (cases A1 and A2), the vortex struc-
tures remain close to the bottom wall boundary (figures 5.10(a) and (b)). The induced
angular velocity by the vortex pair shows to be more substantial for moderate decelera-
tion (case A2) compared to the high deceleration case (case A1), pushing the vortex pair
towards the top wall. The flow evolution in the low deceleration case (case A3) shows
multiple vortex formations in the diverging and the constant channel region. The extended
deceleration period leads to the development of multiple vortices, advecting upstream in
later flow instances.

Flow evolution in the moderate Reynolds number cases (cases B1, B2, and B3) is qual-
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(a) (b) (c)

Figure 5.11: Temporal evolution of vortex core in advecting cases: (a) case A1 (first data
point t∗ = 1.33 and last data point t∗ = 3.833), (b) case A2 (t∗ from 1.15 to 2.4), and
(c) case A3 (t∗ from 1.375 to 2.8). The temporal position of the data point in the evolution
window is indicated by symbol size.

itatively similar to the low Reynolds number case. Compared to low Reynolds number
cases, the flow structures in moderate Reynolds number cases lie in the initial stages. Fig-
ures 5.10(d) and (e) reveal the presence of a noticeable vortex pair at x = 0, which is
comparable to the respective deceleration cases in the low-flow Reynolds number regime.
The vortex structures are well developed in the low deceleration case (case B3), similar to
case A3. As shown in figure 5.10(f), vorticity rolls form in the diverging and constant chan-
nel regions. In case B3, the streamwise location of the magnified vortex structure lies in the
diverging section (between x = 1 to 2), as in case A3. The vorticity patch in figure 5.10(f)
indicates that the vortex is beginning to form over the top wall signifying a higher vortex
formation on both the top and bottom walls during the dead inflow phase.

The advective nature of the vortices and their influence on the deceleration rate are
quantified by tracking the vortex core trajectory. The core of the vortex is identified by
minimum and maximum vorticity for primary (BV ) and secondary vortices (bv), respec-
tively. Figure 5.11 shows the temporal evolution vortex core for the primary negative vortex
and the secondary positive vortex for cases A1, A2, and A3. The time-step between the
data points for negative and positive vortices is distinct within each case, which is marked
aside from the core positions in figure 5.11. In high deceleration events (case A1), the flow
evolution happens near the end of the constant channel region (between x = −0.4 to 0),
as shown in figure 5.11(a). Prior to being ejected into the core flow area, primary and sec-
ondary vortices developed over the bottom wall advect upstream. Increasing the decelera-
tion period causes the vortices to develop during the deceleration phase in the downstream
region. The vortex core position in figure 5.11(b) shows the advection of developed vor-
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Figure 5.12: Temporal evolution of (a) spanwise Reynolds number based on circulation,
and (b) maximum spanwise vorticity; for advecting and decaying cases (filled circle: ts,
open square: tv).

tices upstream during the early part of the zero mean inflow period in case A2. Vortex cores
moving upward are apparent in the low deceleration case (figure 5.11(c)). Contrary to the
high deceleration case, the vortex pair moves closer to the top wall and interacts with the
top wall vortices in the low deceleration case.

To quantify vorticity generation, the temporal evolution of circulation-based Reynolds
number is presented in figure 5.12(a). The circulation within the channel region is calcu-
lated by considering a subdomain, as shown in figure 5.1(b). This small domain can char-
acterize both positive and negative vortex formations near the bottom wall while skipping
the boundary layer vorticities and avoiding interference from the top wall structures. The
stronger vortex flow features developed in the low deceleration cases (cases A3 and B3)
cause an increase in circulation during the deceleration period. For high deceleration cases
(cases A1 and B1), spanwise vortex roll-up is weaker compared to the low deceleration
cases, resulting in a flatter circulation Reynolds number curve. As the flow stage proceeds
into zero mean inflow, the primary vortex interaction over the channel surface leads to the
production of positive vortices. The generation of a positive vortex roll-up and subsequent
diffusion decay contribute to a decline in circulation during the zero mean inflow phase.

A quantitative analysis of the temporal evolution maximum spanwise vorticity magni-
tude of the primary vortex (BV) against non-dimensionalized deceleration time is provided
in figure 5.12(b). Vortex formation begins towards the end of the deceleration phase in
cases A1 and B1. During the zero mean inflow period, the primary vortex in cases A1 and
B1 reaches its maximum vorticity within a short time, as shown in figure 5.12(b). In low
and moderate deceleration cases, flow separation is achieved during the deceleration pe-
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Figure 5.13: Temporal evolution of (a) Reynolds number based on displacement thickness,
and (b) Reynolds number based on spanwise circulation; for locally unstable cases (filled
circle: ts, open square: tv).

riod, and the vorticity magnitude attains its maximum at the end of the deceleration phase.
Unlike the high deceleration cases, low deceleration cases attain maximum vorticity magni-
tude during the initial deceleration phase. All cases show a steady reduction of the vorticity
magnitude with an identical slope indicating the decay of vortex flow structures.

5.5 Type II: Locally evolving three-dimensional vortices

The growth of the boundary layer prior to inflectional instability is qualitatively the same
in type II cases as in type I. The temporal evolution of the displacement thickness based
on Reynolds number for high Reynolds number cases is depicted in figure 5.13(a). The
displacement thickness increases when the boundary layer broadens due to deceleration.
These cases exhibit flow separation in a Reδ∗ range of 840 to 1050, while vortex formation
occurs in a higher range of Reδ∗ (970 to 1170). It is evident that displacement thickness for
very high Reynolds number cases (cases D1 and D2) is much higher at the end of the de-
celeration phase than for high Reynolds number cases (cases C1 and C2). The generation
of vortices during the zero mean inflow period leads to an erratic variation in displace-
ment thickness. Similar to type I cases, the circulation evolution in high Reynolds number
cases reaches a maximum and subsequently drops. Cases C1 and D1 with high decelera-
tion demonstrate a sustained rise in circulation even after the deceleration phase, implying
vortex development in the zero mean inflow period. Vortex generation near the end of the
deceleration period results in maximum circulation in moderate deceleration cases (C2 and
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Figure 5.14: Temporal evolution of three-dimensional flow features identified by spanwise
vorticity for case C1.

D2).

5.5.1 The emergence of secondary instability and local breakdown

In high Reynolds numbers, the vortices formed by two-dimensional primary inflectional in-
stability further undergo secondary instability, creating three-dimensional structures. Vor-
tex flow structures developing in a high deceleration case (case C1) are revealed by the
iso-surfaces of non-dimensionalized spanwise vorticity in figure 5.14. Primary inflectional
instability causes the formation of negative vortices (LP1 − LP4), which further in-
duces secondary positive vortices (lp1 − lp4) from the bottom wall boundary layer (fig-
ure 5.14(a)). This secondary vortex and the primary vortex form a pair near the wall prox-
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imity. Due to the mutual induction of the vortices, the pair detaches from the bottom wall,
still pertaining to the two-dimensional nature (t∗ = 1.25). Most flow features evolve near
the initial diverging section emphasized by the non-dimensionalized streamwise scale on
the top wall. The induced angular velocity of the upstream vortex pair, pair 1 (LP1, lp1),
drives them to roll towards the vortex pair at the downstream location, pair 2 (LP2, lp2).
Such a flow development results in stretching and splitting of the positive secondary vor-
tex by the primary vortices (lp2a, lp2b in figure 5.14(b)). The residual momentum pushes
the secondary vortex (lp1) from the upstream pair to join the downstream couple; such
a tri-vortex group further amplifies the roll-on process (t∗ = 1.93). Inflectional profiles
in the boundary layer seed multiple vortices from the boundary layer, as portrayed in fig-
ure 5.14(b) (pairs 5 and 6).

The secondary vortex structure (lp2b) exhibits a spanwise oscillation while orbiting
around the primary vortex (LP1), as shown in figure 5.14(c). Similar vortex flow features
are exhibited by the vortex pairs detaching from the bottom wall surfaces downstream (pairs
3 and 4). The secondary vortex (lp4) downstream (x ≈ 1.0) undergoes a similar fashion of
vortex splitting, creating multiple positive vortices as in the former time instances for the
upstream secondary vortex (lp2).

The merging of the primary vortex cores (LP4 and LP6) is visible in the same instance
(t∗ = 1.93). As the flow progresses, oscillations amplify in the secondary vortex circling
the primary vortex. A sandwiching effect of the merged negative vortex cores (MG1 and
MG2) stretches the secondary vortices around them (figure 5.14(d)). After the stretch-
ing, spanwise oscillations disintegrate into loops around the primary spanwise vortex flow
structures (MG1 and MG2). However, the initially ejected secondary vortex (lp1) survives
the vortex interactions and shows a three-dimensional oscillation while orbiting around the
primary vortex. In a later flow instance (t∗ = 2.72) secondary vortex structure breakdown
into spanwise loops around partially disintegrating primary vortices (LP1) (figure 5.14(e)).
A complete transition to a turbulent structure with a negative vorticity core is observed
as the flow progresses (t∗ = 3.18). Simultaneous production of two-dimensional vortices
and merging transitions are observable in the upstream and downstream positions in fig-
ure 5.14(f). Since this flow development lies in the zero mean inflow phase, advection of
three-dimensional roll-ups is not evidenced for case C1, and flow features are confined to
a small area near the initial diverging section (x = 0.4 to 1.5). For case C1, flow evolution
over the top wall has not yet been developed at t∗ = 3.18. Induction from the bottom wall
vortices creates a positive vorticity patch over the top wall at t∗ = 3.18, indicating vortex
roll-up in later flow time.
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Figure 5.15: Temporal evolution of three-dimensional flow features identified by spanwise
vorticity for cases belonging to type II instability: (a) case C2, (b) case D1, and (c) case D2.

The temporal evolution of flow vortices in cases similar to case C1 (Type II) is evi-
denced in figure 5.15. Vortex flow structures at two flow instances are shown in the figure;
the first flow instance portrays the three-dimensional oscillations during the early transi-
tion phase, while the second instance illustrates the flow structures in the turbulent phase.
Identical to case C1, primary instability in the deceleration phase develops into vortex pair,
which moves downstream and interacts with similar vortex pairs. Figure 5.15(a) indicates
the formation of spanwise oscillations over the secondary vortices in case C2. Stretching
of the secondary vortex around the primary vortex is evidenced at t∗ = 2.0. Along with
three-dimensional disintegration, vortex pairs eject into the flow core at a downstream po-
sition due to the induced velocity. As flow progresses, analogous to case C1, the formation
of a turbulent three-dimensional structure with negative spanwise vorticity is illustrated in
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figure 5.15(a). Unlike case C1, the formation of top-wall vortices is evidenced for case C2
as depicted in figure 5.15(a). During the zero mean inflow phase at t∗ = 2.13, the ejected
vortex pair interacts with the top wall boundary layer. Figures 5.15(b) and (c) show iden-
tical flow evolution for cases D1 and D2. Three-dimensional disintegration initiates with
vortex pair interaction resulting in a locally turbulent region. The turbulent region develops
earlier for high Reynolds number cases (D1 and D2) than in high flow Reynolds number
cases (C1 and C2). A common route of transition mechanism in the vortex structures is
closely related to the vortex pair interactions during the zero mean inflow region. Given its
universal nature, the discussion will be further elaborated upon in the subsequent chapter.

5.6 Type III: Spatially unstable flow evolution

δ

(a)

ω

(b)

Figure 5.16: Temporal evolution of (a) Reynolds number based on displacement thickness,
and (b) Reynolds number based on spanwise circulation; for spatially unstable cases (filled
circle: ts, open square: tv).

Three-dimensional disintegration of vortex flow features results in complex boundary
layer growth in spatially unstable cases (figure 5.16(a)). In both cases, Reδ∗ evolution
initiates with a low value during the acceleration phase. The flow separation for cases C3
and D3 lies at Reδ∗ of 980 and 1133, respectively, which are highest compared to the former
categories. Similarly, vortex formation initiates in case C3 at a Reδ∗ = 1092, whereas in
case D3 at a Reδ∗ = 1300. Unlike in other cases, flow generates vortex roll-up during the
initial deceleration stage, reflected by an increase in displacement thickness. As the vortex
clears, the profile returns to its typical profile, lowering the displacement thickness. The
peaks of the displacement thickness variation indicate further vortex development. The
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three-dimensional vortex breakdown in both cases produces high-frequency oscillations
during the flow advancement. Three-dimensional disintegration initiates quicker for case
D3 (around t∗ = 0.7) due to the higher streamwise velocity than case C3. Alternatively,
case C3 displays three-dimensional turbulent behavior towards the end of the deceleration
phase (around t∗ = 0.9).

Oscillations in the temporal variation of the Reynolds number based on spanwise cir-
culation indicate a transition from a two-dimensional to a three-dimensional flow regime
(figure 5.16(b)). Cases C3 and D3 display an increment in circulation during the accel-
eration and constant velocity phases, identical to A3 and B3. Compared to the previous
categories, during the deceleration phase, the circulation-based Reynolds number reaches
a higher magnitude for these cases (cases C3 and D3), indicating higher vortex formation.
Minute spanwise loop formation due to three-dimensional disintegration induces oscilla-
tions in circulation development during the deceleration phase. The earlier onset of fluctu-
ations characterizes the rapid disintegration of flow structures in case D3 compared to case
C3. The circulation decays during the zero mean inflow phase with a higher decay rate
compared to type I cases.

5.6.1 Unsteady separation and flow breakdown

Vortex flow structures identified by the non-dimensional spanwise vorticity in case C3 are
portrayed in figure 5.17. Shear layer roll-ups marked by BS1 - BS5 are observed at nearly
equally spaced locations over the diverging section. Vortex flow structures are highlighted
according to their formation sequence during flow evolution. Due to unsteady flow separa-
tion, vortices develop over the initial diverging section (PS1) during deceleration. Vortices
evolving over the diverging section advect downstream, creating additional positive vor-
tices (bs1) from the wall surface (t∗ = 0.55). Persistent streamwise velocity deceleration
leads to a continuous shedding of vortices from the initial diverging section (PS1 and PS2).
A higher advective velocity of the upstream vortex leads to the pairing of the vortex roll-ups
(BS1 and BS3) (t∗ = 0.63). Due to mutual induction, positive vortices (ps1a - ps1c) eject
from the bottom wall vorticity layer and revolve around the primary vortex (PS1) while
advecting downstream (t∗ = 0.69). In such advecting vortex pairs, secondary vortices
generate spanwise oscillations (ps1c) similar to locally unstable cases (type II). The forma-
tion of three-dimensional oscillations attributes to the local interaction of advecting pairs.
Simultaneous merging of vortex flow features (BS2 and BS4) and the three-dimensional
disintegration of secondary vortices (ps1c, ps2a, and ps2b) are evident in later deceleration
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Figure 5.17: Temporal evolution of three-dimensional flow features identified by non-
dimensional spanwise vorticity for case C3.

flow instances (t∗ = 0.74 and 0.76).

A complex structure with multiple small-scale vortices is formed due to the growth of
the three-dimensional oscillations into tube-like structures (MG4), which displaces down-
stream due to the streamwise velocity (t∗ = 0.81). Three-dimensional oscillations develop
over the unsteady separation vortices when the flow passes half of the deceleration phase.
A vortex pair discharging from the initial diverging section displays three-dimensional os-
cillation after the ejection (t∗ = 0.91). Advecting vortex roll-ups interact with other flow
features, generating a turbulent flow structure (t∗ = 0.91). The decay of streamwise veloc-
ity further results in flow detachment, leading to a turbulent flow evolution during the zero
mean inflow phase. Analogous to the former category, the flow features move backward as
the flow progresses in the zero mean inflow region. Tiny loop structures are formed through
the disintegration of vortex flow structures at later flow instances (t∗ = 1.18).

Identical to the bottom wall, the top wall boundary layer displays vortex roll-ups and
three-dimensional disintegration, as presented in figure 5.17. An extended stay of the bot-
tom wall vortex in the initial diverging section induces the flow to separate from the top
wall leading to vortex roll-up. The top wall boundary layer broadens over the bottom sep-
aration region once the flow separates over the bottom wall (t∗ = 0.55). In type III cases,
flow separation occurs earlier in the deceleration phase, forcing the fluid over the top wall.
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Figure 5.18: Temporal evolution of three-dimensional flow features identified by non-
dimensional spanwise vorticity for case D3.

The formation of a primary positive top wall vortex (TS1) subsequently results in the pro-
duction of a negative secondary vortex (ts1) (t∗ = 0.69). The shedding of vortices due to
unsteady separation promotes the development of flow structures (TS pairs 2 and 3) across
the top wall (t∗ = 0.74). The top wall vortices retain their two-dimensional traits while the
bottom wall vortex pair undergoes three-dimensional disintegration at t∗ = 0.76. Due to
induced rotation, primary and secondary top wall vortices eject from the top wall boundary
layer (t∗ = 0.81). Analogous bottom wall-flow features, top wall vortices clearly show the
pairing behavior at t∗ = 0.91 (TS3). Toward the end of the deceleration phase, the top wall
formations also generate three-dimensional oscillations. In the initial zero mean inflow
phase, the interaction between the top and bottom wall structures is minimal (t∗ = 1.02),
while at a later flow instance (t∗ = 1.18), the mixing of flow features over the top and
bottom walls results in a turbulent flow evolution.

Similar to case C3, vortex evolution in case D3 demonstrates vortex generation and
three-dimensional breakdown of flow characteristics during the deceleration phase (fig-
ure 5.18). The inflectional instability in the boundary layer develops into vortex roll-ups
(BS1 - BS5) during the deceleration phase (t∗ = 0.43 and 0.49). Compared to case C3,
a higher mean inflow velocity results in a higher advective velocity for the flow features
along with the vortex shedding (PS pairs) due to unsteady separation (t∗ = 0.52). Three-
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dimensional oscillations induced over the secondary vortices amplify and disintegrate at
subsequent flow instances as vortex pairs are ejected from the initial diverging section. In
the case of D3, the vortex flow patterns disintegrate at an early pulse stage, resulting in an
advecting turbulent structure that stays closer to the bottom wall (t∗ = 0.6, 0.64). Unlike
case C3, the top wall vortices (TS pairs 1, 2) advect downstream along with the bottom wall
structures due to the earlier inception of top wall structures. Flow formations over the top
wall retain their two-dimensional nature at this flow instance (t∗ = 0.64). As the flow for-
wards through the deceleration phase, the advecting top wall vortices (TS1, TS2) evidence
three-dimensional disintegration (t∗ = 0.7). The turbulent flow features over the top and
bottom wall advect downstream as flow forwards, while the interaction of the structures
results in a turbulent flow as evidenced at t∗ = 0.75 and t∗ = 0.82.

5.7 Summary

In this chapter, we examine the emergence of turbulence in a diverging channel under APG
boundary layer conditions by imposing the analytical solution of trapezoidal mean flow
condition comparable to the experiments of Das et al. [2]. The effects of flow Reynolds
numbers and deceleration Reynolds numbers are systematically investigated by varying
the flow velocity and deceleration rate. The flow transition initiates with the thicken-
ing of the boundary layer followed by two-dimensional primary inflectional instability,
which generally occurs in the deceleration phase and subsequently leads to flow separa-
tion and shear layer roll-up in the diverging section. Top-wall boundary layers also ex-
hibit inflectional instability, resulting in vortex roll-ups identical to the bottom wall in later
flow instances. At low and medium Reynolds numbers, shear layer vortices remain two-
dimensional, while secondary instabilities initiate the formation of three-dimensional struc-
tures at high Reynolds numbers. Based on the critical flow time flow associated with the
initiation of secondary instability and temporally averaged streamwise vorticity, we have
classified the flow evolution into three categories.

The first category (type I) occurs in low and moderate Reynolds number cases, which
exhibit two-dimensional flow evolution of vortex flow structures that advect and diffuse
during the zero mean inflow phase. The boundary layer growth occurs rapidly at high de-
celeration rates, whereas the increase is gradual at low deceleration rates. However, the
time of flow separation and the vortex formation depends on the local Reynolds number
based on the displacement thickness (Re∗δ ≈ 600 and 700, respectively ). The emergence
of the primary vortices leads to a progressive increase in circulation in the initial stage;
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after reaching a maximum during deceleration, the total circulation in the diverging sec-
tion declines as the wall vortices diminish and spanwise vorticity decreases. The vortex
structures maintain their two-dimensional nature during the zero inflow phase, whereas the
individual vorticity magnitude of primary vortices decreases by the vortex decay.

In the second category (type II), a locally turbulent flow structure is evolved during
the zero mean inflow phase (t∗3D > 1) by the amplification of the spanwise oscillation
induced over the secondary vortex ejecting from the bottom wall. Similar to the former
category, the boundary layer grows temporally, and higher inflow velocity in these cases
leads to higher Reynolds numbers based on displacement thickness for flow separation
(Re∗δ ≈ 940) and vortex formation (Re∗δ ≈ 1070). Spanwise vortex structures reveal that
initial spanwise oscillations developed over the secondary vortices due to the straining by
the primary vortex amplified with flow time, creating a locally complex structure during
zero mean inflow.

The third category (type III) is characterized by low deceleration and high inflow ve-
locity, which result in multiple shear layer roll-ups over the diverging section and vortex
shedding due to unsteady separation from the initial diverging section during deceleration
phase (t∗3D < 1). Identical to elliptic instability formation in the previous category, the
three-dimensional visualizations of the spanwise vorticity indicate an oscillating secondary
vortex in the vortex pair ejected from the initial diverging section during the deceleration
phase. Low deceleration induces a higher advective velocity for flow structures, causing
the spanwise vorticity roll-ups to pair over the diverging section, similar to the pairing of
co-rotating vortices as described in Rogers and Moser [95]. A separation bubble, com-
prising spanwise vorticity rolls with opposite sense of rotations developed due to unsteady
separation, disintegrates at the end of the deceleration phase and compares well with the
observations of Wissink and Rodi [38].
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Chapter 6

Secondary instability aspects in a diverg-
ing channel

6.1 Introduction

Unlike highly rich vortex structures inducing multiple three-dimensional instability spots
in a bluff body wake, flow in a diverging channel is highly dependent on the temporal
parameters. Due to its low spatial gradient, the flow evolves around the initial diverging
section, which offers the maximum pressure gradient inducing the vortex formation during
the deceleration period. As discussed in the previous chapter, the secondary instability
evolution of the vortex pair is altered with flow velocity and deceleration parameters and
classified into three categories.

The three-dimensional transition of the vortex flow features developed in a decelerating
diverging channel holds many similarities with flow evolution in vortex-dominated flow
fields. Though the vortex flow structures evolve during the deceleration phase in low inflow
velocities, since the flow field resists the growth of spanwise oscillation, the vortices diffuse
in the zero mean inflow phase. While for high inflow velocity cases, the flow field is
susceptible to spanwise oscillation and further disintegration of spanwise structures. Also,
the three-dimensional flow features alter with changes in the deceleration parameters. A
combination of high velocity with low deceleration causes an unsteady separation inducing
periodic flow structures shedding downstream.

A comprehensive evaluation of the secondary instability nature in different flow con-
ditions is provided in this chapter. Vortex flow features are further investigated to identify
the spatial instability nature. Similar to other vortex-dominated flow evolution, the spatial
characteristics of the three-dimensional transition depend on the spanwise variation of the
streamwise vorticity. By employing both theoretical and numerical methods, the spatial and
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temporal nature of the instability mechanism is analyzed. An in-depth characterization of
the instability mechanism is provided in the chapter. Also, the shedding characteristics in
low deceleration cases are investigated through dynamic mode decomposition and spectra
analysis of probe data.

The current chapter aims to present a detailed discussion on underlying three-dimensional
coherent flow features in flow evolution and their stability characteristics through theoret-
ical and numerical methods. In section 6.2, the growth of three-dimensional oscillation
is corroborated by the spanwise velocity component evolution in both type II and type III
cases. Further in section 6.3, the structure of the three-dimensional oscillation in type II
cases is identified through the λ2 method. In addition, the section also consolidates the
spatial and temporal characteristics of secondary instability investigated using DMD and
theoretical growth rate estimations. In section 6.4, velocity spectra and DMD analyses
are presented to understand unsteady separation in type III cases. As a final summary,
section 6.5 concludes the observations on the secondary instability features observed in a
diverging channel under different deceleration rates.

6.2 Growth of three-dimensional oscillations

The development of the three-dimensional oscillations in the flow field is closely associ-
ated with the spanwise velocity component evolution. The contours of non-dimensional
RMS spanwise velocity component (w∗

rms =
wrms

Up
) for all three-dimensional cases are pro-

vided in the figure 6.1. The RMS of the spanwise velocity component is calculated using
a similar expression of urms given by equations 5.8 and 5.9. The evolution of the span-
wise component shows a relatively high magnitude near the three-dimensional unstable
region, identical to the non-dimensional mean streamwise vorticity (figure 5.8). The peak
fluctuations in the spanwise velocity component spread around the separation bubble for
type II cases, indicating a local evolution of the three-dimensional oscillation. Due to the
advection of the flow structures during the deceleration period, the intensity of the span-
wise fluctuations is higher in spatially unstable cases (type III). In such cases (cases C3
and D3), advection and later disintegration lead to a spread of the fluctuation intensity over
the domain, as shown in figure 6.1. Identical to streamwise vorticity contour, spanwise
fluctuations are also present over the top wall for type III cases.

In the present simulation, the source of perturbations is limited to the two-dimensional
fluctuations associated with the analytical solution, which are imposed at the inlet of the
domain and the unavoidable numerical error related to the numerical scheme. As shown
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Figure 6.1: RMS of fluctuations in the spanwise velocity component in three-dimensional
cases.

from the simulation, these values are of the order of 10−6. In figure 6.2, the evolution
of the amplitude of the spanwise fluctuations

(
(w′)2 = (w−wmean)2

U2
p

)
is plotted for locally

three-dimensional cases. The probe location is selected as the maximum spanwise velocity
component average position.

For all cases, the non-dimensional spanwise fluctuation amplitude increases during the
dead inflow region, indicating the three-dimensional disintegration process. Oscillation
amplitudes reach high magnitudes for very high Reynolds cases (cases D1 and D2) and are
near 0.01, whereas they peak at around 0.005 for high Reynolds cases. Also, the spanwise
velocity component growth is affected by the deceleration period. While low decelera-
tion cases (case C1 and case D1) achieve their peak amplitudes later after the pulse ends,
moderate deceleration cases (case C2 and case D2) attain their peak amplitudes earlier. The
highest amplitude is observed in case D2, with a sharp increase in the oscillation amplitude.

6.3 Three-dimensional flow structures

Similar to the previous analysis, the topology of three-dimensional oscillation developed
over the vortex structures in the diverging channel is identified using the λ2 method and
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Figure 6.2: Growth of the spanwise velocity component fluctuation in type II cases. The
probe location is selected as the position of maxima of the spanwise velocity component
average.

contoured by non-dimensional streamwise vorticity in figure 6.3. The spanwise oscillation
developed over the secondary vortex for case C1 at t∗ = 1.93 is illustrated in figure 6.3. The
alternate streamwise vorticity originated over the spanwise vortex roll-ups displays a sym-
metrical pattern. A cross-section (Y-Z) through the central plane of vortex pairs (x = 0.308)
is taken to understand the nature of oscillations. Non-dimensionalized spanwise vorticity
contoured snapshots (figure 6.3(b)) provide a clear visual of secondary vortex developing
oscillations. The presence of alternating streamwise vorticity is further explained by su-
perimposing the vector plot in figure 6.3(c). Circulation regions are discernible over the
spanwise vortex roll-ups, as seen in the inset figure in the subfigure.

6.3.1 Spatial structure of coherent flow features

DMD algorithm is used to analyze secondary instability over the shear layer vortices re-
sulting from primary inflectional instability. Dynamic mode decomposition identifies the
underlying dynamics of the coherent flow features developed during the flow evolution.
We use the snapshot-based approach introduced by Schmid [29] to identify the secondary
instability features along with their temporal dynamics.
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(a)

(b) (c)

Figure 6.3: (a) Flow features identified (LP1 and lp2b) using λ2 method contoured by
streamwise vorticity (λ2 = −1), (b) section through the spanwise oscillation contoured by
spanwise vorticity (x = 0.29), and (c) section through the spanwise oscillation contoured
by streamwise vorticity.

Through a three-dimensional dynamic mode decomposition of streamwise vorticity
data, the most unstable flow features associated with secondary instabilities are identi-
fied (figure 6.4). For the DMD calculation, three-dimensional snapshots are taken with a
time step of ∆τ = 0.05 s between each snapshot. The Ritz circle obtained from the
dynamic mode decomposition for cases belonging to the second category is presented in
figure 6.4(a). The position of the mode with respect to the unit circle outlined in the figure
indicates the stability of the modes. In general, a mode lying outside a circle indicates an
unstable mode, while lying within signifies a stable mode; and when it lies on a circle, it is
neutrally stable. In all cases, at least one mode displays an unstable trait, illustrated by the
circle in figure 6.4(a). Figure 6.4(b) shows the growth rate and frequency distribution for
the DMD modes. The highest growth rate mode obtained from DMD analysis is indicated
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Figure 6.4: Three-dimensional DMD analysis results: (a) Ritz Circle, (b) growth rate vs.
frequency, and (c) leading secondary instability modes based on growth rate criterion for
type II cases.
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Case
b

(m) λmean/b λDMD/b
a1

(m)
a2

(m)
Γ1

(s−1)
Γ2

(s−1)
bLO
(m)

C1 0.0128 1.56 1.69 0.025 0.0040 0.00049 -0.00195 0.0111
C2 0.0125 3.34 3.26 0.0018 0.0045 0.00062 -0.0037 0.0068
D1 0.0100 2.12 1.91 0.0019 0.0040 0.00113 -0.0038 0.0088
D2 0.0095 2.25 2.11 0.0015 0.0055 0.00051 -0.0070 0.0075

Table 6.1: Spanwise wavelength comparison and parameters for Lamb-Oseen approxima-
tion.

by 1σ.

When streamwise vortex growth is unstable, vortex roll-ups will experience three-
dimensional destabilization, as manifested by the positive growth rates for all cases. The
mode with the maximum growth rate for all cases, as shown in figure 6.4. The three-
dimensional morphology of unstable modes is visualized using an iso-surface of stream-
wise vorticity. A spanwise variation of the streamwise vorticity is evidenced in all cases.
The spanwise wavelength obtained for the mode with the highest growth rate is provided
in table 6.1. Averaging the distance between the peaks of the streamwise vorticity plot-
ted across the vortex core provides the mean spanwise wavelength. The average spanwise
wavelength observed for all three-dimensional cases is tabulated in table 6.1. Both wave-
lengths are non-dimensionalized by the distance between the cores of vortex pairs (b: dis-
tance between maximum and minimum vorticity magnitudes). The spanwise wavelength
for the coherent flow features identified by DMD analysis (λDMD) lies close to the mean
spanwise wavelength determined from streamwise vorticity variation over the oscillation
(λmean).

6.3.2 Theoretical growth rate prediction

Various theoretical models are used to measure the growth rate of vortices associated with
secondary instabilities. Rankine vortices and Lamb-Oseen vortex pairs are generally used
to approximate vorticity distributions for estimating the theoretical growth rates of primary
vortices [96]. Furthermore, Le Dizes [97] developed a growth rate relation by neglecting
the viscous effects for a multipolar vortex in a rotating flow field, with estimates com-
parable to the global instability analysis results for various vorticity distributions such as
Kirchoff [98] and Moore and Saffman [99] vortices. A consolidated review of Kerswell
[100] discusses in detail the emergence of elliptical instability in different flow scenarios.
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Figure 6.5: Depiction of Lamb-Oseen model: (a) simulation and (b) Lamb-Oseen model.

An extended investigation by Le Dizes and Laporte [93] identifies a relation to predicting
the elliptic instability growth rate in a vortex pair and establishes a critical region for the
Reynolds number based on the circulation. A recent review on the instabilities arising in
a vortex pair by Leweke et al. [94] proposes a revised estimation of the growth rate for
elliptic instability.

The secondary instabilities formed during the zero-mean phase in the diverging channel
are similar to the short-wavelength elliptic instability demonstrated by Laporte and Corjon
[101]. Since multiple vortex pairs are observed near the bottom wall, unlike classical short
wavelength vortex instability, theoretical stability analysis is performed for most magnified
vortex pairs. Variation of the spanwise vorticity in a vortex pair ejecting from the bottom
wall is shown in figure 6.5(a). An identical depiction of an approximated Lamb-Oseen
pair obtained from the relation 6.1 is given in figure 6.5(b). The vorticity distribution for
such a vortex pair with circulations Γ1 and Γ2 may be approximated using the Lamb-Oseen
equation [94], which is presented below:

ωz =
Γ1

πa21
exp

(
−r2

a21

)
+

Γ2

πa22
exp

(
−r2

a22

)
. (6.1)

where r represents the distance from the vortex core position. The core radius (a1 and a2)
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for a vortex centered at Xc is obtained from the relations 6.2 and 6.3.

(xc1 , yc1) =

(
1

Γ1

∫
D1

x ωz,
1

Γ1

∫
D1

y ωz

)
, (6.2)

a21 =
1

Γ

∫
D1

|X−Xc|2ωzdS. (6.3)

Where D1 represents the domain containing each vortex, ωz defines the spanwise vorticity,
and dS represents the infinitesimal area.

Le Dizes and Laporte [93] proposed an explicit relation using approximate linear ex-
pressions for the internal strain ratio (sr) and inertial wave vector inclination for predicting
the growth rate of an elliptic instability in a counter-rotating vortex pair. Leweke et al. [94],
in their review, presented a revised linear fit to determine the frequencies (ω) and damping
rates (ζ) of the first two Kelvin modes. The growth rate for the first two modes of elliptic
instability in a Lamb-Oseen vortex pair is given by:

σ
∗,(n)
1 =

√(
3

4
− Ω1

4

)4

s2r
(
Ω1

)(Γ2

Γ1

)2

−
(
ω(n) − Ω1

)2( b

a1

)4

−
(

b

a1

)2(
ζ(n)

ReΓ1

)
.

(6.4)
The superscript n represents the mode number, and the subscript denotes the vortex number.
Here the growth rate of the mode is non-dimensionalized by the time scale of translational
motion

(
2 π b2

Γ1

)
. Linear expressions for real (ω) and imaginary (ζ) parts of the complex

frequency in equation 6.4 are as follows:

Ω1 =
(a1
b

)2(Γ1 + Γ2

Γ1

)
, (6.5a)

sr(Ω) = 1.5 + 0.1323
(
0.32− Ω

)−9/5
, (6.5b)

ω(1) = −0.135
(
ka1 − 2.26

)
, (6.5c)

ω(2) = −0.084
(
ka1 − 3.95

)
, (6.5d)

ζ(1) = 74.02 + 64.15
(
ka1 − 2.26

)
, (6.5e)

ζ(2) = 229.6 + 104.3
(
ka1 − 3.95

)
. (6.5f)

The growth rate of elliptical instability for a counter-rotating vortex pair ejected from the
bottom boundary of the wall in the diverging channel is determined using equation 6.4.

To ascertain the validity of the Lamb-Oseen approximation, the plot of the spanwise
vorticity obtained from the equation 6.1 is compared with the simulation results (through
the vorticity cores). Table 6.1 provides the essential parameters obtained from simulation
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Figure 6.6: Lamb-Oseen model comparison for vortex pair in locally unstable.

used to estimate the Lamb-Oseen approximation for locally unstable cases (type II) as
depicted in figure 6.6(c). Here, the bLO denotes the distance between the first positive vortex
core and the second negative vortex in approximated vorticity distribution. In cases, C1, C2,
and D2, a vertical pair of vortices is compared with vertical Lamb-Oseen pair. While in case
D1, a better approximation is obtained for a horizontal pair and is compared to a similar
Lamb-Oseen approximation (figure 6.6(c)). As presented in figure 6.6, the assumption of a
Lamb-Oseen vortex approximation remains true in all selected flow instances.

Using equation 6.4, the growth rate of elliptical instability for a counter-rotating vor-
tex pair ejected from the bottom boundary of the wall was determined. The growth rate
curves obtained for different spanwise wave numbers for secondary vortices are presented
in figure 6.7. A similar analysis was conducted on the vortex structures in type I cases.
Secondary vortices developed in advecting and diffusing two-dimensional cases indicate
stable growth rate curves and are, therefore, not included. The growth rate curves are cal-
culated for the secondary vortex, which undergoes three-dimensional disintegration (using
Lamb-Oseen approximation as shown in figure 6.6(c)). The growth rate curves indicate an
unstable first mode alongside a stable second mode (figure 6.7(a)). An identical growth rate
curve is obtained for case D1 (figure 6.7(b)), revealing the formation of first-mode elliptic
instability in high deceleration cases (cases C1 and D1). Unlike high deceleration cases,
both the first and second modes show an unstable nature in moderate deceleration cases

91



2 4 6 8 10ka

-4

-2

0

(a)

0 5 10 15ka

-10

-5

0

5

(b)

0 2 4 6 8 10ka

-5

0

5

(c)

0 5 10 15 20ka

-10

0

10

(d)

Figure 6.7: Growth rate curves for first and second elliptic modes for secondary vortex in
locally unstable cases: (a) case C1, (b) case D1, (c) case C2, and (d) case D2. The first
mode is represented by dash line, and the second mode is denoted by the solid line.

(cases C2 and D2) (figures 6.7(c) and (d)).

6.4 Shear layer shedding characteristics in diverging chan-
nel

A separation bubble forms near the initial diverging region due to unsteady separation,
constituting a spanwise vortex roll and induced positive vortex in the boundary layer. A
close-up image of the vortex shedding and three-dimensional disintegration of the separa-
tion bubble vortices is illustrated in figure 6.8. Similar to the shedding process observed by
Wissink and Rodi [38], consecutive formation of the vortex rolls is evidenced during the
deceleration phase (figure 5.18). As the flow decelerates further, the streamwise velocity
weakens, amplifying the perturbations developing due to vortex interactions. As the flow
decelerates (t∗ = 0.61), the secondary vortices generate a spanwise oscillation during the
shedding process and develop into spanwise loops over the primary negative vortex (PS2).
Decay in streamwise velocity induces an oscillation in the separation bubble due to the
amplification of perturbations (PS3). As the flow progress (t∗ = 0.63), the vortex struc-
ture (PS3) sheds downstream, creating a short interval and a turbulent separation bubble
(PS4). Further deceleration leads to the disintegration of the separation bubble and moves
to a turbulent regime (t∗ = 0.65). The formation of a turbulent separation bubble leads to
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Figure 6.8: Three-dimensional disintegration of the separation bubble.

an uneven shedding of the turbulent flow features similar to the flow evolution observed
by Wissink and Rodi [38] (t∗ = 0.68). Unlike the bluff body cases, the diverging channel
shows shedding characteristics only for two cases with higher Reynolds numbers accompa-
nied by low deceleration. In figure 6.9, the spanwise vorticity at a downstream location is
probed to identify the temporal characteristics of the vortex shedding due to unsteady sep-
aration for case C3 and case D3. In case C3, vortex generation initiates around t∗ = 0.3,
which is at an earlier flow instance than in case D3. Shortly after the vortex ejection, the
formation of a positive vortex is evident by a sharp positive peak. Further oscillations are
indicative of the subsequent formation and shedding of vortex structures. High-frequency
perturbations in the zero mean inflow phase are triggered by three-dimensional fragmen-
tation of the flow features in case C3. The vortex shedding in case D3 is more frequent
and reveals a three-dimensional breakdown at an earlier stage in the flow. The underlying
frequency of the vortex shedding is identified by the frequency spectra obtained from the
Fourier transforms of the vorticity evolution. The highest peak in the frequency spectra
obtained by the Fourier analysis indicates the shedding frequency and is marked in fig-
ure 6.9(b) for cases C3 and D3. A second dominant frequency lies close to the subsequent
harmonics of the preceding dominant frequency in both cases.
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Figure 6.9: Spectra analysis of vorticity probe for spatially unstable cases. (a) Temporal
variation of spanwise vorticity (case C3: x = 2.633, y = 0.914; case D3: x = 2.32, y =
0.964), and (b) frequency spectra of the spanwise vorticity variation.

6.4.1 Temporal characteristics of unsteady separation

The temporal characteristics of the periodic shedding of two-dimensional flow structures in
type III cases are revealed by the DMD analysis of two-dimensional snapshots of spanwise
vorticity. Unlike the former category cases, rapid evolution and the streamwise advection of
flow features due to the low deceleration rate hinders the three-dimensional DMD analysis
of streamwise vorticity. A total of 75 snapshots lying in the initial deceleration period
between ti and tf are used for the DMD analysis for both cases with a time step (∆τ )
of 2 × 10−2. Frequency was invariant when the number of snapshot sizes was increased.
Figure 6.10 summarizes the DMD analysis of the spanwise vorticity in spatially unstable
cases. Typical, the Ritz circle plotted in figures 6.10(a) and (b) indicate the stability of
DMD modes. The red symbols indicate the growing modes of cases C3 and D3 that lie
outside the unit circle. To further emphasize the destabilizing nature, figures 6.10(c) and (d)
present a bar diagram of frequency (fDMD) plotted against the growth rate (σ) determined
using DMD analysis. In each case, 1σ denotes the most unstable mode based on the growth
rate criteria. Growth rates and frequency information for each mode is provided in each
figure. Figures 6.10(e) and (f) display the most prominent (highest growth rate) mode for
cases C3 and D3, respectively. The peak frequencies of both modes are higher in the high
Reynolds number case (case D3). Invariably, the first mode represents the growth of the
vortex from the separation bubble over the diverging channel. A second dominant mode
holds a frequency nearly equal to the second harmonic, indicating the second dominant
peak of the vorticity frequency spectra (figures 6.10 (g) and (h)). An alternate pattern
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Figure 6.10: DMD analysis of spanwise vorticity evolution for cases C3 and D3. (a) Ritz
circle (case C3), (b) Ritz circle (case D3); frequency vs growth rate for: (c) case C3, (d)
case D3; (e) first mode (case C3), (f) first mode (case D3), (g) second mode (case C3), and
(h) second mode (case D3).
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Case ti tf
Average

displacement
thickness (δ∗avg)

Average
velocity
Uavg (m/s)

Probe analysis DMD analysis

(s) (s)
Identified
frequency

Strouhal
number

Identified
frequency

Strouhal
number

C3 4.2 5.7 0.010540 0.050637 1.154 0.24 1.121 0.23
D3 3.6 5.1 0.008361 0.092127 1.875 0.17 1.762 0.16

Table 6.2: Temporal characteristics of vortex shedding due to unsteady separation.

in the second mode indicates the spanwise vortex roll-ups over the diverging region. In
the case of D3, early vortex development leads to continuous shedding mode, as shown in
figure 6.10(h). DMD results also point to the vortex shedding from the separation bubble in
this period. Both analyses indicate two-dimensional vortex shedding characteristics, which
later disintegrate three-dimensionally during the zero mean inflow phase.

A consolidated comparison of temporal characteristics obtained from frequency spectra
with the results from DMD analysis is included in table 6.2. An average displacement
thickness is calculated for the velocity profiles over the separation point and is denoted
as δ∗avg. Similarly, an average velocity is calculated by taking the mean of the average
velocity of velocity profiles over the separation point (between ti and tf ). Strouhal number(
St =

fδ∗avg
Uavg

)
is calculated for both probe analysis and DMD analysis by using the average

displacement thickness along with the average velocity. In the present study, the unstable
mode frequency scales with the viscosity length scales generally used in boundary layer
transition studies [102, 103], and identified Strouhal frequencies lie near 0.2. In light of
the fact that only two out of twelve cases show periodic vortex shedding, the results are
insufficient to support the generalization of the Strouhal number relation.

6.5 Summary

Three-dimensional flow features in a low spatial gradient flow are highly associated with
the temporal parameters. According to the secondary instability initiation time, the flow is
categorized into three different categories. In this chapter, the spatial and temporal nature
of the secondary instability is further investigated through the comprehensive analysis of
streamwise vorticity and the λ2 method. Since any spanwise oscillations are formed in
the first category of cases, further investigations are carried out for only both type II and
type III cases.

Analogous to the streamwise vorticity, an evolution of the spanwise velocity component
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also indicates the three-dimensional flow disintegration. From the contours of distribution
of the average spanwise velocity component for three-dimensional cases, the clear distinc-
tion between the locally unstable structures as well as the spatially distributed structures
is evident. In addition, the temporal evolution of the spanwise component also indicates
a rapid growth during the zero mean inflow phase for the Type II cases. Also, the cases
indicating the highest growth rate coincides with the highest theoretical growth rate cases
for elliptical instability.

An initial analysis of the spatial characteristics of λ2 structure identifies a spanwise
oscillation forming over the secondary vortex ejected from the boundary layer vortex.
Through a sectional analysis, an alternate distribution of the streamwise vorticity in the
spanwise direction indicates a strong influence of streamwise vorticity generation in insta-
bility growth. Further DMD analysis of the streamwise vorticity component indicates an
unstable mode with spatial characteristics analogous to the wavelength identified through
the streamwise vorticity pattern.

The development of secondary instability is associated with the formation and ejection
of a counter-rotating vortex pair induced in the deceleration phase. So a further analysis of
the origin of the instability is carried out through theoretical growth rate estimates. The-
oretical elliptical instability growth rate analysis of the Lamb-Oseen approximation of the
vortex pair indicates an unstable nature. Also, the wavelength identified through both DMD
and streamwise vorticity pattern lies within the range of elliptical instability nature.

In type III cases, the vortex dynamics indicate a complex nature due to the low deceler-
ation unsteady separation and shedding of vortex flow features observed. Further temporal
characteristics of coherent flow features are identified through DMD analysis and compared
with quantified values obtained from spectra analysis provided in the previous chapter.
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Chapter 7

Conclusions

Unlike the conventional studies focusing on the flow transition in a flow field under steady
or oscillatory inflow conditions, the onset of turbulence in the vortical structures developed
from a transitional boundary layer is a highly challenging and crucial design engineering
aspect. Transitional flows of such spatiotemporal nature can significantly affect the per-
formance of many engineering applications such as solid rocket motors, turbine blades,
airfoils, etc. In this work, we employed direct numerical simulations with the open-source
solver INCOMPACT3D to investigate the three-dimensional transition of vortex flow struc-
tures in a fluid flow field. The DNS of flow evolution and later disintegration of vortex flow
structures from a transitional boundary layer that was developed through a combination
of spatial and temporal pressure gradient components takes multiple transition routes with
respect to the inflow conditions.

A complex body coupled with transient inflow poses a challenging computational prob-
lem for traditional computation methods, so the current study uses the immersed boundary
method coupled with higher-order compact schemes for spatial discretization in a Carte-
sian framework. Highly parallelized INCOMPACT3D utilizes spectral methods to solve
the modified Pressure Poisson equation used for immersed boundary approach. For the cur-
rent investigation, the time integration is carried out using the third-order Adam Bashforth
scheme. Identifying the origin of instability is challenging due to the complexity arising
from the spatial and temporal pressure gradient components of the transitional boundary
layer. The current investigation employed a wide range of methods, both theoretical and
numerical, to examine the underlying coherent flow structures and their temporal charac-
teristics. The wall-attached bluff body induces a significant spatial pressure gradient that
promotes flow separation in the early flow phase (acceleration phase); the separated shear
layer rolls into a primary vortex on the body’s leeward side, creating a low-velocity region.
Further, the flow exhibits the shear layer instabilities as the Reynolds number of the flow
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(a)

(b)

Figure 7.1: Flow transition route in Bluff body case: (a) two-dimensional cases, and (b)
three-dimensional cases.

increases, while the three-dimensional breakdown is observed in cases with high Reynolds
numbers. Vortex flow features diffuse during the dead inflow phase at low and moderate
Reynolds numbers. A systematic representation of the flow evolution sequence in two-
dimensional cases are provided in figure 7.1 (a). The shear layer instability in the bluff
body case rolls into spanwise vortex rolls orbiting around the primary vortex; as a result of
induction from these vortex roll-ups, the boundary layer adjacent to the body surface de-
velops vortex rolls with an opposite sense of rotation. Furthermore, the shear layer vortex
rolls integrate into the primary vortex core, while body vortices are propelled to core flow.
Likewise, the top wall generates vortex pairs that descend downward into the core flow.
Observations of wake vortices in a bluff body wake indicate the development of Mode
A and Mode B instabilities, which are correlated with elliptic and hyperbolic instabilities
developed in the core and braid regions of wake vortices. Shortwave length Mode B insta-
bilities are demonstrated in the separation bubble vortices and body vortices, which exhibit
a merging transition due to the strong rotational field generated by the primary vortex,
whereas Mode A instabilities are observed in the boundary layer vortices developed over

99



the top wall. A consolidated chain of events leading to secondary instability formation in
high inflow velocities is depicted in figure 7.1 (b).

A detailed analysis of the streamwise velocity field in the wake reveals a highly in-
flectional velocity profile instigating the flow separation and the shear layer oscillations.
Further, spectra analysis of both probe data for vertical velocity component and momen-
tum thickness variation reveals the shear layer shedding frequencies for each case. The
three-dimensional spatial structure of the secondary instabilities over the vortex flow fea-
tures is exemplified using the λ2 method. Also, underlying coherent structures inside the
flow field are identified through dynamic mode decomposition of both vertical velocity and
spanwise vorticity data. In addition, the frequency identified for the shear layer instabil-
ity coincides with the growth rate of unstable DMD mode determined through the highest
growth rate criteria. The DMD analysis of the vertical velocity component also indicates
similar information. Unlike the spanwise vorticity, strengthening of the streamwise vor-
ticity component is closely associated with three-dimensional disintegration and is further
investigated using the vorticity generation equation. From the vorticity generation equa-
tion analysis, it is evidenced that the evolution of the tilting mechanism in the deceleration
phase gets amplified through the stretching component in the dead inflow phase leading to
spanwise oscillations and later decomposition. Vortex flow structures and flow evolution
in the diverging channel are significantly altered by the temporal inflow parameters. Due
to the low spatial gradient in the diverging channel, a long separation bubble became evi-
dent in the initial diverging section. Also, multiple vortex flow structures were developed
over the diverging section of the channel. Based on the three-dimensional nature of the
flow structures developed inside the flow field, the flow cases are classified into three cat-
egories. A chronological order of flow progression and the instances of the flow features
developing inside each case is illustrated in figure 7.2. In cases with low and moderate
Reynolds numbers (Type I), vortices are induced and develop during the late deceleration
stage, which then diffuses during the dead inflow phase (figure 7.2 (a)). In high Reynolds
number cases with moderate and high deceleration, the flow features develop near the initial
diverging section during the dead inflow region due to the reverse flow profiles generated in
the boundary layer (figure 7.2 (b)). Such cases classified as Type II cases move to a three-
dimensional disintegration through an elliptic instability arising over the induced positive
vortex ejected from the bottom boundary. For low deceleration cases Type III, the unsteady
separation sheds vortex structures that break down at the downstream position at a later
flow time in a similar manner in the deceleration phase (figure 7.2 (c)). Vortex merging
phenomena and separation bubble breakdown is also observed in such cases.
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Figure 7.2: Flow transition route in diverging channel case: (a) two-dimensional (type I)
cases, (b) locally unstable (type II) cases, and (c) spatially unstable (type III) cases.

Spatial and temporal characteristics identified through DMD analysis of the streamwise
vorticity evolution indicate an unstable spatial streamwise vorticity structure. Alternatively,
the streamwise vorticity coherent structures obtained from DMD analysis indicate an iden-
tical spanwise wavelength for the unstable mode with an average wavelength of elliptical
instability. Further, the theoretical growth rate estimations for elliptical instability of the
vortex structures developed in the diverging channel also show an unstable nature for vortex
structures. In higher Reynolds cases with low deceleration, the DMD analysis of spanwise
vorticity identifies the most unstable mode with a frequency identical to the shedding fre-
quency.

The present investigation identifies the three-dimensional instability mechanism devel-
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Figure 7.3: Depiction of different three-dimensional transitions in (a) bluff body wake and
(b) diverging channel wake.

oping in the wake of vortices evolving from an unsteady boundary layer subjected to an
adverse pressure gradient. A consolidated image of the distinct flow features evolving in
the flow field for both cases is given in figure 7.3. The primary instability in both geome-
tries is identified through Rayleigh’s inflection criteria, indicating highly inflectional ve-
locity profiles developing over the body surface during the flow evolution. A strong spatial
gradient component initiates the flow separation during the early acceleration phase, while
in low spatial gradient flow, the adverse pressure gradient develops during the deceleration
phase. The shear layer instability frequency increases with an increase in the flow veloc-
ity; also, the frequency spectra of momentum thickness variations hold identical spectra.
Flow features developed for both geometries decay through diffusion in low and moderate
inflow velocities due to the suppression of spanwise oscillations. Secondary instability de-
velops in both geometries through different transition mechanisms generated in the wake
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vortices. The low-velocity region behind the bluff body shows a merging mechanism in-
ducing small wavelength braid instabilities. Similarly, the flow structures evolving over
top wall surfaces indicate the formation of high wavelength mode A instabilities. While
in the diverging channel, the higher temporal component induces the formation of counter-
rotating pairs susceptible to elliptical instability, and in low temporal component cases, an
unsteady separation bubble induces vortex shedding, which further causes merging as well
as elliptically unstable vortex flow features.
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[30] Clarence W. Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S.
Henningson. Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 641:
115–127, 2009. doi: 10.1017/S0022112009992059.

[31] Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data.
Journal of Fluid Mechanics, 656:5–28, 2010. doi: 10.1017/S0022112010001217.

[32] Abu Seena and Hyung Jin Sung. Dynamic mode decomposition of turbulent cavity
flows for self-sustained oscillations. International Journal of Heat and Fluid Flow,
32(6):1098–1110, 2011.

106



[33] Thomas Leweke and Charles HK Williamson. Cooperative elliptic instability of a
vortex pair. Journal of fluid mechanics, 360:85–119, 1998.

[34] Mark Christopher Thompson, Kerry Hourigan, Kris Ryan, and Gregory John Sheard.
Wake transition of two-dimensional cylinders and axisymmetric bluff bodies. Jour-

nal of Fluids and Structures, 22(6-7):793–806, 2006.

[35] GJ Sheard, Thomas Leweke, Mark Christopher Thompson, and Kerry Hourigan.
Flow around an impulsively arrested circular cylinder. Physics of Fluids, 19(8):
083601, 2007.

[36] OR Tutty and TJ Pedley. Oscillatory flow in a stepped channel. Journal of Fluid

Mechanics, 247:179–204, 1993.

[37] Moshe Rosenfeld. A numerical study of pulsating flow behind a constriction. Jour-

nal of Fluid Mechanics, 301:203–223, 1995.

[38] J.G. Wissink and W. Rodi. Direct numerical simulations of transitional flow in
turbomachinery. Journal of Turbomachinery, 128(4):668–678, 02 2006. ISSN
0889-504X. doi: 10.1115/1.2218517. URL https://doi.org/10.1115/1.

2218517.

[39] J.G. Wissink, V. Michelassi, and W. Rodi. Heat transfer in a laminar separation
bubble affected by oscillating external flow. International journal of heat and fluid

flow, 25(5):729–740, 2004.

[40] P Hall and KH Parker. The stability of the decaying flow in a suddenly blocked
channel. Journal of Fluid Mechanics, 75(2):305–314, 1976.

[41] M. S. Ghidaoui and A. A. Kolyshkin. A quasi-steady approach to the instability of
time-dependent flows in pipes. Journal of Fluid Mechanics, 465:301–330, 2002.
ISSN 00221120. doi: 10.1017/S0022112002001076.

[42] A. Nayak and D. Das. Transient growth of optimal perturbation in a decaying chan-
nel flow. Physics of Fluids, 29(6), 2017. ISSN 10897666. doi: 10.1063/1.4985000.

[43] A. Kannaiyan, S. Natarajan, and B.R. Vinoth. Stability of a laminar pipe flow sub-
jected to a step-like increase in the flow rate. Physics of Fluids, 34(6):064102, 2022.

[44] George Gabriel Stokes. On the theory of oscillatory waves. Trans. Camb. Phil. Soc.,
8:411–455, 1847.

107

https://doi.org/10.1115/1.2218517
https://doi.org/10.1115/1.2218517


[45] M Susan Bloor. The transition to turbulence in the wake of a circular cylinder.
Journal of Fluid Mechanics, 19(2):290–304, 1964.

[46] CH Williamson. Oblique and parallel modes of vortex shedding in the wake of a
circular cylinder at low reynolds numbers. Technical report, California Inst of Tech
Pasadena Graduate Aeronautical Labs, 1989.

[47] M Matsumoto. Vortex shedding of bluff bodies: a review. Journal of Fluids and

Structures, 13(7-8):791–811, 1999.

[48] Sundara Rajagopalan and Robert Anthony Antonia. Flow around a circular cylin-
der—structure of the near wake shear layer. Experiments in fluids, 38:393–402,
2005.

[49] S Sarkar and Sudipto Sarkar. Vortex dynamics of a cylinder wake in proximity to a
wall. Journal of Fluids and Structures, 26(1):19–40, 2010.

[50] OR Tutty and TJ Pedley. Unsteady flow in a nonuniform channel: A model for wave
generation. Physics of Fluids, 6(1):199–208, 1994.

[51] Moshe Rosenfeld and Shmuel Einav. The Effect of Constriction Size on the Pulsatile
Flow in a Channel. Journal of Fluids Engineering, 117(4):571–576, 12 1995. ISSN
0098-2202. doi: 10.1115/1.2817303. URL https://doi.org/10.1115/1.

2817303.

[52] Paola Costamagna, Giovanna Vittori, and Paolo Blondeaux. Coherent structures in
oscillatory boundary layers. Journal of Fluid Mechanics, 474:1–33, 2003.

[53] L.E. Jones, R.D. Sandberg, and N.D. Sandham. Direct numerical simulations of
forced and unforced separation bubbles on an airfoil at incidence. Journal of Fluid

Mechanics, 602:175–207, 2008.

[54] C.P. Caulfield and R.R. Kerswell. The nonlinear development of three-dimensional
disturbances at hyperbolic stagnation points: a model of the braid region in mixing
layers. Physics of Fluids, 12(5):1032–1043, 2000.

[55] A. Mashayek and W.R. Peltier. The ‘zoo’of secondary instabilities precursory to
stratified shear flow transition. part 1 shear aligned convection, pairing, and braid
instabilities. Journal of Fluid Mechanics, 708:5–44, 2012.

108

https://doi.org/10.1115/1.2817303
https://doi.org/10.1115/1.2817303


[56] YANG Zhiyin. Secondary instability of separated shear layers. Chinese Journal of

Aeronautics, 32(1):37–44, 2019.

[57] SF Shen. Some considerations on the laminar stability of time-dependent basic
flows. Journal of the Aerospace Sciences, 28(5):397–404, 1961.

[58] Mingyan Zhao, Mohamed Salah Ghidaoui, and Andrei A Kolyshkin. Perturbation
dynamics in unsteady pipe flows. Journal of fluid mechanics, 570:129–154, 2007.

[59] Duo Xu, Baofang Song, and Marc Avila. Non-modal transient growth of distur-
bances in pulsatile and oscillatory pipe flows. Journal of Fluid Mechanics, 907:R5,
2021.

[60] Tao Wei and CR Smith. Secondary vortices in the wake of circular cylinders. Journal

of Fluid Mechanics, 169:513–533, 1986.

[61] James C Williams III. Incompressible boundary-layer separation. Annual Review of

Fluid Mechanics, 9(1):113–144, 1977.

[62] M. Alam and N.D. Sandham. Direct numerical simulation of ‘short’laminar sepa-
ration bubbles with turbulent reattachment. Journal of Fluid Mechanics, 410:1–28,
2000.

[63] M. Embacher and H.F. Fasel. Direct numerical simulations of laminar separation
bubbles: investigation of absolute instability and active flow control of transition to
turbulence. Journal of fluid mechanics, 747:141–185, 2014.

[64] J.R. Brinkerhoff and M.I. Yaras. Interaction of viscous and inviscid instability modes
in separation–bubble transition. Physics of Fluids, 23(12):124102, 2011.

[65] A. Lambert and S. Yarusevych. Effect of angle of attack on vortex dynamics in
laminar separation bubbles. Physics of Fluids, 31(6):064105, 2019.

[66] A. Sengupta and P. Tucker. Effects of forced frequency oscillations and unsteady
wakes on the separation-induced transition in pressure gradient dominated flows.
Physics of Fluids, 32(9):094113, 2020.

[67] A. Mariotti, A.N. Grozescu, G. Buresti, and M.V. Salvetti. Separation control and
efficiency improvement in a 2d diffuser by means of contoured cavities. European

Journal of Mechanics-B/Fluids, 41:138–149, 2013.

109



[68] M. Garcia-Villalba, N. Li, W. Rodi, and M.A. Leschziner. Large-eddy simulation of
separated flow over a three-dimensional axisymmetric hill. Journal of fluid Mechan-

ics, 627:55–96, 2009.

[69] M.E. Goldstein and L.S. Hultgren. Boundary-layer receptivity to long-wave free-
stream disturbances. Annual Review of Fluid Mechanics, 21(1):137–166, 1989.

[70] S.S. Diwan and O.N. Ramesh. On the origin of the inflectional instability of a lami-
nar separation bubble. Journal of Fluid Mechanics, 629:263–298, 2009.

[71] K. Jain, A.I. Ruban, and S. Braun. On receptivity of marginally separated flows.
Journal of Fluid Mechanics, 907, 2021.

[72] N.D. Sandham. Transitional separation bubbles and unsteady aspects of aerofoil
stall. The Aeronautical Journal (1968), 112(1133):395–404, 2008. doi: 10.1017/
S0001924000002359.

[73] I.E. Abdalla and Z. Yang. Numerical study of the instability mechanism in transi-
tional separating–reattaching flow. International Journal of Heat and Fluid Flow,
25(4):593–605, 2004.

[74] O. Marxen, M. Lang, and U. Rist. Vortex formation and vortex breakup in a laminar
separation bubble. Journal of Fluid Mechanics, 728:58–90, 2013.

[75] A.G. Kravchenko and P. Moin. On the effect of numerical errors in large eddy
simulations of turbulent flows. Journal of computational physics, 131(2):310–322,
1997.

[76] Sanjiva K Lele. Compact finite difference schemes with spectral-like resolution.
Journal of computational physics, 103(1):16–42, 1992.

[77] Alan George, Lan Chieh Huang, Wei-Pai Tang, and Ya Dan Wu. Numerical simula-
tion of unsteady incompressible flow (re ≤ 9500) on the curvilinear half-staggered
mesh. SIAM Journal on Scientific Computing, 21(6):2331–2351, 2000.

[78] N. Li and S. Laizet. 2decomp & fft-a highly scalable 2d decomposition library and
fft interface. In Cray user group 2010 conference, pages 1–13, 2010.

[79] Rayleigh Rayleigh. On the stability or instability of certain fluid motions (iii.). Pro-

ceedings of the London Mathematical Society, 1(1):5–12, 1895.

110



[80] Hermann Schlichting and Joseph Kestin. Boundary layer theory, volume 121.
Springer, 1961.

[81] Clarence W Rowley and Scott TM Dawson. Model reduction for flow analysis and
control. Annual Review of Fluid Mechanics, 49:387–417, 2017.

[82] H K Jang, C E Ozdemir, J. H. Liang, and M. Tyagi. Oscillatory flow around a
vertical wall-mounted cylinder: Dynamic mode decomposition. Physics of Fluids,
33(2):25113, 2021. ISSN 10897666. doi: 10.1063/5.0032644. URL https://

doi.org/10.1063/5.0032644.

[83] Yunqing Liu, Jincheng Long, Qin Wu, Biao Huang, and Guoyu Wang. Data-
driven modal decomposition of transient cavitating flow. Physics of Fluids, 33(11),
2021. ISSN 10897666. doi: 10.1063/5.0073266. URL https://doi.org/10.

1063/5.0073266.

[84] Kunihiko Taira, Maziar S. Hemati, Steven L. Brunton, Yiyang Sun, Karthik Du-
raisamy, Shervin Bagheri, Scott T.M. Dawson, and Chi An Yeh. Modal analysis of
fluid flows: Applications and outlook. AIAA Journal, 58(3):998–1022, 2020. ISSN
00011452. doi: 10.2514/1.J058462.

[85] M Palmer and P Freymuth. Analysis of vortex development from visualization of
accelerating flow around an airfoil, starting from rest. In 17th Fluid Dynamics,

Plasma Dynamics, and Lasers Conference, page 1568, 1984.

[86] Fathi Finaish, M Palmer, and P Freymuth. A parametric analysis of vortex patterns
visualized over airfoils in accelerating flow. Experiments in fluids, 5(4):284–288,
1987.

[87] JH Gerrard. The wakes of cylindrical bluff bodies at low reynolds number. Phil.

Trans. R. Soc. Lond. A, 288(1354):351–382, 1978.

[88] Peter J Schmid, Dan S Henningson, and DF Jankowski. Stability and transition
in shear flows. applied mathematical sciences, vol. 142. Appl. Mech. Rev., 55(3):
B57–B59, 2002.

[89] Jinhee Jeong and Fazle Hussain. On the identification of a vortex. Journal of fluid

mechanics, 285:69–94, 1995.

111

https://doi.org/10.1063/5.0032644
https://doi.org/10.1063/5.0032644
https://doi.org/10.1063/5.0073266
https://doi.org/10.1063/5.0073266


[90] Hussein Mansy, Pan-Mei Yang, and David R. Williams. Quantitative measurements
of three-dimensional structures in the wake of a circular cylinder. Journal of Fluid

Mechanics, 270:277–296, 1994. doi: 10.1017/S0022112094004271.

[91] DM Harris and CHK Williamson. Instability of secondary vortices generated by a
vortex pair in ground effect. Journal of Fluid Mechanics, 700:148–186, 2012.

[92] Suresh Behara and Sanjay Mittal. Flow past a circular cylinder at low reynolds
number: Oblique vortex shedding. Physics of fluids, 22(5):054102, 2010.

[93] S. Le Dizes and F. Laporte. Theoretical predictions for the elliptical instability in a
two-vortex flow. Journal of Fluid Mechanics, 471:169–201, 2002.

[94] T. Leweke, S. Le Dizes, and C.H.K. Williamson. Dynamics and instabilities of
vortex pairs. Annual Review of Fluid Mechanics, 48:507–541, 2016.

[95] M.M. Rogers and R.D. Moser. The three-dimensional evolution of a plane mixing
layer: the kelvin–helmholtz rollup. Journal of Fluid Mechanics, 243:183–226, 1992.

[96] S. Le Dizes. Non-axisymmetric vortices in two-dimensional flows. Journal of Fluid

Mechanics, 406:175–198, 2000.

[97] S. Le Dizes. Three-dimensional instability of a multipolar vortex in a rotating flow.
Physics of Fluids, 12(11):2762–2774, 2000.

[98] T. Miyazaki, T. Imai, and Y. Fukumoto. Three-dimensional instability of kirchhoff’s
elliptic vortex. Physics of Fluids, 7(1):195–202, 1995.

[99] D.W. Moore and P.G. Saffman. Structure of a line vortex in an imposed strain. In
Aircraft wake turbulence and its detection, pages 339–354. Springer, 1971.

[100] R.R. Kerswell. Elliptical instability. Annual review of fluid mechanics, 34:83, 2002.

[101] F. Laporte and A. Corjon. Direct numerical simulations of the elliptic instability of
a vortex pair. Physics of Fluids, 12(5):1016–1031, 2000.

[102] P.S. Klebanoff, W.G. Cleveland, and K.D. Tidstrom. On the evolution of a turbulent
boundary layer induced by a three-dimensional roughness element. Journal of Fluid

Mechanics, 237:101–187, 1992.

112



[103] A.A. Bakchinov, G.R. Grek, B.G.B. Klingmann, and V.V. Kozlov. Transition exper-
iments in a boundary layer with embedded streamwise vortices. Physics of Fluids, 7
(4):820–832, 1995.

113





List of Publications

Refereed Journals

1. Sarath, K. P., & Manu, K. V. (2022). An investigation of bluff body flow structures
in variable velocity flows. Physics of Fluids, 34(3), 034102. (Selected as Editor’s
Pick for the volume).

2. Sarath, K. P., & Manu, K. V. (2023). The onset of turbulence in decelerating diverg-
ing channel flows. Journal of Fluid Mechanics, 962, A30. (Selected as the cover
picture for the volume)

Refereed Conferences

1. 7th International & 45th National Conference on Fluid Mechanics & Fluid Power(FMFP
2018)

2. 3rd International & 25th National Conference on Heat & Mass Transfer (ISHMTC-
2019)

3. 4th International & 26th National Conference on Heat & Mass Transfer (ISHMTC-
2021)

115



116



Appendix A

Analytical solution for a non-zero mean
inflow pulse in a two-dimensional chan-
nel.

The analytical solution of fully developed laminar pulsating flow for the variant volumetric
flow rate is obtained using the Laplace transform technique combined with the Bromwich
integral formula. To obtain the inflow velocity profiles for trapezoidal mean flow varia-
tion, we consider incompressible, fully-developed transient fluid flow with constant ther-
mophysical properties in an infinitely long rectangular channel with a height of 2h and
zero transverse velocities. Under the assumptions of uni-directionality and in the absence
of body forces, the momentum equation is given by:

∂u

∂t
= −1

ρ

(
∂P

∂x

)
+ ν

(
∂2u

∂y2

)
. (A.1)

The boundary conditions are as follows:

u(h, t) = u(−h, t) = 0 (no slip), (A.2)

u(y, 0) = 0;
∂ (u(0, t))

∂y
= 0, (A.3)∫ h

0

u(y, t)∂y = up(t)h. (A.4)
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Taking the Laplace transform of the momentum equation (equation A.1) and the boundary
conditions (equations A.2 - A.4) yield:

d2u

dy2
− s

ν
u =

1

µ

dP

dx
+

1

ν
u(y, 0), (A.5)

u(h, s) = u(−h, s) = 0,

∂u(0, s)

∂y
= 0,∫ h

0

u(y, s)∂y = up(s)h.

The general solution of equation (A.5) is:

u(y, s) = c1e
ky + c2e

−ky + ϕp.

where ϕp is the particular integral and applying the boundary conditions, k is attained as
k =

√
s
ν
.

u(y, s) = ϕp

[
1− (eky + e−ky)

(ekh + e−kh)

]
. (A.6)

To find the particular integral ϕp, we use the volume flow rate condition.∫ h

0

ϕp

[
1− (eky + e−ky)

(ekh + e−kh)

]
dy = up(s)h. (A.7)

By integrating and simplifying the above equation, we get ϕp as:

ϕp =
up(s)

1− 1
kh

[
(ekh−e−kh)
(ekh+e−kh)

] , (A.8)

and applying this in A.6 we get u(y, s) as:

u(y, s) = up(s)
[(ekh + e−kh)− (eky + e−ky)]

[(ekh + e−kh)− 1
kh
(ekh − e−kh)]

. (A.9)
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The final solution is obtained from the inverse Laplace transform of the equations (A.10)
and is found by applying Mellin’s inverse formula.

u(y, t) =
1

2πi

∫ γ+i∞

γ−i∞
up(s)

[(ekh + e−kh)− (eky + e−ky)]

[(ekh + e−kh)− 1
kh
(ekh − e−kh)]

estds. (A.10)

Here, the trapezoidal variation of the mean velocity with time (up(t)) is defined by
equation 2.7. Analytical solution of the transient velocity profile is obtained by calculating
the Laplace transform of equation 2.7 and substituting into equation A.9, succeeded by the
inverse Laplace transform calculation. The Laplace transform of the mean velocity is given
by

up(s) =
Up

t0s2
for 0 ≤ t ≤ t0,

=
Up

t0

[
1

s2
− e−t0s

s2

]
for t0 ≤ t ≤ t1,

=
Up

t0

[
1

s2
− e−t0s

s2

]
− Up

t2 − t1

(
e−t1s

s2

)
for t1 ≤ t ≤ t2,

=
Up

t0

[
1

s2
− e−t0s

s2

]
−
(

Up

t2 − t1

)(
e−t1s

s2

)
+

(
Up

t2 − t1

)(
e−t2s

s2

)
for t2 ≤ t ≤ ∞.

For the acceleration phase, the Laplace transform of the constant acceleration phase is
given by up(s) =

Up

t0s2
. Then the solution is obtained by the inverse Laplace transform of

the following equation:

u(y, t) =
1

2πi

∫ γ+i∞

γ−i∞

Up

t0s2
[(ekh + e−kh)− (eky + e−ky)]

[(ekh + e−kh)− 1
kh
(ekh − e−kh)]

estds, (A.11)

where a
√
s = kh; a = y√

ν
= ch√

ν
, b
√
s = ky; b = h√

ν
. Cauchy residue theorem is used to

evaluate the complex integral given in equation A.11.

u(y, t) =
∑

residues of poles of

 Up

t0s2

(eb√s + e−b
√
s)− (ea

√
s + e−a

√
s)

(eb
√
s + e−b

√
s)− (eb

√
s−e−b

√
s)

b
√
s

 estds

 .

(A.12)
Here the poles are found to be s = 0, and (eb

√
s + e−b

√
s) − (eb

√
s−e−b

√
s)

b
√
s

= 0. s = 0 is a
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pole of second order, and the residue is given by:

Res|s=0 = lim
s→0

1

1!

d

ds

 Up

t0s2

(eb√s + e−b
√
s)− (ea

√
s + e−a

√
s)

(eb
√
s + e−b

√
s)− (eb

√
s−e−b

√
s)

b
√
s

 estds

 ,

= lim
s→0

test

(eb√s + e−b
√
s)− (ea

√
s + e−a

√
s)

(eb
√
s + e−b

√
s)− (eb

√
s−e−b

√
s)

b
√
s

 Up

t0
,

+ est
Up

t0

d

ds

(eb√s + e−b
√
s)− (ea

√
s + e−a

√
s)

(eb
√
s + e−b

√
s)− (eb

√
s−e−b

√
s)

b
√
s

 . (A.13)

The equation A.13 is solved by splitting into two terms and the solution is given as:

3t

2
[1− c2] +

h2

40ν
[−5c4 − 1 + 6c2]. (A.14)

Second pole given by (eb
√
s+ e−b

√
s)− (eb

√
s−e−b

√
s)

b
√
s

= 0, by substituting b
√
s = iv the term

reduces into:
(eiv + e−iv)− (eiv − e−iv)

iv
= 0,

cos(v)− sin(v)

v
= 0,

tanv − v = 0.

Residues at tanv − v = 0 are simple poles.

∞∑
sn=1

lim
s→sn

est
Up

t0

1
s

[
(eb

√
s + e−b

√
s)− (ea

√
s + e−a

√
s)
]

d
ds

[
s
[
(eb

√
s + e−b

√
s)− (eb

√
s−e−b

√
s)

b
√
s

]] . (A.15)

By substituting b
√
s = ivn, a

√
s = icvn and simplifying the equation, the solution is

obtained as:
∞∑

nh=1

2Upb
2

v2nh

[
coscvnh − cosvnh

vnhsinvnh

]
e

−vnh2t

b2 . (A.16)

The final solution, as in equation 2.8, is reached by summing all the residue terms.
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