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Abstract

Elastic or piezoelectric structures are three dimensional structres. They are very much used
in various applications(eg: aerospace, biomechanics etc). Often when the thickness of the
elastic or piezoelectric structure is "very small" when compare to other dimensions lower
dimensional models are preferred to the actual three dimensional model.

Lower dimensional approximation of elastic and piezoelectric plates and shells with
"uniform thickness" have been extensively studied. In this thesis we study the correspond-
ing problems for "non-uniform thickness". More precisely, we study the two dimensional
approximation of eigenvalue problem for piezoelectric shallow shells and flexural shells
with non-uniform thickness and dynamic problem for elastic shallow shells with non-
uniform thickness. We show that the solution of the three dimensional problem converge
to the solutions of two dimensional model when the thickness of the shell (denoted by ¢)
goes to zero.

In the second chapter we consider eigenvalue problem for thin piezoelectric shallow
shells (i.e, the curvature goes to zero as the thickness of the shell goes to zero) with non-
uniform thickness. The technique used here for proving convergence rely on those used by
J.Raja and N.Sabu [70] for two dimensional approximation of boundary value problem for
piezoelectric shallow shells with non-uniform thickness. We first transform the problem to
a domain independent of the thickness parameter € and show that the scaled eigenvalues
are o(€?) and the corresponding scaled eigensolutions converge to the eigensolutions of a
two dimensional model. We also show that all the eigensolutions of the two dimensional
problem occur this way, i.e, each eigensolution of the two dimensional model is the limit
of a sequence of eigensolutions of the three dimensional problem as the thickness of the
shell goes to zero.

In the third chapter we consider eigenvalue problem for flexural shells (i.e, the space
of inextensional displacement is non zero) with non-uniform thickness. Here also we first
transform the problem to a domain independent of ¢ and show that the eigenvalues are
o(€e?) and the corresponding scaled eigensolutions converge to the eigensolutions of a two
dimensional model. We also show that all the eigenvalues of the limit problem are limit of
sequence of eigensolutions of the three dimensional problem as the thickness of the shell

goes to zero.
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In the fourth chapter we consider a dynamic problem for elastic shallow shells with
non-uniform thickness and we show that under suitable scalings on the applied forces and
unknowns the solutions of the three dimensional model converge to the solution of two

dimensional model as the thickness of the shell goes to zero.
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ar area element along 0f2.

v X [—€, €] lateral face of the set Q¢ .

L' = X [—¢€,€] portion of the lateral face where a shell is clamped.
P =99 xe upper face of the set Q° .

| lower face of the set ¢ .

A = 0o Laplacian.
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contravariant components of the three- dimensional elasticity tensor.

Piikse denote the piezoelectric tensors.

2 e denote the dielectric tensors.

D(Q) the space of functions in C*°({2) with compact support in €.

( {v e L*N); dwe L*(N)}.

H(Q) ={ve L*Q); v=0 on 9N}.
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=
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!

GENERAL CONVENTIONS

1. Latin indices and exponents: i, 7, p, . . ., take their values in the set {1, 2, 3}, unless

otherwise indicated, as when they are used for indexing sequences.
2. Greek indices and exponents: «, [3, 0, . . . except €, take their values in the set {1,2}.

3. The symbol “€” designates a parameter that is > 0 and approaches zero.
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Chapter 1

Introduction

Elastic or piezoelectric structures have wide range of applications. However for problems
involving thin elatic or piezoelectric structures lower dimensional models are proposed
by A.L Cauchy, von Karman etc, depending on a priori assumptions of mechanical or
geometrical nature, as approximation to the actual three dimensional models. The main
reason is that the lower dimensional models are more suitable for numerical computations.

But given a thin elastic or piezoelectric body with specific loading and boundary condi-
tions how to choose between numerous lower dimensional models available? Hence before
devising numerical methods to approximate a lower dimensional model we should first
know whether this lower dimensional model is indeed an approximation of the given three
dimensional problem. Thus one needs to justify mathematically that the solutions of the
three dimensional problem converge to the solution of the two dimensional problem.

The first approach consists of directly estimating the difference between three dimen-
sional solution and the solution of two dimensional model. For linearly elastic plates first
such estimate was given by Morgenstein[63].This approach nevertheless rely on some a
priori assumptions of mechanical and geometrical nature.

A second approach is by formal asymptotic method. In this method the three dimen-
sional solution is first scaled in an appropriate manner so as to be defined on a fixed do-
main, then expanded as a formal series expansion in terms of the thickness parameter e.
The formal series expansion of the scaled three dimensional solution is then inserted into
the three dimensional problem and sufficiently many factors of the successive powers of
e found are equated to zero until the leading term of the expansion can be computed and
identified with the solution of a known lower dimensional model. This approach was used
by P.G.Ciarlet([22],[23]) to derive plates and junctions in elastic structures and nonlinear
plate models. P.G.Ciarlet and J.C.Paumier[21] used this method to derive Marguerre-von

Karman equations for shallow shells. D.Fox, A.Raoult, J.C.Simo[32] used this method to



derive nonlinear properly invariant plate theories. V.Lods and Miara [51] derived nonlinear
flexural shell model and B.Miara [59] derived nonlinear membrane shell model. Asymp-
totic modelling of signorini problem of generalized von Karman equation for shallow shells
were studied by Bensayah et al [7],[19]. They also studied the asymptotic modelling of
signorini problem with coulomb friction for linearly elastostatic shallow shells and without
friction of linear thin plates([6],[8]).

The scalings made in the formal asymptotic expansion method to derive two dimen-
sional linear plate model is justified by B.Miara [57] and in nonlinear case by B.Miara
[58]. In the case of linear elastic rods and shallow shells the scalings are justified by Raja

and Sabu ([69], [71]).

Third approach is using asymptotic analysis. Here the basic idea is to get a bound for
the solutions of the three dimensional problem in a suitable Hilbert space using Korn’s type
inequalities. This would imply the weak convergence of the solutions in that Hilbert space
to some function and then one identifies the limit as solution of a lower dimensional prob-
lem. Using this method two dimensional models of boundary value problem for plates,
shallow shells, membrane shells, flexural shells with uniform thickness were derived by
Ciarlet et al ([18],[26],[27]) and the corresponding eigenvalue problem for plates was de-
rived by Ciarlet and Kesavan [25]. Eigenvalue problem for linearly elastic shells and rods
were derived by Kesavan and Sabu ([44], [45],[46]). Le Dret [47] derived the one dimen-
sional model of rods. Y.Ji [40] has derived the two dimensional model for dynamic problem
for generalized elastic membrane and L.Xiao ([89],[90]) has derived the dynamic problem
for membrane and flexural shells. Rao [72] has studied asymptotic analysis for spherical
shells. Bunoiu et al([14],[15]) studied junctions of rods and plates.

The boundary value problem for linearly elastic shells with non-uniform thickness was
derived by Busse [17].Sabu [73] has studied the asymptotic analysis for elastic shallow
shells with variable thickness. Jimbo et al [41] have studied the asymptotic behaviour of
thin elastic rod with non-uniform thickness.

The error estimate between the three dimensional and two dimensional solutions for
plate was derived by Destuynder ([30],[31]) and for flexural and membrane shells were de-
rived by C.Mardare ([54],[55]). Simmonds [87] has studied the error estimates for Koiter’s
model.

Another approach to derive lower dimensional linear and nonlinear models is by using
gamma convergence. In this method the solution(s) of the three dimensional problem is
characterised as minimizer of some energy functionals and then one shows that the energy

functionals gamma converge to some energy functional whose minimiser is the limit of
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the solutions of the three dimensional problems. This theory was developed in G. Dal
Maso[29].

Using this method, Bourquin et al [13] derived linear plate model, Genevey ([37], [38])
has derived linear membrane and flexural shell model, Sabu([77],[78]) has derived one
dimensional model of rod and two dimensional model of piezoelectric shallow shells. Le
Dret and Raoult ([48],[49]) have derived the nonlinear membrane model for plates and
shells. Friesecke et al ([33],[34]) have derived nonlinear plate models. Mora et al ([61],
[62]) have shown the convergence of equilibria for thin elastic beams. Muller et al ([50],
[60], [64],[65]) have derived the rod model for multiphase materials and von Karman plates.

Acerbi et al [1] have studied the strain energy for elastic string.

Piezoelectricity is an electromechanical phenomenon, i.e, piezoelectric materials re-
spond to mechanical forces and induce electric field and they induce mechanical stress or
strain when subjected to electric field. They are used as sensors and actuators. They are
also used in shape controlling for plane propellers as well as in manufacturing artificial
organs in biomechanics. When the thickness of piezoelectric shell is very small, lower
dimensional models are used as approximation. In this direction Bernadou and Haenel
([9],[10],[11]) have derived the two dimensional model for membrane and flexural shells.
Piezoelectric plate models are studied by Rahmoune et al [68] and Sene [82]. N. Sabu
([74],[751,79]) has studied the eigenvalue problem problem for shallow and flexural shells
with uniform thickness and asymptotic analysis of piezoelectric shells with variable thick-
ness was studied in [76]. Bantsuri et.al ([3]) have studied the boundary value problem for
electroelasticity for a plate with thin inclusion. C. Collard and B. Miara [28] have studied
the two dimensional models for geometrically nonlinear piezoelectric shells. Theory of

piezoelectricity is well developed in IKeda [39] and Tzou [88]

Homogenization is an approach to study the macro behaviour of a medium by its micro
properties. Homogenization of eigenvalue problem is studied by S.Kesavan([42],[43]).
Homogenization of a class of nonlinear eigenvalue problem is studied by Baffico et al [2].
Bouchitte et al [12] have studied homogenization of second order energies on periodic
structres. S.Ganesh et al ([35],[36]) have used blochwave method for homogenization of
a class of problems. R. Mahadevan et al ([52],[53]) have studied the homogenization of
some cheap control problems and and homogenization of elliptic equation in a doamin
with oscillating boundary, with nonhomogenous nonlinear boundary conditions. Bunoio
et al ([16]) have studied the asymptotic behaviour of bingham fluid in thin layers. An
eigenvalue optimization for p-laplacian has been studied by Chorwadwala et al [20] and B.

Miara [56] studied the optimal spectral approximation in plates.
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Bauer et.al ([4],[5]) have studied stability of plates with circular inclusion, under ten-
sion and three dimensional problem of the axisymmetric deformation of an orthotropic
sperical layer. Nazarov et al ([66],[67]) have studied thin elastic plates supported over
small areas. Sachan et al [81] have studied indentation of a periodically layered planar
elastic half space. Shavlakadze et al ([83]- [86]) have studied the boundary value problem
for piezoelectric plates.



Chapter 2

Lower Dimensional Approximation of Eigen-
value Problem For Piezoelectric Shallow

Shells with Nonuniform Thickness

2.1 Introduction

Piezoelectricity is an electromechanical phenomena: these materials generates deformation
on application of electric field and conversely they induce electric field on application of
mechanical deformation. Often, when the thickness of the material is very small, lower
dimensional approximations of the three dimensional models are preferred, especially in
numerical computations.

In this connection lower dimensional approximation of thin piezoelectric plates and
shells with uniform thickness has been studied in static cases(cf: [9], [10], [11],[82] ) and
the corresponding eigenvalue problems has been studied for uniform thickness(cf. [74],
[75], [80]). Contact problem for piezoelectric materials has been studied in ([3], [83],[84],
[85], [86]). Asymptotic analysis of static problem for piezoelectric shells with nonuniform
thickness has been studied in ([70], [76]).

In this chapter we consider the eigenvalue problem for thin piezoelectric shallow shells
with nonuniform thickness and study their limiting behaviour. In particular starting with
the assumptions made for stationary problems we wish to derive the limiting model for
vibrations of shells. We briefly outline the problem studied in this chapter and the results

obtained.

We consider a bounded domain, Q¢ = w x (—¢,€), w C IR* and let 2¢ = (z1, 29, 25) be

a generic point on Q°. Let ¢¢ : @ — IR® be an injective mapping and a®(x, 25) denotes unit
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normal vector to the surface ¢(w). For each ¢ > 0, we define the mapping ®¢ : Q¢ — IR?
by
O (2%) = ¢ (w1, 2) + 25X (21, 22)a” (21, 22) for all 2 € Q°.

where Y € W?2>(w), 0 < xo < x(x1,72), and ®¢(°) denotes the reference configuration
of the shell. Note that when x (1, x2) = 1, we get shell with uniform thickness e.

We assume that the shell is a shallow shell, ie ¢(z1, x2) = (21, 22, €0(x1, x2)). We then
consider the eigenvalue problem and show that as the thickness of the shell goes to zero
the eigensolutions of the three dimensional problem converge to the eigensolutions of two
dimensional problem.

This chapter is organised as follows. In section 2.2, we describe the three dimensional
problem. In section 2.3, we state the scaled problem, in section 2.4, we derive the a priori
estimate for eigenvalues and in section 2.5, we study the limiting problem for shallow
shells.

2.2 The Three-dimensional Problem

Let w C IR* be a bounded domain with a Lipschitz continuous boundary + and let w lie
locally on one side of v. Let vp,7. C OJw with meas(yy) > 0 and meas(y.) > 0. Let
7 = 0w\ and 75 = 0w\ .. For each € > 0, we define the sets

Q°=w X (—e,¢), TH=wx {£e}, T§= X (—¢€,¢), T{ =7 x (—¢,€),

¢ =7, x (—€,6), TS =75 X (—¢,€).

Let 2¢ = (z1,22,25) be a generic point on Q¢ and let §, = 05 = 52— and 95 = 7. Let
@ 3

¢° : @ — IR® be an injective mapping of class C°(w) such that the two vectors
Ao (y) = 0a0°
are linearly independent for all y € w. We define a® to be the vectors satisfying the relation
a“(y).ag(y) = 05

We define



and

(aB = Gqo.-0g a*? = a®.aP

bap = a3.0sa, b := aP7b,, (2.2.1)
['75 = a%.0paq
where a,.ag denotes usual dot product. These verify the usual symmetry relations. The

area element along S is \/Edy, where
a = det(anp). (2.2.2)
By the continuity of the functions defined above, there exists @y > 0 such that

0<ay<a(y)foralyew.

For each ¢ > 0, we define the mapping ®¢ : Q¢ — IR* by
O (2%) = ¢ (w1, 12) + 25X (21, 22)a” (21, 22) for all 2 € QF (2.2.3)
where x € W#®(w), 0 < xo < x(z1,T2). We define vectors g and g“¢ by the relations
g = 0 d° and gi.gf = .

which form the covariant and contravariant basis respectively of the tangent plane of ®¢(2¢)

at ®¢(z). The covariant and contravariant metric tensors are given respectively by
g95; = g5.g5 and g7 = g<.g7<.
The Christoffel symbols are defined by
Fff = g".05g;.
The volume element is given by /g°dz® where
g9° = det(g5;).

The set O = = () is the reference configuration of the shell and we denote a generic

point of the shell by z°. For 0 < ¢ < gy, we define the sets
[#¢ = (T%9), T =a(T5), 5 =0(I%), Iy =01 ul*,
[e = &5(I%), g = &=(I'5), I5, = [E U T

7



We assume that the material is mechanically isotropic so that the elasticity tensor Atikle jg
given by
Aikle = \§UGH 1 (5767 57 57F) (2.2.4)

where A\ and i are Lamé constants. Clearly this tensor satisfy the symmetry relations

Aidkle _ jitkle _ jklije (2.2.5)
and the inequality
AT ity > C Yty (2.2.6)
.3

for all symmetric tensor (¢;;). Let Piik< and € denote the piezoelectric and dielectric

tensors respectively. We assume that they are symmetric and there exists C' > 0 such that

et > CY ) 2.2.7)

for all (¢;) € IR®. Then the eigenvalue problem consists of finding (%°, 3%, £¢), such that

—divG® (0, ¢F) = £4° in (),

°(u%, %)y =0 onI'y, (2.2.8)

divD? (4, $°) = 0 in O,

DF(0F,¢°)y =0 onl%, (2.2.9)
¢ =0onl%,
where
o5 = AiMegs, — priicpe (2.2.10)
Di = Prices, 4 eMe (2.2.11)
AE (NE 1 e e e e Ne 9 e [ A€ LN
ez’j(“ )= _(aiuj +ajui)7 0; = - and Ep(4°) = = (&°).
2 05
We define the spaces
Ve = {0 € (H'())* 0 = 0}, (2.2.12)



b = { € (), Yl = 0}. (2.2.13)

The variational form of the system (2.2.8)-(2.2.9) is to find (4%, ¢°, £€) € Ve x W€ x R such
that
%), (05,0°)) = €15 (0, 4)F) for all (0°,4)°) € V& x ©° (2.2.14)

Q>

™
~—~
—
§>

(0, 9).(6°,0)) = [ Aegs ayes (o0 + [ evbrgrisican
+ / Prore (8:, 0%, (6°) — D005, (i) ) dit - (22.19)
Qe

IF(0°,9°) = / ac0°dis (2.2.16)

— =€
Since the mappings ®° : Q" — Q are assumed to be C' diffeomorphism, the correspon-
dence that associates with every vector 0° = (05) € Ve (note that (0F) are the components

of the vector o = 95¢’, where (¢")3_, is the standard basis in IR®) the vector v° = (v5)
defined by

induces a bijection between the spaces V¢ and V<, where

Ve ={v° € (H' (Q2))*|v° = 0onT5}. (2.2.17)
Then we have (cf. [24])
505 (3°) = (9 v — Tivs) (95)i(9™)s, (2.2.18)
€ (09)(2%) = efyu(v°) (9")i9"™);, (2.2.19)
where )
ef“j(ve) = 5(8511; + 05v5) — F%EU;. (2.2.20)

Also with any scalar function ¢3¢ € ¢, the correspondence ¢°(#°) = ¢¢(z°) induces a

bijection between the spaces U and U° where

We = {y° € H' ()] =0on T, ). (2.2.21)



Then
0,67 = 0,°(a) = 0,°((9°) 7 (%)) = B (27 (9 (). (2222)

Then the variational problem consists of finding (u°, ¢, £°), (u®, ¢°) # (0,0) such that
as,((us, ¢%), (v°, %)) = £1°(v°, ¥°) for all (v°,¢°) € V= x ¥* (2.2.23)
where
G0 ). ) = [

- / P™E (05,07, (0F) — 05, 0%€5(u)) Vigrda®,  (2.2.24)

Aijkl’sei"l(vs)efw(ve)\/Ed:l:e +/Q cle 659058§¢5\/de5

£

ZS(UE7¢8) :/ Uava\/EdI’a, (2225)
Aijkl,s _ )\gij,agkl,a + H(gik,agjl,a + gil,a jk,a)7 (2226)

prare _ pijk:,a.(gp@)i(gq,a)j(gﬁ&)]ﬁ (2.2.27)

cpae éijf(gp,a)i(gq@)j_ (2.2.28)

It can be shown that there exists a constant C' > 0 such that for all symmetric tensors (¢;;)

3
ARt > C Z (ti)*. (2:2.29)

ij=1

Using (2.2.7) and that (¢’) forms contravariant basis, it follows that for any vector (¢;) €
R?)
3
eMetpt > CY 1 (2.2.30)

j=1

AL AL ~1 ',6 .
Moreover from the symmetry of AWkle  pPiike & we have the symmetries

Aiikle _ pklije _ Ajikl,s) chle elk,s’ pike — pkije (2.2.31)

10



Using (2.2.29) and (2.2.30) we have
G ) = [ A (e () + [ €7 0 ost e
QE Qs
> CO(|[wf] g + l¢°If qe)- (2.2.32)

Clearly the bilinear form associated with the left-hand side of (2.2.23) is elliptic. Hence by
Lax-Milgram theorem, given f¢ € (H~'(Q°))% and h* € H (), there exists a unique
(uf, °) such that

as ((uf, %), (v, 9%)) = ((f5, h%), (v, ¥)). (2.2.33)

In particular, for each f€ € (L?*()))3, there exists a unique solution (u€, ¢¢) such that
asl,((us, %), (v, 9°)) = (f,v) 0,0 (2.2.34)
This is equivalent to the following equations.
AT e Vs 4 P e )i
-/ Feut/gedat ¥ vt € VE (2.2.35)
and

/ €V 0] UV gtdat = / Py e (u)Vgtdat ¥yt € U (2.2.36)

€

For each h¢ € V¢, it follows from (2.2.30) that there exists a unique T;(he) € W€ such that

/ PO Ty (h) D5 V/gedat = / PO ey () /g dat Y gt € WL (2.2.37)

€

and that the map 7y : V¢ — U¢ is continuous. In particular ¢© = T¢(u¢) and the equations
(2.2.35)-(2.2.36) becomes

[ A el o) ardat+ [P Ty el (o) Virde'
- / Fu/gedat ¥ vt € VE (2.2.38)

/ €705 (T (u)) s\ geda = / Py vfeq ; (u)V/gedat Y ¢ € UEL (2.2.39)

€

11



For each h¢ € (L*(€)))3, it follows from (2.2.39) and (2.2.37) that there exists a unique

G (k) € V< such that

[ ARG e () e+ [P (TG (e ()

= / hv\/gedx ¥ v° € V°

(2.2.40)

and that G%, : (L*(Q))®> — V* is continuous. Then the eigenvalue problem consists in

finding pairs (£°, u¢) € R x V(§°) such that

/6 Aijkl’eeinz(ue)eﬁnj(UE)\/fdfe + /Q P (T (us))egy; (v°)v/gedat
= fe/ uvy/gedax Vv € V€

L, € onr o = [ P e ) Ve v e v
€ Qe

By classical arguments, we can show that there exists a sequence of eigenvalues
0<ébe<e? <. << 00

and we can choose a corresponding eigenfunctions {u"¢} such that

/ urul \/gdz = Op.
Qe
The sequence forms an orthonormal basis in the weighted space
L*(ge, Q) = {uf| | wSui/geda® < oo},
Qe

These eigenvalues can be charecterised as

€™ = min max R(v°)

WeeVs veeWe

where V¢ denote the collection of all m—dimensional subspaces of V' and

(2.2.41)

(2.2.42)

(2.2.43)

(2.2.44)

(2.2.45)

(2.2.46)

B er Aijkl‘eau(ve)ea‘j (v9)\/gcdz® + er Pmij‘@;(T;(ve))egHj (v9)\/g°dz*

R€ €
() Joe vUSN/godae
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2.3 The Scaled Problem

We now perform a change of variable so that the domain no longer depends on e. With

x = (11,79, 73) € Q =w x (—1,1), we associate ¢ = (1, 9, €x3) € Q°. Let

Lo=r x (=1,1), Ty=9vy x(=1,1), TF=wx{£1}, T.=7 x(-1,1)

FS:”ysx(—l,l), FN:F1UF+UF_, FGD:F+UF_UF6.

With the functions T'P€, g¢, AUkbe piike ciie. ¢ — R, we associate the functions I'P(e),

g, AR (¢), Piik(€), €Y (¢) :  — IR defined by

[P(e)(w) o= T™(2%), gle)(x) = (), A (e)(x) = AVH<(a"),

Pik(e)(z) = PR (6), €% ()(z) =€ (z°)

Since the shell is a shallow shell there exists a function § € C*(w) such that
¢ (21, 22) = (21, T2, €0(x1, 23)), forall (zq,x2) € w
In this case, we make the following scalings on the eigensolutions.

g “(29) = €uy (e)(x),  va(a) = €va(z),

ug (%) = euy'(€)(x),  vs(a) = evs(),

gm,e — 62€m(€)'
With the tensors €5, we associate the tensors e, ;(€) through the relation
ef; (V) (z) = ezeiﬂj(e; v)(x).
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(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)



We define the spaces

V(Q) = {ve (HYQ)? v|p, =0}, (2.3.9)
v(Q) = {v € H(Q),¢|r., = 0}. (2.3.10)

We denote ¢™(e) = T, (€)(u™(€)). Then the variational equations (2.2.41)-(2.2.43) become

/QAijkl(e)ekHl(e,um(e))ei|j(e,v)\/g(6)dx+/P3klc9 o™ (€)eru(e, v)\/ g(€)dx
—i—e/QPakl(e)ﬁagpm(e)ek|l(e,v)\/g(e)dx
—em(e) /Q (U™ (€Yo + ul (€)vs]/g(e)dz for all v € V(). 23.11)

/Q €5 (030" (s /g(e)d + € / (€% () (ap™ ()5 + By (€)0ut)]v/ ()
e /Q €90 ()™ ()Ds15/g()da
= /QPW( )Osther (e, u™ )\ g(e)dx

—i—e/[Pakl( )0atber (e, u™ (€))]v/g(€)dx for all i € ¥(R), (2.3.12)
Q
/ [um () (€) + (N ()] /g () = Gy (23.13)
Q

Based on the above scalings, we have the following lemma.

Lemma 2.3.1. The functions e, g(€; v) defined in (2.3.8) are of the form

Calg(€v) = Eap(v) + € ea\lﬂ( v),
Caliz(€0) = H{eas(v) + 2, 5(60)}, (2.3.14)
€3||3(€;U) = }2633(0)7
where
Cap(v) = 3(0avp + 9pva) — %(Tasl + 230a5X)
€a3(v) = 3(Davs + O3v,), (2.3.15)

éV33(U) = 0303,

14



Also there exists constant C' such that

SUP(<c<eo MAKq,j Heﬁa,j(e; Voo < Cllv|j1q forallv € V,

SUPg<e<eo MAXzeQ lg(e)(z) — XQ‘ < Cé,
SUPg<e<e, NAXzeQ | Atk () — AlIR| < Ce?,

where
ACBYT = N\§eBsIT + M(gow(sﬁ‘r + 5a7557>
APB(0) = 0, APB(0) = 5N, AYB(0) = Hpd™
A53(0) = 0, Am%m_.4u+2m
Aijkl(E)tkltij 2 Otijtija

for 0 < e < ¢y and for all symmetric tensors (t;;).

Proof. Using the assumption (2.3.3) we have

01 — €223[X0010 + 0100, x] + O
Gal(€) = | Oaz — €223[XO0a20 + 0200, X] + O(€?)
€[0.0 + 130, X] + O(€?)

—ex010 + O(€%)
g3(e) = | —exdal+O(¥) |,
X +0(€)
a1 + O(€?) —e010 + O(e?)
g€ = | da2+0() |.,9°(e) =| —edrf+0(e) |,
€00 + O(€?) 1+ O(€?)

gaﬁ(e) = 5a5 + 62 [6a08/30 - 2x3[8a56 + 8(1085)(] + 0(64)

gas(€) = O(€), gzs(€) = X" + O(€?),

aa(e) = O(e"), Tos(e) = i[ﬁaﬁ +230a5X] + O(€%), T3 =0(e).

The announced results follows from the above relations.
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(2.3.17)

(2.3.18)

(2.3.19)

(2.3.20)

(2.3.21)

(2.3.22)

(2.3.23)

(2.3.24)
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Lemma 2.3.2. Let 6 € C*(w) be a given function and let the functions é;;(v) be defined as
in (2.3.15). Then there exists a constant C' such that

%
Jvfha < C {ZHEU(U)HQ} VoveV(Q) (2.3.25)
(2]
Proof. See the proof of Lemma 4.2 in [73]. [

We assume that there exists P* and €% such that

sup max |P" () — P*I| < Ce (2.3.26)
0<e<eg zeQ

sup max| €7 (e)— €7 | < Ce (2.3.27)
0<e<eg ze

2.4 A priori estimates

In this section, we show that for each positive integer m, the scaled eigenvalues {£™(€)}
are bounded uniformly with respect to e.
Let ¢ € HZ(w). Then

Vp 1= (—x3010, —T30200, ) € V(Q) 2.4.1)
and
Eas(y) = —230a5 — %(aaﬂe + 2305),  Ei3(v,) = 0. (2.4.2)
Hence
€al|p(€; Vp) = —T30app — %(%59 + 23045X) + O(€%), (2.4.3)
eal3(€,v,) = O(e), eza(e,v,) = 0. (2.4.4)

Lemma 2.4.1. There exists a constant C' > 0 such that

€00 (T (€) (V)00 < Cleplow- (2.4.5)
105(T (€)(ve)) 0.2 < Clol2w- (2.4.6)

Proof. With the scalings (2.3.3)-(2.3.7), the variational equation (2.2.37) posed on the
domain Q reads as follows. For each h € (H'())3, there exists a unique solution

16



T, (e)(h) € (H*(£2))? such that

| € ot mosi st

e [ 1€ (T 100 + T, (. Tl

e [ e (0T MI/5(E)ds

- /Q P (e)dgben (e, h)v/g()dz + ¢ /Q P () duenle, h) Vg de.  (2.4.7)

for all ¢y € W.Taking h = v, and ¢ = T (¢)(v,,) in the above equation, we have

| € @UT (@A () w0V ol

+ [ [ (OOTOEATO,) + AT (0T () )]V o)
+ € /Q €% ()0a Ty (€)(v,) 5Ty (€) (v,) v/ g(€)da

= [ PHOAT @ ennle, vV a(E s

e [ PRI et v,V ol (2438)

Using the relations (2.2.30) and (2.4.2)-(2.4.4), it follows that there exists a constant C' > 0
such that

105(T(€) (v )60 + |€0a(Ti(€) (ve)) 5.0
< C{I05T () (vo) 0.l @l + [€0a T (€) (ve) lo.alpl2w} (2.4.9)

and hence the result follows. O]

Theorem 2.4.2. For each positive integer m, there exists a constant C'(m) > 0 such that
() < C(m) (2.4.10)

where the constant C'(m) depends only on m.

Proof. Let V,, denote the collection of all m-dimensional subspaces of V. Then the m"
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eigenvalue can be characterised by

€™ (e) = min maxw

WeVm veW  D(e)(v,v) (411)

where

Ny(€)(v,v) = /QAijkl(e)ekU(e, v)eiu(e,v)vg(e)dx—i-/QP?’kl(e)agTX(e)(v)ek|l(e,v)\/g(e)da;
+E/QPo‘kl(e)ﬁaTx(e)(v)ekw(e,v)\/g(e)dm. (2.4.12)
D(€)(v,v) = /Q [e%ava + U3U3] Vyl(e)de. (2.4.13)

Let W, denote the collection of all m— dimensional subspaces of HZ(w). Let W € W,,.
For ¢ € W, define
v, = (—x1000p, =203, ©) (2.4.14)

and
U={v,:p W} (2.4.15)

It follows that U € V,,,. Hence

Ny (€)(vg, vy)

"(¢) < mi : 2.4.16
&) = e, welll/qvafio} D(e)(vy, vy,) ( )
From the definition of A%*!(¢) we have
AAijkl(€)6¢||j(€,U¢)€k|l(@%)\/@dﬂ? < CEi,jHQil\j(evsz)H(z),Q' (2.4.17)
But
leays(e, v.) 50 < CllEas ()P + C€[lef (e vl o
< C||A¢l3 s (2.4.18)
leas(e, vo)ll60 < Clléas(vy)|P+ < CE[lef (6 v,) 60
< CllAellge (24.19)
[lesiis(€, v o0 = 0. (2.4.20)
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It follows from the definition of v,, that there exists a constant C such that

/Q [ (0p)? + (u,)2]y/g(dz > C / P (2421)

Combining relations (2.4.5)-(2.4.6) and (2.4.16)-(2.4.20) we get

Npl?d
£M(e) <C min max M (2.4.22)

UEW, oeW—{0} fw ©2dw

But the expression on the right hand side of the above relation gives the m-th eigenvalue of

the two dimensional problem

Nu= ) i
Gt (2.4.23)
u=0,u=0 on Ow
This completes the proof by setting C'(m) = CA™. ]

2.5 Limit Problem

Theorem 2.5.1. a) For each positive integer m, there exists u™ € H(2), o™ € L*(2) and
&™ € IR such that

u™(€) — u™ strongly in (H'(2))®,  ¢©™(¢) — ¢™ strongly in L*(£2), (2.5.1)
(eD1p™(€), €Dap™(€), D30™ (€)) — (0,0, D30™) strongly in (L*(£2))?, (2.5.2)
§M(e) = &™. (2.5.3)

b) Define the spaces
Vir(w) = {(na) € (H'(w))* 11 = 0 on 7o}, (2.5.4)
Va(w) = {ns € H*(w);m3 = d,n3 = 0 on o}, (2.5.5)
Vicr = {v € H'(Q)[v = 1o — 230073, (1) € Viar(w) x Vi(w)}. (2.5.6)
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Then there exists (", (§") € Vi x V3(w) such that

up' = (' — 130,(5" and uy' = (5" (2.5.7)
p3aﬂ
"= (1- xQ)F%C;T, (2.5.8)

and (¢, &™) € Vg x V3 x IR satisfies

- / M3 (C™) Do + / 10 5(C™)0n3 + 11105 (™) D13 X

2 p3a,3p3pr
43 [ T 0 tuamxd = € [ i Y e e, @259

3
/ g 50sMaxdw =0 V1, € Vi, (2.5.10)
where

AN 4p dapX
a = =S5+ A0+ = | Oa : 2.5.11
mas(C) {3()\+4,u) G s+ 3 ( 5Cs + C3 Y ( )

AN
0 _ 5 nr 2.5.12
na,@(c) )\+2M600(<)§O¢5+ ,Uea,B(C), ( 5 )
p33 — 1P3a3p3a3 4 1 P333P333+ 633, (2513)
L A2
A

308 _ pBaBf _ 7 p3335aB 2.5.14
p Nt 2 ( )

Proof. For the sake of clarity, the proof is divided into several steps.
Step (i): Define the vector ¢ (¢) and the tensor K™ () = (K 7 (€)) by

ot (€) = (ed1p™(€), €0a9™ (€), D30™ (€)). (2.5.15)

K7t () = Eap(u™(€)), Klls(€) = %éas(um(e)),f(g(e) = 612633(147”(6)). (2.5.16)
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Claim: There exists constant C' > 0 and ¢, such that for 0 < ¢ < ¢,
"™ ()la < C 1K (O)|on < C 1@ (e) < C (2.5.17)

forall 0 < € < €. Letting (v, 7)) = (u™(€), ™ (€)) in (2.3.11), we have

/QAijkl(e)eku(EvU (€))eq (e, u™(€)vg d:v—l—/ €)@;" (€)@ (e)v/ g(e)dx
— (o) / [um () (€) + u ()l ()] v/ g(e)d. (2.5.18)

Also, using the coerciveness properties (2.2.29),(2.2.30), and the inequality (2.3.25) we
have for 0 < € < {min ey, 1},

/QA”“(Z:‘)emu(&u ()eai(e, ™ () Vg dﬂf+/ €)pi"(e)¢ () g(e)dx
ZCZH%(&U HOQJFCZ” )llos

2

2
= CZ €ap(u ) +eel e, u (8>)H0,9
1 2
+C1 Y ~Cas(u™(2)) + el (e, u™(e))
« 0,Q

2

+ 0| et

+CZ|| @0
0,22
{ZH% &)loq = 3¢°Callu™ (¢ ng}JrCZH% o0

> Csllu™(e Hm+C4ZH% )50
> Cs (Jlu™(e)lge + 1™ @)30) - (2.5.19)

Combining equations (2.5.19) with the relations (2.3.14) we get the relation (2.5.17).
Step (ii): Claim: There exists functions ¢™ € L*(Q) such that

(€D1p™(€), €Dap™(€), D™ (€)) — (0,0, F3¢0™) weakly in (L*(Q))* ase — 0.
(2.5.20)
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Since ¢ (€) = (€01¢™ (€), €02™(€), O3¢™ (€)) is bounded, there exists ¢ such that

P (€) = (€019™(€), o™ (), Dsp™ (€)) — @™ = (&1, &3, §5') weakly in (L*(2))°".

2.5.21)
Now o
O (€) (1, w2, w3) = / O3p™(€)(x1, X2, x3)ds (2.5.22)
—1
and hence
o™ () llo.0 < V2||05¢™ (€)oo < C. (2.5.23)

Hence there exists ™ in L*(€2) such that o™ (¢) — ¢™ weakly and therefore

(€D10™(€), €Dap™(€), D30™(€)) — (0,0, 050™) weakly in (L*(Q2))* ase — 0.
(2.5.24)
Step (iii): From step (i) it follows that there exists a subsequence, indexed by ¢ for nota-
tional convenience, and functions v € V() and K 7€ (L*(Q))? such that

u™(e) — u™ weakly in H'(Q), K™(¢) = K™ weakly in L*(Q2), ase — 0, (2.5.25)

Claim: There exist functions (¢™) € H'(w) and (" € H?*(w) satisfying (™ = 9,3 = 0
on 7 such that

Uy = Go' — w30,G5", ugt = ¢, (2.5.26)
and
R = eap(um), K= —Xpisguom = XX 2pssg o yfom)
i A+ 2u

(2.5.27)
Since u(g) — u weakly in H'(Q), the definition (2.3.15) of the functions é,5(v) shows
that the function f(aﬁ(e) = €a5(u(e)) converges weakly in L?(2) to the function é,4(u).

We next recall the following result(cf. [22]). Let w € L?(2) be given then
/Qwagwdx =0 forallv € H'(Q) with v = 0 on Ty, then w = 0. (2.5.28)
The equation (2.3.11) - (2.3.13) can be written as
/Q ({ [AO‘B‘”(O) + eQAgﬁ”T(e)] [fcg;(g) 42 (e u(e))} + [Aa633<0) + szAgﬂ%(e)} J%g;,(g)}
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{%aavg + %aﬁva - %(aage + 230a5X) + %€ 5 (e v)}
+ {4[A°7(0) + 2 AP ()] [K ™ (2)os + e€hs(e5 u(e))]}
{Q%aavs + Q%agva + eeb (e v)} + {[A%77(0) + 2AP7(e)] [ Kne) + 2%, (e u(e)|
+ [A%3(0) + 2AP(¢)] Kgg(g)} {éagvg}) VX2 + 268(e) dx
+ /Q 3 (£) 05 ()50 /g () d + / P [Byo™ ()eule, v) — dyveryi(e, ule))] v/g(e)de
+e /Q €3 (€) [Oap™ (£) B3t + Bzp™ (€)Dat)] v/ g(e)da + & / € ()Dnp™ (€)Aph/g(e)dx
: [ [P0 Eeun(e ) = duven(e. )] Voo
€) : uvin/x2 + e2gt(e) da YV v € V(). (2.5.29)

Multiplying the above equation by 2, taking v, = 0 and letting ¢ — 0, we get

/Q [%f(w + %K + p* 8330} Osvgxdr =0V vz € H'(Q),v3 = 0in Tg.
(2.5.30)
which implies Y2AK,, + (A + 2u) K33 + x*P?305¢ = 0 and hence the third relation in
(2.5.27) follows. Again, multiplying equation (2.5.29) by ¢, taking vs = 0 and letting
e — 0, we get

/ {Hf(a?, + P?’O‘?’aggo] O3vadr = 0V v, € (H'(Q))? vy = 0in Ty. (2.5.31)
o LX

which implies (1K, 5 + xP3*305¢) = 0 and hence the second relation in (2.5.27) follows.
Step iv: The function ¢™ is of the form,

2 psaﬂ
et =(1-x )p?aaﬁgg”. (2.5.32)
Letting e — 01n (2.3.12), we get
/ <P3klf(g;— e33 aggom) Osthydw =0V ) € U (2.5.33)
Q
This implies
O3(PM KT — €33 930™) = 0in D' (Q) (2.5.34)
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Hence
PR €33 950™ = d* with d* € D'(w). (2.5.35)

Using the expression for K ;7 given by (2.5.27) the above rquation reduces to

p3a6k(% _ p3383907n — dl (2536)
which implies
pSaﬁ B dl
83Q0 = FKQ’B — ]ﬁ (2537)
Then 508 9
m p “ 5 apX 1
8390 = F |:eo¢/3’(C) — I3 (&15@; + ; <3>:| - ]ﬁdl (2538)
which gives
3a8 . 804 T
o = — [xgeag(g) — 13 <aa5g3 + )fxgg)} — pT?;,dl +d°. (2.5.39)

Since ¢ satisfies the boundary conditions |+ = 0, ¢|r- = 0, it follows that ™ is of the
form (2.5.32).
Step (v): The function (") satisfies (2.5.9)- (2.5.10).

Taking v € Vi, and letting ¢ — 0 in equation (2.3.11) we have

/ AP KT (0) da + / €% Oy gypxdr + / PP 050" Ky (v) X
Q @ “

—/nglagw[%}g}xdxzﬁm/u?vgxd:c. (2.5.40)
Q Q

Replacing ™ and K ;; by the expressions obtained in (2.5.26) and (2.5.27), and taking v of
the form

Vo = Na — 30,73 and vz = 13 (2.5.41)

with (n;) € Vg x V3, it is verified that equation (2.5.40) coincide with equation (2.5.9)-
(2.5.10). It can be proved as in [76] that the convergences u™(¢) — u™ in H'(€)) and
©"™(€) — ¢™ in L*(2) are strong. O

Lemma 2.5.2. For a given (3 € HZ(w) there exists a unique vector (, € (Hj(w))? such
that

[ s OPaands =0 (1) € () (25.42)
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Proof. The equation (2.5.42) can be written as

2\ 2\
/w {meﬁ’ﬁ(g)(saﬁ + QMeaB(C)] aﬁnaxdw = /u; |:/\ + 2# (8000)6046 + /laaﬁgg?) aﬁnaxdw'

Clearly, the bilinear form

~ 2\
b(Cas Mar) = /w[mepp(oéaﬁ + 2peap(()|9snaxdw (2.5.43)
is Vy elliptic and symmetric. Hence by Lax- Milgram lemma given f, € (H!(w))? there

exists a unique ¢, € (H{(w))? such that b(Cy,7a) = (fa,7a). The result follows by setting

2
(o) = [ 5200 0na)3 + D) O (2.5.44)

]

Thus, given (3 € V3, we denote by 7}, (3 the vector ((, (3), where ((,) is the solution
of (2.5.43). In particular, 7, ¢;* = (¢, (§*). Substituting this in equation (2.5.9), we have

b s) = €" / (™ nsxd for all g € Vs (2.5.45)
where
o) = = [ masdomxde+ [ 0TG50 + mas (0] mxcds
+ % /w %@&gﬁamxdw- (2.5.46)

The bilinear form b(., .) defined by (2.5.46) is Vj-elliptic and symmetric (cf. [73]) Hence
there exists sequence of eigensolutions for the problem (2.5.45) . The injection HZ(w) <
L?(w) is compact and so we have a sequence of eigenvalues tending to infinity and eigen-

vectors which form an orthonormal basis of L?(w).

Theorem 2.5.3. Let £!(e) — & and let u!(€) — u! in V. Then &! is the [ - th eigenvalue of
the problem(2.5.46) and {us'} is an orthogonal basis for L*(w). Thus, all the eigenvalues

and eigenvectors of the limit problem are obtained as limits of {(£'(¢),u'(€))}>,.
Proof. From (2.2.43 ) we have
0<&e) <)< <)< M) <--- w 0asl — oo
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and since b(., .) is elliptic, it follows that
D<é << .. <d<e <. s 0asl—

Further passing to the limit in relation (2.3.13) gives

/ U3lu3de37 = 0im
Q
. That is
I, m 1
us'ug"x dw = §5lm. (2.5.47)

Claim: There are no other eigenvalues of the limit problem.
Assume the contrary. Let ¢ € be an eigenvalue such that & # &! for all /. Then there exists

an eigenfunction (3 such that

1
/ G ydw = 3 and / 3¢y dw = 0. (2.5.48)

For each € > 0, let w(¢) € V be the unique solution of the problem

Ny(e)(w(e),v) = ¢ /Q Gsusxdx (2.5.49)

for all v € V. Then proceeding as in Theorem 2.5.1, we can show that w(e) — w in V and
that w,, = 2, — 230,23 and that wy = 23 € Hy*(w). Further, if 2 = (z,, 23), then z = T\ 23

and z3 will be the solution of
b(z3,m3) = 5/ Ganzxdw (2.5.50)

for all 3 € Hy?(w). By the uniqueness of the solution if follows that z3 = (5. Since the

sequence {£'} is unbounded, we can choose [ such that
£ < €& (2.5.51)

Consider the vector

l

v(e) = wle) =Y Dle)(w(e),u*(e))u"(e).

k=1
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Since D(e)(v(e), uk(€)) = 0 for 1 < k <, it follows from the variational characterization

of the eigenvalues, that

Now

Ny(€) (w(e), w(e) = € / Caoa(€) Vg () dz
—>2§/§§de.

Ny(€)(w(e), u*(e)) = £"(e) D(e) (w(k), u" ()

— 0

Ny (e)(uF(e), u™(€)) = &¥(€)0pm = 0 for k # m.

Thus we get

Also
v(e) —w(e) = 0in V()

Hence

lim D(e)(v(e), v(e))) :2/C§dw

e—0

Passing to the limit in (2.5.52) we get

£l+1 < g

which is a contradiction.
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2.6 Conclusion

Starting with the three dimensional model of eigenvalue problem for piezoelectric shal-
low shell with non-uniform thickness, we obtained a two dimensional model involving the
nonuniform function Y.

One difference between the two dimensional static model and eigenvalue problem is
that in the latter case it is possible to express it involving only the third component of the

eigenvector.
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Chapter 3

Lower Dimensional Approximation of Eigen-
value Problem For Piezoelectric Flexural

Shells with Nonuniform Thickness

3.1 Introduction

In this chapter, we study the limiting behaviour of eigensolutions, describing the vibrations
of a thin piezoelectric flexural shell (ie. the space of inextensional displacements is non-
trivial), clamped along a portion of its lateral surface, as thickness of the shell approaches
to zero.

Forall n = (1;) € (H'(w))? x H*(w), define

1 1
Yap(n) = 5(Gatls + Opta) — Togto — ;bawg. (3.1.1)

Define the space of inextensional displacements by

Vi(w) = {n = (m) € (H'(w))*x H*(w)|n; = 0,3 = 0 0n 79, Yas(n) = 0inw}. (3.1.2)

We assume henceforth that V(w) is infinite dimensional. For instance if the middle surface
is a plate or if it is flat in a small region w’ C w so that b,s— in that region and hence
functions of the form (0,0, ¢) € Vr(w) where ¢ € D(w) and hence the space is infinite
dimensional.

We show that the eigenvalues are of order o(e?) and the corresponding scaled eigenso-
lutions converge to the eigensolutions of the limit problem occur this way.

This chapter is organized as follows. In section 3.2 we transform the problem to a
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scaled domain, in section 3.3 we derive a priori estimates for eigenvalues and in section 3.4

we study the limiting behaviour of the eigensolutions.

3.2 The Scaled Three Dimensional Problem

We now make a change of variable so that the domain no longer depends on e¢. With x =
(1, 29,23) € Q = w x (—1,1) we associate ¢ = (x, T2, €x3) € w X (—¢,€). We make
the following assumptions on the unknowns.

m,e€e

up (@) = w(€) (@), wi(af) = vi(x), (3.2.3)

M = 2™ (e). (3.2.4)

Then the eigenvalue problem (2.2.41)-(2.2.42) becomes: find (u™(€),™(¢)) € V() x R
such that

[ A e ey ) /aldde + 1 [ PO esle)0) /ol

1

2

M

:o\:;\:o\

e (€)030™(€) O3/ g(€)dx + = / “(€)(Dap™(€)03t 4+ O30 (€)0at0)]\/ g(€)dx
cof (€)0up™(€)0p1+/ g(€)dx = - / P3* (¢ €)Ostpek(e€) )V g(€)dx
P (e)Dpberu(e)(u™(€))/ gle)dx Vi € W, (3.2.6)

+

+

[ @/l = b 327)
Q
For v € V(£2), define
(e o o 1
Pas(V) = U3jap + XbUop + XOFVsla + XU 505 — | Cap + Clos | s
2 1 1
+  —50aX0XV3 — —0yX0pv3 — —0sX a3 (3.2.8)
X X X
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where

Ya|g = aavﬁ - Fgavm Vjap = aaﬁv - Fgﬁapv' (3.2.9)
and

1 1 1
1 _ o
ehiple)e) = -(Buts + Optn) — L2500 — buges

1
+ 23(X0F|0 + OpXbG + 0aX3 Vs + T3(Cap — ;€|aﬂ)7}3. (3.2.10)

We need the following lemma (cf. lemma 5.1 in [17]) for proving a priori estimates and to

identify the limit problem.

Lemma 3.2.1. The functions I'J 5(¢), g(€), eq)5(€) satisfy the following relations.

Hrgﬁ(e) - Faﬁ“0700+' Fiﬁ(e) - ;baﬂ +Hra3(€) + XbaHO,oo—i_' Fi3(€) - ; aX S CEJ
0,00 0,00
(3.2.11)
llg(€) — x*allo.0 < Ce, (3.2.12)
[JATR (€) — ATR(0)]]0,00 < Ch, (3.2.13)
with
AaﬂaT(O) — )\aaﬁaar + ’u(aaaaﬁr + aa7a60)7 Aa,BJS(O) — 07
Aa,ﬁ33(0) — %)\aaﬁ’ Aa303<0) — %Maaaj
IT55(€) = {T'05 + exs[—xFla) — Opxbg — DaXF]}H lo.000 < C€,
I085(60) = (Lo + €xalLeins — cosl}looon < O, e
T3 (€) — {xb% — exsx b7} [o,00,0 < Cé?,
IT35(€) — {5 9ax + ex30sxb3 Hlomo0 < C€
1
||E€a”’8(€)(v) — e15() ()]l < CeXil|villoe, (3.2.15)
1
[1=0sea)is(€)(v) + pas(v)]|-ra < C{Zilleqs(€) (V)llog + Xallvallog + €llvs]l10}-
(3.2.16)
OJ
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Lemma 3.2.2. Let (u(€))e0 be a sequence of functions (u(e)) € V(£2) such that

u(e) — u weakly in (Hl(§2))3 and u(e) — u weakly in (LZ(Q))?’, (3.2.17)
%eij(e)(u(e)) — e;); weakly in L*(€), (3.2.18)

as ¢ — 0. Then
u = (u;) is independent of the variable x3, (3.2.19)

1
u= (1) = / udrs € H'(w) x H'(w) x H*(w),7; = 0,13 =0on~y,  (3.2.20)

Yap(u) =0, (3.2.21)

pas(u) € L*(2) and pag(u) = —Bsel 5. (3.2.22)

If in addition, there exists a function ¥,5 € H () such that

Pap(u(€)) = Uosin HH(Q) as e — 0, (3.2.23)
then
u(€) — u strongly in (H*(92))* as e — 0, (3.2.24)
pap(tt) = Vo5 and U5 € L*(Q). (3.2.25)
O
Proof. See the proof of Lemma 5.3 in [17]. [

Lemma 3.2.3. Foralln = (n;) € H'(w) x H'(w) X H?*(w), we let y,5(n) and p,s(n) be
defined as in (3.1.1) and (3.2.8) We assume that

Yap(n) = pas(n) = 0in L*(w), (3.2.26)

n; = Oym3 = 0 on vy C v = Ow with length vy > 0. (3.2.27)
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Then n = 0. O

Proof. See the proof of Lemma 5.4 of [17]. O

3.3 A priori estimates

In this section we show that for each positive integer m the scaled eigenvalues ™ (¢) are
bounded uniformly with respect to €. Let n = (7;) € Vr(w). Define v.(n) € V(Q2) by

2
(Ve(N))o = Mo — €3 (&ms + 2xb%n. — ;Gaxng) : (3.3.1)

(ve(n))s = 3. (3.3.2)

Setting 6, = J.n3 + 2xb%n, — %Baxn;; we can write (v.(7))a = Na — €x30,. Since
Yas(n) = 0 we have

1 1
cas()W(©) = —w3{5(0abs) = 350 — (xbfja + IpXV™ + 0axVE)s — (Cap — < Cles)s

—ea3(Xjq + DXL + OaxF )0, (3.3.3)
But

1
(0a0p) — T7s06 — (XbGj0 + Opxb7 + OaxbF)No — (Cap — ;%6)773

= Oapns + Xb308Ma + Xb308Ma + X (957, + 0ubf — 2T 507 )1y

g 2 loa g 1
— Ios0sms + ;Fagaaﬁs = Xb3jaMe — Captls + ;Qaﬂﬂ:&

2 2 1 1
+  —50aX08M3 — —0apXN3—0a XXMz — —0pX0an3
X X X X

g g g 1
= M3jap + XbaNols + X0FNola + X0 8N — (Caﬁ + ;€|a5) 3

2 1 1
+  —50ax0pxM3 — —0s X013 — —0pX 0l
X X X

= pas(n). (3.3.4)

Thus
en5(6)(v(€)) = —x3pas(n) — ex3(XbG), + OpXbT + Oaxb3)0s. (3.3.5)

Hence
e ea)p(€)(ve(n)) = —x3pas(n) in L*(Q) as € — 0, (3.3.6)
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Also
-1 1 o o 3 1 o
e ea(€)(v(e)) = 2T (&) +ebg)nat (Tazl€) = LOaX)s —€wslcs(€)o] < €. (337
Lemma 3.3.1. Letn € Vp(w). Then there exists a constant C' > 0 such that

LT o < Cllous®loe (338)

%’aa<Tx(€)(Ue(77)))|0,ﬂ < Cllpas(m)llow- (3.3.9)

Proof. The variational equation (3.2.5)- (3.2.6) posed on the domain €2 reads as follows.
For each h € (H*(2))?, there exists a unique solution 7} (¢)(h) € (H*(2))? such that

é[}ﬁ%@&n@xmmw¢mow
+2 [ (T 10w + AT () (1)0,0)] 5T

€

_|_/Q €% (€)0a T\ (€)(h) g0/ g(€)d
:l/QP%( €)Dsteryu(e)(h)\/gle)dx

€

:+/Pakz() Datber(€)(h)/g(e)davy € V. (3.3.10)
Q

Taking h = v.(n) and ¢ = T} (€)(v<(n)) in the above equation, we have

3 [ € (0T mIAT (O ) Vool
+% /9[603 () (DT (€) (ve(n) DTy (€) (ve(n)) + DT (€)(ve(n))Du T (€) (ve(1))]/ g (€)dx:
+ [ € (@I )OT ) e )V el
ZE/PW@&Q@<WMW DIVale)ds

Q
+ [ PUQOLT OO m)V eI B3

Using the relations (2.2.30) and (3.3.3)-(3.3.7) it follows that there exists a constant C' > 0
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such that

612|83(Tx<6) (e(m))lg + [0a(Ty(e) (ve(m)o0
< C{l05T () (ve(m)o.allpas(llow + [€0aTy(€) (ve(m)loallpas(llow  (3.3.12)

and hence the result follows. ]

Theorem 3.3.2. Assume that V(w) is an infinite dimensional subspace of V' (£2). Then for

each [ > 1, the sequence &!(¢) is bounded uniformly with respect to e.

Proof. Let V,, denote the collection of all m-dimensional subspaces of V. Then

&™) = &ymﬁ%% (3.3.13)
where
@) = 5 [ AP e e)ens (0 Vale)ds
+§3/Q PPH(e)05T () (v)exp(e)(v) v/ g(e)dx
+ 612 /Q PoR()D, Ty (€) (v)eryue) (v) v/ g(e)da, (3.3.14)
D(e)(v,v) = QviviMd:c. (3.3.15)

Let W,, denotes the collection of all m-dimensional subspaces of V(w). Consider the map
Se 1 Vi(w) — V(Q) defined by
Se(n) = ve(n). (3.3.16)

For sufficiently small €, S, is one-one. Thus if W € W,),, then S, (W) € V,,. Consequently,

we have

NX(G)(UG(U%UE(W»' (3.3.17)

§"(e) < in  max
WeWn new\{0} D(€)(ve(n), ve(n))

On one hand

/Q (0el)elwcm)v/a@de > xv/as / (0e ()i (ve(n) adz
> 2X\/a_0/77midw. (3.3.18)
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On the other hand, using the symmetries of A¥*(¢), the fact that A%#73(e) = A*333(¢) = 0,

and the relations (3.3.3)-(3.3.7) and the Cauchy-Schwarz inequality, we get

% [ AT Qeun(Oe. ey n) V(o
<o{ [ awmio Eaﬁ(e)(ve(n»] Leap (e )] do
4 [ 455(6) |Leapa(@unt)| | el o}
<C X st

for € < 1. Also, from the relations (3.3.6)-(3.3.9) it follows that

5 [ PHUQOT O m)en( ) a(E)ds
- [ o oo <n>>}{3ekw o)} Vot

< CL llustnl.
and
1 NV g
S /Q PM(€)d5T) () (ve(n))exyule) €)dw
Pakl { a1\ (€) }{lekl }\/ €)dx
< CZHP&B MG
Hence

Ny () (wem), ve(m) _ 208 eI
D(e)(ve(n),ve(n)) — > lmillg .

Let us define the two-dimensional elasticity tensor a®*°" by

ANp

afor __ af ot ao BT ar  fBo
a —a"a’ + 2u(a™a”" + a“"a”?).
A+ 2p e )
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It is known that (cf. [24]), there exists C' > 0 such that
[ pastpar ity = 3 luatal. (3324

for all n € Vp(w). Thus, we have

NOwelm) vem) _ Lo @ papm)per (m)x/ade

. (3.3.25)
D(€)(ve(n), ve(n)) I, nimixv/adw
and hence, from (3.3.17) and (3.3.25) it follows that
£m(e) < CA™. (3.3.26)

where A™ is the m'"-eigenvalue of the two-dimensional problem: Find (A,¢) € IR x
Vi(w)\{0} such that

/ 0 pr(Cpa(m) x/ad = A / niCoxy/ads (3.327)

for all n € Vr(w). This completes the proof. O

3.4 Limit Problem

In this section we show that the scaled eigensolutions of the three dimensional problem

converge to the eigensolutions of the two dimensional problem.

Theorem 3.4.1. Assume that the space Vp(w) is infinite dimensional. Then a) For each

integer m > 1, there exists a subsequence (still indexed by ¢) such that

u™(€) — u™ strongly in (H'(Q2))?, (3.4.1)

1 1 .
(Ealgom(e)v gaQSOm(E)? 6_283907”(6)) — (07 07 83907”) strongly mn (LQ(Q))?)a (342)

m p3aﬁ 2 m
A ez (1 —23)pap(u™). (3.4.3)
§"(e) = &M (3.4.4)
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b) u™ is independent of x5, T" = 3 f_ll u™dr € Vp(w) and the pair (£™,T™) solves

the two-dimensional eigenvalue problem for piezoelectric flexural shell, viz; find (£, () €
IR x Vg(w)\{0} such that

1
G / CP7 por($)pap(n)xvady = & / Gmixvady foralln = n; € Vp(w)  (3.4.5)

where
4 3af,,307
Caﬁm— — (aaﬁm— + P p3§ ) ’ (346)
A
p = e o P08, (3.4.7)
p33 — 1P3oc3p3a3 + 1 P333P333+ e33 ] (348)
I A+ 2u

Proof. :The proof is divided into several steps.
Step (i): There exists constant C' and ¢, > 0 such that

[u™(e)][1.0 < C, (3.4.9)
1 m 2 1 m 2 1 m 2
|251<P (€6 + |E(92<P (€6 + |€—23390 ((o=C (3.4.10)
for all 0 < e < ¢j. Define the vector
~m 1 m 1 m 1 m
F"(€) = (0" (), = 0o (e), D™ (6)) G4

Letting (v, ) = (u™(¢€), ™ (€)) in (3.2.5), we have
[ A Qe (Deay @Ol + 1 | PHO(Oewn(0) ™ () Vole)da
+ /Q P () D™ (€)eru(e) (u™(€)) v/ g(€)dx = 2™ (e) /Qu?l(e).ugn(e)\/g(e)dx. (3.4.12)
Using (3.2.6), the above equation becomes
5 [ A e @ ey W () Vol + [ €7 (a7 (Voo
Q Q
=M (e) /Q u(€).ul*(e)\/g(€)dx (3.4.13)
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Using the generalized Korn’s inequality (cf.[17]),
2 1 2
lWlite < Bigll—eai(e)(w)]]” ¥ veV (3.4.14)

the relation (2.2.29), the orthogonality relation (3.2.7) and the boundedness of the eigen-

values, we have

IA

@l + 187 @Ra} < Slten(@@ @DIRa+116Ola)
% [ A e @)ess () (0

€

T / &5 ()@ (F0 () v/g(Odx

— ce(o) / u()-u(€) /g (O
cem(e). (3.4.15)

IA

IN

Step (ii): From step (i) it follows that there exists a subsequence (¢ (€)) and @™ €
(L?(£2))? such that

pm 1 m 1 m 1 m ~m ~m ~m :
Y= (25190 (6),25280 (6),6—23390 (6)) — (P, &5, @5") weakly in (L*(2))°.
Now,
1 .., [ 1a m
2¥ (€)(x1, 22, x3) = 2059 (€)(x1, w2, x3)ds

This implies
1 m
6—290 (€)

1
<V2 H gaSSOm(E)

Hence there exists a ™ € L?(£2) such that
1 m 1 m 1 m m : 2 3
Ealﬁp (6)7 28230 (6)7 6_28390 (6) - (07 07 83()0 ) Weakly 1mn (L (Q)) '

Step (iii): It follows from Step (i) that u™(e) — u™ weakly in H'(Q) (hence strongly in
L2(Q)), Ley;(e)(u™(e)) — eil""; weakly in L?(€) and ¢™(e) — ™. Then it follows from
lemma (3.2.2 ) that ™ is independent of 3, y,5(u™) = 0,i.eu™ € Vp(w) and the limit
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functions eil"(; are related to the limit function u™ by

1,m m
—0se,03 = Pap(u™)-
Step (iv): The limit functions 611” ; are related to the limit functions u = (u;) by

1

1m 3a3
€olz = __4MP 2 O5™
1
1m 333 2 a® 1m

Let v = (v;) be an arbitrary function in the space V'(€2). Then

eeq)5(€)(v) — 0 strongly in L*(9),
1
eeq3(€)(v) — 5(931)@ strongly in L*(Q2),

eeg3(€)(v) = Osvg for all € > 0.

Equation (3.2.5) can be written as

/ " ()ex(e)en; (€)(v)V/ g(e)da
(Aaﬁp € {_ealllﬁ )} [eepijo(€)(v)] + 24777 () Eeaﬁ(e)] [eepp3(e)

A3 (e {—eauﬁ )} [eesyis(€) ()] + 2477 (e) Ee“'g(e)} [<eal«()

(A33”” [—63”3 ] )| Leepio(€)(v)] +24%% () [16343(6)] [eeoia(e)
(A

(3.4.16)

(3.4.17)

(3.4.18)

(3.4.19)
(3.4.20)
(3.4.21)

©)]) Vatelds
w)]) Vatelds

]) Vads

3333 6 {—633 )] [eegmg ] V3 dZB+ /P?”“l(e)@ gO €k||l U AV’ d$
Pokl(¢ €)ex(€)(v)V gle)dr = € 2em(e) | ulvin/ X2 + 2g(e).dr (3.4.22)
Q

40

Aidh

-/,

/. (

/ (414“3"3 [—eam )} [cepia€) (v)] + 2479 (e) E%IIB(G)] [ees(€) (v) ]) Vg(e)de
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Keep v € V fixed in and let e — 0. we obtain

/Q{Quaaa 1‘]7;8311& [)\aUT (17‘7‘2 (>\+2u)e3”3] 831)3}X\/_dx

P3o¢3
- / { 5 O30™ O30, + P3336390m83v3} yvadr = 0(3.4.23)
Q
Letting v vary in V' gives relations (3.4.17) - (3.4.18).
Step (v): The function ¢™ is of the form

p3aﬁ )
O = 5 (1 — a5) pas(u™). (3.4.24)

Passing to the limit as ¢ — 0 in (3.2.6), we get

/ e3050™ 05V a dr — / P?’klagweknl Wadr = 0V e V. (3.4.25)
Q

ie, / (P?’klekw — 63383<pm) Obxvade = 0V e V. (3.4.26)
Q
This is equivalent to

Oy (Pt — Bo5™) = 0in D'(Q) (3.4.27)
which implies that <P3kl R 63383g0m> = d" with d* € D’(2). Then

1 m
o™ = =5 (p™ ey - ) (3.4.28)

. . 1
Using the expression for ek’HT, we have

3ap
m o p 1 m m 1 1
Which gives
v s [x?)eauﬁ( )} - x?’ﬁd +d". (3.4.30)

Since the function ;" is independent of x5 (cf. step (i1)), relation (3.4.16) implies

ei’ﬁ% = Oup — T3pap(U™),00p € L*(Q) (3.4.31)
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Hence

3ap T
o= P33 [230ap — T3pap(u™)] — pT?;dl + dp. (3.4.32)

Using pp- = or+ = 0 it follows that ¢ is of the form (3.4.24)

Step (vi): Keep the function n € Vp(w) fixed, let v = wv.(n) in the variational equation
(3.2.5), where (v.(n)) is defined in (3.3.1)-(3.3.2) and let ¢ — 0. Using the relations
(3.2.11) and (3.2.14), we get

lim — ( /Q A (et (e)eq i (€) (ve(n) v/ g(€)d

1 /Q PR (€)B30™ (€)eny(€) (ve(n)) v/ g(€)dz + / P () D0p™ (€)enpu(€) (ve(n) v/ g(€) dx)
= [ el + A O Hapas ) xada

+ /Q PP 030™{ ~w3pas(n) }xVade

=lim [ u"(e)v;(€)\/g(e)dx = % /w unixv/ady. (3.4.33)

=0 o
Replacing e,}l’gl and ¢™ by their values found in (3.4.16)-(3.4.18) .it can be verified that
equation (3.4.33) coincides with (3.2.5).
The strong convergence of u™ () to u™ in H*(2) and (19,¢™(€), L020™(€), 505¢™ (€))
to (0,0, 930™) in L?(Q2) can be proved as in [74]. O

Lemma 3.4.2. Let (™, u™), m > 1, be the eigensolutions of problem (3.4.5) found as
limits of the subsequence (£™(€),u™(€))e=0,m > 1 of eigensolutions, orthonormalized
as in (3.2.7) of problem (3.2.5). Then the sequence (£™)°_, comprises all the eigenval-
ues, counting multiplicities, of problem (3.4.5) and the associated sequence (u™)5°_; of

eigenfunctions forms a complete orthonormal set in the space Vg (w).

Proof. The proof is similar to the proof of theorem 2.5.3. 0

3.5 Conclusion

We considered the eigenvalue problem for piezoelectric flexural shells with non-uniform
thickness and we have shown that if dim(Vz)(w) = oo, the eigensolutions of the three di-

mensional problem converge to eigensolutions of two dimensional flexural shell involving
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the non-uniform function Y.

If dim(Vp)(w) is finite, say N, then one can prove that only the first IV eigenvalues
are of o(e?) and the corresponding eigensolutions converge to N eigensolutions of two
dimensional flexural problem.

To the best of our knowledge, we donot know of any example of shells for which Vp(w)

is finite dimensional.
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Chapter 4

Asymptotic Analysis of Dynamic Problem
for Shallow Shells with Nonuniform Thick-

ness

4.1 Introduction

In this chapter we consider the dynamic problem, concerning propagation of vibration,
for shallow shells with nonuniform thickness. We then transfer the problem to a domain
independent of € by making suitable scalings on the unknowns and data and show that the
scaled solutions converge to the solution of a two dimensional dynamic model.

This chapter is organised as follows. Section 4.2 describes the three dimensional prob-
lem. In section 4.3 we study the existence and uniqueness of the three dimensional problem.
In section 4.4 we transfer the problem to a scaled domain and in section 4.5 we study the

asymptotic behaviour of the scaled solutions.

4.2 The Three-dimensional Problem

Let w C IR* be a bounded domain with a Lipschitz continuous boundary ~ and let w lie

locally on one side of «y. For each € > 0, we define the sets

O =w x (—€,6), TP =wx {Fe}, T =7 x (—¢,¢)

Let 2° = (21,2, 25) be a generic point on Q¢ and let 9, = 95, = ;2 and 95 = ;2-. We
@ 3

assume that for each ¢, we are given a function 6 : w — IR of class C3. We then define the
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map ¢° : w — IR by
O (21, x2) = (21, T2,0(x1, 22)) for all (x1,22) € w. 4.2.1)
At each point of the surface S = ¢“(w), we define the normal vector
a¢ = (|010 + 020 + 1) 2 (=016, —0,6°, 1). (4.2.2)
For each ¢ > 0, we define the mapping ®¢ : Q¢ — IR* by
O(2°) = (21, x2) + x5x (21, T2)a (21, 22) for all ¢ € QF. (4.2.3)
where y € W2, 0 < xo < x(z1, T2) denotes the thickness function. We define the space

V() = {6 € (') o

& =0} (4.2.4)

For 0 € V(Q), we define

1 fous  Ous

Then the variational form of the dynamic problem is to find u¢(¢) € V/(€2) almost every-
where (a.e) V't € [0,7] such that

p /Q acvedas + /Q AliRheer (4°)es (0°)di = /Q feosdic, ¥ oteV(Q), 0<t<T

(4.2.6)
and
a(0,5%) = ¢, (0, 2°) = * (4.2.7)
AR = XG4 (5™ 67" + 667F) (4.2.8)
. . duf d*ai . .
where 4 and 4 denote o and i respectively and p° denotes the density of the mate-

rial.
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4.3 Existence and uniqueness of solutions to the three di-

mensional equation

Theorem 4.3.1. Assume that f< € W1>=(0,T; L*(QF)), ¢ € V(QF) and ¢ € L2().
Then there exists a unique solution to the problem (4.2.6) - (4.2.7).

Proof. : Since V (€2°) is separable, we can choose a basis {1}, € V/(€2¢). We define the
approximate solution 4™ (t, ¢) of order m of the problem (4.2.6)- (4.2.7) in the following

way.

A (L, 2) = ™ (L) (i) (4.3.1)

where ;™ (t) are determined by

s / asmdi+ [ AT (e)ef, (™) el (w5 )di = / feasdic VO<t<T (43.2)
Q Q

. ij
Qe

forp=1,2,...,m.

ac™(0,5) = ag™ (@), a“™(0,2°) = ay™ (a9), (4.3.3)
where, as m — 00
g™ (2°) = Zagm(omg(:ﬁf) — (&) strongly in V(Q), (4.3.4)
p=1
A (E) = Y a5 (0)is (i) — 5(i°) strongly in LA(). (4.3.5)
p=1

From the theory of ordinary differential equations, it follows that there exists a unique
solution {a}'(t),p = 1,2,..,m} on [0, 7] to the equations (4.3.2)- (4.3.3). Multiplying
both sides of (4.3.2) by &;,;" and summing up from p = 1,2, ..., m, we get

1d
P 2dt Jae

. 1 . a .
(i pdic 5 4 [ A Qe e (imdic = [ firaic, @30
2dt Jae Q
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Integrating the above inequality from O to ¢, ¢ € [0,T], we get

1 : 1 “
pEE[ (ae,m)Zdi,e + 5/ A”kl(E)ezl(ﬁe’m)egj(ﬁ57m>dj76
1 L€,MN\2 € 1 ijkl € (A€M € Aem ~e
= 5 | @mpan g [ A e e i
t
+ / - feaomdicdr. 4.3.7)
0 Qe
Using the Korn’s inequality

12517 g < Chlle; (@™l

15 V™ € V(), (4.3.8)

the coerciveness of A%< and the boundedness of the function 5™, 45™, f€in L2()) and

V () respectively, we get

i 1 <0 (1 [ [ @pasa). s

Hence by Gronwall’s inequality we get
12|13 g + 11317 . < Ca. (4.3.10)

Differentiating both sides of (4.3.2) with respect to ¢ we have

o / u " s da + / AR (e)ef, (a™)es; () di® feasdit YO<t<T.
A€ Q QG
(4.3.11)
Multiplying by ;)" on both sides of (4.3.11) and summing from p = 1,2,...,m we getin
a similar way,
||u€m||095+||u€m|]19€ <C, 0<t<T (4.3.12)

From (4.3.10) and (4.3.11), we notice that there exists a subsequence (4“™) and a function
@°(t) such that as m — oo

49— ¢ weak™ in L=(0,T; V() (4.3.13)

49— 4 weak® in L=(0,T; V(X)) (4.3.14)
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U™ — 4 weak* in L®(0,T; L*(Q)) (4.3.15)
Letting m — oo in (4.3.2), we get
p° / A dic + / AR (e)ef, () el (1) die = / feabsdie (4.3.16)
Since {1y} is a basis for V(QF) we get

o / acveda + / A'M (€)es, () el () di® / feocdic Yot e V(Q)  (43.17)

Since a¢(t) € L°(0,T;V(2)), ac(t) € L=(0,T;V()) and a(t) € L=(0,T; L ( Y,
after an eventual modification on a set of measure zero, 4<(t) € C([0,T]; V(Q)), u<(t) €

C([0, T]; L2(29)). The relation (4.3.12) implies

@™ (t)]

ye@n < C (4.3.18)

where V*(Q¢) denotes the dual of V/(Q¢). This together with (4.3.10) implies that the se-
quence of functions (4™<(¢))2°_, and (@™€(t))>°_, are equicontinuous in C'([0, T]; L2(Q2°))
and C'([0, T]; V*(°)) respectively. Hence by Arzela-Ascoli theorem, there exists a subse-

quence such that as m — oo,
4™ — 4€ strongly in C/([0, T]; L*()),
4™ — 4 strongly in C([0, T; V*(Q9)).
By (4.3.4), (4.3.5) and the above convergences, we deduce that as t — 0
Q(t, ) — ¢°(3) in L2(Q),
U(t, ) — (2€) in V*(QF).

Thus (¢, z¢) is a solution of problem (4.2.6) - (4.2.7). O

4.4 The Scaled Problem

To study the asymptotic behaviour of the solution as the thickness of the shell goes to zero,
we first transform the problem (4.2.6) - (4.2.7) to Q¢ = w X (—¢, €) and then to a domain
2 = w x (—1, 1) which is independent of ¢.
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Since the mappings ¢ : 2 — Q¢ are assumed to be diffeomorphisms, the correspon-

dence
Vit 0)ge = o5(, 3¢
where {¢'}3_, denotes basis vectors, induces a bijection between V (Q2¢) and V (Q¢) where
V(Q) = {v € (H(Q))%v°=0o0nT§}.

Then we have (cf.[18])

éf'@f = UZHz(gk’e)i(gl’e)ja v = Ofvi — T (),

€5;(0%) = €5 () (g"Vilg" ) €fy(v) = ef;(v) = THv;

We define

ABRLe = ) gide ghlie 4y (gikse ghlie 4 gile gike).
Then the problem (4.2.6) posed over Q¢ becomes: find u¢(t) € V() a.e Vt € [0,T]

such that

,06/ dj-v;gij(e)\/fdxe%—/ Aijkl’eezw(ue)e%(vg)\/Edac6 = [ ff/gedzt Yot € V(Q).
6 . > 4.4.1)
and
u(0) = ¢, us(0) =", (4.4.2)

To transform the above problem from the domain Q¢ to the domain 2 = w x (—1,1)

independent of ¢, we make the following scalings.

ul,(t, %) = Eug(e)(t, 1), valt, 1) = vu(t, x), (4.4.3)

ug(t, x¢) = eus(e)(t,x), ws(t, %) = evs(t, x) (4.4.4)

With the applied body forces f€, and the initial conditions ¢ and ¢, we associate the
functions f(¢), ¢(¢) and 1(€) through the relation

fit,z) = Efile)(t,x), p°=€p, (4.4.5)

0, = ale), @5 = eps(e), (4.4.6)
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Vs, = €vale), U5 = es(e) (4.4.7)

Note that the scalings made on the applied forces are different from the scaling made
on the applied forces in the static case (cf.[18]).

With the tensors e, ., we associate the tensors e;|;(¢) through the relation

ill5°

ej“j(ve)(xe) = 6262”]-(6; v)(x). (4.4.8)

We define the space
V ={ve (H()*v|r, =0} (4.4.9)
Assumption: We assume that the shell is a shallow shell; i.e. there exists a function

6 € C3(w) such that 0 = €

i.e. o (r1,12) = (11, 22, €0(x1, 22)), forall (z1,12) € w. (4.4.10)

Then the scaled solution u(e)(t, x) satisfies

p{ /Q iio(€)05g° () /g(e)dz + / ciin ()39 (€)/9(e)da

+ [ eintersg Vo + [ is@uge]

+ [ A Qenlesu(e)ey (6 0) Vol
:/Qefa,ua(e)\/@dx+/gf3ug\/%)dx Voev 4.4.11)

u(e)(0,2) = ¢(e), u(e)(0,z) = 1(e) 4.4.12)
Then the functions ¢; j(e, v) defined in (4.4.8) are of the form(cf. lemma 2.3.1)
Callp(€0) = Cap(v) + €26 5(c0),

ealj3(60) = Heas(v) + 2 5 (e;0)}, (4.4.13)

€3||3(€;U> = }2533(7))7
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where
€ap(v) = 5(0avs + Opva) — %(0apl + £30a5X)
éag(’U) = %((ng + 83Ua), (4414)

é33(1)) = O3v3,

Also there exists constant C' such that

SUP(<ey MAXa; | |65 (6 0)] |00 < C||v]1q forall v € V,
SUPg<c<e, MAXzeq lg(e)(x) — x| < Cé?, (4.4.15)

ol o ,
SUPg<e<ey NAXze0 | AR () — AWM < O,
where

ASBYT = AGOBGIT 4 pu(§078PT 4 §o7 5P

ABV(0) =0, A%F33(0) = é)\(ga,éi A%3(0) = éM(SM (4.4.16)
A33(0) = 0, A¥33(0) = L (A + 2p),
Aijkl(E)tkltij Z Ctijtij7 (4417)

for 0 < € < €y and for all symmetric tensors (%;;).

4.5 Asymptotic Analysis

In this section we show that the solution of the three dimensional dynamic problem con-

verges to the solution of two dimensional dynamic problem.

Theorem 4.5.1. Assume that the scaled initial data {¢(¢), ¥(€)}eso € V(R2) x [L2(Q))? of
the problem (4.4.11)- (4.4.12) satisfy

o(e) — ¢ strongly in V(Q), 4.5.1)
Y(€) — 1 strongly in L*(€2), (4.5.2)
fi(e) — fi strongly in W'*°(0,T; L*(2)). (4.5.3)

Then there exists a subsequence (u(€)).~o (still indexed by e for notational convenience)
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and a function u € L*>(0,7T; V(£2)) satisfying
u(e) = v weak™ in L>(0,T;V (),
u3(€) — uz weak* in L=(0,T; L*(2)), 4.5.4)
U (€) = 0 weak* in L=(0,T; L*(Q)).
Also the limit function u = {u,, us} is a Kirchhoff-Love displacement, that is

Uq = (o — 230,(3, uz = (3, (;is independent of 3. (4.5.5)

and ¢ = ((,, (3) satisfies

) / iy — / P (Co) D e — / (15 (O) sl + 15 (C3) o1 Xl

= / fsnsxdw Vns € Hj(w), (4.5.6)
/ nap(Q)Darsxdw = 0¥(ne) € (H}(w))’ (4.5.7)
where
2\ 4 Op
Map((3) = m( (3 + Cs—) ap T ?,u( 0apG3 + (3 )fX)’ (4.5.8)
2\ .
Nas(() = ﬁew(o%a + 2uéqp(Q), (4.5.9)
where
. 1 aﬁe [t
€ap(Q) = 5(0als + 5Ca) = 3 =3 / 1 Eap(C)dxs (4.5.10)
w(0,2) = ¢, (0,z) =1 4.5.11)

and {¢, v} is the weak limit of {¢(¢), 1(€) }eo in V() x L*(Q).
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Proof. Taking v = 4(e)(t,z) in (4.4.11), we get

%dﬂ p [tta(ia(€)g™ (€) + 2t (€)its (€)g°*(€) + tale)its(€)g™(0)] V/g(e)da

+ ;jt / AZJkl( €)ex|i(e ule))ey ;€ ule \/_dx
:/Qefa € ua(e)\/@dx—f—/ﬂfg(e)u?)(e)\/g(_e)dx .

Using the positive definiteness of (¢ (¢)) and integrating from 0 to ¢, 0 < ¢t < T', we get

;/Q i (€))/g(da + / (15(6))2 /g () d
%/A”’“(e)eknz(ew iy (€ u(€))V/g(e)da
<5 [ (wnl@? Voo + / (15(6)?V/g{6)de
%/QAJ (e)exji(es 9(e)eii(e; 6(e)) v/ g(e)da
+/0 /Qefa(e)ua(e)\/@dxdwr/o /Qfg(e)ug(e)@dxdt (4.5.13)

Using the inequality (cf. lemma 2.3.2)

[vlhe <C {Znéij(u)H?} Vo € V(Q) (4.5.14)
(2]

the relations (4.4.13) - (4.4.16) and the boundedness of the functions ¢(¢) and ¥ (¢€), we

have

letta(e)][6.0 + 1Es(e)l[5. + i)l o

< lleta(€)l5.0 + laa(e)l5a + D lless (u(€)lan

i,

<5 [ i@ Vaide + 5 [ (i) Voda
E / AR el ule))euy (€ ule)) V/g(e)da

<O, <1+//efa dxdt+//f3 dxdt+// 2da:dt>4515)
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Therefore by Gronwall’s inequality there exists a constant C' such that
leta(©)lloe < €. Nlis(@llog < €. llus(@)lla < €. leqy(eu(@)lon < C. (45.16)

Hence there exists a subsequence and a function u € L>(0,7, V(£2)) such that

u(e) = u weak™ in L>=(0,T;V (1)), (4.5.17)
eil; (€ ue)) = ey (u) weak™ in L=(0,T; L*(12)), (4.5.18)
€lig(€) = 0 weak® in L*®(0,T; L*(Q)), (4.5.19)
u3(€) — uz weak™ in L™®(0,T; L*(Q)). (4.5.20)

For fixed t € [0, T, define

1 1
Kop(€) = éap(ule)), Kas(e) = Eéag(’d(é)), K33(e) = 6—2é33(U(€>> (4.5.21)
and 5
K(Xﬁ = éaﬁ(u)v Koz = 0, K33 = _X2méaa(u)' (4522)

Claim: K (e) = (K;;(e)) = K = (K;;) weakly in L*(2).
From the definition (4.5.21) and relations (4.4.13),(4.4.14), we have

1K ()l[5a < 28;lle; (e u(e))l 5o + 26 Saslle (e ule)) 5 o
+ 45, [|E (e ule)) |5 o (4.5.23)

From the boundedness of (e;;(€,u(€))) and the relation (4.4.15) it follows that (K (¢)) is
bounded and hence K (¢) — K in (L*(€2))? weakly. We next note the following result:

/ udsvdr = 0 forall v € HI(Q) withv =0o0onI'y = u=0. (4.5.24)
Q
Clearly K3 = €,5(u). Multiplying (4.4.11) by € and taking v3 = 0 we get

2 / A7 (0) K s (€)O5vaxdr = eR(e, K (€), u(e), v), (4.5.25)
Q
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where R(e, K (€),u(e), v) is bounded independent of e. Letting ¢ — 0 we get
/ Ko3030,xdx =0 for all v,.
Q
Hence K,3 = 0. Multiplying (4.4.11) by €2 and letting v, = 0 we get

/Q [ABT () (€) + A™55(0) Kgg (¢)} Dgvs

_ /Q {%Kw(e) + (A;—Q“)Kgg( )}agvgxdx

=eS(e, K(€),u(e),v)

where S(¢, K (€),u(€), v) is independent of €. Letting ¢ — 0, we get
A A+2
/ {—QKUJ + MK%} xdx = 0.
o (X x*

Hence K33 = —fﬁém(u).
Define
Vikr(Q) ={v e V(Q) : e;3(v) = 0}.

Using the relation (4.5.22) it follows that for v = (1, — 230,13, 73) € Vi1 ()

/Aijk( e)eg|i(e ule))eqi(€)(v)y/ gle)dx
Q

(4.5.26)

(4.5.27)

(4.5.28)

(4.5.29)

(4.5.30)

- = / Map(C3)Oapnaxdw — / (1205(0)Daptns + Map(C3)dapx)n3xdw

+ / Nas(C)Oanpxdw

(4.5.31)

Since (etiq(€), uz(€)) — (0,13) weak* in L°°(0,T; L*(Q2)), it follows that for fixed v =

(v;) = (o — £30aM3,M3) € ViL(£2),

/ €lo(€)vgy/g(e)de — 0 weak* in L>(0,7")
Q

and

/u3<€>U3\/g<€)dI—>/u3U3d.T weak* in L>°(0, 7).
Q Q
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This gives

/o /Qeiia(e)vﬁg\/g(e)dmdt = —/0 /Qeua(e)vﬁ(.\/g(e)dxdt — 0 V¢ eD(0,T)
(4.5.32)

and

/OT/QU.S@U?’C\/@dxdt:_/OTAUB(G)Usédedt

— —/ugvgéxdxdt:/ilgvggxdxdt V¢ € D(0,T).
Q Q
(4.5.33)

i.e.,/ €lio(€)vgy/g(€)dz — 0, and / tiz(€)vz/g(€)dr — / iigvgxdz inD(0,7T)
) ) Q

(4.5.34)
Hence passing to the limit in (4.4.11) by taking v = (1, — 230,73, 13) € Vi1 (), we get

p/uénfidw_/maB(C3)aa/3773XdW_/(”aﬁ(C)aaﬁen:a+ma5(C3)8agx)ngxdw
+ / Nas(C)0anpXxdw = / Janzxdw (4.5.35)

forall v = (N, — 230413, M3) € ViL(). O

From Lemma (2.5.2) it follows that for a given (3 € HZ(w) there exists a unique vector
(Ca) € (H}(w))? such that

/ N0 (C)Isnaxdw = 0 for all (n,) € (Hy(w))? (4.5.36)

where ¢ = (4, (3). Given (3 € Hi(w), we denote by T\, (3 € (Hj(w))? x Hi(w) the vector
(Ca, C3) where ((,) € (H}(w))? is the solution of (4.5.36). Hence (4.5.6) can be written as

p/ tigng xdw + b((3,1m3) = / fans xdw¥ns € Hi(w), (4.5.37)

where

b(Cs,m3) = —/maﬁ(Cza)aa/ﬂh de_/maﬁ(CS)(aaﬁX>773 XdW/naﬁ(TxQ)aaﬁe% xdw
N N N (4.5.38)
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It has been shown in [73] that b(-, -) is (Hg(w))? x HZ(w) elliptic and symmetric. Hence
the problem (4.5.37) has a unique solution.

4.6 Conclusion

We have started with dynamic problem for shallow shells with non-uniform thickness and
have shown that the solutions of the three dimensional model converges to the soutions of
a two dimensional model involving the non-uniform parameter.

The difference between the two dimensional static model and dynamic model is that in the

dynamic model we are able to express it involving only the third component of the limit.
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