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Abstract

Problems in continuum mechanics are a constant source of systems of partial dif-
ferential equations (PDEs) which are often difficult to solve. Among contemporary
numerical methods designed for these types of problems, virtual element methods
(VEMs) constitute a recent family of discretization schemes constructed using poly-
topal meshes, that are proven to be robust under many different scenarios. In this
thesis, we focus on the developments of VEMs for the approximation of certain types
of non-stationary coupled fluid flow problems. More precisely, the type of equations
that are considered herein includes transient Stokes, Navier-Stokes, Biot, and coupled
advection-diffusion-reaction and poroelasticity equations, the latter system describing
species interaction within fully saturated deformable porous media. Using classical
regularity assumptions on the solutions to the continuous set of governing equations,
we construct lowest-order virtual element discretizations for each of these problems.
An appealing feature of the resulting schemes is that the discrete velocities are locally
divergence-free for incompressible flow problems and that the constructed virtual ele-
ment spaces satisfy the necessary inf-sup conditions which permit to establish unique
solvability of the associated discrete problems and Céa estimates for the approximate
solutions. For the time discretization, a classical backward Fuler scheme is employed,
and we rigorously derive the main properties of the semi- and fully-discrete schemes
for all problems. Moreover, by introducing appropriately defined projection operators,
optimal a priori error estimates are established in natural norms for all field variables
that are natural unknowns in the specific formulation. Further, for each problem, sev-
eral numerical experiments are presented. They serve to illustrate the performance
of the proposed schemes and also to validate experimentally the theoretical rates of

convergence predicted by the error analysis.
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Chapter 1

Introduction

The basic objective of this thesis is to discuss and analyze lowest order virtual el-
ement methods (VEMs) for the approximation of evolutionary fluid flow problems:
Stokes, Navier-Stokes, poroelasticity, and coupled advection-diffusion-reaction and

poroelastic equations on polygonal meshes.

1.1 Physical motivation

Many physical problems in diverse scientific and engineering applications are de-
scribed by the evolutionary partial differential equations (PDEs). These kinds of
PDEs frequently occur in fluid dynamics and solid mechanics. Here we will focus
on the problems only related to fluid dynamics, and the purpose of this thesis is to
develop robust and efficient numerical techniques for seeking the numerical solution
of fluid flow problems of certain types. The viscous incompressible fluid flow problem
with a small Reynolds number is modeled by a well-known nonlinear equation known
as the Navier-Stokes equation, named after the French engineer physicist Claude-
Louis Navier and Anglo-Irish physicist mathematician George Gabriel Stokes [1]. It
is well known that this problem has paramount importance in many phenomena of
scientific and engineering interest. This problem is used to model the ocean currents,
water flow in a pipe, and airflow around a wing and hence, helps in predicting the
weather, extraction of oil, design of aircraft and cars, the design of power stations,
the study of blood flow, analysis of pollution and many other things (see, for instance,
[2, 3]). Moreover, some physical phenomenons are modeled by coupling with Navier-
Stokes equation, for instance, coupled Navier-Stokes and Maxwell’s equation to study
magnetohydrodynamics [4]. After many decades of active research, the study (well-

posedness and solution process) of this type of system is still attracting considerable
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attention from many scientists/researchers. In general, the nonlinear problems are
challenging to deal with, therefore, it is advisable to work on the linear counterpart
of these problems known as Stokes equations (linear incompressible flow problem).
In other words, Stokes equation models a type of fluid flow problem where advective
inertial forces are small compared to viscous forces, and fluid has a low Reynolds
number (very small as compared to 1). This is a typical situation in flows where
the fluid velocities are very slow, the viscosities are very large, or the length scales
of the flow are very small. Such equations are used in the various valuable process
in bioscience, industries, and nature such as understanding of lubrication, swimming
of microorganisms, the flow of lava, and also occurs in paint, MEMS devices, and in
the flow of viscous polymers generally. Because of these applications, the first two
chapters of this thesis are devoted to the development of suitable numerical schemes

for the approximation of transient Stokes and Navier-Stokes equations.

Next, we focus on the physical phenomenon related to the fluid flow problems de-
scribing the interaction between the fluid flow and solid structure (or porous medium).
A porous medium or a porous material is a solid (often called matrix) permeated by
an interconnected network of pores (voids) filled with a fluid (liquid or gas). Many
natural substances such as rocks, soils, biological tissues, and manufactured materi-
als such as foams and ceramics can be considered as porous media [5]. Porous media
whose solid matrix is elastic and the fluid is viscous, is known as poroelastic. A poroe-
lastic medium is characterized by its porosity, permeability, and properties of its con-
stituents (solid matrix and fluid). The concept of a porous medium originally emerged
in soil mechanics, particularly in the works of Karl von Terzaghi [6, 7| (known as the
father of soil mechanics). However, a more general concept of a poroelastic medium,
independent of its nature or application, is usually attributed to a Belgian-American
engineer Maurice Anthony Biot. He developed the theory of dynamic poroelasticity
(now known as Biot’s theory), which gives a complete and general description of the
mechanical behavior of a poroelastic medium [8|. The poroelastic medium is com-
posed of a mixture of incompressible grains forming a linearly elastic skeleton and
interstitial fluid. Biot’s equations for the linear theory of poroelasticity are derived
from equations of linear elasticity for the solid matrix, Navier-Stokes equations for
the viscous fluid, and Darcy’s law for the flow of fluid through the porous material.
The deformation of the porous medium is governed by linear elasticity, and thus, the
problem is also known as the linear poroelasticity problem. From an applicative point

of view, it is crucial to design and analyze numerical methods that are robust with



respect to variation of model parameters since this variation might be significant in
many problems of practical relevance. For example, in the filtration of flow in soft
tissue, the permeability is typically of the order of 107'° m?, whereas common ranges
for the Lamé parameters characterizing the dilation response of the material reach
values within the 10" KPa [9].

Another consideration is that in many applications, species interactions do not
occur in complete isolation. The species are rather immersed or move within (and in-
teract with) a fluid-solid continuum, and the chemical reactions between the species
inevitably affect the motion of the fluid. In some circumstances, reciprocal effects
might be substantially large, leading to local changes in the observed flow patterns
[10]. More specifically, in the types of problems considered herein, it is assumed that
the chemical reactions are occurring between the two species in a porous medium
saturated with fluid. In biomechanics, real biological tissues are conformed by living
cells, and volume changes due to cell birth and death onset velocity fields and local
deformation, eventually driving domain growth [11]. Interconnectivity of the porous
microstructure is sufficient to accommodate fluid flowing locally in this case. There-
fore, we suppose that the local fluctuations of a species’ concentration are important
enough to affect the fluid flow. In turn, we adopt here a two-way active transport:
the poromechanical deformations affect the transport of the chemical species through
advection and also by means of a volume-dependent modification of the reaction
terms, and the solutes’ concentration generate active stress resulting in a distributed
load depending linearly on the concentration gradients in the context of microscopic-
macroscopic mechanobiology. The occupancy of the event with additional species
interaction in the fluid flowing through the deformable or elastic porous medium is
described by coupling between the advection-diffusion-reaction (ADR) and the poroe-
lasticity equation. This problem is encountered in rock consolidation and fractures,
swelling of coals and clay, polymer dissolution, moisture within photo-voltaic devices,
and other related disciplines. Few applications are explored in [12], which include

traumatic brain injury and calcium dynamics (not related to cell biomechanics).

We stress that due to the inherent complexity of the coupling structures (men-
tioned above) and the nonlinearity of the involved equations for these models, ob-
taining analytical solutions or even closed-form solutions will be very difficult, and
also their numerical simulation in complicated scenarios (such as domains with di-
verse types of boundary and transmission conditions) remains far from trivial. The

development of an accurate and efficient numerical technique for seeking solutions to



fluid flow problems is still today a very active research area. This thesis also aims to
develop a unified theoretical framework for the mathematical and numerical analysis
of non-stationary fluid flow problems, and also other PDE-based models that appear

in the coupling of fluid flow and transport problems.

1.2 Virtual element methods: applications and de-

velopments

The most challenging problem for the numerical analysis community is introducing
a numerical method that solves PDEs approximately on the complex geometries. In
many realistic situations, the domain on which PDEs have been defined consists of
general type elements, and therefore, polygonal /polyhedral mesh (see [13]) is desir-
able. Also, the complex domain can be handled with ease since the hanging nodes
are no longer an obstacle in polygonal meshes. This is possible because any element
having hanging nodes are exploited as a new element with hanging nodes as its ad-
ditional, or new vertices. Hence, local refinements can be performed on polygonal
meshes using fewer elements, in contrast to the classical mesh refinement techniques
with triangular meshes, which suffer from the fact that local refinement propagates
into their neighboring regions. Also, mesh-free methods with the C* approximations
for solving the problem can be considered to deal with the complex domains; however,
they do not interpolate the given data on nodes, and thus, imposing the boundary
conditions becomes difficult.

At this juncture, we would like to shed some light on the development of some
numerical schemes that employ polygonal mesh. The initial works on polygonal
mesh began in the early '70s with the seminal works of Wachspress [14]. Since then,
various approaches have been proposed, including polygonal finite element method
(PFEM) [15], mimetic finite differences method (MFDM) [16], gradient discretization
method (GDM) [17] and recently, VEMs [18]|, weak Galerkin method (WG) [19] and
hybrid high order method (HHO) [20]. Mesh-free methods motivated PFEMs, which
works for the convex polygonal meshes. However, PFEM requires the shape functions
that consists of rational, logarithmic, and trigonometric functions, which makes the
implementation more involved. Finally, VEM evolved as a natural consequence of
new developments and interpretations of the MEDM in which the degrees of freedom

(DoFs) are associated with local virtual element (VE) spaces. This idea would help
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in designing high-order VEMSs in a simple way compared to MFDM when higher-
order elements are used. The WG method generalizes the standard Galerkin method
where classical derivatives and differential operators (e.g., gradient, divergence, curl,
etc.) are replaced by weakly defined derivatives and weak forms on functions with

discontinuity, whereas the HHO method is linked to the nonconforming counterpart
of VEM.

In view of the applicability of VEM with polygonal meshes, VEMs are proven to
be very impressive and have attracted the scientific community as far as a numerical
approximation of PDEs on polygonal meshes is concerned. The local and global VE
spaces that include polynomial and non-polynomial functions on each element were
first introduced in [18], and convergence analysis (for diffusion problems) of the pro-
posed VEM was also presented. Later, the detailed implementation/computational
aspects of VEM were discussed in [21]. The presence of polynomial functions in
the VE spaces helps in demonstrating the convergence rates of the proposed VE
schemes. After a close inspection, it is observed that this scheme was inspired by the
MEDM (|22]), which also aim to generalize finite element methods (FEMs) over the
very general type of polygonal meshes and therefore, can be considered as an exten-
sion of FEMs on the polygonal mesh. In contrast with classical finite element (FE)
schemes, VEM does not require explicit construction of the discrete basis functions,
and one needs to define suitable DokFs to put the discrete formulation in the matrix
form. This is very desirable while dealing with polygonal meshes and demanding
more accurate solutions, i.e., higher-order approximations. In fact, the word "vir-
tual" stands for the non-explicit behavior of the basis functions corresponding to the
finite-dimensional spaces defined on each element (polygon) used in the discrete for-
mulation, and only DoFs are required for computing the bilinear forms that appear
in the discrete formulation. To define the discrete bilinear forms, the local bilinear
forms can be decomposed into two terms: one with both the entries as polynomial
projections and the other as just the residue (non-polynomial part). For approximat-
ing the non-polynomial part and also to ensure the stability of the discrete bilinear
forms, one needs to add a suitable stabilization term. The proposed stabilization term
must vanish whenever at least one of the entries is a polynomial in order to make
the scheme consistent. Various stabilization terms are satisfying these demands, and
the choice depends on the problems and its discrete formulation (for more details,
we refer to [18, 23]). We remark that the convergence analysis of VEM can be car-

ried out analogously to FEM by introducing projection of the discrete solution onto



polynomials.

Other fundamental properties of VEM include: making use of non-polynomial
basis functions over arbitrary polygonal/polyhedral meshes [13|, the capability of
handling the complicated geometries generally used in solid-mechanics and fluid dy-
namics through general meshes, and usage of approximation spaces containing the
higher-degree polynomial with ease. In view of their computational efficiency, VEMs
have been developed for various problems within a decade, and few of the basic works
are on general elliptic [24, 25|, parabolic [26] and semi-linear [27, 28| problems. In
literature, there are few contributions that dealt with VE approximations for Stokes
[29, 30, 31|, Navier-Stokes [32, 33, 34, 35|, Darcy and Brinkmann [36], and poroe-
lasticity [37, 38, 39] equations. Based on the high demands, VEM emerged as an
accurate and efficient numerical scheme on polygonal meshes for solving the PDEs,
and its rapid growth of research studies can be seen in [40, 41, 42, 43, 44] and refer-
ences therein. Further, these methods extended to approximate non-linear problems
[45, 46], the three dimensional problems [47, 48, 49, 50] and coupled problems [51, 52].
These methods also applied to the discretization with degenerate elements [53, 54|
which require only the mesh elements as a union of star-shaped polygons, hence con-
venient for very general discretization. The VE scheme is also developed for the
problems related to fluid dynamics in [35, 36, 55, 56| but still, there are many areas

of fluid flow problems which are yet to develop.

1.3 Related works and specific contributions

There are several numerical techniques proposed in the literature for the approxi-
mations of the evolutionary fluid flow problem and its related application-oriented
problems. For instance, a wide range of research articles on these problems are
seen through many schemes such as FEM [57], discontinuous Galerkin (DG) method
[58, 59|, stabilized FEM [60, 61|, non-conforming FEM [62], MFDM [63], finite vol-
ume methods (FVMs) [64, 65] and so on. Below, in the context of VEM, we highlight
our contributions and related work from the literature for investigating the problems

mentioned in Section [1.1.

Incompressible flow problems

Considering the applications of unsteady Stokes problems, different numerical tech-
niques have been proposed such as finite difference methods (FDMs) [57], FEMs

6



[66, 63, 67, 68], FVMs [69, 64|, nonconforming methods [70, 71|, DG methods [72]
and so on. We stress that in some of these articles, convergence analysis was carried
out with certain regularity assumptions on the continuous solutions; for instance,
dyu € [H3(2)]* was used for the establishment of optimal error estimates. However,
Heywood and Rannacher clearly mentioned and explained in [68] that the high regu-
larity of the continuous solution (such as, ||Oyu||sq < co when ¢ is close to 0) cannot
be achieved in the real sense (for more details, see [68, 73, 74, 75]). Therefore, the pos-
sible remedy is to look for lower-order spaces such as P; — Py, P; — Py; however, these
may not satisfy the discrete inf-sup condition, and suitable stabilizers are required
for circumventing the inf-sup condition. In |76, 77, 78, 61, 79, 80, 81|, several stabi-
lized, or penalized FEMs are proposed for the approximations of steady and unsteady
Stokes equations. We remark that the addition of consistent stabilized methods have
their own disadvantages when applied to transient problems, e.g., small-time steps
will lead to instabilities in the pressure approximation, see [82]. A stabilized VE
scheme for a nonstationary version of the Navier-Stokes problem was proposed with
only numerical experiments in [55], while the convergence analysis of the proposed
method was not addressed. The present contribution differs from the above proposed
VEM for the Stokes problem in that we use a stable lowest order (k = 1), stabilizer-
free VE scheme for the transient Stokes problem. We have employed lowest order VE
spaces that are divergence-free, satisfy the inf-sup condition, and are regarded as a
natural extension of the VE space defined in [29] for the approximation of transient
Stokes equations. Moreover, we have established the optimal error estimates with

minimal realistic regularity assumptions (see [81, 68]) on the continuous solutions.

Transient Navier-Stokes equations have remarkable applications in fluid mechanics
and several numerical techniques such as FEMs [67, 63, 57, 66|, FVMs |64, 61, 69],
nonconforming FEMs |79, 71|, DG methods |72 and references therein, were proposed
for seeking numerical approximations to the problem in past decades. Similar to the
Stokes problem, the major difficulty lies in choosing the appropriate stable pair of
discrete spaces based on spatial discretization, for instance, these spaces must obey the
inf-sup condition [67]. In this work, we analyze the lowest order VE spaces for velocity
and pressure that obey the inf-sup condition (without adding any stabilization term),
which is used to show the well-posedness of the discrete formulation and establish
the optimal error estimates for velocity and pressure. In literature, there are few
contributions that dealt with VE approximations for Stokes [29, 30, 31] and Navier-

Stokes [32, 33, 34, 35| problems. However, in these articles, a restriction on choosing
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the approximation order, or the degree of involved polynomials (denoted generally by
k) is strictly imposed for VE spaces associated with velocity and pressure in order
to satisfy the required inf-sup condition by the discrete spaces. In other words, it
is mandatory to choose k£ > 2 in order to obtain stable spaces, and k£ = 1 can
not be taken due to unavailability of the inf-sup condition for these discrete spaces
until a suitable stabilizer is added [30, 55]. We would like to remark that even the
usage of higher-order approximations is expected to be computationally expensive in
general. Considering these points, we aim here to approach the discrete spaces that
have an approximation of order one and also satisfy the required inf-sup condition
[83]. Therefore, the proposed scheme is considered computationally less expensive
compared to the existing higher-order schemes in the context of VE approximations

for fluid flow problems due to reduced local DoFs in the case of [83].

Biot’s equation

A variety of numerical methods has been used to generate approximate solutions
to Biot’s consolidation problem. Modern examples include high-order FDM [84],
FEM [85, 86|, nonconforming method [87, 88|, DG method [89, 58], FVM [65], WG
method [90, 91], and combined /hybrid discretisation method [92]; we further point
out [93, 94, 37] where the authors present a polygonal discretisation based on HHO
methods and VEM. These schemes are constructed using different formulations of
the governing equations, including primal and several mixed forms. There is an
extensive body of literature on the robust numerical schemes using the different mixed
formulations or weighted norms in [95, 96, 97, 98]. A coupled VEM-finite volume
formulation for the Biot equations was proposed in [37]. Recently, VEM has also
been developed in [99] with another three-field formulation (seen in [100]) for Biot’s
equation. For reducing the computational cost, the problem has been inspected using
the stabilized FEMs with low order elements [101, 102].

It is well known from the literature that the standard Galerkin method produces
unstable and oscillatory numerical behavior of the pore pressure for a certain range
of material parameters (small ¢y) and the stabilization of pore pressure oscillations
has been a subject of extensive research. A well-accepted theory on the cause of this
pressure instability was proposed by Phillips and Wheeler, for more details [85] and
references therein. It was mentioned that if the constrained specific storage term is
null (¢ = 0), the permeability of the porous medium is very low, a small-time step

is used. In addition, it was also examined that there exists a locking phenomenon



when A is large, or the Poisson ratio approaches 0.5. Due to the occurrence of lock-
ing, the solid skeleton behaves as an incompressible medium, i.e., the deformation
is in a divergence-free state. To avoid the locking phenomenon, the three-field non-
symmetric formulation of the Biot’s problem (by introducing total volumetric stress as
a new variable) was first studied in [103] which is robust for A\ — co. For the approx-
imation of time-dependent poroelasticity, we have proposed locking free VEM based
on three field formulation (referring to [103]), and prove the stability of the discrete
schemes without employing Gronwall’s inequality. Further, with the help of suitable
projection operators, we derive the error estimates for our time-dependent problem
in natural norms that are robust concerning the dilation modulus of the deformable
porous structure (which tends to infinity as the Poisson ratio approaches 0.5), and of

the specific storage coefficient (reaching very small values in some regimes).

Advection-diffusion-reaction in poroelastic media

The presence of chemical solutes in so-called active poroelastic materials locally mod-
ifies morphoelastic properties, and these processes can be homogenized to obtain
macroscopic models of poroelasticity coupled with ADR equations, having numerous
applications mentioned in the previous section. From the viewpoint of solvability
analysis of PDEs and/or the theoretical aspects of FE discretizations, the relevant
literature contains few works specifically targeting the coupling of diffusion in de-
formable porous media (see [104, 105, 34, 106, 107, 103, 108]). Recently, a system
of multiple-network poroelasticity was studied in [96] with the mixed FE schemes
and developed the stability analysis. As in [96, 103] (also in Chapter 4), we employ
here the three-field formulation for the poroelastic part of the problem. However,
we adopt in our model an additional two-way active transport: the poromechanical
deformations affect the transport of the chemical species through advection, and also
by means of a volume-dependent modification of the reaction terms; the solutes’ con-
centration generates active stress resulting in a distributed load depending linearly
on the concentration gradients. In [12], we have addressed this model, performed a
linear stability analysis to identify suitable ranges for the key coupling parameters,
and conducted a full set of numerical tests in 2D and 3D. Later, in [109], we have
studied the coupled problem through the semidiscrete in-time formulation, and then
Schauder fixed point theorem combined with Fredholm’s alternative and standard the-
ory of quasi-linear equations were applied to establish solvability of the introduced

formulation.



In this thesis, the coupled system is set up in a mixed-primal structure, where
the equations of poroelasticity have a mixed form using displacement, pressure, and a
rescaled total pressure, and the ADR system is also set in a primal form, solving for the
species’ concentrations. The advantage of using this approach is that the stability
results are independent of the Lamé constant of the solid, and this is particularly
important to prevent the volumetric locking. By following [109], we propose a fully
discrete scheme by employing backward Euler scheme for time discretization and VE
discretization for space variable, and present convergence analysis for the proposed
fully discrete formulation. In contrast with, e.g., [110, 111|, the advecting velocity
in this model was that of the solid (instead of the Darcy velocity), which is not
a primary variable in our formulation, and in turn, gave an extra 1/(At) term by
the use of backward Euler scheme, thus complicating the analysis of semi and fully
discrete schemes. We further stress that the complexity in this analysis (which are
not present in the earlier literature) was due to the advective coupling appearing in
the ADR system of equations. Therefore, we have proceeded here with the advection
term containing the displacement instead of velocity to focus on space approximation,

and the analysis can be extended with advecting velocity in a similar fashion.

1.4 Preliminaries

In this section, we introduce some standard notations and basic notions from func-
tional analysis to be used throughout the thesis. Let 2 C R? be a bounded, convex
polygonal domain with Lipschitz boundary 0. For p € [1,00), let LP(€2) denote the
linear space of all (equivalence classes of) Lebesgue measurable functions ¢, defined
on €2, that satisfy

[ 1s@pds < o

In this connection, the functions are considered to belong to the same equivalence
class if they differ only on a set of measure zero. The space LP(Q2), with 1 < p < oo,
and equipped with the norm

1/p

18]l ey = / 6(2)[Pda
Q
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is a Banach space. The space L>(Q2) is the Banach space of all (equivalence classes

of) Lebesgue measurable and essentially bounded functions, endowed with the norm
0[] Lo () 7= ess sup [p(z)].
€N

It is well known that L?(Q) is a Hilbert space with respect to the inner product (-, -)
defined by

(¢, 7) —/¢($)¢(x)da:

For s € N and p € [1, 00], the classical Sobolev space W*P() is defined as the linear
space of all functions ¢ € LP(Q)) having distributional derivatives D*¢ € LP(2) for

all multi-indices a of order |a| < s, and is equipped with the norm

1/p

1lhenicy = 16lape = | / D" () Pda

lo|<s
Furthermore, we introduce the semi-norm

1/p

Blop = | D / 1D (z)[Pd

la|=s o

Analogously, for p = oo,
191]s 00,0 1= DX [ DG 1o )

The spaces W*P(§2) are Banach spaces. For simplicity, we use the abbreviation
H*(Q) := W*2(Q) and define W°?(Q) := LP(Q2). We note that H*(Q) is a Hilbert

space with respect to the inner product
(@0)a= Y [ Dola) D w(o)ds, Vo.v € H(@),

lo|<s

and the induced norm
1/2

olloai= ( 3 [ 100t

lal<s o

11



The space Hj () is characterized by
Hy(Q):={p€ H(Q): ¢ =0 on 9N}

The space L3 is the space of square-integrable functions with zero mean value, that
1s
L3(Q) == {q € L*(Q) : / q dx = 0}.
Q
Let T be a positive time that defines the time interval I := (0,7, then for p € [1, 00)
and s a non-negative integer, we denote by LP(0,7T; H*(f2)), the Banach (or Bochner-
type) space of all L? integrable vector valued functions ¢(t) : I — H*(2) with the

norm given by
1/p

T
e WAL
0

Analogously, L>(0,7; H*(2)) is the Banach space of all essentially bounded vector
valued functions ¢(t) : I — H*(Q2) endowed with the norm

H¢HL°®(0,T;HS(Q)) = €ess Stlg [o)ls.0-

Next, we state few well known results that will be frequently used in the analysis.

e Cauchy-Schwarz inequality. If {a;}Y, and {b;}}Y, are non-negative real

)-8 (59

e Holder’s inequality. Let ¢ € LP(Q), ¢ € L4(Q). Then for 1 < p,q < oo with

1 1_1
=+ = =1, we have
p—i-q ,

numbers. Then

1/q

[otwtaiis| < | [lo@pas ; [ 1w
Q Q Q

e Poincaré inequality. Let Q C R? be a bounded open subset. Then there

12



exists a positive constant C' = C(£2), such that

[9]lo0 < Cldl g, Vo€ Hy().

Korn’s inequality. For all v € [H'(Q)]?, we have the inequality for some

constant C,

[vllre < Clle(v)loe-

Inf-sup condition. We say that the well-defined bilinear form b(-,-) defined
on V x () satisfies the inf-sup condition if for each ¢ € () there exists a constant

£ > 0 such that
b
sup (v,9)
(0£)veV |v][v

> Blldle-

Young’s inequality. If ¢ and b are non-negative real numbers, then for every

e > 0, the following inequality holds

a’>  eb?

p< L0
=gt

Gronwall’s inequality. Let g(¢) and h(t) be continuous functions with A(t) >

0 on interval tg <t <ty + a. If a continuous function ¢(¢) has the following

property
ot) < g(t) + / o(s)h(s)ds, to<t<to+a,

then

t t

o(t) < g(t) + /g(s)h(s)exp /h(T)dT ds, to<t<ty+a,

to S
In particular, when ¢(¢) = C' is a non-negative constant, then we have

t
o(t) < Cexp /h(s)ds . to<t<ty+a.

to

13



e Discrete Gronwall’s inequality. Let At, B, and o/,0’, ¢, d’ for j > 0 be

non-negative numbers such that

A"+ (A Y <Aty dad +AtY &+ B, n>0.
j=0 §=0

=0

If (At)¢? <1 for all j and 7 := (1 — At )~ for any j, then

a”—l—(At)Xn:bj < exp (Atzn:fyjcj) (Atzn:dj—i—B), n > 0.

=0 j=0 =0

Remark 1.1. Throughout this thesis, the notation C' is used to denote a generic
positive constant which may take different values at different places. Also, the vector-

valued functions are denoted with bold letters for clarity.

1.5 Overview

As mentioned before, this thesis focused on developing new VEMs for approximating a
class of unsteady fluid flow problems; in particular, we have performed a VE analysis
for Stokes, Navier-Stokes, Biot’s, and coupled poroelastic-:ADR equations. For all
these equations, we have shown the discrete problem is well-posed and derived the
optimal error estimates. Moreover, numerical experiments are conducted at the end
of each chapter in order to support the theoretical findings and judge the performance
of the proposed methods. The content of this thesis is divided into six chapters and
organized as follows.

Chapter 1 includes an enormous view of the thesis works and mentions some of
the important applications of problems that we have considered in the thesis, and also
the purpose of VEMs with polygonal meshes while dealing with fluid flow problems.
An extensive literature of VEMs and their recent developments are also highlighted
in this chapter. Also, we have specified the preliminaries for subsequent chapters.

In Chapter 2, we have proposed a new lowest order VE scheme to approximate
the time-dependent Stokes problem. The discrete formulation (both semi and fully)
is analyzed by newly introduced divergence-free local VE spaces. With the help
of appropriate projection operators onto the polynomials and a new L? projector,
optimal error estimates are derived with minimal regularity assumptions (without

non-local compatibility conditions).
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In Chapter 3, we have explored applications of VEMs that were introduced in
Chapter 2 for the approximation of transient Navier-Stokes problems. By employing
the backward Fuler method for time discretization, a fully discrete scheme is pre-
sented and analyzed. Further, using the Sobolev embedding theorem, interpolation
theorems, and Gronwall’s inequality, the stability, and optimal error estimates are
established for both semi and fully discrete schemes.

Chapter 4 is devoted to study VEM for non-stationary linear poroelasticity prob-
lem. Here, by following [103] we have proposed locking free (robust with respect
to A) three field VE formulation, and discuss the well-posedness of both semi and
fully discrete schemes without using Gronwall’s inequality. Moreover, optimal error
estimates are derived for all three fields that appear in the formulation.

In Chapter 5, we aim to develop VEMs for the coupled poroelastic and ADR
equations. By employing the lowest order VE spaces introduced in Chapter 4, and
backward Euler scheme for time derivative, the fully discrete formulation is proposed
and analyzed. We stress that the resultant discrete scheme is designed in such a
manner that it is explicit (even linear) at each time level. The convergence rates
are derived for both spatial and temporal discretization through suitable projection
operators.

Finally, based on computational and theoretical observations made from Chapter
2 to Chapter 5, the core of this thesis is briefly discussed in Chapter 6. We have also
highlighted the major contributions and critical assessments of each chapter in terms
of its efficiency and accuracy. We close this chapter by mentioning a few relevant

extensions of this thesis.
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Chapter 2

Stokes equations

The Stokes equation describes a linear incompressible fluid flow problem which is
governed by an initial-boundary value problem, in terms of the fluid flow velocity
vector u(t) : © — R? and the scalar pressure field p(t) : © — R for all ¢t € (0,77,
satisfying

du —div(y Vu —pI) = f in 2 x (0,77, (2.0.1a)
divu =0 in Q x (0,77, (2.0.1b)

u=20 on 092 x (0,77, (2.0.1c)

u(-,0) = uy on 2 x {0}, (2.0.1d)

where Q is a bounded convex domain in R?, d;u is the flow acceleration, v € R (> 0)
is the viscosity of the fluid, ug(x) is the initial velocity, and f(x,t) is the external
body force.

This chapter studies VE approximations for the non-stationary incompressible
flow problem (2.0.1) on polygonal meshes. The proposed discrete scheme is based on
pressure-velocity formulations, and the spaces associated with velocity and pressure
are designed such that they obey the discrete inf-sup (LBB) condition. The spatial
discretization of velocity is based on conforming VE space that consists of piecewise
linear polynomials as well as non-polynomial functions with normal components on
the midpoint of mesh edges as a quadratic polynomial, and the pressure approx-
imation relies on discontinuous piecewise constants. A backward Euler method is
employed for time discretization. By introducing suitable energy and L? projection
operators, optimal error estimates are established in H'— and L?— norms for both
semi and fully discrete schemes under the minimum regularity assumptions on contin-

uous solutions. Moreover, several numerical experiments are conducted to verify the
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obtained theoretical rate of convergence and examine the performance of the proposed

scheme.

The novelty lies in establishing the optimal error estimates with minimal realistic
regularity assumptions on the continuous solutions of the governing equation (pre-
sented in Lemma 2.1 of the current chapter, also see [81, 68] for more details). The
convergence analysis presented here does not demand the boundedness for the higher-
order derivatives of exact velocity u, such as ||ul|sq and ||O;u|1o. We stress that
showing these terms are uniformly bounded is equivalent to verifying the global com-
patibility in terms of the initial condition and given load which may not be practical
from the computational point of view (refer [68]). The convergence analysis is car-
ried out with two projectors’ help: first is the new L? projection P, onto discrete VE
space, and the other is the Stokes projection Sy, (also see [39]). We have observed that
the proposed fully discrete scheme performs well even with a small-time step through
our numerical experiments, whereas stabilized or penalized FE schemes with lowest
order approximations may not work well [82]. We stress that the analysis presented
here can be extended to more applicable time-dependent problems, such as miscible
displacement problems and coupled fluid-flow problems. We would like to pursue
these studies shortly so that applications of the proposed scheme become more trans-
parent. Moreover, this chapter can be considered as a bridging stone for the other

model problems in fluid dynamics consisting of the transient Stokes problem.

The content of this chapter is organized as follows: In Section 2.1, we state the
variational formulation, and the minimal regularity assumptions on the continuous
solutions w and p. We also address here the well-posedness of weak formulation
for the problem (2.0.1). By introducing local and global VE spaces, we propose
the discrete formulations with space and time discretization in Section 2.2, and also
discuss the well-posedness of both the schemes. The convergence analysis of the
proposed schemes for the primary variables velocity w and pressure p is established
with the suitable norms in Section 2.3. Several numerical investigations have been
carried out in Section 2.4 to validate the theoretical results achieved in the current

chapter.
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2.1 Variational formulation and its wellposedness
We define the admissible spaces for velocity and pressure, respectively as
V= [H;(Q))? and Q:= L3(Q).

Assume that the load function f,0,f € L*(0,T;[Hg(©2)]?) and initial condition ug €
[H2(Q))> NV with divug = 0, i.e.,

T
il + [ (560 + 105 ds < C.

Now, multiplying (2.0.1a) and (2.0.1b) with test functions v € V and g € @ respec-
tively, and integrating by parts with boundary condition (2.0.1c) yields the following
weak formulation corresponding to (2.0.1): For all ¢ > 0, find w(t) € V and p(t) € Q
such that

m(Owu, v) + a(u,v) + b(v,p) = F(v) Vv eV, (2.1.1a)
b(u,q) = 0 Yq € Q, (2.1.1b)

with initial condition (2.0.1d) u(-,0) = u, almost everywhere in 2, and the bilinear

forms defined as,
m(u,v) = / u-vdr, a(u,v):= V/ Vu : Vo dz,
Q Q
F(v) ::/f~'vd1:, b(v,q) ::—/divqu:c.
Q Q

We note that these bilinear forms satisfies the following properties which will be used

in the subsequent analysis.
e m(-,-) is positive definite form:

m(v,v) = ||'v||(2)Q Vv e V.
e a(-,-) is coercive: using Poincare’s inequality, we get
a(v,v) = V|’v|iQ > V”’U”%Q Yv e V.
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e b(-,-) satisfies the inf-sup condition: there exists 5 > 0 such that (see [67])

S
~—

(v,q

> Bllallog Vg € Q.

e a(-,-) is continuous: the Cauchy Schwarz inequality gives

a(u,v) < Cllul1o|v|ia Yu,veV.

e F(+) is continuous: again the Cauchy-Schwarz inequality gives

Fv) < Cllfloellvlie YoeV.

In view of the above mentioned stability results, it is easy to show that (2.1.1) has a
unique solution (u,p) € V x @ and also satisfies the following bounds, for details we
refer to [67].

lu(®)]5e + / (IVu(s)lga + 10uls)5a + lp(s)ll6.0) ds
0 (2.1.2)

t
< luola + / 1£ ()20 ds.

At this end, we emphasis that the continuous solution (u,p) possess the following

regularity estimates, refer [68, 60, 112] for proof.

Lemma 2.1. Assume ) is a smooth domain then for a given f, the problem (2.1.1)

has a unique solution (w,p) and salisfies

sup ([|0culls.q + |ulz0 + lIpliq) < C, (2.1.3)
0<t<T

T
sup o (4)[|0ullf +/O o) (10nulia + l0ulz0 + 10mlTg) dt < O, (2.1.4)

o<t<T

where o(t) := min{1,¢}.

The regularity assumption on the continuous solutions mentioned in the above

lemma will be used in establishing the error estimates reported in Section 2.3.

20



2.2  Virtual element formulation

In this section, we propose the VE formulation and discuss its well-posedness. We
proceed by introducing new VE spaces (associated with velocity and pressure fields)

through defining the required projection operators onto piecewise polynomials.

2.2.1 Projection operators and virtual element spaces

Let {Tn}nso be the family of partitions of the closed domain € into polygons K
of diameter hy, mesh size h := maxge7, hx and boundary 0K. Also, e denotes a
generic edge of any element K; N} stands for the total number of vertices in K, and
Vi, 1 <4 < Nj represent any vertex in K. We denote the unit normal pointing
outwards K by ng with nS := ngl., a unit normal vector on edge e, and the unit
tangent vector along edge e as t%; for all e € K. We also suppose that the polygonal
mesh 7}, satisfy the following assumptions (refer [32]):

e (Al) Each K is open and simply connected (convex or concave) sets whose
boundary 0K is a non-intersecting poly-line consisting of a finite number of

straight line segments;

e (A2) For every h and every K € Ty, there exists C7 > 0 such that the ratio
between the shortest edge and hg is larger than Cy;

e (A3) Each K € T, is star-shaped with respect to every point within a ball of
radius C'rhg.

In what follows, we denote the norm and seminorm in local space H*(K), s > 0
for any K € Tj, as || - ||s,x and | - |5 x respectively. The space P;(S) denotes the
space of polynomials of degree < k for any integer k¥ > 0 and a subset S of R?; and
W+ as the orthogonal complement of any space W. Denoting the vector space for
polynomial functions over R? by [P;(K)]? then define a new polynomial vector space
G(K) C [P(K)]? as G(K) := VPy(K). We note that the orthogonal complement
G*(K) has dimension 1 and generated by a vector function g* := [y, —Z] where Z,§
are scaled functions in polygon K.

Before proceeding to define the VE spaces, the prerequisites are mentioned for
further analysis. The energy operator IIy. : [H'(K)]?> — [P1(K)]? is defined as,

(V(IXv —v), Vpox =0, P (IFv—v)=0 Vp, €[P(K)ve[H (K
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where POXp = <L Zivji v(V;) take care of the projection onto constants.
K

The local space B(OK') on the boundary 0K is
B(OK) = {v € [C°(0K))? : v|. - nS; € Py(e),v]. - t5 € Pi(e) Ve € OK}.
Then we recall the local space from [29] on each element K given as

(—A’l)h—i-vs)‘]( = O,
diV’Uh|K =cCq € PO(K>

W, (K) = {v, € [H(K)]* N B(OK) : for some s € L*(K)},

for ¢4 := ﬁ(fak vy, - ni ds). The well-defined space W (K) has dimension 3N}.
We can note that the local space W, (K) is motivated from the Bernardi-Raugel FE
space Ve [67, 29], and [P;(K)]? is subset of Vi, as well as W, (K). The DoFs for
local space W,(K) are: for any v, € W, (K),

e (D,1) the value of v, at the vertices of element K

e (D,2) the moments of normal component of v;, on each edge on OK, that is,

/vh-n%ds Ve € 0K.

Figure 2.1: DoFs for velocity(with blue dot and normal moment), and pressure (red
square)

Lemma 2.2. The DoFs for the local space Wy (K) are (D,1) — (D,2).

Proof. The number of functionals (D,1) — (D,2) are 3N}, which is also equal to
the dimension of local space W,(K). Suppose that v, € W, (K) and its value on
(D,1)—(D,2) vanishes then we show that v, vanishes in K. The components vy|.-t5,
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Uy - M are polynomials, and it can be computed exactly through quadrature rules
and DoFs which implies that vyl - n5 and vy]. - t5 vanishes on all edges e € 0K
giving vy|. = 0 on each e € OK. Also, vy, - n% = 0 implies div vy, vanishes trivially

in K. Using integration by parts and v, = 0 on 0K, we obtain

onl? ¢ = —/K(Afuh) ~vh+/8K((V'vh)nK)-vh: —/K(Avh) o,

Note that (—Awy, + Vs)|x = 0 for some s € L?(K). Again applying integration by

|vh|iK:_/ VS"Uh:/ div vy, S—/ s (v - k).
K K oK

The semi-norm of v, in K is zero with v, = 0 on 0K then Poincaré inequality imply
v, =0in K. ]

parts leads to

Remark 2.1. The VE space Wy (K), introduced in |29/, can be used here, however,
this leads to a suboptimal convergence result for velocity in the L>*— norm. Hence,
for deriving optimal L* error estimates, we define a modified version of space W,(K)
whose idea was first introduced in [24] for elliptic problem, and in [36, 32] for sta-

tionary Brinkmann and Navier-Stokes problems.

We proceed by defining the required local L2-projection I1%, : [L2(K)]|? — [P1(K)]?

as
(Ijv — v, py)ox =0, Vp, € [P1(K)]*.

This operator will help us in defining the discrete bilinear form that will appear
in the discrete formulation. The term (vj, p;)ox is not computable Vv, € W, (K),
and this motivate us to follow [32] (considered with k > 2) to define a modified VE
space to make it calculable. First, we define the extended supplementary space V,

element-wise as

- (—A’Uh—FVS)’K GQL(K)

Vi(K) = {v, € [H'(K)*NBOK) : for some s € L*(K)}.

diV'Uh|K =cCq € P()(K),

The dimension of space V,(K) is 3N + 1.

Lemma 2.3. The DoFs for the local discrete space V,(K) are: (Dy1), (D,2), and
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e (D,3) the moment [, vy, g* dv with g* € G~(K).

Proof. The number of functionals in (D,1) — (D,3) are 3N}, + 1, and same as the
dimension of the local space V,(K). Suppose v;, € V,(K) and its value on (D,1) —
(D,3) vanishes then from proof of Lemma 2.2, v|. = 0 on each e € 0K and divv, =0
in K. Note that —Awj, + Vs = g+ for g* € G=(K). Then, use of (D,3) implies

|Uh!%,K:/(gL—VS)-’vh=/ div vy, s—/ s (v, - ng).
K K oK

Hence, the Poincaré inequality yields v, = 0. O]
Now we define the local VE spaces V,(K) and Q(K) associated with the velocity

u and pressure p, respectively as follows,

Vh(K) = {'vh‘K € Vh<K) : (HZ’U}L — ’Uh,gL)O,K = (0 for gL c QL(K)},

and Qn(K) :=Py(K).

The degree of freedom for Q(K) is
e (D,) value of ¢, at any point in K.

Lemma 2.4. The DoFs for the local discrete space Vi,(K) are same as that for local
space Wy (K), that is (D,1) — (D,2).

Proof. The dimension of local VE space V(K is equal to dimension of V(K ) minus
one (due to restriction in the local space). This gives the dimension of local VE space
V;,(K) is same as the number of DokFs for W,(K'). Assuming that the values of v, at
vertices and the moment [ (vj,-nl)ds vanishes for v, € V,(K). Recalling the proof
of Lemma 2.3, we get v,|. = 0 for all e € K. Also, the projection ITY v, = 0 since
it is computed exactly from (D,1)-(D,2). Then (vs, g% )ox = (Y vn, g ok =

for v, € V,(K). Noting that V,(K) C V,,(K) gives v, € V,,(K) and values of v,
vanishes at (D,1)-(D,3) then the use of Lemma 2.3 conclude vy, vanishes in K. [

Next, we define the global finite-dimensional VE spaces as follows,

V, = {’UhEVI’Uh|K€Vh<K> VKGE},
Qn:={aq € Q: qulx € Qu(K) VK €Ty}
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It can be clearly seen that the DoFs for the global discrete space V), are:

e the values of vy, at the internal vertices of each K € Tp;

e the moments of v, - n%, that is [ (v - n%)ds for each internal edge e on 9K,
KeT,.

The DoFs for (), are
e the values of g, € (), at any point in K for each K € Tj,.

Let N and N2 denotes the dimension of local spaces V,(K) and Qp,(K), respec-
tively; And NV and N€ as the dimension of V}, and Qy,, respectively. The notation

dof,.(s) stands for the r—th degree of a given function s.

2.2.2 VE formulation and well-posedness analysis

On each element K and for u,, v, € V,(K) and g, € Qn(K), we define the following

local bilinear forms,

mhK(uh, ’Uh> = mK(H?(uh, H(})(Uh) + SO’K(('U,h — H(I)(Uh), (’Uh — H?(’Uh)),

al (up,vy) = o™ (M, Ty vy) + vSYV (), — Ty, (u, — I vy,),
where
mK('u,h,'vh) = / Up - Uy, d!L’, CLK(’U,}“’Uh) = l// V’U,h : V'vh dl’,
K K

and the local stabilization forms S%% (- -) and SV-X(-,.) are defined as (see |24, 30]):

SOK (u,v) := 1% area( K Z dof; (u)dof;(v), Vu, v € Ker(IT%),
i,7=1
SVE (u =ay Z dof; (u)dof;(v), Vau,v € Ker(ITY),
2,7=1

where 1% and a) are some positive constants independent of hx. In our numerical
tests, we have taken 7% = 1 and o), = 1. Let ®;,4 = 1,2--- N} are the canonical

basis functions for the virtual space V,(K) defined as:
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Then under the assumption (A2), it is easy to see that o’ (®;, ®;) ~ 1 and m*(®;, ®;) ~
area(K). Therefore, the local stabilization terms S (- ) and SV-¥(.,.) satisfies the

following, see also [18].

Yo (v, vy) < S (v, v) < M (v, vy) Yoy, € Ker(TTY),

(2.2.1)
a*aK(vh,vh) < SV’K(’Uh/Uh) < a*aK('vh,vh) Vv, € KGI(H[V(),

where ., v, a., a* > 0 are constants independent of diameter hy. Thus, the following
holds for each K € Ty,

e Stability: There exists positive constants C.,C7, C,, C®, independent of hg,
such that Vv, € V,,(K),

C’WmK(’vh,’vh) S mhK(’Uh,’Uh) S Cva(’Uh,’Uh),

(2.2.2)
C’aaK(vh,vh) < af(vh,vh) < CaaK(vh,vh).
e Consistency: For all p, € [P;(K)]? and v), € V,(K),
milz{(phlvh) (thth) K<p1avh>> (2.2.3)
ahK<p17'Uh) (prth) K(pp’Uh)-

The load function is locally defined as,

EE(vy) = (Frovn)ox  with f | =TI f.

Now considering the above defined local forms and local bilinear form

Vi (v,q) = —/ divv gdz,
K

then the global discrete bilinear forms for all u,, v, € V; and ¢, € Q) are defined as

follows,
n(u : bK
mvh : mh ’U:h,’Uh ’Uh,CJh Uh,Qh
KeTy KeTy,
L Z K
ah(uh,vh) = ah (’U,;“'Uh),
KeTy,
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and the load term as

Fy(vp) = Y Fi¥(v).

KeTy

With the help of above defined discrete bilinear forms, we define semi-discrete formu-
lation corresponding to the weak form (2.1.1a)-(2.1.1b) as: For each t € (0, 7], find
up(t) € Vi, and py(t) € Qp, such that

mp(Opun, vp) + ap(wn, vi) + b(vy, pr) = Fr(vp) Vo € Vy, (2.2.4a)
b(uh, qh) =0 th - Qh, (2.2.4b)

with u,(0) as an appropriate approximation of the initial velocity ug, defined later
in Section 2.3. In view of the stability properties of S“#(-,-) and SV-£(.,.) given in
(3.2.1), we have

e my(+,) is continuous:

mp(wp,vy) S Cllunlloallvnllon  Yun, vy € Vi

e ay(-,-) is coercive: For all v, € V},, we get

an(vn, vn) = Y (aK(HZUh» Y vy) + SV (I - T oy, (T vaf)'”h))
KeTy

>0 3 (Il + el = T)wil i) > C vfoiliig.
KeTy,

e ay(-,-) is continuous:

ap(un, vn) < Cv|upliaollvnlio  Yun, vh € Vi

e Fj(+) is continuous:

Fu(vn) < > 0% flloxllvallox < Cllfllocllvalle  You € Vi
KeT,

Lemma 2.5. Assume that the bilinear form b(-,-) satisfies discrete inf-sup condition

on V5, X Qp, then the semi-discrete problem (2.2.4) has a unique solution u, € Vy, for
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given uy(0) and satisfies (for all t € [0,T)),

t
[ ()]l 0 + / Wllun(9)ll o + 10un(s) 50 + lpn(s)lo.0) ds
0 (2.2.5)

t
< ()0 + / 1F ()20 ds.

Proof. The properties of the discrete bilinear forms a(+, ), b(+, -), discrete linear func-
tional F},(-) and the well-known theorems from ordinary differential equations implies
that the semi-discrete problem (2.2.4) has a unique solution, see also [68]. Taking

vy, = uy, in (2.2.4a) gives

1d
5%”“%”379 +llunliq < Clliflloallualloe.

Employing the Young’s inequality and then integrating from 0 to ¢ imply

t t
fun(®)|2 0 + v / ln ()] 0 ds < llun(O)]20 + / 1£ ()20 ds.

Again considering (2.2.4a) with v, = d;u;, and in similar manner, we get

t t
Vun®)20 + / 10an ()| 0 ds < vlun(0)] o + / 17 ()0 ds.

Thus the above bounds and discrete inf-sup condition lead to (2.2.5). [

Below, we state the well known stability results for the solution of the problem
(2.2.4) in terms of o(t).

Lemma 2.6. The discrete solution (up(t),pn(t)) € Vi, X Qp of the problem (2.2.4a)-
(2.2.4b)) satisfies

sup ([Grunllga + luslza + Ipalie) < C, (2.2.6)
0<t<T

T
sup aOownlia + [ o (unlio+ 0w+ 1l de < €. (2:27)
<t< 0

The proof of this lemma based on the properties of bilinear forms and integration
by parts. Therefore, we skip the proof here, and refer to [112, 60, 81| and the references

within.
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2.2.3 Fully-discrete scheme

For the approximation of time derivative, we employ the backward Euler scheme
by considering its simplicity and unconditional stability, and in this connection, we
discretize the time interval [0,7] into the discrete points ¢, /subinterval [t,_1,t,],
where t, = nAt forn=1,..., N and At = % We define §; as an approximation of

time derivative at time ¢,, for any discrete function g; as

g —gp !

61592 = At

In order to avoid the ambiguity in notations, the solution of semi-discrete scheme and
fully discrete scheme at time ¢ = ¢,,, will be denoted by w,(t,) and u}, respectively.

With above notation, the fully discretize scheme corresponding to the continuous
formulation (2.1.1a)-(2.1.1b) read as: Given initial conditions u) := u(0), find u} €
Vi, pp € Qp for each n =1,..., N such that

mp(0cup, vp) + an(uy, vy) + b(vy, py) = F7'(vg) Yy, € Vi, (2.2.8a)
b(uy,qn) = 0 Vg, € Qn. (2.2.8b)

Since V, and @), are finite-dimensional spaces, (2.2.8) can be considered as a sys-
tem of NV + N@ linear algebraic equations in NV + N% unknowns for each n. Taking
vy, =uy, ¢, =py, f =0 and u,(0) = 0 in (2.2.8), and using the stability properties
of mp(+,-) and ap(+,-) given in (2.2.2) together with discrete inf-sup condition of b(-, -)
implies u} = 0 and p} = 0, which in turn, assure the uniqueness of the solution of
(2.2.8). Now again using the structure of linear system, uniqueness implies existence.

Moreover, the solution u} € V;, and p} € @), of (2.2.8) are bounded as follows,

n
max [lupl[fo + Y (lluhlf o + 10l lg 0 + 177117 o)
SJsn =1

i (2.2.9)
< C(JlunO)F o+ Y 1 150)-
j=1

2.3 Convergence analysis

In this section, we develop the error estimates for both semi-discrete and fully discrete

schemes with minimal realistic regularity assumptions on the continuous solution that

29



are specifically mentioned in Lemma 2.1 and 2.6. With the help of two projection
operators: L? projection P, onto discrete space V,, and the Stokes projection Sy,
we derive the error estimates of velocity in H' and L? norms, and for pressure in L?
norm. We stress that, in general, higher-order regularity is needed for establishing the
optimal error estimates; however, we derive these estimates with minimum regularity
assumptions, and therefore this can be considered as one of the main contributions
of this chapter. We start with the following auxiliary results used frequently in our

subsequent analysis.

Lemma 2.7. Let u, € [P1(K)|? be the polynomial approzimation of w. Under the
reqularity assumption on the polygonal mesh (mentioned in Section 2.2), there ezists
a positive constant C' independent of h such that (see [113, 18])

Z (lu — urllox + hx Ju—ur|1 k) < Ch?|ulsg. (2.3.1)
KeT,

Lemma 2.8. For each uw € V N [H*"H(Q)]* with 0 < s < 1 and under the requ-
larity assumption on the polygonal mesh (mentioned in Section 2.2), there exist an

interpolant w; € 'V, satisfying
||’U, — ’U,[“QQ + h ”U, — UI|LQ S C’h5+1\u|5+179. (232)

Proof. By introducing a piecewise linear Clément interpolant u. € [H'(Q)]? of u
defined on sub-triangulation (formed by joining the vertices of polygon K with its
barycentre) of the polygon K and proceeding analogously to the proof of Proposition
4.2 given in [30], it is easy to see that there exists an interpolant w; € W), through

combining on each K such that
|w —willoq+h ju—wrio < Ch Hulg g

Now using the estimates of w; € W), we establish the interpolant estimates for the
modified space V;, by following [32]. For this purpose, we define interpolant u; € V,
locally on each element K as dof;(u;) = dof;(wy), 1 < i < 3N}. Since the spaces
W, (K) and V(K) are same on the boundary of K containing piecewise linear along
the edge and piecewise quadratic along the normal component at mid point on each
edge. Thus, u; = w; on 0K. By definition of local spaces, we get div(u; — wy) =0

in each K and also, the computation through DoFs yields ITYu; = ITyw;.
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Again, in view of definition of local space V(K), we have —Au; — Vs, = gt for
some s, € LK), gt € GH(K). Now define 2z, := u; — w;. Note that from the
definition of V,(K) and for h* € G+(K), we have

/Zh'hJ_:/(HX’U,[—’LU[)"'LLI/(H[V(w[—wﬁ'hl. (233)
K K K

Hence, z;, € [H'(K)]? solve the problem: find (zy, 3,g%) € [H} (K)*x LA(K)xG*(K)
such that for all (w,q, h™) € [H}(K)]? x L3(K) x GH(K),

aK<zh7 w) + bK(wa ‘§) + CK(wa gL> - 07
0" (21, q) = 0, (2.3.4)

M (zp, b)) = (I w; — wr, h)o g,

where the bilinear form ¢*(z;,, h*) = Ji Zn - h'dz. By defining a scaled norm on
G*(K), it has been shown in [32] that 0™ (-,-) 4+ ¢®(-, ) satisfies the inf-sup condition
on each K, and hence an appeal to general saddle point formulations will guarantee
the well-posedness of (2.3.4) on each K. Therefore, using the stability of the solution
of Stokes problem, zero mean value of (IINYw; — w;) and stability property of IT}.
with respect to | - |1k, i.e., TIY v|1x < C|v|1x Vv € V, we infer that (see Theorem
4.1 in [32] for more details)

|znlix < O w; — wil g < [(T—TIY)(w; — w)ly ke + [T — Y )ul x

< Chiclulss1 k-

Using the scaled Poincaré inequality for the L? estimate of z, € [Hg(K)]?, we achieve

the required result (2.3.2) with an application of triangle’s inequality. O]

Lemma 2.9. The bilinear form b(-,-) satisfies the discrete inf-sup condition on Vj, X
Qp, that 1s, there exists a [, > 0 such that

b(v
sup ( haqh)

> Bullanlloe  Van € Qn. (2.3.5)
0onevy llvnllie

Proof. The discrete inf-sup condition on spaces W, and (), has been established
in [22], and the proof is essentially based on the DoFs for the space W), as well
as the estimates of interpolant operator in Wj. Also, the DoFs of the modified

space V}, and original space W, are same, we only provide a sketch of the proof of
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(2.3.5). First considering the interpolant v; defined in Lemma 2.8, we define operator

7w, V. —> V}, by using the DoFs of V, as follows,

mo(V;) =v(V;) VY vertices V; in Ty,

/Whv-n%:/v-ni( Ve € 0K, K €T,

€

(2.3.6)

Since g, € Py(K), an application of Gauss divergence theorem and (2.3.6) on each

element K, immediately gives
b(ﬂ'h’v — ’U,qh) =0 VYveVandgqg, Q. (237)

Moreover, using the similar arguments used in the proof of Lemma 4.3 of [22| together
with Lemma 2.8, it is not hard to see that (see also [43, 30])

Hﬂ'h’UHLQ S CHUHLQ' (238)

Since continuous inf-sup conditions holds for the space V and @, the condition (2.3.7)
and bound (2.3.8) concludes the proof of (2.3.5) by recalling the standard Fortin’s
trick. =

Defining the continuous kernel space X and discrete kernel space X, as,

X:={veV:bv,q=0VqeQ}={veV:divv =0},
Xy, = {Uh €V, b(vh,qh) =0 Vg, € Qh} = {T)h €V, :divy, :0}.

We note that for a given v € X, we have the following approximation property for
the space X}, as a consequence of the discrete inf-sup condition given in Lemma 2.9
(see [63] and also [32]):

inf JJv—zuio < inf |lv—v|10. (2.3.9)
zpeXp\{0} v, €V \{0}

Now, for given u,p (solutions of the continuous problem (2.1.1)), we define the
classical Stokes projection Sy(u,p) = (Spu, Syp) € Vi, X Q) (see [63] and [67]) that

satisfies
ap(SpEw, vy) + b(vn, Sip) = a(u,vy) + b(vy, ) Yoy € Vi, (2.3.10a)
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b(Spuw, qn) = b(u, qn) Yan € Q. (2.3.10b)

Note that use of (2.3.10b) and (2.1.1b) implies b(S}u,q,) = 0 for all g, € Q) and
thus, div SPu = 0 and Sj'u € X,,.

Below, we derive estimates of the Stokes projection S, by using the properties of

discrete bilinear forms and duality arguments for the L? estimates.

Lemma 2.10. Let (u,p) € V x Q be the solution of the continuous problem (2.1.1)
and (Spw, Syp) € Vi, x Qy, satisfies (2.3.10), then there exists a positive constant C
independent of h such that

lu — Spulloq + h(lu — Siulie + Ip = Spplog) < Ch*(|ulzq + Iphe).  (2.3.11)

Proof. Let wy, = (v, — Stu) for any v, € X;, then divwy, = 0. The following yields

by using stability and consistency of a;(+,), and Lemma 2.7,

C|'wh|ig < ap(wp, wy) = ap(vy, wy) — ap(Spu, wy)

= Z (af (v — ur, wp) — a™ (u — Uy, wy))
KeT

<C (h |ulz0 + |u — 'Uh|1,Q)|'wh|1,Q-

The triangle’s inequality, taking infimum over v, € X}, then use of inequality (2.3.9)

and the application of Lemma 2.8 gives

|’LL — S}’LLL’U/‘LQ S C (h ”U/‘QQ + inf "LL — vhlLQ)
vp€Xp

<C (h [ula0 + 12\% lu — vh|17g) < C h |ulzq. (2.3.12)
Vh h

For pressure estimates, take any ¢, € @y then the discrete inf-sup condition gives

b(vy, q, — S?
Bullan — Siplloe < sup (. an hp)-
v EVR\{0} |’Uh|1,9

Using (2.1.1), (2.2.4), and (2.3.1) for vy, € V},, we arrive at
b(vn, an — Spp) = b(vn, qn — p) + b(va,p — Spp)
= b(vn, qn — p) + (an(Spw, vp) — a(u, vy))
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= b(vp, qn —p) + Z (ar (SPu — ug, vp,) — a™ (u — ug, vy))
KeT,
< C (Ip = allog + hlulz0)lvr)ie.
Again the best approximation properties of (), and triangle inequality gives

lp — Siplloa < Ch(|ulz.a + |pla) (2.3.13)

Next we use the duality arguments in order to achieve the L? estimates for velocity.
For given g € [L*(Q)]?, find (¢,¢) € V x @ such that

a(p,v) +b(v,() = (g,v) YveV,

(2.3.14)
b(p,q) = 0 VqeQ.

Since the domain 2 is convex, the regularity theory of Stokes problem yield that the
solution ¢ and ¢ of (2.3.14) satisfy

pl2.0+ [¢lie < Cllglog- (2.3.15)

Taking v = g := u— S}u in (2.3.14), then the Stokes projection (2.3.10), interpolant
¢ € Vy, consistency of ap(-,-) from (2.2.3) and use of (2.3.14) for ¢ = SP'p — p gives

I — Spullg o = a(u — Siu, @) + b(u — Sjiu, ()

alu — Sfu @ — p) + blu — Sfu, ¢ — ) + alu — SPu, ;)

a(u— Spu, o — ;) +blu — Siu,( — qn) + bl — @1, Shp — p)

+ ) (0 (Shu— ur, o — @) — " (Spu— un, 0; — ;).
KeTy,

Using continuity of a(-,-), ax(+,-) and b(-, ), together with Lemma 2.7, 2.8, estimates
(2.3.12), (2.3.13), and the best approximation of (, we easily obtain

a(u— Spu, o — ;) +blu — Spu,( — qn) + bl — @, Shp — p)
+ Z (ahK(Sl?’u’ —Un, Py — 9071') - GK(S#’U, = Un, Py — <pﬂ'))

KeTy

< CR*(Julan + pl1e) (Iel2o + 1¢]10)-

Finally the bound (2.3.15) concludes the estimates (2.3.11). O
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Next we define the L? projection Py: [L*(2)]?> — V}, such that
mp(Prv,v) = m(v,v,) Yo, € Vi, (2.3.16)

which has the following estimates.

Lemma 2.11. There exists a constant C' independent of h such that
v — Pywllog < Ch?|v|aq. (2.3.17)

Proof. We can write v — P,v = (v —vy) + (v; — P,v) and then denote §;, = P,v —v;.
Thus, an application of stability and consistency of my(+,-) together with (2.3.1) and
(2.3.16) yields

Cll P — vilgo < m(v, ) — mu(vr, 0h)

= (mK(’U — vy, 0) — m (v] — v, 5h)) < CR2|v)s.0l0nllo.0-

KeTy

A use of triangle’s inequality and the estimates given in (2.3.2) gives the L? estimates.
O

2.3.1 H' estimate for velocity

We begin by introducing n(t) := (Pyu — uy)(t) and 0,(¢) = (Spu — uy)(t), and
prove the following lemma that plays a crucial role in establishing the optimal error

estimates for the velocity in H'— norm which will be given by our main Theorem 2.1.

Lemma 2.12. Let u(t) and wy(t) be the solution of (2.1.1) and (2.2.4) respectively
for each t € (0,T), then there exists a positive constant C' independent of h such that

lw = wn) Ol +v [ =) ds
0
<cn? (1 Hfuilo+ [ 1FG)R ds) .
0

Proof. Writing the error equation in terms of 1, with the use of (2.3.16), (2.2.4a) and

(2.3.18)

(2.1.1a) gives

M (O, vn) + an(Nn, vn) =(F — Fp)(vn) + (an(Pru, v,) — a(u, vy))

2.3.19
— b(vh,p — pa)- ( )
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Taking vy, = 6, in (2.3.19) and from (2.3.10b) and (2.2.4b), we note that

b(0h,qn) =0 Vg € Qn, (2.3.20)

then using (2.3.10a), we get

M (Onns On) + an(mn, On) = (an(Phw, 04) — a(w, 0r)) + (F' — F,)(0n) — b(0n, p — Sip)
= (lh(T]h — Qh, 9h> + (F - Fh)(ﬁh)

From (2.3.16), we obtain

M (O, M) + an(On, On) = M (O, M — On) + (F' — F) ()
= (m(Ovw,m — On) — my(Dewn, pn — 01))
+(F — F)(0). (2.3.21)

The bounds of my(-,+), ax(-,-) along with the polynomial approximation w,, con-
sistency of ap(-,-) in (2.3.21), and a use of Poincaré and Young’s inequalities infer
that

1d
5%“%”39 + V|6h’%,ﬂ S M (On, Mn) + an(On, On)

14
< CP*(([0wllon + lowunlloo)luloo + [ fli0) + 5 [0aliq-

Integrating from 0 to ¢, and using the bounds (2.1.3) and (2.2.6) implies

t t
IO + v / 6(5)E 0. ds < lma ()]0 + CH? (1 ; / F($)a ds) .

Choose u;,(0) = P,u(0) then triangle inequality together with Lemma 2.11 and
Lemma 2.10 implies (2.3.18). O

Theorem 2.1. Let u(t) and wy(t) be the solutions of continuous problem (2.1.1) and
semi-discrete problem (2.2.4) respectively for each t € (0,T]. Then, there exists a
positive constant C' independent of h such that

o(t)(w —wp) ()| o + / (5)[|0u(w — un)(s)[15 0 ( |
0 2.3.22

< Cr (14 fufa + [ (14 a(s) WIS 0 ds)
0
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Proof. Writing the error equation in terms of 6, using equations (2.1.1a)), (2.2.4a) and
(2.3.10a), we get

mp(0;0h, vy) + ap(On, vy) = (M (9 Spu, vy) — m(Opu, vy))

+ (F' = Fy)(vn) + b(vn, pr — Spp). (2.3.23)

Taking the test function v, = 9,0, in (2.3.23) then the stability of bilinear forms

mp(-, ), an(-,-), equation (2.3.20) and consistency of my(-,-) gives

vd
106015 0, + §£|9h|ig S mp(0:0n, 040n) + an(0n, 0:01)
= (mh(atS#u, ateh) — m((?t’u,, 8t9h)) + (F — Fh)(&ﬁh)
= > (my (O(Spu — %), 0,6),) — m™ (0,1 — TIY Ju, 0,0),))

KeTy
4 (F = F)(0,0)

1
< Ch* (|9l + 10l g + 115 0) + 51901 o
Multiplying by o(t), we arrive at
d
o003+ v (oIl 0) < VIO g + Coh*(Ouldq + Ol o+ |f1E0).

Integrating now from 0 to ¢ and use of bounds (2.1.4) imply

v o0 0+ [ o(5)108(5) o ds
-0 (2.3.24)
<+ [ (o) a+ CHo(s)I(5)Ea) ds.

An application of triangle’s inequality and Lemma 2.12 give the bound for second

term on right hand side of (2.3.24) as,

t t
y / 60() 2 ds < [0} 2 + CI2 (1 ; / £ ds) |

Therefore, the use of bounds (2.3.11) and (2.3.24) yield the required bound (2.3.22).
[l
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2.3.2 L? estimate for pressure and velocity

We start by proving the two essential results given below in Lemmas 2.13 and 2.14
which will be helpful in deriving optimal error estimates for pressure and velocity in

the L? norm with minimum regularity.

Lemma 2.13. Let w and wuy, are the solutions of continuous problem (2.1.1) and

semi-discrete problem (2.2.4), respectively. Then, we have

02(?5)”3t(u—uh)(t)!|3,9+V/ 0?(5)|0p(w — up)(s)[ o ds ( |
0 2.3.25

t
< CR(1+ uoliq + /0 ((1+0(s) BAIF () o+ 2 (3)|0uf () ) ds ).
where C' s a positive constant independent of h.

Proof. Differentiating the error equation (2.3.19) with respect to time and taking
vy, = 040, we obtain (similar to (2.3.21))

mh(atmh, aﬂ?h) + ah(ateha ateh) = (m(attua 8t(77h - eh)) - mh(attum at(ﬁh - Qh)))
+ (atf — O fh, 8t9h).

The stability of the discrete bilinear forms and (2.3.20) implies

1d
§E|\3ﬂ7h“3,9 + V|3t9h|isz
< Ch|at,f|1,§2||8t9h“0,9 + Ch2<||attu”0,9 + ”attuhHO,Q>|atu|2,Q

1%
< 0h2(|atf|iﬂ + |8tu|§79 + ||3ttu||(2),sz + ||8ttuh||(2),9) + §|at9h|iﬂ'

Multiplying the above bound with o?(t) to get

d

o (@ ON0mnllg0) + v o)l o

< U(t)”atnhHg,Q + Cth?(t)(Wtfﬁ,Q + ’atug,n + HattuH(Z),Q + “attuhHg,Q)'

Integrating the above equation for time from 0 to ¢ then using Theorem 2.1 together
with regularity results from Lemma 2.1 and 2.6, and the triangle’s inequality to deduce
the desired result (2.3.25). O
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Lemma 2.14. The solutions w and wy, of (2.1.1) and (2.2.4) satisfies

T T
/0 I =) ()l dt < Ch*(1+ uol3 g + / () ds),

where C' s positive constant independent of h.

Proof. We consider the following backward in time dual problem: Find ¢(t) € V and
W»(t) € Q for each t € (0,T] such that

m(v, @) — a(v, @) — b(v,9) = (u — up, v) Vv eV, (2.3.26a)
b(,q) =0 Vg € Q. (2.3.26b)

with ¢(T") = 0 a.e. in Q. We note that the problem (2.3.26) has a unique solution
(¢, v) € V x Q and satisfies (see |[112| for more details)

T
max |p(t)[; o +/0 (o) 0+ [0 + 1015 0) dt

0<t<T

. (2.3.27)
<c / (= ) (8)] 20 .

Taking v = u — u,, in (2.3.26a) gives
I — unllg 0 = m(u — un, 0:d) — alu — up, @) — b(u — up, ¥).

The use of interpolants ¢; and i; give

d
lu =il = Zmw = wi ) = (M@~ w). ¢) +alu = wi ¢ — )

+b(u — up, ¥ — 1) + alu — up, p;) + b(u — up, ¢I)>-

The equations (2.1.1b), (2.2.4b) gives b(u — uy, qi) = 0, for all g, € @y as 'V, C V.
Then the use of the equations (2.1.1) and (2.2.4) leads to

d

=il = Zmlw = wi @) = (M@~ w). ¢ — ¢) +m(dru, é))
+a(u —up, ¢ — ¢;) + b(u — up, Y — Y1) + a(u, ¢I)>
+ (m(Oyun, 1) + a(un, @r))

_ %m(u — @) — (F — Fy) (b)) — (m(Ds(u —wp), d — ;)
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+alu —up, @ — @) + 0w — wp, P — 1hr))
+ (m(Oeun, dr) — mu(Orun, P;))
+ (a(uh7 d)l) - ah(uh7 ¢I>>

Integrating in time from 0 to 7" and use of ¢(T") = 0, we end up with
T
1Bl = [ = w)©)lods
0

— = (= w)(0). $(0) = [ 0= ur). ¢~ d1)ds

-~

- / (@t = tn, & — ;) + bet — wn, & — 1) + (F — Fy)(@,)) ds
+/0 (((m(atuh, @) — mp (O, @p)) + (alun, @;) — an(up, ¢1))> di-

Take u,(0) = Sfuy in term 77 and regularity (2.3.27) implies
Ty < Ch?|ugl2.0ll0(0)lloe < CP?|uglag || Eullog

Use of Cauchy-Schwarz and triangle’s inequalities along with the bounds (2.1.3) and
(2.2.6), an application of Lemma 2.8 and regularity result (2.3.27) gives

T ) T ) 1/2
7, C [ (10ulon+ [unloa) |6~ $iloads < 1 ( [ 16(s)q ds)
0 0
< C K| Euloe.

Use of Cauchy-Schwarz inequality, (2.3.18), interpolant estimates for ¢ and ¢, (2.1.2),
(2.1.3) and (2.3.27) implies

r<of [ lw-wikass) ([ 16 - o06ia 1w - w@la )

T
L on? / F(5)hal(s)la ds

T 1/2
< Cn? (1+|U0|§,Q+ / |f<s>|iﬂds) |Eulloc.
0
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Employing the consistency of bilinear forms my(-,-), ax(+,-) together with Cauchy-
Schwarz inequality, (2.3.18), (2.1.3), (2.2.5) and (2.3.27), we easily obtain

T
7= Y [ (" Q. b1 = M) = i o 6, i)
+ " (w, — Uew, @y — 1) — aff (uy, — Wu, ¢, — 115 $)) ds

1/2

T
<o (1+lulo+ [ 1F6Rads)  IEudun

Now combining the bounds of T}, we complete the rest of the proof. n

Above results enable us to prove the L? estimates for pressure and velocity. First

we develop the estimates for pressure and then proceed for velocity.

Theorem 2.2. Let p and py, be the solutions of (2.1.1) and (2.2.4). Then there exists

a positive constant C' independent of h such that
Wl =) W5e < Ch* (1 + @) fl1g) -
Proof. Split the pressure error in terms of Stokes projection as
p—=pn=(p—Sp)+ (Sip — pn).
The inf-sup condition b(-, ) on V, gives

b(vy, S¥p —
BrllSpp — prlloo < sup (vn, Spp — Pn)

, (2.3.28)
v, EVL\{0} |Uh\17ﬂ

where (2.1.1) and (2.2.4) gives

b(vn, Spp — pn) = b(vp, S;p — p) + b(vy, p — pa)
= b(”h, Sﬁp - p) + (F - Fh)('vh) + (mh<atuh> Uh) - m(at’U:, Uh))

+ (ap(up, vp) — a(u,vp)).

In view of the definitions of L? projection P, (given in (2.3.16)) and Stokes projection
St (given in (2.3.10)) together with their estimates (2.3.17) and (2.3.11), we infer that

b(vy, Sip — pn) = b(vy, Sip — p) + (F — Fy)(vs) + mp (0w, — 0, Pru, vy,)
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+ (ap(up, — Spu,v,) — a(u — Spu, vy))
< Ch(lplia + [ulz.0 + | flio)llvallie
+ (lu — upli0 + |u — Sulio)lvn)ie

+ (H@tu — 0tuh||079 + H@tu — 3tPhu||0’Q)||vh||oyg. (2329)

Multiply the inequality (2.3.29) with o(¢), using Lemma 2.13 and (2.3.28) to arrive

at

a(OI1(Shp —pr)(E)]loe < Ch(1+ o) (Julzo + plie + [ flie + [0wlan + 10ip)10))
< Ch(1+a(t)|flra)-

Finally, the triangle’s inequality, use of (2.3.11), and above bound yields the required

estimate. O

Theorem 2.3. Let u and uy, be solutions of (2.1.1) and (2.2.4), respectively. Then

there exists a positive constant independent of h such that

o (1) (w = un) (B)l 0 < Ch* (14 o0 + / L+ o()If () ds).  (2:3.30)

Proof. Consider the error equation (2.3.23) in terms of the Stokes projection; and

taking vy, = 6, with use of property (2.3.20) implies
mh(ﬁt(‘)h, Qh) + CLh(Qh, Qh) = (mh(atS}ju — 8tPhu, Qh)) + (F — Fh)(Hh)

Using (2.3.16) then the Cauchy-Schwarz and Young’s inequalities together with the
estimates of projection P, (2.3.17) and (2.3.11) implies

1d

——10nll5.0 + v[0n]5 0 < (ma(8:SHw — 0,Py, 01)) + (F — Fy)(6h)
2dt

1
< Ch4<’8tu|§,ﬂ + |atp’%,sz + ’f\%g) + 5“9hHgQ
Multiply with o(t) and get

d
—(eON0I50) +v a@®)lonli g

dt
< C((1+o)I0ln+o(t) H(FBg + 10mlo + 10pfa) ).
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Integrating the above bound from 0 to ¢ and then the use of Lemma 2.14 and the

regularity assumption (2.1.4) implies

o (1)][6n(1)]12.0ds < Ch4(1 + [uolZq +/0 (140 ()| £(s) 20 ds). (2.3.31)

Thus the estimate (2.3.30) can be obtained from (2.3.11) and (2.3.31) with the help
of triangle’s inequality. O]

2.3.3 Fully discrete error analysis

Following analogously to the semi-discrete scheme, in this section, we estimate the
error that occurred through time discretization, i.e., by employing the backward Euler
scheme for the approximation of time derivative. We proceed to collect the ingredients
required to establish the convergence results stated in the main theorem (Theorem
2.4). Let Z be a Hilbert space, then for any function ¥ € H*(t,_1,t,; Z), we have the

following integral formula,

[ I
9(t) ~ 5o / D)ds = [ (5=t )O(s) ds. (2.3.32)
tn—1 tn—

1

Integrating the equation (2.2.4a) from ¢, to t,, we have

(St o) + 7 [ (nun(s) 00) + o, pu5) s

tn—1

_ Ait t:nl(fh(s)’ on) ds; (2.3.33)

And differentiating the equation (2.2.4a) with respect to time respectively gives
mp(Outn, V1) + an(Oytn, v1) + b(vn, Oipr) = (Orf 1, On)- (2.3.34)

Using the integral formula (2.3.32) and equation (2.3.34), we can rewrite the equation
(2.3.33) as

mp(0un(tn), va) + an(un(tn), vn) + b(vn, pu(tn))
= Fy'(vy) — Ait /t " (s — tn_1)mp(Onun(s), vy)ds. (2.3.35)
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Denote the errors in time for velocity and pressure as ey, = up(t,) — uj and e, =
pn(tn) —pi, respectively then the error equation for time discretisation by subtracting
(2.2.8) from (2.3.35) given as

mp(0r€y, Vi) + an(€y, vi) + b(vn, €;)
1 tn

=% (s — tn_1)mp(Opun(s), vy)ds. (2.3.36)
t

1

We would require the duality arguments (constructing the dual problem corresponding
to (2.2.8)) for obtaining the desired L? estimates for velocity and pressure. We begin
n—1 n—1

with introducing the dual problem as: For a given 2z} € Vy, find (¢, ", ") €
V, x Qp, such that

mh('vh, (Std)Z) — ah(’vh, q&}f‘l) — b('vh, Z_l) = (ZZ, 'Uh) V’Uh - Vh, (2337&)
b(pp ' an) =0 Van € Qn. (2.3.37h)

The above problem has a unique solution ( Z‘l, ,’;"1) € V,, x ), and the solution
satisfies (see [76])

n—1 n
lrglj%!%\ig + (A0 (l6dhlige + 4illie) < C(ADD lzl5e  (23.38)
T 7j=1 j=1

At this end, we prove the following results which will be used in deriving the optimal

convergence rate.

Lemma 2.15. Let (up(t,), pr(tn)) € Vi xQp and (u},py) € Vi, X Qy be the solutions
of semi-discrete problem (2.2.4) and fully discrete problem (2.2.8) respectively for each
n=1,...,N. Then we have

(A0 Jlellzg < € A, (2.3.39)
j=1
where C' is positive constant independent of the mesh parameters h and At.

Proof. Taking v, = e? in (2.3.37a) with 2 = e and also, b(e”, ¢} ") = 0 from

equations (2.2.8b) and (2.2.4b) gives
||eZ”(2),Q = my(el, 5,d7) — anler, pp ). (2.3.40)
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Taking v, = ¢}, ' in (2.3.36); and b(¢}, ', e2) = 0 using (2.3.37b) yields

mp(6iey, &) +an(el, dp )

tn
_ L / (5 — to 1) (Orwaen(s), &1 ds. (2.3.41)
Adding (2.3.40) and (2.3.41) then multiplying the resultant equation with A¢ implies
tn
At |leylls.o = mu(ey, @h) —ma(ey ™ ¢;7) +/ (5 = ta-1)mn(Ouun(s), ¢}, ds.
tn—1

Summing over n then using € = 0, ¢} = 0 and the Cauchy Schwarz inequality gives

n " tj .
8t Y lelle < €3 ([ (=t louun(ollonds) 167 s
j=1 j=1 Yt

J

n t; /
<o ([ oNaanlRaas)” (s [
j=1 i

<o | " oo fowun () Bads) (80 Z 3130

tj

/2
1ds) ] oo
1

1/2

Then we obtain (2.3.39) from the bound (2.3.38) for each j and regularity result
(2.1.4). O

Lemma 2.16. Let uy(t,) and u} be the solutions of the semi-discrete problem (2.2.4)
and fully-discrete problem (2.2.8) respectively. Then there exists a positive constant

C independent of the mesh parameters h and At such that

n

o(tn)llesllia + (A1) Y (o(ty)lellia) < C AL (2.3.42)

j=1
Proof. Taking the test function v, = el in (2.3.36) and using the stability of the
bilinear forms my(+,-), an(-,-) to infer

1 n n— n 1 tn n
sap (leslia —leiIBa) + vetfia < '—Kt [ =t ma@un(s), ) ds|.

tn—1
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Using the Cauchy Schwarz and Young inequalities, we obtain
1 n||2 n—1(|2 n|2 n 2
~ (leilia—llei™I3a) +vleiBa < C [ (s = tan)|uun(9) g ds. (2:3.43)
tn—1
Multiply equation (2.3.43) with (o(¢,) At) and using o(t,) < o(t,—1) + At gives
o(tn)llenllon — ota-s)llen 5o +v o(tn) At |eyf;
n «110,Q n—1 u 0,Q n wll,Q
tn
< Ay o+ C At [ o(9)0cun(s) [ ads
tn—1
Summation over n leads to
o(tu)llesllia +v AtY o(t) lellio
j=1

n tn
<At el g + C A / o (5)||Ouun(3)|2 0 d.
j=1

Thus the bound (2.3.39) given by previous lemma concludes the final result (2.3.42).
O

Lemma 2.17. Let (up,pn) € Vi, X Qpn and (u},p}) € Vi, x Qy be the solutions of
the semi-discrete problem (2.2.4) and fully-discrete problem (2.2.8) respectively. Then
the following holds

ot lon < C At (2.3.44)

where C' is positive constant independent of the mesh parameters h and At.

Proof. Consider the error equation (2.3.36), that is,

1 tn
b(vn, e;) = — (mh(étez, vy) + ap(ey, vy) + A_t/ (s — tn_1)mp(Onun(s), vp) ds).
tn—1

Using discrete inf-sup condition of bilinear form b(-,-) and multiplying with o(t,)

gives

tn
o(tn)llep e < Colta)(llorenlls.o + vlewlia +/ 0 ()| Ouuan (5)[15 o ds).-

tn—1
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Summing over n followed with multiplying by At gives

At Y o(ty)lleplsa < C(AL Y a(ty)oedlsn+vAt Y olt)lellia
j=1 j=1 Jj=1
tn
—|—At2/ o () |0wun(s) |5 o ds)- (2.3.45)
0

We require here the estimates for term (At) 37, o(t;)|0rey]|F o Take vy = b€y, in

(2.3.36) and using the similar steps as followed in the proof of Lemma 2.16 leads to

ln
v n n— n
(It = Vel Ea) + 1ot < € [ (s = tams)fouun(s) o ds.
tn—1

Multiplying with o(¢,) and summing over n gives

n

(AD)Y a(t)denlsq < CAL. (2.3.46)
j=1
Use of the bounds (2.3.46) and (2.3.42) in (2.3.45) implies (2.3.44). O

Finally, an application of the triangle’s inequality together with Theorems 2.1, 2.2

and 2.3, Lemmas 2.16/ and 2.17 enable us to state the following main theorem.

Theorem 2.4. Let (u(t,),p(t,)) € VX Q and (u},p}!) € Vi X Qy be the solutions of
the continuous problem (2.1.1) and fully discrete problem (2.2.8) respectively at time
t, for eachn =1,..., N. Then there exists a positive constant C, independent of the

mesh parameters h and At, such that

o(ty)||lu(t,) — U’ZH?),Q < C(h4 + AtQ),
o*(t)llp(tn) — pirllse < C(W* + At?).

Remark 2.2. We stress that the convergence analysis can be easily extended to other
divergences free and higher-order VE methods, i.e., k > 2 introduced in |30, 32]. How-
ever, in that case, one would require a higher reqularity assumption on the continuous
solution. Moreover, stabilized methods would also demand higher reqularity on the
continuous solution for achieving the optimal rate of convergence, for instance, it is
seen in [114] that the lowest order approzimation (P1—Pq) with stabilization technique

will require uyy € L(0,T; [L*(Q)]?) for deriving the error estimates.
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2.4 Numerical experiments

In this section, we present our numerical experiments to confirm the theoretical rate of
convergence for pressure and velocity established in Section 2.3. In order to judge the
computational efficiency and performance of the proposed VE discretization (applied
for spatial variable), we have considered three different kinds of meshes: Distorted
square Dy, distorted hexagonal mesh W), and non-convex mesh N in the square
domain Qg demonstrated respectively in figures 2.2(a)- 2.2(c) (for more details, see
[30]). For the time discretization, we have employed the backward Euler method, and
report the convergence in time as well as spatial variables. In contrast with consis-
tently stabilized methods, we have inferred through numerical tests that the present
scheme yield stable pressure even with small time step. Moreover, we also perform
the proposed scheme on the lid-driven cavity problem to see the real computational

advantages of the proposed scheme. All the computations are done using MATLAB.

(a) (b) (c)

Figure 2.2: Samples of meshes employed for the numerical tests: (a) Concave mesh
Ny, (b) Distorted hexagonal Hy,, and (¢) Distorted quadilateral Dj, mesh.

The spatial error associated with velocity and pressure while refining the mesh

are defined as:

1/2 1/2
Eo(w) i=( > llu(T) - M [3) . Buw) = (3 IV (u(T) - IFu)lE k)
KeTy, KeTh
and  E(p):= Y [Ip(T) — ppllox,
KeT,

and the corresponding computed rate of convergence are given by

_ log(El(U)/?l(U))
log(h/h)

_ log(Eo(U)/?o(U))
log(h/h)

48

_ log(E(p)/E(p))

nw) log(h/)

’ TO(’U') ) T(p)




where E;(u), Ey(u), E(p) and Ey(u), Eo(u), E(p) are errors for the mesh size h and

a finer mesh size h, respectively.

2.4.1 Convergence in space over a square domain

Over a domain Qg := (0,1)?, we consider the following problem motiviated by [29]
for which we have analytical solution. Construct the load function f(x,t) so that the

exact velocity of the fluid flow and pressure are given as

p(x,t) = t(xy2 — é)

S — [—éos(2ﬁx)sin(2ﬂy) + S-m(27ry)

sin(2mx)cos(2my) — sin(2wx)
Now by fixing the time step At = 0.001 and final time 7" = 1, we report numerical
convergence rate for non-convex mesh in the Table 2.1. Moreover, the computed
order of convergence for all three meshes in Fig. 2.2 are depicted through log-log plot
in Figure 2.3. From the Table 2.1 and Figure 2.3, we note that the computed rate
of convergence for three different meshes are in agreement with theoretical rate of

convergence.

[ Ndof h™' Eg(u) ro(u) Ei(u) ri(u) E(p) r(p)]
218 4  0.2632 - 4.0577 - 0.3420 -
983 & 0.0583 2.18 2.0275 1.00 0.1968 0.80
4163 16 0.0161 1.86 1.0179 0.99 0.0658 1.60
17123 32 0.0051 1.66 0.5092 1.00 0.0196 1.75
69443 64 0.0012 2.06 0.2544 1.00 0.0061 1.70

Table 2.1: Computed errors and rate of convergence with varying mesh size h.

2.4.2 Convergence in time

To present the time convergence, we take given force f so that the exact velocity and

pressure solutions are

sin(rz — 0.7) sin(7y + 0.2)
cos(mz — 0.7) cos(my + 0.2)

Y

w(x,t) = (1+t° + exp /10 4 sint) [

pla,t) = (1+£° + exp /10 —|—sint)<sin(x) cos(y) + (cos(1) — 1) sin(l)),
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Figure 2.3: Convergence in space for three different meshes: (a) Non-convex, (b)
Distorted Hexagonal, and (c¢) Distorted square mesh.

with viscosity ¥ = 1 on domain 2g. In this example, we have considered here the
nonhomogeneous boundary condition for velocity and given non-zero initial velocity

u (calculated from exact velocity solution at ¢ = 0) as
wy = 2[sin(mz — 0.7) sin(7y + 0.2); cos(mz — 0.7) cos(my + 0.2)].

The mesh size for the space discretization is h = 0.01 and time step At = 217%/10, k =
1,2,3,4 and final time t4,, = 1. The computed rate of convergence at the final time
T = 1 for velocity and pressure in Fy(u) and E(p) norms, respectively are given
in Table 2.2, and we note that the computed rate of convergence matches with the

theoretical rate of convergence in time.
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[ At Eo(u) ro(u) E(p) r(p)]
0.1 000261 - 01401 -
0.05 0.001383 0.92 0.0739 0.94
0.025 7.256e-04 0.93 0.0392 0.97
0.0125 3.979-04 0.87 0.0232 0.96

Table 2.2: Computed errors and rate of convergence with respect to time.

2.4.3 Lid-driven Cavity problem

Considering the applications of classical lid driven cavity problem, in literature, there
are several numerical techniques used and tested for the approximation of this prob-
lem. For simplicity, here also we have considered the square domain §2g. In general,
in this type of problems, there is no external force on the domain, that is, f = 0
on Qg, and Dirichlet boundary condition for velocity, w = [1,0] on top lid (which is
{(z,y) € Q:y =1, 0 <x <1}) and u vanishes on the rest of the boundary 0,
is employed. The distorted quadrilateral mesh D, with viscosity v = 1, mesh size
h = 1/64 and time step At = 0.01 is considered to compute the pressure and velocity
which is shown in Fig. 2.4 and Fig. 2.5 respectively.

0.9
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0 0.2 0.4 0.6 0.8 1

(a) (b)

Figure 2.4: Approximate solution of Cavity problem (a) pore pressure and (b)
pressure contour.

It is clear from the Fig. 2.4(a) and Fig. 2.5(a) that the approximate pressure
and velocity solution doesn’t show any oscillations, and there is one vortex in upper-

middle part of the cavity in Fig. 2.5(b). Moreover, the pressure singularity can be

ol



seen at the corners of the top lid in Fig. 2.4(b) as expected for this test.
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Figure 2.5: Approximate solution of Cavity problem (a) velocity components, (b)
velocity vector.

22



Chapter 3

Navier-Stokes equations

In this chapter, we have extended the VE analysis proposed in Chapter 2 for the
approximation of the non-stationary Navier-Stokes equation with emphasis on both
theoretical and computational aspects. Here, we intended to propose the semi-discrete
scheme (based on spatial discretization with VE method) and fully discrete scheme
(employing the Euler-Backward scheme for time discretization), and also discuss and
analyze their well-posedness. With the help of certain projection operators, error es-
timates are established in suitable norms for both semi and fully-discretized schemes.
Moreover, several numerical experiments are conducted to verify the theoretical con-
vergence rate and to observe the computational efficiency of the proposed schemes.

As far as VE approximations of transient Navier-Stokes are concerned, there are
only very few VEM-based contributions available in the literature; for instance, see
[55] in which stabilized VEM is discussed. We stress that in [55] only discrete for-
mulation and its corresponding algorithm were presented for conducting the numer-
ical experiments. However, theoretical convergence/error estimates of the proposed
scheme were not established. Therefore, this work can be considered a first attempt
that addresses both convergence analysis and implementation aspects of VEMs for
non-stationary Navier-Stokes equations. We believe that the proposed analysis can be
extended to more application-oriented problems consisting of time-dependent Navier-
Stokes problems on polygonal meshes.

The content of this chapter is arranged in the following manner. We have in-
troduced the governing equation and discussed its weak/variational formulation in
Section 3.1. Next, we deal with VE formulation and well-posedness of both semi
and fully discrete schemes in Section 3.2. With the help of Stokes and L? projection
operators in Section 3.3, an optimal a priori error estimates for velocity and pressure

in H' and L?-norms are established. Lastly, we have reported numerical experiments
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in Section 3.4 to validate the theoretical convergence rates obtained in Section 3.3.

3.1 Governing equations and their variational for-

mulation

We consider the following incompressible fluid flow problem in a domain Q C R?: For
all t € (0,7] and x € €, find the flow velocity u(x,t) and the pore pressure p(x,1)
such that

du—div(y Vu—pI) + (Vu)u = f  in Qx (0,7, (3.1.1a)
divu=0  in Qx (0,7], (3.1.1b)

u=0 on 02 x (0,77, (3.1.1c)

u(-,0) =uy  on Q x {0}, (3.1.1d)

where v is the viscosity of the fluid, wo(x) is the initial velocity and f(a,t) is the

given body force.

Let V := [Hj()]* and Q := L3(Q) be the admissible spaces for velocity and
pressure, respectively. We also assume that the load function f € [L*(Q)]? and
initial condition uy € V. Multiplying the adequate test functions v € V and ¢ € Q)
to the equations (3.1.1a) and (3.1.1b) respectively, with initial-boundary conditions
(3.1.1¢)-(3.1.1d), the weak formulation states: Find wu(t) € V, p(t) € @ such that,
for all t € [0, 77,

m(dyu, v) + a(u, v) + é(u; u,v) + b(v,p) = F(v) Vv eV,

(3.1.2)
b(u,q) = 0 Vg € Q,

where the bilinear forms are defined as

m(u,v) ::/u-vdx, a(u,v) ::V/Vu:Vv dx, F(v) ::/f-'vd:c,
Q Q Q

<gz;wj> v;, b(v,q):= —/Qdiv'v q dx.

Note that the above bilinear forms are satisfying the following properties.

&(w;u,v) = /Q(Vuw) v dre = i

ij=1
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e m(-,-) is a positive definite form:

m(v,v) = H’UH(Q)Q Vv € V.
e a(-,-) is coercive:
a(v,v) = l/|’U|iQ >(C 1/||'u||fQ Yve V.

(Poincaré inequality)

b(-,-) satisfies the inf-sup condition: there exists 5 > 0 such that [67, 63]

e a(-,-) is continuous:

a(u,v) < Clluliol|v]e Vu,veV. (Cauchy Schwarz inequality)

e F(+) is continuous:

Fv) < Cllflloellvloe < Cel flloallVoloe Vo e V.

¢(+;+,+) is continuous: Yu,v,w € V,

2

du; : :
é(w;u,v) < Z 82: |wjvillo, (Cauchy Schwarz inequality)
ij=1 J 10,9
2. || 0w
<> 5 S lwjll gy ill oy (Holder's inequality)
i,j=1 w] 0,2

< lufiollwlliallvlliq- (Sobolev embedding theorem: H' () C L*(9))

¢(u; -, ) is skew-symmetric bilinear form on the kernel space X, where
X:={veV:bvq) =0V eQ}t={veV:idivv=0}. (divV CQ)
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For all u € X, v, w € V, we have

0 ow
é(u; v, w) Z/ ( vl ' wZ + v; <uj >) (Integration by parts)

Ox;

= —/Qdivu('v Sw) — /Q(V'wu) v = —¢(u; w, v).

Next, we introduce a new skew-symmetric trilinear form ¢(+; -, -) by modifying the

natural trilinear form ¢&(-; -, -) as follows.

clu;v,w) = = (é(u;v,w) — é(u; w,v)) Yu,v,w eV,

DN | —

[t is clear from the definition that ¢(u; w,w) = 0 for all u,w € V, and also trilinear

form ¢(+;-,-) is continuous. Thus, the weak formulation (3.1.2) can be rewritten as:
find u(t) € V and p(t) € @ such that

m(dyu, v) + a(u,v) + c(u; u,v) + b(v,p) = F(v) Vv eV, (3.1.3a)
bu,q) = 0 Vg € Q. (3.1.3b)

The well-posedness of the problem (3.1.3) follows from the coercivity and continuity of
the bilinear form a(-,-), inf-sup condition of bilinear form b(-, -) along with the skew-

symmetricity of the bilinear form c¢(u;-,-) (for more details, see [67]). In addition,
the solution w € V of problem (3.1.3) satisfies

||u<>||m+u/|u 2 g ds < Ju(0)]2q + /||f 2 ds. (3.1.4)

Thus, we obtain the bound (3.1.4) by the usage of Young’s inequality.

3.2 Virtual element formulation and its well-posedness

In this section, by introducing the stable pair of local and global discrete spaces
associated with velocity and pressure, we propose the VE formulation corresponding
to weak formulation (3.1.3). Here, we present both semi and fully discrete schemes,

and address the existence of a unique VE solution.
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3.2.1 Discrete spaces and their degrees of freedom

In this section, we propose the VE formulation and discuss its well-posedness by
defining the required projection operators and VE spaces associated with velocity
and pressure. We evoke the discretization assumptions and the local VE spaces from
the previous chapter to define the discrete formulation. Recalling the discrete spaces
from Section 2.2 of Chapter 2, the required local virtual spaces V,(K) and Qn(K)
on each element K associated with the velocity w and pressure p, respectively are

defined as follows.
—Av, + Vs € GH(K) for some s € L*(K),
diV’Uh’K =Cq € ]P)()(K>

(Y vy, — vi, g ok =0 Vg*e gL(K)},

Vi(K) = {vh e [HY(K)]? N BOK) :

Qn(K) :=Py(K),

1

where ¢4 := ]

(faK v, - N ds), and the boundary space as
B(OK) := {v,, € [C°(OK))* : vp|. - t5% € Pi(e), vnle - nS € Py(e) Ve € OK }.

Remark 3.1. For the analysis purpose we can opt the space Wy (K) (introduced
in |29/, and mentioned in Chapter 2) instead of V,(K). However, employment of

W, (K) lead to sub-optimal error estimates for velocity and pressure.
For any v, € V,(K), the DoFs for the space Vj,(K) (see [83]) are
e (D,1) the value of v, at the vertices of element K

e (D,2) the edge moments of v, along the unit outward normal of K, that is,

/vh-n% Ve € OK.

e

From definition, we have the dimension of V,(K) is equal to 3N}.. The DoFs for
space Qn(K) is

e (D,) the value of function ¢, at any point in K.
Based on the local spaces, we define the global finite-dimensional VE spaces as
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follows,

vV, = {’UhGVI’Uh’KEVh(K) VKGIEL},
Qn={m €Q:qlx € Qu(K) VK €T,}.

In view of the definition of V,, it is immediate to see that following are the DoFs for

the global discrete space Vy,,
e Values at all the interior vertices on each polygon K € Tj;

e And edge moments along the unit outward normal of K on each interior edge
e € 0K for all K € Tj,.

The DoFs for (), are the values of function ¢, € @)}, at any point in K for each K € T,.

Now, to define the computable discrete formulation, we introduce another local
tensor 12-projection TR : [L2(K)J** = [Po(K)[**? as,

(MI%°Vov — Vu,plox =0  Vp € [Po(K)]?*?, v e [H(Q)

For any uy,, v, wy, € Vi, (K) and g, € Qn(K), we define the local discrete forms on
each element K through local projection operators (presented above and in Chapter 2)

as follows.

mpy (wp, vp) = m" (ewy, Mv,) + SO% ((w), — Mewy), (v, — Mivy)),
(’U,h, ’Uh) K(HZ’U,;“ HX’U}L) + v SV’K((I — HZ)’U,}L, (I — HZ)’Uh),
Ch (wh; Uy, ’Uh) = ((H%OVuh) H?(wh, H?{’Uh)o,[(,
FhK(Uh) = (H?(fjvh)o,K, bK(”hth) = —(diV Uh;Qh)O,Ka

where the local bilinear forms are the restrictions of the continuous forms on each
element K, that is

m™ (up,vp) == m(up, vy,  a” (up,vp) = aluy, vk

And the stabilization terms S%%(-,-) and SV-¥(- ) are defined as, see [24]

NV
SOK (uy, vy) := area(K) Z dof; (uyp,)dof; (vy), Yy, vy, € Ker(ITY),

ij=1
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NV
SVE (uy,vp) = Z dof; (uy,)dof; (vy), Yy, v, € Ker(IT)),

,j=1

by denoting NV and N¢ as the dimension of spaces V;, and Q},, respectively.

We note that the classical stabilizer terms S®%(-,-) and SV-¥(-, ) satisfy the fol-

lowing stability with respect to the continuous bilinear forms [30],

Cem™ (up, vy) < S (wp, vy) < Cm" (wp,v1)  Vun, v, € Ker(Ty), (3.2.1)
a*aK(uh,vh) < SV’K(’LLh,’Uh) < a*aK(uh,'vh) Yuy, v, € Ker(HZ), o

where (., (", a,, o > 0 are constants independent of diameter hgx of polygon K.
Now considering the above defined local forms, we set the global discrete bilinear
and trilinear forms for all uy, v, € V;, and ¢, € ), are simply set as sum over each

polygon K as simply the sum over each polygon K,

mp(Wp, vp) = Z my (wn,vn),  b(vn, gp) = Z b (vn, qn),

KeTh KeT
an(up, vp) == Z aﬁ((umvh), cn(Wn; wp, 1) 1= Z ChK(uhQUM'vh)
KeTh KeTh,

and the load term as

Now we are in position to define our semi discrete VE formulation corresponding to
the weak form (3.1.3) as: find () € Vj, and p,(t) € Q) for each ¢t € (0,7] such
that

mp (Optn, Vp) + ap(Wn, Vi) + cn(Wn; Un, Vi) + b(Vp, pr) = Fp(vp)  Von € Vi, (3.2.2a)
b(uh,qh) = 0 Yaqn € Qp, (3.2.2}:))

with given initial condition u;(0) considered as an approximation of ug chosen ap-
propriately in derivation of the error analysis, and the discrete trilinear form ¢ (+; -, -)

is defined from ¢é,(+; -, ), analogous to the continuous trilinear form c(-,-, -).

The stability properties of S®X(-,-) and SV-E(-,-) given in (3.2.1) yields
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my(+, -) is positive definite form: for all v, € Vy,

ma(on o) = v Y (Il e + I = TR)wnlE ) = Cflonllie.
KeTy

where O, := min{1, (., }.

ap(+, ) is coercive: for all v, € Vy,

an(vnvi) = v Y (ITFonlE g+ 0| TE)wnlll ) = Cov flonlE
KeTy,

where C, := min{1, a. }.

an(+,-) is continuous: for all uy,, v, € V}, (again by use of stability for SV-(.,-)),
an(un, vr) < C* v flunllrol[vnllie,

where C* := max{1, a*}.

b(-,-) satisfies inf-sup condition on V,, x Qj: there exists a , > 0 such that
(see [83])

> Bullanlo, Van € Qn.
v, EVL\{0} vl

F,(+) is continuous: for all v, € Vy,

Fu(on) < ) 10 Flloxllvnllos < 1 Fllo.ollvalloo.
KeTy

Now, we generate the following result to show the continuity of the trilinear form

Ch('; . )

Lemma 3.1. The projection operator H?{ 18 bounded with respect to the L°- norm
with s > 2, that is,

T2 )00 < Cllvllosk Vo € [L3(K)? and K € Tr,

where C' s independent of mesh size h.
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Proof. The use of inverse estimates for polynomials (see [113, 32]) yields
ITTfevllo e < ORI i

In view of the definition of II%, we have |[II%v|ox < ||v]lox. Now, the Hélder’s

inequality together with mesh regularity assumptions yields

TS vl < CR2(72) K |(375)

V|05, < Cllv]os,k-

]

e ¢,(+;+,-) is continuous: for all wy,v,, w, € Vj, (use of Lemma 3.1 and the

continuity of trilinear form c(-;-,-), refer [32]),

1
ch(uh; Vp, wh) = Z 5 (((H?(’OV’U}L) H?(’U,h, H?(wh)(),K

KeTy,

— (MY Vwy,) My, H([)('Uh)(),K)

< Cllunlhallwnllellonlo-

Now, we produce the result below on the existence of unique solution of problem
(3.2.2) and stability of the solution.

Lemma 3.2. The semi-discrete problem (3.2.2) has a unique solution up(t) € Vy, all

t € 10,7 and given u,(0) and satisfies,

funtt)e+v [ o) ds < C(lunOla+ [ 170ads). 623

where the constant C' is independent of mesh size h.

Proof. The properties of the discrete bilinear forms ay(,-), my(+,-) and b(-,-), dis-
crete trilinear form ¢y (-; -, ), and discrete linear functional F},(-) with the well-known
wellposedness results from [57] implies that the semi-discrete problem (3.2.2) has a

unique solution, see also [68]. Taking v, = u;, in (3.2.2a) gives

1d
2dt

un g0+ viuli g < Cllfllo.ellwnloeo-

Employing the Poincaré and Young’s inequalities, then integrating from 0 to ¢ lead
to (3.2.3). O
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3.2.2 Fully discrete scheme

The time interval [0,7] is decomposed into subintervals I,, := [t,_1,t,], where ¢, =
nAt forn = 1,...,N and At = % For the time discretization, we employ the

backward Euler scheme, i.e, the approximation of the time derivative at t¢,, for any

generic function gy, is defined as follows.

g —gp!

O = TRy

For the consistency in the notations, the solution of semi-discrete scheme and fully
discrete scheme at time t = t,,, will be denoted by wu,(t,) and u}, respectively. The
fully discrete VE scheme corresponding to the continuous formulation (3.1.3) read as:
Given initial conditions u) := u,(0), find w}! € Vy,py € Qp, for each n =1,..., N
such that

mp (6w, vn) + an(uy, vn) + ca(up; up, vn) + b(vn, py) = Fi'(vn)  Vop € Vi, (3.2.4a)

b(uﬁ,qh) =0 Yan € Qp. (3.2.4b)

The following lemma provide us the well-posedness of the above fully discrete

scheme.

Lemma 3.3. There exists a unique solution uj € Vy, pit € Qy, of the problem (3.2.4)

and also satisfies the following bound,

1<j<n

e ([ 30+ vAE S ulfo < Clun O30 + A £ R0).  (325)
j=1

J=1

where C' s a positive constant and independent of h, At.

'

Proof. Taking vy, = u},q, = p} in (3.2.4) then the coercivity of a,(-;-), skew-

symmetry of cp(up; -, ) and continuity of F}'(-), and use of Young’s inequality give

1 n n— n n n
5(\\’%!\3,9 — lup M5 o) + vAtuR[f o < CAL || loallupllog
VAt

< CAt ”fn||(2m + T|“Z|§Q

Summing the bound above over n leads to (3.2.5). Now, the existence and unique-

ness can be obtained from the stability result (3.2.5) and thus, the well-posedness
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of discrete scheme corresponding to the steady Navier-Stokes equation, refer [30, 33,
115). O

3.3 Convergence analysis

With the help of a projection named as Stokes projection (introduced in this section
by (3.3.8)), we establish convergence results for both semi-discrete and fully discrete
schemes. We derive the optimal error estimates for velocity in the H'— norm, and
for pressure in the L?— norm under some regularity assumptions. We begin with

collecting the preliminary results for the subsequent analysis.

Lemma 3.4. The trilinear form cy(-;-,+) satisfy the following bound:
1/2 1/2
cn(u; v, w) < Cllullgo[Vullgol[VolloallVwloa  Vu,v,w €V, (3.3.1)

where C' is independent of h.

Proof. Let pp =2, ¢ =3, r, =6 then repeated application of generalized version of

Holder’s inequality W1th + —|— = 1 along with Lemma 3.1 implies that

2
- ov;
cn(u; v, w) < Z Z ?50(%, HH?(ujHLS(K) HHKwZHLG(K)
i,j=1 KT, JILA(K)
1
2 Hv. |I2 3
0,0 7
< K o7 ) <Z 0 o )
i,j=1 \K€T, JIL2( KeT,

1

6
(2 ||anzHL6<K>)

KeTy

2
<0y,

ij=1

wjllos.0 ||wi||0,6,§2'
0,9

ox

8vi
J

Employing the Sobolev embedding W™P(Q) C L1(1), 22 (see

P
[116]) with choice of p = 2, ¢ = 3, m = 1/2. Also, use of embedding W™P(Q)) C
L1(Q), q € [1,00) for mp = 2 and taking p = 2, m = 1, we arrive at

81)1-
055]'

2
éh(’u’;’vaw) < C Z

1,j=1

ls 13m0 il (3.3.2)
0,92
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The interpolation estimates (see [116, Theorem 4.17] on page 79), that is, for all
veWm™P(Q), 1 <j<m,gives

ollwsni) < Clolim ol ™ (3.3.3)

The choice of j =1/2, m =1, p=2in (3.3.3) and using Poincaré inequality, we get

1/2 1/2

1/2
Voo < OP”V'UHO,QHU /

0,9

[ollwrr22i) < Cllvllyiag,

Thus, the use of above bound in (3.3.2) leads to

. /2y 11/2
&n(w; v, w) < C Vo)l q | Vulogllulsn| Vel
Proceeding analogously to this way, we can derive the same bounds for the second

term ¢, (u; w, v) and hence, conclude the bound (3.3.1). O

Lemma 3.5. Let u, € [Pi(K)]* be the polynomial approzimation of w on each
K € T,. Under the regularity assumption on the polygonal mesh T, (mentioned
in Section 3.2), there exists a positive constant C' independent of h such that (see
118, 18])

>l — wallog + b u— gy k) < Chulyg. (3.3.4)
KeTh

Lemma 3.6. For ecach w € V N [H™™(Q)]> with 0 < r < 1 and under the regu-
larity assumption on the polygonal mesh (mentioned in Section 3.2), there exist an

interpolant wy € 'V, satisfying (see |83])

||’LL — ’U/]HQQ + hK |’LL - 'u/]’LQ S C'hT+1|u|T+1,Q. (335)

Lemma 3.7. The bilinear form b(-,-) satisfies the discrete inf-sup condition on Vj, X
Qn, that is, there exists a B, > 0 such that (see [83])

b(vy,
sup A0 S g VYan € On (3.3.6)

v, EV\{0} |vnlli

For the proof of Lemma 3.6 and 3.7, we refer to [83] and references therein.
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Defining the discrete kernel space X, with use of the fact that div'V, C @, as
Xy, = {’Uh €V, : b('vh,qh) =0 th € Qh} = {’Uh eV, divy, = O}

For a given v € X, we have the following approximation property for the discrete
space X}, as a consequence of the discrete inf-sup condition from Lemma 3.7 (see in
63, 32]):

inf vV— 2z < inf v—vl1. 3.3.7
LI I nll1 R | nll1 (3.3.7)

Next, we define the classical Stokes projection Sp(u,p) := (Spu, Sip) € Vi, x Qp

as a solution of the following equation (see also [63] and [67]).

ap(Spu, vy) + b(vy, Shp) = a(w, vy) + b(vp, p) Yoy, € Vi, (3.3.8a)
b(Syu, qn) = b(w, gn) Yan € Qn. (3.3.8b)

Choosing v, = Siu in (3.3.8) and using coercivity of the discrete bilinear form ay/(-, -),

we have
IV SEulloq + [1Shplloa < C([Vulloa + lIpllog)- (3.3.9)

By definition of S} in (3.3.8b) and use of (3.1.3b) implies b(SFu,qn) = 0 for all
qn € Qp and thus SPu € Xj,. Then as seen in Chapter 2 the following error estimates
of the operator S, can be easily derived by using the properties of the bilinear forms

ap(-,-), b(+, ), Lemma 3.5 and 3.6, and appealing to the duality arguments (refer [83]).

Lemma 3.8. Let (u,p) € V X Q be the solution of the continuous problem (3.1.3)
and (Spu, S;p) € Vi, X Qp, satisfies the equation (3.3.8) then there exists a positive
constant C', independent of h, such that

lu — Syulloq + h(lu = Sjulie + llp — Siploe) < Ch*(Julan + [plie).  (3.3.10)

In the following lemma, we estimate the error between the trilinear forms c(-; -, -)

and cp(+;+,+). The main ideas of the following lemma are borrowed from [32].

Lemma 3.9. For all u € [H*(Q)]? NV and v;, € Vy,, the following holds.

|C(’LL; u, ’l)h) — ch(u; u, ’Uh)| S Ch|u|27Q||vu||07Q||V’0h||07Q, <3311>
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where C' s independent of h.

Proof. We begin with splitting the skew-symmetric terms into simpler trilinear forms

¢(+;+,+) and é,(+;+, ) in the following manner.

c(u;u,vy) — cp(u;uw,vp) = %((6(% u,vy) — c(u; u, vp))

+ (e(w; v, w) — én(u; ’Uhv“)))

1
= 52@(%).

=1

We proceed to estimate C;,7 = 1,2. An application of generalized Hélder’s inequal-
ity, Lemma 3.1, Sobolev embedding W"4(Q2) c H™"(Q), r > 0 and estimates of

. . 00 .
projections IT%, IT gives

auz 811,1
1(vn) Z Z/ ox; u; (v — Igoni) + oz, (uj — Igu;) Tyvp,

K i,5=1

(- 1) T M, W, )

J

2
ou,;
<X Y ([52) . tulusaolion - Thontiza
K ij=1 I LK)
(9'u,2-
T e L T P S
Ljll L4 (k)
ou;

0,0 7

gl -0 ZE] )

il La(x)

< Chlulrq|Vulogl[Vorlos
Proceeding in the similar fashion, we can easily obtain the following bounds for Co(vy,).
Ca(vn) < Chlulrg[Vullogl[Vorllos.

Collecting all the bounds of C;(vy), 7 = 1,2, we finally obtain the bound (3.3.11). O

3.3.1 Estimates for semi-discrete scheme

We collect all the derived /recalled results to state the estimates below.
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Theorem 3.1. Let (u(t),p(t)) € VxQ and (un(t), pr(t)) € Vi, x Qy, be the solutions
of continuous problem (3.1.3) and discrete problem (3.2.2) respectively for each t €
(0,T). Assuming the additional reqularity uw € [H*(Q)]*NV and p € H'(Q)NQ, then

there exists a positive constant C' independent of h such that
Proof. Split the error as (u—wup)(t) ;= e;(t)+ea(t), where e;(t) := (u— Siu)(t) and

ea(t) := (SPu—wup)(t). Now since the estimates for e;(¢) are known from Lemma 3.8,

we proceed to establish the estimates for term e4(t).

The error equation with the help of Stokes projection (3.3.8), weak form (3.1.3b)

and semi-discrete form (3.2.2b) in terms of e, is given as

my(Orea,vy) + ap(ea, vy) = (F — Fy)(vy) + b(vy, pr — Sﬁp)
— (m(Ovu, vy) — my(9,Siiw, vy))

— (c(u; u, vy) — cp(up; up, 'vh)). (3.3.13)
From equations (3.3.8), (3.1.3b) and (3.2.2b), we have for all ¢, € Qp,
b(ea,qn) = blu —up, q,) = 0. (3.3.14)
Using (3.3.8) and taking v, = e4 in (3.3.13) together with (3.3.14) implies

mh((?teA, 6,4) -+ CLh(BA, BA) = (F — Fh)(eA) — (m(f)tu, 6,4) — mh(ﬁtS}L‘u, GA))

S J/

Vv "~
=T =T

— (c(u;u, eq) — cp(up; up, ea)) . (3.3.15)

>

~
=T3

The Cauchy Schwarz inequality, estimate of the projection II% and Poincaré¢ inequal-

ity infer that

1| < || f = Fullogllealloo < Chlfl1allVealloo-

The consistency of my(+,-), use of Cauchy-Schwarz and triangle inequalities, re-

peated application of estimate for projection IT%, and estimate (3.3.10) together
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with Poincaré inequality enable

T= 3 m (00 - T8, e) — mE (O(Siu — Tu), e4)
KeTy,

< (X (10 = T )ullo + 9,(Siw — Tea) o)) leallo
KeTy,

< C h|Ouli 0l Vealoq-

The estimates for term T3 is quite involved and we proceed by separating the terms

as
2
Ty = (c(u;u, ea) — ca(uiu, €a)) + (cn(w; u, €4) — cn(un; un, €4)) = ZT&%’-
=1

The consequence of Lemma 3.9 gives
131 < C hlulaol|VulloallVealloo-

For T} 5, we employ Lemma 3.4, estimate of Stokes projection (3.3.10), stability bound
of Stokes projection (3.3.9), continuity of trilinear form c(-, -, ), Poincaré inequality
and bound (3.1.4) to obtain

T50 = cp(u;u — up, eq) + cp(u — up; up, €4)
=cn(user,eq) +op(usea,eq) +cnler;un, €a) + cn(ea; un, €a)
=cp(u;er,eq) +opler;u,eq) —cpler;er, eq) + cpea;u, eq)
+cn(ea;ea en) —culeaser, eq)

< Ch||Vaulloa(lulze + pho)llVealon + 1 (Jul2o + o)’ Vealloo

1 3
+ (IVullon + Iploo ) lealgal Veallio

Collecting the bounds of T3 ;, ¢ = 1,2 and use of Young’s inequality, we finally obtain
the following bound for T5.

Ty < Ch((lulo + [pl.0) (I Vo + hlulo + hlplie) )| Veallo

1 3
+ (IVullos + Ipllos ) leallzal Vealz

2 v
< C(IVuloe + Iplbe) IVealballealon + T Vealdq
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4 v
< C(IVullos + plo) lealZa + 21 Vealo (3:3.16)

On substituting the bounds of T}, T, and T3 in (3.3.15) and applying the Young’s

inequality, we arrive at

1d

v 4
salleallia + 51Veallia < € (12 + (IVuloa + Ipllos) lealliq):

Now integrating over time from 0 to ¢ then taking u,(0) := u;(0), we get

t
lea®ls.q + V/ IVea(s)gads < llea(0)5a
0

+C (2 + / (IVu(s) o + p(5) o) Tlea(s) B ds).

An application of Gronwall’s lemma together with the additional regularities of u

and p yields

t
et +v [ IVea)lEqds < Cn (33.17)
0

For pressure estimates, we split the error again in terms of Stokes projection as:
(p—pn)(t) = (p—Shp)(t) + (Shp —pr)(t) := es(t) + eq(t), and then proceed to derive

estimate for eq(t).

Now, an application of discrete inf-sup condition from Lemma 3.7 implies

b(vp, e
Bulleglban < sup 2o o)

T ET (3.3.18)
v,EVL\{0} HUhHLQ

From equations (3.1.3), (3.2.2) and (3.3.8)), we get

b(vn, eq) = anea, vn) + (f — Froon) + (M (Osun, v),) — m(pu, vy,))

+ (cn(wn; wp, o) — c(u; u, vy,)).
The inequality (3.3.18) and integration from 0 to ¢ implies
t t
[ tea@lads < ¢ [ (leatla+ 1 = £
+[10:(w — un) (5)[lo.0 + [10:(u — Tgu) ()50
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1

+ .
lonlli g

(ch(uh; up, vy) — c(u; u, 'vh))2> ds.  (3.3.19)

The following bound for d;e 4 is achieved by differentiating the error equation (3.3.13)
with respect to time, choosing v, = J;e4 and then imitating the proof of (3.3.17)

analogously to obtain,
t
loealiia +v [ IV @eno)lEqds < Cn (3.3.20)
0

Use of triangle’s inequality, bound of T3 (3.3.16), estimate (3.3.20) and bound (3.3.19)

with estimate from Lemma 3.8, the desired result follows. n

3.3.2 Estimates for fully-discrete scheme

Following analogously to the semi-discrete scheme in this section, we provide a sketch
of the proof estimating the total error occurred through time discretization (by em-
ploying the backward Euler scheme) and space discretization. We introduce the
following discrete [>-norm for any bounded function v(t) € H™(2) on interval [0, 7]

as

N
[0l am ) = 0B r0me)) = Z(At)Hv(ti)H?{m(Q), t =1 At

=1

Theorem 3.2. Let (u”,p") € V x Q and (u},p}) € Vi, x Qy be the solutions
of the continuous problem (3.1.3) and fully discrete problem (3.2.4), respectively for
eachn = 1,...,N. Assuming the additional regularity that u € [H*(Q)]> NV and
p e HY Q) NQ then,

vllw = wnllE g oy + 12— Pallaiy < CR° + AE), (3.3.21)

for constant C' independent of h.

Proof. Decompose the error as: u" — u) = E} + EY, where
E} =u" - S/u" and E7) :=Sju" —uy.
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Using the estimates of Stokes projection in Lemma 3.8 at each time ¢,,, one obtains
1B log + AIVET Lo < Ch*(Ju"l20 + [P"]10)-

We proceed to obtain the estimates E7j. The following error equation in terms of £’
can be easily written with the help of Stokes projection (3.3.8), weak form (3.1.3) and
fully discrete form (3.2.4).

mp (0B}, vn) + an(E}3, vn) = (F" = Fy?)(vn) + b(von, piy — Spp")

+ (an(Spu™, vy) — a(u™, vy))
+ (mp(0,(Spu™), v,) — m(Ou”, vy))
+ (c(u™;u", vp) — cp(up; up, vp)). (3.3.22)

Choosing v, = E;, and using coercivity of my(+,-) and ap(-,-), we infer that

1 n n— n
Q_At(HEAH%)Q — ||EL 1||g§z) + V||VEA||3,Q
S (ma(0:(Syu™), ER) —m(dw”, ER)) + (F" — Fy)(E})
+ (an(Spu”, B}) — a(u”, E})) + (c(u"u”, B}) — on(uy; uy, E})).

Multiplying the above inequality with At and then summing over n gives

1 = :
§(|IEZ||3,Q —E5l5.0) +vAt Y IIVELlq
j=1
S (mn (Sp? — Spw’™ EY) — (Atym(0d, EY)
j=1
+ (ALY (F = F)(EY) + (A1) Y (an(Spa/, BY) — a(w/, EY))
j=1 j=1
n . . . . 4
+ (A1) (c(wiw!, BY) — ep(ul;u), BY) =Y G (3.3.23)
j=1 i=1

Use of the polynomial approximation TT1%w, Cauchy-Schwarz inequality and Taylor’s

expansion for any continuous function f(t) is

fi— pil = (At)(?tfj + /t ’ (s —tj—1)0uf(s)ds,

j—
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and thus implies

n

Gr= 37 (30 mif((Sit = Spwd ) ~ TRl ), B

j=1 KeT,

m® (I (0 — /™) = (A)dpulty). BY))

<Cy (hluj — w0+ ||(w —w ) — (At)atUjHO,Q) 124 lo.0

L 1/2
<CZ< (At/ ]@u(s)ﬁﬂds)
ti1

J

+ A <<At> [ oo ds) 1/2) (a0 1220.)

j—

< C(A)Y2(hl| Oyl ) + (AL OwullLzr2@) | Baller o) -

The bounds for other terms, i.e., G;,7 = 2,3,4 can be easily obtained as we have
estimated the terms T;,1 < 3 in the proof of Theorem 3.1. Now collecting all the
bounds of G; in (3.3.23), we conclude that

4
> G S (h+ AD| Eallp g oye

1=2

+ ((At) z": (h(|uj|2,9 +hlp'|0) + ||Vu(tj)||o,sz>

j=1

B lIVE ||OQ)HEA||12 .

Choosing u) := u9 and employing the Young’s inequality, we finally arrive at

HEA”OQ+ HEA”12 (HL(9)]2)

SH A+ A (Wl + ko) + 199 lan) 124 g

7j=1

Now an application of the triangle’s inequality and discrete Gronwall’s lemma [75]
concludes (3.3.21).

Proceeding analogously to the semi-discrete case, the estimates for pressure can

be easily obtained by writing the error equations in terms of Ej := Shp" — py and
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Figure 3.1: Samples of (a) Distorted square, (b) Distorted hexagonal, and (c¢) Non-
convex meshes employed for the numerical tests in this section.

employing the inf-sup condition together with the properties of discrete forms ay/(-, ),
b(-,-) and e (-;-, ) (also refer to [117, 115, 76]). -

3.4 Numerical tests

In this section, we illustrate the numerical verification of the theoretical rate of con-
vergence of the proposed method. In order to see the computational efficiency of
the VE methods used for space discretizations, we have considered here three dif-
ferent meshes: distorted square, distorted hexagonal, and non-convex mesh (see Fig.
3.1). After employing the backward Euler method (for time discretization) and the
proposed VEMs, the resultant non-linear system of equations is solved by Newton’s

method. We compute the error for velocity and pressure in the following norms.

(X IV@-TTun k) Bl o= (Y = M)

KeTy, KeTy,

and Eo(p) = (> Hp—phrra,Kf

KeTh

For assessing the experimental convergence of the proposed scheme applied to
(3.1.1) defined over domain 2 = (0,1)?, we consider the exact velocity of the fluid

flow and pressure as follows.



| Ndof n7'  Ei(u) ri(u) Eo(u) ro(u) Eolp) ro(p)]
222 4 0.0108080 - 0.0024850 - 0.0295061 -
842 8 0.0060613 0.83 0.0010103 1.30 0.0174711 0.76
3282 16 0.0031157 0.96 0.0003372 1.58 0.0092992 0.91
12962 32 0.0015168 1.04 0.0000972 1.79 0.0047183 0.98
51522 64 0.0007375 1.04 0.0000260 1.90 0.0023658 1.00

Table 3.1: Errors and convergence rates r for fluid velocity and pressure.

o | P2y (1-y)3 - 5y)
—2z(1 — 2)*(1 — 32)y>(1 — y)?

Then the load function f is enforced from the equation (3.1.1). Moreover, we have
taken viscosity v = 1, time step At = 0.01 and final time 7" = 1. The Table
3.1 displays the computed order of convergence (r) for velocity and pressure in the
estimated errors F(u), Ey(u) and Ey(p).

The computed order of convergence for all three meshes are reported in Fig. 3.2.
From Table 3.1 and Figure 3.2, we observe that the computed and theoretical rate of

convergence are in good agreement irrespective of the mesh type.
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Chapter 4

Poroelasticity equations

In this chapter, by following [103]|, we propose a VE formulation for the numerical
approximation of the transient linear poroelasticity problem. VE spaces proposed
for displacement and total pressure form a stable pair, and these can be regarded
as a generalization of the Bernardi-Raugel finite elements (piecewise linear elements
enriched with bubbles normal to the faces for the displacement components, and
piecewise constant approximations for total pressure, see, e.g., [67]). On the other
hand, no compatibility between the spaces for total pressure and fluid pressure is
needed. Therefore for the fluid pressure, we employ the enhanced VE space from
[118, 25, 26|, which allows us to construct a suitable projector onto piecewise linear
functions. All this is restricted, for sake of simplicity, to the lowest-order 2D case,
but one could extend the analysis to higher polynomial degrees and the 3D case,
for instance, considering the discrete inf-sup stable pair from [30] for the Stokes
problem. The main difficulties in our analysis lie in the definition of an adequate
projection operator that allows treating the time-dependent problem. To handle
this issue, we have combined Stokes-like and elliptic operators that constitute the
new map here named poroelastic projector. We derive stability for semi-discrete
and fully-discrete approximations and establish the optimal convergence of the VE
scheme in the natural norms. These bounds turn to be robust with respect to the
dilation modulus of the deformable porous structure (which tends to infinity as the
Poisson ratio approaches 0.5) and of the specific storage coefficient (reaching very
small values in some regimes), and therefore the method is considered locking-free.
A further advantage of the proposed virtual discretization is that it combines primal
and mixed VE spaces. In addition, this work can be seen as a stepping stone in the
study of more complex coupled problems, including interface poroelastic phenomena

and multiphysics (see, for instance, [119, 120, 109]).
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We have arranged the contents of this chapter as follows. Section 4.1 is devoted
to the definition of linear poroelasticity problem, and it also contains the precise
definition of the continuous weak formulation using three fields and presents a few
preliminary results needed in the semi-discrete analysis as well. In Section 4.2, we
introduce the VE approximation in semi-discrete form. We specify the VE spaces,
identify the degrees of freedom, and derive appropriate estimates for the discrete
bilinear forms. The a priori error analysis has been derived in Section 4.3, with the
help of the newly introduced poroelastic projection operator. The implementation of
this problem on different families of polygonal meshes is then discussed in Section 4.4,
where we confirm the theoretical rates of convergence and produce some applicative

tests to gain insight into the behavior of the model problem.

4.1 Governing equations and their variational for-

mulations

4.1.1 Strong form

A deformable porous medium is assumed to occupy the domain 2, where ) is an
open and bounded set in R? (simply for sake of notational convenience) with a Lip-
schitz continuous boundary 9f2. The mathematical description of this interaction
between deformation and flow can be placed in the context of the classical Biot prob-
lem, written as follows (see for instance, the exposition in [121]). In the absence of
gravitational forces, and for a given body load b(t) : © — R? and a volumetric source
or sink £(t) : Q@ — R, one seeks, for each time ¢ € (0,7, the vector of displace-
ments of the porous skeleton, u®(t) : © — R? and the pore pressure of the fluid,
p(t) : Q — R, satisfying the mass conservation of the fluid content and momentum

balance equations

1
O(cop’ + a divu?®) — = div(k(z)Vp) = ¢
n in Q x (0, 7],

— div(A(div u®)I + 2ue(u’) — ap’I) = pb

where k() is the hydraulic conductivity of the porous medium (the mobility matrix,
possibly anisotropic), p is the density of solid material, n is the constant viscosity

of the interstitial fluid, ¢q is the constrained specific storage coefficient (typically
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small and representing the amount of fluid that can be injected during an increase
of pressure maintaining a constant bulk volume), « is the Biot-Willis consolidation
parameter (typically close to one), and p and A are the shear and dilation moduli

associated with the constitutive law of the solid structure. The total stress
o = Mdivu)I + 2ue(u’) — ap’l,

includes a contribution from the effective mechanical stress of a Hookean elastic ma-
terial, oeg = A(divu®)I + 2ue(w?®), and the non-viscous fluid stress represented only
by the pressure scaled with a. As in [95, 103|, we consider here the volumetric part
of the total stress 1, hereafter called total pressure, as one of the primary variables.

This property allows us to rewrite the time-dependent problem as
— div(2ue(u®) — ¢I) = pb
co + ~ O’ — X&w — —div(kVp’) =¢ in Q x (0,77, (4.1.1)
Ui
Y —ap’ + Xdivu® =0
which we endow with appropriate initial data

p'(0) =p"°  w*(0) =" in Q x {0},

(which, in turn, can be used to set the initial condition for the total pressure 1(0)),

and mixed-type boundary conditions in the following manner

v’ =0 and Efo n=0 on I' x (0,77, (4.1.2a)
n

(2ue(w®) —¢I)n =0 and p/ =0 on ¥ x (0,T], (4.1.2b)
where the boundary 0 = I' U ¥ is disjointly split into I" and ¥ where we prescribe
clamped boundaries and zero fluid normal fluxes; and zero (total) traction together

with constant fluid pressure, respectively. Homogeneity of the boundary conditions

is only assumed to simplify the exposition of the analysis.
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4.1.2 Weak formulation

In order to obtain a weak form (in space) for (4.1.1), we define the function spaces
V= [Hp(Q)P, Q= Hy(Q), Z = L*(Q).

Multiplying (4.1.1) by adequate test functions, integrating by parts (in space) when-
ever appropriate, and using the boundary conditions (4.1.2), leads to the following
variational problem: For a given t > 0, find u®(t) € V, p/(t) € Q and ¥ (t) € Z such
that

ar(u®; v°) + b(v,¢)=F(v®) Yv' eV, (4.1.3a)
ax (O’ ") + ax(p’,q7) = ba(q?, O) = G(¢/) V¢’ €Q,  (4.1.3b)
hi(u',¢) + ba(p’,0) — ay(,9)= 0 VpeZ  (41.3c)

where the bilinear forms a; : VXV = R, ay : Q xQ — R, a3 : Z x 7 = R,
by : VX Z =R, by:Q x Z — R, and linear functionals F': V - R, G: () — R, are

given by the following expressions:

ar(u’, v°) = QM/QE(uS) ce(v®), b(v® )= —/qudiv'vs,

3 a?
F(v*) :—/Qpb-vs, G(qf) :—/Qﬁqf, ag(pf,qf) = (co—|—7> /prqf,

1

w0 == [ 5V, bl e) =2 [ plo, as0) =~ [ vo.
nJa AJo Ao

(4.1.4)

4.1.3 Properties of the bilinear forms and linear functionals

We now list the continuity, coercivity, and inf-sup conditions for the variational forms
in (4.1.4). These are employed in [103| to derive the well-posedness of the stationary
form of (4.1.1).

First we have the bounds

a(u®, v*) < 2pulle(u®)|olle(v®) oo < Cllu’|Lallv]Le for all u®,v* €V,

bi(v®,¢) < || dive®|oallélloe < Cllv'lallolloq for all v* € V and ¢ € Z,
/imaX Hmax

ax(p’, ¢’) < P l10ld’ 10 < 1P lelld e for all p/, ¢/ € Q,
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o 1
ba(q’, ¢) < X||qf||o,sz||¢|!o,n7 as(¥, 9) < <[¥lloalldlloe  forall ¢/ € Q and ¢, ¢ € Z,

F(v*) < pllblogllvlog,  Gla) < leloalld’llos for all v* € V and ¢/ € Q,

along with the coercivity of the diagonal bilinear forms, i.e.,

a(w,0%) = (") 30 > Ol 2 for all v € V.
Rmin
as(q’, ¢) > ; g’ 113 o for all ¢/ € Q,
1
as(6.8) = ;1R for all € 2,

and the following inf-sup condition: there exists a constant S > 0 such that

b S
sup VO S g forall 6 € 2.

vevifor [lv¢]1e

The solvability of the continuous problem is not the focus here, and we refer to [121]

for the corresponding well-posedness and regularity results.

4.2 Virtual element approximation

4.2.1 Discrete spaces and degrees of freedom

In this section we construct a VEM associated with (4.1.3). We start denoting by
{Tn}n a sequence of partitions of the domain €2 into general polygons K (open and
simply connected sets whose boundary 0K is a non-intersecting poly-line consisting
of a finite number of straight-line segments) having diameter hj, and define as mesh
size h := maxge7;, hx. By N we denote the number of vertices in the polygon K,
N7 stands for the number of edges on 0K, and e is a generic edge of 7;,. For all
e € 0K, we denote by nf the unit normal pointing outwards K and by t% the unit
tangent vector along e on K, and V; represents the i’* vertex of the polygon K. As
in [18], and mentioned in Chapter 2, we assume regularity of the polygonal meshes
Th.

Denoting by Py (K) the space of polynomials of degree up to k, defined locally

on K € Ty, we proceed to characterize the scalar energy projection operator I} :
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HY(K) — Py(K) by the relations
(Vg —q),Vr)y e =0,  Pr(llfg—q) =0, (4.2.1)

valid for all ¢ € H'(K) and r € P;(K), and where (-, -)o s denotes the L*-product on
K, and
Pp(q) :== / qds.
oK

If we now denote by My (K) the space of monomials of degree up to k, defined
locally on K € 7Ty, we can define, on each polygon K € 7T, the local VE spaces for

displacement, fluid pressure, and total pressure, as

(—A’Uh — VS)|K = 0,

Vi(K) = {vh e [H'(K)?NBOK):
divwvy, = ¢q € Py(K)

for some s € L2(K)},
Qn(K) = {q, € H(K)NC°OK) : qn|. € Pi(e) Ve € 0K, Aqy|x € Pi(K),

(I qn — qn, Mma)o,x = 0 Vmg € My (K)},

(4.2.2)

where we define

B(OK) := {v), € [C°(OK)]* : vy - tx € Pi(e),vp]e - nf € Pa(e) Ve € OK}.

It is clear from the above definitions that the dimension of Vj(K) is 3N, the
dimension of Q(K) is Ny, and that of Z,(K) is one. Note that the VE space of
degree k = 1, introduced in [24], has been utilized here for the approximation of
fluid pressure. This facilitates the computation of L2-projection onto the space of
polynomials of degree up to 1 (which are required to define the zero-order discrete
bilinear form on Q(K)). Next, and in order to take advantage of the features of
VEM discretizations (for instance, estimation for the terms of discrete formulation
without explicit computation of basis functions), we need to specify the degrees of
freedom associated with (4.2.2). These entities will consist of discrete functionals of

the type (taking as an example the space for total pressure)

(Dl) : Zh|K — R; Zh|K > qb —> Dl(qﬁ),
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and we start with the degrees of freedom for the local displacement space V,(K):

e (D,1) the values of a discrete displacement v;, at vertices of the element;

e (D,2) the normal displacement vy, - nf at the mid-point of each edge e € 0K.
Then we precise the degrees of freedom for the local fluid pressure space Qp,(K):

e (D,) the values of g, at vertices of the polygonal element.
And similarly, the degree of freedom for the local total pressure space Z,(K):

e (D.) the value of ¢, over K.

It has been proven elsewhere (see e.g. [24, 29, 18|) that these degrees of freedom
are unisolvent in their respective spaces.

We also define global counterparts of the local VE spaces as follows:

V,, = {’Uh eEV: Uh‘K < Vh(K) VK € E},

Qn:=1{a € Q: qulx € Qn(K) VK € Ty},
Zh = {(bh € Z . ¢h’K € Zh(K) VK € 77L}

In addition, we denote by NV the number of degrees of freedom for Vj, by N€
the number of degrees of freedom for @, and by dof,.(s) the r-th degree of a given

function s.

4.2.2 Virtual element formulation

For all uj,v; € V,(K) and p!, ¢/ € Q,(K) we now define the local discrete bilinear

forms

a} (uj, v;)| i = af' (Micu;, vy, + ST (1 - I )uj, (I - TI5)v;,),

ab(pl, )|k = ab (Iyp), yql) + Sa (I — I )ph, (I — 1Y )q)),
s (pl,al) | = ay (Woep), Moeql) + So< (1 — To)p, (I — 11%)q)),

—~

where the stabilization of the bilinear forms SE(-,-), SK(-,-), SE(-,+) acting on the

kernel of their respective operators IT5., 1T}, T1%, is defined as

NV
St (up, ;) = o Y dofy(wj)dofy(v;), wuj, v}, € ker(TT%);
=1
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N@

SK(pl.q]) =05 dofy(p})dofi(q]), p}.qf € ker(IIy);
=1
N@

So (ph>q) == of area(K) Y _ dofi(pf)dofi(]), pf,qf € ker(IT%),
=1
respectively, where o ol and ol are positive multiplicative factors to take into

account the magnitude of the physical parameters (independent of a mesh size).

Note that for all v§ € V,(K), ¢ € Qu(K), these stabilizing terms satisfy the
following relations (see, e.g., [29, 122])

a.ay (vy,v5) < S (v, v}) < ofaff (v, v5),
Cead (. a]) < S5¥(af.af) < Caf(al, al), (4.2.3)
Cas (. a]) < S¥(af.qf) < Cad(al, al),

where «,, a*, (, (", 5*, 5* are positive constants independent of K and hg. Now, for

all uy,v; € Vp, pi, q,{ € @, the global discrete bilinear forms are specified as

aill(u;i?vi) = Z aill(uiva”Kv ag(pivqf]:) = Z ag(pﬁ,q,{)h(,

KeTh KeTh
as(plal) =Y abpl,al)lk,  bu(vh, én) = > b (v}, én),
KeTy, KeTy,
a3(¢h7¢h> = Z a?(wha(bh)a qh7¢h Z bK Qha(bh
KeTy, KeTy,

In addition, we observe that

ba(p}, én) = Z/Ph¢h =Y / 1% p)6n- (4.2.4)

KG'T KET

On the other hand, the discrete linear functionals, defined on each element K, are

Fopl=p |

bu(-t) vl vl € Vi GMaD)lk = / ()l af € Qn.
K K

where the discrete load and volumetric source are given by:

bh('vt)|K = H?(b("t)> gh('vt”K = H?(£('>t)v
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where IT% is projection onto piecewise constants on each K.

In view of (4.2.3), the discrete bilinear forms a’(-,-), at(-,-) and a®(-, -) are coercive

and bounded in the following manner [29, 18, 26|

ay (v}, v;) > min{1, a.} 2u [le(v;) [§ g for all v}, € Vy,
. Kmin
a5(q],q}) > min{1,¢.} , IVall5.0 for all g € Qn,
B 2
as(al,af) = min{1, &} (o + 5 ) laflg for all g € Qn,
al (uj, v}) < max{1,a"} 2 ]le(u)[lo.clle(v;) oo for all wj, v € Vy,
* "imax
a5 (pra1) < max{L,¢"} == VPl Vil for all pf, ¢} € Qn,
3 - o?
@5(vf. af) < max{1,C"} (eo + ) IPflocllaf oo for all pf, 4} € Q-

Moreover, by using definitions of the operators IT% and 1%, we may deduce that the

following bounds hold for the linear functionals:

pllbllo.allvr oo for all v; € Vy,

F*(v})
I < 1ltllo.0llglllos for all ¢ € Q.

<
Gh(qh) <

We also recall that the bilinear form b;(-, -) satisfies the following discrete inf-sup
condition on Vj, X Zy,: there exists 3 > 0, independent of h, such that (see [29]),

bi(v7 ~
sup M > 5”¢hHO7Q for all ¢h € 7y, (425)

vREVR\{0} H"’ZHlQ

The semidiscrete VE formulation is now defined as follows: For all ¢ > 0, given
'UJZ(O), ph<0)7 wh(o)i ﬁnd U/z € L2<(0,T],Vh), p£ € LQ((()?T]J Qh)a wh S LQ((O,T], Zh)
with dyp! € L2((0,T), Qn), dsb, € L*((0,T), Z) such that

a' (uj,, v},) +  bi(vi, ¢n)

ab (0w, ay) + ab(pl,al) — ba(al, Outn)
by(ws, én) + ba(pl, dn) —  as(vbn, dn)

F'v;) Yoi € Vy, (4.2.6a)
G"(ql) Vai € Qn, (4.2.6b)
0 Voéu € Zy. (4.2.6¢)
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4.2.3 Stability of the semi-discrete scheme

The following result will be used for proving the stability and establishing the error
estimates for the semi-discrete scheme without employing the Gronwall’s inequality.

For a detailed proof, we refer to [96, Lemma 3.2].

Lemma 4.1. Let X (t) be a continuous function, and consider the non-negative func-
tions F(t) and D(t) satisfying, for constants Cy > 1 and Cy > 0, the bound

X?(t) < CoX?(0) + C1 X (0) + D(t) + /t F(s)X(s)ds, Vtel0,T].
Then, for each t € [0,T], there holds
X(t) < X(0) + max {01 + /t F(s)ds, D(t)1/2} _ (4.2.7)

Note that squaring both sides of (4.2.7) and using Cauchy—-Schwarz inequality, we

can rewrite (4.2.7) in the following manner

t
X(t)* < X(0)* + max {012 + / F(s)?ds, D(t)} : (4.2.8)
0
Now we establish the stability of (4.2.6).

Theorem 4.1 (Stability of the semi-discrete problem). Let (w(t),pl(t),1¥n(t)) be a
solution of (4.2.6) for each t € (0,T]. Then there exists a constant C > 0 independent
of co, \, and h, such that

t
s Kmin
plle(sO)5.q + collon(F o + 1D I3 0 + » / IVph(5)I[5.0 ds
0

< c(uns(uh( DEa-+ (e + ) O30 + +n0) (4.2.9)

/ 1) s+ s 160+ / e ||mds)

Proof. Following [96], we can differentiate equation (4.2.6¢) with respect to time and

choose as test function ¢, = —,. We get

bl (atuim 1/%) - b2<atp£7 1/%) + a3<at1/1h, 1/%) =0.
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Then we take ¢/ = p! in (4.2.6b), v; = du; in (4.2.6a) and add the result to the
previous relation to obtain

ap (uh, Oruy,) + b1(Ovuy,, hn) + a2(8tph,ph) + ay (phaph) - 52(p£, On)
— b1 (Qyuy, ) — bg(@tph, Un) + as(Ohn, Yn) = Fh<atuh) + Gh(pi)-

Using the stability of the bilinear forms a’ (-, -), ak(-,-), SE(-,-) as well as the definition
of the discrete bilinear forms b (-,-) (cf. (4.2.4)) and ak(-,-), we readily have

N =

Rmin

d S
Slle(i)lBa +

1
5 dt||ph||osz+ ||VP£H3,Q+X||¢h||(Z),Q

+
K

(a2 ((3t(HKph> HKph) - Sé( ((I B H%)@tpi, 0= H%)pi))

(0, Do + (2.p]), wh)O,K)) (4.2.10)
< FM0mu;) + G*(p}).

Rearranging terms on the left-hand side gives

'ud s Kmin CO
5&“ e(u;)lo0 + 7 IVPLlle.0 + 2dt”ph”0Q
1
I ((@(()ﬂ%pi = n), (aIT%pf, = ¥n))
K

o’ d
S S (0~ IR (= T08]) ) S P00 + G0

and after exploiting the stability of S{(-,-) and integrating from 0 to ¢, we arrive at

lle(ui ()3 + coll o (D0 + - ZIII 105%)p3 ()5

1 Rmin
+33 latt] )l + 2 [ 19p]6) s
K

< ulle(w; (0)ll5 + collor (0)5.0

a? 1
+ ST =T Ok + 5 D I aTTp] — ) 0)
K K
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( /Z ), % O0pus (5) ds—l—/ Z 119 p] (s )O’de).

J/

-

:;Tl =T

Then, integrating by parts (with respect to time) and applying the Korn, Poincaré,

and Young inequalities implies that
T - pz( ) e (1), — (6(0), T w3,0)),, )
[ > (0b(s) W 5),
< plle(ui()a + OIP(’EHb(t)Ho,Q +[15(0) lo.alle(wu; (0)llo.0

n / 194b(5) ol (w7 (5))lo ds))

In turn, the bound for 75, follows from the Cauchy-Schwarz, Poincaré, and Young

inequalities in the following manner:
T2 / Z H(l)(ph 0,K dS

< / le(s)llos o (s)

Thus, we achieve

t
Rmin
Miads+ 22 [ 19405l ds.
0

2
s «
ulle(;, ()50 + colloh (D50 + 5N > T =)k (5.«
K

1 Rmin !
+ ) aTgph — on) (015 & + A e
A = 2n Jo
2
(6%
< plle(u (0) 150 + collph (0)[5.0 + = D 11 = T3)pLO)IE & (4.2.11)
A K
1 t
+ 5 2 latti] — O+ ([ 1o Eads+ (bR
K
t
+ [[6(0)[lo.lle(w;,(0)) loo +/0 10:b(5) [[o,clle (wr(s)) oo dS))-

Let X?2(t) denote the lower bound in the inequality (4.2.11) and choose Cy = 1,
= C|[b(0)llo, F(t) = C[|d:b(t)llo and D(t) = C(|bE)II + [y ()13 ds) in Lemma
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4.1. Then (4.2.8) enables us to write

ulle(wq (0)lls + colloh(D5.0 + ZHI VTG ™

1 Rmin
+ 1 2 lattf )l + 2 [ 186 ads
K
< nlle(w; (0)[15 o + collph (0)5.o + Z (1 = T15)p5 ()15 (4.2.12)
1
+5 > I@Tgepi, — va) O)I5 s + 1B(E)IE 0 + 1B(0)IF
K

+ [+ 126 ) s

On the other hand, the discrete inf-sup condition (4.2.5) along with (4.2.6a) gives

1
|¥nlloe < sup

———(F"(v}) — a}'(u3,v3)) < C(|Ibllog + lle(w;) o)
v €V, \{0} |v3 |10

(4.2.13)

And then note that inequality (4.2.12) together with (4.2.13) concludes the proof of
(4.2.9). Moreover, we observe from (4.2.11) that the generic constant C' appearing
in (4.2.9) is independent of ¢y, A\. Therefore the proved stability remains valid even
with ¢g — 0, A — o0. U

The energy estimates (4.2.9) help us in obtaining the following result.

Corollary 4.1 (Solvability of the discrete problem). The problem (4.2.6) has a unique
solution in Vi, X Qp, X Zy, for each t € (0,T).

v Z
Proof. Tet wj(t) == YN Ui(0)6, (1) = S35 Py(0)x;, n(t) = S0 Zu(t) @, where
L1 <i<NV), x;(1<j<N@), &(1<I<NZ where N coincides with the num-
ber of elements in 7T;,) are the basis functions for the spaces Vj,, Qn, Z;, respectively.

Then (4.2.6) can be written as the following system of first-order differential equa-

tions:
0 0 0 U(t) Al 0 B1 U(t) F(t)
0 A2 —B2| | Pt)|+] 0 42 o0 Pit)| = | G@t) (4.2.14)
0 0 O Z(t) Bl B2 —A3) \Z(t) 0 o

=: =:B
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In view of the classical theory of linear systems of differential equations, (4.2.14)
possesses a unique solution if the matrix A + B is invertible (see also [100]). To achieve
this, we first rewrite the following problem corresponding to the matrix A + B: For
(L Lh LYY € Vi, x Q) x Z), find wj € Vi, pl € Qn, qn € Z), such that

al(uj, v3) + by(vs, ) = L(vs) Vv € V), (4.2.15a)
as (pf, af) + as(ph, an) — balal,vn) = Li(a]) Vai € Q. (42.15b)

bi(wy, én) + ba(ph, én) — as(¥n, dn) = Li(¢n) Vou € Zy.  (4.2.15¢)

Now, the unique solvability of (4.2.15) (and the invertibility of the matrix A + B)
can be established by showing that the homogeneous counterpart of system (4.2.15)
has only the trivial solution. Setting the functionals defining the right-hand side of
(4.2.15) to zero , i.e., Lt(v5) = Li(qn) = Li(¢n) = 0, and choosing v; = uj, ¢, =
wh,q,’: = pi in (4.2.15), we readily obtain the following bounds by proceeding in
the similar fashion (using the coercivity of a?(-,-), a(-,-), Young’s inequality and
definition of aj(-,-), ba(,+), al(-,-)) as in the proof of (4.2.9)

s Kmin
plle(uy)lls.q + . IVphlGe <O,

and hence an application of the Poincaré and Korn inequalities together with the

inf-sup condition of b (-,-) yield uj = 0, p! = 0 and 1, = 0. O

Next, we discretize in time using the backward Euler method with the constant
step size At = T'/N and denote any function f at t = t, by f". The fully discrete
scheme reads: given initial conditions ui’o, p{l’o, 9 and for t, =nAt,n=1,...,N,
find w;" € Vy, pi’" € @Qn and Y} € Z, such that for all v§ € Vy, q,{ € @, and

¢n € Zy, such that

af (uy", v}) +bi(vh, 0 = FM(v}), (4.2.16a)
i (Mf;"a qu> + ab(ph", qp) — b (qff , MJZ) = G""(q}), (4.2.16b)
bi(uy™ ¢n)  + ba(pl", dn) — as(Vy, én) =0, (4.2.16¢)

where for all v; € V;, and q,{ € @, we define

P(of)lic = [

bu(t™) - vh,  GP(gl)|x = / o
K

K
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With the aim of showing the stability and convergence of the fully-discrete scheme, we
provide first the following auxiliary result. A proof, sketched below, follows similarly

as in [98, Lemma 3.2].

Lemma 4.2. Let X,,, 1 < n < N be a finite sequence of functions with non-negative

constants Cy, C1 and finite sequences D,, and G,, such that

X2 < CoXg+CiXo+ D+ > G;X; foralll<n<N.

J=1

Then there holds

X2§Xg+maX{Cf+ZG§, Dn} foralll1<n < N. (4.2.17)
j=1

Proof. 1t is sufficient to show that the relation holds for n, which is the smallest
integer such that X,, = max;<;,<ny X;. There can be two possibilities, namely either
(1) CiXo + > GiXj < Dy, or (i) Dy > C1Xo + D77, GjX;. In case (i), the
bound (4.2.17) trivially holds. In case (ii), using the upper bound X, and Young’s
inequality yields

J=1 Jj=1

2
1 & 1
§§<C0X0+2<01+ZG]'>> +§ 2

J=1

Now taking the common term of X? together and squaring the remaining terms on

the right-hand side completes the proof. O

Theorem 4.2 (Stability of the fully-discrete problem). The unique solution to prob-

lem (4.2.16) depends continuously on data. More precisely, there exists a constant C
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independent of co, A\, h and At such that

s,n n n Kmin & \J
plle (™I o + colloh™ 5.0 + 14715 0 + (A1) p > IVeR l5e

j=1

1 .
SC(uHe( e+ (o + %)l "o+ 51030 + max (VR (4218)

n T
80 (10010 + 1£12) + (07 [ 1o ds )

Jj=1

with b* := b(-,t*) and (F == 0(-t*), fork=1,...,n

Proof. Taking v = u)" —u;" " in (4.2.16a) gives
b,y — ) by — ) = FP (- win ). (4.2.19)
A use of (4.2.6¢) for the time step n, n — 1 and setting ¢, = —3, (4.2.16¢) becomes

by (up" — ") = ba(ph™ = pl T )+ as(Wp — P wR) = 0. (4.2.20)

Adding (4.2.20) and (4.2.19) readily gives

af (uy™ up™ = wy" ) s (O — op ) — ba(ph" — pi T ) = PR (" — T,
(4.2.21)
and choosing q,’: = pi’" in (4.2.16b) implies the relation
CNL;L(p£ pin 17ph )+Ata2(ph 7ph )_bQ(ph ’ h ) AtGhn( )
(4.2.22)

Next we proceed to adding (4.2.21) and (4.2.22), to get

af (uy", up”™ — ")+ Atag (" py") + as(Vf — R Y
+ag (" —ph" i) = ba(pl = T R = ba(ph " 0 — )
= F""(up™ = up™ ) + At G (ph™).

Repeating a similar argument as the one used to obtain (4.2.10), together with the
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inequality

(=0 = S (LG

— 12 150 (4.2.23)

DN | —

for any discrete function f7, j =1,...,n, we arrive at

=

s,n— Kmin n 1 , n—
(lleCuy™ 5.0 — le(uy™ D) + (At) p VD" 5.0 + 3 > co(ITpf™ 15 & — 1T05%ph™ 15 )
K

2

1 o n n—
+ 5 (eo+ 5) OO = )pf" I = 11 = TR 3 )
K
+ 55 2 (laTlepf™ — G717 s = laTlepf ™" = 45115 1)
K
< (A1)(p(B}, 0" o + (6, pE o),

where we have denoted 0, fy,(t,) := % for any time-space discrete function
fr. Summing over n we obtain

N |=

s,n s, KRmin b 1 T ’
(le(ur™ 5 — le(u;") 5 ) + (At) ZHWHHOQ 5 2 ol 15 s — 1yl 1)
j=1 K
1 2

+5(e0+5) 22U = 1Rp]

1 n n
+ 53 2lal” = vl

n| 2

— I = )2t Il )

— lladliepy” = ¢nl6 x)

n n

S p(At) Z(bia Srup o+ (A1) D (6, 21 o
j=1 j=1

=:J1

Using the equality

n

Z(fh h 79;;) (fisan) — fhagh Z

j=1

3

gl —gh, (4.2.24)
7j=1

for any discrete functions f,{, gfﬂ j=1

., n, along with Taylor expansion, Cauchy—
Schwarz, Korn’s inequality and generalized Young’s inequality gives

i = p((B1 o0 — (b, 14" = (B = b wi? oo)

=1
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- p((bZ,uZ’H)O,Q — (b9, u;")o0 — Atz aiby, wy” oo

7=1
+Z /J (s —tj_1)0ubn(s)ds, u” 1)07Q>

< u\ls(uh’ Moo+ ZHE( Mea + Clp,p) max [07]l5.

+CB0 Y (105 oa + (A1) / " 10bE0ds) ") e e,

j=1 -

Another application of Young’s inequality yields

- i Rmin - j
o < Co(n, ki) (A1) D €[50 + (AY) 2 > 7 1150
=1

J=1

The bounds obtained for J;, Jo, IT% and use of Lemma 4.2 imply

sn n Kmin - J
ulle(wy,™) s + collpy ||(2),Q+(At)TZ||Vp£j”(%,Q

J=1

+ (5 )ZHI 1w, ||0K+A2Han%p£” Uil x
< e+ (o + ) I0E 3 + I3 + amae 1073

T
At2||ff||m+ (A1) (Znatbfnm At) / 0ub(s)[30 ls)

(4.2.25)

An application of (4.2.5) together with (4.2.16a) yields
[k lloe < CUIB"log + lle(uy)llo)- (4.2.26)
Finally, the bound (4.2.25) together with (4.2.26) concludes (4.2.18). O

It is worth pointing out that the proof is particularly delicate since the stabilisa-
tion term requires a careful treatment in order to guarantee that the bounds remain

independent of the stability constants of the bilinear form as(-, -).

Corollary 4.2 (Solvability of the fully discrete problem). The problem (4.2.16) has

a unique solution in Vi X Qp X Zj.
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Proof. 1t is sufficient to show that the homogeneous linear system corresponding to
(4.2.16) has only a trivial solution, since Vy, Q) and Zj, are finite dimensional spaces,
and this can easily be shown by proceeding analogously to the proof of Corollary
4.1. O

4.3 A priori error estimates

For the sake of error analysis, we require additional regularity: In particular, for any
t > 0, we consider that the displacement is u*(t) € [H?(2)]?, the fluid pressure p/(t) €
H?(Q), and the total pressure ¥ (t) € H'(2). Furthermore, our subsequent analy-
sis also requires the following regularity in time: dyu® € L2(0,T;[H?()]?), o’ €
L0, T; H*(S2)), 0p € L2(0,T; HY(Q)), Oyu® € L2(0,T;[L*(Q)]?) and Oyp’, 0u1b €
L*(0,T; L*()).

We start by recalling an estimate for the interpolant uj € Vj, of u® and pf € Qn
of p/ (see |29]).

We now introduce the poroelastic projection operator: given (u®,p’ 1) € V x
Q x Z, find S" := (Spu®, SPp’, SY4) € V), x Q) x Zy, such that

a'(SPus,v3) + by(v, SPY) =ay(ub,v3) + by(v;, ) forall vl € V,,,  (4.3.1a)
bi(Spru®, ¢p) =b1(u®, op) for all ¢, € Z,,  (4.3.1b)
ay(Shp?, qi) = ay(p’, q}:) for all q,]: €Qn, (4.3.1c)

and we remark that S” is defined by the combination of the saddle-point problem
(4.3.1a), (4.3.1b) and the elliptic problem (4.3.1c); and hence, it is well-defined.

Theorem 4.3 (Estimates for the poroelastic projection). Let (u®,p/,v) and (SPu®, STp/, S;fl/z)
be the unique solutions of (4.2.6a)—(4.2.6c) and (4.3.1a), (4.3.1b), respectively. Then

the following estimates hold:

lu® = SEat|lo + [1¥ = Sy lloe < Ch(ju’lzn + [¥ho), (4.3.2a)
lp" = Sip llo.o + lip" = Sppl e < CR2p' |20 (4.3.2b)

Proof. The estimates available for discretization of Stokes from Lemma 2.10 and

elliptic problems [25] conclude the statement. O
Remark 4.1. Note that repeating the same arguments exploited in this and in the
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subsequent sections, it is possible to derive error estimates of order h". It suffices to

assume that u®(t) € [H(Q))%, p/(t) € HP(Q), and ¢ (t) € H™(Q), for 0 <r < 1.

Theorem 4.4 (Semi-discrete energy error estimates). Let the triplets (u®(t), p/ (t),%(t)) €
VxQxZ and (u(t), pl(t), ¥n(t)) € Vi x Qux Z), be the unique solutions to problems
(4.1.3a)—(4.1.3¢) and (4.2.6a)—(4.2.6c), respectively. Then, the following bounds hold,
with constants C' > 0 independent of h, \ and cy,

Km

) t
n‘“/o IV —p))(s)|Pads < Ch2.

plle((w” —up)(0)lloq + 1w — ¥a)(B)ll60 +

Proof. Invoking the Scott-Dupont theory (see [113]) for the polynomial approxima-
tion: there exists a constant C' > 0 such that for every r» with 0 < r < 1 and for every
u® € [H'(K)|?, there exists ué € [Pr(K)J?, k= 0,1, such that

||’Ll,s — u;-HO,K + hK”U,s - ’U,fr|1,K S Ch}jrlus’pﬁ,[( for all K € 72 (433)

We can then write the displacement and total pressure error in terms of the poroelastic

projector as follows

(u® —up)(t) = (u” = Spu’)(t) + (Spu’ — up)(t) = ey (t) + ey (1),
(W = en)(t) = (& = Syw) () + (Syv — wn)(t) = ey (t) + e (t).

Then, a combination of equations (4.3.1a), (4.2.6a) and (4.1.3a) gives

a(ey, v;) + bi(vi, ef) = (a1(u, v}) — af (g, v;)) + bu(vi, ¥ — ¥n)

= (F = F")(v}),
and taking as test function v§ = d;es, we can write the relation
at(es, Orey) + bi(Oey, e)) = (F — F")(9yely). (4.3.4)
Now, we write the pressure error in terms of the poroelastic projector as follows
W = p)(0) = (0F — S )(0) + (SEp — pl)(1) = el(t) + e (o).
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Using (4.3.1c), (4.2.6b) and (4.1.3b), we obtain

b (Oeelt ) + ali(el, al) — ba(af, Orert)
= ab (0.0’ q) + ax(p”, qf) — ba(a]. DSy ¥) — G"(q])
= (a5(0:SPp’  al) — ax(0up” ) + ba(gl, Ohel) + (G — G™)(q}).

We can take qh = e , which leads to

&QL(ate )+a2( €ps p) b2< atezp)

(4.3.5)
= (ag(atsgp ,ep) — ag(atp . € )) + bg( 8te¢) (G — Gh)(e;‘).

Next we use (4.3.1b), (4.2.6¢) and (4.1.3c), and this implies

bi(es, dn) + bales, dn) — as(e), dn) = bi(Spus, ¢n) + ba(Shp’, é1) — as(S;¥, én)
= bi(u®, én) + ba(SED, dn) — as(Sp, én) = —baley, bn) + as(el,, én).

Differentiating the above equation with respect to time and taking ¢, = —eﬁ, we can

assert that
—by (Orelt, 6:2) — b2(8te;f‘, 6112) + ag(ﬁtel‘z, 6:2) = by(Ores, 6:2) — az(Oel, eﬁ). (4.3.6)

Then we simply add (4.3.4), (4.3.5) and (4.3.6), to obtain

—i—a2( A eA)

a?(eﬁ,ate )+a2(8tep7 p) P’ P

+ ag(ﬁtew, ew) — 2(€p : &5%) bg(@tep ) ew)
= (F = F)@el) + (@(0SLp, ) — (O, )
+ bg(e;‘, Oel,) + (G — Gh)(e;‘) + ba (e, 63) — az(Oel, 61’2).

(4.3.7)

Regarding the left-hand side of (4.3.7), repeating arguments to obtain alike to (4.2.10).
That is,

a(es, Oei) + ag(atep, p A 4 al(e? €, p) + ag(atew,%) by (eﬁ,@tefz) — bz(ateg‘, 6;2)
1d C()
S LG dtu 0+ ab(e )

+5 Z( (O(IWert). e+ a2 (1 — T dhet, (1 — e
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+ (8te$, 63)07 (H%e 8tew) 0.K — a(H%@teg‘, 6112)07[()

d d
ZC(M—HE( Hle+eopletlBa +

# 3 3 (el - H°>A||0K+ ottt el ) ).

2I{/IIHH

== Ve I3 o

Then integrating equation (4.3.7) in time and consistency of the bilinear term as(-, -)

implies the bound

t
Kmin
(O + O+ 222 [ 19} )] ads
1
+ 5 2 (¥ = M)ep ()1 + | (allieey! = e)(O)IF )
K
< ulle(e(0) 30+ colle )l

+§;(a2uu—no e O + l(aTTest = ef)(O0)]3 1)
where _
D= [ ((6=66).06(5) 0
D, = /t(w ) (s),e ;<5>)mds,
Dy [ > (a4 St — PIs)60) = A (007 = P61 6))) s
and D, = /O (bg( e(s), Biel(s)) + ba(Dhel(s), eil(s)) —ag(ate;(s),eﬁ(s))>ds.

Then we can integrate by parts (also in time), use Cauchy-Schwarz inequality and

Young’s inequality to arrive at

D1 = p( (6= )0 4(0) .~ (6~ 8100 c20)
- [0 -6).cl0), ds)
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W
+ Eletede) 30

where we have used standard error estimate for the L2-projection H(I)go onto piecewise
constant functions. Using also Cauchy-Schwarz inequality, standard error estimates

for I1% on the term Dy, Young’s and Poincaré inequality readily gives

t t Komin t
Dy < Ch [ |ts)hallef()loa ds < Cot [ i) ds + 2 [ Ve (s) 0 ds.
0 0 0

On the other hand, considering the polynomial approximation p/ (cf. (4.3.3)) of p/,

utilizing the triangle inequality, Young’s and Poincaré inequality yield

o? t
Do (a5 ) [ (100t = s e + 107 PN e ()
0 K
o? t
<o (cﬁT) / 0! (3)|aalle? () o ds
0

aQ 2t Konin t
<cit (o) [ 1o @ads+ 2 [ 1veoaas

Also,

Dy

/0 <b2 (e7'(s), Drely(s)) + ba(Drel(s), e (s)) — as (el (s), eﬁ(s))) ds

< 5 [ (@l oallael ) uo + (@10el(6)lna + 10eL () oa)llel()lna) ds
< S [ (alefG)nat0w 6l + 10075 z0)

+ (|0’ (s)la.0 + 10w (s) o + |5tus(3)|2,ﬂ)||€£(S)||0,Q> ds.

Using (4.2.5) and a combination of equations (4.3.1a), (4.2.6a) and (4.1.3a), we get

bi(v},, e (1))
lep (oo < sup  ——tm <O p Y (1= B")()llo.x + plle(en(t)) oo
v €V, \{0} [KuAI P K

< C(p hlb(t)10 + pllelen(®)llog).
(4.3.8)
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Then the bound of D, with the help of Young’s and Poincaré inequality becomes

D < SE [ (1000 ()0 + 0006 ha + 10 )z PhIb( ) + (el

h RKmin !
+ 042}(\8@(3)\179 + \&tus(s)b,ﬁ)?) ds + 61 / HVeﬁ(s)HaQ ds.
0

Combining the bounds of all D;,7 = 1,2,3,4 and proceeding similar fashion as we
obtained the bounds in (4.2.12) (using Lemma 4.1 and (4.2.8)), eventually allows us

to conclude that

t
Rmin
plle(en )i a + colley Ol o + » /IIVG;S‘(S)H%,QdS
0
2

« 1
< ulle(edO)Ba + (co+ ) lef OB g + 5 It Ol

t
+CM(wpwrm+A(ww%+@ww%+ww%

t[0,T]

( ) (10:(5) 2. + 10 (5)3.0) + (co—i- A) W29 (s >|§,Q> ds).

Then choosing uj(0) := S¥u*(0), 1,(0) := SY(0), pl(0) := SPp/(0) and applying
the triangle inequality together with bound (4.3.8) completes the rest of the proof. [

Following a similar structure to the proof of Theorem 4.4, we can establish error
estimates for the fully-discrete problem. Details on the proof are postponed to the

Appendix.

Theorem 4.5 (Fully-discrete error estimates). Let (u(t),p/(t),%(t)) € VX Q x Z
and (u;™" ,ph ") € Vi X Qn X Zy, be the unique solutions to problems (4.1.3a)-
(4.1.3¢) and (4.2.16a)-(4.2.16¢), respectively. Then the following estimates hold for
anyn =1,..., N, with constants C independent of h, At, A and cy:

plle(w(ta) —wy")loo + 0(t) — Urlte

Kmin n (439)
+ (A= RV P! (t) 2" 5a < C (W + AP).

Proof. As in the semidiscrete case we split the individual errors as

w(t,) — " = (W (tn) — Spwt (1)) + (Spu' () — wp") = EL" + B,
U(ta) — U = (U(ta) — Sp(ta) + (SPw(ts) — v = By + B,
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P (ta) = o™ = (0 (ta) = P07 () + (S707 (ta) = p") := By + B

Then, from estimate (4.3.2a) and following the steps of the proof of Theorem 4.4 we
get the bounds

IEL 10 < Ch([u®(th) |20 + [¥(ta)]1.0)
< Ch(|u®(0)]2.0 + [¥(0)]1.0

0 @) + 100 1 @) (4.3.10a)
HE{ﬂnHOQ < Ch([u(0)]2,0 + [¥(0) [0 + 10w’ L1 (202

+ 10| L1 (a1 (2)) (4.3.10D)
IED ™10 < Ch(p?(0)|2.0 + 1007 |11 (2())- (4.3.10c)

From equations (4.3.1a), (4.2.16a) and (4.1.3a), we readily get
A (BL" v}) + bi(v), BR") = F'(v}) — F""(v}). (4.3.11)

We then use (4.3.1b) and (4.2.20), and proceed to differentiate (4.1.3c) with respect

to time. This implies

bi(Ep™ — ELN o) + ba(Ef™ — BN ) — ag(EL™ — B o)
= bi((u’(tn) — u’(ta-1)) — (A0’ (t,), dn)
+ba((SEp? (tn) = SEp! (ta1)) — (AL (t0), 91)
— ag((Sye(tn) = Sy o(tn1)) — (AD)I(tn), bn).

(4.3.12)

After choosing v; = EA™ — B2An—Lin (4.3.11) and ¢, = —E:;’" in (4.3.12) and adding

the outcomes, we readily get

af(Efm Efm — B2 Y 4+ ag(E)" — B ES™) — by(EM" — EML B
= p(b(tn) — by, EL" — B og — bi((w(t) — w (1)) — (A9l (t,), B")
— ba((Spp! (tn) — Spp’ (tn-1)) — (A (t0), EL™)
+ag((Sye(tn) = Sp(tn1)) — (A1), EL™).
(4.3.13)

Next, and as a consequence of using (4.3.1c), (4.2.6b) and (4.1.3b) with ¢/ = Ejbn,
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we are left with

ah(EBA" — EAYEAY 4 Atal(BA0, B — by(BAR, B — BT
= At(l(t,) — 0, E}‘:"“)o,g + &S(Sﬁpf(tn) _ S;I;pf(tnfl), Eﬁ’n) (4.3.14)
= @A (), B!™) + ba( B (A0 = (5[0 (ta)) = S} (t-1)).

If we then add the resulting equations (4.3.13)-(4.3.14) and repeat the same arguments

used in deriving (4.2.10), we can assert that

GB(EA,n o EA,nfl EA,n) . bQ(EA’n . E;X,nfl’ E;;,n)
n pAn An— ~ n n— n
— bo(E) B — BTN ab (B — B B

= (At) (co(étEA” E})oq + AZ 20,1 = M) ES™ (1 — %) B o
— (8(aIl B — E™), oIy B — Eﬁ’”)oﬂ)),

The left-hand side can be bounded by using the inequality (4.2.23) and then summing

over n we get

n n Kmin - j
plle(Ex)leq + col Byl o + (A) p D IVEM g

j=1

Lamy (azuu CI0) A2 + ol B — Efz’“uaK)

K
A:
suHs(E::"%naQ+co||E;"°||aQ+<1/A>Z(2||<f [0 EAY)2 . + [lalll EA0 — wuaK)
K
+Zp — b, EM — gAY OQ+ZAt (t;) — 6, EM)oq
7=1
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n

+ Y as((Syelty) = Sy(ts-1) — (A (ty), EY)

1

(<

J/

-

:=Ls

3

+

(a3 (Spp! (t;) = Spp! (tj-1), Ej) — ax (A0 (1), B;))

1

<

~~
:=Lg

> by (B (A — (S)0(t;) — SL(t;—1)) .

1

3

(<

-

=Ly

We bound the term L; with the help of formula (4.2.24), the estimates of projection
IT%, applying Taylor expansion, and using the generalized Young’s inequality. This

gives

Ly = p(((b = ba)(tn), EL™ oo — (b= 8,)(0), B4 %)

= > (AB)(B:(b = ba)(t;), Eg o)

j=1

1<j<n

2
< eI R + Co(LhbOha ule(EL s + 74 max (1)

n t; .
HA RS2 (0 + (A / 9ub(s) .0 ds) ") lle (Bl )
j=1 ti—1

Then the estimate satisfied by the projection I1% along with Poincaré and Young’s

inequalities, yield

Ly < Cy ) (ADK[L(E) ol VE o0
=1

<Oy Y (A)—R2()3 o + (AY)

min

Rmin = 1
oD IVE e

Jj=1

j=1

The discrete inf-sup condition (4.2.5) implies that
1E llo0 < C(AIB(E) 0 + (B2 o). (4.3.15)

Applying an expansion in Taylor series, together with (4.3.15), the Cauchy-Schwarz,

103



and Young inequalities, enable us to write

n tj 1/2 )
Li<C> (08 [ 10w @) ads) (blbtt) o+ (B o)
j=1

tj—l

Then, after using the estimates of the projection S} (4.3.2b), (4.3.15), and applying

again Cauchy-Schwarz inequality, we get

Li < 5 3 (IS207 (1) = p/(t-0) = @7 (1) =9/ (1) o

+ 1" (1)) = o' (tj-1) — (At)@tpf(tj)llon) 1E llog

t 1/2 tj 1/2
(12(@0 [ o ©Baas)™ + (008 [ o ()lEaas) )
ti_1 ti_1

]:1 J— J

X (phlb(t;) |1 + e(BL)log)-

n

o
<C—
A

The stability of as(-,-) and the proof for the bound of L4 gives

Ls < C(1/N) Y (SR (t;) = Syti—1)) = (A (t)llo.alphlb(t)|e + (E27)log)

/) Z (100 [ (0w )+ o) as)

+ (@0 [ 1006 s) ™) < (Ghb(Ea + (D on)

j—1

The polynomial approximation p, for fluid pressure, consistency of the bilinear form
al(-,-), stability of the bilinear forms as(-,-),as(-,-), the Cauchy-Schwarz, Poincaré
and Young’s inequalities gives

Lo =3 (@S (1) = Stp' (t51)) = (h(ts) = pL(ts1)), Eb)

+ as((pl(t;) — pl(t;-1)) — (pf(tj) —Pf(tj—l)) E,)
!
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K

+ At g;? S IVEM[f o
j=1

The continuity of bs(+,-), the bound derived for the term L5 and using the Young’s
inequality gives

Ly < 5 2 IA03w(1;) = (S3(ty) = S (t5-0)) laal £ los
j=1

(67

2
< C<X> (h2(||5t¢|l2L?<H1(ﬂ)> 10 g2 grrzqepe)) + (At)2||att¢||%2(ﬂ(ﬂ)>)

K

min VEM|2,,.
o1 ;H » 6.0

+ (At)

In turn, putting together the bounds obtained for all L;’s, ¢ = 1,...,7, using the

Young’s inequality and Lemma 4.2 concludes that

n n Kmin - i
plle(EL)leq + col Byl o + (At) p D IVEM g

J=1

< c(unswﬁﬁ)r\%@ + (co+ 2N ER 3o+ (1/NNES g+ (14 At)A2 max [b(t;) g

<jsn

+REAEY ([b(ty)[F o + (AI9:bL o + [6(t5)]F0) + (AR 0bllee i @)

j=1
2
. a
+ (A)* ((co + 042/)\)2||attpf||%2(m(ﬂ)) + [0 ||i2([L2(Q)]2) + ﬁ”atﬂ/)H%?(L?(m))

042 Oé2 s
12 (S 19l o + 35 100 leaqarz ey + (o + 0‘2/A)2h2Hatpf“%Q(Hz(Q”)) |

And finally, the desired result (4.3.9) holds after choosing u}’ = u3(0), ¥9 :=
11°04(0), p!° := p}(0) and applying triangle’s inequality together with (4.3.10a)-
(4.3.10c) and (4.3.15). O
Remark 4.2. It is well known that an application of Grownwall’s lemma implies an
exponential dependency of the generic constant (appearing on the right-hand side) on
the final time, and the resulting bounds are therefore not very useful for large time
intervals. We stress that by following the approach used in [98, 96] we can estab-
lish convergence and stability for the semi- and fully discrete schemes circumuventing
the use of Gronwall’s inequality. A different approach, employed in, e.q., [123] in

the context of poroelasticity problems, is to integrate in time the mass conservation
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Figure 4.1: Samples of triangular (a), distorted quadrilateral (b), and hexagonal (c)
meshes employed for the numerical tests in this section.

equation.

4.4 Numerical results

In this section conduct numerical tests to computationally reconfirm the conver-
gence rates of the proposed VE scheme and present one test of applicative interest in
poromechanics. All numerical results are produced by an in-house MATLAB code,

using sparse factorization as linear solver.

4.4.1 Verification of spatial convergence

First we consider a steady version of the poroelasticity equations. An exact solution

of the problem on a square domain (0,1)? is given by the smooth functions

(. y) = (— cos(2rmx) sin(27y) + sin(27y) + sin? () sin2(7ry)>
’ sin(27mx) cos(2my) — sin(27wx) ’

p!(x,y) = sin®(rz) sin®(ny), ¥(z,y) = ap’ — Adivu®.

The body load f and the fluid source ¢ are computed by evaluating these closed-
form solutions and the problem is completely characterized after specifying the model

constants

v=03, FE =100, k=1, a=1, c¢=1, n=0.1,
E.v E.

A+ —20) "1

A= e
2+ 2v)
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[Ndof h™! ei(u’) mi(u’) eo(w’) ro(w’) eo(v) no(®) ep!) n@) eol®’) rolp!)]
179 4 0.477968 -  0.271687 - 0.508386 - 0.444463 - 0.142539 -
819 8 0.204990 1.22 0.055766 2.28 0.198845 1.35 0.195632 1.18 0.029745 2.26
3419 16 0.097838 1.07 0.013083 2.09 0.091837 1.11 0.097854 1.00 0.007526 1.98
13819 32 0.049954 0.97 0.003322 1.98 0.043829 1.07 0.024456 1.02 0.001842 2.03
56067 64 0.024756 1.01 8.2-10"% 2.02 0.021704 1.01 0.024456 0.98 4.7-10"* 1.96

Table 4.1: Verification of space convergence for the method with &£ = 1. Errors and
convergence rates r for solid displacement, total pressure and fluid pressure.

On a sequence of successively refined grids (we have employed for this particular
case, uniform triangular meshes as depicted in Figure 4.1(a)) we compute errors and
convergence rates according to the meshsize and tabulating also the total number
of degrees of freedom (Ndof). The experimental error decay (with respect to mesh

refinement) is measured using individual relative norms defined as follows:

1/2 1/2
(ZKeTh ju® — Hi(uil%K) (ZKeTh |u® — H?{“i”%,}()

el(u ) = ‘uS’LQ R eo(u ) = ||USHO’Q ,
1/2 12
e (pf) o (ZKGT;L p - prﬁlil() . (pf) L (ZKGTh pr — H[V(pﬂ\g,K)
1 T y 0 = ,
P/le 15 Tloe
1/2
e (1/}) . (ZKeTh W - ¢h||a[()
0 = ’
[¥lo0

and Table 4.1 shows the convergence history, exhibiting optimal error decay.

4.4.2 Convergence with respect to the time advancing scheme

Regarding the convergence of the time discretization, we fix a relatively fine hexagonal
mesh and construct successively refined partitions of the time interval (0,1]. As in
[109], and in order to avoid mixing errors coming from the spatial discretization, we

modify the exact solutions to be

u’(z,y,t) = 100sin(¢) (X *
T

+Z’> i (z,y,t) = sin(t)(z + 1), v(z,y,t) = ap’ — Adivu®,
by

107



At Ey(u?) ro(u’)  Eo(p’) rolp’)  Eo(v)  ro(v) |
0.5 0.002897 - 0.462768 - 0.398059 -
0.25 0.001362 1.09 0.218179 1.08 0.187834 1.08

0.125 6.5173-107* 1.06 0.104546 1.06 0.090044 1.06
0.0625 3.1756-10~* 1.04 0.050955 1.04 0.043910 1.04
0.03125 1.5664 - 1074 1.02 0.025123 1.02 0.021683 1.02

0.015625 7.7950 - 10~° 1.01 0.012469 1.01 0.010826 1.00

Table 4.2: Convergence of the time discretization for solid displacement, fluid pres-
sure, and total pressure, using successive partitions of the time interval and a fixed
hexagonal mesh.

and we use them to compute loads, sources, initial data, boundary values, and bound-

ary fluxes. The model parameters assume the values
k=01 a=1 c¢=0 n=1, A=1x10® p=1. (4.4.1)

The boundary definition is I' = [{0} x (0,1)] U [(0,1) x {0}] (bottom and left edges)
and ¥ = 0Q\ I

We recall that cumulative errors up to 7" associated with solid displacement, fluid
pressure, and a generic pressure v (representing either fluid or total pressure), are
defined as

By(w?) = (Ati( St - H;uz’"naK))m,

n=1 “KeT,

Fylv) = (Ati( S ot - Hf'zvzné,K))l/Q,

n=1 “KeTy,

(4.4.2)

respectively. From Table 4.2 we can readily observe that these errors decay with a
rate of O(At).
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4.4.3 Verification of simultaneous space-time convergence for

poroelasticity

Now we consider exact solid displacement and fluid pressure solving problem (4.1.1)

on the square domain 2 = (0,1)? and on the time interval (0, 1], given as

w (g, 1) = (— exp(—t) sin(27y) (1 — cos(2mz)) + ex}f’(Tj\t) sin(mx) Siﬂ(ﬂg))
Y, exp(—t)sin(2rx)(1 — cos(2my)) + %(;t) sin(rx) sin(7y) ’

P! (x,y,t) = exp(—t) sin(mz) sin(my), ¢(z,y,t) = ap’ — Adivu?,

which satisfies divu® — 0 as A — oo (see similar tests in [93, 97]). The load functions,
boundary values, and initial data can be obtained from these closed-form solutions,
and alternatively to the dilation modulus and permeability specified in (4.4.1), we
here choose larger values A = 1 x 10%, and x = 1.

In addition to the errors in (4.4.2), for displacement and for fluid pressure we will

also compute

N 1/2
Ex(u’) = (Atz( S (f) — Tl K)) |
KE’T}L

n=1

N 1/2
Ei(p) = (AtZ( > I (1) - Hzp£’”|iK>) .

n=1 “KeT;

We consider here pure Dirichlet boundary conditions for both displacement and fluid
pressure. A backward Euler time discretization is used, and in this case, we are
using successive refinements of the hexagonal partition of the domain as shown in
Figure 4.1(c), simultaneously with a successive refinement of the time step. The
cumulative errors are again computed until the final time ¢ = 1, and the results are
collected in Table 4.3. They show once more optimal convergence rates for the scheme
in its lowest-order form.

Note from this and the previous test, that a zero constrained specific storage

coefficient does not hinder the convergence properties.

4.4.4 Gradual compression of a poroelastic block

Finally we carry out a test involving the compression of a block occupying the region

Q = (0,1)? by applying a sinusoidal-in-time traction on a small region on the top of
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LAY Bi(w) ni(w) Eo(w’) ro(uw’) Ei(p) mi(p) Eolp) rolp) Eo(¥) ro(d)
8 10 1.741116 - 0.101035 - 0.239518 - 0.009757 - 0.509493 -

16 20 0.892377 0.96 0.026166 1.95 0.123684 0.95 0.002528 1.95 0.251106 1.02
32 40 0.451402 0.98 0.006594 1.99 0.062743 0.98 0.000642 1.98 0.125025 1.01
64 80 0.227050 0.99 0.001650 2.00 0.031584 0.99 0.000161 1.99 0.062399 1.00
128 160 0.113876 1.00 0.000413 2.00 0.015844 1.00 0.000041 2.00 0.031165 1.00

Table 4.3: Convergence of the numerical method for displacement, fluid pressure,
and total pressure, up to the final time ¢ = 1, using simultaneous partitions of the
time interval and of the spatial domain (using hexagonal meshes).

the box (see a similar test in [103]). The model parameters in this case are

v=0.49995, E.=3x10* k=1x10"% a=1, ¢ =1x1073,

E.v E.

=L A=ara-wy T era)

For this test, we have employed a mesh conformed by distorted quadrilaterals
exemplified in Figure 4.1(b). The boundary conditions are of homogeneous Dirichlet
type for fluid pressure on the whole boundary, and of mixed type for displacement, and
the boundary is split as 9 := '} UT,UT'3. A traction h(t) = (0, —1.5 x 10%sin(t))”
is applied on a segment of the top edge of the boundary I'y = (0.25,0.75) x {1}, on
the remainder of the top edge I'y = [0, 1] x {1}\I';, we impose zero traction, and
the body is clamped on the remainder of the boundary I's = 9Q\(I'y UT3). No
boundary conditions are prescribed for the total pressure. Initially the system is at
rest u*(0) = 0, ¥(0) = 0, p/(0) = 0, and we employ a backward Euler discretization
of the time interval (0, 0.5] with a constant time step At = 0.1. The numerical results
obtained at the final time are depicted in Figure 4.2, where the profiles for fluid and

total pressure present no spurious oscillations.
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Figure 4.2: Compression of a poroelastic block after ¢ = 0.5 adimensional units. Ap-
proximate displacement components (a,b), displacement vectors on the undeformed
domain (c), displacement magnitude (d), fluid pressure (e), and total pressure (f),
depicted on the deformed domain.
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Chapter 5

Advection-Diffusion-Reaction equations

1n a Poroelastic media

This chapter focus on the development of VEMs for approximating the PDE system
modelling poromechanical processes (formulated in mixed form using the solid de-
formation, fluid pressure, and total pressure) interacting with diffusing and reacting
solutes in the medium. The space discretization relies on VE spaces containing piece-
wise linear polynomials as well as non-polynomial functions for displacement, pres-
sure, and concentrations; and piecewise constants for total pressure. The Backward-
Euler scheme is employed for the approximation of time derivatives. Using standard
techniques of explicit schemes, we prove the well-posedness of the resultant fully dis-
crete scheme, and a priori error estimates are established by introducing the suitable
projection operators. Several numerical experiments are presented to validate the
theoretical convergence rate and exhibit the performance of the proposed scheme.
This chapter is structured as follows. Section 5.1is devoted to describing the gov-
erning equations that appear in the coupling of ADR and poroelasticity. In Section 5.2
we derive a weak formulation and include preliminary properties of the mathematical
structure of the problem. The fully discretized scheme is presented and attained its
well-posedness in Section 5.3. We established a priori error estimates in Section 5.4
with the help of Stokes and elliptic projection operators, and numerical experiments

are conducted in Section 5.5.

5.1 Governing equations

Let us consider a piece of soft material as a porous medium composed of a mixture

of incompressible grains and interstitial fluid, whose description can be placed in the
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context of the classical Biot problem. We recall here the three field formulation of
the Biot’s problem defined in Chapter 4 (referring [39]) as, one seeks for each time
t € (0,T), the displacements of the porous skeleton, u®(t) :  — R?, the pore pressure
of the fluid, p/(¢) : Q@ — R, and total pressure ¥(t) : Q — R, such that

2
(CO N %)atpf 2 - %div(mvpf) _y inQx(0,7], (5.1.1a)

o =2ue(u’) — I, in Qx(0,7], (5.1.1b)
Y =ap’ — Adive®, in Qx (0,7], (5.1.1c)
—divo = pb in Q x (0,7]. (5.1.1d)

We also consider the propagation of a generic species having concentration wy,
reacting with an additional species having concentration ws. The problem can be

written as follows

Oywy + u® - Vwy — div{D;(x) Vw, } = f(wy, we,w’) in Q x (0,7, (5.1.2a)
Oywy + u® - Vwy — div{Dy(x) Vwy } = g(wy, wa, w®) in Q x (0,77, (5.1.2b)

where Dy, Dy are positive definite diffusion matrices (however we do not consider
here cross-diffusion effects as in, e.g., [105, 124]). In the well-posedness analysis, the
reaction kinetics are generic. Nevertheless, for sake of fixing ideas and in order to
specify the coupling effects also through a stability analysis that will be conducted in

[12], they will be chosen as a modification to the classical model from [125]

flwy, wa, u®) = B1(B2 — wy + wfwg) + yw; divu®,

g(w17w2a US) = /31(53 - w%wg) + vy wy divu®,

where (1, (82, f3,7 are positive model constants. Note that the mechano-chemical
feedback (the process where mechanical deformation modifies the reaction-diffusion
effects) is here assumed only through advection and an additional reaction term de-
pending on local dilation. The latter term is here modulated by v > 0, thus represent-
ing a source for both species if the solid volume increases, otherwise the additional
contribution is a sink for both chemicals [11].

The poromechanical deformations are also actively influenced by microscopic tension
generation. A very simple description is given in terms of active stresses: we assume

that the total Cauchy stress contains a passive and an active component, where the

114



passive part is as in (5.1.1b) and
Oiotal — O + O act (513)

where the active stress operates primarily on a given constant direction k, and its
intensity depends on a scalar field » = r(wy,wy) and on a positive constant 7, to be

specified later on (for example, see [126])
Ot = —Trk Q k. (5.1.4)

In summary, the coupled system reads
—div(2ue(u’®) — I+ o4) = pb,

a? o 1
- f_= _ 2 d fy —
(co + 3 )&p )\8,5@/) ; div(kVp') = ¢,

w _ Oépf + Mdivu® = O, in € x (O,T], (515)
Oywy + u® - Vwy — div(Dy () Vwy) = f(wq, wa, u’),

Oywy + u® - Vwy — div(Da(x) Vws) = g(wy, wa, u’),

J

which we endow with appropriate initial data at rest
w1 (0) = w1, wa(0) =wap, u*(0) =0, p’(0)=0, ¥(0)=0 in Qx {0}, (5.1.6)

and boundary conditions in the following manner

u’*=0 and Efo n=0 on I' x (0,77, (5.1.7a)

Ui
Di(x)Vw; -n =0 and Dsy(x)Vws-n =0 on I" x (0,77, (5.1.7b)
2ue(u®) — I+ o,qn =0 and p’ =0 on X x (0,77, (5.1.7¢)
w; =0 and wy; =0 on X x (0,77, (5.1.7d)

where the boundary 02 = I' U ¥ is disjointly split into I' and ¥ on which we pre-
scribe clamped boundaries and zero fluid normal fluxes; and zero (total) traction
together with constant fluid pressure, respectively. Moreover, zero concentrations
normal fluxes are prescribed on 9. We point out that, if we would like to start with
a model in terms of the divergence (div(w;u®) instead of u®- Vw; in (5.1.2a)-(5.1.2b),

i € {1,2}), we need to assume zero total flux (including the advective term, see,
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e.g., [105]). Homogeneity of the boundary conditions is only assumed to simplify the

exposition of the subsequent analysis.

5.2 Weak formulation

We will use the following notations for the Sobolev spaces in this chapter.
V= [H:Q))?, Q:=Hi(Q), Z:=L*Q), and W :=Q.

Say V:=V xQ x Z xW x W. Let us multiply (5.1.5) by adequate test functions
and integrate by parts (in space) whenever appropriate. Incorporating the boundary
conditions (5.1.7a)-(5.1.7d) as well as the definition of the total stress (5.1.3), we end
up with the following variational problem: For a given ¢ > 0 and initial conditions
(5.1.6), find (w(t),p’(t),¥(t), wyi(t),w(t)) € V such that

ar(u’, v®) bi(v®,¢) = F.(v%) Vo eV, (5.2.1a)
a2 (0’ q”) +aa(p? qf) ba(q 3 ,0i) = Gu(q?) V¢l €Q,  (5.2.1b)
bi(u'0) +bo(p',6) — as(,6) =0 veez,  (5210)
m(Jywi, S) +ag(w, s) + c(u®;w, s)= Jg(s) Vs e W, (5.2.1d)
m(Dyws, S) +as(wa, s) + c(u®; wa, s)= Jy(s) Vs e W, (5.2.1e)

where the formulation with the bilinear forms a; : VXV = R, as : Q x Q — R,

az: Z X Z =R, ag,a5 : W xW =R, by :VXxQ =R, by:Q xZ— R, the trilinear
form ¢ : V. x W x W — R, and linear functionals Fy,, : V. — R (for b, r known),
Gr:Q—R, Jp, J,: W — R (for known f and g), are defined as

) =2 [ elw) i e(@), blo',0) =~ [ odive’s bl o) =5 [ o
= (il 4 f) . — a_2> f
as(p’,q’) : (CO+A /pq, as(p’,¢’) = 77/Q()Vp V¢,
(¢ ¢ /¢¢, Fb?"(wlaw2a ) - Fb( )+F (w17w27v )7
where Fy(v®) == p/ b-v’, F.(wy,ws;v’) = T/ r(wy, we)k @ k : e(v?),
Q Q

m(w;, ) = / w; s, azyi(w;, s) = / Di(x)Vw; - Vs, fori=1,2,

Q )

S, s) = S.Vw)s, Gi¢h):= [ ¢4,

(wtiws) = [ (- Vo)s, Gla))i= [ ¢
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Jp(wy, we, u’; s) ::/f(wl,wg,us)s, Jg(wy, wa, u’; s) ::/g(wl,wg,us)s.
Q Q

Preliminaries

We will consider that the initial data (5.1.6) are non-negative and regular enough.
Moreover, throughout the chapter we will assume that the anisotropic permeability
k(x) and the diffusion matrices D;(x), Do(x) are uniformly bounded and positive
definite in Q. The latter means that, there exist positive constants r, ko, and D¢, D,
i € {1,2} such that Vw € RY, d = 1,2, Vz € Q, we have

milw|? < w'h(x)w < ke|w|?, and D% w|* < w'D;(x)w < DP|w]?

Also, for a fixed u®, the reaction kinetics f(wy,ws, ), g(wy, ws, ) satisfy the growth

conditions, that is, for 2 = f, g

|2(wy, ws, -)| < C(1 4 |wi] + |wsl),

o B B (5.2.2)
and |z(wy, wa, -) — 2(Wy, Wa, )| < C(Jwy — Wy| + |we — wy).
Given wy, wy € R, the scalar field r(wy, ws) defined in (5.1.3) such that
r(wy, wy)| < jwq| + |wal,
[r(wr, wa)| < Juwn| + |wsl (5.23)

[r(w1, w2) — r(Wr, W2)| < C(Jwr — W] + [wa — wsl),
and reaction kinetics f(-,-, u*), g(+, -, »®) for fixed wy, wy € R holds
|2(+, - u’) — z(+, -, a’)| < Cldivu’® —diva®|, z=fg.

In addition, the terms in (5.2.1) fulfill the following continuity bounds for all u® v* €
V7 pf7qf € QJ Wy, We, S € WJ ¢7¢ € ZJ

jar(u®, v°)] < 2uChalu’|lialv i, [bi(v®, ¢)| < Vd|v®[lallélloo
las(p”, D) < man P halld’ e, 1Ge(@)] < Iloalld’lloq,
las(¥, 9)] < A H[elloglldlloq,  1b2(g”, )] < ar Mg 1alldllo;
| Fy (w1, wa; )] < plbllo.allvllo.q + 7v/Crallr(ws, wa) oallv*[l1.0,

|az+i(wi, )| < Diflwilliellslhe,  fori=1,2,

he (5.2.4)

| L (wr, wa, s 8)| < [|2(wr, we, u®)|oqllslloq, 2= f,9,
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We also have the following coercivity and positivity bounds:

K1C
ay(v°,0°) 2 20 Cpal|v°| g, a2(q’,q")| > TquinQ,

as(¢,¢) = Ao

(5.2.5)

00 atils,s) = 6 Df ||s|liq fori=1,2,

forall v € V, ¢/ € Q, ¢ € Z, s € W, where Cj,; and Cy 5 are the positive constants
satisfying

Crallv*lli o < lle(@)5a < Crallv®|i 0.

and ¢, is the Poincaré constant. Moreover, the bilinear form b; satisfies the inf-sup
condition (see, e.g., [67]): For every ¢ € @, there exists 5 > 0 such that

sup b (,037 Qb)

- > Bll¢llo.q- (5.2.6)
vseV\{0} |v 1.0

Remark 5.1. The well-posedness of the weak formulation (5.2.1) of the fully coupled
system (5.1.5) can be established through the semi-discretization in time technique
(refer [127, 57]) using the compactness arguments, and thus the analysis for time

discretization from [109] can be utilized for this strategy.

5.3 Discrete formulations and wellposedness

In this section, by following VEMs for space discretization, we present a fully discrete
scheme corresponding to (5.2.1). We also address the stability, existence, and unique-
ness of the discrete VE solution. By introducing the adequate local and global discrete
spaces associated with velocity, pressure, total volumetric stress, and concentrations,

the VE formulation is described as follows.

5.3.1 Virtual element discretizations

Let the domain €2 be discretized into the family of the polygonal meshes 7, with mesh
size h and element K, vertices on element K as V;, 1 <1 < Nj with N number of
vertices in K, and any edge in the polygonal mesh is denoted by e. For any natural
number k, let P(S) and Mj(S) represent the space of polynomials and monomials
of degree less than or equal to k for any S C R2?, respectively. We also suppose
that the polygonal mesh satisfy the assumptions (A1)-(A3) (see [18, 32]) presented
in Chapter 2.
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Before proceeding to define the VE spaces, we will recall few projections as follows.

The standard energy projection I} : H'(K) — Py (K) is defined as
(V(IT¥q —q), Vpi)ox =0 for all p, € Py(K),

where the projection onto constants are maintained through another projection PP

as

NV

1 K
P(I1},q—q) =0 where Ppq:= N Zq(‘/;).
K =1

The vectorial energy projection from the vector space [H'(K)]? to [Py (K)]* denoted

as ITY defined exactly in same manner as scalar case shown above.

A variant of the vectorial projection HIV( and supported by the bilinear form

af(-,-), we define a projection IT5 as,
(e(I5v — v),e(py))ox =0 for all p, € [Py(K)]?, v € [H'(K)]?,

and the function p; € ker(af(-,-)) are again taken care from P% (ITl5v — v, p,) = 0,
N’U
and Py (v,p,) = 1 S5 v(1) - p, (V).
The classical L%-projection operator 119 : L?(K) — P;(K) is expressed as

(I1%q — ¢, p1)o.x =0 for all ¢ € L*(K), p € P1(K).

Similar to the energy projections, the projections ITI%" : [L*(K)]> — [Po(K))* and
% : [L?(K)]? — [P1(K)]? are identified as the vectorial L? projection onto constants
and linear polynomials, respectively. We stress that these operators not only help us
in deriving the optimal error estimates but also useful in the computation of discrete

bilinear forms.

Then the local VE spaces are introduced as follows (refer [29, 24] and also defined
earlier in (4.2.2)):

(—A’Uh — VS)’K = 0,

Vi(K) = {vh e [H'(K)?NBOK):
divwy, = ¢q € Py(K)

for some s € L2(K)},

Qn(K) := {qn € H'(K)NC°(0K) : qul. € Pi(e) Ve € OK, Aqn|x € Pi(K),
(I0Yqn — qny Ma)o.rc = 0 ¥m, € Ml(K)},
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where ¢ := % Jox v - i ds) and
B(OK) := {v), € [C°(0K)]* : vy - tx € Pi(e), vple - nf € Pa(e) Ve € OK}.

We have the following degrees of freedom depending on the corresponding spaces (refer
[24, 29] and Chapter 2 for details on unisolvance):
For displacement:

e (D,1) the values of v, at all vertices of the element K,

e (D,2) and value of vj, - n% at mid point on each edge e € 0K;;

for total volumetric stress:

e (D.) value of ¢, at any point in K;

and for pressure, or concentration:

e (D,) the values of ¢, at vertices of the element K.

Then the global spaces are given as

Vi i={vy € Viwlg € Vi(K)VK € Tp}, Zn:={Yn € Z:nlx € Zy(K) VK € Ty},
Qn:={qgn €Q:qnlxk € Qn(K)VK € T}, Wy = {sp, € W: splx € Qn(K) VK € Tp}.

Note from above that the local discrete spaces and their degrees of freedom for pres-
sure and concentration are the same, and thus have the same local projection opera-
tors on each element K € 7.

We define the local discrete bilinear forms by considering the computability, con-

sistency, and stability, as:

ailK(’u’ha vy) = a (Hi(u}u IM5v;) + 21 S K((I — 0% )uy, (I - II% )vy),

bK(Uh7 ¢h) = (le vh7 ¢h)0,K7 (qh7 ¢h) =al\ (HKqu ¢h)0 K
agK@hv qh) = ay (HKpm Hth) + (CO +a®A” ) SO’K((I - H?()phy (I— H?{)Qi)y
ay™ (p], q) = o (I p), Tq]) + Rt SYX((1 = TIY)p), (1 — 10 )qh),
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a?(%, on) = (Un, dn)ok s Ch’K(UfL;wh,Sh) = ((H?{Ui) : (H?(’vah),ﬂ%sh)ox,
a?jK(wm Sh) = azK(szfw Hlv(sh) + Di—3 SV7K<<[ - HX)wh’ (I - HX)Sh)a i =4,5,

m™ " (wy, sp) = mS (M wp, T sp,) + SOK (I — 09wy, (I —T1%)sy,),

where d is average of function d over element K for parameters d = , Dy, D5, and
the stabilization terms on each K, with Ndof denoting the total number of degrees of
freedom or dimension of the associated space to the variables (for instance, Ndof :=

dimension of Q,(K) in SV-X(-, -) for pressure variables py,, g1), as

Ndof
SYE (wy, sp) 1= Z dof, (wy,) dof,.(sp)  with I wy, }-s;, = 0,
r=1
Ndof
SOK (wy, sp,) = area(K) Z dof,.(wy) dof,.(sy)  with TI%wy,, %), = 0,
r=1
Ndof
SEE (U5, v5) = Z dof,.(uy) dof,.(v;)  with Il u;, 5 v; = 0.
r=1

Then the stabilization terms satisfies the stability condition with respect to the

norm associated with the respective discrete bilinear forms as, for s, € Q,(K), vj €
V5, (K), we have

clsult ik < SV (sny sn) < Hsnlin Ellsallyx < S (sn, sn) < & |snllf

Cille(i)llox < S5 (v, vi) < Elle(vi)l6 k-

where c,, c*, ¢, ", ¢, ¢" are constants independent of mesh size hyx and the given

parameters.

The discrete functionals are defined in terms of L? projections as

G?(Q}{) = Z <£hv q£>0K7 Flﬁfr(fwl,ha Wa,p; V) = F;L(UZ) + Ff(wl,ha Wa p; V},),

KeTy
with  Fj'(v5) == Z P<bh7'vi>o,K’
KeTy
Frh(wlﬁh,wg,h;'vi) = Z T (ra(Wip, won) (k@ k:),s('u,i)>07K,
KeTy
T2 (w1, o, h; S) = Z (2h (wl,hawzhvui)vsh)o,K’ =19
KeTy

121



where

bh|K = H?éob, Th (wl,h7w2,h) ’K = HO’OT (H?(wl,ha Hg{th) ) gh‘K = H?{@

2 (Wi, wop, w)) |k o= Oz (Mews p, Mywap, up) . for 2 = fg.

Note that T1%z2,|x = 23|k for functions z;, = f, gr, and for each K € Tj,.
Then, in general, the global discrete bilinear forms and discrete functional are defined

naturally as

a(up, vp) = Z a " (up,vp),  F"(vp) Z FK(uy),

KeT, KeTy,

for any local discrete bilinear form @™ (. -) and discrete functional F™¥(.). With
the help of the stability of the projection operators and stabilization terms, we obtain

the following continuity properties of bilinear and trilinear forms,

at(uj,, v;) < 26" e(uy)lloolle(i)llon Y, vy € Vi,
ay(ph,qp) < @ (Co +a* 27 lIptlloclatloe  Voh.al € Q.
a5 (ppan) < @ wan | Vopllosl Vaillo, e ai, € Q. (5.3.1)
m" (wy, sp) < sp € W,
ah i (wp, s) < @ Db| sp € Wy, 1 =1,2,
(v wp, sp) < |vh\1QHwhH19H3hH1 o Yv; € Vy,wp, s, € Wy,

bounds for the discrete functionals,

G(a) < |locllal Ieq,
F(wy g, wa s v5) < C ([bllogllvillog + lIrnlloelle@))oe) Yo;, € Vi, (5.3.2)

T (wy gy wan, wiisn) < llznlloqllselloq Vsn € Wi, for 2 = f, g,

and coercivity properties, Yv; € Vy, q,’; € Qn,sp €Wy
at (v, ;) > 2udnle(i)§ o, ablal, an) > awran ™ [Val 5o,

) (5.3.3)
m"(sn, s1) > ullsallda,  asyi(snesn) > aDf|[Vsilliq fori=1,2.

Also, the discrete inf-sup condition hold on (Vy, Z,), that is, there exists B > 0
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independent of h such that (refer [30, 32] and Chapter 2)

by (v .
sup RO S sy o all gy € 7 (5.3.4)

vievi\foy V3l

5.3.2 Fully discrete scheme

Let us discretize the time interval (0,7] into N equispaced points and time step
At = Wlth n' time step as t" = nAt, n =1,..., N, and use the following general
notatlon for the first order backward difference At X" =X — X"t In this way,
we can write a discrete form of (5.2.1): From the given initial data 'u,h , ph , Y,
wy ;,, w, (which will be projections of the continuous 1n1t1al conditions of each field)
and startlng with n = 1, we first solve for u;™ € Vy,, p" € Qn, Y} € Zj, such that,

V'Uh S Vha qh € Qha ¢h S Zh7

a?(uznavi) + bi(vp, ¥p) = Fli’n(w?h17w§hlvvh) (5.3.5a)
ab ()", qf) + ab (" al) — ba(g], oy = G (gl), (5.3.5b)
bi(wy™, dn) + (ph ) — a3y, on) = 0, (5.3.5¢)

And then we seek the concentrations wy ,, wi, € W), for given displacement u;™ € V},
(solution of (5.3.5)) and known initial data w?,,w, such that, Vs, € W,

h,n
mh(dtwiha Sh) + ag(wﬁm Sh) + Ch(u]sl’n; w?,h) Sh) = ‘]f’ (w?hlv wgh1> uh ) Sh)v (536&)

m"(6iwh y, sn) + af (wh,, sn) + ' (wy"swh y, sn) = Jp" (Wi why upsn). (5.3.6b)

The above process of solving the problem continues iteratively forn = 2,..., N. The
discrete functionals on each K € T, and 1 < n < N involved in (5.3.5)-(5.3.6) are
defined as

Gy™Ma)) k= (k. 4ok
JEm it wyy wn™ sn) ko= (an(wi ' win i) |k sk)os for 2= fg,
Fy(wiy wy s op) [ = Fy " (03) [ + F"(wi ' wh b op) |k,
with  Fy"(03)]x == p(b}, v} )o k.

E" (wiy wyy o)l = 7~ (wiy! why ) (k@ k) (7))o

We note that the above systems of equations are linear for each n since we have

considered the explicit scheme in time discretization.
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Existence and Uniqueness

We will show the well-posedness of the discrete scheme through stability and then
the uniqueness of the linear system of equations. We start it by introducing the

discrete-in-time {>— norm as follows, for some Sobolev space V
XNy = Xy = Atz X713 (5.3.7)
§=0

Now, we collect the following important results for the further analysis.

e Discrete Identity:

1 1
| X8 = SN+ GA6X o

e Integration by parts yields, for v* € V and w € W (with the use of (5.1.7a)
and (5.1.7d))

1 1
/('vs -Vw)wdzr = = / v* - Vuw?dr = —= / div (v®)w?* da.
0 2 Ja 2 Jo

In analysis, we will require next lemma which is referred from our previous work [39]

(also in Chapter 4) and briefly explained here.

Lemma 5.1. We have the following bound, for all q}{’” € @y, and ¢} € Zy, at each n,

. j 1 n 0
@012 5 3 (ol ~ Mol 0
J=1 KeT

37" (lladtaf" = 631 x = lloMeal” — #hl « ) (5:38)

#a o+ a2x) (10 - 00l B~ 107 = Mo ) )
where
Ly o= al(Sugl™, g™ — balal™, 6:07) — ba(Segl ™ ql™) + as(S,:07, &),

Proof. The commmutative property for the operators ¢; and 1% gives,

AN ASESY <d§ CAIVSTARIFTAY
KeTy,
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(o + A7) SUR (S, — 1), (T = T%)af™)).
Then rewrite L} as

L= 3 (A (Glalal” — 67), allial™ = ok
KeTy
+ a2\ (3, — T g, (1 — T1%)gf")

o+ co ((Teaf™ Wl "o se + S™ (61 = To)al", (1 = W)af ™) ).

then multiplying with At and using the equality (5.3.2), we obtain

n ]- — n n ,n
(AL = 5 3 83 allal" = 613 x + coll Tl I3
KeTy

. (o + a2 (1 = a3 ).
Thus summing over n gives (5.3.8). O

Next, we recall a well-known lemma utilized to handle the analysis of the non-
linear and time-dependent problems. Also, we consult the proof of the following

lemma from [75, Lemma 5.1].

Lemma 5.2 (Generalized Discrete Gronwall lemma). Let k, B, and a;,bj, c;,7;, for

integer j > 0, be non-negative numbers such that, for n > 0, we have

an+k‘ZbJ S k‘Zvjaj—l—chj—FB.
j=0 j=0 Jj=0

If kry; <1Vj then

a, + kZZ b; < exp (k Z(l - kvj)_lfyj> {k‘ch + B} . (5.3.9)
=0 =0 j=0

The next theorem establishes the existence and uniqueness result.

Theorem 5.1. The fully-discrete formulation (5.3.5)-(5.3.6) of the coupled problem
(5.1.5) has a unique solution (ui’",pi’n, Y, Wiy, wh ) € Vi i= Vi x QX Zy x Wy x W,

for each n.
Proof. Referring to the previous chapter (Chapter 4), the linear problem (5.3.5) in

125



the form of an uncoupled fully discrete scheme for poroelasticity problem is well-posed
for a given data.

We will ensure the existence of a unique solution of linear uncoupled ADR equation
(5.3.6) by virtue of the Lax-Milgram lemma. In order to proceed, we define the

discrete bilinear form with given u;™ as solution of the problem (5.3.5) as,
CHw]'y, sp) == m"(w},, sp) + At <a§+i(w2h, sp) + M (up™ wly, sh)> for i =1,2.
We can rewrite the uncoupled ADR problem (5.3.6) for all s;, € W}, as
C (Wi, sn) = At TP (winh wyyt up™s sp) +m" (Wi sn),

for z=f,gand i =1, 2.

The continuity of right hand side obtained using the bounds of the discrete linear
functionals m (w?hl, ) and JPm(wi! " ,w2h ,uy;";+) with the help of bounds (5.3.1)-
(5.3.2). Now, we will prove the coercivity of the discrete bilinear form C/'(-,-). For all

sy, € Wh, the usage of inverse inequality for polynomials leads to
e (w5 smy ) < TLRy™ [loo, i | TLR Vs [lo,1¢ [T 5 Lo,

< Clluy™ oo, x IV s llox |05 -

Now, for any s, € Wj, the use of above bound for ¢ (u;";-, ), coercivity of the

bilinear forms m"(-,-) and a%,;(-,-), and Young’s inequality, we get
Cl(sn,sn) = m"(sy, sp) + At (agﬂri(sh, sn) + ch(uZ’"; Sh, sh)>

CAt Qg
> (60~ g pelluiea) Isnlo + 5 DIAHVsul o

Choosing At > 0 small enough and require D{ so that

o Ol |l

> ok o8 ny
Y= 0. Do

we achieve the coercivity of CI'(-,-). Also, the continuity of discrete bilinear form
Cl(-,) is followed from the boundedness of the discrete bilinear forms (5.3.1). Thus,

the Lax-Milgram lemma deduces the existence of a unique solution. O

Now, we will establish the stability of fully discrete scheme by collecting the results
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from Lemmas 5.1 and 5.2l

Theorem 5.2. Assume that (ufb’”,pgn,w,’j,wih,w;h) € Vy, is solution of the fully
discrete scheme (5.3.5)-(5.3.6) for the coupled problem (5.1.5) then it satisfies

2
le(uy")5 0 + ||p£||l22(H1(Q)) + Ul e + Z (lwillf.0 + D?Hwi,thQ?(Hl(Q)))

=1

2
s,0 ,0
< (e + 1N + 1980 + 3 Il + 160 o
i=1
£ (14 10120) ).
j=1

where C' > 0 s a constant independent of h and At.

Proof. Taking v;" = 6,u;" in (5.3.5a), q}fl = pi’" in (5.3.5b), and for time step n and
n — 1 in equation (5.3.5¢) with ¢p, = ¥} gives

ay (uy", 0puy™) + by (Spuy" p) = Fcﬁf}n(wqfhlawzh)étu ")

a2(5tph 7ph )+a2(ph ,ph )_52(1% ,60p) = G?n(ph ),
by (oru;™, h)+b2(5tph L) — as(dey, y) = 0.

Adding these equations result into

al (w)™, Seu™) + al(pl", pl™) + @b (", pl) — ba(pl", Sy

—bg(étph Jp) + as(dedy, )

- Fl:;*n(w?hlv Wy, Jh 76tu ) Gg’n(pi’n>‘

Summing over n, and the use of (5.3.2) and bound of L} from Lemma (5.1), we get

n

1 At? 5] K1 y
5”6( )Hog+u Z||5t e(u”)|[5 o + nAL‘ZHVPh [

= 7j=1

N Z(COHH%ph 2+ 3 loTep” —

KETh
2
+a (ot S0 - Tt Ha,K)
H 0412 a’ 2 012
< Ble(wi o + Ca. (co+ 5 ) IA"MBa+ 31481
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+ CAt Z (Fgf(w{ h17w2h ,(5tuh’]) + Ghd( ])>

j=1

The last second term on the right hand side can be bounded as
At ZF&?T wlh >w2h b o)

= At Z > (o (bh 0, g = 7 (rnlly ke @ k) e (), )

Jj=1 KeTy,

At? &
<1 Lol + €3 (W0 + Nt B + gl I2.0).
7=1
Use of Young’s inequality for the last term gives

M ’ n )
5 lle(uy )HonJr At HVP“HOQ+ —H eph™ = itlI5 -+ col T%eph™ 15
2 KeT

h

v (ot 7) (H(I )

7 s, 1
< Slle(w)l3a + Ca, <Co+ )Hp I80+ 5 1A

+C Y (18130 + AtNE g + It o + lwdy 1R 0 ).

j=1
Using discrete inf-sup condition (5.3.4) and equation (5.3.5a), we obtain

h

- 1
5”¢2||0,Q S sup (Flﬁ’:<w?hlvw2h 7vh) a, (uz,n’,v;))

vE€V,\{0} v5 1.0

< C(IIb"lo.e + 1wy oo + lwgy Hlow + plle(w;™)log)-

For given u,™ as solution of the problem (5.3.5) and taking s, = w{,, in (5.3.6a) then
the use of Young’s inequality with appropriate choice of ¢ and the bound of trilinear
form cp,(+; -, ) implies

At

_5t + At DY||[Vwy hHO QS mh(wih - wiﬁl> wy ) + At az}LL(w?,h? wy'y,)

= At (Jh’n(w?hlaubh Uy >w1h> Ch(u}?n%w?mw?h))

< CAt(L+ [[wiy 5o + lwe, ' 6.0) + At(e + Crlluy" o) W] 4[5 0
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Summing over n gives
n n 2
j j—1
lwinlie +AtDE DIV g < el ulfa + € (14+ At Y 3 izt I3)
j=1 j=1 i=1

n
+ Aty (e + Cillup [heen) [w] 417 o
j=1

Thus, again use of these arguments for equation (5.3.6b) with s;, = w5, we get

2

Z (llwiy I3 o + At Df Z ||szth(2m)
i=1 j=1
2 n 2 '
<> lubilida+C(1+20D0 Dl 30)
i=1 j=1 i=1

n 2
+ A8 ((e+ Crlluy [ee0) Y 1]l q)-
=1

j=1

Adding the resultant bounds gives

sn K1 - i n
plle(ui™)50 + ?Afz VP13 0 + lln]

J=1

2
0,Q

2

+ Z (Hw?hHgQ + At DY Z vafh”gﬂ)

i=1 j=1

2 n 2
< Z [0? 16,0 + Atz ((e + Cilluy? 11 ,000) Z ], l15.0)
=1 =1 =1

s,0 ,0 j j
+C (@0 + IPE o+ 1830+ D (1+ 167130 + AthE30)

j=1
n 2
Al Ra)-

=1 i=1

Assuming M := max ||u}”||; .0 < 0o then choosing €, At such that At(e +C, M) <

1<j<n

1. Thus, the use of discrete Gronwall lemma (Lemma 5.2) completes the stability of

the discrete solution.

Therefore, we have the wellposedness of fully discrete scheme (5.3.5)-(5.3.6) from

Theorem 5.1 and 5.2.
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5.4 Error analysis

In order to see the rate of convergence of the proposed fully discrete scheme, we will
derive the error estimates in suitable norms for each of the variables that appear in
the formulation. For establishing the error estimates, we will be utilizing the well-
known techniques/arguments used for time-dependent problems and imitating the
steps used in showing the uniqueness and stability of the discrete scheme.

We will assume the following regularity assumptions to generate the convergence
results: For all ¢ > 0, the displacement of porous medium u*(t) € [H?(Q)]?, the
fluid pressure p/(t) € H?(Q), the total pressure ¢ (t) € H'(Q2) and concentrations

wy, we € H*(Q). We also assume the regularity in time as,

bt € 20T [HQ)P), 0,0 € L(0.T: H'(Q),
81511)1, 81511)2 € ZZ(O, T, LQ(Q)), 8ttus € ]—_12(07 T, [L2<Q)]2),
Oup’, 0w, Oy, Owy € L*(0,T; L*(R)).

Lemma 5.3. For each u® € VN[H(Q)]? with 0 < r < 1 under the assumptions on
the polygonal mesh (mentioned in Section 5.5.1), there exists an interpolant u§ € Vy,

satisfying
|u® — uilloq + hi |[u® —ul|io < CA U] . (5.4.1)

For given solution (u®,p’, 1, wy, ws) € V of weak formulation (5.2.1), the projection
(Spu®, SPp!, SPap, SPwy, Si2w,y) € V), is defined for all (v5,ql, dn, sn, sn) € Vj, as

a1 (Stu®, v3) 4 by (v5, SP) = ay(u®, v3) + by (V5 1); (5.4.2a)
bi(Spu’, dn) = bi(u®, dn); (5.4.2b)
as(SEp? af) = ax(p”,q)); @i (S wi sn) = agga(wi, sn). (5.4.2¢)

Note that (S, S;f) and S}, S, S, are standard Stokes and elliptic projection oper-
ators respectively. These operators also satisfy the following estimates (for instance
|26] and also in Chapter 2):

Lemma 5.4. Let (u®,p/ ¢, wi,wy) € V and ( ,";us,Sﬁpf,SZ’w,S,t”lwl,S,‘l”ng) €V,
be the unique solutions to the system of equations (5.2.1) and (5.4.2), respectively.
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Then,

lu® = Siulloq + h(lu® — Syl + ¢ = S;llog)

< OR*(|ulp0 + [¥]10), (5.4.3a)
Ip’ — SﬁprO,Q + hlp! — Sﬁpfh,a < Ch?|plae, (5.4.3b)
|wi — Sy willo.q + hlw; — Sy wia < CR*|lwilaq, i =1,2. (5.4.3¢)

To derive the theoretical error estimates for fully discrete scheme, we decompose

the error using the projection operator (defined in 5.4.2) as follows :
E(tn) = & = (E(ta) — SiE(ta)) + (She(tn) = &) = pf + 11,

fOY any g(tn) = us(tn)apf(tn)aw(tn%wl(tn)aw?(tn); gh - uh 7ph awhvwl h;th and
for each n.

From the continuous problem (5.2.1) and fully discrete scheme (5.3.5)-(5.3.6), and
an appeal to projection operator (5.4.2), the error equations for the fully discrete

scheme in terms of 7, where { = u®,pl, 1, wy, wo, are

al (g, v3) + br (vi,m) = F (wil whivp) — By (wiy ! wyy bop), (5.4.4a)
iy (e, q) + a5 (np af) = balal, 0my) = (G7 — G™)(al) + ba(af, 6,y v — Dp™)  (5.4.4b)
+ (@655 al) — ax(0w" qf) ).
b1 (0¢Mys Bn) + ba Sy s Gn) — az(dsmy), on) = —ba(dpy s ¢n) + az(depy, dn), (5.4.4c)
" (§uniy ) + (i sn) = (7 (it wh w5 sn) = TP (i wint us ™ n)
(Oywy, sp) — m" (6,5 w?, sh)) (5.4.4d)

—(m
( 7 w173h _Ch(uh wy h’Sh)))
J"

mh(étngzgvsh) +ag(773275 ) (( (wlﬂwQa 7 ) ‘]hn(wl h ﬂwgh17uzyn;$h))
— (m(Owwy, sp) — m" (8,5} Wy, sn)) (5.4.4e)

3y sn) — (w7 wgh, Sh))>7

— (c(us“j; w

v (’UZ, Q£7 ¢h7 Sh Sh) € Vh-
Now, we will divide the derivation of error estimates for fully discrete scheme
(5.3.5)-(5.3.6) into two lemmas: one containing the error bounds from the poroelas-
ticity equations and the other-regarding ADR equations. We start here by recall-

ing/mentioning the results to be used in succeeding lemmas.
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The Taylor’s expansion for any continuous function f(t) gives at time ¢t = t;, j =

1,...,n,

o) = S50) = (30) 2 + | 7 (s =ty )0 f(s) ds.

j—

This expansion imply the bounds in next corollary.

Corollary 5.1. For any smooth enough function &, we have
Z 167 — &7 o < C(AL)? < Z 10671150 + Hattf(s)uil(L2(Q))>>
j=1 j=1

Atz 107 — 6875, < C(AL)? |’5tt5|’i2(L2(Q)) ;

J=1

Proof. Use of (5.4.5) gives

1€ = & oo < (A010a+ [ (s t0)0ut(5)foads

ti—1

<@0(j0€ oo+ [ 10u€()lunds).

Squaring both sides and then summing over j conclude bound (5.4.6).
Again use of (5.4.5) followed with Cauchy-Schwarz inequality yield

2

At)|0,87 — 6,8 5.0 <

/tj (5 —tj-1)0u&(s)ds

J

0,Q

Summing over j from 1 to n deduce the bound (5.4.7).

(5.4.5)

(5.4.6)

(5.4.7)

2
< (A 106721, 14,5020

Now, we derive the result below by using the Lipschitz condition of function

r(w},wy) for each n, Corollary (5.1) and standard arguments.

Lemma 5.5 (Coupled poroelastic error bounds). Let (u®",p/" ") € V. x Q x Z
be the solution to the system (5.2.1a)-(5.2.1¢) and (wS™, pl™ ") € Vi, x Qp X Zp, be
the solution to the system (5.3.5) for each n. Then the following estimate holds, with
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constant C' independent of h and At,

lemallga + 13116, + Il oy <O (B + At + Z Z 175 115.0)
= (5.4.8)

+ 2€3Atz H%Hgm

Jj=1

where €3 > 0 chosen as needed in subsequent analysis.

Proof. Set v = &} in (5.4.4a), ¢ = ny in (5.4.4b), and ¢, = ny in (5.4.4c) and
adding them gives

ay (niy, &) + a5 (nyy,ny) + Ly

= (Fy, (i, wys 0me) — Fpil (wiy! i 0mi)) + (G — Gy™) ()
+ (@B (8SPp™ ) — s (D™, 1)) + ba(nl, 6,5y Y™ — ™)
+ ba(Sepp s M) — az(0epy myy)-

Summing over each n then the use of Lemma 5.1 gives

At (8l () + At @l (0l Simi) + ab(mj, mh) + I7)
j=1

= At (R, (o, wh o) = Fpd (w5 0ml) + (G = GL7) ()
7j=1
+ (@5 (0.5, ) — as (0, 1)) + ba(nl, 6,SE7 — O)
+ ba (01, 17),) — as(01p)), nf),))
6
— Z R
=1

The error term R; can be written as

=AY (p (M= 0ml)

j=1 KeTy,
o (F (w], whs darl) = B2 wl 3 wd s oorl) )

= R} + RY.
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The Young’s inequality with some constant €; > 0 gives

C " . .
Ry < p\/ng Aty > 1A =T o.xlle (i) lo.x

j=1 KeTy,

<CR2Y R+ aA S [le(md) 2 o

j=1 j=1

The bound of RY is through the property of function r(w;,w,) and triangle’s

inequality as follows

Ry < TAtY |[(r(w], wy) — ra(wl,’, wy5) loalloe () oo

J=1

< e le@mi) o+ Cr I Il wh) = rawl ' wl, ) o

i=1 j=1
The last term on right hand side for each K € T, can be bounded as
1(r (i w3) = ra (i, wy, Do
< |lr(wi, wg) = r(w] ™ wy o + 1 = W )r(w] ™ wy ok

1 -1 -1 -1 -1 -1 -1 -1
e (] wh ™) = (] wh o + lra(wd ™ wy ™) = (] why o

< Ch(r(wi ™ wy Dha +wl e + [w) ) + i (llw! =w!  og + 7, llo.c)-
i=1
The bound (5.4.6) gives
R < elAtQZ le(@m) |5+ CT° ZZ [
j=1 i=1
Loy (h22|wﬂ|m AP 100+ 100s(5) gz )
i=1 j=1

Use of Cauchy-Schwarz, Poincaré and Young’s inequalities with constant e; > 0

implies

Ry < C (A [0]1alnillon < At [Vi2l3q + CH?|1€E

J=1 Jj=1
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Use of polynomial approximation and consistency of discrete bilinear form &S’K(-, )

gives

Ry < (At)(co + a®A ZZ(H& SEp"T — T%p?)lo.ic + [10.(I5p” — pP9) o x

j=1 KeTy,
+ 10" = 0" o ) Il
= R} + R} + RS,

The term R§ can be bounded using Cauchy-Schwarz and Young’s inequality as

7 < et aa )3 S ([ 100t~ 1 ) I

j= IKGTh tj—

tj /2
< (co + a2 hz (At/ 10’ ()2 ds) [
j=1 ti—1
< C W20 721110y + EzAtZ IV I3 o
j=1
Now the same steps leads to

Ry < (o + @) ST ST = 106 — o9 ol

j=1 KeTy

< C h2||0tpf||%z(H1(Q)) + €2Atz ||V77;j;||g,n

j=1

The bound of Rj is followed from (5.4.7) using Taylor’s expansion as

R = (At)(co + a®A7) Y 18" — 0™ lloalloallng oo

j=1
j=1

An application of Lemma 5.1 and Young’s inequality implies

Ry = (A)aA™ Y 165,47 = 0 ol oo

J=1
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tn n .
<0 (1 [ 1R ods + (A0 [utsm ) + bt Y VIR

j=1

Use of the estimates (5.4.3a) and Lemma 5.1 as seen in bound of R} with constant

€3 > 0 gives
Rs; < CaX™ (s)ds Hnﬂgﬂ
0,2
<C h2||atpf“%2(H1(Q)) + €3Atz H%Hgﬂ
j=1
Similar to bound of term Rs5, we get
Zag 1) < C W02 411 () ds + GSAtZ 17,150
j=1
Combining the bounds of R;’s, we get
pllemllee — lem)llsq) + mn‘lAti IV, 1160
j=1
+3 Z < (lalgeny —mpllg.x — lodlgen, — myll6 ) + co(Tgm 15, — TR 116 1)

KETh

+ (eo+ a2\ (0 = T2 12 o = 12 = 20l ) )

< C(W 4+ AP) +263At2 e+ O3 i

7j=1 =1

+2elle(m) 5 + 562At2 Al

Jj=1

Using inf-sup condition of b;(-,-) and error equation (5.4.4a), we obtain

n C
17 llo. < sup

(P (wf i vp) — By (wi ! why s o) — di(ng, 7))
v €V, \{0} [vill10

2 2
C<h(|bn|179 + ; |w?_1|17ﬂ) + (At) 221: (||8twf||079 + ||attwi(3)||L1(tn71,tn;L2(Q)))
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2

+ 15 o + plle G o ).
=1

Therefore, the adequate choices of €’s and choosing the initial conditions using pro-
jections as

qu’O :=u7(0) and p£’0 = p}c(O)

conclude the error bounds (5.4.8). O

Note that the initial conditions are chosen so that the estimates of ny, n; and 7
are known, and can consider another such choice for analysis and computations.
Next, we approach the remaining error equations corresponding to ADR equations

to avail the following lemma.

Lemma 5.6 (Coupled ADR error bounds). Let (w?, wy) € [W]? be the solution to
the continuous problem (5.2.1d)-(5.2.1e) and (wi,,ws,) € [Wy]* be the solution of
the fully discrete problem (5.3.6) for each n. Then the following estimate holds, with
constant C' independent of h and At,

[\

> (InsI3a + Dr(at) > Ini, 20)

i=1 j=1
n

< At? Z(%lHe(nﬁ;)H%@ + 6l 17 0) (5.4.9)

Jj=1

n 2
+O(h2+ A2+ 3 (I B+ D Ind”
j=1 i=1

20).

Proof. Taking s, = ny, in (5.4.4d), then multiplying with At and summing over n

enable us to get

(I 50 — 1, I5.0) + DEAL Y V0, 50

j=1

n
. . . . . h.j 1 q N,
S CAtZ ((‘]j‘(wivwév ’U'SJ; %1) - ‘]f J(w{,h aw%,h >“Zj7773u1>)
j=1

— (ml@w ) = m" (0} wd )
— (et wl ml,) = sl i) ).

= Al +A2+A3.
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Use of estimates for projection I1%, use of (5.4.3) and (5.4.6), and Young’s inequality
with €164 = C?/4 with €1, ¢4 > 0 gives

Ay <Ot ST ((nwls s ) = ]y wly wi?)

j=1 KT,
+ ”fh (wi " wy u™) — fh(wih 7w%,h 7“’8’])“0,[{

-1 '71 j =1 =1
+ ”H f wl , W 7“’37]) - fh<w{ 7w% ,u™’

+ [l - n%>f<w{-1,w;‘-%uw'>||o,K) 7l

lo.x

< ALY (ko + millos + Rl F (ol wd ™ w)
j=1
2

+> (el

i=1

o+ 15 oo + N1 = w! o)) 17, o

< ozz I B e AR+ eo A6 o

7j=1 =1 7j=1

n 2
D (5 (T PRATICE RN SR PR Wiy
i=1

J=1
2

. tj 2
#0073 (1loa+ [ lwlonds)”).
ti—1

=1 J

The use of consistency for bilinear form m”(-,-) and bounds (5.4.6)-(5.4.7) with

Young’s inequality for ¢4 > 0 gives

= CAt Z Z atwl 5251_[?(10{7 771]1;1) - mth(5t<Slq-LUlw{ - H?(w_{)a 771Ju1))

=1 KeTy,

<Aty S (ot — stufllo + 100t — S ad) o) i o

j=1 KeTy,

n tn tn
<t Y9 o+ (1 [ () Eads+ (207 [ o (0) i ds).

j=1

Assume that Vw] and ;7 are bounded for each j then the values of | V] ||s.x and

IT1% ;7 || 0o (by use of inverse estimate) are finite respectively. Thus, by applying
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the Cauchy-Schwarz and Young’s inequalities implies

Aa= 0ty S (@ Vud (- T ),

7j=1 KE’Th
+ (w7 — O - Vad, H%%l)o,x
+ (M - (V] = TROVw] ), W, ), )
<eary S (@112 (- Feod) o+ 10— T o[V

j=1 KeTy

TR (™ — ) o sl [ Vet [

T e[ Veod = TRV ] ) o i )

0,K
<oy (@ Vul) 3o+ [u g + [Vuilin)

j=1
n

+ AR (allmlfo + i, F o).

j=1
Thus, the bounds of A;’s gives
n n 2
I, W3+ A IV, 30 < € (B2 + AL + [, 30 + >0 3 llnd”
=1 j=1 i=1

+ ALY (el + 3ealn, 13 0)-
j=1

20)
0,0

Similar to the above bounds, taking s, = 7, in (5.4.4e), we get the error bounds
in the terms of 7n,,. Thus, the addition of the bounds for w; and wy concludes the

proof. O]

We proceed to apply the discrete Gronwall’s inequality in Lemma 5.3.9 with the

combination of results from Lemma 5.5 and 5.6 yield

lemalle.q + 0515, + Il oy + Mo B @) + 1wsllE @) < C (R + AL).

Finally, usage of triangle’s inequality with the estimates (5.4.3a)-(5.4.3¢) give rise to
the final result:

Theorem 5.3 (Fully-discrete error estimates). Let (w®(t,,), p’ (t,), ¥ (t,), w1 (t,), wa(t,)) €
V be the solution to the system (5.2.1), and (ul™, pl™, ¥y, wyy,, wy ) € Vy, be the solu-

139



tion to the system (5.3.5)-(5.3.6) for eachn=1,..., N. Then the following estimate
holds, with constant C' independent of h and At,

le(e? (tn) = wy™) G0 + 10(tn) = il @ + 110" = Pl )

2
+ Z [Jw; — wi,h’|z22(H1(Q)) < C(AE 4+ 1?).
=1

Remark 5.2. The lowest order case is considered throughout the thesis, and the anal-
ysis for higher-order approrimation can be derived in a similar manner by carefully
handling the discrete trilinear form cp(-;-,+) and also considering the stable pair of VE
spaces for displacement and total pressure. In addition, the VE spaces corresponding
to displacement and pressure variables are required to have the same approrimation

order, to obtain the optimal error estimates.

5.5 Numerical investigations

The algorithm for the numerical scheme (5.3.5)-(5.3.6) can be described as: For given
initial conditions of displacement and pressure with solution of problem (5.3.6) at
previous time step t,_;, we solve the fully discrete poroelastic problem (5.3.5) to get
ufb’”,pi’",w}f for any n = 1,..., N. Now, we further use the solution u;" as well as
the initial conditions of concentration variables to look for the solution of the linear
system of equations (5.3.6). We repeat the process till the solution of (5.3.5)-(5.3.6)
at the final time 7T is obtained.

We define the L? and H' errors for the approximation spaces as

Eo(v) := Y |lo = Mfvpllox and  Ei(v) := > Vo — IR Voullox,
KeTy, KeTy

where v can be global displacement u*, fluid pressure p/, total pressure 1) and con-
centrations wy, we. The convergence rates of the errors £y (v) and E} (v) with &k = 0,1

for the corresponding mesh sizes h and h' respectively, are calculated as

ro(0) = log(Ex(v)/ Ey(v))
: log(h/h)
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(a) (b) (c)

Figure 5.1: Samples of meshes employed for the numerical tests: (a) Concave mesh
N, (b) Distorted triangular mesh #H;, and (c) Distorted square mesh D,.

5.5.1 Space and time convergence

We initiate the tests in the domain  := (0,1)? and verify the spatial convergence
rate of the VEM for given exact solutions by discretizing the domain into elements
containing non-convex polygons seen in Figure 5.1(a). For this, we consider the

following exact solutions for global displacement and fluid pressure,

w (. y.1) = (t (— cos(27x) sin(27y) + sin(27y) + sin®(7x) sin2(7ry))>
T t (sin(27x) cos(2my) — sin(27z)); ’

2

P! (z,y,t) =t sin® 72 sin? 1y,

together with the parametric values

v=03, E=100, k=1 a=1, c¢=1 n=01,

N v E B E
T arn-20) Moy

and scalar function r(wy, ws) := wy + wy. Also, the exact concentration solutions are

given as
wy(z,y,t) = we(x,y,t) =t sinmz sin 7y,

and the reaction kinematics with unit value of Dy, Dy, 31, B2, 03, and v = 0.1 making
the concentration equations with different load functions. However, the load functions

b, ¢, and the exact global pressure v is obtained from the respective equations (5.1.1)
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in domain 2 with 7 = 1,p = 1. We show the computed rate of convergence for
meshes in Figure 5.1 with h = At in the Figure 5.2, supporting the theoretical results

in Section 5.4.
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Figure 5.2: Computed errors with varying mesh size h and At for three meshes: (a)
N;H (b) Hh, and (C) Dh.

5.5.2 Space convergence with mixed boundary conditions

For this, we consider the following exact solutions for global displacement and fluid

pressure in domain (2,

exp(—t) sin Tz sin 7y

u'(z,y,t) = (

TSI ) = exp(—t)sinmz (1 + cos ),
exp(—t) sin Tz sin 7y
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together with the parametric values

vr=20495 FE=100, k=05, «a=0.1 ¢=1e—-03, n=0.1,
v E FE

ATy Moy

and scalar function r(wy, ws) := wy + wq. Also, the exact concentration solutions are

given as

wy (1, y,t) = exp(—t)(— cos 2w sin 27y + sin 27y + sin® 7 sin® 7y),

wy(x,y,t) = exp(—t)(sin 2wz cos 2y — sin 27x),

taking the diffusion constants D; = 0.01, Dy = 1, and the reaction kinematics with
smaller values v = 0.0001, f3 = 0.80, 5y, B2 = 0.15. Taking 7 = 10,p = 1, the
load functions b, ¢ and the exact global pressure 1) are obtained from the respective
problem (5.1.1) in domain . We can note that we have considered the parametric
values to check the extend of method with small ¢y and D, as well as large values of
A

We display the computed rate of convergence in the Table 5.1 with At = 0.005

and varying mesh sizes h on a distorted triangular meshes (shown in figure 5.1(b)).

’ h! Ey(u) mi(u) Ei(p) mp) Eo(¥) ro() Ei(wi) mi(wi) Ei(wy) 7m1(ws) ‘
10 9.5977 — 0.7165 —  1.722e03 —  3.20087 — 2.4415 —

20 6.363 0.60 0.3882 0.88 0.986e03 0.81 1.71905 0.90 1.4639 0.74
40 3.3798 0.91 0.1816 1.10 0.494e03 1.00 0.75061 1.20 0.71354 1.04
80 1.7046 0.99 0.0903 1.01 0.243e03 1.02 0.36788 1.03 0.3543 1.01
160 0.8712 0.97 0.04501 1.00 0.123e03 0.99 0.18661 0.98 0.17916 0.98
320 0.4327 1.01 0.02245 1.00 0.061e03 1.02 0.09323 1.00 0.08955 1.00

Table 5.1: Computed errors and its rate of convergence with mesh size h

The computed error in the total pressure is seeming high due to the high value of

the exact solution, and the computed convergence rate shows the decrease in error.
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Chapter 6

Conclusions

In this dissertation, we have proposed new VEMSs for the approximation of non-
stationary incompressible fluid flow problems, linear poroelasticity equations, and
coupled poroelasticity advection-diffusion-reaction equations. We have contributed
to introducing new VE spaces suitable for this type of problem, and we have devel-
oped the well-posedness analysis of the associated discrete formulations. Moreover,
we have established optimal error estimates in natural norms for all the unknown
variables that appeared in the formulations. We emphasize that the classical lowest
order VE space from, e.g. [29] does not compute the L? projection onto piecewise
linear polynomials, which is necessary for defining the discrete bilinear form corre-
sponding to reaction terms. Therefore, we have modified the spaces accordingly. The
VE spaces proposed here contribute to the satisfaction of the inf-sup condition, and
therefore, the resulting schemes for poroelasticity are locking-free [97]. Apart from the
theoretical aspects, we have addressed computational aspects of the proposed family
of discretizations for each of the problems under investigation. We have generated
numerical implementations targeting the experimental validation of the theoretical
convergence rates, and we have also tested the proposed methods in problems of
more applicative character.

In what follows we summarize the main findings obtained in each chapter of the
thesis in Section 6.1 and the general conclusions based on these findings in Section 6.2.

Furthermore, we present the possible extensions of this thesis in Section 6.3.

6.1 Summary

Chapter 1 dealt with the review and applications of fluid flow problems governed by

a class of time-dependent PDEs and an extensive literature survey of VEMs with
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their advancement during the last decade. This chapter also highlighted the related
work and specific contribution of the thesis as far as VE approximations of non-
stationary fluid flow problems are concerned. Moreover, we addressed the suitability
and advantages of the proposed method in comparison with other existing numerical
schemes, such as finite element methods, finite volume methods, and discontinuous

Galerkin methods in the context of fluid flow problems.

In Chapter 2, we have proposed a VEM for approximating the transient Stokes
problem defined over polygonal domains. The semi-discrete formulation is based on
the lowest order VE spaces associated with pressure and velocity, and they have been
constructed in such a fashion that they satisfy the inf-sup condition and are also
locally divergence-free. We stress that considering the regularity (in the context of
non-stationary Stokes equations), the choice of stable higher-order VEMs (k > 2)
given in [30, 36] may not be appropriate, since in that case, one would require the
higher regularity assumptions on the continuous solutions which may not be realis-
tic (see [68]). The fully discrete scheme obtained by employing the backward Euler
method is also discussed and analyzed. With the help of L? and Stokes projection
operator, we established the optimal error estimates under minimum regularity as-
sumptions on the continuous solutions. Numerical experiments are also conducted to

support the theoretical findings.

In Chapter 3, we have extended the analysis of Chapter 2 to nonstationary Navier-
Stokes equation. Establishment of optimal a priori error estimates and the well-
posedness for both semi and fully discrete schemes can be considered as novelty
and major contributions of this work. Newton’s method has been exploited to solve
the resulting nonlinear system of equations, and several numerical tests have been

performed to validate the theoretical rate of convergence.

In Chapter 4, we have proposed a new VEM for Biot’s equation of linear poroe-
lasticity. The finite-dimensional formulation is based on the VE spaces introduced
in |29], which can be regarded as low-order and stable VEs, hence being computa-
tionally competitive compared to other existing stable pairs for incompressible flow
problems. Both semi and fully discrete formulations are discussed and analyzed, and
they constitute the first fully VEM discretization for poroelasticity problems. Opti-
mal and Lameé-robust error estimates have been established for solid displacement,
fluid pressure, and total pressure, in natural norms without weights. This has been
achieved with the help of appropriate poroelastic projection operators. Numerical ex-

periments have been performed using different polygonal meshes, and they not only
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put evidence to computational verification for convergence of scheme (where rates
of error decay in space and time are in excellent agreement with the theoretically
derived error bounds) but also its performance in simple poromechanical tests.

By extending the analysis of [39, 83|, we have discussed and analyzed the lowest
order conforming VEMs for the approximation of coupled poroelasticity and ADR
equations in Chapter 5. The major contributions of this chapter are: well-posedness
of fully discrete schemes and establishing the optimal a prior: error estimates for
all the variables that naturally appeared in the weak formulation. A set of numer-
ical experiments have been also provided for justifying convergence analysis of the
proposed scheme. The possible extensions of this work include the study of general
flow-transport problems and the coupling with other phenomena such as diffusion of

solutes in multilayer poromechanics or multiple-network consolidation models [96].

6.2 Concluding remarks

We would like to make the following remarks/comments on theoretical and compu-
tational aspects of VE approximations applied to the problems listed in Chapters
2-5.

e Considering computational advantages, in this thesis, we have constructed the
lowest order, i.e., k = 1 virtual spaces, such that they satisfy the required LBB
condition and the discrete velocities are locally divergence-free for Stokes and
Navier-Stokes equations, which are essential in view of the physical nature of the
problems. Nonetheless, the present analysis can easily be extended to higher-
order spaces that satisfy the LBB condition. We emphasize that the other lowest
order spaces that contain P, — P, type elements can also be employed for the
approximation of these problems. Of course, as these pairs are not inf-sup stable,
suitable stabilization is required. Depending on the type of stabilization, some
drawbacks could include issues related to small-time steps producing unstable
solutions, but including consistently stabilized methods (see [82] for transient

Stokes and Navier-Stokes equations) should suffice.

e For the VE schemes proposed to approximate poroelastic and coupled poroelastic-
ADR equations, we have derived error estimates only in energy norms for dis-
placement by utilizing the properties of L2-projection onto the piecewise con-

stant functions. We can also establish optimal L?— error estimates for displace-
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ment by taking the L?-projection onto the piecewise linear functions, choosing
appropriate approximation of the right-hand side, and exploiting the idea of
enhanced spaces introduced in [83]. However, in that case, a more sophisticated
analysis has to be carried out to accomplish this purpose, as standard dual-
ity arguments cannot be readily used due to the fact that we have an overall

unsymmetric discrete formulation.

For the time-dependent incompressible fluid flow problem, we mention that
there has been a series of studies regarding the unrealistic regularity assump-
tions near initial time ¢t — 0 (for more details, we refer to, e.g., |68, 75|).
The analysis in these works cannot be extended from the parabolic problem to
unsteady Stokes equations in a usual way since we do not have the required
regularity requirements of the solution. And imposing such conditions would
lead to unrealistic compatibility conditions. In view of these regularity con-
straints, we have proposed divergence-free lowest order stable VE schemes and
have established optimal error estimates in natural norms. We stress that this
analysis can be extended to higher-order provided the continuous solution has

enough regularity.

For the poroelasticity problem, we derive stability for semi-discrete and fully-
discrete schemes and establish the optimal convergence of the VE scheme in
the natural norms. These bounds turn to be robust with respect to the dilation
modulus of the deformable porous structure (which tends to infinity as the
Poisson ratio approaches 0.5) and of the specific storage coeflicient (reaching
very small values in some regimes), and therefore the method is considered
as locking-free. A further advantage of the proposed virtual discretization is
that it combines primal and mixed VE spaces. We would like to mention that
the present analysis can be extended for general k£ and variable parametric
data, which may be the case while dealing with more realistic problems such as

interface problems, by following the analysis of [25, 32, 120].

The fully discrete scheme proposed for approximating the coupled ADR-poroelastic
problem is a decoupled linear explicit scheme at each time level, and therefore,
it is relatively cheap. We could have opted for other implicit schemes such as
those proposed in [109, 127, 105]. However, the fully discrete formulation of

these schemes will turn out to be a system of coupled nonlinear equations. In
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that case, the fixed-point theory along with Gronwall’s inequality can be uti-
lized to show the well-posedness of the resultant system. We stress that the
convergence analysis will be more involved in this case, and a modification of

the techniques is required for deriving optimal convergence rates.

6.3 Future work

Possible extensions emanating from this thesis are manifold. In particular, we aim at
applying and generalizing the VE approximation developed so far, in the solution of
a wider class of coupled transport fluid flow problems. A unified VE analysis would
help in the study of such problems. From these milestone problems, we mention the

following two concrete examples to be studied in forthcoming contributions.

6.3.1 Coupled sedimentation-consolidation.

Consider an incompressible mixture of fluid and solid particles flowing through a
porous medium occupying the domain Q@ C R? d = 2 or d = 3 in [128, 129]. We
assume that the suspended solid particles do not attach to the porous skeleton. Then
the motion of the mixture and the evolution of the solids concentration within it
can be described by the initial-boundary value problem (here confined, for the sake
of simplicity of the presentation, to the so-called batch case, where fluid velocity is
simply zero everywhere on the boundary): we seek the volume-averaged flow velocity

of the mixture u, the solids concentration ¢, and the pressure field p such that

¢Oic+u-Ve—div(d(c)Ve — fp(c)k) =0 in Q x (0,77,
du+ (Vu)u — div(p(c)e(u) — pI) — pscg =0  in Q x (0,77,
divu = s in Q x (0,77,

with given initial and boundary conditions, where p = p(c) is the concentration-
dependent viscosity, ¢ is the porosity of the underlying porous structure, pu(c)e(u)—pl
is the Cauchy stress tensor, e(u) = 3(Vu + VuT) is the infinitesimal rate of strain,
and g is the gravity acceleration. The material specific diffusion function ¥ = 9(c)
and the flux density vector fi,(c)k describes the effect of hindered settling aligned

with gravity, and where k is the upwards-pointing unit vector and f;, denotes the
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Kynch batch flux density function.

For this problem, we would like to analyze higher-order VE approximation by
following the ideas given in [83, 39, 32] with emphasis on both implementation and
convergence analysis. We also show the well-posedness of the discrete formulation

and establish optimal error estimates under suitable assumptions on the mesh.

6.3.2 Coupled poroelasticity and elasticity problem

Let us consider a bounded Lipschitz domain Q C R% d € {2,3}, together with a
partition into non-overlapping and connected subdomains QF, QF representing zones
of non-pay rock (where we will set the equations of linear elasticity) and a reservoir
(where we aim at solving the poroelasticity equations), respectively [120, 106]. We
also assume that the reservoir is completely immersed in the overall domain: QF C Q,
such that the interface between the two subdomains, denoted as ¥ = 9QF N 0NF,
coincides with the boundary of the pay zone. Note that on the interface we consider
that the normal unit vector n is pointing from QF to QF. The boundary of the
domain (2 is separated in terms of the boundaries of two individual subdomains, that
is 0 := I'" UTE, and then subdivided as the disjoint Dirichlet and Neumann type
condition as TV :=TH UTY and T® := T UTE respectively.

In the overall domain, our problem stated as: for given body loads b (t) : QF —
R4, b : QF — R?, and a volumetric source or sink 7 (t) : QF — R, one seeks for each
time t € (0, 7], the vector of solid displacements u® : QF — R? of the non-pay zone,
the elastic pressure ¢® : QF — R, the displacement u®(¢) : QF — R?, the pore fluid
pressure p¥'(t) : QF — R, and the total pressure ¥*(t) : QF — R of the reservoir,

satisfying:
—div(2iFe(u’) — FT) = b in QF x (0, 7],
a’ p_ o, p 1 P P cOP
co + " op" — F@@D — Ele(/in ) =1 in Q7 x (0,77,
PP —ap” + N\ diva’ =0 in QF x (0, 7],
—div(2uPe(u”) — ¢FI) = b" in QF x (0, 7],
YF + ABdivu® =0 in QF x (0,7).

Here x(x) is the hydraulic conductivity of the porous medium 7 is the constant

viscosity of the interstitial fluid, ¢y is the storativity coefficient, « is the Biot-Willis
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consolidation parameter, and u, A\¥ and uF, AP are the Lamé parameters associated
with the constitutive law of the solid on the elastic and on the poroelastic subdomain,
respectively. The poroelastic stress & = o — ap'I is composed by the effective
mechanical stress AP (divu®)I + 2uPe(u’) plus the non-viscous fluid stress (the fluid
pressure scaled with ).

This system must be complemented by mixed boundary conditions, a set of trans-
mission conditions, representing the continuity of the medium, the balance of total
tractions, and no-flux of fluid at the interface, respectively; and initial conditions
pF(0) and uw®(0) in QF x {0}.

As far as VE approximations are concerned, here, we would like to employ the
virtual spaces introduced in [39] by admitting the polynomial of degree k& > 1. We
plan to propose the mixed discrete formulation in a way that the corresponding VE
scheme does not require Lagrange multipliers to impose the transmission conditions
(continuity of displacement and total traction, and no-flux for the fluid) on the in-
terface. In the implementation procedure, arbitrary small edges will be allowed in
the process of mesh generation, and theoretical convergence analysis will be carried
out by borrowing the ideas from [54] in which small edges are considered for the

approximation of elliptic problems.
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