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Abstract

Problems in continuum mechanics are a constant source of systems of partial dif-

ferential equations (PDEs) which are often di�cult to solve. Among contemporary

numerical methods designed for these types of problems, virtual element methods

(VEMs) constitute a recent family of discretization schemes constructed using poly-

topal meshes, that are proven to be robust under many di�erent scenarios. In this

thesis, we focus on the developments of VEMs for the approximation of certain types

of non-stationary coupled �uid �ow problems. More precisely, the type of equations

that are considered herein includes transient Stokes, Navier-Stokes, Biot, and coupled

advection-di�usion-reaction and poroelasticity equations, the latter system describing

species interaction within fully saturated deformable porous media. Using classical

regularity assumptions on the solutions to the continuous set of governing equations,

we construct lowest-order virtual element discretizations for each of these problems.

An appealing feature of the resulting schemes is that the discrete velocities are locally

divergence-free for incompressible �ow problems and that the constructed virtual ele-

ment spaces satisfy the necessary inf-sup conditions which permit to establish unique

solvability of the associated discrete problems and Céa estimates for the approximate

solutions. For the time discretization, a classical backward Euler scheme is employed,

and we rigorously derive the main properties of the semi- and fully-discrete schemes

for all problems. Moreover, by introducing appropriately de�ned projection operators,

optimal a priori error estimates are established in natural norms for all �eld variables

that are natural unknowns in the speci�c formulation. Further, for each problem, sev-

eral numerical experiments are presented. They serve to illustrate the performance

of the proposed schemes and also to validate experimentally the theoretical rates of

convergence predicted by the error analysis.
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Chapter 1

Introduction

The basic objective of this thesis is to discuss and analyze lowest order virtual el-

ement methods (VEMs) for the approximation of evolutionary �uid �ow problems:

Stokes, Navier-Stokes, poroelasticity, and coupled advection-di�usion-reaction and

poroelastic equations on polygonal meshes.

1.1 Physical motivation

Many physical problems in diverse scienti�c and engineering applications are de-

scribed by the evolutionary partial di�erential equations (PDEs). These kinds of

PDEs frequently occur in �uid dynamics and solid mechanics. Here we will focus

on the problems only related to �uid dynamics, and the purpose of this thesis is to

develop robust and e�cient numerical techniques for seeking the numerical solution

of �uid �ow problems of certain types. The viscous incompressible �uid �ow problem

with a small Reynolds number is modeled by a well-known nonlinear equation known

as the Navier-Stokes equation, named after the French engineer physicist Claude-

Louis Navier and Anglo-Irish physicist mathematician George Gabriel Stokes [1]. It

is well known that this problem has paramount importance in many phenomena of

scienti�c and engineering interest. This problem is used to model the ocean currents,

water �ow in a pipe, and air�ow around a wing and hence, helps in predicting the

weather, extraction of oil, design of aircraft and cars, the design of power stations,

the study of blood �ow, analysis of pollution and many other things (see, for instance,

[2, 3]). Moreover, some physical phenomenons are modeled by coupling with Navier-

Stokes equation, for instance, coupled Navier-Stokes and Maxwell's equation to study

magnetohydrodynamics [4]. After many decades of active research, the study (well-

posedness and solution process) of this type of system is still attracting considerable
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attention from many scientists/researchers. In general, the nonlinear problems are

challenging to deal with, therefore, it is advisable to work on the linear counterpart

of these problems known as Stokes equations (linear incompressible �ow problem).

In other words, Stokes equation models a type of �uid �ow problem where advective

inertial forces are small compared to viscous forces, and �uid has a low Reynolds

number (very small as compared to 1). This is a typical situation in �ows where

the �uid velocities are very slow, the viscosities are very large, or the length scales

of the �ow are very small. Such equations are used in the various valuable process

in bioscience, industries, and nature such as understanding of lubrication, swimming

of microorganisms, the �ow of lava, and also occurs in paint, MEMS devices, and in

the �ow of viscous polymers generally. Because of these applications, the �rst two

chapters of this thesis are devoted to the development of suitable numerical schemes

for the approximation of transient Stokes and Navier-Stokes equations.

Next, we focus on the physical phenomenon related to the �uid �ow problems de-

scribing the interaction between the �uid �ow and solid structure (or porous medium).

A porous medium or a porous material is a solid (often called matrix) permeated by

an interconnected network of pores (voids) �lled with a �uid (liquid or gas). Many

natural substances such as rocks, soils, biological tissues, and manufactured materi-

als such as foams and ceramics can be considered as porous media [5]. Porous media

whose solid matrix is elastic and the �uid is viscous, is known as poroelastic. A poroe-

lastic medium is characterized by its porosity, permeability, and properties of its con-

stituents (solid matrix and �uid). The concept of a porous medium originally emerged

in soil mechanics, particularly in the works of Karl von Terzaghi [6, 7] (known as the

father of soil mechanics). However, a more general concept of a poroelastic medium,

independent of its nature or application, is usually attributed to a Belgian-American

engineer Maurice Anthony Biot. He developed the theory of dynamic poroelasticity

(now known as Biot's theory), which gives a complete and general description of the

mechanical behavior of a poroelastic medium [8]. The poroelastic medium is com-

posed of a mixture of incompressible grains forming a linearly elastic skeleton and

interstitial �uid. Biot's equations for the linear theory of poroelasticity are derived

from equations of linear elasticity for the solid matrix, Navier�Stokes equations for

the viscous �uid, and Darcy's law for the �ow of �uid through the porous material.

The deformation of the porous medium is governed by linear elasticity, and thus, the

problem is also known as the linear poroelasticity problem. From an applicative point

of view, it is crucial to design and analyze numerical methods that are robust with
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respect to variation of model parameters since this variation might be signi�cant in

many problems of practical relevance. For example, in the �ltration of �ow in soft

tissue, the permeability is typically of the order of 10−15 m2, whereas common ranges

for the Lamé parameters characterizing the dilation response of the material reach

values within the 107 KPa [9].

Another consideration is that in many applications, species interactions do not

occur in complete isolation. The species are rather immersed or move within (and in-

teract with) a �uid-solid continuum, and the chemical reactions between the species

inevitably a�ect the motion of the �uid. In some circumstances, reciprocal e�ects

might be substantially large, leading to local changes in the observed �ow patterns

[10]. More speci�cally, in the types of problems considered herein, it is assumed that

the chemical reactions are occurring between the two species in a porous medium

saturated with �uid. In biomechanics, real biological tissues are conformed by living

cells, and volume changes due to cell birth and death onset velocity �elds and local

deformation, eventually driving domain growth [11]. Interconnectivity of the porous

microstructure is su�cient to accommodate �uid �owing locally in this case. There-

fore, we suppose that the local �uctuations of a species' concentration are important

enough to a�ect the �uid �ow. In turn, we adopt here a two-way active transport:

the poromechanical deformations a�ect the transport of the chemical species through

advection and also by means of a volume-dependent modi�cation of the reaction

terms, and the solutes' concentration generate active stress resulting in a distributed

load depending linearly on the concentration gradients in the context of microscopic-

macroscopic mechanobiology. The occupancy of the event with additional species

interaction in the �uid �owing through the deformable or elastic porous medium is

described by coupling between the advection-di�usion-reaction (ADR) and the poroe-

lasticity equation. This problem is encountered in rock consolidation and fractures,

swelling of coals and clay, polymer dissolution, moisture within photo-voltaic devices,

and other related disciplines. Few applications are explored in [12], which include

traumatic brain injury and calcium dynamics (not related to cell biomechanics).

We stress that due to the inherent complexity of the coupling structures (men-

tioned above) and the nonlinearity of the involved equations for these models, ob-

taining analytical solutions or even closed-form solutions will be very di�cult, and

also their numerical simulation in complicated scenarios (such as domains with di-

verse types of boundary and transmission conditions) remains far from trivial. The

development of an accurate and e�cient numerical technique for seeking solutions to
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�uid �ow problems is still today a very active research area. This thesis also aims to

develop a uni�ed theoretical framework for the mathematical and numerical analysis

of non-stationary �uid �ow problems, and also other PDE-based models that appear

in the coupling of �uid �ow and transport problems.

1.2 Virtual element methods: applications and de-

velopments

The most challenging problem for the numerical analysis community is introducing

a numerical method that solves PDEs approximately on the complex geometries. In

many realistic situations, the domain on which PDEs have been de�ned consists of

general type elements, and therefore, polygonal/polyhedral mesh (see [13]) is desir-

able. Also, the complex domain can be handled with ease since the hanging nodes

are no longer an obstacle in polygonal meshes. This is possible because any element

having hanging nodes are exploited as a new element with hanging nodes as its ad-

ditional, or new vertices. Hence, local re�nements can be performed on polygonal

meshes using fewer elements, in contrast to the classical mesh re�nement techniques

with triangular meshes, which su�er from the fact that local re�nement propagates

into their neighboring regions. Also, mesh-free methods with the Ck approximations

for solving the problem can be considered to deal with the complex domains; however,

they do not interpolate the given data on nodes, and thus, imposing the boundary

conditions becomes di�cult.

At this juncture, we would like to shed some light on the development of some

numerical schemes that employ polygonal mesh. The initial works on polygonal

mesh began in the early '70s with the seminal works of Wachspress [14]. Since then,

various approaches have been proposed, including polygonal �nite element method

(PFEM) [15], mimetic �nite di�erences method (MFDM) [16], gradient discretization

method (GDM) [17] and recently, VEMs [18], weak Galerkin method (WG) [19] and

hybrid high order method (HHO) [20]. Mesh-free methods motivated PFEMs, which

works for the convex polygonal meshes. However, PFEM requires the shape functions

that consists of rational, logarithmic, and trigonometric functions, which makes the

implementation more involved. Finally, VEM evolved as a natural consequence of

new developments and interpretations of the MFDM in which the degrees of freedom

(DoFs) are associated with local virtual element (VE) spaces. This idea would help
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in designing high-order VEMs in a simple way compared to MFDM when higher-

order elements are used. The WG method generalizes the standard Galerkin method

where classical derivatives and di�erential operators (e.g., gradient, divergence, curl,

etc.) are replaced by weakly de�ned derivatives and weak forms on functions with

discontinuity, whereas the HHO method is linked to the nonconforming counterpart

of VEM.

In view of the applicability of VEM with polygonal meshes, VEMs are proven to

be very impressive and have attracted the scienti�c community as far as a numerical

approximation of PDEs on polygonal meshes is concerned. The local and global VE

spaces that include polynomial and non-polynomial functions on each element were

�rst introduced in [18], and convergence analysis (for di�usion problems) of the pro-

posed VEM was also presented. Later, the detailed implementation/computational

aspects of VEM were discussed in [21]. The presence of polynomial functions in

the VE spaces helps in demonstrating the convergence rates of the proposed VE

schemes. After a close inspection, it is observed that this scheme was inspired by the

MFDM ([22]), which also aim to generalize �nite element methods (FEMs) over the

very general type of polygonal meshes and therefore, can be considered as an exten-

sion of FEMs on the polygonal mesh. In contrast with classical �nite element (FE)

schemes, VEM does not require explicit construction of the discrete basis functions,

and one needs to de�ne suitable DoFs to put the discrete formulation in the matrix

form. This is very desirable while dealing with polygonal meshes and demanding

more accurate solutions, i.e., higher-order approximations. In fact, the word "vir-

tual" stands for the non-explicit behavior of the basis functions corresponding to the

�nite-dimensional spaces de�ned on each element (polygon) used in the discrete for-

mulation, and only DoFs are required for computing the bilinear forms that appear

in the discrete formulation. To de�ne the discrete bilinear forms, the local bilinear

forms can be decomposed into two terms: one with both the entries as polynomial

projections and the other as just the residue (non-polynomial part). For approximat-

ing the non-polynomial part and also to ensure the stability of the discrete bilinear

forms, one needs to add a suitable stabilization term. The proposed stabilization term

must vanish whenever at least one of the entries is a polynomial in order to make

the scheme consistent. Various stabilization terms are satisfying these demands, and

the choice depends on the problems and its discrete formulation (for more details,

we refer to [18, 23]). We remark that the convergence analysis of VEM can be car-

ried out analogously to FEM by introducing projection of the discrete solution onto
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polynomials.

Other fundamental properties of VEM include: making use of non-polynomial

basis functions over arbitrary polygonal/polyhedral meshes [13], the capability of

handling the complicated geometries generally used in solid-mechanics and �uid dy-

namics through general meshes, and usage of approximation spaces containing the

higher-degree polynomial with ease. In view of their computational e�ciency, VEMs

have been developed for various problems within a decade, and few of the basic works

are on general elliptic [24, 25], parabolic [26] and semi-linear [27, 28] problems. In

literature, there are few contributions that dealt with VE approximations for Stokes

[29, 30, 31], Navier-Stokes [32, 33, 34, 35], Darcy and Brinkmann [36], and poroe-

lasticity [37, 38, 39] equations. Based on the high demands, VEM emerged as an

accurate and e�cient numerical scheme on polygonal meshes for solving the PDEs,

and its rapid growth of research studies can be seen in [40, 41, 42, 43, 44] and refer-

ences therein. Further, these methods extended to approximate non-linear problems

[45, 46], the three dimensional problems [47, 48, 49, 50] and coupled problems [51, 52].

These methods also applied to the discretization with degenerate elements [53, 54]

which require only the mesh elements as a union of star-shaped polygons, hence con-

venient for very general discretization. The VE scheme is also developed for the

problems related to �uid dynamics in [35, 36, 55, 56] but still, there are many areas

of �uid �ow problems which are yet to develop.

1.3 Related works and speci�c contributions

There are several numerical techniques proposed in the literature for the approxi-

mations of the evolutionary �uid �ow problem and its related application-oriented

problems. For instance, a wide range of research articles on these problems are

seen through many schemes such as FEM [57], discontinuous Galerkin (DG) method

[58, 59], stabilized FEM [60, 61], non-conforming FEM [62], MFDM [63], �nite vol-

ume methods (FVMs) [64, 65] and so on. Below, in the context of VEM, we highlight

our contributions and related work from the literature for investigating the problems

mentioned in Section 1.1.

Incompressible �ow problems

Considering the applications of unsteady Stokes problems, di�erent numerical tech-

niques have been proposed such as �nite di�erence methods (FDMs) [57], FEMs
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[66, 63, 67, 68], FVMs [69, 64], nonconforming methods [70, 71], DG methods [72]

and so on. We stress that in some of these articles, convergence analysis was carried

out with certain regularity assumptions on the continuous solutions; for instance,

∂tu ∈ [H3(Ω)]2 was used for the establishment of optimal error estimates. However,

Heywood and Rannacher clearly mentioned and explained in [68] that the high regu-

larity of the continuous solution (such as, ‖∂tu‖3,Ω <∞ when t is close to 0) cannot

be achieved in the real sense (for more details, see [68, 73, 74, 75]). Therefore, the pos-

sible remedy is to look for lower-order spaces such as P1−P1,P1−P0; however, these

may not satisfy the discrete inf-sup condition, and suitable stabilizers are required

for circumventing the inf-sup condition. In [76, 77, 78, 61, 79, 80, 81], several stabi-

lized, or penalized FEMs are proposed for the approximations of steady and unsteady

Stokes equations. We remark that the addition of consistent stabilized methods have

their own disadvantages when applied to transient problems, e.g., small-time steps

will lead to instabilities in the pressure approximation, see [82]. A stabilized VE

scheme for a nonstationary version of the Navier-Stokes problem was proposed with

only numerical experiments in [55], while the convergence analysis of the proposed

method was not addressed. The present contribution di�ers from the above proposed

VEM for the Stokes problem in that we use a stable lowest order (k = 1), stabilizer-

free VE scheme for the transient Stokes problem. We have employed lowest order VE

spaces that are divergence-free, satisfy the inf-sup condition, and are regarded as a

natural extension of the VE space de�ned in [29] for the approximation of transient

Stokes equations. Moreover, we have established the optimal error estimates with

minimal realistic regularity assumptions (see [81, 68]) on the continuous solutions.

Transient Navier-Stokes equations have remarkable applications in �uid mechanics

and several numerical techniques such as FEMs [67, 63, 57, 66], FVMs [64, 61, 69],

nonconforming FEMs [79, 71], DG methods [72] and references therein, were proposed

for seeking numerical approximations to the problem in past decades. Similar to the

Stokes problem, the major di�culty lies in choosing the appropriate stable pair of

discrete spaces based on spatial discretization, for instance, these spaces must obey the

inf-sup condition [67]. In this work, we analyze the lowest order VE spaces for velocity

and pressure that obey the inf-sup condition (without adding any stabilization term),

which is used to show the well-posedness of the discrete formulation and establish

the optimal error estimates for velocity and pressure. In literature, there are few

contributions that dealt with VE approximations for Stokes [29, 30, 31] and Navier-

Stokes [32, 33, 34, 35] problems. However, in these articles, a restriction on choosing
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the approximation order, or the degree of involved polynomials (denoted generally by

k) is strictly imposed for VE spaces associated with velocity and pressure in order

to satisfy the required inf-sup condition by the discrete spaces. In other words, it

is mandatory to choose k ≥ 2 in order to obtain stable spaces, and k = 1 can

not be taken due to unavailability of the inf-sup condition for these discrete spaces

until a suitable stabilizer is added [30, 55]. We would like to remark that even the

usage of higher-order approximations is expected to be computationally expensive in

general. Considering these points, we aim here to approach the discrete spaces that

have an approximation of order one and also satisfy the required inf-sup condition

[83]. Therefore, the proposed scheme is considered computationally less expensive

compared to the existing higher-order schemes in the context of VE approximations

for �uid �ow problems due to reduced local DoFs in the case of [83].

Biot's equation

A variety of numerical methods has been used to generate approximate solutions

to Biot's consolidation problem. Modern examples include high-order FDM [84],

FEM [85, 86], nonconforming method [87, 88], DG method [89, 58], FVM [65], WG

method [90, 91], and combined/hybrid discretisation method [92]; we further point

out [93, 94, 37] where the authors present a polygonal discretisation based on HHO

methods and VEM. These schemes are constructed using di�erent formulations of

the governing equations, including primal and several mixed forms. There is an

extensive body of literature on the robust numerical schemes using the di�erent mixed

formulations or weighted norms in [95, 96, 97, 98]. A coupled VEM-�nite volume

formulation for the Biot equations was proposed in [37]. Recently, VEM has also

been developed in [99] with another three-�eld formulation (seen in [100]) for Biot's

equation. For reducing the computational cost, the problem has been inspected using

the stabilized FEMs with low order elements [101, 102].

It is well known from the literature that the standard Galerkin method produces

unstable and oscillatory numerical behavior of the pore pressure for a certain range

of material parameters (small c0) and the stabilization of pore pressure oscillations

has been a subject of extensive research. A well-accepted theory on the cause of this

pressure instability was proposed by Phillips and Wheeler, for more details [85] and

references therein. It was mentioned that if the constrained speci�c storage term is

null (c0 = 0), the permeability of the porous medium is very low, a small-time step

is used. In addition, it was also examined that there exists a locking phenomenon
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when λ is large, or the Poisson ratio approaches 0.5. Due to the occurrence of lock-

ing, the solid skeleton behaves as an incompressible medium, i.e., the deformation

is in a divergence-free state. To avoid the locking phenomenon, the three-�eld non-

symmetric formulation of the Biot's problem (by introducing total volumetric stress as

a new variable) was �rst studied in [103] which is robust for λ→∞. For the approx-

imation of time-dependent poroelasticity, we have proposed locking free VEM based

on three �eld formulation (referring to [103]), and prove the stability of the discrete

schemes without employing Gronwall's inequality. Further, with the help of suitable

projection operators, we derive the error estimates for our time-dependent problem

in natural norms that are robust concerning the dilation modulus of the deformable

porous structure (which tends to in�nity as the Poisson ratio approaches 0.5), and of

the speci�c storage coe�cient (reaching very small values in some regimes).

Advection-di�usion-reaction in poroelastic media

The presence of chemical solutes in so-called active poroelastic materials locally mod-

i�es morphoelastic properties, and these processes can be homogenized to obtain

macroscopic models of poroelasticity coupled with ADR equations, having numerous

applications mentioned in the previous section. From the viewpoint of solvability

analysis of PDEs and/or the theoretical aspects of FE discretizations, the relevant

literature contains few works speci�cally targeting the coupling of di�usion in de-

formable porous media (see [104, 105, 34, 106, 107, 103, 108]). Recently, a system

of multiple-network poroelasticity was studied in [96] with the mixed FE schemes

and developed the stability analysis. As in [96, 103] (also in Chapter 4), we employ

here the three-�eld formulation for the poroelastic part of the problem. However,

we adopt in our model an additional two-way active transport: the poromechanical

deformations a�ect the transport of the chemical species through advection, and also

by means of a volume-dependent modi�cation of the reaction terms; the solutes' con-

centration generates active stress resulting in a distributed load depending linearly

on the concentration gradients. In [12], we have addressed this model, performed a

linear stability analysis to identify suitable ranges for the key coupling parameters,

and conducted a full set of numerical tests in 2D and 3D. Later, in [109], we have

studied the coupled problem through the semidiscrete in-time formulation, and then

Schauder �xed point theorem combined with Fredholm's alternative and standard the-

ory of quasi-linear equations were applied to establish solvability of the introduced

formulation.
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In this thesis, the coupled system is set up in a mixed-primal structure, where

the equations of poroelasticity have a mixed form using displacement, pressure, and a

rescaled total pressure, and the ADR system is also set in a primal form, solving for the

species' concentrations. The advantage of using this approach is that the stability

results are independent of the Lamé constant of the solid, and this is particularly

important to prevent the volumetric locking. By following [109], we propose a fully

discrete scheme by employing backward Euler scheme for time discretization and VE

discretization for space variable, and present convergence analysis for the proposed

fully discrete formulation. In contrast with, e.g., [110, 111], the advecting velocity

in this model was that of the solid (instead of the Darcy velocity), which is not

a primary variable in our formulation, and in turn, gave an extra 1/(∆t) term by

the use of backward Euler scheme, thus complicating the analysis of semi and fully

discrete schemes. We further stress that the complexity in this analysis (which are

not present in the earlier literature) was due to the advective coupling appearing in

the ADR system of equations. Therefore, we have proceeded here with the advection

term containing the displacement instead of velocity to focus on space approximation,

and the analysis can be extended with advecting velocity in a similar fashion.

1.4 Preliminaries

In this section, we introduce some standard notations and basic notions from func-

tional analysis to be used throughout the thesis. Let Ω ⊂ R2 be a bounded, convex

polygonal domain with Lipschitz boundary ∂Ω. For p ∈ [1,∞), let Lp(Ω) denote the

linear space of all (equivalence classes of) Lebesgue measurable functions φ, de�ned

on Ω, that satisfy ∫
Ω

|φ(x)|pdx <∞.

In this connection, the functions are considered to belong to the same equivalence

class if they di�er only on a set of measure zero. The space Lp(Ω), with 1 < p <∞,

and equipped with the norm

‖φ‖Lp(Ω) :=

∫
Ω

|φ(x)|pdx

1/p
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is a Banach space. The space L∞(Ω) is the Banach space of all (equivalence classes

of) Lebesgue measurable and essentially bounded functions, endowed with the norm

‖φ‖L∞(Ω) := ess sup
x∈Ω
|φ(x)|.

It is well known that L2(Ω) is a Hilbert space with respect to the inner product (·, ·)
de�ned by

(φ, ψ) :=

∫
Ω

φ(x)ψ(x)dx.

For s ∈ N and p ∈ [1,∞], the classical Sobolev space W s,p(Ω) is de�ned as the linear

space of all functions φ ∈ Lp(Ω) having distributional derivatives Dαφ ∈ Lp(Ω) for

all multi-indices α of order |α| ≤ s, and is equipped with the norm

‖φ‖W s,p(Ω) = ‖φ‖s,p,Ω :=

∑
|α|≤s

∫
Ω

|Dαφ(x)|pdx

1/p

.

Furthermore, we introduce the semi-norm

|φ|s,p,Ω :=

∑
|α|=s

∫
Ω

|Dαφ(x)|pdx

1/p

.

Analogously, for p =∞,

‖φ‖s,∞,Ω := max
|α|≤s
‖Dαφ‖L∞(Ω) .

The spaces W s,p(Ω) are Banach spaces. For simplicity, we use the abbreviation

Hs(Ω) := W s,2(Ω) and de�ne W 0,p(Ω) := Lp(Ω). We note that Hs(Ω) is a Hilbert

space with respect to the inner product

(φ, ψ)s,Ω :=
∑
|α|≤s

∫
Ω

Dαφ(x)Dαψ(x)dx, ∀φ, ψ ∈ Hs(Ω),

and the induced norm

‖φ‖s,Ω :=

∑
|α|≤s

∫
Ω

|Dαφ(x)|2dx

1/2

.
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The space H1
0 (Ω) is characterized by

H1
0 (Ω) := {φ ∈ H1(Ω) : φ = 0 on ∂Ω}.

The space L2
0 is the space of square-integrable functions with zero mean value, that

is

L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω

q dx = 0}.

Let T be a positive time that de�nes the time interval I := (0, T ], then for p ∈ [1,∞)

and s a non-negative integer, we denote by Lp(0, T ;Hs(Ω)), the Banach (or Bochner-

type) space of all Lp integrable vector valued functions φ(t) : I −→ Hs(Ω) with the

norm given by

‖φ‖Lp(0,T ;Hs(Ω)) :=

 T∫
0

‖φ(t)‖ps,Ω dt

1/p

.

Analogously, L∞(0, T ;Hs(Ω)) is the Banach space of all essentially bounded vector

valued functions φ(t) : I −→ Hs(Ω) endowed with the norm

‖φ‖L∞(0,T ;Hs(Ω)) := ess sup
t∈I
‖φ(t)‖s,Ω .

Next, we state few well known results that will be frequently used in the analysis.

� Cauchy-Schwarz inequality. If {ai}Ni=1 and {bi}Ni=1 are non-negative real

numbers. Then (
N∑
i=1

aibi

)
≤

(
N∑
i=1

a2
i

)1/2( N∑
i=1

b2
i

)1/2

.

� Hölder's inequality. Let φ ∈ Lp(Ω), ψ ∈ Lq(Ω). Then for 1 ≤ p, q <∞ with
1
p

+ 1
q

= 1, we have

∣∣∣∣∣∣
∫
Ω

φ(x)ψ(x)dx

∣∣∣∣∣∣ ≤
∫

Ω

|φ(x)|pdx

1/p∫
Ω

|ψ(x)|qdx

1/q

.

� Poincaré inequality. Let Ω ⊂ R2 be a bounded open subset. Then there
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exists a positive constant C = C(Ω), such that

‖φ‖0,Ω ≤ C|φ|1,Ω, ∀φ ∈ H1
0 (Ω).

� Korn's inequality. For all v ∈ [H1(Ω)]2, we have the inequality for some

constant C,

‖v‖1,Ω ≤ C‖ε(v)‖0,Ω.

� Inf-sup condition. We say that the well-de�ned bilinear form b(·, ·) de�ned

on V×Q satis�es the inf-sup condition if for each q ∈ Q there exists a constant

β > 0 such that

sup
(0 6=)v∈V

b(v, q)

‖v‖V
≥ β‖q‖Q.

� Young's inequality. If a and b are non-negative real numbers, then for every

ε > 0, the following inequality holds

ab ≤ a2

2ε
+
εb2

2
.

� Gronwall's inequality. Let g(t) and h(t) be continuous functions with h(t) ≥
0 on interval t0 ≤ t ≤ t0 + a. If a continuous function φ(t) has the following

property

φ(t) ≤ g(t) +

t∫
t0

φ(s)h(s)ds, t0 ≤ t ≤ t0 + a,

then

φ(t) ≤ g(t) +

t∫
t0

g(s)h(s)exp

 t∫
s

h(τ)dτ

ds, t0 ≤ t ≤ t0 + a,

In particular, when g(t) = C is a non-negative constant, then we have

φ(t) ≤ Cexp

 t∫
t0

h(s)ds

, t0 ≤ t ≤ t0 + a.
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� Discrete Gronwall's inequality. Let ∆t, B, and aj, bj, cj, dj for j ≥ 0 be

non-negative numbers such that

an + (∆t)
n∑
j=0

bj ≤ ∆t
n∑
j=0

cjaj + ∆t
n∑
j=0

dj +B, n ≥ 0.

If (∆t)cj < 1 for all j and γj := (1−∆t cj)−1 for any j, then

an + (∆t)
n∑
j=0

bj ≤ exp

(
∆t

n∑
j=0

γjcj

)(
∆t

n∑
j=0

dj +B
)
, n ≥ 0.

Remark 1.1. Throughout this thesis, the notation C is used to denote a generic

positive constant which may take di�erent values at di�erent places. Also, the vector-

valued functions are denoted with bold letters for clarity.

1.5 Overview

As mentioned before, this thesis focused on developing new VEMs for approximating a

class of unsteady �uid �ow problems; in particular, we have performed a VE analysis

for Stokes, Navier-Stokes, Biot's, and coupled poroelastic-ADR equations. For all

these equations, we have shown the discrete problem is well-posed and derived the

optimal error estimates. Moreover, numerical experiments are conducted at the end

of each chapter in order to support the theoretical �ndings and judge the performance

of the proposed methods. The content of this thesis is divided into six chapters and

organized as follows.

Chapter 1 includes an enormous view of the thesis works and mentions some of

the important applications of problems that we have considered in the thesis, and also

the purpose of VEMs with polygonal meshes while dealing with �uid �ow problems.

An extensive literature of VEMs and their recent developments are also highlighted

in this chapter. Also, we have speci�ed the preliminaries for subsequent chapters.

In Chapter 2, we have proposed a new lowest order VE scheme to approximate

the time-dependent Stokes problem. The discrete formulation (both semi and fully)

is analyzed by newly introduced divergence-free local VE spaces. With the help

of appropriate projection operators onto the polynomials and a new L2 projector,

optimal error estimates are derived with minimal regularity assumptions (without

non-local compatibility conditions).
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In Chapter 3, we have explored applications of VEMs that were introduced in

Chapter 2 for the approximation of transient Navier-Stokes problems. By employing

the backward Euler method for time discretization, a fully discrete scheme is pre-

sented and analyzed. Further, using the Sobolev embedding theorem, interpolation

theorems, and Gronwall's inequality, the stability, and optimal error estimates are

established for both semi and fully discrete schemes.

Chapter 4 is devoted to study VEM for non-stationary linear poroelasticity prob-

lem. Here, by following [103] we have proposed locking free (robust with respect

to λ) three �eld VE formulation, and discuss the well-posedness of both semi and

fully discrete schemes without using Gronwall's inequality. Moreover, optimal error

estimates are derived for all three �elds that appear in the formulation.

In Chapter 5, we aim to develop VEMs for the coupled poroelastic and ADR

equations. By employing the lowest order VE spaces introduced in Chapter 4, and

backward Euler scheme for time derivative, the fully discrete formulation is proposed

and analyzed. We stress that the resultant discrete scheme is designed in such a

manner that it is explicit (even linear) at each time level. The convergence rates

are derived for both spatial and temporal discretization through suitable projection

operators.

Finally, based on computational and theoretical observations made from Chapter

2 to Chapter 5, the core of this thesis is brie�y discussed in Chapter 6. We have also

highlighted the major contributions and critical assessments of each chapter in terms

of its e�ciency and accuracy. We close this chapter by mentioning a few relevant

extensions of this thesis.
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Chapter 2

Stokes equations

The Stokes equation describes a linear incompressible �uid �ow problem which is

governed by an initial-boundary value problem, in terms of the �uid �ow velocity

vector u(t) : Ω → R2 and the scalar pressure �eld p(t) : Ω → R for all t ∈ (0, T ],

satisfying

∂tu− div
(
ν ∇u− pI

)
= f in Ω× (0, T ], (2.0.1a)

divu = 0 in Ω× (0, T ], (2.0.1b)

u = 0 on ∂Ω× (0, T ], (2.0.1c)

u(·, 0) = u0 on Ω× {0}, (2.0.1d)

where Ω is a bounded convex domain in R2, ∂tu is the �ow acceleration, ν ∈ R (> 0)

is the viscosity of the �uid, u0(x) is the initial velocity, and f(x, t) is the external

body force.

This chapter studies VE approximations for the non-stationary incompressible

�ow problem (2.0.1) on polygonal meshes. The proposed discrete scheme is based on

pressure-velocity formulations, and the spaces associated with velocity and pressure

are designed such that they obey the discrete inf-sup (LBB) condition. The spatial

discretization of velocity is based on conforming VE space that consists of piecewise

linear polynomials as well as non-polynomial functions with normal components on

the midpoint of mesh edges as a quadratic polynomial, and the pressure approx-

imation relies on discontinuous piecewise constants. A backward Euler method is

employed for time discretization. By introducing suitable energy and L2 projection

operators, optimal error estimates are established in H1− and L2− norms for both

semi and fully discrete schemes under the minimum regularity assumptions on contin-

uous solutions. Moreover, several numerical experiments are conducted to verify the
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obtained theoretical rate of convergence and examine the performance of the proposed

scheme.

The novelty lies in establishing the optimal error estimates with minimal realistic

regularity assumptions on the continuous solutions of the governing equation (pre-

sented in Lemma 2.1 of the current chapter, also see [81, 68] for more details). The

convergence analysis presented here does not demand the boundedness for the higher-

order derivatives of exact velocity u, such as ‖u‖3,Ω and ‖∂tu‖1,Ω. We stress that

showing these terms are uniformly bounded is equivalent to verifying the global com-

patibility in terms of the initial condition and given load which may not be practical

from the computational point of view (refer [68]). The convergence analysis is car-

ried out with two projectors' help: �rst is the new L2 projection Ph onto discrete VE

space, and the other is the Stokes projection Sh (also see [39]). We have observed that

the proposed fully discrete scheme performs well even with a small-time step through

our numerical experiments, whereas stabilized or penalized FE schemes with lowest

order approximations may not work well [82]. We stress that the analysis presented

here can be extended to more applicable time-dependent problems, such as miscible

displacement problems and coupled �uid-�ow problems. We would like to pursue

these studies shortly so that applications of the proposed scheme become more trans-

parent. Moreover, this chapter can be considered as a bridging stone for the other

model problems in �uid dynamics consisting of the transient Stokes problem.

The content of this chapter is organized as follows: In Section 2.1, we state the

variational formulation, and the minimal regularity assumptions on the continuous

solutions u and p. We also address here the well-posedness of weak formulation

for the problem (2.0.1). By introducing local and global VE spaces, we propose

the discrete formulations with space and time discretization in Section 2.2, and also

discuss the well-posedness of both the schemes. The convergence analysis of the

proposed schemes for the primary variables velocity u and pressure p is established

with the suitable norms in Section 2.3. Several numerical investigations have been

carried out in Section 2.4 to validate the theoretical results achieved in the current

chapter.
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2.1 Variational formulation and its wellposedness

We de�ne the admissible spaces for velocity and pressure, respectively as

V := [H1
0 (Ω)]2 and Q := L2

0(Ω).

Assume that the load function f , ∂tf ∈ L2(0, T ; [H1
0 (Ω)]2) and initial condition u0 ∈

[H2(Ω)]2 ∩V with divu0 = 0, i.e.,

|u0|22,Ω +

∫ T

0

(‖f(s)‖2
1,Ω + ‖∂tf(s)‖2

1,Ω) ds ≤ C.

Now, multiplying (2.0.1a) and (2.0.1b) with test functions v ∈ V and q ∈ Q respec-

tively, and integrating by parts with boundary condition (2.0.1c) yields the following

weak formulation corresponding to (2.0.1): For all t > 0, �nd u(t) ∈ V and p(t) ∈ Q
such that

m(∂tu,v) + a(u,v) + b(v, p) = F (v) ∀v ∈ V, (2.1.1a)

b(u, q) = 0 ∀q ∈ Q, (2.1.1b)

with initial condition (2.0.1d) u(·, 0) = u0 almost everywhere in Ω, and the bilinear

forms de�ned as,

m(u,v) :=

∫
Ω

u · v dx, a(u,v) := ν

∫
Ω

∇u : ∇v dx,

F (v) :=

∫
Ω

f · v dx, b(v, q) := −
∫

Ω

div v q dx.

We note that these bilinear forms satis�es the following properties which will be used

in the subsequent analysis.

� m(·, ·) is positive de�nite form:

m(v,v) = ‖v‖2
0,Ω ∀v ∈ V.

� a(·, ·) is coercive: using Poincare's inequality, we get

a(v,v) = ν|v|21,Ω ≥ C ν‖v‖2
1,Ω ∀v ∈ V.
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� b(·, ·) satis�es the inf-sup condition: there exists β > 0 such that (see [67])

sup
v( 6=0)∈V

b(v, q)

‖v‖1,Ω

≥ β‖q‖0,Ω ∀q ∈ Q.

� a(·, ·) is continuous: the Cauchy Schwarz inequality gives

a(u,v) ≤ C‖u‖1,Ω‖v‖1,Ω ∀u,v ∈ V.

� F (·) is continuous: again the Cauchy-Schwarz inequality gives

F (v) ≤ C‖f‖0,Ω‖v‖1,Ω ∀v ∈ V.

In view of the above mentioned stability results, it is easy to show that (2.1.1) has a

unique solution (u, p) ∈ V×Q and also satis�es the following bounds, for details we

refer to [67].

‖u(t)‖2
0,Ω +

∫ t

0

(
ν‖∇u(s)‖2

0,Ω + ‖∂tu(s)‖2
0,Ω + ‖p(s)‖2

0,Ω

)
ds

. ‖u0‖2
0,Ω +

∫ t

0

‖f(s)‖2
0,Ω ds.

(2.1.2)

At this end, we emphasis that the continuous solution (u, p) possess the following

regularity estimates, refer [68, 60, 112] for proof.

Lemma 2.1. Assume Ω is a smooth domain then for a given f , the problem (2.1.1)

has a unique solution (u, p) and satis�es

sup
0<t≤T

(‖∂tu‖2
0,Ω + |u|22,Ω + ‖p‖2

1,Ω) ≤ C, (2.1.3)

sup
0<t≤T

σ(t)‖∂tu‖2
1,Ω +

∫ T

0

σ(t)(‖∂ttu‖2
0,Ω + ‖∂tu‖2

2,Ω + ‖∂tp‖2
1,Ω) dt ≤ C, (2.1.4)

where σ(t) := min{1, t}.

The regularity assumption on the continuous solutions mentioned in the above

lemma will be used in establishing the error estimates reported in Section 2.3.
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2.2 Virtual element formulation

In this section, we propose the VE formulation and discuss its well-posedness. We

proceed by introducing new VE spaces (associated with velocity and pressure �elds)

through de�ning the required projection operators onto piecewise polynomials.

2.2.1 Projection operators and virtual element spaces

Let {Th}h>0 be the family of partitions of the closed domain Ω̄ into polygons K

of diameter hK , mesh size h := maxK∈Th hK and boundary ∂K. Also, e denotes a

generic edge of any element K; N v
K stands for the total number of vertices in K, and

Vi, 1 ≤ i ≤ N v
K represent any vertex in K. We denote the unit normal pointing

outwards K by nK with neK := nK |e, a unit normal vector on edge e, and the unit

tangent vector along edge e as teK for all e ∈ ∂K. We also suppose that the polygonal

mesh Th satisfy the following assumptions (refer [32]):

� (A1) Each K is open and simply connected (convex or concave) sets whose

boundary ∂K is a non-intersecting poly-line consisting of a �nite number of

straight line segments;

� (A2) For every h and every K ∈ Th, there exists CT > 0 such that the ratio

between the shortest edge and hK is larger than CT ;

� (A3) Each K ∈ Th is star-shaped with respect to every point within a ball of

radius CT hK .

In what follows, we denote the norm and seminorm in local space Hs(K), s > 0

for any K ∈ Th as ‖ · ‖s,K and | · |s,K respectively. The space Pk(S) denotes the

space of polynomials of degree ≤ k for any integer k ≥ 0 and a subset S of R2; and

W⊥ as the orthogonal complement of any space W . Denoting the vector space for

polynomial functions over R2 by [Pk(K)]2 then de�ne a new polynomial vector space

G(K) ⊆ [P1(K)]2 as G(K) := ∇P2(K). We note that the orthogonal complement

G⊥(K) has dimension 1 and generated by a vector function g⊥ := [ȳ,−x̄] where x̄, ȳ

are scaled functions in polygon K.

Before proceeding to de�ne the VE spaces, the prerequisites are mentioned for

further analysis. The energy operator Π∇
K : [H1(K)]2 → [P1(K)]2 is de�ned as,

(∇(Π∇
Kv − v),∇p1)0,K = 0, P 0,K(Π∇

Kv − v) = 0 ∀ p1 ∈ [P1(K)]2,v ∈ [H1(K)]2,
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where P 0,Kv := 1
Nv

K

∑Nv
K

i=1 v(Vi) take care of the projection onto constants.

The local space B(∂K) on the boundary ∂K is

B(∂K) := {v ∈ [C0(∂K)]2 : v|e · neK ∈ P2(e),v|e · teK ∈ P1(e) ∀e ∈ ∂K}.

Then we recall the local space from [29] on each element K given as

Wh(K) := {vh ∈ [H1(K)]2 ∩ B(∂K) :

(−∆vh +∇s)|K = 0,

div vh|K = cd ∈ P0(K)
for some s ∈ L2(K)},

for cd := 1
|K|(
∫
∂K
vh · nK ds). The well-de�ned space Wh(K) has dimension 3N v

K .

We can note that the local space Wh(K) is motivated from the Bernardi-Raugel FE

space Vfem [67, 29], and [P1(K)]2 is subset of Vfem as well as Wh(K). The DoFs for

local space Wh(K) are: for any vh ∈Wh(K),

� (Dv1) the value of vh at the vertices of element K;

� (Dv2) the moments of normal component of vh on each edge on ∂K, that is,∫
e

vh · neK ds ∀e ∈ ∂K.

Figure 2.1: DoFs for velocity(with blue dot and normal moment), and pressure (red
square)

Lemma 2.2. The DoFs for the local space Wh(K) are (Dv1)− (Dv2).

Proof. The number of functionals (Dv1) − (Dv2) are 3N v
K , which is also equal to

the dimension of local space Wh(K). Suppose that vh ∈ Wh(K) and its value on

(Dv1)−(Dv2) vanishes then we show that vh vanishes inK. The components vh|e ·teK ,
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vh|e · neK are polynomials, and it can be computed exactly through quadrature rules

and DoFs which implies that vh|e · neK and vh|e · teK vanishes on all edges e ∈ ∂K

giving vh|e = 0 on each e ∈ ∂K. Also, vh|e · neK = 0 implies div vh vanishes trivially

in K. Using integration by parts and vh = 0 on ∂K, we obtain

|vh|21,K = −
∫
K

(∆vh) · vh +

∫
∂K

((∇vh)nK) · vh = −
∫
K

(∆vh) · vh.

Note that (−∆vh +∇s)|K = 0 for some s ∈ L2(K). Again applying integration by

parts leads to

|vh|21,K = −
∫
K

∇s · vh =

∫
K

div vh s−
∫
∂K

s (vh · nK).

The semi-norm of vh in K is zero with vh = 0 on ∂K then Poincaré inequality imply

vh = 0 in K.

Remark 2.1. The VE space Wh(K), introduced in [29], can be used here, however,

this leads to a suboptimal convergence result for velocity in the L2− norm. Hence,

for deriving optimal L2 error estimates, we de�ne a modi�ed version of space Wh(K)

whose idea was �rst introduced in [24] for elliptic problem, and in [36, 32] for sta-

tionary Brinkmann and Navier-Stokes problems.

We proceed by de�ning the required local L2-projection Π0
K : [L2(K)]2 → [P1(K)]2

as

(Π0
Kv − v,p1)0,K = 0, ∀p1 ∈ [P1(K)]2.

This operator will help us in de�ning the discrete bilinear form that will appear

in the discrete formulation. The term (vh,p1)0,K is not computable ∀vh ∈ Wh(K),

and this motivate us to follow [32] (considered with k ≥ 2) to de�ne a modi�ed VE

space to make it calculable. First, we de�ne the extended supplementary space Ṽh

element-wise as

Ṽh(K) := {vh ∈ [H1(K)]2 ∩ B(∂K) :

(−∆vh +∇s)|K ∈ G⊥(K)

div vh|K = cd ∈ P0(K),
for some s ∈ L2(K)}.

The dimension of space Ṽh(K) is 3N v
K + 1.

Lemma 2.3. The DoFs for the local discrete space Ṽh(K) are: (Dv1), (Dv2), and
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� (Dv3) the moment
∫
K
vh · g⊥ dx with g⊥ ∈ G⊥(K).

Proof. The number of functionals in (Dv1) − (Dv3) are 3N v
K + 1, and same as the

dimension of the local space Ṽh(K). Suppose vh ∈ Ṽh(K) and its value on (Dv1)−
(Dv3) vanishes then from proof of Lemma 2.2, vh|e = 0 on each e ∈ ∂K and div vh = 0

in K. Note that −∆vh +∇s = g⊥ for g⊥ ∈ G⊥(K). Then, use of (Dv3) implies

|vh|21,K =

∫
K

(g⊥ −∇s) · vh =

∫
K

div vh s−
∫
∂K

s (vh · nK).

Hence, the Poincaré inequality yields vh = 0.

Now we de�ne the local VE spaces Vh(K) and Qh(K) associated with the velocity

u and pressure p, respectively as follows,

Vh(K) := {vh|K ∈ Ṽh(K) : (Π∇
Kvh − vh, g⊥)0,K = 0 for g⊥ ∈ G⊥(K)},

and Qh(K) := P0(K).

The degree of freedom for Qh(K) is

� (Dq) value of qh at any point in K.

Lemma 2.4. The DoFs for the local discrete space Vh(K) are same as that for local

space Wh(K), that is (Dv1)− (Dv2).

Proof. The dimension of local VE space Vh(K) is equal to dimension of Ṽh(K) minus

one (due to restriction in the local space). This gives the dimension of local VE space

Vh(K) is same as the number of DoFs for Wh(K). Assuming that the values of vh at

vertices and the moment
∫
e
(vh ·nKe ) ds vanishes for vh ∈ Vh(K). Recalling the proof

of Lemma 2.3, we get vh|e = 0 for all e ∈ ∂K. Also, the projection Π∇
Kvh = 0 since

it is computed exactly from (Dv1)-(Dv2). Then (vh, g
⊥)0,K = (Π∇

Kvh, g
⊥)0,K = 0

for vh ∈ Vh(K). Noting that Vh(K) ⊂ Ṽh(K) gives vh ∈ Ṽh(K) and values of vh

vanishes at (Dv1)-(Dv3) then the use of Lemma 2.3 conclude vh vanishes in K.

Next, we de�ne the global �nite-dimensional VE spaces as follows,

Vh := {vh ∈ V : vh|K ∈ Vh(K) ∀K ∈ Th},

Qh := {qh ∈ Q : qh|K ∈ Qh(K) ∀K ∈ Th}.
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It can be clearly seen that the DoFs for the global discrete space Vh are:

� the values of vh at the internal vertices of each K ∈ Th;

� the moments of vh · neK , that is
∫
e
(v · neK) ds for each internal edge e on ∂K,

K ∈ Th.

The DoFs for Qh are

� the values of qh ∈ Qh at any point in K for each K ∈ Th.

Let NV
K and NQ

K denotes the dimension of local spaces Vh(K) and Qh(K), respec-

tively; And NV and NQ as the dimension of Vh and Qh, respectively. The notation

dofr(s) stands for the r−th degree of a given function s.

2.2.2 VE formulation and well-posedness analysis

On each element K and for uh,vh ∈ Vh(K) and qh ∈ Qh(K), we de�ne the following

local bilinear forms,

mK
h (uh,vh) := mK(Π0

Kuh,Π
0
Kvh) + S0,K((uh −Π0

Kuh), (vh −Π0
Kvh)),

aKh (uh,vh) := aK(Π∇
Kuh,Π

∇
Kvh) + νS∇,K(uh −Π∇

Kuh, (uh −Π∇
Kvh),

where

mK(uh,vh) :=

∫
K

uh · vh dx, aK(uh,vh) := ν

∫
K

∇uh : ∇vh dx,

and the local stabilization forms S0,K(·, ·) and S∇,K(·, ·) are de�ned as (see [24, 30]):

S0,K(u,v) := γ0
Karea(K)

NV
K∑

i,j=1

dofi(u)dofj(v), ∀u,v ∈ Ker(Π0
K),

S∇,K(u,v) := α∇K

NV
K∑

i,j=1

dofi(u)dofj(v), ∀u,v ∈ Ker(Π∇
K ),

where γ0
K and α∇K are some positive constants independent of hK . In our numerical

tests, we have taken γ0
K = 1 and α∇K = 1. Let Φi, i = 1, 2 · · ·NV

K are the canonical

basis functions for the virtual space Vh(K) de�ned as:

dofi(Φj) = δij.
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Then under the assumption (A2), it is easy to see that aK(Φi,Φi) ' 1 andmK(Φi,Φi) '
area(K). Therefore, the local stabilization terms S0,K(·, ·) and S∇,K(·, ·) satis�es the
following, see also [18].

γ∗m
K(vh,vh) ≤ S0,K(vh,vh) ≤ γ∗mK(vh,vh) ∀vh ∈ Ker(Π0

K),

α∗a
K(vh,vh) ≤ S∇,K(vh,vh) ≤ α∗aK(vh,vh) ∀vh ∈ Ker(Π∇

K ),
(2.2.1)

where γ∗, γ
∗, α∗, α

∗ > 0 are constants independent of diameter hK . Thus, the following

holds for each K ∈ Th,

� Stability: There exists positive constants Cγ, C
γ, Cα, C

α, independent of hK ,

such that ∀vh ∈ Vh(K),

Cγm
K(vh,vh) ≤ mK

h (vh,vh) ≤ CγmK(vh,vh),

Cαa
K(vh,vh) ≤ aKh (vh,vh) ≤ CαaK(vh,vh).

(2.2.2)

� Consistency: For all p1 ∈ [P1(K)]2 and vh ∈ Vh(K),

mK
h (p1,vh) = mK(p1,Π

0
Kvh) = mK(p1,vh),

aKh (p1,vh) = aK(p1,Π
∇
Kvh) = aK(p1,vh).

(2.2.3)

The load function is locally de�ned as,

FK
h (vh) := (fh,vh)0,K with fh|K := Π0

Kf .

Now considering the above de�ned local forms and local bilinear form

bK(v, q) := −
∫
K

div v q dx,

then the global discrete bilinear forms for all uh,vh ∈ Vh and qh ∈ Qh are de�ned as

follows,

mh(uh,vh) :=
∑
K∈Th

mK
h (uh,vh), b(vh, qh) :=

∑
K∈Th

bK(vh, qh),

ah(uh,vh) :=
∑
K∈Th

aKh (uh,vh),
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and the load term as

Fh(vh) :=
∑
K∈Th

FK
h (vh).

With the help of above de�ned discrete bilinear forms, we de�ne semi-discrete formu-

lation corresponding to the weak form (2.1.1a)-(2.1.1b) as: For each t ∈ (0, T ], �nd

uh(t) ∈ Vh and ph(t) ∈ Qh such that

mh(∂tuh,vh) + ah(uh,vh) + b(vh, ph) = Fh(vh) ∀vh ∈ Vh, (2.2.4a)

b(uh, qh) = 0 ∀qh ∈ Qh, (2.2.4b)

with uh(0) as an appropriate approximation of the initial velocity u0, de�ned later

in Section 2.3. In view of the stability properties of S0,K(·, ·) and S∇,K(·, ·) given in

(3.2.1), we have

� mh(·, ·) is continuous:

mh(uh,vh) . C‖uh‖0,Ω‖vh‖0,Ω ∀uh,vh ∈ Vh.

� ah(·, ·) is coercive: For all vh ∈ Vh, we get

ah(vh,vh) =
∑
K∈Th

(
aK(Π∇

Kvh,Π
∇
Kvh) + S∇,K((I−Π∇

K )vh, (I−Π∇
K )vh)

)
≥ ν

∑
K∈Th

(
‖Π∇

Kvh‖2
1,K + α∗‖(I−Π∇

K )vh‖2
1,K

)
≥ C ν‖vh‖2

1,Ω.

� ah(·, ·) is continuous:

ah(uh,vh) ≤ Cν‖uh‖1,Ω‖vh‖1,Ω ∀uh,vh ∈ Vh.

� Fh(·) is continuous:

Fh(vh) ≤
∑
K∈Th

‖Π0
Kf‖0,K‖vh‖0,K ≤ C‖f‖0,Ω‖vh‖1,Ω ∀vh ∈ Vh.

Lemma 2.5. Assume that the bilinear form b(·, ·) satis�es discrete inf-sup condition

on Vh×Qh then the semi-discrete problem (2.2.4) has a unique solution uh ∈ Vh for
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given uh(0) and satis�es (for all t ∈ [0, T ]),

‖uh(t)‖2
1,Ω +

∫ t

0

(ν‖uh(s)‖2
1,Ω + ‖∂tuh(s)‖2

0,Ω + ‖ph(s)‖2
0,Ω) ds

. ‖uh(0)‖2
1,Ω +

∫ t

0

‖f(s)‖2
0,Ω ds.

(2.2.5)

Proof. The properties of the discrete bilinear forms ah(·, ·), b(·, ·), discrete linear func-
tional Fh(·) and the well-known theorems from ordinary di�erential equations implies

that the semi-discrete problem (2.2.4) has a unique solution, see also [68]. Taking

vh = uh in (2.2.4a) gives

1

2

d

dt
‖uh‖2

0,Ω + ν‖uh‖2
1,Ω ≤ C‖f‖0,Ω‖uh‖0,Ω.

Employing the Young's inequality and then integrating from 0 to t imply

‖uh(t)‖2
0,Ω + ν

∫ t

0

‖uh(s)‖2
1,Ω ds . ‖uh(0)‖2

0,Ω +

∫ t

0

‖f(s)‖2
0,Ω ds.

Again considering (2.2.4a) with vh = ∂tuh and in similar manner, we get

ν‖uh(t)‖2
1,Ω +

∫ t

0

‖∂tuh(s)‖2
0,Ω ds . ν‖uh(0)‖2

1,Ω +

∫ t

0

‖f(s)‖2
0,Ω ds.

Thus the above bounds and discrete inf-sup condition lead to (2.2.5).

Below, we state the well known stability results for the solution of the problem

(2.2.4) in terms of σ(t).

Lemma 2.6. The discrete solution (uh(t), ph(t)) ∈ Vh×Qh of the problem (2.2.4a)-

(2.2.4b) satis�es

sup
0<t≤T

(‖∂tuh‖2
0,Ω + ‖uh‖2

2,Ω + ‖ph‖2
1,Ω) ≤ C, (2.2.6)

sup
0<t≤T

σ(t)‖∂tuh‖2
1,Ω +

∫ T

0

σ(t)(‖∂ttuh‖2
0,Ω + ‖∂tuh‖2

2,Ω + ‖∂tph‖2
1,Ω) dt ≤ C. (2.2.7)

The proof of this lemma based on the properties of bilinear forms and integration

by parts. Therefore, we skip the proof here, and refer to [112, 60, 81] and the references

within.
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2.2.3 Fully-discrete scheme

For the approximation of time derivative, we employ the backward Euler scheme

by considering its simplicity and unconditional stability, and in this connection, we

discretize the time interval [0, T ] into the discrete points tn/subinterval [tn−1, tn],

where tn = n∆t for n = 1, . . . , N and ∆t = T
N
. We de�ne δt as an approximation of

time derivative at time tn for any discrete function gnh as

δtg
n
h :=

gnh − gn−1
h

∆t
.

In order to avoid the ambiguity in notations, the solution of semi-discrete scheme and

fully discrete scheme at time t = tn, will be denoted by uh(tn) and unh, respectively.

With above notation, the fully discretize scheme corresponding to the continuous

formulation (2.1.1a)-(2.1.1b) read as: Given initial conditions u0
h := uh(0), �nd unh ∈

Vh, p
n
h ∈ Qh for each n = 1, . . . , N such that

mh(δtu
n
h,vh) + ah(u

n
h,vh) + b(vh, p

n
h) = F n

h (vh) ∀vh ∈ Vh, (2.2.8a)

b(unh, qh) = 0 ∀qh ∈ Qh. (2.2.8b)

Since Vh and Qh are �nite-dimensional spaces, (2.2.8) can be considered as a sys-

tem of NV +NQ linear algebraic equations in NV +NQ unknowns for each n. Taking

vh = unh, qh = pnh, f = 0 and uh(0) = 0 in (2.2.8), and using the stability properties

of mh(·, ·) and ah(·, ·) given in (2.2.2) together with discrete inf-sup condition of b(·, ·)
implies unh = 0 and pnh = 0, which in turn, assure the uniqueness of the solution of

(2.2.8). Now again using the structure of linear system, uniqueness implies existence.

Moreover, the solution unh ∈ Vh and p
n
h ∈ Qh of (2.2.8) are bounded as follows,

max
1≤j≤n

‖ujh‖
2
1,Ω +

n∑
j=1

(ν‖ujh‖
2
1,Ω + ‖δtujh‖

2
0,Ω + ‖pjh‖

2
0,Ω)

≤ C
(
‖uh(0)‖2

1,Ω +
n∑
j=1

‖f j‖2
0,Ω

)
.

(2.2.9)

2.3 Convergence analysis

In this section, we develop the error estimates for both semi-discrete and fully discrete

schemes with minimal realistic regularity assumptions on the continuous solution that
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are speci�cally mentioned in Lemma 2.1 and 2.6. With the help of two projection

operators: L2 projection Ph onto discrete space Vh, and the Stokes projection Sh,

we derive the error estimates of velocity in H1 and L2 norms, and for pressure in L2

norm. We stress that, in general, higher-order regularity is needed for establishing the

optimal error estimates; however, we derive these estimates with minimum regularity

assumptions, and therefore this can be considered as one of the main contributions

of this chapter. We start with the following auxiliary results used frequently in our

subsequent analysis.

Lemma 2.7. Let uπ ∈ [P1(K)]2 be the polynomial approximation of u. Under the

regularity assumption on the polygonal mesh (mentioned in Section 2.2), there exists

a positive constant C independent of h such that (see [113, 18])∑
K∈Th

(‖u− uπ‖0,K + hK |u− uπ|1,K) ≤ Ch2|u|2,Ω. (2.3.1)

Lemma 2.8. For each u ∈ V ∩ [Hs+1(Ω)]2 with 0 ≤ s ≤ 1 and under the regu-

larity assumption on the polygonal mesh (mentioned in Section 2.2), there exist an

interpolant uI ∈ Vh satisfying

‖u− uI‖0,Ω + h |u− uI |1,Ω ≤ Chs+1|u|s+1,Ω. (2.3.2)

Proof. By introducing a piecewise linear Clément interpolant uc ∈ [H1(Ω)]2 of u

de�ned on sub-triangulation (formed by joining the vertices of polygon K with its

barycentre) of the polygon K and proceeding analogously to the proof of Proposition

4.2 given in [30], it is easy to see that there exists an interpolant wI ∈Wh through

combining on each K such that

‖u−wI‖0,Ω + h |u−wI |1,Ω ≤ Chs+1|u|s+1,Ω.

Now using the estimates of wI ∈Wh, we establish the interpolant estimates for the

modi�ed space Vh by following [32]. For this purpose, we de�ne interpolant uI ∈ Vh

locally on each element K as dofi(uI) = dofi(wI), 1 ≤ i ≤ 3N v
K . Since the spaces

Wh(K) and Vh(K) are same on the boundary of K containing piecewise linear along

the edge and piecewise quadratic along the normal component at mid point on each

edge. Thus, uI = wI on ∂K. By de�nition of local spaces, we get div(uI −wI) = 0

in each K and also, the computation through DoFs yields Π∇
KuI = Π∇

KwI .
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Again, in view of de�nition of local space Vh(K), we have −∆uI − ∇s2 = g⊥ for

some s2 ∈ L2
0(K), g⊥ ∈ G⊥(K). Now de�ne zh := uI − wI . Note that from the

de�nition of Vh(K) and for h⊥ ∈ G⊥(K), we have∫
K

zh · h⊥ =

∫
K

(Π∇
KuI −wI) · h⊥ =

∫
K

(Π∇
KwI −wI) · h⊥. (2.3.3)

Hence, zh ∈ [H1(K)]2 solve the problem: �nd (zh, ŝ, g
⊥) ∈ [H1

0 (K)]2×L2
0(K)×G⊥(K)

such that for all (w, q,h⊥) ∈ [H1
0 (K)]2 × L2

0(K)× G⊥(K),

aK(zh,w) + bK(w, ŝ) + cK(w, g⊥) = 0,

bK(zh, q) = 0,

cK(zh,h
⊥) = (Π∇

KwI −wI ,h
⊥)0,K ,

(2.3.4)

where the bilinear form cK(zh,h
⊥) :=

∫
K
zh · h⊥ dx. By de�ning a scaled norm on

G⊥(K), it has been shown in [32] that bK(·, ·) + cK(·, ·) satis�es the inf-sup condition

on each K, and hence an appeal to general saddle point formulations will guarantee

the well-posedness of (2.3.4) on each K. Therefore, using the stability of the solution

of Stokes problem, zero mean value of (Π∇
KwI − wI) and stability property of Π∇

K

with respect to | · |1,K , i.e., |Π∇
Kv|1,K ≤ C|v|1,K ∀v ∈ V, we infer that (see Theorem

4.1 in [32] for more details)

|zh|1,K ≤ C|Π∇
KwI −wI |1,K ≤ |(I−Π∇

K )(wI − u)|1,K + |(I−Π∇
K )u|1,K

≤ ChsK |u|s+1,K .

Using the scaled Poincaré inequality for the L2 estimate of zh ∈ [H1
0 (K)]2, we achieve

the required result (2.3.2) with an application of triangle's inequality.

Lemma 2.9. The bilinear form b(·, ·) satis�es the discrete inf-sup condition on Vh×
Qh, that is, there exists a βh > 0 such that

sup
(06=)vh∈Vh

b(vh, qh)

‖vh‖1,Ω

≥ βh‖qh‖0,Ω ∀qh ∈ Qh. (2.3.5)

Proof. The discrete inf-sup condition on spaces Wh and Qh has been established

in [22], and the proof is essentially based on the DoFs for the space Wh as well

as the estimates of interpolant operator in Wh. Also, the DoFs of the modi�ed

space Vh and original space Wh are same, we only provide a sketch of the proof of
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(2.3.5). First considering the interpolant vI de�ned in Lemma 2.8, we de�ne operator

πh : V −→ Vh by using the DoFs of Vh as follows,

πhv(Vi) = vI(Vi) ∀ vertices Vi in Th∫
e

πhv · neK =

∫
e

v · neK ∀e ∈ ∂K, K ∈ Th.
(2.3.6)

Since qh ∈ P0(K), an application of Gauss divergence theorem and (2.3.6) on each

element K, immediately gives

b(πhv − v, qh) = 0 ∀v ∈ V and qh ∈ Qh. (2.3.7)

Moreover, using the similar arguments used in the proof of Lemma 4.3 of [22] together

with Lemma 2.8, it is not hard to see that (see also [43, 30])

‖πhv‖1,Ω ≤ C‖v‖1,Ω. (2.3.8)

Since continuous inf-sup conditions holds for the space V and Q, the condition (2.3.7)

and bound (2.3.8) concludes the proof of (2.3.5) by recalling the standard Fortin's

trick.

De�ning the continuous kernel space X and discrete kernel space Xh as,

X := {v ∈ V : b(v, q) = 0 ∀q ∈ Q} = {v ∈ V : div v = 0},

Xh := {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh} = {vh ∈ Vh : div vh = 0}.

We note that for a given v ∈ X, we have the following approximation property for

the space Xh as a consequence of the discrete inf-sup condition given in Lemma 2.9

(see [63] and also [32]):

inf
zh∈Xh\{0}

‖v − zh‖1,Ω ≤ inf
vh∈Vh\{0}

‖v − vh‖1,Ω. (2.3.9)

Now, for given u, p (solutions of the continuous problem (2.1.1)), we de�ne the

classical Stokes projection Sh(u, p) := (Su
hu, S

p
hp) ∈ Vh ×Qh (see [63] and [67]) that

satis�es

ah(S
u
hu,vh) + b(vh, S

p
hp) = a(u,vh) + b(vh, p) ∀vh ∈ Vh, (2.3.10a)
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b(Su
hu, qh) = b(u, qh) ∀qh ∈ Qh. (2.3.10b)

Note that use of (2.3.10b) and (2.1.1b) implies b(Su
hu, qh) = 0 for all qh ∈ Qh and

thus, divSu
hu = 0 and Su

hu ∈ Xh.

Below, we derive estimates of the Stokes projection Sh by using the properties of

discrete bilinear forms and duality arguments for the L2 estimates.

Lemma 2.10. Let (u, p) ∈ V ×Q be the solution of the continuous problem (2.1.1)

and (Su
hu, S

p
hp) ∈ Vh × Qh satis�es (2.3.10), then there exists a positive constant C

independent of h such that

‖u− Su
hu‖0,Ω + h(|u− Su

hu|1,Ω + ‖p− Sphp‖0,Ω) ≤ Ch2(|u|2,Ω + |p|1,Ω). (2.3.11)

Proof. Let wh = (vh − Su
hu) for any vh ∈ Xh then divwh = 0. The following yields

by using stability and consistency of ah(·, ·), and Lemma 2.7,

C|wh|21,Ω ≤ ah(wh,wh) = ah(vh,wh)− ah(Su
hu,wh)

=
∑
K∈Th

(
aKh (vh − uπ,wh)− aK(u− uπ,wh)

)
≤ C

(
h |u|2,Ω + |u− vh|1,Ω

)
|wh|1,Ω.

The triangle's inequality, taking in�mum over vh ∈ Xh then use of inequality (2.3.9)

and the application of Lemma 2.8 gives

|u− Su
hu|1,Ω ≤ C

(
h |u|2,Ω + inf

vh∈Xh

|u− vh|1,Ω
)

≤ C
(
h |u|2,Ω + inf

vh∈Vh

|u− vh|1,Ω
)
≤ C h |u|2,Ω. (2.3.12)

For pressure estimates, take any qh ∈ Qh then the discrete inf-sup condition gives

βh‖qh − Sphp‖0,Ω ≤ sup
vh∈Vh\{0}

b(vh, qh − Sphp)
|vh|1,Ω

.

Using (2.1.1), (2.2.4), and (2.3.1) for vh ∈ Vh, we arrive at

b(vh, qh − Sphp) = b(vh, qh − p) + b(vh, p− Sphp)

= b(vh, qh − p) + (ah(S
u
hu,vh)− a(u,vh))
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= b(vh, qh − p) +
∑
K∈Th

(aKh (Su
hu− uπ,vh)− aK(u− uπ,vh))

≤ C (‖p− qh‖0,Ω + h|u|2,Ω)|vh|1,Ω.

Again the best approximation properties of Qh and triangle inequality gives

‖p− Sphp‖0,Ω ≤ Ch(|u|2,Ω + |p|1,Ω). (2.3.13)

Next we use the duality arguments in order to achieve the L2 estimates for velocity.

For given g ∈ [L2(Ω)]2, �nd (ϕ, ζ) ∈ V ×Q such that

a(ϕ,v) + b(v, ζ) = (g,v) ∀ v ∈ V,

b(ϕ, q) = 0 ∀ q ∈ Q.
(2.3.14)

Since the domain Ω is convex, the regularity theory of Stokes problem yield that the

solution ϕ and ζ of (2.3.14) satisfy

|ϕ|2,Ω + |ζ|1,Ω ≤ C‖g‖0,Ω. (2.3.15)

Taking v = g := u−Su
hu in (2.3.14), then the Stokes projection (2.3.10), interpolant

ϕI ∈ Vh, consistency of ah(·, ·) from (2.2.3) and use of (2.3.14) for q = Sphp− p gives

‖u− Su
hu‖2

0,Ω = a(u− Su
hu,ϕ) + b(u− Su

hu, ζ)

= a(u− Su
hu,ϕ−ϕI) + b(u− Su

hu, ζ − qh) + a(u− Su
hu,ϕI)

= a(u− Su
hu,ϕ−ϕI) + b(u− Su

hu, ζ − qh) + b(ϕ−ϕI , S
p
hp− p)

+
∑
K∈Th

(
aKh (Su

hu− uπ,ϕI −ϕπ)− aK(Su
hu− uπ,ϕI −ϕπ)

)
.

Using continuity of a(·, ·), ah(·, ·) and b(·, ·), together with Lemma 2.7, 2.8, estimates

(2.3.12), (2.3.13), and the best approximation of ζ, we easily obtain

a(u− Su
hu,ϕ−ϕI) + b(u− Su

hu, ζ − qh) + b(ϕ−ϕI , S
p
hp− p)

+
∑
K∈Th

(
aKh (Su

hu− uπ,ϕI −ϕπ)− aK(Su
hu− uπ,ϕI −ϕπ)

)
≤ Ch2

(
|u|2,Ω + |p|1,Ω

)
(|ϕ|2,Ω + |ζ|1,Ω).

Finally the bound (2.3.15) concludes the estimates (2.3.11).
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Next we de�ne the L2 projection Ph: [L2(Ω)]2 → Vh such that

mh(Phv,vh) = m(v,vh) ∀vh ∈ Vh, (2.3.16)

which has the following estimates.

Lemma 2.11. There exists a constant C independent of h such that

‖v − Phv‖0,Ω ≤ Ch2|v|2,Ω. (2.3.17)

Proof. We can write v−Phv = (v−vI)+(vI−Phv) and then denote δh = Phv−vI .
Thus, an application of stability and consistency of mh(·, ·) together with (2.3.1) and

(2.3.16) yields

C‖Phv − vI‖2
0,Ω ≤ m(v, δh)−mh(vI , δh)

=
∑
K∈Th

(
mK(v − vπ, δh)−mK

h (vI − vπ, δh)
)
≤ Ch2|v|2,Ω‖δh‖0,Ω.

A use of triangle's inequality and the estimates given in (2.3.2) gives the L2 estimates.

2.3.1 H1 estimate for velocity

We begin by introducing ηh(t) := (Phu − uh)(t) and θh(t) := (Su
hu − uh)(t), and

prove the following lemma that plays a crucial role in establishing the optimal error

estimates for the velocity in H1− norm which will be given by our main Theorem 2.1.

Lemma 2.12. Let u(t) and uh(t) be the solution of (2.1.1) and (2.2.4) respectively

for each t ∈ (0, T ], then there exists a positive constant C independent of h such that

‖(u− uh)(t)‖2
0,Ω + ν

∫ t

0

|(u− uh)(s)|21,Ω ds

≤ Ch2

(
1 + |u0|22,Ω +

∫ t

0

|f(s)|21,Ω ds

)
.

(2.3.18)

Proof. Writing the error equation in terms of ηh with the use of (2.3.16), (2.2.4a) and

(2.1.1a) gives

mh(∂tηh,vh) + ah(ηh,vh) =(F − Fh)(vh) + (ah(Phu,vh)− a(u,vh))

− b(vh, p− ph).
(2.3.19)
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Taking vh = θh in (2.3.19) and from (2.3.10b) and (2.2.4b), we note that

b(θh, qh) = 0 ∀qh ∈ Qh, (2.3.20)

then using (2.3.10a), we get

mh(∂tηh, θh) + ah(ηh, θh) = (ah(Phu, θh)− a(u, θh)) + (F − Fh)(θh)− b(θh, p− Sphp)

= ah(ηh − θh, θh) + (F − Fh)(θh).

From (2.3.16), we obtain

mh(∂tηh, ηh) + ah(θh, θh) = mh(∂tηh, ηh − θh) + (F − Fh)(θh)

=
(
m(∂tu, ηh − θh)−mh(∂tuh, ηh − θh)

)
+ (F − Fh)(θh). (2.3.21)

The bounds of mh(·, ·), ah(·, ·) along with the polynomial approximation uπ, con-

sistency of ah(·, ·) in (2.3.21), and a use of Poincaré and Young's inequalities infer

that

1

2

d

dt
‖ηh‖2

0,Ω + ν|θh|21,Ω . mh(∂tηh, ηh) + ah(θh, θh)

≤ Ch2((‖∂tu‖0,Ω + ‖∂tuh‖0,Ω)|u|2,Ω + |f |21,Ω) +
ν

2
|θh|21,Ω.

Integrating from 0 to t, and using the bounds (2.1.3) and (2.2.6) implies

‖ηh(t)‖2
0,Ω + ν

∫ t

0

|θh(s)|21,Ω ds ≤ ‖ηh(0)‖2
0,Ω + Ch2

(
1 +

∫ t

0

|f(s)|21,Ω ds

)
.

Choose uh(0) = Phu(0) then triangle inequality together with Lemma 2.11 and

Lemma 2.10 implies (2.3.18).

Theorem 2.1. Let u(t) and uh(t) be the solutions of continuous problem (2.1.1) and

semi-discrete problem (2.2.4) respectively for each t ∈ (0, T ]. Then, there exists a

positive constant C independent of h such that

σ(t)|(u− uh)(t)|21,Ω +

∫ t

0

σ(s)‖∂t(u− uh)(s)‖2
0,Ω

≤ Ch2
(

1 + |u0|22,Ω +

∫ t

0

(1 + σ(s) h2)|f(s)|21,Ω ds
)
.

(2.3.22)

36



Proof. Writing the error equation in terms of θh using equations (2.1.1a), (2.2.4a) and

(2.3.10a), we get

mh(∂tθh,vh) + ah(θh,vh) = (mh(∂tShu,vh)−m(∂tu,vh))

+ (F − Fh)(vh) + b(vh, ph − Sphp). (2.3.23)

Taking the test function vh = ∂tθh in (2.3.23) then the stability of bilinear forms

mh(·, ·), ah(·, ·), equation (2.3.20) and consistency of mh(·, ·) gives

‖∂tθh‖2
0,Ω +

ν

2

d

dt
|θh|21,Ω . mh(∂tθh, ∂tθh) + ah(θh, ∂tθh)

= (mh(∂tS
u
hu, ∂tθh)−m(∂tu, ∂tθh)) + (F − Fh)(∂tθh)

=
∑
K∈Th

(mK
h (∂t(S

u
hu−Π0

Ku), ∂tθh)−mK(∂t(I−Π0
K)u, ∂tθh))

+ (F − Fh)(∂tθh)

≤ Ch4(|∂tu|22,Ω + |∂tp|21,Ω + |f |21,Ω) +
1

2
‖∂tθh‖2

0,Ω.

Multiplying by σ(t), we arrive at

σ(t)‖∂tθh‖2
0,Ω + ν

d

dt

(
σ(t)|θh|21,Ω

)
≤ ν|θh|21,Ω + Cσ(t)h4(|∂tu|22,Ω + |∂tp|21,Ω + |f |21,Ω).

Integrating now from 0 to t and use of bounds (2.1.4) imply

ν σ(t)|θh(t)|21,Ω +

∫ t

0

σ(s)‖∂tθh(s)‖2
0,Ω ds

≤ Ch4 +

∫ t

0

(
ν|θh(s)|21,Ω + Ch4σ(s)|f(s)|21,Ω

)
ds.

(2.3.24)

An application of triangle's inequality and Lemma 2.12 give the bound for second

term on right hand side of (2.3.24) as,

ν

∫ t

0

|θh(s)|21,Ω ds ≤ ‖ηh(0)‖2
0,Ω + Ch2

(
1 +

∫ t

0

|f(s)|21,Ω ds

)
.

Therefore, the use of bounds (2.3.11) and (2.3.24) yield the required bound (2.3.22).
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2.3.2 L2 estimate for pressure and velocity

We start by proving the two essential results given below in Lemmas 2.13 and 2.14

which will be helpful in deriving optimal error estimates for pressure and velocity in

the L2 norm with minimum regularity.

Lemma 2.13. Let u and uh are the solutions of continuous problem (2.1.1) and

semi-discrete problem (2.2.4), respectively. Then, we have

σ2(t)‖∂t(u− uh)(t)‖2
0,Ω + ν

∫ t

0

σ2(s)|∂t(u− uh)(s)|21,Ω ds

≤ Ch2
(

1 + |u0|22,Ω +

∫ t

0

(
(1 + σ(s) h2)|f(s)|21,Ω + σ2(s)|∂tf(s)|21,Ω

)
ds
)
.

(2.3.25)

where C is a positive constant independent of h.

Proof. Di�erentiating the error equation (2.3.19) with respect to time and taking

vh = ∂tθh, we obtain (similar to (2.3.21))

mh(∂ttηh, ∂tηh) + ah(∂tθh, ∂tθh) =
(
m(∂ttu, ∂t(ηh − θh))−mh(∂ttuh, ∂t(ηh − θh)))

+ (∂tf − ∂tfh, ∂tθh).

The stability of the discrete bilinear forms and (2.3.20) implies

1

2

d

dt
‖∂tηh‖2

0,Ω + ν|∂tθh|21,Ω

≤ Ch|∂tf |1,Ω‖∂tθh‖0,Ω + Ch2(‖∂ttu‖0,Ω + ‖∂ttuh‖0,Ω)|∂tu|2,Ω

≤ Ch2(|∂tf |21,Ω + |∂tu|22,Ω + ‖∂ttu‖2
0,Ω + ‖∂ttuh‖2

0,Ω) +
ν

2
|∂tθh|21,Ω.

Multiplying the above bound with σ2(t) to get

d

dt

(
σ2(t)‖∂tηh‖2

0,Ω

)
+ ν σ2(t)|∂tθh|21,Ω

≤ σ(t)‖∂tηh‖2
0,Ω + Ch2σ2(t)

(
|∂tf |21,Ω + |∂tu|22,Ω + ‖∂ttu‖2

0,Ω + ‖∂ttuh‖2
0,Ω

)
.

Integrating the above equation for time from 0 to t then using Theorem 2.1 together

with regularity results from Lemma 2.1 and 2.6, and the triangle's inequality to deduce

the desired result (2.3.25).
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Lemma 2.14. The solutions u and uh of (2.1.1) and (2.2.4) satis�es∫ T

0

‖(u− uh)(t)‖2
0,Ω dt ≤ Ch4

(
1 + |u0|22,Ω +

∫ T

0

|f(s)|21,Ω ds
)
,

where C is positive constant independent of h.

Proof. We consider the following backward in time dual problem: Find φ(t) ∈ V and

ψ(t) ∈ Q for each t ∈ (0, T ] such that

m(v, ∂tφ)− a(v,φ)− b(v, ψ) = (u− uh,v) ∀v ∈ V, (2.3.26a)

b(φ, q) = 0 ∀q ∈ Q. (2.3.26b)

with φ(T ) = 0 a.e. in Ω. We note that the problem (2.3.26) has a unique solution

(φ, ψ) ∈ V ×Q and satis�es (see [112] for more details)

max
0≤t≤T

|φ(t)|21,Ω +

∫ T

0

(|φ(t)|22,Ω + ‖ψ(t)‖2
1,Ω + ‖∂tφ(t)‖2

0,Ω) dt

≤ C

∫ T

0

‖(u− uh)(t)‖2
0,Ω dt.

(2.3.27)

Taking v = u− uh in (2.3.26a) gives

‖u− uh‖2
0,Ω = m(u− uh, ∂tφ)− a(u− uh,φ)− b(u− uh, ψ).

The use of interpolants φI and ψI give

‖u− uh‖2
0,Ω =

d

dt
m(u− uh,φ)−

(
m(∂t(u− uh),φ) + a(u− uh,φ− φI)

+ b(u− uh, ψ − ψI) + a(u− uh,φI) + b(u− uh, ψI)
)
.

The equations (2.1.1b), (2.2.4b) gives b(u− uh, qh) = 0, for all qh ∈ Qh as Vh ⊂ V.

Then the use of the equations (2.1.1) and (2.2.4) leads to

‖u− uh‖2
0,Ω =

d

dt
m(u− uh,φ)−

(
m(∂t(u− uh),φ− φI) +m(∂tu,φI)

+ a(u− uh,φ− φI) + b(u− uh, ψ − ψI) + a(u,φI)
)

+ (m(∂tuh,φI) + a(uh,φI))

=
d

dt
m(u− uh,φ)− (F − Fh)(φI)−

(
m(∂t(u− uh),φ− φI)
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+ a(u− uh,φ− φI) + b(u− uh, ψ − ψI)
)

+ (m(∂tuh,φI)−mh(∂tuh,φI))

+ (a(uh,φI)− ah(uh,φI)).

Integrating in time from 0 to T and use of φ(T ) = 0, we end up with

‖Eu‖2
0,Ω :=

∫ T

0

‖(u− uh)(s)‖2
0,Ω ds

= −m((u− uh)(0),φ(0))︸ ︷︷ ︸
:=T1

−
∫ T

0

m(∂t(u− uh),φ− φI) ds︸ ︷︷ ︸
:=T2

−
∫ T

0

(a(u− uh,φ− φI) + b(u− uh, ψ − ψI) + (F − Fh)(φI)) ds︸ ︷︷ ︸
:=T3

+

∫ T

0

(
((m(∂tuh,φI)−mh(∂tuh,φI)) + (a(uh,φI)− ah(uh,φI))

)
ds︸ ︷︷ ︸

:=T4

.

Take uh(0) = Su
hu0 in term T1 and regularity (2.3.27) implies

T1 ≤ Ch2|u0|2,Ω‖φ(0)‖0,Ω ≤ Ch2|u0|2,Ω ‖Eu‖0,Ω.

Use of Cauchy-Schwarz and triangle's inequalities along with the bounds (2.1.3) and

(2.2.6), an application of Lemma 2.8 and regularity result (2.3.27) gives

T2 ≤ C

∫ T

0

(‖∂tu‖0,Ω + ‖∂tuh‖0,Ω)‖φ− φI‖0,Ω ds ≤ Ch2
(∫ T

0

|φ(s)|22,Ω ds
)1/2

≤ C h2‖Eu‖0,Ω.

Use of Cauchy-Schwarz inequality, (2.3.18), interpolant estimates for φ and ψ, (2.1.2),

(2.1.3) and (2.3.27) implies

T3 ≤ C
(∫ T

0

|(u− uh)(s)|21,Ω ds
)1/2(∫ T

0

(|(φ− φI)(s)|21,Ω + ‖(ψ − ψI)(s)‖2
0,Ω) ds

)1/2

+ Ch2

∫ T

0

|f(s)|1,Ω|φ(s)|1,Ω ds

≤ Ch2

(
1 + |u0|22,Ω +

∫ T

0

|f(s)|21,Ω ds

)1/2

‖Eu‖0,Ω.
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Employing the consistency of bilinear forms mh(·, ·), ah(·, ·) together with Cauchy-

Schwarz inequality, (2.3.18), (2.1.3), (2.2.5) and (2.3.27), we easily obtain

T4 =
∑
K∈Th

∫ T

0

(
mK(∂tuh,φI − Π0

Kφ)−mK
h (∂tuh,φI − Π0

Kφ)

+ aK(uh − Π0
Ku,φI − Π0

Kφ)− aKh (uh − Π0
Ku,φI − Π0

Kφ)
)
ds

≤ C h2

(
1 + |u0|22,Ω +

∫ T

0

|f(s)|21,Ω ds

)1/2

‖Eu‖0,Ω.

Now combining the bounds of Ti, we complete the rest of the proof.

Above results enable us to prove the L2 estimates for pressure and velocity. First

we develop the estimates for pressure and then proceed for velocity.

Theorem 2.2. Let p and ph be the solutions of (2.1.1) and (2.2.4). Then there exists

a positive constant C independent of h such that

σ2(t)‖(p− ph)(t)‖2
0,Ω ≤ Ch2

(
1 + σ2(t)|f |21,Ω

)
.

Proof. Split the pressure error in terms of Stokes projection as

p− ph = (p− Sphp) + (Sphp− ph).

The inf-sup condition b(·, ·) on Vh gives

βh‖Sphp− ph‖0,Ω ≤ sup
vh∈Vh\{0}

b(vh, S
p
hp− ph)

|vh|1,Ω
, (2.3.28)

where (2.1.1) and (2.2.4) gives

b(vh, S
p
hp− ph) = b(vh, S

p
hp− p) + b(vh, p− ph)

= b(vh, S
p
hp− p) + (F − Fh)(vh) + (mh(∂tuh,vh)−m(∂tu,vh))

+ (ah(uh,vh)− a(u,vh)).

In view of the de�nitions of L2 projection Ph (given in (2.3.16)) and Stokes projection

Su
h (given in (2.3.10)) together with their estimates (2.3.17) and (2.3.11), we infer that

b(vh, S
p
hp− ph) = b(vh, S

p
hp− p) + (F − Fh)(vh) +mh(∂tuh − ∂tPhu,vh)
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+ (ah(uh − Su
hu,vh)− a(u− Su

hu,vh))

≤ Ch(|p|1,Ω + |u|2,Ω + |f |1,Ω)‖vh‖1,Ω

+ (|u− uh|1,Ω + |u− Su
hu|1,Ω)|vh|1,Ω

+ (‖∂tu− ∂tuh‖0,Ω + ‖∂tu− ∂tPhu‖0,Ω)‖vh‖0,Ω. (2.3.29)

Multiply the inequality (2.3.29) with σ(t), using Lemma 2.13 and (2.3.28) to arrive

at

σ(t)‖(Sphp− ph)(t)‖0,Ω ≤ Ch
(
1 + σ(t)

(
|u|2,Ω + |p|1,Ω + |f |1,Ω + |∂tu|2,Ω + |∂tp|1,Ω

))
≤ Ch(1 + σ(t)|f |1,Ω).

Finally, the triangle's inequality, use of (2.3.11), and above bound yields the required

estimate.

Theorem 2.3. Let u and uh be solutions of (2.1.1) and (2.2.4), respectively. Then

there exists a positive constant independent of h such that

σ(t)‖(u− uh)(t)‖2
0,Ω ≤ Ch4

(
1 + |u0|22,Ω +

∫ T

0

(1 + σ(s))|f(s)|21,Ω ds
)
. (2.3.30)

Proof. Consider the error equation (2.3.23) in terms of the Stokes projection; and

taking vh = θh with use of property (2.3.20) implies

mh(∂tθh, θh) + ah(θh, θh) = (mh(∂tS
u
hu− ∂tPhu, θh)) + (F − Fh)(θh).

Using (2.3.16) then the Cauchy-Schwarz and Young's inequalities together with the

estimates of projection Ph (2.3.17) and (2.3.11) implies

1

2

d

dt
‖θh‖2

0,Ω + ν|θh|21,Ω ≤ (mh(∂tS
u
hu− ∂tPh, θh)) + (F − Fh)(θh)

≤ Ch4
(
|∂tu|22,Ω + |∂tp|21,Ω + |f |21,Ω

)
+

1

2
‖θh‖2

0,Ω.

Multiply with σ(t) and get

d

dt

(
σ(t)‖θh‖2

0,Ω

)
+ ν σ(t)|θh|21,Ω

≤ C
(

(1 + σ(t))‖θh‖2
0,Ω + σ(t) h4(|f |21,Ω + |∂tu|22,Ω + |∂tp|21,Ω)

)
.
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Integrating the above bound from 0 to t and then the use of Lemma 2.14 and the

regularity assumption (2.1.4) implies

σ(t)‖θh(t)‖2
0,Ω ds ≤ Ch4

(
1 + |u0|22,Ω +

∫ T

0

(1 + σ(s))|f(s)|21,Ω ds
)
. (2.3.31)

Thus the estimate (2.3.30) can be obtained from (2.3.11) and (2.3.31) with the help

of triangle's inequality.

2.3.3 Fully discrete error analysis

Following analogously to the semi-discrete scheme, in this section, we estimate the

error that occurred through time discretization, i.e., by employing the backward Euler

scheme for the approximation of time derivative. We proceed to collect the ingredients

required to establish the convergence results stated in the main theorem (Theorem

2.4). Let Z be a Hilbert space, then for any function ϑ ∈ H1(tn−1, tn;Z), we have the

following integral formula,

ϑ(tn)− 1

∆t

∫ tn

tn−1

ϑ(s) ds =
1

∆t

∫ tn

tn−1

(s− tn−1)∂tϑ(s) ds. (2.3.32)

Integrating the equation (2.2.4a) from tn−1 to tn, we have

mh

(
δtuh(tn),vh

)
+

1

∆t

∫ tn

tn−1

(
ah(uh(s),vh) + b(vh, ph(s))

)
ds

=
1

∆t

∫ tn

tn−1

(fh(s),vh) ds; (2.3.33)

And di�erentiating the equation (2.2.4a) with respect to time respectively gives

mh(∂ttuh,vh) + ah(∂tuh,vh) + b(vh, ∂tph) = (∂tfh,vh). (2.3.34)

Using the integral formula (2.3.32) and equation (2.3.34), we can rewrite the equation

(2.3.33) as

mh(δtuh(tn),vh) + ah(uh(tn),vh) + b(vh, ph(tn))

= F n
h (vh)−

1

∆t

∫ tn

tn−1

(s− tn−1)mh(∂ttuh(s),vh) ds. (2.3.35)
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Denote the errors in time for velocity and pressure as enu = uh(tn) − unh and enp =

ph(tn)−pnh, respectively then the error equation for time discretisation by subtracting

(2.2.8) from (2.3.35) given as

mh(δte
n
u,vh) + ah(e

n
u,vh) + b(vh, e

n
p )

= − 1

∆t

∫ tn

tn−1

(s− tn−1)mh(∂ttuh(s),vh) ds. (2.3.36)

We would require the duality arguments (constructing the dual problem corresponding

to (2.2.8)) for obtaining the desired L2 estimates for velocity and pressure. We begin

with introducing the dual problem as: For a given znh ∈ Vh, �nd (φn−1
h , ψn−1

h ) ∈
Vh ×Qh such that

mh(vh, δtφ
n
h)− ah(vh,φn−1

h )− b(vh, ψn−1
h ) = (znh,vh) ∀vh ∈ Vh, (2.3.37a)

b(φn−1
h , qh) = 0 ∀qh ∈ Qh. (2.3.37b)

The above problem has a unique solution (φn−1
h , ψn−1

h ) ∈ Vh × Qh and the solution

satis�es (see [76])

max
1≤j≤N

|φjh|
2
1,Ω + (∆t)

n−1∑
j=1

(
‖δtφjh‖

2
0,Ω + ‖ψjh‖

2
0,Ω

)
≤ C (∆t)

n∑
j=1

‖zjh‖
2
0,Ω. (2.3.38)

At this end, we prove the following results which will be used in deriving the optimal

convergence rate.

Lemma 2.15. Let (uh(tn), ph(tn)) ∈ Vh×Qh and (unh, p
n
h) ∈ Vh×Qh be the solutions

of semi-discrete problem (2.2.4) and fully discrete problem (2.2.8) respectively for each

n = 1, . . . , N . Then we have

(∆t)
n∑
j=1

‖eju‖2
0,Ω ≤ C ∆t2, (2.3.39)

where C is positive constant independent of the mesh parameters h and ∆t.

Proof. Taking vh = enu in (2.3.37a) with znh = enu and also, b(enu, ψ
n−1
h ) = 0 from

equations (2.2.8b) and (2.2.4b) gives

‖enu‖2
0,Ω = mh(e

n
u, δtφ

n
h)− ah(enu,φn−1

h ). (2.3.40)
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Taking vh = φn−1
h in (2.3.36); and b(φn−1

h , enp ) = 0 using (2.3.37b) yields

mh(δte
n
u,φ

n−1
h )+ah(e

n
u,φ

n−1
h )

= − 1

∆t

∫ tn

tn−1

(s− tn−1)mh(∂ttuh(s),φ
n−1
h ) ds. (2.3.41)

Adding (2.3.40) and (2.3.41) then multiplying the resultant equation with ∆t implies

∆t ‖enu‖2
0,Ω = mh(e

n
u,φ

n
h)−mh(e

n−1
u ,φn−1

h ) +

∫ tn

tn−1

(s− tn−1)mh(∂ttuh(s),φ
n−1
h ) ds.

Summing over n then using e0
u = 0, φnh = 0 and the Cauchy Schwarz inequality gives

∆t
n∑
j=1

‖eju‖2
0,Ω ≤ C

n∑
j=1

(∫ tj

tj−1

(s− tj−1)‖∂ttuh(s)‖0,Ω ds
)
‖φj−1

h ‖0,Ω

≤ C
n∑
j=1

(∫ tj

tj−1

σ(s)‖∂ttuh(s)‖2
0,Ω ds

)1/2(
∆t

∫ tj

tj−1

1 ds
)1/2

‖φj−1
h ‖0,Ω

≤ C
(

(∆t)

∫ tn

0

σ(s)‖∂ttuh(s)‖2
0,Ω ds

)1/2(
(∆t)

n∑
j=1

‖φj−1
h ‖

2
0,Ω

)1/2

.

Then we obtain (2.3.39) from the bound (2.3.38) for each j and regularity result

(2.1.4).

Lemma 2.16. Let uh(tn) and unh be the solutions of the semi-discrete problem (2.2.4)

and fully-discrete problem (2.2.8) respectively. Then there exists a positive constant

C independent of the mesh parameters h and ∆t such that

σ(tn)‖enu‖2
0,Ω + (∆t)

n∑
j=1

(
σ(tj)|eju|21,Ω

)
≤ C ∆t2. (2.3.42)

Proof. Taking the test function vh = enu in (2.3.36) and using the stability of the

bilinear forms mh(·, ·), ah(·, ·) to infer

1

2(∆t)

(
‖enu‖2

0,Ω − ‖en−1
u ‖2

0,Ω

)
+ ν|enu|21,Ω .

∣∣∣∣− 1

∆t

∫ tn

tn−1

(s− tn−1)mh(∂ttuh(s), e
n
u) ds

∣∣∣∣ .
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Using the Cauchy Schwarz and Young inequalities, we obtain

1

∆t

(
‖enu‖2

0,Ω − ‖en−1
u ‖2

0,Ω

)
+ ν|enu|21,Ω ≤ C

∫ tn

tn−1

(s− tn−1)‖∂ttuh(s)‖2
0,Ω ds. (2.3.43)

Multiply equation (2.3.43) with (σ(tn) ∆t) and using σ(tn) ≤ σ(tn−1) + ∆t gives

σ(tn)‖enu‖2
0,Ω − σ(tn−1)‖en−1

u ‖2
0,Ω + ν σ(tn) ∆t |enu|21,Ω

≤ ∆t‖en−1
u ‖2

0,Ω + C ∆t

∫ tn

tn−1

σ(s)‖∂ttuh(s)‖2
0,Ω ds.

Summation over n leads to

σ(tn)‖enu‖2
0,Ω + ν ∆t

n∑
j=1

σ(tj) |eju|21,Ω

≤ ∆t
n∑
j=1

‖ej−1
u ‖2

0,Ω + C ∆t

∫ tn

0

σ(s)‖∂ttuh(s)‖2
0,Ω ds.

Thus the bound (2.3.39) given by previous lemma concludes the �nal result (2.3.42).

Lemma 2.17. Let (uh, ph) ∈ Vh × Qh and (unh, p
n
h) ∈ Vh × Qh be the solutions of

the semi-discrete problem (2.2.4) and fully-discrete problem (2.2.8) respectively. Then

the following holds

σ(tn)‖enp‖0,Ω ≤ C ∆t, (2.3.44)

where C is positive constant independent of the mesh parameters h and ∆t.

Proof. Consider the error equation (2.3.36), that is,

b(vh, e
n
p ) = −

(
mh(δte

n
u,vh) + ah(e

n
u,vh) +

1

∆t

∫ tn

tn−1

(s− tn−1)mh(∂ttuh(s),vh) ds
)
.

Using discrete inf-sup condition of bilinear form b(·, ·) and multiplying with σ(tn)

gives

σ(tn)‖enp‖2
0,Ω ≤ Cσ(tn)

(
‖δtenu‖2

0,Ω + ν|enu|21,Ω +

∫ tn

tn−1

σ(s)‖∂ttuh(s)‖2
0,Ω ds

)
.
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Summing over n followed with multiplying by ∆t gives

∆t
n∑
j=1

σ(tj)‖enp‖2
0,Ω ≤ C

(
∆t

n∑
j=1

σ(tj)‖δteju‖2
0,Ω + ν∆t

n∑
j=1

σ(tj)|eju|21,Ω

+ ∆t2
∫ tn

0

σ(s)‖∂ttuh(s)‖2
0,Ω ds

)
. (2.3.45)

We require here the estimates for term (∆t)
∑n

j=1 σ(tj)‖δtenu‖2
0,Ω. Take vh = δte

n
u in

(2.3.36) and using the similar steps as followed in the proof of Lemma 2.16 leads to

ν

∆t

(
‖∇enu‖2

0,Ω − ‖∇en−1
u ‖2

0,Ω

)
+ ‖δtenu‖2

0,Ω ≤ C

∫ tn

tn−1

(s− tn−1)‖∂ttuh(s)‖2
0,Ω ds.

Multiplying with σ(tn) and summing over n gives

(∆t)
n∑
j=1

σ(tj)‖δtenu‖2
0,Ω ≤ C∆t2. (2.3.46)

Use of the bounds (2.3.46) and (2.3.42) in (2.3.45) implies (2.3.44).

Finally, an application of the triangle's inequality together with Theorems 2.1, 2.2

and 2.3, Lemmas 2.16 and 2.17 enable us to state the following main theorem.

Theorem 2.4. Let (u(tn), p(tn)) ∈ V×Q and (unh, p
n
h) ∈ Vh×Qh be the solutions of

the continuous problem (2.1.1) and fully discrete problem (2.2.8) respectively at time

tn for each n = 1, . . . , N . Then there exists a positive constant C, independent of the

mesh parameters h and ∆t, such that

σ(tn)‖u(tn)− unh‖2
0,Ω ≤ C(h4 + ∆t2),

σ2(tn)‖p(tn)− pnh‖2
0,Ω ≤ C(h2 + ∆t2).

Remark 2.2. We stress that the convergence analysis can be easily extended to other

divergences free and higher-order VE methods, i.e., k ≥ 2 introduced in [30, 32]. How-

ever, in that case, one would require a higher regularity assumption on the continuous

solution. Moreover, stabilized methods would also demand higher regularity on the

continuous solution for achieving the optimal rate of convergence, for instance, it is

seen in [114] that the lowest order approximation (P1−P0) with stabilization technique

will require uttt ∈ L∞(0, T ; [L2(Ω)]2) for deriving the error estimates.
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2.4 Numerical experiments

In this section, we present our numerical experiments to con�rm the theoretical rate of

convergence for pressure and velocity established in Section 2.3. In order to judge the

computational e�ciency and performance of the proposed VE discretization (applied

for spatial variable), we have considered three di�erent kinds of meshes: Distorted

square Dh, distorted hexagonal mesh Wh and non-convex mesh Nh in the square

domain ΩS demonstrated respectively in �gures 2.2(a)- 2.2(c) (for more details, see

[30]). For the time discretization, we have employed the backward Euler method, and

report the convergence in time as well as spatial variables. In contrast with consis-

tently stabilized methods, we have inferred through numerical tests that the present

scheme yield stable pressure even with small time step. Moreover, we also perform

the proposed scheme on the lid-driven cavity problem to see the real computational

advantages of the proposed scheme. All the computations are done using MATLAB.

(a) (b) (c)

Figure 2.2: Samples of meshes employed for the numerical tests: (a) Concave mesh
Nh, (b) Distorted hexagonal Hh, and (c) Distorted quadilateral Dh mesh.

The spatial error associated with velocity and pressure while re�ning the mesh

are de�ned as:

E0(u) :=
( ∑
K∈Th

‖u(T )−Π0
Ku

N
h ‖2

0,K

)1/2

, E1(u) :=
( ∑
K∈Th

‖∇(u(T )−Π∇
Ku

N
h )‖2

0,K

)1/2

,

and E(p) :=
∑
K∈Th

‖p(T )− pNh ‖0,K ,

and the corresponding computed rate of convergence are given by

r1(u) =
log(E1(u)/Ẽ1(u))

log(h/h̃)
, r0(u) =

log(E0(u)/Ẽ0(u))

log(h/h̃)
, r(p) =

log(E(p)/Ẽ(p))

log(h/h̃)
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where E1(u), E0(u), E(p) and Ẽ1(u), Ẽ0(u), Ẽ(p) are errors for the mesh size h and

a �ner mesh size h̃, respectively.

2.4.1 Convergence in space over a square domain

Over a domain ΩS := (0, 1)2, we consider the following problem motiviated by [29]

for which we have analytical solution. Construct the load function f(x, t) so that the

exact velocity of the �uid �ow and pressure are given as

p(x, t) = t
(
xy2 − 1

6

)
,

u(x, t) = t

[
−cos(2πx)sin(2πy) + sin(2πy)

sin(2πx)cos(2πy)− sin(2πx)

]
.

Now by �xing the time step ∆t = 0.001 and �nal time T = 1, we report numerical

convergence rate for non-convex mesh in the Table 2.1. Moreover, the computed

order of convergence for all three meshes in Fig. 2.2 are depicted through log-log plot

in Figure 2.3. From the Table 2.1 and Figure 2.3, we note that the computed rate

of convergence for three di�erent meshes are in agreement with theoretical rate of

convergence.

Ndof h−1 E0(u) r0(u) E1(u) r1(u) E(p) r(p)

218 4 0.2632 - 4.0577 - 0.3420 -
983 8 0.0583 2.18 2.0275 1.00 0.1968 0.80
4163 16 0.0161 1.86 1.0179 0.99 0.0658 1.60
17123 32 0.0051 1.66 0.5092 1.00 0.0196 1.75
69443 64 0.0012 2.06 0.2544 1.00 0.0061 1.70

Table 2.1: Computed errors and rate of convergence with varying mesh size h.

2.4.2 Convergence in time

To present the time convergence, we take given force f so that the exact velocity and

pressure solutions are

u(x, t) = (1 + t5 + exp−t/10 + sin t)

[
sin(πx− 0.7) sin(πy + 0.2)

cos(πx− 0.7) cos(πy + 0.2)

]
,

p(x, t) = (1 + t5 + exp−t/10 + sin t)
(

sin(x) cos(y) + (cos(1)− 1) sin(1)
)
,
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(a) (b)

(c)

Figure 2.3: Convergence in space for three di�erent meshes: (a) Non-convex, (b)
Distorted Hexagonal, and (c) Distorted square mesh.

with viscosity ν = 1 on domain ΩS. In this example, we have considered here the

nonhomogeneous boundary condition for velocity and given non-zero initial velocity

u0 (calculated from exact velocity solution at t = 0) as

u0 = 2[sin(πx− 0.7) sin(πy + 0.2); cos(πx− 0.7) cos(πy + 0.2)].

The mesh size for the space discretization is h = 0.01 and time step ∆t = 21−k/10, k =

1, 2, 3, 4 and �nal time t�nal = 1. The computed rate of convergence at the �nal time

T = 1 for velocity and pressure in E0(u) and E(p) norms, respectively are given

in Table 2.2, and we note that the computed rate of convergence matches with the

theoretical rate of convergence in time.
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∆t E0(u) r0(u) E(p) r(p)

0.1 0.00261 - 0.1401 -
0.05 0.001383 0.92 0.0739 0.94
0.025 7.256e-04 0.93 0.0392 0.97
0.0125 3.979e-04 0.87 0.0232 0.96

Table 2.2: Computed errors and rate of convergence with respect to time.

2.4.3 Lid-driven Cavity problem

Considering the applications of classical lid driven cavity problem, in literature, there

are several numerical techniques used and tested for the approximation of this prob-

lem. For simplicity, here also we have considered the square domain ΩS. In general,

in this type of problems, there is no external force on the domain, that is, f = 0

on ΩS, and Dirichlet boundary condition for velocity, u = [1, 0] on top lid (which is

{(x, y) ∈ Ω : y = 1, 0 ≤ x ≤ 1}) and u vanishes on the rest of the boundary ∂ΩS,

is employed. The distorted quadrilateral mesh Dh with viscosity ν = 1, mesh size

h = 1/64 and time step ∆t = 0.01 is considered to compute the pressure and velocity

which is shown in Fig. 2.4 and Fig. 2.5, respectively.

(a) (b)

Figure 2.4: Approximate solution of Cavity problem (a) pore pressure and (b)
pressure contour.

It is clear from the Fig. 2.4(a) and Fig. 2.5(a) that the approximate pressure

and velocity solution doesn't show any oscillations, and there is one vortex in upper-

middle part of the cavity in Fig. 2.5(b). Moreover, the pressure singularity can be
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seen at the corners of the top lid in Fig. 2.4(b) as expected for this test.

(a)

(b)

Figure 2.5: Approximate solution of Cavity problem (a) velocity components, (b)
velocity vector.
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Chapter 3

Navier-Stokes equations

In this chapter, we have extended the VE analysis proposed in Chapter 2 for the

approximation of the non-stationary Navier-Stokes equation with emphasis on both

theoretical and computational aspects. Here, we intended to propose the semi-discrete

scheme (based on spatial discretization with VE method) and fully discrete scheme

(employing the Euler-Backward scheme for time discretization), and also discuss and

analyze their well-posedness. With the help of certain projection operators, error es-

timates are established in suitable norms for both semi and fully-discretized schemes.

Moreover, several numerical experiments are conducted to verify the theoretical con-

vergence rate and to observe the computational e�ciency of the proposed schemes.

As far as VE approximations of transient Navier-Stokes are concerned, there are

only very few VEM-based contributions available in the literature; for instance, see

[55] in which stabilized VEM is discussed. We stress that in [55] only discrete for-

mulation and its corresponding algorithm were presented for conducting the numer-

ical experiments. However, theoretical convergence/error estimates of the proposed

scheme were not established. Therefore, this work can be considered a �rst attempt

that addresses both convergence analysis and implementation aspects of VEMs for

non-stationary Navier-Stokes equations. We believe that the proposed analysis can be

extended to more application-oriented problems consisting of time-dependent Navier-

Stokes problems on polygonal meshes.

The content of this chapter is arranged in the following manner. We have in-

troduced the governing equation and discussed its weak/variational formulation in

Section 3.1. Next, we deal with VE formulation and well-posedness of both semi

and fully discrete schemes in Section 3.2. With the help of Stokes and L2 projection

operators in Section 3.3, an optimal a priori error estimates for velocity and pressure

in H1 and L2-norms are established. Lastly, we have reported numerical experiments
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in Section 3.4 to validate the theoretical convergence rates obtained in Section 3.3.

3.1 Governing equations and their variational for-

mulation

We consider the following incompressible �uid �ow problem in a domain Ω ⊂ R2: For

all t ∈ (0, T ] and x ∈ Ω, �nd the �ow velocity u(x, t) and the pore pressure p(x, t)

such that

∂tu− div
(
ν ∇u− pI

)
+ (∇u)u = f in Ω× (0, T ], (3.1.1a)

divu = 0 in Ω× (0, T ], (3.1.1b)

u = 0 on ∂Ω× (0, T ], (3.1.1c)

u(·, 0) = u0 on Ω× {0}, (3.1.1d)

where ν is the viscosity of the �uid, u0(x) is the initial velocity and f(x, t) is the

given body force.

Let V := [H1
0 (Ω)]2 and Q := L2

0(Ω) be the admissible spaces for velocity and

pressure, respectively. We also assume that the load function f ∈ [L2(Ω)]2 and

initial condition u0 ∈ V. Multiplying the adequate test functions v ∈ V and q ∈ Q
to the equations (3.1.1a) and (3.1.1b) respectively, with initial-boundary conditions

(3.1.1c)-(3.1.1d), the weak formulation states: Find u(t) ∈ V, p(t) ∈ Q such that,

for all t ∈ [0, T ],

m(∂tu,v) + a(u,v) + c̃(u;u,v) + b(v, p) = F (v) ∀v ∈ V,

b(u, q) = 0 ∀q ∈ Q,
(3.1.2)

where the bilinear forms are de�ned as

m(u,v) :=

∫
Ω

u · v dx, a(u,v) := ν

∫
Ω

∇u : ∇v dx, F (v) :=

∫
Ω

f · v dx,

c̃(w;u,v) :=

∫
Ω

(∇uw) · v dx =
2∑

i,j=1

(
∂ui
∂xj

wj

)
vi, b(v, q) := −

∫
Ω

div v q dx.

Note that the above bilinear forms are satisfying the following properties.
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� m(·, ·) is a positive de�nite form:

m(v,v) = ‖v‖2
0,Ω ∀v ∈ V.

� a(·, ·) is coercive:

a(v,v) = ν|v|21,Ω ≥ C ν‖v‖2
1,Ω ∀v ∈ V. (Poincaré inequality)

� b(·, ·) satis�es the inf-sup condition: there exists β > 0 such that [67, 63]

sup
v∈V\{0}

b(v, q)

‖v‖1,Ω

≥ β‖q‖0,Ω ∀q ∈ Q.

� a(·, ·) is continuous:

a(u,v) ≤ C‖u‖1,Ω‖v‖1,Ω ∀u,v ∈ V. (Cauchy Schwarz inequality)

� F (·) is continuous:

F (v) ≤ C‖f‖0,Ω‖v‖0,Ω ≤ CP‖f‖0,Ω‖∇v‖0,Ω ∀v ∈ V.

� c̃(·; ·, ·) is continuous: ∀u,v,w ∈ V,

c̃(w;u,v) ≤
2∑

i,j=1

∥∥∥∥∂ui∂xj

∥∥∥∥
0,Ω

‖wjvi‖0,Ω (Cauchy Schwarz inequality)

≤
2∑

i,j=1

∥∥∥∥∂ui∂xj

∥∥∥∥
0,Ω

‖wj‖L4(Ω) ‖vi‖L4(Ω) (Hölder's inequality)

. ‖u‖1,Ω‖w‖1,Ω‖v‖1,Ω. (Sobolev embedding theorem:H1(Ω) ⊂ L4(Ω))

� c̃(u; ·, ·) is skew-symmetric bilinear form on the kernel space X, where

X := {v ∈ V : b(v, q) = 0 ∀q ∈ Q} = {v ∈ V : div v = 0}. (div V ⊂ Q)
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For all u ∈ X, v,w ∈ V, we have

c̃(u;v,w) = −
2∑

i,j=1

∫
Ω

((
vi
∂uj
∂xj

)
wi + vi

(
uj
∂wi

∂xj

))
(Integration by parts)

= −
∫

Ω

divu(v ·w)−
∫

Ω

(∇wu) · v = −c̃(u;w,v).

Next, we introduce a new skew-symmetric trilinear form c(·; ·, ·) by modifying the

natural trilinear form c̃(·; ·, ·) as follows.

c(u;v,w) :=
1

2
(c̃(u;v,w)− c̃(u;w,v)) ∀u,v,w ∈ V.

It is clear from the de�nition that c(u;w,w) = 0 for all u,w ∈ V, and also trilinear

form c(·; ·, ·) is continuous. Thus, the weak formulation (3.1.2) can be rewritten as:

�nd u(t) ∈ V and p(t) ∈ Q such that

m(∂tu,v) + a(u,v) + c(u;u,v) + b(v, p) = F (v) ∀v ∈ V, (3.1.3a)

b(u, q) = 0 ∀q ∈ Q. (3.1.3b)

The well-posedness of the problem (3.1.3) follows from the coercivity and continuity of

the bilinear form a(·, ·), inf-sup condition of bilinear form b(·, ·) along with the skew-

symmetricity of the bilinear form c(u; ·, ·) (for more details, see [67]). In addition,

the solution u ∈ V of problem (3.1.3) satis�es

‖u(t)‖2
0,Ω + ν

∫ t

0

|u(s)|21,Ω ds . ‖u(0)‖2
0,Ω +

1

ν

∫ t

0

‖f(s)‖2
0,Ω ds. (3.1.4)

Thus, we obtain the bound (3.1.4) by the usage of Young's inequality.

3.2 Virtual element formulation and its well-posedness

In this section, by introducing the stable pair of local and global discrete spaces

associated with velocity and pressure, we propose the VE formulation corresponding

to weak formulation (3.1.3). Here, we present both semi and fully discrete schemes,

and address the existence of a unique VE solution.
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3.2.1 Discrete spaces and their degrees of freedom

In this section, we propose the VE formulation and discuss its well-posedness by

de�ning the required projection operators and VE spaces associated with velocity

and pressure. We evoke the discretization assumptions and the local VE spaces from

the previous chapter to de�ne the discrete formulation. Recalling the discrete spaces

from Section 2.2 of Chapter 2, the required local virtual spaces Vh(K) and Qh(K)

on each element K associated with the velocity u and pressure p, respectively are

de�ned as follows.

Vh(K) :=
{
vh ∈ [H1(K)]2 ∩ B(∂K) :

−∆vh +∇s ∈ G⊥(K) for some s ∈ L2(K),

div vh|K = cd ∈ P0(K)

(Π∇
Kvh − vh, g⊥)0,K = 0 ∀g⊥ ∈ G⊥(K)

}
,

Qh(K) := P0(K),

where cd := 1
|K|(
∫
∂K
vh · nK ds), and the boundary space as

B(∂K) := {vh ∈ [C0(∂K)]2 : vh|e · teK ∈ P1(e),vh|e · neK ∈ P2(e) ∀e ∈ ∂K}.

Remark 3.1. For the analysis purpose we can opt the space Wh(K) (introduced

in [29], and mentioned in Chapter 2) instead of Vh(K). However, employment of

Wh(K) lead to sub-optimal error estimates for velocity and pressure.

For any vh ∈ Vh(K), the DoFs for the space Vh(K) (see [83]) are

� (Dv1) the value of vh at the vertices of element K;

� (Dv2) the edge moments of vh along the unit outward normal of K, that is,∫
e

vh · neK ∀e ∈ ∂K.

From de�nition, we have the dimension of Vh(K) is equal to 3N v
K . The DoFs for

space Qh(K) is

� (Dq) the value of function qh at any point in K.

Based on the local spaces, we de�ne the global �nite-dimensional VE spaces as
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follows,

Vh := {vh ∈ V : vh|K ∈ Vh(K) ∀K ∈ Th},

Qh := {qh ∈ Q : qh|K ∈ Qh(K) ∀K ∈ Th}.

In view of the de�nition of Vh, it is immediate to see that following are the DoFs for

the global discrete space Vh,

� Values at all the interior vertices on each polygon K ∈ Th;

� And edge moments along the unit outward normal of K on each interior edge

e ∈ ∂K for all K ∈ Th.

The DoFs for Qh are the values of function qh ∈ Qh at any point inK for eachK ∈ Th.
Now, to de�ne the computable discrete formulation, we introduce another local

tensor L2-projection Π0,0
K : [L2(K)]2×2 → [P0(K)]2×2 as,

(Π0,0
K ∇v −∇v,p)0,K = 0 ∀p ∈ [P0(K)]2×2, v ∈ [H1(Ω)]2.

For any uh,vh,wh ∈ Vh(K) and qh ∈ Qh(K), we de�ne the local discrete forms on

each elementK through local projection operators (presented above and in Chapter 2)

as follows.

mK
h (uh,vh) := mK(Π0

Kuh,Π
0
Kvh) + S0,K((uh −Π0

Kuh), (vh −Π0
Kvh)),

aKh (uh,vh) := aK(Π∇
Kuh,Π

∇
Kvh) + ν S∇,K((I−Π∇

K )uh, (I−Π∇
K )vh),

c̃Kh (wh;uh,vh) := ((Π0,0
K ∇uh) Π0

Kwh,Π
0
Kvh)0,K ,

FK
h (vh) := (Π0

Kf ,vh)0,K , bK(vh, qh) := −(div vh, qh)0,K ,

where the local bilinear forms are the restrictions of the continuous forms on each

element K, that is

mK(uh,vh) := m(uh,vh)|K , aK(uh,vh) := a(uh,vh)|K .

And the stabilization terms S0,K(·, ·) and S∇,K(·, ·) are de�ned as, see [24]

S0,K(uh,vh) := area(K)
NV∑
i,j=1

dofi(uh)dofj(vh), ∀uh,vh ∈ Ker(Π0
K),
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S∇,K(uh,vh) :=
NV∑
i,j=1

dofi(uh)dofj(vh), ∀uh,vh ∈ Ker(Π∇
K ),

by denoting NV and NQ as the dimension of spaces Vh and Qh, respectively.

We note that the classical stabilizer terms S0,K(·, ·) and S∇,K(·, ·) satisfy the fol-

lowing stability with respect to the continuous bilinear forms [30],

ζ∗m
K(uh,vh) ≤ S0,K(uh,vh) ≤ ζ∗mK(uh,vh) ∀uh,vh ∈ Ker(Π0

K),

α∗a
K(uh,vh) ≤ S∇,K(uh,vh) ≤ α∗aK(uh,vh) ∀uh,vh ∈ Ker(Π∇

K ),
(3.2.1)

where ζ∗, ζ
∗, α∗, α

∗ > 0 are constants independent of diameter hK of polygon K.

Now considering the above de�ned local forms, we set the global discrete bilinear

and trilinear forms for all uh,vh ∈ Vh and qh ∈ Qh are simply set as sum over each

polygon K as simply the sum over each polygon K,

mh(uh,vh) :=
∑
K∈Th

mK
h (uh,vh), b(vh, qh) :=

∑
K∈Th

bK(vh, qh),

ah(uh,vh) :=
∑
K∈Th

aKh (uh,vh), ch(uh;uh,vh) :=
∑
K∈Th

cKh (uh;uh,vh)

and the load term as

Fh(vh) :=
∑
K∈Th

FK
h (vh).

Now we are in position to de�ne our semi discrete VE formulation corresponding to

the weak form (3.1.3) as: �nd uh(t) ∈ Vh and ph(t) ∈ Qh for each t ∈ (0, T ] such

that

mh(∂tuh,vh) + ah(uh,vh) + ch(uh;uh,vh) + b(vh, ph) = Fh(vh) ∀vh ∈ Vh, (3.2.2a)

b(uh, qh) = 0 ∀qh ∈ Qh, (3.2.2b)

with given initial condition uh(0) considered as an approximation of u0 chosen ap-

propriately in derivation of the error analysis, and the discrete trilinear form ch(·; ·, ·)
is de�ned from c̃h(·; ·, ·), analogous to the continuous trilinear form c(·, ·, ·).

The stability properties of S0,K(·, ·) and S∇,K(·, ·) given in (3.2.1) yields
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� mh(·, ·) is positive de�nite form: for all vh ∈ Vh,

mh(vh,vh) ≥ ν
∑
K∈Th

(
‖Π0

Kvh‖2
0,K + ζ∗‖(I−Π0

K)vh‖2
0,K

)
≥ Ĉ∗ ‖vh‖2

0,Ω,

where Ĉ∗ := min{1, ζ∗}.

� ah(·, ·) is coercive: for all vh ∈ Vh,

ah(vh,vh) ≥ ν
∑
K∈Th

(
‖Π∇

Kvh‖2
1,K + α∗‖(I−Π∇

K )vh‖2
1,K

)
≥ C∗ν ‖vh‖2

1,Ω,

where C∗ := min{1, α∗}.

� ah(·, ·) is continuous: for all uh,vh ∈ Vh (again by use of stability for S
∇,K(·, ·)),

ah(uh,vh) ≤ C∗ ν ‖uh‖1,Ω‖vh‖1,Ω,

where C∗ := max{1, α∗}.

� b(·, ·) satis�es inf-sup condition on Vh × Qh: there exists a βh > 0 such that

(see [83])

sup
vh∈Vh\{0}

b(vh, qh)

‖vh‖1

≥ βh‖qh‖0, ∀qh ∈ Qh.

� Fh(·) is continuous: for all vh ∈ Vh,

Fh(vh) ≤
∑
K∈Th

‖Π0
Kf‖0,K‖vh‖0,K ≤ ‖f‖0,Ω‖vh‖0,Ω.

Now, we generate the following result to show the continuity of the trilinear form

ch(·; ·, ·).

Lemma 3.1. The projection operator Π0
K is bounded with respect to the Ls- norm

with s ≥ 2, that is,

‖Π0
Kv‖0,s,K ≤ C‖v‖0,s,K ∀v ∈ [Ls(K)]2 and K ∈ Th,

where C is independent of mesh size h.
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Proof. The use of inverse estimates for polynomials (see [113, 32]) yields

‖Π0
Kv‖0,s,K ≤ Ch2( 1

s
− 1

2)‖Π0
Kv‖0,K .

In view of the de�nition of Π0
K , we have ‖Π0

Kv‖0,K ≤ ‖v‖0,K . Now, the Hölder's

inequality together with mesh regularity assumptions yields

‖Π0
Kv‖0,s,K ≤ Ch2( 1

s
− 1

2)|K|(
1
2
− 1

s)‖v‖0,s,K ≤ C‖v‖0,s,K .

• ch(·; ·, ·) is continuous: for all uh,vh,wh ∈ Vh (use of Lemma 3.1 and the

continuity of trilinear form c(·; ·, ·), refer [32]),

ch(uh;vh,wh) =
∑
K∈Th

1

2

(
((Π0,0

K ∇vh) Π0
Kuh,Π

0
Kwh)0,K

− ((Π0,0
K ∇wh) Π0

Kuh,Π
0
Kvh)0,K

)
≤ C‖uh‖1,Ω‖wh‖1,Ω‖vh‖1,Ω.

Now, we produce the result below on the existence of unique solution of problem

(3.2.2) and stability of the solution.

Lemma 3.2. The semi-discrete problem (3.2.2) has a unique solution uh(t) ∈ Vh all

t ∈ [0, T ] and given uh(0) and satis�es,

‖uh(t)‖2
0,Ω + ν

∫ t

0

|uh(s)|21,Ω ds ≤ C
(
‖uh(0)‖2

0,Ω +

∫ t

0

‖f(s)‖2
0,Ω ds

)
, (3.2.3)

where the constant C is independent of mesh size h.

Proof. The properties of the discrete bilinear forms ah(·, ·), mh(·, ·) and b(·, ·), dis-
crete trilinear form ch(·; ·, ·), and discrete linear functional Fh(·) with the well-known

wellposedness results from [57] implies that the semi-discrete problem (3.2.2) has a

unique solution, see also [68]. Taking vh = uh in (3.2.2a) gives

1

2

d

dt
‖uh‖2

0,Ω + ν|uh|21,Ω ≤ C‖f‖0,Ω‖uh‖0,Ω.

Employing the Poincaré and Young's inequalities, then integrating from 0 to t lead

to (3.2.3).
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3.2.2 Fully discrete scheme

The time interval [0, T ] is decomposed into subintervals In := [tn−1, tn], where tn =

n∆t for n = 1, . . . , N and ∆t = T
N
. For the time discretization, we employ the

backward Euler scheme, i.e, the approximation of the time derivative at tn for any

generic function gh is de�ned as follows.

δtg
n
h :=

gnh − gn−1
h

∆t
.

For the consistency in the notations, the solution of semi-discrete scheme and fully

discrete scheme at time t = tn, will be denoted by uh(tn) and unh, respectively. The

fully discrete VE scheme corresponding to the continuous formulation (3.1.3) read as:

Given initial conditions u0
h := uh(0), �nd unh ∈ Vh, p

n
h ∈ Qh for each n = 1, . . . , N

such that

mh(δtu
n
h,vh) + ah(u

n
h,vh) + ch(u

n
h;u

n
h,vh) + b(vh, p

n
h) = Fnh (vh) ∀vh ∈ Vh, (3.2.4a)

b(unh, qh) = 0 ∀qh ∈ Qh. (3.2.4b)

The following lemma provide us the well-posedness of the above fully discrete

scheme.

Lemma 3.3. There exists a unique solution unh ∈ Vh, p
n
h ∈ Qh of the problem (3.2.4)

and also satis�es the following bound,

max
1≤j≤n

‖ujh‖
2
0,Ω + ν∆t

n∑
j=1

|ujh|
2
1,Ω ≤ C

(
‖uh(0)‖2

0,Ω + ∆t
n∑
j=1

‖f j‖2
0,Ω

)
, (3.2.5)

where C is a positive constant and independent of h, ∆t.

Proof. Taking vh = unh, qh = pnh in (3.2.4) then the coercivity of ah(·; ·), skew-

symmetry of ch(uh; ·, ·) and continuity of F n
h (·), and use of Young's inequality give

1

2
(‖unh‖2

0,Ω − ‖un−1
h ‖2

0,Ω) + ν∆t|unh|21,Ω ≤ C∆t ‖fn‖0,Ω‖unh‖0,Ω

≤ C∆t ‖fn‖2
0,Ω +

ν∆t

2
|unh|21,Ω.

Summing the bound above over n leads to (3.2.5). Now, the existence and unique-

ness can be obtained from the stability result (3.2.5) and thus, the well-posedness
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of discrete scheme corresponding to the steady Navier-Stokes equation, refer [30, 33,

115].

3.3 Convergence analysis

With the help of a projection named as Stokes projection (introduced in this section

by (3.3.8)), we establish convergence results for both semi-discrete and fully discrete

schemes. We derive the optimal error estimates for velocity in the H1− norm, and

for pressure in the L2− norm under some regularity assumptions. We begin with

collecting the preliminary results for the subsequent analysis.

Lemma 3.4. The trilinear form ch(·; ·, ·) satisfy the following bound:

ch(u;v,w) ≤ C‖u‖1/2
0,Ω‖∇u‖

1/2
0,Ω‖∇v‖0,Ω‖∇w‖0,Ω ∀u,v,w ∈ V, (3.3.1)

where C is independent of h.

Proof. Let p1 = 2, q1 = 3, r1 = 6 then repeated application of generalized version of

Hölder's inequality with 1
p1

+ 1
q1

+ 1
r1

= 1 along with Lemma 3.1 implies that

c̃h(u;v,w) ≤
2∑

i,j=1

∑
K∈Th

∥∥∥∥Π0,0
K

∂vi
∂xj

∥∥∥∥
L2(K)

∥∥Π0
Kuj

∥∥
L3(K)

∥∥Π0
Kwi

∥∥
L6(K)

≤
2∑

i,j=1

(∑
K∈Th

∥∥∥∥Π0,0
K

∂vi
∂xj

∥∥∥∥2

L2(K)

) 1
2
(∑
K∈Th

∥∥Π0
Kuj

∥∥3

L3(K)

) 1
3

×

(∑
K∈Th

∥∥Π0
Kwi

∥∥6

L6(K)

) 1
6

≤ C

2∑
i,j=1

∥∥∥∥∂vi∂xj

∥∥∥∥
0,Ω

‖uj‖0,3,Ω ‖wi‖0,6,Ω .

Employing the Sobolev embedding Wm,p(Ω) ⊂ Lq(Ω), mp < 2 and 1 ≤ q ≤ 2p
2−mp (see

[116]) with choice of p = 2, q = 3, m = 1/2. Also, use of embedding Wm,p(Ω) ⊂
Lq(Ω), q ∈ [1,∞) for mp = 2 and taking p = 2, m = 1, we arrive at

c̃h(u;v,w) ≤ C
2∑

i,j=1

∥∥∥∥∂vi∂xj

∥∥∥∥
0,Ω

‖uj‖ 1
2
,2,Ω ‖wi‖1,Ω . (3.3.2)

63



The interpolation estimates (see [116, Theorem 4.17] on page 79), that is, for all

v ∈ Wm,p(Ω), 1 ≤ j ≤ m, gives

‖v‖W j,p(Ω) ≤ C‖v‖j/mWm,p(Ω)‖v‖
(m−j)/m
Lp(Ω) . (3.3.3)

The choice of j = 1/2, m = 1, p = 2 in (3.3.3) and using Poincaré inequality, we get

‖v‖W 1/2,2(Ω) ≤ C‖v‖1/2

W 1,2(Ω)‖v‖
1/2
0,Ω ≤ CP‖∇v‖1/2

0,Ω‖v‖
1/2
0,Ω.

Thus, the use of above bound in (3.3.2) leads to

c̃h(u;v,w) ≤ C ‖∇v‖0,Ω ‖∇u‖
1/2
0,Ω‖u‖

1/2
0,Ω‖∇w‖0,Ω.

Proceeding analogously to this way, we can derive the same bounds for the second

term c̃h(u;w,v) and hence, conclude the bound (3.3.1).

Lemma 3.5. Let uπ ∈ [P1(K)]2 be the polynomial approximation of u on each

K ∈ Th. Under the regularity assumption on the polygonal mesh Th (mentioned

in Section 3.2), there exists a positive constant C independent of h such that (see

[113, 18]) ∑
K∈Th

(‖u− uπ‖0,K + h |u− uπ|1,K) ≤ Ch2|u|2,Ω. (3.3.4)

Lemma 3.6. For each u ∈ V ∩ [Hr+1(Ω)]2 with 0 ≤ r ≤ 1 and under the regu-

larity assumption on the polygonal mesh (mentioned in Section 3.2), there exist an

interpolant uI ∈ Vh satisfying (see [83])

‖u− uI‖0,Ω + hK |u− uI |1,Ω ≤ Chr+1|u|r+1,Ω. (3.3.5)

Lemma 3.7. The bilinear form b(·, ·) satis�es the discrete inf-sup condition on Vh×
Qh, that is, there exists a βh > 0 such that (see [83])

sup
vh∈Vh\{0}

b(vh, qh)

‖vh‖1,Ω

≥ βh‖qh‖0,Ω ∀qh ∈ Qh. (3.3.6)

For the proof of Lemma 3.6 and 3.7, we refer to [83] and references therein.
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De�ning the discrete kernel space Xh with use of the fact that div Vh ⊂ Qh, as

Xh := {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh} = {vh ∈ Vh : div vh = 0}.

For a given v ∈ X, we have the following approximation property for the discrete

space Xh as a consequence of the discrete inf-sup condition from Lemma 3.7 (see in

[63, 32]):

inf
zh∈Xh\{0}

‖v − zh‖1 ≤ inf
vh∈Vh\{0}

‖v − vh‖1. (3.3.7)

Next, we de�ne the classical Stokes projection Sh(u, p) := (Su
hu, S

p
hp) ∈ Vh ×Qh

as a solution of the following equation (see also [63] and [67]).

ah(S
u
hu,vh) + b(vh, S

p
hp) = a(u,vh) + b(vh, p) ∀vh ∈ Vh, (3.3.8a)

b(Su
hu, qh) = b(u, qh) ∀qh ∈ Qh. (3.3.8b)

Choosing vh = Su
hu in (3.3.8) and using coercivity of the discrete bilinear form ah(·, ·),

we have

‖∇Su
hu‖0,Ω + ‖Sphp‖0,Ω ≤ C(‖∇u‖0,Ω + ‖p‖0,Ω). (3.3.9)

By de�nition of Su
h in (3.3.8b) and use of (3.1.3b) implies b(Su

hu, qh) = 0 for all

qh ∈ Qh and thus Su
hu ∈ Xh. Then as seen in Chapter 2 the following error estimates

of the operator Sh can be easily derived by using the properties of the bilinear forms

ah(·, ·), b(·, ·), Lemma 3.5 and 3.6, and appealing to the duality arguments (refer [83]).

Lemma 3.8. Let (u, p) ∈ V × Q be the solution of the continuous problem (3.1.3)

and (Su
hu, S

p
hp) ∈ Vh × Qh satis�es the equation (3.3.8) then there exists a positive

constant C, independent of h, such that

‖u− Su
hu‖0,Ω + h(|u− Su

hu|1,Ω + ‖p− Sphp‖0,Ω) ≤ Ch2(|u|2,Ω + |p|1,Ω). (3.3.10)

In the following lemma, we estimate the error between the trilinear forms c(·; ·, ·)
and ch(·; ·, ·). The main ideas of the following lemma are borrowed from [32].

Lemma 3.9. For all u ∈ [H2(Ω)]2 ∩V and vh ∈ Vh, the following holds.

|c(u;u,vh)− ch(u;u,vh)| ≤ Ch|u|2,Ω‖∇u‖0,Ω‖∇vh‖0,Ω, (3.3.11)
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where C is independent of h.

Proof. We begin with splitting the skew-symmetric terms into simpler trilinear forms

c̃(·; ·, ·) and c̃h(·; ·, ·) in the following manner.

c(u;u,vh)− ch(u;u,vh) =
1

2

((
c̃(u;u,vh)− c̃h(u;u,vh)

)
+
(
c̃(u;vh,u)− c̃h(u;vh,u)

))
:=

1

2

2∑
i=1

Ci(vh).

We proceed to estimate Ci, i = 1, 2. An application of generalized Hölder's inequal-

ity, Lemma 3.1, Sobolev embedding W r,4(Ω) ⊂ Hr+1(Ω), r ≥ 0 and estimates of

projections Π0
K , Π0,0

K gives

C1(vh) =
∑
K

2∑
i,j=1

∫
K

(∂ui
∂xj

uj (vh,i −Π0
Kvh,i) +

∂ui
∂xj

(uj −Π0
Kuj) Π0

Kvh,i

−
(

(I−Π0,0
K )

∂ui
∂xj

)
Π0
Kuj Π0

Kvh,i

)
≤
∑
K

2∑
i,j=1

(∥∥∥∥∂ui∂xj

∥∥∥∥
L4(K)

‖uj‖L4(K)‖vh,i −Π0
Kvh,i‖L2(K)

+

∥∥∥∥∂ui∂xj

∥∥∥∥
L4(K)

‖(I−Π0
K)uj‖L2(K)‖Π0

Kvh,i‖L4(K)

+ ‖uj‖L4(K)

∥∥∥∥(I−Π0,0
K )

∂ui
∂xj

∥∥∥∥
L4(K)

‖Π0
Kvh,i‖L2(K)

)
≤ Ch |u|2,Ω‖∇u‖0,Ω‖∇vh‖0,Ω.

Proceeding in the similar fashion, we can easily obtain the following bounds for C2(vh).

C2(vh) ≤ Ch|u|2,Ω‖∇u‖0,Ω‖∇vh‖0,Ω.

Collecting all the bounds of Ci(vh), i = 1, 2, we �nally obtain the bound (3.3.11).

3.3.1 Estimates for semi-discrete scheme

We collect all the derived/recalled results to state the estimates below.
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Theorem 3.1. Let (u(t), p(t)) ∈ V×Q and (uh(t), ph(t)) ∈ Vh×Qh be the solutions

of continuous problem (3.1.3) and discrete problem (3.2.2) respectively for each t ∈
(0, T ]. Assuming the additional regularity u ∈ [H2(Ω)]2∩V and p ∈ H1(Ω)∩Q, then
there exists a positive constant C independent of h such that

ν‖u− uh‖2
L2([H1(Ω)]2) + ‖p− ph‖2

L2(L2(Ω)) ≤ C h2. (3.3.12)

Proof. Split the error as (u−uh)(t) := eI(t)+eA(t), where eI(t) := (u−Su
hu)(t) and

eA(t) := (Su
hu−uh)(t). Now since the estimates for eI(t) are known from Lemma 3.8,

we proceed to establish the estimates for term eA(t).

The error equation with the help of Stokes projection (3.3.8), weak form (3.1.3b)

and semi-discrete form (3.2.2b) in terms of eA is given as

mh(∂teA,vh) + ah(eA,vh) = (F − Fh)(vh) + b(vh, ph − Sphp)

−
(
m(∂tu,vh)−mh(∂tS

u
hu,vh)

)
−
(
c(u;u,vh)− ch(uh;uh,vh)

)
. (3.3.13)

From equations (3.3.8), (3.1.3b) and (3.2.2b), we have for all qh ∈ Qh,

b(eA, qh) = b(u− uh, qh) = 0. (3.3.14)

Using (3.3.8) and taking vh = eA in (3.3.13) together with (3.3.14) implies

mh(∂teA, eA) + ah(eA, eA) = (F − Fh)(eA)︸ ︷︷ ︸
:=T1

−
(
m(∂tu, eA)−mh(∂tS

u
hu, eA)

)︸ ︷︷ ︸
:=T2

−
(
c(u;u, eA)− ch(uh;uh, eA)

)︸ ︷︷ ︸
:=T3

. (3.3.15)

The Cauchy Schwarz inequality, estimate of the projection Π0
K and Poincaré inequal-

ity infer that

|T1| ≤ ‖f − fh‖0,Ω‖eA‖0,Ω ≤ Ch|f |1,Ω‖∇eA‖0,Ω.

The consistency of mh(·, ·), use of Cauchy�Schwarz and triangle inequalities, re-

peated application of estimate for projection Π0
K , and estimate (3.3.10) together
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with Poincaré inequality enable

T2 =
∑
K∈Th

mK(∂t(I−Π0
K)u, eA)−mK

h (∂t(S
u
hu−Π0

Ku), eA)

≤
( ∑
K∈Th

(‖∂t(I−Π0
K)u‖0,K + ‖∂t(Su

hu−Π0
Ku)‖0,K)

)
‖eA‖0,Ω

≤ C h|∂tu|1,Ω‖∇eA‖0,Ω.

The estimates for term T3 is quite involved and we proceed by separating the terms

as

T3 = (c(u;u, eA)− ch(u;u, eA)) + (ch(u;u, eA)− ch(uh;uh, eA)) :=
2∑
i=1

T3,i.

The consequence of Lemma 3.9 gives

T3,1 ≤ C h|u|2,Ω‖∇u‖0,Ω‖∇eA‖0,Ω.

For T3,2, we employ Lemma 3.4, estimate of Stokes projection (3.3.10), stability bound

of Stokes projection (3.3.9), continuity of trilinear form ch(·, ·, ·), Poincaré inequality
and bound (3.1.4) to obtain

T3,2 = ch(u;u− uh, eA) + ch(u− uh;uh, eA)

= ch(u; eI , eA) + ch(u; eA, eA) + ch(eI ;uh, eA) + ch(eA;uh, eA)

= ch(u; eI , eA) + ch(eI ;u, eA)− ch(eI ; eI , eA) + ch(eA;u, eA)

+ ch(eA; eA, eA)− ch(eA; eI , eA)

≤ Ch‖∇u‖0,Ω(|u|2,Ω + |p|1,Ω)‖∇eA‖0,Ω + h2(|u|2,Ω + |p|1,Ω)2‖∇eA‖0,Ω

+
(
‖∇u‖0,Ω + ‖p‖0,Ω

)
‖eA‖

1
2
0,Ω‖∇eA‖

3
2
0,Ω.

Collecting the bounds of T3,i, i = 1, 2 and use of Young's inequality, we �nally obtain

the following bound for T3.

T3 ≤ Ch
(

(|u|2,Ω + |p|1,Ω)(‖∇u‖0,Ω + h|u|2,Ω + h|p|1,Ω)
)
‖∇eA‖0,Ω

+
(
‖∇u‖0,Ω + ‖p‖0,Ω

)
‖eA‖

1
2
0,Ω‖∇eA‖

3
2
0,Ω

≤ C
(
‖∇u‖0,Ω + ‖p‖0,Ω

)2

‖∇eA‖0,Ω‖eA‖0,Ω +
ν

4
‖∇eA‖2

0,Ω
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≤ C
(
‖∇u‖0,Ω + ‖p‖0,Ω

)4

‖eA‖2
0,Ω +

ν

2
‖∇eA‖2

0,Ω. (3.3.16)

On substituting the bounds of T1, T2 and T3 in (3.3.15) and applying the Young's

inequality, we arrive at

1

2

d

dt
‖eA‖2

0,Ω +
ν

2
‖∇eA‖2

0,Ω ≤ C
(
h2 +

(
‖∇u‖0,Ω + ‖p‖0,Ω

)4

‖eA‖2
0,Ω

)
.

Now integrating over time from 0 to t then taking uh(0) := uI(0), we get

‖eA(t)‖2
0,Ω + ν

∫ t

0

‖∇eA(s)‖2
0,Ω ds ≤ ‖eA(0)‖2

0,Ω

+C
(
h2 +

∫ t

0

(
‖∇u(s)‖0,Ω + ‖p(s)‖0,Ω

)4

‖eA(s)‖2
0,Ω ds

)
.

An application of Gronwall's lemma together with the additional regularities of u

and p yields

‖eA(t)‖2
0,Ω + ν

∫ t

0

‖∇eA(s)‖2
0,Ω ds ≤ Ch2. (3.3.17)

For pressure estimates, we split the error again in terms of Stokes projection as:

(p− ph)(t) = (p−Sphp)(t) + (Sphp− ph)(t) := eS(t) + eQ(t), and then proceed to derive

estimate for eQ(t).

Now, an application of discrete inf-sup condition from Lemma 3.7 implies

βh‖eQ‖0,Ω ≤ sup
vh∈Vh\{0}

b(vh, eQ)

‖vh‖1,Ω

. (3.3.18)

From equations (3.1.3), (3.2.2) and (3.3.8), we get

b(vh, eQ) = ah(eA,vh) + (f − fh,vh) +
(
mh(∂tuh,vh)−m(∂tu,vh)

)
+
(
ch(uh;uh,vh)− c(u;u,vh)

)
.

The inequality (3.3.18) and integration from 0 to t implies∫ t

0

‖eQ(s)‖2
0,Ω ds ≤ C

∫ t

0

(
‖eA(s)‖2

1,Ω + ‖(f − fh)(s)‖2
0,Ω

+ ‖∂t(u− uh)(s)‖2
0,Ω + ‖∂t(u−Π0

Ku)(s)‖2
0,Ω
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+
1

‖vh‖2
1,Ω

(
ch(uh;uh,vh)− c(u;u,vh)

)2
)
ds. (3.3.19)

The following bound for ∂teA is achieved by di�erentiating the error equation (3.3.13)

with respect to time, choosing vh = ∂teA and then imitating the proof of (3.3.17)

analogously to obtain,

‖∂teA‖2
0,Ω + ν

∫ t

0

‖∇(∂teA)(s)‖2
0,Ω ds ≤ Ch2. (3.3.20)

Use of triangle's inequality, bound of T3 (3.3.16), estimate (3.3.20) and bound (3.3.19)

with estimate from Lemma 3.8, the desired result follows.

3.3.2 Estimates for fully-discrete scheme

Following analogously to the semi-discrete scheme in this section, we provide a sketch

of the proof estimating the total error occurred through time discretization (by em-

ploying the backward Euler scheme) and space discretization. We introduce the

following discrete l2-norm for any bounded function v(t) ∈ Hm(Ω) on interval [0, T ]

as

‖v‖2
l2(Hm(Ω)) = ‖v‖2

l2(0,T ;Hm(Ω)) :=
N∑
i=1

(∆t)‖v(ti)‖2
Hm(Ω), ti = i ∆t.

Theorem 3.2. Let (un, pn) ∈ V × Q and (unh, p
n
h) ∈ Vh × Qh be the solutions

of the continuous problem (3.1.3) and fully discrete problem (3.2.4), respectively for

each n = 1, . . . , N . Assuming the additional regularity that u ∈ [H2(Ω)]2 ∩ V and

p ∈ H1(Ω) ∩Q then,

ν‖u− uh‖2
l2([H1(Ω)]2) + ‖p− ph‖2

l2(L2(Ω)) ≤ C(h2 + ∆t2), (3.3.21)

for constant C independent of h.

Proof. Decompose the error as: un − unh = En
I + En

A, where

En
I := un − Su

hu
n and En

A := Su
hu

n − unh.
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Using the estimates of Stokes projection in Lemma 3.8 at each time tn, one obtains

‖En
I ‖0,Ω + h‖∇En

I ‖1,Ω ≤ Ch2(|un|2,Ω + |pn|1,Ω).

We proceed to obtain the estimates En
A. The following error equation in terms of En

A

can be easily written with the help of Stokes projection (3.3.8), weak form (3.1.3) and

fully discrete form (3.2.4).

mh(δtE
n
A,vh) + ah(E

n
A,vh) = (F n − F n

h )(vh) + b(vh, p
n
h − S

p
hp

n)

+
(
ah(S

u
hu

n,vh)− a(un,vh)
)

+ (mh(δt(S
u
hu

n),vh)−m(∂tu
n,vh))

+ (c(un;un,vh)− ch(unh;unh,vh)). (3.3.22)

Choosing vh = En
A, and using coercivity of mh(·, ·) and ah(·, ·), we infer that

1

2∆t

(
‖En

A‖2
0,Ω − ‖En−1

A ‖2
0,Ω

)
+ ν‖∇En

A‖2
0,Ω

. (mh(δt(S
u
hu

n), En
A)−m(∂tu

n, En
A)) + (F n − F n

h )(En
A)

+
(
ah(S

u
hu

n, En
A)− a(un, En

A)
)

+ (c(un;un, En
A)− ch(unh;unh, E

n
A)).

Multiplying the above inequality with ∆t and then summing over n gives

1

2

(
‖En

A‖2
0,Ω − ‖E0

A‖2
0,Ω

)
+ ν∆t

n∑
j=1

‖∇Ej
A‖

2
0,Ω

.
n∑
j=1

(
mh

(
Su
hu

j − Su
hu

j−1, Ej
A

)
− (∆t)m(∂tu

j, Ej
A)
)

+ (∆t)
n∑
j=1

(F j − F j
h)(Ej

A) + (∆t)
n∑
j=1

(
ah(S

u
hu

j, Ej
A)− a(uj, Ej

A)
)

+ (∆t)
n∑
j=1

(c(uj;uj, Ej
A)− ch(ujh;u

j
h, E

j
A)) :=

4∑
i=1

Gi. (3.3.23)

Use of the polynomial approximation Π0
Ku, Cauchy-Schwarz inequality and Taylor's

expansion for any continuous function f(t) is

f j − f j−1 = (∆t)∂tf
j +

∫ tj

tj−1

(s− tj−1)∂ttf(s) ds,
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and thus implies

G1 =
n∑
j=1

( ∑
K∈Th

mK
h ((Su

hu
j − Su

hu
j−1)−Π0

K(uj − uj−1), Ej
A)

+mK(Π0
K(uj − uj−1)− (∆t)∂tu(tj), E

j
A)
)

≤ C

n∑
j=1

(
h|uj − uj−1|1,Ω +

∥∥(uj − uj−1)− (∆t)∂tu
j
∥∥

0,Ω

)
‖Ej

A‖0,Ω

≤ C

n∑
j=1

(
h

(
(∆t)

∫ tj

tj−1

|∂tu(s)|21,Ω ds

)1/2

+ ∆t

(
(∆t)

∫ tj

tj−1

‖∂ttu(s)‖2
0,Ω ds

)1/2)(
(∆t) ‖Ej

A‖
2
0,Ω

)1/2

≤ C(∆t)1/2
(
h‖∂tu‖L2([H1(Ω)]2) + (∆t)‖∂ttu‖L2([L2(Ω)]2)

)
‖EA‖l2([L2(Ω)]2).

The bounds for other terms, i.e., Gi, i = 2, 3, 4 can be easily obtained as we have

estimated the terms Ti, 1 ≤ 3 in the proof of Theorem 3.1. Now collecting all the

bounds of Gi in (3.3.23), we conclude that

4∑
i=2

Gi . (h+ ∆t)‖EA‖l2([H1(Ω)]2)

+

(
(∆t)

n∑
j=1

(
h(|uj|2,Ω + h|pj|1,Ω) + ‖∇u(tj)‖0,Ω

)
× ‖Ej

A‖
1
2
0,Ω‖∇E

j
A‖

1
2
0,Ω

)
‖EA‖l2([H1(Ω)]2).

Choosing u0
h := u0

I and employing the Young's inequality, we �nally arrive at

1

2
‖En

A‖2
0,Ω +

ν

2
‖EA‖2

l2([H1(Ω)]2)

. h2 + ∆t2 + ∆t
n∑
j=1

(
h(|uj|2,Ω + h|pj|1,Ω) + ‖∇uj‖0,Ω

)4

‖Ej
A‖

2
0,Ω.

Now an application of the triangle's inequality and discrete Gronwall's lemma [75]

concludes (3.3.21).

Proceeding analogously to the semi-discrete case, the estimates for pressure can

be easily obtained by writing the error equations in terms of En
Q := Sphp

n − pnh and
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(a) (b) (c)

Figure 3.1: Samples of (a) Distorted square, (b) Distorted hexagonal, and (c) Non-
convex meshes employed for the numerical tests in this section.

employing the inf-sup condition together with the properties of discrete forms ah(·, ·),
bh(·, ·) and ch(·; ·, ·) (also refer to [117, 115, 76]).

3.4 Numerical tests

In this section, we illustrate the numerical veri�cation of the theoretical rate of con-

vergence of the proposed method. In order to see the computational e�ciency of

the VE methods used for space discretizations, we have considered here three dif-

ferent meshes: distorted square, distorted hexagonal, and non-convex mesh (see Fig.

3.1). After employing the backward Euler method (for time discretization) and the

proposed VEMs, the resultant non-linear system of equations is solved by Newton's

method. We compute the error for velocity and pressure in the following norms.

E1(u) :=
( ∑
K∈Th

‖∇(u−Π∇
Kuh)‖2

0,K

) 1
2
, E0(u) :=

( ∑
K∈Th

‖u−Π0
Kuh‖2

0,K

) 1
2

and E0(p) :=
( ∑
K∈Th

‖p− ph‖2
0,K

) 1
2
.

For assessing the experimental convergence of the proposed scheme applied to

(3.1.1) de�ned over domain Ω = (0, 1)2, we consider the exact velocity of the �uid

�ow and pressure as follows.

p = t
(
x3y3 − 1

16

)
,
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Ndof h−1 E1(u) r1(u) E0(u) r0(u) E0(p) r0(p)

222 4 0.0108080 - 0.0024850 - 0.0295061 -
842 8 0.0060613 0.83 0.0010103 1.30 0.0174711 0.76
3282 16 0.0031157 0.96 0.0003372 1.58 0.0092992 0.91
12962 32 0.0015168 1.04 0.0000972 1.79 0.0047183 0.98
51522 64 0.0007375 1.04 0.0000260 1.90 0.0023658 1.00

Table 3.1: Errors and convergence rates r for �uid velocity and pressure.

u = t2

[
x2(1− x)4y2(1− y)(3− 5y)

−2x(1− x)3(1− 3x)y3(1− y)2

]
.

Then the load function f is enforced from the equation (3.1.1). Moreover, we have

taken viscosity ν = 1, time step ∆t = 0.01 and �nal time T = 1. The Table

3.1 displays the computed order of convergence (r) for velocity and pressure in the

estimated errors E1(u), E0(u) and E0(p).

The computed order of convergence for all three meshes are reported in Fig. 3.2.

From Table 3.1 and Figure 3.2, we observe that the computed and theoretical rate of

convergence are in good agreement irrespective of the mesh type.
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(a) (b)

(c)

Figure 3.2: Convergence in space for three di�erent meshes: (a) Distorted square,
(b) Distorted Hexagonal, and (c) Non-convex mesh.





Chapter 4

Poroelasticity equations

In this chapter, by following [103], we propose a VE formulation for the numerical

approximation of the transient linear poroelasticity problem. VE spaces proposed

for displacement and total pressure form a stable pair, and these can be regarded

as a generalization of the Bernardi-Raugel �nite elements (piecewise linear elements

enriched with bubbles normal to the faces for the displacement components, and

piecewise constant approximations for total pressure, see, e.g., [67]). On the other

hand, no compatibility between the spaces for total pressure and �uid pressure is

needed. Therefore for the �uid pressure, we employ the enhanced VE space from

[118, 25, 26], which allows us to construct a suitable projector onto piecewise linear

functions. All this is restricted, for sake of simplicity, to the lowest-order 2D case,

but one could extend the analysis to higher polynomial degrees and the 3D case,

for instance, considering the discrete inf-sup stable pair from [30] for the Stokes

problem. The main di�culties in our analysis lie in the de�nition of an adequate

projection operator that allows treating the time-dependent problem. To handle

this issue, we have combined Stokes-like and elliptic operators that constitute the

new map here named poroelastic projector. We derive stability for semi-discrete

and fully-discrete approximations and establish the optimal convergence of the VE

scheme in the natural norms. These bounds turn to be robust with respect to the

dilation modulus of the deformable porous structure (which tends to in�nity as the

Poisson ratio approaches 0.5) and of the speci�c storage coe�cient (reaching very

small values in some regimes), and therefore the method is considered locking-free.

A further advantage of the proposed virtual discretization is that it combines primal

and mixed VE spaces. In addition, this work can be seen as a stepping stone in the

study of more complex coupled problems, including interface poroelastic phenomena

and multiphysics (see, for instance, [119, 120, 109]).
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We have arranged the contents of this chapter as follows. Section 4.1 is devoted

to the de�nition of linear poroelasticity problem, and it also contains the precise

de�nition of the continuous weak formulation using three �elds and presents a few

preliminary results needed in the semi-discrete analysis as well. In Section 4.2, we

introduce the VE approximation in semi-discrete form. We specify the VE spaces,

identify the degrees of freedom, and derive appropriate estimates for the discrete

bilinear forms. The a priori error analysis has been derived in Section 4.3, with the

help of the newly introduced poroelastic projection operator. The implementation of

this problem on di�erent families of polygonal meshes is then discussed in Section 4.4,

where we con�rm the theoretical rates of convergence and produce some applicative

tests to gain insight into the behavior of the model problem.

4.1 Governing equations and their variational for-

mulations

4.1.1 Strong form

A deformable porous medium is assumed to occupy the domain Ω, where Ω is an

open and bounded set in R2 (simply for sake of notational convenience) with a Lip-

schitz continuous boundary ∂Ω. The mathematical description of this interaction

between deformation and �ow can be placed in the context of the classical Biot prob-

lem, written as follows (see for instance, the exposition in [121]). In the absence of

gravitational forces, and for a given body load b(t) : Ω→ R2 and a volumetric source

or sink `(t) : Ω → R, one seeks, for each time t ∈ (0, T ], the vector of displace-

ments of the porous skeleton, us(t) : Ω → R2, and the pore pressure of the �uid,

p(t) : Ω → R, satisfying the mass conservation of the �uid content and momentum

balance equations

∂t(c0p
f + α divus)− 1

η
div
(
κ(x)∇p

)
= `

−div
(
λ(divus)I + 2µε(us)− αpfI

)
= ρb

 in Ω× (0, T ],

where κ(x) is the hydraulic conductivity of the porous medium (the mobility matrix,

possibly anisotropic), ρ is the density of solid material, η is the constant viscosity

of the interstitial �uid, c0 is the constrained speci�c storage coe�cient (typically
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small and representing the amount of �uid that can be injected during an increase

of pressure maintaining a constant bulk volume), α is the Biot-Willis consolidation

parameter (typically close to one), and µ and λ are the shear and dilation moduli

associated with the constitutive law of the solid structure. The total stress

σ = λ(divus)I + 2µε(us)− αpfI,

includes a contribution from the e�ective mechanical stress of a Hookean elastic ma-

terial, σeff = λ(divus)I + 2µε(us), and the non-viscous �uid stress represented only

by the pressure scaled with α. As in [95, 103], we consider here the volumetric part

of the total stress ψ, hereafter called total pressure, as one of the primary variables.

This property allows us to rewrite the time-dependent problem as

−div
(
2µε(us)− ψI

)
= ρb(

c0 +
α2

λ

)
∂tp

f − α

λ
∂tψ −

1

η
div(κ∇pf ) = `

ψ − αpf + λ divus = 0

 in Ω× (0, T ], (4.1.1)

which we endow with appropriate initial data

pf (0) = pf,0, us(0) = us,0 in Ω× {0},

(which, in turn, can be used to set the initial condition for the total pressure ψ(0)),

and mixed-type boundary conditions in the following manner

us = 0 and
κ

η
∇pf · n = 0 on Γ× (0, T ], (4.1.2a)(

2µε(us)− ψ I
)
n = 0 and pf = 0 on Σ× (0, T ], (4.1.2b)

where the boundary ∂Ω = Γ ∪ Σ is disjointly split into Γ and Σ where we prescribe

clamped boundaries and zero �uid normal �uxes; and zero (total) traction together

with constant �uid pressure, respectively. Homogeneity of the boundary conditions

is only assumed to simplify the exposition of the analysis.
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4.1.2 Weak formulation

In order to obtain a weak form (in space) for (4.1.1), we de�ne the function spaces

V := [H1
Γ(Ω)]2, Q := H1

Σ(Ω), Z := L2(Ω).

Multiplying (4.1.1) by adequate test functions, integrating by parts (in space) when-

ever appropriate, and using the boundary conditions (4.1.2), leads to the following

variational problem: For a given t > 0, �nd us(t) ∈ V, pf (t) ∈ Q and ψ(t) ∈ Z such

that

a1(us,vs) + b1(vs, ψ) = F (vs) ∀vs ∈ V, (4.1.3a)

ã2(∂tp
f , qf ) + a2(pf , qf ) − b2(qf , ∂tψ) = G(qf ) ∀qf ∈ Q, (4.1.3b)

b1(us, φ) + b2(pf , φ) − a3(ψ, φ) = 0 ∀φ ∈ Z, (4.1.3c)

where the bilinear forms a1 : V × V → R, a2 : Q × Q → R, a3 : Z × Z → R,
b1 : V × Z → R, b2 : Q× Z → R, and linear functionals F : V→ R, G : Q→ R, are
given by the following expressions:

a1(us,vs) := 2µ

∫
Ω

ε(us) : ε(vs), b1(vs, φ) := −
∫

Ω

φ div vs,

F (vs) :=

∫
Ω

ρb · vs, G(qf ) :=

∫
Ω

` qf , ã2(pf , qf ) :=

(
c0 +

α2

λ

)∫
Ω

pfqf ,

a2(pf , qf ) :=
1

η

∫
Ω

κ∇pf · ∇qf , b2(pf , φ) :=
α

λ

∫
Ω

pfφ, a3(ψ, φ) :=
1

λ

∫
Ω

ψφ.

(4.1.4)

4.1.3 Properties of the bilinear forms and linear functionals

We now list the continuity, coercivity, and inf-sup conditions for the variational forms

in (4.1.4). These are employed in [103] to derive the well-posedness of the stationary

form of (4.1.1).

First we have the bounds

a1(us,vs) ≤ 2µ‖ε(us)‖0,Ω‖ε(vs)‖0,Ω ≤ C‖us‖1,Ω‖vs‖1,Ω for all us,vs ∈ V,

b1(vs, φ) ≤ ‖ div vs‖0,Ω‖φ‖0,Ω ≤ C‖vs‖1,Ω‖φ‖0,Ω for all vs ∈ V and φ ∈ Z,

a2(pf , qf ) ≤ κmax

η
|pf |1,Ω|qf |1,Ω ≤

κmax

η
‖pf‖1,Ω‖qf‖1,Ω for all pf , qf ∈ Q,
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b2(qf , φ) ≤ α

λ
‖qf‖0,Ω‖φ‖0,Ω, a3(ψ, φ) ≤ 1

λ
‖ψ‖0,Ω‖φ‖0,Ω for all qf ∈ Q and ψ, φ ∈ Z,

F (vs) ≤ ρ‖b‖0,Ω‖vs‖0,Ω, G(qf ) ≤ ‖`‖0,Ω‖qf‖0,Ω for all vs ∈ V and qf ∈ Q,

along with the coercivity of the diagonal bilinear forms, i.e.,

a1(vs,vs) = 2µ‖ε(vs)‖2
0,Ω ≥ C‖vs‖2

1,Ω for all vs ∈ V,

a2(qf , qf ) ≥ κmin

η
‖qf‖2

1,Ω for all qf ∈ Q,

a3(φ, φ) =
1

λ
‖φ‖2

0,Ω for all φ ∈ Z,

and the following inf-sup condition: there exists a constant β > 0 such that

sup
vs∈V\{0}

b1(vs, φ)

‖vs‖1,Ω

≥ β‖φ‖0,Ω for all φ ∈ Z.

The solvability of the continuous problem is not the focus here, and we refer to [121]

for the corresponding well-posedness and regularity results.

4.2 Virtual element approximation

4.2.1 Discrete spaces and degrees of freedom

In this section we construct a VEM associated with (4.1.3). We start denoting by

{Th}h a sequence of partitions of the domain Ω into general polygons K (open and

simply connected sets whose boundary ∂K is a non-intersecting poly-line consisting

of a �nite number of straight-line segments) having diameter hK , and de�ne as mesh

size h := maxK∈Th hK . By N v
K we denote the number of vertices in the polygon K,

N e
K stands for the number of edges on ∂K, and e is a generic edge of Th. For all

e ∈ ∂K, we denote by neK the unit normal pointing outwards K and by teK the unit

tangent vector along e on K, and Vi represents the i
th vertex of the polygon K. As

in [18], and mentioned in Chapter 2, we assume regularity of the polygonal meshes

Th.

Denoting by Pk(K) the space of polynomials of degree up to k, de�ned locally

on K ∈ Th, we proceed to characterize the scalar energy projection operator Π∇K :
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H1(K)→ P1(K) by the relations

(
∇(Π∇Kq − q),∇r

)
0,K

= 0, P 0
K(Π∇Kq − q) = 0, (4.2.1)

valid for all q ∈ H1(K) and r ∈ P1(K), and where (·, ·)0,K denotes the L2-product on

K, and

P 0
K(q) :=

∫
∂K

q ds.

If we now denote by Mk(K) the space of monomials of degree up to k, de�ned

locally on K ∈ Th, we can de�ne, on each polygon K ∈ Th, the local VE spaces for

displacement, �uid pressure, and total pressure, as

Vh(K) :=

{
vh ∈ [H1(K)]2 ∩ B(∂K) :

(−∆vh −∇s)|K = 0,

div vh = cd ∈ P0(K)
for some s ∈ L2(K)

}
,

Qh(K) :=
{
qh ∈ H1(K) ∩ C0(∂K) : qh|e ∈ P1(e) ∀e ∈ ∂K, ∆qh|K ∈ P1(K),

(Π∇Kqh − qh,mα)0,K = 0 ∀mα ∈M1(K)
}
,

Zh(K) := P0(K),

(4.2.2)

where we de�ne

B(∂K) :=
{
vh ∈ [C0(∂K)]2 : vh|e · teK ∈ P1(e),vh|e · neK ∈ P2(e) ∀e ∈ ∂K

}
.

It is clear from the above de�nitions that the dimension of Vh(K) is 3N e
K , the

dimension of Qh(K) is N v
K , and that of Zh(K) is one. Note that the VE space of

degree k = 1, introduced in [24], has been utilized here for the approximation of

�uid pressure. This facilitates the computation of L2-projection onto the space of

polynomials of degree up to 1 (which are required to de�ne the zero-order discrete

bilinear form on Qh(K)). Next, and in order to take advantage of the features of

VEM discretizations (for instance, estimation for the terms of discrete formulation

without explicit computation of basis functions), we need to specify the degrees of

freedom associated with (4.2.2). These entities will consist of discrete functionals of

the type (taking as an example the space for total pressure)

(Di) : Zh|K → R; Zh|K 3 φ 7→ Di(φ),
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and we start with the degrees of freedom for the local displacement space Vh(K):

� (Dv1) the values of a discrete displacement vh at vertices of the element;

� (Dv2) the normal displacement vh · neK at the mid-point of each edge e ∈ ∂K.

Then we precise the degrees of freedom for the local �uid pressure space Qh(K):

� (Dq) the values of qh at vertices of the polygonal element.

And similarly, the degree of freedom for the local total pressure space Zh(K):

� (Dz) the value of φh over K.

It has been proven elsewhere (see e.g. [24, 29, 18]) that these degrees of freedom

are unisolvent in their respective spaces.

We also de�ne global counterparts of the local VE spaces as follows:

Vh := {vh ∈ V : vh|K ∈ Vh(K) ∀K ∈ Th},

Qh := {qh ∈ Q : qh|K ∈ Qh(K) ∀K ∈ Th},

Zh := {φh ∈ Z : φh|K ∈ Zh(K) ∀K ∈ Th}.

In addition, we denote by NV the number of degrees of freedom for Vh, by NQ

the number of degrees of freedom for Qh, and by dofr(s) the r-th degree of a given

function s.

4.2.2 Virtual element formulation

For all ush,v
s
h ∈ Vh(K) and pfh, q

f
h ∈ Qh(K) we now de�ne the local discrete bilinear

forms

ah1(ush,v
s
h)|K := aK1 (Πε

Ku
s
h,Π

ε
Kv

s
h) + SK1

(
(I−Πε

K)ush, (I−Πε
K)vsh

)
,

ah2(pfh, q
f
h)|K := aK2 (Π∇Kp

f
h,Π

∇
Kq

f
h) + SK2

(
(I − Π∇K)pfh, (I − Π∇K)qfh

)
,

ãh2(pfh, q
f
h)|K := ãK2 (Π0

Kp
f
h,Π

0
Kq

f
h) + SK0

(
(I − Π0

K)pfh, (I − Π0
K)qfh

)
,

where the stabilization of the bilinear forms SK1 (·, ·), SK2 (·, ·), SK0 (·, ·) acting on the

kernel of their respective operators Πε
K , Π∇K , Π0

K , is de�ned as

SK1 (ush,v
s
h) := σK1

NV∑
l=1

dofl(u
s
h)dofl(v

s
h), ush,v

s
h ∈ ker(Πε

K);
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SK2 (pfh, q
f
h) := σK2

NQ∑
l=1

dofl(p
f
h)dofl(q

f
h), pfh, q

f
h ∈ ker(Π∇K);

SK0 (pfh, q
f
h) := σK0 area(K)

NQ∑
l=1

dofl(p
f
h)dofl(q

f
h), pfh, q

f
h ∈ ker(Π0

K),

respectively, where σK1 , σ
K
2 and σK0 are positive multiplicative factors to take into

account the magnitude of the physical parameters (independent of a mesh size).

Note that for all vsh ∈ Vh(K), qfh ∈ Qh(K), these stabilizing terms satisfy the

following relations (see, e.g., [29, 122])

α∗a
K
1 (vsh,v

s
h) ≤ SK1 (vsh,v

s
h) ≤ α∗aK1 (vsh,v

s
h),

ζ∗a
K
2 (qfh , q

f
h) ≤ SK2 (qfh , q

f
h) ≤ ζ∗aK2 (qfh , q

f
h),

ζ̃∗ã
K
2 (qfh , q

f
h) ≤ SK0 (qfh , q

f
h) ≤ ζ̃∗ãK2 (qfh , q

f
h),

(4.2.3)

where α∗, α
∗, ζ∗, ζ

∗, ζ̃∗, ζ̃
∗ are positive constants independent of K and hK . Now, for

all ush,v
s
h ∈ Vh, p

f
h, q

f
h ∈ Qh, the global discrete bilinear forms are speci�ed as

ah1(ush,v
s
h) :=

∑
K∈Th

ah1(ush,v
s
h)|K , ah2(pfh, q

f
h) :=

∑
K∈Th

ah2(pfh, q
f
h)|K ,

ãh2(pfh, q
f
h) :=

∑
K∈Th

ãh2(pfh, q
f
h)|K , b1(vsh, φh) :=

∑
K∈Th

bK1 (vsh, φh),

a3(ψh, φh) :=
∑
K∈Th

aK3 (ψh, φh), b2(qfh , φh) :=
∑
K∈Th

bK2 (qfh , φh).

In addition, we observe that

b2(pfh, φh) =
α

λ

∑
K∈Th

∫
K

pfhφh =
α

λ

∑
K∈Th

∫
K

Π0
Kp

f
hφh. (4.2.4)

On the other hand, the discrete linear functionals, de�ned on each element K, are

F h(vsh)|K := ρ

∫
K

bh(·, t) · vsh, vsh ∈ Vh; Gh(qfh)|K :=

∫
K

`h(·, t)qfh , qfh ∈ Qh,

where the discrete load and volumetric source are given by:

bh(·, t)|K := Π0
Kb(·, t), `h(·, t)|K := Π0

K`(·, t),
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where Π0
K is projection onto piecewise constants on each K.

In view of (4.2.3), the discrete bilinear forms ah1(·, ·), ãh2(·, ·) and ah2(·, ·) are coercive
and bounded in the following manner [29, 18, 26]

ah1(vsh,v
s
h) ≥ min{1, α∗} 2µ ‖ε(vsh)‖2

0,Ω for all vsh ∈ Vh,

ah2(qfh , q
f
h) ≥ min{1, ζ∗}

κmin

η
‖∇qfh‖

2
0,Ω for all qfh ∈ Qh,

ãh2(qfh , q
f
h) ≥ min{1, ζ̃∗}

(
c0 +

α2

λ

)
‖qfh‖

2
0,Ω for all qfh ∈ Qh,

ah1(ush,v
s
h) ≤ max{1, α∗} 2µ ‖ε(ush)‖0,Ω‖ε(vsh)‖0,Ω for all ush,v

s
h ∈ Vh,

ah2(pfh, q
f
h) ≤ max{1, ζ∗} κmax

η
‖∇pfh‖0,Ω‖∇qfh‖0,Ω for all pfh, q

f
h ∈ Qh,

ãh2(pfh, q
f
h) ≤ max{1, ζ̃∗}

(
c0 +

α2

λ

)
‖pfh‖0,Ω‖qfh‖0,Ω for all pfh, q

f
h ∈ Qh.

Moreover, by using de�nitions of the operators Π0
K and Π0

K , we may deduce that the

following bounds hold for the linear functionals:

F h(vsh) ≤ ρ‖b‖0,Ω‖vsh‖0,Ω for all vsh ∈ Vh,

Gh(qfh) ≤ ‖`‖0,Ω‖qfh‖0,Ω for all qfh ∈ Qh.

We also recall that the bilinear form b1(·, ·) satis�es the following discrete inf-sup

condition on Vh × Zh: there exists β̃ > 0, independent of h, such that (see [29]),

sup
vh∈Vh\{0}

b1(vsh, φh)

‖vsh‖1,Ω

≥ β̃‖φh‖0,Ω for all φh ∈ Zh. (4.2.5)

The semidiscrete VE formulation is now de�ned as follows: For all t > 0, given

ush(0), ph(0), ψh(0), �nd ush ∈ L2((0, T ],Vh), p
f
h ∈ L2((0, T ], Qh), ψh ∈ L2((0, T ], Zh)

with ∂tp
f
h ∈ L2((0, T ], Qh), ∂tψh ∈ L2((0, T ], Zh) such that

ah1(ush,v
s
h) + b1(vsh, ψh) = F h(vsh) ∀vsh ∈ Vh, (4.2.6a)

ãh2(∂tp
f
h, q

f
h) + ah2(pfh, q

f
h) − b2(qfh , ∂tψh) = Gh(qfh) ∀qfh ∈ Qh, (4.2.6b)

b1(ush, φh) + b2(pfh, φh) − a3(ψh, φh) = 0 ∀φh ∈ Zh. (4.2.6c)
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4.2.3 Stability of the semi-discrete scheme

The following result will be used for proving the stability and establishing the error

estimates for the semi-discrete scheme without employing the Gronwall's inequality.

For a detailed proof, we refer to [96, Lemma 3.2].

Lemma 4.1. Let X(t) be a continuous function, and consider the non-negative func-

tions F (t) and D(t) satisfying, for constants C0 ≥ 1 and C1 > 0, the bound

X2(t) ≤ C0X
2(0) + C1X(0) +D(t) +

∫ t

0

F (s)X(s) ds, ∀ t ∈ [0, T ].

Then, for each t ∈ [0, T ], there holds

X(t) . X(0) + max

{
C1 +

∫ t

0

F (s) ds, D(t)1/2

}
. (4.2.7)

Note that squaring both sides of (4.2.7) and using Cauchy�Schwarz inequality, we

can rewrite (4.2.7) in the following manner

X(t)2 . X(0)2 + max

{
C2

1 +

∫ t

0

F (s)2 ds, D(t)

}
. (4.2.8)

Now we establish the stability of (4.2.6).

Theorem 4.1 (Stability of the semi-discrete problem). Let (ush(t), p
f
h(t), ψh(t)) be a

solution of (4.2.6) for each t ∈ (0, T ]. Then there exists a constant C > 0 independent

of c0, λ, and h, such that

µ‖ε(ush(t))‖2
0,Ω + c0‖pfh(t)‖

2
0,Ω + ‖ψh(t)‖2

0,Ω +
κmin

η

∫ t

0

‖∇pfh(s)‖
2
0,Ω ds

≤ C

(
µ‖ε(ush(0))‖2

0,Ω +
(
c0 +

α2

λ

)
‖pfh(0)‖2

0,Ω +
1

λ
‖ψh(0)‖2

0,Ω

+

∫ t

0

‖∂tb(s)‖2
0,Ω ds+ sup

t∈[0,T ]

‖b(t)‖2
0,Ω +

∫ t

0

‖`(s)‖2
0,Ω ds

)
.

(4.2.9)

Proof. Following [96], we can di�erentiate equation (4.2.6c) with respect to time and

choose as test function φh = −ψh. We get

−b1(∂tu
s
h, ψh)− b2(∂tp

f
h, ψh) + a3(∂tψh, ψh) = 0.
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Then we take qfh = pfh in (4.2.6b), vsh = ∂tu
s
h in (4.2.6a) and add the result to the

previous relation to obtain

ah1(ush, ∂tu
s
h) + b1(∂tu

s
h, ψh) + ãh2(∂tp

f
h, p

f
h) + ah2(pfh, p

f
h)− b2(pfh, ∂tψh)

− b1(∂tu
s
h, ψh)− b2(∂tp

f
h, ψh) + a3(∂tψh, ψh) = F h(∂tu

s
h) +Gh(pfh).

Using the stability of the bilinear forms ah1(·, ·), ah2(·, ·), SK0 (·, ·) as well as the de�nition
of the discrete bilinear forms b1(·, ·) (cf. (4.2.4)) and ãh2(·, ·), we readily have

µ

2

d

dt
‖ε(ush)‖2

0,Ω +
c0

2

d

dt
‖pfh‖

2
0,Ω +

κmin

η
‖∇pfh‖

2
0,Ω +

1

λ
‖ψh‖2

0,Ω

+
∑
K

(
α2

λ

((
∂t(Π

0
Kp

f
h),Π

0
Kp

f
h

)
0,K

+ SK0
(
(I − Π0

K)∂tp
f
h, (I − Π0

K)pfh
))

− α

λ

(
(Π0

Kp
f
h, ∂tψh)0,K +

(
∂t(Π

0
Kp

f
h), ψh

)
0,K

))
(4.2.10)

. F h(∂tu
s
h) +Gh(pfh).

Rearranging terms on the left-hand side gives

µ

2

d

dt
‖ε(ush)‖2

0,Ω +
κmin

η
‖∇pfh‖

2
0,Ω +

c0

2

d

dt
‖pfh‖

2
0,Ω

+
1

λ

∑
K

((
∂t(αΠ0

Kp
f
h − ψh), (αΠ0

Kp
f
h − ψh)

)
0,K

+
α2

2

d

dt
SK0
(
(I − Π0

K)pfh, (I − Π0
K)pfh

))
. F h(∂tu

s
h) +Gh(pfh),

and after exploiting the stability of SK0 (·, ·) and integrating from 0 to t, we arrive at

µ‖ε(ush(t))‖2
0,Ω + c0‖pfh(t)‖

2
0,Ω +

α2

λ

∑
K

‖(I − Π0
K)pfh(t)‖

2
0,K

+
1

λ

∑
K

‖(αΠ0
Kp

f
h − ψh)(t)‖

2
0,K +

κmin

η

∫ t

0

‖∇pfh(s)‖
2
0,Ω ds

≤ µ‖ε(ush(0))‖2
0,Ω + c0‖pfh(0)‖2

0,Ω

+
α2

λ

∑
K

‖(I − Π0
K)pfh(0)‖2

0,K +
1

λ

∑
K

‖(αΠ0
Kp

f
h − ψh)(0)‖2

0,K
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+ C

(
ρ

∫ t

0

∑
K

(
b(s),Π0

K∂tu
s
h(s)

)
0,K

ds︸ ︷︷ ︸
=:T1

+

∫ t

0

∑
K

(
`(s),Π0

Kp
f
h(s)

)
0,K

ds︸ ︷︷ ︸
=:T2

)
.

Then, integrating by parts (with respect to time) and applying the Korn, Poincaré,

and Young inequalities implies that

T1 = ρ
∑
K

((
b(t),Π0

Ku
s
h(t)
)

0,K
−
(
b(0),Π0

Ku
s
h(0)

)
0,K

)
− ρ

∫ t

0

∑
K

(
∂tb(s),Π

0
Ku

s
h(s)

)
0,K

ds

≤ µ‖ε(ush(t))‖2
0,Ω + C1ρ

(ρ
µ
‖b(t)‖2

0,Ω + ‖b(0)‖0,Ω‖ε(ush(0))‖0,Ω

+

∫ t

0

‖∂tb(s)‖0,Ω‖ε(ush(s))‖0,Ω ds
)
.

In turn, the bound for T2 follows from the Cauchy-Schwarz, Poincaré, and Young

inequalities in the following manner:

T2 =

∫ t

0

∑
K

(`(s),Π0
Kp

f
h(s))0,K ds

≤
∫ t

0

‖`(s)‖0,Ω‖pfh(s)‖0,Ω ds ≤ C2
η

κmin

∫ t

0

‖`(s)‖2
0,Ω ds+

κmin

2η

∫ t

0

‖∇pfh(s)‖
2
0,Ω ds.

Thus, we achieve

µ‖ε(ush(t))‖2
0,Ω + c0‖pfh(t)‖

2
0,Ω +

α2

λ

∑
K

‖(I − Π0
K)pfh(t)‖

2
0,K

+
1

λ

∑
K

‖(αΠ0
Kp

f
h − ψh)(t)‖

2
0,K +

κmin

2η

∫ t

0

‖∇pfh(s)‖
2
0,Ω ds

≤ µ‖ε(ush(0))‖2
0,Ω + c0‖pfh(0)‖2

0,Ω +
α2

λ

∑
K

‖(I − Π0
K)pfh(0)‖2

0,K (4.2.11)

+
1

λ

∑
K

‖(αΠ0
Kp

f
h − ψh)(0)‖2

0,K + C

(∫ t

0

‖`(s)‖2
0,Ω ds+

(
‖b(t)‖2

0,Ω

+ ‖b(0)‖0,Ω‖ε(ush(0))‖0,Ω +

∫ t

0

‖∂tb(s)‖0,Ω‖ε(ush(s))‖0,Ω ds
))

.

Let X2(t) denote the lower bound in the inequality (4.2.11) and choose C0 = 1,

C1 = C‖b(0)‖0, F (t) = C‖∂tb(t)‖0 and D(t) = C(‖b(t)‖2
0 +

∫ t
0
‖`(s)‖2

0 ds) in Lemma
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4.1. Then (4.2.8) enables us to write

µ‖ε(ush(t))‖2
0,Ω + c0‖pfh(t)‖

2
0,Ω +

α2

λ

∑
K

‖(I − Π0
K)pfh(t)‖

2
0,K

+
1

λ

∑
K

‖(αΠ0
Kp

f
h − ψh)(t)‖

2
0,K +

κmin

2η

∫ t

0

‖∇pfh(s)‖
2
0,Ω ds

. µ‖ε(ush(0))‖2
0,Ω + c0‖pfh(0)‖2

0,Ω +
α2

λ

∑
K

‖(I − Π0
K)pfh(0)‖2

0,K (4.2.12)

+
1

λ

∑
K

‖(αΠ0
Kp

f
h − ψh)(0)‖2

0,K + ‖b(t)‖2
0,Ω + ‖b(0)‖2

0,Ω

+

∫ t

0

(‖`(s)‖2
0,Ω + ‖∂tb(s)‖2

0,Ω) ds.

On the other hand, the discrete inf-sup condition (4.2.5) along with (4.2.6a) gives

‖ψh‖0,Ω ≤ sup
vs
h∈Vh\{0}

1

‖vsh‖1,Ω

(
F h(vsh)− ah1(ush,v

s
h)
)
≤ C

(
‖b‖0,Ω + ‖ε(ush)‖0,Ω

)
.

(4.2.13)

And then note that inequality (4.2.12) together with (4.2.13) concludes the proof of

(4.2.9). Moreover, we observe from (4.2.11) that the generic constant C appearing

in (4.2.9) is independent of c0, λ. Therefore the proved stability remains valid even

with c0 → 0, λ→∞.

The energy estimates (4.2.9) help us in obtaining the following result.

Corollary 4.1 (Solvability of the discrete problem). The problem (4.2.6) has a unique

solution in Vh ×Qh × Zh for each t ∈ (0, T ].

Proof. Let ush(t) :=
∑NV

i=1 Ui(t)ξi, p
f
h(t) :=

∑NQ

j=1 Pj(t)χj, ψh(t) :=
∑NZ

l=1 Zl(t)Φl where

ξi(1 ≤ i ≤ NV), χj(1 ≤ j ≤ NQ), Φl(1 ≤ l ≤ NZ , where NZ coincides with the num-

ber of elements in Th) are the basis functions for the spaces Vh, Qh, Zh respectively.

Then (4.2.6) can be written as the following system of �rst-order di�erential equa-

tions:0 0 0

0 Ã2 −B2

0 0 0


︸ ︷︷ ︸

=:A

U̇(t)

Ṗ (t)

Ż(t)

+

A1 0 B1

0 A2 0

B1 B2 −A3


︸ ︷︷ ︸

=:B

U(t)

P (t)

Z(t)

 =

F (t)

G(t)

0

 .
(4.2.14)
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In view of the classical theory of linear systems of di�erential equations, (4.2.14)

possesses a unique solution if the matrixA+ B is invertible (see also [100]). To achieve
this, we �rst rewrite the following problem corresponding to the matrix A+ B: For
(Lh1 , L

h
2 , L

h
3) ∈ V′h ×Q′h × Z ′h, �nd ush ∈ Vh, p

f
h ∈ Qh, qh ∈ Zh such that

ah1(ush,v
s
h) + b1(vsh, ψh) = Lh1(vsh) ∀vsh ∈ Vh, (4.2.15a)

ãh2(pfh, q
f
h) + ah2(pfh, q

f
h) − b2(qfh , ψh) = Lh2(qfh) ∀qfh ∈ Qh, (4.2.15b)

b1(ush, φh) + b2(pfh, φh) − a3(ψh, φh) = Lh3(φh) ∀φh ∈ Zh. (4.2.15c)

Now, the unique solvability of (4.2.15) (and the invertibility of the matrix A+ B)
can be established by showing that the homogeneous counterpart of system (4.2.15)

has only the trivial solution. Setting the functionals de�ning the right-hand side of

(4.2.15) to zero , i.e., Lh1(vsh) = Lh2(qh) = Lh3(φh) = 0, and choosing vsh = ush, φh =

ψh, q
f
h = pfh in (4.2.15), we readily obtain the following bounds by proceeding in

the similar fashion (using the coercivity of ah1(·, ·), ah2(·, ·), Young's inequality and

de�nition of ãh2(·, ·), b2(·, ·), ah3(·, ·)) as in the proof of (4.2.9)

µ‖ε(ush)‖2
0,Ω +

κmin

η
‖∇pfh‖

2
0,Ω ≤ 0,

and hence an application of the Poincaré and Korn inequalities together with the

inf-sup condition of b1(·, ·) yield ush = 0, pfh = 0 and ψh = 0.

Next, we discretize in time using the backward Euler method with the constant

step size ∆t = T/N and denote any function f at t = tn by fn. The fully discrete

scheme reads: given initial conditions us,0h , pf,0h , ψ0
h, and for tn = n∆t, n = 1, . . . , N ,

�nd us,nh ∈ Vh, p
f,n
h ∈ Qh and ψnh ∈ Zh such that for all vsh ∈ Vh, q

f
h ∈ Qh and

φh ∈ Zh such that

ah1(us,nh ,vsh) + b1(vsh, ψ
n
h) = F h,n(vsh), (4.2.16a)

ãh2

(
δtp

f,n
h , qfh

)
+ ah2(pf,nh , qfh)− b2

(
qfh , δtψ

n
h

)
= Gh,n(qfh), (4.2.16b)

b1(us,nh , φh) + b2(pf,nh , φh)− a3(ψnh , φh) = 0, (4.2.16c)

where for all vsh ∈ Vh and q
f
h ∈ Qh we de�ne

F h,n(vsh)|K := ρ

∫
K

bh(t
n) · vsh, Gh,n(qfh)|K :=

∫
K

`h(t
n)qfh .
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With the aim of showing the stability and convergence of the fully-discrete scheme, we

provide �rst the following auxiliary result. A proof, sketched below, follows similarly

as in [98, Lemma 3.2].

Lemma 4.2. Let Xn, 1 ≤ n ≤ N be a �nite sequence of functions with non-negative

constants C0, C1 and �nite sequences Dn and Gn such that

X2
n ≤ C0X

2
0 + C1X0 +Dn +

n∑
j=1

GjXj for all 1 ≤ n ≤ N .

Then there holds

X2
n . X2

0 + max

{
C2

1 +
n∑
j=1

G2
j , Dn

}
for all 1 ≤ n ≤ N . (4.2.17)

Proof. It is su�cient to show that the relation holds for n, which is the smallest

integer such that Xn = max1≤i≤N Xi. There can be two possibilities, namely either

(i) C1X0 +
∑n

j=1GjXj ≤ Dn, or (ii) Dn > C1X0 +
∑n

j=1 GjXj. In case (i), the

bound (4.2.17) trivially holds. In case (ii), using the upper bound Xn and Young's

inequality yields

X2
n ≤ C0X

2
0 + 2

(
C1X0 +

n∑
j=1

GjXj

)
.

(
C0X0 + 2

(
C1 +

n∑
j=1

Gj

))
Xn

≤ 1

2

(
C0X0 + 2

(
C1 +

n∑
j=1

Gj

))2

+
1

2
X2
n.

Now taking the common term of X2
n together and squaring the remaining terms on

the right-hand side completes the proof.

Theorem 4.2 (Stability of the fully-discrete problem). The unique solution to prob-

lem (4.2.16) depends continuously on data. More precisely, there exists a constant C
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independent of c0, λ, h and ∆t such that

µ‖ε(us,nh )‖2
0,Ω + c0‖pf,nh ‖

2
0,Ω + ‖ψnh‖2

0,Ω + (∆t)
κmin

η

n∑
j=1

‖∇pf,jh ‖
2
0,Ω

≤ C

(
µ‖ε(us,0h )‖2

0,Ω +
(
c0 +

α2

λ

)
‖pf,0h ‖

2
0,Ω +

1

λ
‖ψ0

h‖2
0,Ω + max

0≤j≤n
‖bj‖2

0,Ω

+ (∆t)
n∑
j=1

(
‖∂tbj‖2

0,Ω + ‖`j‖2
0

)
+ (∆t)2

∫ T

0

‖∂ttb(s)‖2
0,Ω ds

)
,

(4.2.18)

with bk := b(·, tk) and `k := `(·, tk), for k = 1, . . . , n.

Proof. Taking vsh = us,nh − u
s,n−1
h in (4.2.16a) gives

ah1(us,nh ,us,nh − u
s,n−1
h ) + b1(us,nh − u

s,n−1
h , ψnh) = F h,n(us,nh − u

s,n−1
h ). (4.2.19)

A use of (4.2.6c) for the time step n, n− 1 and setting φh = −ψnh , (4.2.16c) becomes

−b1(us,nh − u
s,n−1
h , ψnh)− b2(pf,nh − p

f,n−1
h , ψnh) + a3(ψnh − ψn−1

h , ψnh) = 0. (4.2.20)

Adding (4.2.20) and (4.2.19) readily gives

ah1(us,nh ,us,nh − u
s,n−1
h ) + a3(ψnh − ψn−1

h , ψnh)− b2(pf,nh − p
f,n−1
h , ψnh) = F h,n(us,nh − u

s,n−1
h ),

(4.2.21)

and choosing qfh = pf,nh in (4.2.16b) implies the relation

ãh2(pf,nh − p
f,n−1
h , pf,nh ) + ∆t ah2(pf,nh , pf,nh )− b2(pf,nh , ψnh − ψn−1

h ) = ∆tGh,n(pf,nh ).

(4.2.22)

Next we proceed to adding (4.2.21) and (4.2.22), to get

ah1(us,nh ,us,nh − u
s,n−1
h ) + ∆t ah2(pf,nh , pf,nh ) + a3(ψnh − ψn−1

h , ψnh)

+ ãh2(pf,nh − p
f,n−1
h , pf,nh )− b2(pf,nh − p

f,n−1
h , ψnh)− b2(pf,nh , ψnh − ψn−1

h )

= F h,n(us,nh − u
s,n−1
h ) + ∆tGh,n(pf,nh ).

Repeating a similar argument as the one used to obtain (4.2.10), together with the
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inequality

(fnh − fn−1
h , fnh ) ≥ 1

2

(
‖fnh ‖2

0,Ω − ‖fn−1
h ‖2

0,Ω

)
, (4.2.23)

for any discrete function f jh, j = 1, . . . , n, we arrive at

µ

2
(‖ε(us,nh )‖2

0,Ω − ‖ε(u
s,n−1
h )‖2

0,Ω) + (∆t)
κmin

η
‖∇pf,nh ‖

2
0,Ω +

1

2

∑
K

c0(‖Π0
Kp

f,n
h ‖

2
0,K − ‖Π0

Kp
f,n−1
h ‖2

0,K)

+
1

2

(
c0 +

α2

λ

)∑
K

(‖(I − Π0
K)pf,nh ‖

2
0,K − ‖(I − Π0

K)pf,n−1
h ‖2

0,K)

+
1

2λ

∑
K

(‖αΠ0
Kp

f,n
h − ψ

n
h‖2

0,K − ‖αΠ0
Kp

f,n−1
h − ψn−1

h ‖2
0,K)

. (∆t)(ρ(bnh, δtu
s,n
h )0,Ω + (`nh, p

f,n
h )0,Ω),

where we have denoted δtfh(tn) := fh(tn)−fh(tn−1)
∆t

for any time-space discrete function

fh. Summing over n we obtain

µ

2
(‖ε(us,nh )‖2

0,Ω − ‖ε(u
s,0
h )‖2

0,Ω) + (∆t)
κmin

η

n∑
j=1

‖∇pf,jh ‖
2
0,Ω +

1

2

∑
K

c0(‖Π0
Kp

f,n
h ‖

2
0,K − ‖Π0

Kp
f,0
h ‖

2
0,K)

+
1

2

(
c0 +

α2

λ

)∑
K

(‖(I − Π0
K)pf,nh ‖

2
0,K − ‖(I − Π0

K)pf,0h ‖
2
0,K)

+
1

2λ

∑
K

(‖αΠ0
Kp

f,n
h − ψ

n
h‖2

0,K − ‖αΠ0
Kp

f,0
h − ψ

0
h‖2

0,K)

. ρ(∆t)
n∑
j=1

(bjh, δtu
s,j
h )0,Ω︸ ︷︷ ︸

=:J1

+ (∆t)
n∑
j=1

(`jh, p
f,j
h )0,Ω︸ ︷︷ ︸

=:J2

.

Using the equality

n∑
j=1

(f jh − f
j−1
h , gjh) = (fnh , g

n
h)− (f 0

h , g
0
h)−

n∑
j=1

(f j−1
h , gjh − g

j−1
h ), (4.2.24)

for any discrete functions f jh, g
j
h, j = 1, . . . , n, along with Taylor expansion, Cauchy�

Schwarz, Korn's inequality and generalized Young's inequality gives

J1 = ρ
(

(bnh,u
s,n
h )0,Ω − (b0

h,u
s,0
h )0,Ω −

n∑
j=1

(bjh − b
j−1
h ,us,j−1

h )0,Ω

)
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= ρ
(

(bnh,u
s,n
h )0,Ω − (b0

h,u
s,0
h )0,Ω −∆t

n∑
j=1

(∂tb
j
h,u

s,j−1
h )0,Ω

+
n∑
j=1

(∫ tj

tj−1

(s− tj−1)∂ttbh(s) ds,us,j−1
h

)
0,Ω

)
≤ µ‖ε(us,0h )‖2

0,Ω +
µ

4
‖ε(us,nh )‖2

0,Ω + C(ρ, µ) max
0≤j≤n

‖bj‖2
0,Ω

+ C(ρ)(∆t)
n∑
j=1

(
‖∂tbj‖0,Ω +

(
(∆t)

∫ tj

tj−1

‖∂ttb(s)‖2
0,Ω ds

)1/2)
‖ε(us,j−1

h )‖0,Ω.

Another application of Young's inequality yields

J2 ≤ C2(η, κmin)(∆t)
n∑
j=1

‖`j‖2
0,Ω + (∆t)

κmin

2η

n∑
j=1

‖pf,jh ‖
2
0,Ω.

The bounds obtained for J1, J2, Π0
K and use of Lemma 4.2 imply

µ‖ε(us,nh )‖2
0,Ω + c0‖pf,nh ‖

2
0,Ω + (∆t)

κmin

η

n∑
j=1

‖∇pf,jh ‖
2
0,Ω

+
(α2

λ

)∑
K

‖(I − Π0
K)pf,nh ‖

2
0,K +

1

λ

∑
K

‖αΠ0
Kp

f,n
h − ψ

n
h‖2

0,K

. µ‖ε(us,0h )‖2
0,Ω +

(
c0 +

α2

λ

)
‖pf,0h ‖

2
0,Ω +

1

λ
‖ψ0

h‖2
0,Ω + max

0≤j≤n
‖bj‖2

0,Ω

+ (∆t)
n∑
j=1

‖`j‖2
0,Ω + (∆t)2

( n∑
j=1

‖∂tbj‖2
0,Ω + (∆t)

∫ T

0

‖∂ttb(s)‖2
0,Ω ds

)
.

(4.2.25)

An application of (4.2.5) together with (4.2.16a) yields

‖ψnh‖0,Ω ≤ C(‖bn‖0,Ω + ‖ε(us,nh )‖0,Ω). (4.2.26)

Finally, the bound (4.2.25) together with (4.2.26) concludes (4.2.18).

It is worth pointing out that the proof is particularly delicate since the stabilisa-

tion term requires a careful treatment in order to guarantee that the bounds remain

independent of the stability constants of the bilinear form ã2(·, ·).

Corollary 4.2 (Solvability of the fully discrete problem). The problem (4.2.16) has

a unique solution in Vh ×Qh × Zh.
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Proof. It is su�cient to show that the homogeneous linear system corresponding to

(4.2.16) has only a trivial solution, since Vh, Qh and Zh are �nite dimensional spaces,

and this can easily be shown by proceeding analogously to the proof of Corollary

4.1.

4.3 A priori error estimates

For the sake of error analysis, we require additional regularity: In particular, for any

t > 0, we consider that the displacement is us(t) ∈ [H2(Ω)]2, the �uid pressure pf (t) ∈
H2(Ω), and the total pressure ψ(t) ∈ H1(Ω). Furthermore, our subsequent analy-

sis also requires the following regularity in time: ∂tu
s ∈ L2(0, T ; [H2(Ω)]2), ∂tp

f ∈
L2(0, T ;H2(Ω)), ∂tψ ∈ L2(0, T ;H1(Ω)), ∂ttu

s ∈ L2(0, T ; [L2(Ω)]2) and ∂ttp
f , ∂ttψ ∈

L2(0, T ;L2(Ω)).

We start by recalling an estimate for the interpolant usI ∈ Vh of us and pfI ∈ Qh

of pf (see [29]).

We now introduce the poroelastic projection operator: given (us, pf , ψ) ∈ V ×
Q× Z, �nd Sh := (Su

hu
s, Sphp

f , Sψhψ) ∈ Vh ×Qh × Zh such that

ah1(Su
hu

s,vsh) + b1(vsh, S
ψ
hψ) =a1(us,vsh) + b1(vsh, ψ) for all vsh ∈ Vh, (4.3.1a)

b1(Su
hu

s, φh) =b1(us, φh) for all φh ∈ Zh, (4.3.1b)

ah2(Sphp
f , qfh) = a2(pf , qfh) for all qfh ∈ Qh, (4.3.1c)

and we remark that Sh is de�ned by the combination of the saddle-point problem

(4.3.1a), (4.3.1b) and the elliptic problem (4.3.1c); and hence, it is well-de�ned.

Theorem 4.3 (Estimates for the poroelastic projection). Let (us, pf , ψ) and (Su
hu

s, Sphp
f , Sψhψ)

be the unique solutions of (4.2.6a)�(4.2.6c) and (4.3.1a), (4.3.1b), respectively. Then

the following estimates hold:

‖us − Su
hu

s‖1,Ω + ‖ψ − Sψhψ‖0,Ω ≤ Ch(|us|2,Ω + |ψ|1,Ω), (4.3.2a)

‖pf − Sphp
f‖0,Ω + h‖pf − Sphp

f‖1,Ω ≤ Ch2|pf |2,Ω. (4.3.2b)

Proof. The estimates available for discretization of Stokes from Lemma 2.10 and

elliptic problems [25] conclude the statement.

Remark 4.1. Note that repeating the same arguments exploited in this and in the
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subsequent sections, it is possible to derive error estimates of order hr. It su�ces to

assume that us(t) ∈ [H1+r(Ω)]2, pf (t) ∈ H1+r(Ω), and ψ(t) ∈ Hr(Ω), for 0 < r ≤ 1.

Theorem 4.4 (Semi-discrete energy error estimates). Let the triplets (us(t), pf (t), ψ(t)) ∈
V×Q×Z and (ush(t), p

f
h(t), ψh(t)) ∈ Vh×Qh×Zh be the unique solutions to problems

(4.1.3a)�(4.1.3c) and (4.2.6a)�(4.2.6c), respectively. Then, the following bounds hold,

with constants C > 0 independent of h, λ and c0,

µ‖ε((us − ush)(t))‖2
0,Ω + ‖(ψ − ψh)(t)‖2

0,Ω +
κmin

η

∫ t

0

‖∇(pf − pfh)(s)‖
2
0,Ω ds ≤ C h2.

Proof. Invoking the Scott-Dupont theory (see [113]) for the polynomial approxima-

tion: there exists a constant C > 0 such that for every r with 0 ≤ r ≤ 1 and for every

us ∈ [H1+r(K)]2, there exists usπ ∈ [Pk(K)]2, k = 0, 1, such that

‖us − usπ‖0,K + hK |us − usπ|1,K ≤ Ch1+r
K |u

s|1+r,K for all K ∈ Th. (4.3.3)

We can then write the displacement and total pressure error in terms of the poroelastic

projector as follows

(us − ush)(t) = (us − Su
hu

s)(t) + (Su
hu

s − ush)(t) := eIu(t) + eAu(t),

(ψ − ψh)(t) = (ψ − Sψhψ)(t) + (Sψhψ − ψh)(t) := eIψ(t) + eAψ(t).

Then, a combination of equations (4.3.1a), (4.2.6a) and (4.1.3a) gives

ah1(eAu ,v
s
h) + b1(vsh, e

A
ψ) = (a1(u,vsh)− ah1(ush,v

s
h)) + b1(vsh, ψ − ψh)

= (F − F h)(vsh),

and taking as test function vsh = ∂te
A
u , we can write the relation

ah1(eAu , ∂te
A
u) + b1(∂te

A
u , e

A
ψ) = (F − F h)(∂te

A
u). (4.3.4)

Now, we write the pressure error in terms of the poroelastic projector as follows

(pf − pfh)(t) = (pf − Sphp
f )(t) + (Sphp

f − pfh)(t) := eIp(t) + eAp (t).
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Using (4.3.1c), (4.2.6b) and (4.1.3b), we obtain

ãh2(∂te
A
p , q

f
h) + ah2(eAp , q

f
h)− b2(qfh , ∂te

A
ψ)

= ãh2(∂tS
p
hp

f , qfh) + a2(pf , qfh)− b2(qfh , ∂tS
ψ
hψ)−Gh(qfh)

= (ãh2(∂tS
p
hp

f , qfh)− ã2(∂tp
f , qfh)) + b2(qfh , ∂te

I
ψ) + (G−Gh)(qfh).

We can take qfh = eAp , which leads to

ãh2(∂te
A
p , e

A
p ) + ah2(eAp , e

A
p )− b2(eAp , ∂te

A
ψ)

= (ãh2(∂tS
p
hp

f , eAp )− ã2(∂tp
f , eAp )) + b2(eAp , ∂te

I
ψ) + (G−Gh)(eAp ).

(4.3.5)

Next we use (4.3.1b), (4.2.6c) and (4.1.3c), and this implies

b1(eAu , φh) + b2(eAp , φh)− a3(eAψ , φh) = b1(Su
hu

s, φh) + b2(Sphp
f , φh)− a3(Sψhψ, φh)

= b1(us, φh) + b2(Sphp
f , φh)− a3(Sψhψ, φh) = −b2(eIp, φh) + a3(eIψ, φh).

Di�erentiating the above equation with respect to time and taking φh = −eAψ , we can
assert that

−b1(∂te
A
u , e

A
ψ)− b2(∂te

A
p , e

A
ψ) + a3(∂te

A
ψ , e

A
ψ) = b2(∂te

I
p, e

A
ψ)− a3(∂te

I
ψ, e

A
ψ). (4.3.6)

Then we simply add (4.3.4), (4.3.5) and (4.3.6), to obtain

ah1(eAu , ∂te
A
u) + ãh2(∂te

A
p , e

A
p ) + ah2(eAp , e

A
p )

+ a3(∂te
A
ψ , e

A
ψ)− b2(eAp , ∂te

A
ψ)− b2(∂te

A
p , e

A
ψ)

= (F − F h)(∂te
A
u) + (ãh2(∂tS

p
hp, e

A
p )− ã2(∂tp, e

A
p ))

+ b2(eAp , ∂te
I
ψ) + (G−Gh)(eAp ) + b2(∂te

I
p, e

A
ψ)− a3(∂te

I
ψ, e

A
ψ).

(4.3.7)

Regarding the left-hand side of (4.3.7), repeating arguments to obtain alike to (4.2.10).

That is,

ah1(eAu , ∂te
A
u) + ãh2(∂te

A
p , e

A
p ) + ah2(eAp , e

A
p ) + a3(∂te

A
ψ , e

A
ψ)− b2(eAp , ∂te

A
ψ)− b2(∂te

A
p , e

A
ψ)

≥ 1

2

d

dt
ah1(eAu , e

A
u) +

c0

2

d

dt
‖eAp ‖2

0,Ω + ah2(eAp , e
A
p )

+
1

λ

∑
K

(
α2
(
∂t(Π

0
Ke

A
p ),Π0

Ke
A
p

)
0,K

+ α2SK0
(
(I − Π0

K)∂te
A
p , (I − Π0

K)eAp
)
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+ (∂te
A
ψ , e

A
ψ)0,K − α(Π0

Ke
A
p , ∂te

A
ψ)0,K − α(Π0

K∂te
A
p , e

A
ψ)0,K

)
≥ C

(
µ

d

dt
‖ε(eAu)‖2

0,Ω + c0
d

dt
‖eAp ‖2

0,Ω +
2κmin

η
‖∇eAp ‖2

0,Ω

+
1

λ

∑
K

(
α2 d

dt
‖(I − Π0

K)eAp ‖2
0,K +

d

dt
‖αΠ0

Ke
A
p − eAψ‖2

0,K

))
.

Then integrating equation (4.3.7) in time and consistency of the bilinear term ã2(·, ·)
implies the bound

µ‖ε(eAu(t))‖2
0,Ω + c0‖eAp (t)‖2

0,Ω +
κmin

η

∫ t

0

‖∇eAp (s)‖2
0,Ω ds

+
1

λ

∑
K

(
α2‖(I − Π0

K)eAp (t)‖2
0,K + ‖(αΠ0

Ke
A
p − eAψ)(t)‖2

0,K

)
. µ‖ε(eAu(0))‖2

0,Ω + c0‖eAp (0)‖2
0,Ω

+
1

λ

∑
K

(
α2‖(I − Π0

K)eAp (0)‖2
0,K + ‖(αΠ0

Ke
A
p − eAψ)(0)‖2

0,K

)
+

4∑
i=1

Di,

where

D1 := ρ

∫ t

0

(
(b− bh)(s), ∂teAu(s)

)
0,Ω

ds,

D2 :=

∫ t

0

(
(`− `h)(s), eAp (s)

)
0,Ω

ds,

D3 :=

∫ t

0

∑
K

(
ãh,K2

(
∂t(S

p
hp

f − pfπ)(s), eAp (s)
)
− ãK2

(
∂t(p

f − pfπ)(s), eAp (s)
))

ds,

and D4 :=

∫ t

0

(
b2

(
eAp (s), ∂te

I
ψ(s)

)
+ b2

(
∂te

I
p(s), e

A
ψ(s)

)
− a3

(
∂te

I
ψ(s), eAψ(s)

))
ds.

Then we can integrate by parts (also in time), use Cauchy-Schwarz inequality and

Young's inequality to arrive at

D1 = ρ

((
(b− bh)(t), eAu(t)

)
0,Ω
−
(
(b− bh)(0), eAu(0)

)
0,Ω

−
∫ t

0

(
∂t(b− bh)(s), eAu(s)

)
0,Ω

ds

)
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≤ C1(ρ, µ)h

(
h|b(t)|21,Ω + |b(0)|1,Ω‖eAu(0)‖0,Ω +

∫ t

0

|∂tb(s)|1,Ω‖eAu(s)‖0,Ω ds

)
+
µ

2
‖ε(eAu(t))‖2

0,Ω,

where we have used standard error estimate for the L2-projection Π0,0
K onto piecewise

constant functions. Using also Cauchy-Schwarz inequality, standard error estimates

for Π0
K on the term D2, Young's and Poincaré inequality readily gives

D2 ≤ Ch

∫ t

0

|`(s)|1,Ω‖eAp (s)‖0,Ω ds ≤ C2h
2

∫ t

0

|`(s)|21,Ω ds+
κmin

6η

∫ t

0

‖∇eAp (s)‖2
0,Ω ds.

On the other hand, considering the polynomial approximation pfπ (cf. (4.3.3)) of pf ,

utilizing the triangle inequality, Young's and Poincaré inequality yield

D3 ≤ C

(
c0 +

α2

λ

)∫ t

0

∑
K

(
‖∂t(Sphp

f − pfπ)(s)‖0,K + ‖∂t(pf − pfπ)(s)‖0,K

)
‖eAp (s)‖0,K ds

≤ Ch2

(
c0 +

α2

λ

)∫ t

0

|∂tpf (s)|2,Ω‖eAp (s)‖0,Ω ds

≤ C3h
4

(
c0 +

α2

λ

)2 ∫ t

0

|∂tpf (s)|22,Ω ds+
κmin

6η

∫ t

0

‖∇eAp (s)‖2
0,Ω ds.

Also,

D4 =

∫ t

0

(
b2

(
eAp (s), ∂te

I
ψ(s)

)
+ b2

(
∂te

I
p(s), e

A
ψ(s)

)
− a3

(
∂te

I
ψ(s), eAψ(s)

))
ds

≤ 1

λ

∫ t

0

(
α‖eAp (s)‖0,Ω‖∂teIψ(s)‖0,Ω +

(
α‖∂teIp(s)‖0,Ω + ‖∂teIψ(s)‖0,Ω

)
‖eAψ(s)‖0,Ω

)
ds

≤ C

λ
h

∫ t

0

(
α‖eAp (s)‖0,Ω(|∂tψ(s)|1,Ω + |∂tus(s)|2,Ω)

+ (αh|∂tpf (s)|2,Ω + |∂tψ(s)|1,Ω + |∂tus(s)|2,Ω)‖eAψ(s)‖0,Ω

)
ds.

Using (4.2.5) and a combination of equations (4.3.1a), (4.2.6a) and (4.1.3a), we get

‖eAψ(t)‖0,Ω ≤ sup
vs
h∈Vh\{0}

b1(vsh, e
A
ψ(t))

‖vsh‖1,Ω

≤ C

(
ρ
∑
K

‖(b− bh)(t)‖0,K + µ‖ε(eAu(t))‖0,Ω

)
≤ C

(
ρ h|b(t)|1,Ω + µ‖ε(eAu(t))‖0,Ω

)
.

(4.3.8)
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Then the bound of D4 with the help of Young's and Poincaré inequality becomes

D4 ≤
C6

λ
h

∫ t

0

(
(αh|∂tpf (s)|2,Ω + |∂tψ(s)|1,Ω + |∂tus(s)|2,Ω)(ρh|b(s)|1,Ω + µ‖ε(eAu(t))‖0,Ω)

+ α2h

λ
(|∂tψ(s)|1,Ω + |∂tus(s)|2,Ω)2

)
ds+

κmin

6η

∫ t

0

‖∇eAp (s)‖2
0,Ω ds.

Combining the bounds of all Di, i = 1, 2, 3, 4 and proceeding similar fashion as we

obtained the bounds in (4.2.12) (using Lemma 4.1 and (4.2.8)), eventually allows us

to conclude that

µ‖ε(eAu(t))‖2
0,Ω + c0‖eAp (t)‖2

0,Ω +
κmin

η

∫ t

0

‖∇eAp (s)‖2
0,Ω ds

≤ µ‖ε(eAu(0))‖2
0,Ω +

(
c0 +

α2

λ

)
‖eAp (0)‖2

0,Ω +
1

λ
‖eAψ(0)‖2

0,Ω

+ C h2

(
sup
t∈[0,T ]

|b(t)|21,Ω +

∫ t

0

(
|b(s)|21,Ω + |∂tb(s)|21,Ω + |`(s)|21,Ω

+
(1

λ

)2(
|∂tψ(s)|21,Ω + |∂tus(s)|22,Ω

)
+
(
c0 +

α2

λ

)2

h2|∂tpf (s)|22,Ω
)

ds

)
.

Then choosing ush(0) := Su
hu

s(0), ψh(0) := Sψhψ(0), pfh(0) := Sphp
f (0) and applying

the triangle inequality together with bound (4.3.8) completes the rest of the proof.

Following a similar structure to the proof of Theorem 4.4, we can establish error

estimates for the fully-discrete problem. Details on the proof are postponed to the

Appendix.

Theorem 4.5 (Fully-discrete error estimates). Let (us(t), pf (t), ψ(t)) ∈ V ×Q× Z
and (us,nh , pf,nh , ψnh) ∈ Vh × Qh × Zh be the unique solutions to problems (4.1.3a)-

(4.1.3c) and (4.2.16a)-(4.2.16c), respectively. Then the following estimates hold for

any n = 1, . . . , N , with constants C independent of h, ∆t, λ and c0:

µ‖ε(us(tn)− us,nh )‖2
0,Ω + ‖ψ(tn)− ψnh‖2

0,Ω

+ (∆t)
κmin

η
‖∇(pf (tn)− pf,nh )‖2

0,Ω ≤ C (h2 + ∆t2).
(4.3.9)

Proof. As in the semidiscrete case we split the individual errors as

us(tn)− us,nh = (us(tn)− Su
hu

s(tn)) + (Su
hu

s(tn)− us,nh ) := EI,n
u + EA,n

u ,

ψ(tn)− ψnh = (ψ(tn)− Sψhψ(tn)) + (Sψhψ(tn)− ψnh) := EI,n
ψ + EA,n

ψ ,
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pf (tn)− pf,nh = (pf (tn)− Sphp
f (tn)) + (Sphp

f (tn)− pf,nh ) := EI,n
p + EA,n

p .

Then, from estimate (4.3.2a) and following the steps of the proof of Theorem 4.4 we

get the bounds

‖EI,n
u ‖1,Ω ≤ Ch(|us(tn)|2,Ω + |ψ(tn)|1,Ω)

≤ Ch(|us(0)|2,Ω + |ψ(0)|1,Ω
+ ‖∂tus‖L1([H2(Ω)]2) + ‖∂tψ‖L1(H1(Ω))), (4.3.10a)

‖EI,n
ψ ‖0,Ω ≤ Ch(|us(0)|2,Ω + |ψ(0)|1,Ω + ‖∂tus‖L1([H2(Ω)]2)

+ ‖∂tψ‖L1(H1(Ω))), (4.3.10b)

‖EI,n
p ‖1,Ω ≤ Ch(|pf (0)|2,Ω + ‖∂tpf‖L1(H2(Ω))). (4.3.10c)

From equations (4.3.1a), (4.2.16a) and (4.1.3a), we readily get

ah1(EA,n
u ,vsh) + b1(vsh, E

A,n
ψ ) = F n(vsh)− F h,n(vsh). (4.3.11)

We then use (4.3.1b) and (4.2.20), and proceed to di�erentiate (4.1.3c) with respect

to time. This implies

b1(EA,n
u − EA,n−1

u , φh) + b2(EA,n
p − EA,n−1

p , φh)− a3(EA,n
ψ − EA,n−1

ψ , φh)

= b1((us(tn)− us(tn−1))− (∆t)∂tu
s(tn), φh)

+ b2((Sphp
f (tn)− Sphp

f (tn−1))− (∆t)∂tp
f (tn), φh)

− a3((Sψhψ(tn)− Sψhψ(tn−1))− (∆t)∂tψ(tn), φh).

(4.3.12)

After choosing vsh = EA,n
u −EA,n−1

u in (4.3.11) and φh = −EA,n
ψ in (4.3.12) and adding

the outcomes, we readily get

ah1(EA,n
u , EA,n

u − EA,n−1
u ) + a3(EA,n

ψ − EA,n−1
ψ , EA,n

ψ )− b2(EA,n
p − EA,n−1

p , EA,n
ψ )

= ρ(b(tn)− bnh, EA,n
u − EA,n−1

u )0,Ω − b1((us(tn)− us(tn−1))− (∆t)∂tu
s(tn), EA,n

ψ )

− b2((Sphp
f (tn)− Sphp

f (tn−1))− (∆t)∂tp
f (tn), EA,n

ψ )

+ a3((Sψhψ(tn)− Sψhψ(tn−1))− (∆t)∂tψ(tn), EA,n
ψ ).

(4.3.13)

Next, and as a consequence of using (4.3.1c), (4.2.6b) and (4.1.3b) with qfh = EA,n
p ,
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we are left with

ãh2(EA,n
p − EA,n−1

p , EA,n
p ) + ∆tah2(EA,n

p , EA,n
p )− b2(EA,n

p , EA,n
ψ − EA,n−1

ψ )

= ∆t(`(tn)− `nh, EA,n
p )0,Ω + ãh2(Sphp

f (tn)− Sphp
f (tn−1), EA,n

p ) (4.3.14)

− ã2((∆t)∂tp
f (tn), EA,n

p ) + b2(EA,n
p , (∆t)∂tψ − (Sψhψ(tn))− Sψhψ(tn−1)).

If we then add the resulting equations (4.3.13)-(4.3.14) and repeat the same arguments

used in deriving (4.2.10), we can assert that

a3(EA,n
ψ − EA,n−1

ψ , EA,n
ψ )− b2(EA,n

p − EA,n−1
p , EA,n

ψ )

− b2(EA,n
p , EA,n

ψ − EA,n−1
ψ ) + ãh2(EA,n

p − EA,n−1
p , EA,n

p )

= (∆t)

(
c0(δtE

A,n
p , EA,n

p )0,Ω +
1

λ

∑
K

(
α2(δt(I − Π0

K)EA,n
p , (I − Π0

K)EA,n
p )0,K

− (δt(αΠ0
KE

A,n
p − EA,n

ψ ), αΠ0
KE

A,n
p − EA,n

ψ )0,K

))
,

The left-hand side can be bounded by using the inequality (4.2.23) and then summing

over n we get

µ‖ε(EA,n
u )‖2

0,Ω + c0‖EA,n
p ‖2

0,Ω + (∆t)
κmin

η

n∑
j=1

‖∇EA,j
p ‖2

0,Ω

+ (1/λ)
∑
K

(
α2‖(I − Π0

K)EA,n
p ‖2

0,K + ‖αΠ0
KE

A,n
p − EA,n

ψ ‖
2
0,K

)
≤ µ‖ε(EA,0

u )‖2
0,Ω + c0‖EA,0

p ‖2
0,Ω + (1/λ)

∑
K

(
α2‖(I − Π0

K)EA,0
p ‖2

0,K + ‖αΠ0
KE

A,0
p − EA,0

ψ ‖
2
0,K

)
+

n∑
j=1

ρ(b(tj)− bjh, E
A,j
u − EA,j−1

u )0,Ω︸ ︷︷ ︸
=:L1

+
n∑
j=1

∆t(`(tj)− `jh, E
A,j
p )0,Ω︸ ︷︷ ︸

=:L2

−
n∑
j=1

b1((us(tj)− us(tj−1))− (∆t)∂tu
s(tj), E

A,j
ψ )︸ ︷︷ ︸

=:L3

−
n∑
j=1

b2((Sphp
f (tj)− Sphp

f (tj−1))− (∆t)∂tp
f (tj), E

A,j
ψ )︸ ︷︷ ︸

=:L4
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+
n∑
j=1

a3((Sψhψ(tj)− Sψhψ(tj−1))− (∆t)∂tψ(tj), E
A,j
ψ )︸ ︷︷ ︸

:=L5

+
n∑
j=1

(ãh2(Sphp
f (tj)− Sphp

f (tj−1), EA,j
p )− ã2((∆t)∂tp

f (tj), E
A,j
p ))︸ ︷︷ ︸

:=L6

+
n∑
j=1

b2(EA,j
p , (∆t)∂tψ − (Sψhψ(tj)− Sψhψ(tj−1))︸ ︷︷ ︸

:=L7

.

We bound the term L1 with the help of formula (4.2.24), the estimates of projection

Π0
K , applying Taylor expansion, and using the generalized Young's inequality. This

gives

L1 = ρ
(
((b− bh)(tn), EA,n

u )0,Ω − ((b− bh)(0), EA,0
u )0,Ω

−
n∑
j=1

(∆t)(δt(b− bh)(tj), EA,j−1
u )0,Ω)

)
≤ µ

2
‖ε(EA,n

u )‖2
0,Ω + C1

(ρ
µ
h|b(0)|1,Ω µ‖ε(EA,0

u )‖0,Ω +
ρ2

µ
h2 max

1≤j≤n
|b(tj)|21,Ω

+ (∆t) h
n∑
j=1

ρ

µ

(
|∂tbj|1,Ω +

(
∆t

∫ tj

tj−1

|∂ttb(s)|21,Ω ds
)1/2
)
µ‖ε(EA,j−1

u )‖0,Ω

)
.

Then the estimate satis�ed by the projection Π0
K along with Poincaré and Young's

inequalities, yield

L2 ≤ C2

n∑
j=1

(∆t)h|`(tj)|1,Ω‖∇EA,j
p ‖0,Ω

≤ C2

n∑
j=1

(∆t)
η

κmin

h2|`(tj)|21,Ω + (∆t)
κmin

6η

n∑
j=1

‖∇EA,j
p ‖2

0,Ω.

The discrete inf-sup condition (4.2.5) implies that

‖EA,j
ψ ‖0,Ω ≤ C(h|b(tj)|1,Ω + ‖ε(EA,j

u )‖0,Ω). (4.3.15)

Applying an expansion in Taylor series, together with (4.3.15), the Cauchy-Schwarz,
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and Young inequalities, enable us to write

L3 ≤ C

n∑
j=1

(
(∆t)3

∫ tj

tj−1

‖∂ttus(s)‖2
0,Ω ds

)1/2

(h|b(tj)|1,Ω + ‖ε(EA,j
u )‖0,Ω).

Then, after using the estimates of the projection Sph (4.3.2b), (4.3.15), and applying

again Cauchy-Schwarz inequality, we get

L4 ≤ C
α

λ

n∑
j=1

(
‖Sph(pf (tj)− pf (tj−1))− (pf (tj)− pf (tj−1))‖0,Ω

+ ‖(pf (tj)− pf (tj−1))− (∆t)∂tp
f (tj)‖0,Ω

)
‖EA,j

ψ ‖0,Ω

≤ C
α

λ

n∑
j=1

(
h2
(

(∆t)

∫ tj

tj−1

|∂tpf (s)|22,Ω ds
)1/2

+
(

(∆t)3

∫ tj

tj−1

‖∂ttpf (s)‖2
0,Ω ds

)1/2
)

× (ρh|b(tj)|1,Ω + ‖ε(EA,j
u )‖0,Ω).

The stability of a3(·, ·) and the proof for the bound of L4 gives

L5 ≤ C(1/λ)
n∑
j=1

‖(Sψhψ(tj)− Sψhψ(tj−1))− (∆t)∂tψ(tj)‖0,Ω(ρh|b(tj)|1,Ω + ‖ε(EA,j
u )‖0,Ω)

≤ C(1/λ)
n∑
j=1

(
h2
(

(∆t)

∫ tj

tj−1

(|∂tus(s)|22,Ω + |∂tψ(s)|21,Ω) ds
)1/2

+
(

(∆t)3

∫ tj

tj−1

‖∂ttψ(s)‖2
0,Ω ds

)1/2
)
× (ρh|b(tj)|1,Ω + ‖ε(EA,j

u )‖0,Ω).

The polynomial approximation pπ for �uid pressure, consistency of the bilinear form

ãh2(·, ·), stability of the bilinear forms ã2(·, ·), ãh2(·, ·), the Cauchy-Schwarz, Poincaré

and Young's inequalities gives

L6 =
n∑
j=1

(
ãh2((Sphp

f (tj)− Sphp
f (tj−1))− (pfπ(tj)− pfπ(tj−1)), EA,j

p )

+ ã2((pfπ(tj)− pfπ(tj−1))− (pf (tj)− pf (tj−1)), EA,j
p )

+ ã2((pf (tj)− pf (tj−1))− (∆t)∂tp
f (tj), E

A,j
p )
)

≤ C
(
c0 +

α2

λ

)2(
h4‖∂tpf‖2

L2(H2(Ω)) + (∆t)2‖∂ttpf‖2
L2(L2(Ω))

)
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+ ∆t
κmin

6η

n∑
j=1

‖∇EA,j
p ‖2

0,Ω.

The continuity of b2(·, ·), the bound derived for the term L5 and using the Young's

inequality gives

L7 ≤
α

λ

n∑
j=1

‖(∆t)∂tψ(tj)− (Sψhψ(tj)− Sψhψ(tj−1))‖0,Ω‖EA,j
p ‖0,Ω

≤ C
(α
λ

)2
(
h2(‖∂tψ‖2

L2(H1(Ω)) + ‖∂tus‖2
L2([H2(Ω)]2)) + (∆t)2‖∂ttψ‖2

L2(L2(Ω))

)
+ (∆t)

κmin

6η

n∑
j=1

‖∇EA,j
p ‖2

0,Ω.

In turn, putting together the bounds obtained for all Li's, i = 1, . . . , 7, using the

Young's inequality and Lemma 4.2 concludes that

µ‖ε(EA,n
u )‖2

0,Ω + c0‖EA,n
p ‖2

0,Ω + (∆t)
κmin

η

n∑
j=1

‖∇EA,j
p ‖2

0,Ω

≤ C

(
µ‖ε(EA,0

u )‖2
0,Ω + (c0 + α2/λ)‖EA,0

p ‖2
0,Ω + (1/λ)‖EA,0

ψ ‖
2
0,Ω +

(
1 + ∆t

)
h2 max

0≤j≤n
|b(tj)|21,Ω

+ h2∆t
n∑
j=1

(|b(tj)|21,Ω + (∆t)|∂tb|21,Ω + |`(tj)|21,Ω) + (∆t)2h2‖∂ttb‖L2([H1(Ω)]2)

+ (∆t)2
(
(c0 + α2/λ)2‖∂ttpf‖2

L2(L2(Ω)) + ‖∂ttus‖2
L2([L2(Ω)]2) +

α2

λ2
‖∂ttψ‖2

L2(L2(Ω))

)
+ h2

(α2

λ2
‖∂tψ‖2

L2(H1(Ω)) +
α2

λ2
‖∂tus‖2

L2([H2(Ω)]2) + (c0 + α2/λ)2h2‖∂tpf‖2
L2(H2(Ω))

))
.

And �nally, the desired result (4.3.9) holds after choosing us,0h := usI(0), ψ0
h :=

Π0,0ψ(0), pf,0h := pfI (0) and applying triangle's inequality together with (4.3.10a)-

(4.3.10c) and (4.3.15).

Remark 4.2. It is well known that an application of Grownwall's lemma implies an

exponential dependency of the generic constant (appearing on the right-hand side) on

the �nal time, and the resulting bounds are therefore not very useful for large time

intervals. We stress that by following the approach used in [98, 96] we can estab-

lish convergence and stability for the semi- and fully discrete schemes circumventing

the use of Gronwall's inequality. A di�erent approach, employed in, e.g., [123] in

the context of poroelasticity problems, is to integrate in time the mass conservation
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(a) (b) (c)

Figure 4.1: Samples of triangular (a), distorted quadrilateral (b), and hexagonal (c)
meshes employed for the numerical tests in this section.

equation.

4.4 Numerical results

In this section conduct numerical tests to computationally recon�rm the conver-

gence rates of the proposed VE scheme and present one test of applicative interest in

poromechanics. All numerical results are produced by an in-house MATLAB code,

using sparse factorization as linear solver.

4.4.1 Veri�cation of spatial convergence

First we consider a steady version of the poroelasticity equations. An exact solution

of the problem on a square domain (0, 1)2 is given by the smooth functions

us(x, y) =

(
− cos(2πx) sin(2πy) + sin(2πy) + sin2(πx) sin2(πy)

sin(2πx) cos(2πy)− sin(2πx)

)
,

pf (x, y) = sin2(πx) sin2(πy), ψ(x, y) = αpf − λ divus.

The body load f and the �uid source ` are computed by evaluating these closed-

form solutions and the problem is completely characterized after specifying the model

constants

ν = 0.3, Ec = 100, κ = 1, α = 1, c0 = 1, η = 0.1,

λ =
Ecν

(1 + ν)(1− 2ν)
, µ =

Ec
(2 + 2ν)

.
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Ndof h−1 e1(us) r1(us) e0(us) r0(us) e0(ψ) r0(ψ) e1(pf ) r1(pf ) e0(pf ) r0(pf )

179 4 0.477968 - 0.271687 - 0.508386 - 0.444463 - 0.142539 -
819 8 0.204990 1.22 0.055766 2.28 0.198845 1.35 0.195632 1.18 0.029745 2.26
3419 16 0.097838 1.07 0.013083 2.09 0.091837 1.11 0.097854 1.00 0.007526 1.98
13819 32 0.049954 0.97 0.003322 1.98 0.043829 1.07 0.024456 1.02 0.001842 2.03
56067 64 0.024756 1.01 8.2 · 10−4 2.02 0.021704 1.01 0.024456 0.98 4.7 · 10−4 1.96

Table 4.1: Veri�cation of space convergence for the method with k = 1. Errors and
convergence rates r for solid displacement, total pressure and �uid pressure.

On a sequence of successively re�ned grids (we have employed for this particular

case, uniform triangular meshes as depicted in Figure 4.1(a)) we compute errors and

convergence rates according to the meshsize and tabulating also the total number

of degrees of freedom (Ndof). The experimental error decay (with respect to mesh

re�nement) is measured using individual relative norms de�ned as follows:

e1(us) :=

(∑
K∈Th |u

s −Πε
Ku

s
h|21,K

)1/2

|us|1,Ω
, e0(us) :=

(∑
K∈Th ‖u

s −Πε
Ku

s
h‖2

0,K

)1/2

‖us‖0,Ω

,

e1(pf ) :=

(∑
K∈Th |p

f − Π∇Kp
f
h|21,K

)1/2

|pf |1,Ω
, e0(pf ) :=

(∑
K∈Th ‖p

f − Π∇Kp
f
h‖2

0,K

)1/2

‖pf‖0,Ω

,

e0(ψ) :=

(∑
K∈Th ‖ψ − ψh‖

2
0,K

)1/2

‖ψ‖0,Ω

,

and Table 4.1 shows the convergence history, exhibiting optimal error decay.

4.4.2 Convergence with respect to the time advancing scheme

Regarding the convergence of the time discretization, we �x a relatively �ne hexagonal

mesh and construct successively re�ned partitions of the time interval (0, 1]. As in

[109], and in order to avoid mixing errors coming from the spatial discretization, we

modify the exact solutions to be

us(x, y, t) = 100 sin(t)

(
x
λ

+ y,

x+ y
λ

)
, pf (x, y, t) = sin(t)(x+ y), ψ(x, y, t) = αpf − λ divus,
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∆t E0(us) r0(us) E0(pf ) r0(pf ) E0(ψ) r0(ψ)

0.5 0.002897 � 0.462768 � 0.398059 �
0.25 0.001362 1.09 0.218179 1.08 0.187834 1.08
0.125 6.5173 · 10−4 1.06 0.104546 1.06 0.090044 1.06
0.0625 3.1756 · 10−4 1.04 0.050955 1.04 0.043910 1.04
0.03125 1.5664 · 10−4 1.02 0.025123 1.02 0.021683 1.02
0.015625 7.7950 · 10−5 1.01 0.012469 1.01 0.010826 1.00

Table 4.2: Convergence of the time discretization for solid displacement, �uid pres-
sure, and total pressure, using successive partitions of the time interval and a �xed
hexagonal mesh.

and we use them to compute loads, sources, initial data, boundary values, and bound-

ary �uxes. The model parameters assume the values

κ = 0.1, α = 1, c0 = 0, η = 1, λ = 1× 103 µ = 1. (4.4.1)

The boundary de�nition is Γ = [{0} × (0, 1)] ∪ [(0, 1)× {0}] (bottom and left edges)

and Σ = ∂Ω \ Γ.

We recall that cumulative errors up to T associated with solid displacement, �uid

pressure, and a generic pressure v (representing either �uid or total pressure), are

de�ned as

E0(us) =

(
∆t

N∑
n=1

(∑
K∈Th

‖us(tn)−Πε
Ku

s,n
h ‖

2
0,K

))1/2

,

E0(v) =

(
∆t

N∑
n=1

(∑
K∈Th

‖v(tn)− Π∇Kv
n
h‖2

0,K

))1/2

,

(4.4.2)

respectively. From Table 4.2 we can readily observe that these errors decay with a

rate of O(∆t).
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4.4.3 Veri�cation of simultaneous space-time convergence for

poroelasticity

Now we consider exact solid displacement and �uid pressure solving problem (4.1.1)

on the square domain Ω = (0, 1)2 and on the time interval (0, 1], given as

us(x, y, t) =

(
− exp(−t) sin(2πy)(1− cos(2πx)) + exp(−t)

µ+λ
sin(πx) sin(πy)

exp(−t) sin(2πx)(1− cos(2πy)) + exp(−t)
µ+λ

sin(πx) sin(πy)

)
,

pf (x, y, t) = exp(−t) sin(πx) sin(πy), ψ(x, y, t) = αpf − λ divus,

which satis�es divus → 0 as λ→∞ (see similar tests in [93, 97]). The load functions,

boundary values, and initial data can be obtained from these closed-form solutions,

and alternatively to the dilation modulus and permeability speci�ed in (4.4.1), we

here choose larger values λ = 1× 104, and κ = 1.

In addition to the errors in (4.4.2), for displacement and for �uid pressure we will

also compute

E1(us) =

(
∆t

N∑
n=1

(∑
K∈Th

|us(tn)−Πε
Ku

s,n
h |

2
1,K

))1/2

,

E1(pf ) =

(
∆t

N∑
n=1

(∑
K∈Th

|pf (tn)− Π∇Kp
f,n
h |

2
1,K

))1/2

.

We consider here pure Dirichlet boundary conditions for both displacement and �uid

pressure. A backward Euler time discretization is used, and in this case, we are

using successive re�nements of the hexagonal partition of the domain as shown in

Figure 4.1(c), simultaneously with a successive re�nement of the time step. The

cumulative errors are again computed until the �nal time t = 1, and the results are

collected in Table 4.3. They show once more optimal convergence rates for the scheme

in its lowest-order form.

Note from this and the previous test, that a zero constrained speci�c storage

coe�cient does not hinder the convergence properties.

4.4.4 Gradual compression of a poroelastic block

Finally we carry out a test involving the compression of a block occupying the region

Ω = (0, 1)2 by applying a sinusoidal-in-time traction on a small region on the top of
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h−1 (∆t)−1 E1(us) r1(us) E0(us) r0(us) E1(p) r1(p) E0(p) r0(p) E0(ψ) r0(ψ)

8 10 1.741116 - 0.101035 - 0.239518 - 0.009757 - 0.509493 -
16 20 0.892377 0.96 0.026166 1.95 0.123684 0.95 0.002528 1.95 0.251106 1.02
32 40 0.451402 0.98 0.006594 1.99 0.062743 0.98 0.000642 1.98 0.125025 1.01
64 80 0.227050 0.99 0.001650 2.00 0.031584 0.99 0.000161 1.99 0.062399 1.00
128 160 0.113876 1.00 0.000413 2.00 0.015844 1.00 0.000041 2.00 0.031165 1.00

Table 4.3: Convergence of the numerical method for displacement, �uid pressure,
and total pressure, up to the �nal time t = 1, using simultaneous partitions of the
time interval and of the spatial domain (using hexagonal meshes).

the box (see a similar test in [103]). The model parameters in this case are

ν = 0.49995, Ec = 3× 104, κ = 1× 10−4, α = 1, c0 = 1× 10−3,

η = 1, λ =
Ecν

(1 + ν)(1− 2ν)
, µ =

Ec
(2 + 2ν)

.

For this test, we have employed a mesh conformed by distorted quadrilaterals

exempli�ed in Figure 4.1(b). The boundary conditions are of homogeneous Dirichlet

type for �uid pressure on the whole boundary, and of mixed type for displacement, and

the boundary is split as ∂Ω := Γ1∪Γ2∪Γ3. A traction h(t) = (0,−1.5×104 sin(πt))T

is applied on a segment of the top edge of the boundary Γ1 = (0.25, 0.75) × {1}, on
the remainder of the top edge Γ2 = [0, 1] × {1}\Γ1, we impose zero traction, and

the body is clamped on the remainder of the boundary Γ3 = ∂Ω\(Γ1 ∪ Γ2). No

boundary conditions are prescribed for the total pressure. Initially the system is at

rest us(0) = 0, ψ(0) = 0, pf (0) = 0, and we employ a backward Euler discretization

of the time interval (0, 0.5] with a constant time step ∆t = 0.1. The numerical results

obtained at the �nal time are depicted in Figure 4.2, where the pro�les for �uid and

total pressure present no spurious oscillations.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Compression of a poroelastic block after t = 0.5 adimensional units. Ap-
proximate displacement components (a,b), displacement vectors on the undeformed
domain (c), displacement magnitude (d), �uid pressure (e), and total pressure (f),
depicted on the deformed domain.
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Chapter 5

Advection-Di�usion-Reaction equations

in a Poroelastic media

This chapter focus on the development of VEMs for approximating the PDE system

modelling poromechanical processes (formulated in mixed form using the solid de-

formation, �uid pressure, and total pressure) interacting with di�using and reacting

solutes in the medium. The space discretization relies on VE spaces containing piece-

wise linear polynomials as well as non-polynomial functions for displacement, pres-

sure, and concentrations; and piecewise constants for total pressure. The Backward-

Euler scheme is employed for the approximation of time derivatives. Using standard

techniques of explicit schemes, we prove the well-posedness of the resultant fully dis-

crete scheme, and a priori error estimates are established by introducing the suitable

projection operators. Several numerical experiments are presented to validate the

theoretical convergence rate and exhibit the performance of the proposed scheme.

This chapter is structured as follows. Section 5.1 is devoted to describing the gov-

erning equations that appear in the coupling of ADR and poroelasticity. In Section 5.2

we derive a weak formulation and include preliminary properties of the mathematical

structure of the problem. The fully discretized scheme is presented and attained its

well-posedness in Section 5.3. We established a priori error estimates in Section 5.4

with the help of Stokes and elliptic projection operators, and numerical experiments

are conducted in Section 5.5.

5.1 Governing equations

Let us consider a piece of soft material as a porous medium composed of a mixture

of incompressible grains and interstitial �uid, whose description can be placed in the
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context of the classical Biot problem. We recall here the three �eld formulation of

the Biot's problem de�ned in Chapter 4 (referring [39]) as, one seeks for each time

t ∈ (0, T ], the displacements of the porous skeleton, us(t) : Ω→ R2, the pore pressure

of the �uid, pf (t) : Ω→ R, and total pressure ψ(t) : Ω→ R, such that(
c0 +

α2

λ

)
∂tp

f − α

λ
∂tψ −

1

η
div(κ∇pf ) = ` in Ω× (0, T ], (5.1.1a)

σ = 2µε(us)− ψI, in Ω× (0, T ], (5.1.1b)

ψ = αpf − λ divus, in Ω× (0, T ], (5.1.1c)

−divσ = ρb in Ω× (0, T ]. (5.1.1d)

We also consider the propagation of a generic species having concentration w1,

reacting with an additional species having concentration w2. The problem can be

written as follows

∂tw1 + us · ∇w1 − div{D1(x)∇w1} = f(w1, w2,u
s) in Ω× (0, T ], (5.1.2a)

∂tw2 + us · ∇w2 − div{D2(x)∇w2} = g(w1, w2,u
s) in Ω× (0, T ], (5.1.2b)

where D1, D2 are positive de�nite di�usion matrices (however we do not consider

here cross-di�usion e�ects as in, e.g., [105, 124]). In the well-posedness analysis, the

reaction kinetics are generic. Nevertheless, for sake of �xing ideas and in order to

specify the coupling e�ects also through a stability analysis that will be conducted in

[12], they will be chosen as a modi�cation to the classical model from [125]

f(w1, w2,u
s) = β1(β2 − w1 + w2

1w2) + γ w1 divus,

g(w1, w2,u
s) = β1(β3 − w2

1w2) + γ w2 divus,

where β1, β2, β3, γ are positive model constants. Note that the mechano-chemical

feedback (the process where mechanical deformation modi�es the reaction-di�usion

e�ects) is here assumed only through advection and an additional reaction term de-

pending on local dilation. The latter term is here modulated by γ > 0, thus represent-

ing a source for both species if the solid volume increases, otherwise the additional

contribution is a sink for both chemicals [11].

The poromechanical deformations are also actively in�uenced by microscopic tension

generation. A very simple description is given in terms of active stresses: we assume

that the total Cauchy stress contains a passive and an active component, where the
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passive part is as in (5.1.1b) and

σtotal = σ + σact, (5.1.3)

where the active stress operates primarily on a given constant direction k, and its

intensity depends on a scalar �eld r = r(w1, w2) and on a positive constant τ , to be

speci�ed later on (for example, see [126])

σact = −τ rk ⊗ k. (5.1.4)

In summary, the coupled system reads

−div(2µε(us)− ψI + σact) = ρb,(
c0 +

α2

λ

)
∂tp

f − α

λ
∂tψ −

1

η
div(κ∇pf ) = `,

ψ − αpf + λ divus = 0,

∂tw1 + us · ∇w1 − div(D1(x)∇w1) = f(w1, w2,u
s),

∂tw2 + us · ∇w2 − div(D2(x)∇w2) = g(w1, w2,u
s),


in Ω× (0, T ], (5.1.5)

which we endow with appropriate initial data at rest

w1(0) = w1,0, w2(0) = w2,0, u
s(0) = 0, pf (0) = 0, ψ(0) = 0 in Ω× {0}, (5.1.6)

and boundary conditions in the following manner

us = 0 and
κ

η
∇pf · n = 0 on Γ× (0, T ], (5.1.7a)

D1(x)∇w1 · n = 0 and D2(x)∇w2 · n = 0 on Γ× (0, T ], (5.1.7b)

[2µε(us)− ψ I + σact]n = 0 and pf = 0 on Σ× (0, T ], (5.1.7c)

w1 = 0 and w2 = 0 on Σ× (0, T ], (5.1.7d)

where the boundary ∂Ω = Γ ∪ Σ is disjointly split into Γ and Σ on which we pre-

scribe clamped boundaries and zero �uid normal �uxes; and zero (total) traction

together with constant �uid pressure, respectively. Moreover, zero concentrations

normal �uxes are prescribed on ∂Ω. We point out that, if we would like to start with

a model in terms of the divergence (div(wiu
s) instead of us ·∇wi in (5.1.2a)-(5.1.2b),

i ∈ {1, 2}), we need to assume zero total �ux (including the advective term, see,
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e.g., [105]). Homogeneity of the boundary conditions is only assumed to simplify the

exposition of the subsequent analysis.

5.2 Weak formulation

We will use the following notations for the Sobolev spaces in this chapter.

V := [H1
Γ(Ω)]2, Q := H1

Σ(Ω), Z := L2(Ω), and W := Q.

Say V := V × Q × Z ×W ×W . Let us multiply (5.1.5) by adequate test functions

and integrate by parts (in space) whenever appropriate. Incorporating the boundary

conditions (5.1.7a)-(5.1.7d) as well as the de�nition of the total stress (5.1.3), we end

up with the following variational problem: For a given t > 0 and initial conditions

(5.1.6), �nd (us(t), pf (t), ψ(t), w1(t), w2(t)) ∈ V such that

a1(u
s,vs) + b1(v

s, ψ) = Fr(v
s) ∀vs ∈ V, (5.2.1a)

ã2(∂tp
f , qf ) +a2(p

f , qf )− b2(qf , ∂tψ) = G`(q
f ) ∀qf ∈ Q, (5.2.1b)

b1(u
s, φ) +b2(p

f , φ)− a3(ψ, φ) = 0 ∀φ ∈ Z, (5.2.1c)

m(∂tw1, s) +a4(w1, s) + c(us;w1, s)= Jf (s) ∀s ∈W, (5.2.1d)

m(∂tw2, s) +a5(w2, s) + c(us;w2, s)= Jg(s) ∀s ∈W, (5.2.1e)

where the formulation with the bilinear forms a1 : V × V → R, a2 : Q × Q → R,
a3 : Z ×Z → R, a4, a5 : W ×W → R, b1 : V×Q→ R, b2 : Q×Z → R, the trilinear
form c : V ×W ×W → R, and linear functionals Fb,r : V → R (for b, r known),

G` : Q→ R, Jf , Jg : W → R (for known f and g), are de�ned as

a1(us,vs) := 2µ

∫
Ω

ε(us) : ε(vs), b1(vs, φ) := −
∫

Ω

φ div vs, b2(pf , φ) :=
α

λ

∫
Ω

pfφ,

ã2(pf , qf ) :=

(
c0 +

α2

λ

)∫
Ω

pfqf , a2(pf , qf ) :=
1

η

∫
Ω

κ(x)∇pf · ∇qf ,

a3(ψ, φ) :=
1

λ

∫
Ω

ψφ, Fb,r(w1, w2;vs) := Fb(v
s) + Fr(w1, w2;vs),

where Fb(v
s) := ρ

∫
Ω

b · vs, Fr(w1, w2;vs) := τ

∫
Ω

r(w1, w2)k ⊗ k : ε(vs),

m(wi, s) :=

∫
Ω

wi s, a3+i(wi, s) :=

∫
Ω

Di(x)∇wi · ∇s, for i = 1, 2,

c(us;w, s) :=

∫
Ω

(us · ∇w)s, G`(q
f ) :=

∫
Ω

` qf ,

116



Jf (w1, w2,u
s; s) :=

∫
Ω

f(w1, w2,u
s) s, Jg(w1, w2,u

s; s) :=

∫
Ω

g(w1, w2,u
s) s.

Preliminaries

We will consider that the initial data (5.1.6) are non-negative and regular enough.

Moreover, throughout the chapter we will assume that the anisotropic permeability

κ(x) and the di�usion matrices D1(x), D2(x) are uniformly bounded and positive

de�nite in Ω. The latter means that, there exist positive constants κ1, κ2, and D
a
i , D

b
i ,

i ∈ {1, 2} such that ∀w ∈ Rd, d = 1, 2, ∀x ∈ Ω, we have

κ1|w|2 ≤ wtκ(x)w ≤ κ2|w|2, and Da
i |w|2 ≤ wtDi(x)w ≤ Db

i |w|2.

Also, for a �xed us, the reaction kinetics f(w1, w2, ·), g(w1, w2, ·) satisfy the growth

conditions, that is, for z = f, g

|z(w1, w2, ·)| ≤ C(1 + |w1|+ |w2|),

and |z(w1, w2, ·)− z(w̃1, w̃2, ·)| ≤ C(|w1 − w̃1|+ |w2 − w̃2|).
(5.2.2)

Given w1, w2 ∈ R, the scalar �eld r(w1, w2) de�ned in (5.1.3) such that

|r(w1, w2)| ≤ |w1|+ |w2|,

|r(w1, w2)− r(w̃1, w̃2)| ≤ C(|w1 − w̃1|+ |w2 − w̃2|),
(5.2.3)

and reaction kinetics f(·, ·,us), g(·, ·,us) for �xed w1, w2 ∈ R holds

|z(·, ·,us)− z(·, ·, ũs)| ≤ C| divus − div ũs|, z = f, g.

In addition, the terms in (5.2.1) ful�ll the following continuity bounds for all us,vs ∈
V, pf , qf ∈ Q, w1, w2, s ∈ W , ψ, φ ∈ Z,

|a1(us,vs)| ≤ 2µCk,2‖us‖1,Ω‖vs‖1,Ω, |b1(vs, φ)| ≤
√
d‖vs‖1,Ω‖φ‖0,Ω,

|a2(pf , qf )| ≤ κ2 η
−1‖pf‖1,Ω‖qf‖1,Ω, |G`(q

f )| ≤ ‖`‖0,Ω‖qf‖0,Ω,

|a3(ψ, φ)| ≤ λ−1‖ψ‖0,Ω‖φ‖0,Ω, |b2(qf , φ)| ≤ αλ−1‖qf‖1,Ω‖φ‖0,Ω,

|Fb,r(w1, w2;vs)| ≤ ρ‖b‖0,Ω‖vs‖0,Ω + τ
√
Ck,2‖r(w1, w2)‖0,Ω‖vs‖1,Ω,

|a3+i(wi, s)| ≤ Db
i‖wi‖1,Ω‖s‖1,Ω, for i = 1, 2,

|Jz(w1, w2,u
s; s)| ≤ ‖z(w1, w2,u

s)‖0,Ω‖s‖0,Ω, z = f, g,

(5.2.4)
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We also have the following coercivity and positivity bounds:

a1(vs,vs) ≥ 2µCk,1‖vs‖2
1,Ω, a2(qf , qf )| ≥ κ1cp

η
‖qf‖2

1,Ω,

a3(φ, φ) = λ−1‖φ‖2
0,Ω, a3+i(s, s) ≥ cpD

a
i ‖s‖2

1,Ω for i = 1, 2,
(5.2.5)

for all vs ∈ V, qf ∈ Q, φ ∈ Z, s ∈ W , where Ck,1 and Ck,2 are the positive constants

satisfying

Ck,1‖vs‖2
1,Ω ≤ ‖ε(vs)‖2

0,Ω ≤ Ck,2‖vs‖2
1,Ω,

and cp is the Poincaré constant. Moreover, the bilinear form b1 satis�es the inf-sup

condition (see, e.g., [67]): For every φ ∈ Q, there exists β > 0 such that

sup
vs∈V\{0}

b1(vs, φ)

‖vs‖1,Ω

≥ β‖φ‖0,Ω. (5.2.6)

Remark 5.1. The well-posedness of the weak formulation (5.2.1) of the fully coupled

system (5.1.5) can be established through the semi-discretization in time technique

(refer [127, 57]) using the compactness arguments, and thus the analysis for time

discretization from [109] can be utilized for this strategy.

5.3 Discrete formulations and wellposedness

In this section, by following VEMs for space discretization, we present a fully discrete

scheme corresponding to (5.2.1). We also address the stability, existence, and unique-

ness of the discrete VE solution. By introducing the adequate local and global discrete

spaces associated with velocity, pressure, total volumetric stress, and concentrations,

the VE formulation is described as follows.

5.3.1 Virtual element discretizations

Let the domain Ω be discretized into the family of the polygonal meshes Th with mesh

size h and element K, vertices on element K as Vi, 1 ≤ i ≤ N v
K with N v

K number of

vertices in K, and any edge in the polygonal mesh is denoted by e. For any natural

number k, let Pk(S) andMk(S) represent the space of polynomials and monomials

of degree less than or equal to k for any S ⊂ R2, respectively. We also suppose

that the polygonal mesh satisfy the assumptions (A1)-(A3) (see [18, 32]) presented

in Chapter 2.
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Before proceeding to de�ne the VE spaces, we will recall few projections as follows.

The standard energy projection Π∇K : H1(K)→ P1(K) is de�ned as

(∇(Π∇Kq − q),∇p1)0,K = 0 for all p1 ∈ P1(K),

where the projection onto constants are maintained through another projection P 0
K

as

P 0
K(Π∇Kq − q) = 0 where P 0

Kq :=
1

N v
K

Nv
K∑

i=1

q(Vi).

The vectorial energy projection from the vector space [H1(K)]2 to [P1(K)]2 denoted

as Π∇
K de�ned exactly in same manner as scalar case shown above.

A variant of the vectorial projection Π∇
K and supported by the bilinear form

aK1 (·, ·), we de�ne a projection Πε
K as,

(ε(Πε
Kv − v), ε(p1))0,K = 0 for all p1 ∈ [P1(K)]2, v ∈ [H1(K)]2,

and the function p1 ∈ ker(aK1 (·, ·)) are again taken care from P0
K(Πε

Kv − v,p1) = 0,

and P0
K(v,p1) = 1

Nv
K

∑Nv
K

i=1 v(Vi) · p1(Vi).

The classical L2-projection operator Π0
K : L2(K)→ P1(K) is expressed as

(Π0
Kq − q, p1)0,K = 0 for all q ∈ L2(K), p1 ∈ P1(K).

Similar to the energy projections, the projections Π0,0
K : [L2(K)]2 → [P0(K)]2 and

Π0
K : [L2(K)]2 → [P1(K)]2 are identi�ed as the vectorial L2 projection onto constants

and linear polynomials, respectively. We stress that these operators not only help us

in deriving the optimal error estimates but also useful in the computation of discrete

bilinear forms.

Then the local VE spaces are introduced as follows (refer [29, 24] and also de�ned

earlier in (4.2.2)):

Vh(K) :=

{
vh ∈ [H1(K)]2 ∩ B(∂K) :

(−∆vh −∇s)|K = 0,

div vh = cd ∈ P0(K)
for some s ∈ L2(K)

}
,

Qh(K) :=
{
qh ∈ H1(K) ∩ C0(∂K) : qh|e ∈ P1(e) ∀e ∈ ∂K, ∆qh|K ∈ P1(K),

(Π∇Kqh − qh,mα)0,K = 0 ∀mα ∈M1(K)
}
,
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Zh(K) := P0(K),

where cd := 1
|K|(
∫
∂K
v · nK ds) and

B(∂K) :=
{
vh ∈ [C0(∂K)]2 : vh|e · teK ∈ P1(e),vh|e · neK ∈ P2(e) ∀e ∈ ∂K

}
.

We have the following degrees of freedom depending on the corresponding spaces (refer

[24, 29] and Chapter 2 for details on unisolvance):

For displacement:

� (Dv1) the values of vh at all vertices of the element K,

� (Dv2) and value of vh · neK at mid point on each edge e ∈ ∂K;

for total volumetric stress:

� (Dz) value of ψh at any point in K;

and for pressure, or concentration:

� (Dq) the values of qh at vertices of the element K.

Then the global spaces are given as

Vh := {vh ∈ V : vh|K ∈ Vh(K) ∀K ∈ Th}, Zh := {ψh ∈ Z : ψh|K ∈ Zh(K) ∀K ∈ Th},

Qh := {qh ∈ Q : qh|K ∈ Qh(K) ∀K ∈ Th}, Wh := {sh ∈ W : sh|K ∈ Qh(K) ∀K ∈ Th}.

Note from above that the local discrete spaces and their degrees of freedom for pres-

sure and concentration are the same, and thus have the same local projection opera-

tors on each element K ∈ Th.
We de�ne the local discrete bilinear forms by considering the computability, con-

sistency, and stability, as:

ah,K1 (ush,v
s
h) := aK1 (Πε

Ku
s
h,Π

ε
Kv

s
h) + 2µ Sε,K((I−Πε

K)ush, (I−Πε
K)vsh),

bK1 (vsh, φh) = (div vsh, φh)0,K , bK2 (qfh , φh) := αλ−1(Π0
Kq

f
h , φh)0,K ,

ãh,K2 (pfh, q
f
h) := ãK2 (Π0

Kp
f
h,Π

0
Kq

f
h) +

(
c0 + α2 λ−1

)
S0,K((I − Π0

K)pfh, (I − Π0
K)qfh),

ah,K2 (pfh, q
f
h) := aK2 (Π∇Kp

f
h,Π

∇
Kq

f
h) + κ̄ η−1 S∇,K((I − Π∇K)pfh, (I − Π∇K)qfh),

120



aK3 (ψh, φh) := (ψh, φh)0,K , ch,K(vsh;wh, sh) :=
(
(Π0

Kv
s
h) · (Π

0,0
K ∇wh),Π

0
Ksh

)
0,K

,

ah,Ki (wh, sh) := aKi (Π∇Kwh,Π
∇
Ksh) + D̄i−3 S

∇,K((I − Π∇K)wh, (I − Π∇K)sh), i = 4, 5,

mh,K(wh, sh) := mK(Π0
Kwh,Π

0
Ksh) + S0,K((I − Π0

K)wh, (I − Π0
K)sh),

where d̄ is average of function d over element K for parameters d = κ,D1, D2, and

the stabilization terms on each K, with Ndof denoting the total number of degrees of

freedom or dimension of the associated space to the variables (for instance, Ndof :=

dimension of Qh(K) in S∇,K(·, ·) for pressure variables ph, qh), as

S∇,K(wh, sh) :=
Ndof∑
r=1

dofr(wh) dofr(sh) with Π∇Kwh,Π
∇
Ksh = 0,

S0,K(wh, sh) := area(K)
Ndof∑
r=1

dofr(wh) dofr(sh) with Π0
Kwh,Π

0
Ksh = 0,

Sε,K(ush,v
s
h) :=

Ndof∑
r=1

dofr(u
s
h) dofr(v

s
h) with Πε

Ku
s
h,Π

ε
Kv

s
h = 0.

Then the stabilization terms satis�es the stability condition with respect to the

norm associated with the respective discrete bilinear forms as, for sh ∈ Qh(K), vsh ∈
Vh(K), we have

c∗|sh|21,K ≤ S∇,K(sh, sh) ≤ c∗|sh|21,K , c̃∗‖sh‖2
0,K ≤ S0,K(sh, sh) ≤ c̃∗‖sh‖2

0,K ,

ĉ∗‖ε(vsh)‖2
0,K ≤ Sε,K(vsh, v

s
h) ≤ ĉ∗‖ε(vsh)‖2

0,K ,

where c∗, c
∗, c̃∗, c̃

∗, ĉ∗, ĉ
∗ are constants independent of mesh size hK and the given

parameters.

The discrete functionals are de�ned in terms of L2 projections as

Gh
l (q

f
h) :=

∑
K∈Th

〈
`h, q

f
h

〉
0,K

, F h
b,r(w1,h, w2,h;v

s
h) := F h

b (vsh) + F h
r (w1,h, w2,h;v

s
h),

with F h
b (vsh) :=

∑
K∈Th

ρ 〈bh,vsh〉0,K ,

F h
r (w1,h, w2,h;v

s
h) :=

∑
K∈Th

τ 〈rh(w1,h, w2,h)(k ⊗ k), ε(vsh)〉0,K ,

Jhz (w1,h, w2,h,u
s
h; sh) :=

∑
K∈Th

〈zh (w1,h, w2,h,u
s
h) , sh〉0,K , z = f, g,
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where

bh|K := Π0,0
K b, rh (w1,h, w2,h) |K := Π0,0

K r
(
Π0
Kw1,h,Π

0
Kw2,h

)
, `h|K := Π0

K`,

zh (w1,h, w2,h,u
s
h) |K := Π0

Kz
(
Π0
Kw1,h,Π

0
Kw2,h,u

s
h

)
, for z = f, g.

Note that Π0
Kzh|K = zh|K for functions zh = fh, gh and for each K ∈ Th.

Then, in general, the global discrete bilinear forms and discrete functional are de�ned

naturally as

ah(uh, vh) :=
∑
K∈Th

ah,K(uh, vh), F h(vh) :=
∑
K∈Th

F h,K(vh),

for any local discrete bilinear form ah,K(·, ·) and discrete functional F h,K(·). With

the help of the stability of the projection operators and stabilization terms, we obtain

the following continuity properties of bilinear and trilinear forms,

ah1(ush,v
s
h) ≤ 2µα̂∗ ‖ε(ush)‖0,Ω‖ε(vsh)‖0,Ω ∀ush,vsh ∈ Vh,

ãh2(pfh, q
f
h) ≤ α̃∗

(
c0 + α2λ−1

)
‖pfh‖0,Ω‖qfh‖0,Ω ∀pfh, q

f
h ∈ Qh,

ah2(pfh, q
f
h) ≤ α∗ κ2η

−1 ‖∇pfh‖0,Ω‖∇qfh‖0,Ω ∀pfh, q
f
h ∈ Qh,

mh(wh, sh) ≤ ‖wh‖0,Ω‖sh‖0,Ω ∀wh, sh ∈ Wh,

ah3+i(wh, sh) ≤ α∗Db
i‖∇wh‖0,Ω‖∇sh‖0,Ω ∀wh, sh ∈ Wh, i = 1, 2,

ch(vsh;wh, sh) ≤ C |vsh|1,Ω‖wh‖1,Ω‖sh‖1,Ω ∀vsh ∈ Vh, wh, sh ∈ Wh,

(5.3.1)

bounds for the discrete functionals,

Gh
` (q

f
h) ≤ ‖`‖0,Ω‖qfh‖0,Ω ∀qfh ∈ Qh,

F h
b,r(w1,h, w2,h;v

s
h) ≤ C (‖b‖0,Ω‖vsh‖0,Ω + ‖rh‖0,Ω‖ε(vsh)‖0,Ω) ∀vsh ∈ Vh,

Jhz (w1,h, w2,h,u
s
h; sh) ≤ ‖zh‖0,Ω‖sh‖0,Ω ∀sh ∈ Wh, for z = f, g,

(5.3.2)

and coercivity properties, ∀vsh ∈ Vh, q
f
h ∈ Qh, sh ∈ Wh

ah1(vsh,v
s
h) ≥ 2µα̂∗‖ε(vsh)‖2

0,Ω, ah2(qfh , q
f
h) ≥ α∗ κ1 η

−1 ‖∇qfh‖
2
0,Ω,

mh(sh, sh) ≥ α̃∗‖sh‖2
0,Ω, ah3+i(sh, sh) ≥ α∗D

a
i ‖∇sh‖2

0,Ω for i = 1, 2.
(5.3.3)

Also, the discrete inf-sup condition hold on (Vh, Zh), that is, there exists β̃ > 0
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independent of h such that (refer [30, 32] and Chapter 2)

sup
vs
h∈Vh\{0}

b1(vsh, φh)

‖vsh‖1,Ω

≥ β̃‖φh‖0,Ω for all φh ∈ Zh. (5.3.4)

5.3.2 Fully discrete scheme

Let us discretize the time interval (0, T ] into N equispaced points and time step

∆t = T
N
with nth time step as tn = n∆t, n = 1, . . . , N , and use the following general

notation for the �rst order backward di�erence ∆t δtX
n := Xn −Xn−1. In this way,

we can write a discrete form of (5.2.1): From the given initial data us,0h , pf,0h , ψ0
h,

w0
1,h, w

0
2,h (which will be projections of the continuous initial conditions of each �eld)

and starting with n = 1, we �rst solve for us,nh ∈ Vh, p
f,n
h ∈ Qh, ψ

n
h ∈ Zh such that,

∀vsh ∈ Vh, q
f
h ∈ Qh, φh ∈ Zh,

ah1(u
s,n
h ,vsh) + b1(v

s
h, ψ

n
h) = F h,nb,r (w

n−1
1,h , w

n−1
2,h ;vsh), (5.3.5a)

ãh2(δtp
f,n
h , qfh) + ah2(p

f,n
h , qfh) − b2(q

f
h , δtψ

n
h) = Gh,n` (qfh), (5.3.5b)

b1(u
s,n
h , φh) + b2(p

f,n
h , φh) − a3(ψ

n
h , φh) = 0, (5.3.5c)

And then we seek the concentrations wn1,h, w
n
2,h ∈ Wh for given displacement us,nh ∈ Vh

(solution of (5.3.5)) and known initial data w0
1,h, w

0
2,h such that, ∀sh ∈ Wh

mh(δtw
n
1,h, sh) + ah4(w

n
1,h, sh) + ch(us,nh ;wn1,h, sh) = Jh,nf (wn−1

1,h , w
n−1
2,h ,u

s,n
h ; sh), (5.3.6a)

mh(δtw
n
2,h, sh) + ah5(w

n
2,h, sh) + ch(us,nh ;wn2,h, sh) = Jh,ng (wn−1

1,h , w
n−1
2,h ,u

s,n
h ; sh). (5.3.6b)

The above process of solving the problem continues iteratively for n = 2, . . . , N . The

discrete functionals on each K ∈ Th and 1 ≤ n ≤ N involved in (5.3.5)-(5.3.6) are

de�ned as

Gh,n
` (qfh)|K := (`nh|K , q

f
h)0,K ,

Jh,nz (wn−1
1,h , w

n−1
2,h ,u

s,n
h ; sh)|K := (zh(w

n−1
1,h , w

n−1
2,h ,u

s,n
h )|K , sh)0,K , for z = f, g,

F h,n
b,r (wn−1

1,h , w
n−1
2,h ;vsh)|K := F h,n

b (vsh)|K + F h,n
r (wn−1

1,h , w
n−1
2,h ;vsh)|K ,

with F h,n
b (vsh)|K := ρ(bnh,v

s
h)0,K ,

F h,n
r (wn−1

1,h , w
n−1
2,h ;vsh)|K := τ(rn−1

h (wn−1
1,h , w

n−1
2,h )(k ⊗ k), ε(vsh))0,K .

We note that the above systems of equations are linear for each n since we have

considered the explicit scheme in time discretization.
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Existence and Uniqueness

We will show the well-posedness of the discrete scheme through stability and then

the uniqueness of the linear system of equations. We start it by introducing the

discrete-in-time l2− norm as follows, for some Sobolev space V

‖X‖2
l2(V ) := ‖X‖2

l2(0,tn;V ) = ∆t
n∑
j=0

‖Xj‖2
V . (5.3.7)

Now, we collect the following important results for the further analysis.

� Discrete Identity:∫
Ω

XnδtX
n =

1

2
δt‖Xn‖2

0,Ω +
1

2
∆t‖δtXn‖2

0,Ω.

� Integration by parts yields, for vs ∈ V and w ∈ W (with the use of (5.1.7a)

and (5.1.7d))∫
Ω

(vs · ∇w)w dx =
1

2

∫
Ω

vs · ∇w2 dx = −1

2

∫
Ω

div (vs)w2 dx.

In analysis, we will require next lemma which is referred from our previous work [39]

(also in Chapter 4) and brie�y explained here.

Lemma 5.1. We have the following bound, for all qf,nh ∈ Qh and φ
n
h ∈ Zh at each n,

(∆t)
n∑
j=1

Ljh ≥
1

2

∑
K∈Th

(
c0(‖Π0

Kq
f,n
h ‖

2
0,K − ‖Π0

Kq
f,0
h ‖

2
0,K)

+λ−1
(
‖αΠ0

Kq
f,n
h − φ

n
h‖2

0,K − ‖αΠ0
Kq

f,0
h − φ

0
h‖2

0,K

)
+α̃∗

(
c0 + α2λ−1

) (
‖(I − Π0

K)qf,nh ‖
2
0,K − ‖(I − Π0

K)qf,0h ‖
2
0,K

))
,

(5.3.8)

where

Lnh := ãh2(δtq
f,n
h , qf,nh )− b2(qf,nh , δtφ

n
h)− b2(δtq

f,n
h , qf,nh ) + a3(δtφ

n
h, φ

n
h),

Proof. The commmutative property for the operators δt and Π0
K gives,

ãh2(δtq
f,n
h , qf,nh ) =

∑
K∈Th

(
ãK2 (δtΠ

0
Kq

f,n
h ,Π0

Kq
f,n
h )
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+
(
c0 + α2λ−1

)
S0,K(δt(I − Π0

K)qf,nh , (I − Π0
K)qf,nh )

)
.

Then rewrite Lnh as

Lnh =
∑
K∈Th

(
λ−1(δt(αΠ0

Kq
f,n
h − φ

n
h), αΠ0

Kq
f,n
h − φ

n
h)0,K

+ α2λ−1S0,K(δt(I − Π0
K)qf,nh , (I − Π0

K)qf,nh )

+ c0

(
(δtΠ

0
Kq

f,n
h ,Π0

Kq
f,n
h )0,K + S0,K(δt(I − Π0

K)qf,nh , (I − Π0
K)qf,nh )

))
,

then multiplying with ∆t and using the equality (5.3.2), we obtain

(∆t)Lnh ≥
1

2

∑
K∈Th

δt

(
λ−1‖αΠ0

Kq
f,n
h − φ

n
h‖2

0,K + c0‖Π0
Kq

f,n
h ‖

2
0,K

+ α̃∗
(
c0 + α2λ−1

)
‖(I − Π0

K)qf,nh ‖
2
0,K

)
.

Thus summing over n gives (5.3.8).

Next, we recall a well-known lemma utilized to handle the analysis of the non-

linear and time-dependent problems. Also, we consult the proof of the following

lemma from [75, Lemma 5.1].

Lemma 5.2 (Generalized Discrete Gronwall lemma). Let k, B, and aj, bj, cj, γj, for

integer j ≥ 0, be non-negative numbers such that, for n > 0, we have

an + k
n∑
j=0

bj ≤ k
n∑
j=0

γjaj + k
n∑
j=0

cj +B.

If kγj < 1 ∀j then

an + k

n∑
j=0

bj ≤ exp

(
k

n∑
j=0

(1− kγj)−1γj

){
k

n∑
j=0

cj +B

}
. (5.3.9)

The next theorem establishes the existence and uniqueness result.

Theorem 5.1. The fully-discrete formulation (5.3.5)-(5.3.6) of the coupled problem

(5.1.5) has a unique solution (us,nh , pf,nh , ψnh , w
n
1,h, w

n
2,h) ∈ Vh := Vh×Qh×Zh×Wh×Wh

for each n.

Proof. Referring to the previous chapter (Chapter 4), the linear problem (5.3.5) in
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the form of an uncoupled fully discrete scheme for poroelasticity problem is well-posed

for a given data.

We will ensure the existence of a unique solution of linear uncoupled ADR equation

(5.3.6) by virtue of the Lax-Milgram lemma. In order to proceed, we de�ne the

discrete bilinear form with given us,nh as solution of the problem (5.3.5) as,

Chi (wni,h, sh) := mh(wni,h, sh) + ∆t
(
ah3+i(w

n
i,h, sh) + ch(us,nh ;wni,h, sh)

)
for i = 1, 2.

We can rewrite the uncoupled ADR problem (5.3.6) for all sh ∈ Wh as

Chi (wni,h, sh) = ∆t Jh,nz (wn−1
1,h , w

n−1
2,h ,u

s,n
h ; sh) +mh(wn−1

i,h , sh),

for z = f, g and i = 1, 2.

The continuity of right hand side obtained using the bounds of the discrete linear

functionals mh(wn−1
1,h , ·) and Jh,nz (wn−1

1,h , w
n−1
2,h ,u

s,n
h ; ·) with the help of bounds (5.3.1)-

(5.3.2). Now, we will prove the coercivity of the discrete bilinear form Chi (·, ·). For all
sh ∈ Wh, the usage of inverse inequality for polynomials leads to

cKh (us,nh ; sh, sh) ≤ ‖Π0
Ku

s,n
h ‖∞,K‖Π

0,0
K ∇sh‖0,K‖Π0

Ksh‖0,K

≤ C‖us,nh ‖∞,K‖∇sh‖0,K‖sh‖0,K .

Now, for any sh ∈ Wh, the use of above bound for cKh (us,nh ; ·, ·), coercivity of the

bilinear forms mh(·, ·) and ah3+i(·, ·), and Young's inequality, we get

Chi (sh, sh) = mh(sh, sh) + ∆t
(
ah3+i(sh, sh) + ch(us,nh ; sh, sh)

)
≥
(
α̃∗ −

C∆t

2α∗Da
i

‖us,nh ‖
2
∞,Ω

)
‖sh‖2

0,Ω +
α∗
2
Da
i ∆t‖∇sh‖2

0,Ω.

Choosing ∆t > 0 small enough and require Da
i so that

α̃∗ ≥
C‖us,nh ‖2

∞,Ω

2α∗Da
i

∆t,

we achieve the coercivity of Chi (·, ·). Also, the continuity of discrete bilinear form

Chi (·, ·) is followed from the boundedness of the discrete bilinear forms (5.3.1). Thus,

the Lax-Milgram lemma deduces the existence of a unique solution.

Now, we will establish the stability of fully discrete scheme by collecting the results
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from Lemmas 5.1 and 5.2.

Theorem 5.2. Assume that (us,nh , pf,nh , ψnh , w
n
1,h, w

n
2,h) ∈ Vh is solution of the fully

discrete scheme (5.3.5)-(5.3.6) for the coupled problem (5.1.5) then it satis�es

‖ε(us,nh )‖2
0,Ω + ‖pfh‖

2
l2(H1(Ω)) + ‖ψnh‖2

0,Ω +
2∑
i=1

(
‖wni,h‖2

0,Ω +Da
i ‖wi,h‖2

l2(H1(Ω))

)
≤ C

(
‖ε(us,0h )‖2

0,Ω + ‖pf,0h ‖
2
0,Ω + ‖ψ0

h‖2
0,Ω +

2∑
i=1

‖w0
i,h‖2

0,Ω + ‖`‖2
l2(L2(Ω))

+
n∑
j=1

(
1 + ‖bj‖2

0,Ω

))
,

where C > 0 is a constant independent of h and ∆t.

Proof. Taking vs,nh = δtu
s,n
h in (5.3.5a), qfh = pf,nh in (5.3.5b), and for time step n and

n− 1 in equation (5.3.5c) with φh = ψnh gives

ah1(us,nh , δtu
s,n
h ) + b1(δtu

s,n
h , ψnh) = F h,n

b,r (wn−1
1,h , w

n−1
2,h ; δtu

s,n
h ),

ãh2(δtp
f,n
h , pf,nh ) + ah2(pf,nh , pf,nh )− b2(pf,nh , δtψ

n
h) = Gh,n

` (pf,nh ),

b1(δtu
s,n
h , ψnh) + b2(δtp

f,n
h , ψnh)− a3(δtψ

n
h , ψ

n
h) = 0.

Adding these equations result into

ah1(us,nh , δtu
s,n
h ) + ah2(pf,nh , pf,nh ) + ãh2(δtp

f,n
h , pf,nh )− b2(pf,nh , δtψ

n
h)

−b2(δtp
f,n
h , ψnh) + a3(δtψ

n
h , ψ

n
h)

= F h,n
b,r (wn−1

1,h , w
n−1
2,h ; δtu

s,n
h ) +Gh,n

` (pf,nh ).

Summing over n, and the use of (5.3.2) and bound of Lnh from Lemma (5.1), we get

µ

2
‖ε(us,nh )‖2

0,Ω + µ
∆t2

2

n∑
j=1

‖δtε(us,jh )‖2
0,Ω +

κ1

η
∆t

n∑
j=1

‖∇pf,jh ‖
2
0,Ω

+
1

2

∑
K∈Th

(
c0‖Π0

Kp
f,n
h ‖

2
0,K +

1

λ
‖αΠ0

Kp
f,n
h − ψ

n
h‖2

0,K

+ α̃∗

(
c0 +

α2

λ

)
‖(I − Π0

K)pf,nh ‖
2
0,K

)
≤ µ

2
‖ε(us,0h )‖2

0,Ω + Cα̃∗

(
c0 +

α2

λ

)
‖pf,0h ‖

2
0,Ω +

1

λ
‖ψ0

h‖2
0,Ω
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+ C∆t
n∑
j=1

(
F h,j
b,r (wj−1

1,h , w
j−1
2,h ; δtu

s,j
h ) +Gh,j

` (pf,jh )
)
.

The last second term on the right hand side can be bounded as

∆t
n∑
j=1

F h,j
b,r (wj−1

1,h , w
j−1
2,h ; δtu

s,j
h )

= ∆t
n∑
j=1

∑
K∈Th

(
ρ
〈
bjh, δtu

s,j
h

〉
0,K
− τ

〈
rh(w

j−1
1,h , w

j−1
2,h )(k ⊗ k), δtε(u

s,j
h )
〉

0,K

)
≤ µ

∆t2

4

n∑
j=1

‖δtε(us,jh )‖2
0,Ω + C

n∑
j=1

(
‖bj‖2

0,Ω + ‖wj−1
1,h ‖

2
0,Ω + ‖wj−1

2,h ‖
2
0,Ω

)
.

Use of Young's inequality for the last term gives

µ

2
‖ε(us,nh )‖2

0,Ω +
κ1

η
∆t

n∑
j=1

‖∇pf,j‖2
0,Ω +

1

2

∑
K∈Th

(
1

λ
‖αΠ0

Kp
f,n
h − ψ

n
h‖2

0,K + c0‖Π0
Kp

f,n
h ‖

2
0,K

+ α̃∗

(
c0 +

α2

λ

)(
‖(I − Π0

K)pf,nh ‖
2
0,K

))
≤ µ

2
‖ε(us,0h )‖2

0,Ω + Cα̃∗

(
c0 +

α2

λ

)
‖pf,0h ‖

2
0,Ω +

1

λ
‖ψ0

h‖2
0,Ω

+ C
n∑
j=1

(
‖bj‖2

0,Ω + ∆t‖`j‖2
0,Ω + ‖wj−1

1,h ‖
2
0,Ω + ‖wj−1

2,h ‖
2
0,Ω

)
.

Using discrete inf-sup condition (5.3.4) and equation (5.3.5a), we obtain

β̃‖ψnh‖0,Ω ≤ sup
vs
h∈Vh\{0}

1

‖vsh‖1,Ω

(
F h,n
b,r (wn−1

1,h , w
n−1
2,h ;vsh)− ah1(us,nh ,vsh)

)
≤ C

(
‖bn‖0,Ω + ‖wn−1

1,h ‖0,Ω + ‖wn−1
2,h ‖0,Ω + µ‖ε(us,nh )‖0,Ω

)
.

For given us,nh as solution of the problem (5.3.5) and taking sh = wn1,h in (5.3.6a) then

the use of Young's inequality with appropriate choice of ε and the bound of trilinear

form ch(·; ·, ·) implies

∆t

2
δt‖wn1,h‖2

0,Ω + ∆tDa
1‖∇wn1,h‖2

0,Ω . mh(wn1,h − wn−1
1,h , w

n
1,h) + ∆t ah4(wn1,h, w

n
1,h)

= ∆t
(
Jh,nf (wn−1

1,h , w
n−1
2,h ,u

s,n
h ;wn1,h)− ch(u

s,n
h ;wn1,h, w

n
1,h)
)

≤ C∆t(1 + ‖wn−1
1,h ‖

2
0,Ω + ‖wn−1

2,h ‖
2
0,Ω) + ∆t(ε+ C1‖us,nh ‖1,∞,Ω)‖wn1,h‖2

0,Ω.
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Summing over n gives

‖wn1,h‖2
0,Ω + ∆tDa

1

n∑
j=1

‖∇wj1,h‖
2
0,Ω ≤ ‖w0

1,h‖2
0,Ω + C

(
1 + ∆t

n∑
j=1

2∑
i=1

‖wj−1
i,h ‖

2
0,Ω

)
+ ∆t

n∑
j=1

(ε+ C1‖us,jh ‖1,∞,Ω)‖wj1,h‖
2
0,Ω.

Thus, again use of these arguments for equation (5.3.6b) with sh = wn2,h, we get

2∑
i=1

(
‖wni,h‖2

0,Ω + ∆tDa
i

n∑
j=1

‖∇wji,h‖
2
0,Ω

)
≤

2∑
i=1

‖w0
i,h‖2

0,Ω + C
(

1 + ∆t
n∑
j=1

2∑
i=1

‖wj−1
i,h ‖

2
0,Ω

)
+ ∆t

n∑
j=1

(
(ε+ C1‖us,jh ‖1,∞,Ω)

2∑
i=1

‖wji,h‖
2
0,Ω

)
.

Adding the resultant bounds gives

µ‖ε(us,nh )‖2
0,Ω +

κ1

η
∆t

n∑
j=1

‖∇pf,j‖2
0,Ω + ‖ψnh‖2

0,Ω

+
2∑
i=1

(
‖wni,h‖2

0,Ω + ∆tDa
i

n∑
j=1

‖∇wji,h‖
2
0,Ω

)
≤

2∑
i=1

‖w0
i,h‖2

0,Ω + ∆t
n∑
j=1

(
(ε+ C1‖us,jh ‖1,∞,Ω)

2∑
i=1

‖wji,h‖
2
0,Ω

)
+ C

(
‖ε(us,0h )‖2

0,Ω + ‖pf,0h ‖
2
0,Ω + ‖ψ0

h‖2
0,Ω +

n∑
j=1

(
1 + ‖bj‖2

0,Ω + ∆t‖`j‖2
0,Ω

)
+ ∆t

n∑
j=1

2∑
i=1

‖wj−1
i,h ‖

2
0,Ω

)
.

Assuming M := max
1≤j≤n

‖us,jh ‖1,∞,Ω <∞ then choosing ε,∆t such that ∆t(ε+C1M) <

1. Thus, the use of discrete Gronwall lemma (Lemma 5.2) completes the stability of

the discrete solution.

Therefore, we have the wellposedness of fully discrete scheme (5.3.5)-(5.3.6) from

Theorem 5.1 and 5.2.
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5.4 Error analysis

In order to see the rate of convergence of the proposed fully discrete scheme, we will

derive the error estimates in suitable norms for each of the variables that appear in

the formulation. For establishing the error estimates, we will be utilizing the well-

known techniques/arguments used for time-dependent problems and imitating the

steps used in showing the uniqueness and stability of the discrete scheme.

We will assume the following regularity assumptions to generate the convergence

results: For all t > 0, the displacement of porous medium us(t) ∈ [H2(Ω)]2, the

�uid pressure pf (t) ∈ H2(Ω), the total pressure ψ(t) ∈ H1(Ω) and concentrations

w1, w2 ∈ H2(Ω). We also assume the regularity in time as,

∂tu
s ∈ L2(0, T ; [H2(Ω)]2), ∂tp

f , ∂tψ ∈ L2(0, T ;H1(Ω)),

∂tw1, ∂tw2 ∈ l2(0, T ;L2(Ω)), ∂ttu
s ∈ L2(0, T ; [L2(Ω)]2),

∂ttp
f , ∂ttψ, ∂ttw1, ∂ttw2 ∈ L2(0, T ;L2(Ω)).

Lemma 5.3. For each us ∈ V∩ [H1+r(Ω)]2 with 0 ≤ r ≤ 1 under the assumptions on

the polygonal mesh (mentioned in Section 5.3.1), there exists an interpolant usI ∈ Vh

satisfying

‖us − usI‖0,Ω + hK |us − usI |1,Ω ≤ Ch1+r|us|1+r,Ω. (5.4.1)

For given solution (us, pf , ψ, w1, w2) ∈ V of weak formulation (5.2.1), the projection

(Su
hu

s, Sphp
f , Sψhψ, S

w1
h w1, S

w2
h w2) ∈ Vh is de�ned for all (vsh, q

f
h , φh, sh, sh) ∈ Vh as

a1(Suhu
s,vsh) + b1(vsh, S

ψ
hψ) = a1(us,vsh) + b1(vsh, ψ); (5.4.2a)

b1(Suhu
s, φh) = b1(us, φh); (5.4.2b)

a2(Sphp
f , qfh) = a2(pf , qfh); ah3+i(S

wi
h wi, sh) = a3+i(wi, sh). (5.4.2c)

Note that (Su
h , S

ψ
h ) and S

p
h, S

w1
h , Sw2

h are standard Stokes and elliptic projection oper-

ators respectively. These operators also satisfy the following estimates (for instance

[26] and also in Chapter 2):

Lemma 5.4. Let (us, pf , ψ, w1, w2) ∈ V and (Su
hu

s, Sphp
f , Sψhψ, S

w1
h w1, S

w2
h w2) ∈ Vh

be the unique solutions to the system of equations (5.2.1) and (5.4.2), respectively.
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Then,

‖us − Su
hu

s‖0,Ω + h(|us − Su
hu

s|1,Ω + ‖ψ − Sψhψ‖0,Ω)

≤ Ch2(|u|2,Ω + |ψ|1,Ω), (5.4.3a)

‖pf − Sphp
f‖0,Ω + h|pf − Sphp

f |1,Ω ≤ Ch2|p|2,Ω, (5.4.3b)

‖wi − Swi
h wi‖0,Ω + h|wi − Swi

h wi|1,Ω ≤ Ch2|wi|2,Ω, i = 1, 2. (5.4.3c)

To derive the theoretical error estimates for fully discrete scheme, we decompose

the error using the projection operator (de�ned in 5.4.2) as follows :

ξ(tn)− ξnh = (ξ(tn)− Sξhξ(tn)) + (Sξhξ(tn)− ξnh) := ρnξ + ηnξ ,

for any ξ(tn) = us(tn), pf (tn), ψ(tn), w1(tn), w2(tn), ξnh = us,nh , pf,nh , ψnh , w
n
1,h, w

n
2,h and

for each n.

From the continuous problem (5.2.1) and fully discrete scheme (5.3.5)-(5.3.6), and

an appeal to projection operator (5.4.2), the error equations for the fully discrete

scheme in terms of ηnξ , where ξ = us, pf , ψ, w1, w2, are

ah1 (η
n
u,v

s
h) + b1(v

s
h, η

n
ψ) = Fnb,r(w

n
1 , w

n
2 ;v

s
h)− F

h,n
b,r (w

n−1
1,h , wn−1

2,h ;vsh), (5.4.4a)

ãh2 (δtη
n
p , q

f
h) + ah2 (η

n
p , q

f
h)− b2(q

f
h , δtη

n
ψ) = (Gn` −G

h,n
` )(qfh) + b2(q

f
h , δtS

ψ
hψ

n − ∂tψn) (5.4.4b)

+
(
ãh2 (δtS

p
hp
n, qfh)− ã2(∂tp

n, qfh)
)
,

b1(δtη
n
u, φh) + b2(δtη

n
p , φh)− a3(δtηnψ, φh) = −b2(δtρnp , φh) + a3(δtρ

n
ψ, φh), (5.4.4c)

mh(δtη
n
w1
, sh) + ah4 (η

n
w1
, sh) =

((
Jnf (w

n
1 , w

n
2 ,u

s,n; sh)− Jh,nf (wn−1
1,h , wn−1

2,h ,us,nh ; sh)
)

−
(
m(∂tw

n
1 , sh)−mh(δtS

w1

h wn1 , sh)
)

(5.4.4d)

−
(
c(us,j ;wj1, sh)− ch(u

s,j
h ;wj1,h, sh)

))
,

mh(δtη
n
w2
, sh) + ah5 (η

n
w2
, sh) =

((
Jng (w

n
1 , w

n
2 ,u

s,n; sh)− Jh,ng (wn−1
1,h , wn−1

2,h ,us,nh ; sh)
)

−
(
m(∂tw

n
2 , sh)−mh(δtS

w2

h wn2 , sh)
)

(5.4.4e)

−
(
c(us,j ;wj2, sh)− ch(u

s,j
h ;wj2,h, sh)

))
,

∀ (vsh, q
f
h , φh, sh, sh) ∈ Vh.

Now, we will divide the derivation of error estimates for fully discrete scheme

(5.3.5)-(5.3.6) into two lemmas: one containing the error bounds from the poroelas-

ticity equations and the other-regarding ADR equations. We start here by recall-

ing/mentioning the results to be used in succeeding lemmas.
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The Taylor's expansion for any continuous function f(t) gives at time t = tj, j =

1, . . . , n,

f(tj)− f(tj−1) = (∆t) ∂tf(tj) +

∫ tj

tj−1

(s− tj−1)∂ttf(s) ds. (5.4.5)

This expansion imply the bounds in next corollary.

Corollary 5.1. For any smooth enough function ξ, we have

n∑
j=1

‖ξj − ξj−1‖2
0,Ω ≤ C(∆t)2

( n∑
j=1

‖∂tξj‖2
0,Ω + ‖∂ttξ(s)‖2

L1(L2(Ω))

)
, (5.4.6)

∆t
n∑
j=1

‖∂tξj − δtξj‖2
0,Ω ≤ C(∆t)3 ‖∂ttξ‖2

L2(L2(Ω)) , (5.4.7)

Proof. Use of (5.4.5) gives

‖ξj − ξj−1‖0,Ω ≤ (∆t)‖∂tξj‖0,Ω +

∫ tj

tj−1

(s− tj−1)‖∂ttξ(s)‖0,Ω ds

≤ (∆t)
(
‖∂tξj‖0,Ω +

∫ tj

tj−1

‖∂ttξ(s)‖0,Ω ds
)
.

Squaring both sides and then summing over j conclude bound (5.4.6).

Again use of (5.4.5) followed with Cauchy-Schwarz inequality yield

∆t2‖∂tξj − δtξj‖2
0,Ω ≤

∥∥∥∥∥
∫ tj

tj−1

(s− tj−1)∂ttξ(s) ds

∥∥∥∥∥
2

0,Ω

≤ (∆t)3 ‖∂ttξ‖2
L2(tj−1,tj ;L2(Ω)) .

Summing over j from 1 to n deduce the bound (5.4.7).

Now, we derive the result below by using the Lipschitz condition of function

r(wn1 , w
n
2 ) for each n, Corollary (5.1) and standard arguments.

Lemma 5.5 (Coupled poroelastic error bounds). Let (us,n, pf,n, ψn) ∈ V × Q × Z
be the solution to the system (5.2.1a)-(5.2.1c) and (us,nh , pf,nh , ψnh) ∈ Vh ×Qh × Zh be

the solution to the system (5.3.5) for each n. Then the following estimate holds, with
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constant C independent of h and ∆t,

‖ε(ηnu)‖2
0,Ω + ‖ηnψ‖2

0,Ω + ‖ηp‖2
l2(H1(Ω)) ≤C

(
h2 + ∆t2 +

n∑
j=1

2∑
i=1

‖ηj−1
wi
‖2

0,Ω

)
+ 2ε3∆t

n∑
j=1

‖ηjψ‖
2
0,Ω,

(5.4.8)

where ε3 > 0 chosen as needed in subsequent analysis.

Proof. Set vsh = δtη
n
u in (5.4.4a), qfh = ηnp in (5.4.4b), and φh = ηnψ in (5.4.4c) and

adding them gives

ah1(ηnu, δtη
n
u) + ah2(ηnp , η

n
p ) + Lnh

=
(
F n
b,r(w

n
1 , w

n
2 ; δtη

n
u)− F h,j

b,r (wn−1
1,h , w

n−1
2,h ; δtη

n
u)
)

+ (Gn
` −G

h,n
` )(ηnp )

+
(
ãh2(δtS

p
hp

n, ηnp )− ã2(∂tp
n, ηnp )

)
+ b2(ηnp , δtS

ψ
hψ

n − ∂tψn)

+ b2(δtρ
n
p , η

n
ψ)− a3(δtρ

n
ψ, η

n
ψ).

Summing over each n then the use of Lemma 5.1 gives

∆t
n∑
j=1

(
δta

h
1(ηju, η

j
u) + ∆t ah1(δtη

j
u, δtη

j
u) + ah2(ηjp, η

j
p) + Ljh

)
= ∆t

n∑
j=1

((
F j
b,r(w

j
1, w

j
2; δtη

j
u)− F h,j

b,r (wj−1
1,h , w

j−1
2,h ; δtη

j
u)
)

+ (Gj
` −G

h,j
` )(ηjp)

+
(
ãh2(δtS

p
hp

j, ηjp)− ã2(∂tp
j, ηjp)

)
+ b2(ηjp, δtS

ψ
hψ

j − ∂tψj)

+ b2(δtρ
j
p, η

j
ψ)− a3(δtρ

j
ψ, η

j
ψ)
)

:=
6∑
i=1

Ri.

The error term R1 can be written as

R1 = ∆t
n∑
j=1

∑
K∈Th

(
ρ
(
(I−Π0,0

K )bj, δtη
j
u

)
0,K

+
(
F j
r (wj1, w

j
2; δtη

j
u)− F h,j

r (wj−1
1,h , w

j−1
2,h ; δtη

j
u)
))

:= Ra
1 +Rb

1.
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The Young's inequality with some constant ε1 > 0 gives

Ra
1 ≤ ρ

cP√
Ck,1

∆t
n∑
j=1

∑
K∈Th

‖(I−Π0,0
K )bj‖0,K‖ε(δtηju)‖0,K

≤ Ch2

n∑
j=1

|bj|21,Ω + ε1∆t2
n∑
j=1

‖ε(δtηju)‖2
0,Ω.

The bound of Rb
1 is through the property of function r(w1, w2) and triangle's

inequality as follows

Rb
1 ≤ τ∆t

n∑
j=1

‖(r(wj1, w
j
2)− rh(wj−1

1,h , w
j−1
2,h ))‖0,Ω‖δtε(ηju)‖0,Ω

≤ ε1∆t2
n∑
j=1

∥∥ε(δtηju)
∥∥2

0,Ω
+ Cτ

n∑
j=1

‖(r(wj1, w
j
2)− rh(wj−1

1,h , w
j−1
2,h ))‖2

0,Ω.

The last term on right hand side for each K ∈ Th can be bounded as

‖(r(wj1, w
j
2)− rh(wj−1

1,h , w
j−1
2,h ))‖0,K

≤ ‖r(wj1, w
j
2)− r(wj−1

1 , wj−1
2 )‖0,K + ‖(I − Π0

K)r(wj−1
1 , wj−1

2 )‖0,K

+ ‖Π0
Kr(w

j−1
1 , wj−1

2 )− rh(wj−1
1 , wj−1

2 )‖0,K + ‖rh(wj−1
1 , wj−1

2 )− rh(wj−1
1,h , w

j−1
2,h )‖0,K

≤ Ch (|r(wj−1
1 , wj−1

2 )|1,Ω + |wj−1
1 |1,Ω + |wj−1

2 |1,Ω) +
2∑
i=1

(
‖wji − w

j−1
i ‖0,Ω + ‖ηj−1

wi
‖0,Ω

)
.

The bound (5.4.6) gives

Rb
1 ≤ ε1∆t2

n∑
j=0

‖ε(δtηju)‖2
0,Ω + Cτ 2

n∑
j=1

2∑
i=1

‖ηj−1
wi
‖2

0,Ω

+ Cτ 2

2∑
i=1

(
h2

n−1∑
j=0

|wji |21,Ω + (∆t)2
( n∑
j=1

‖∂twji ‖2
0,Ω + ‖∂ttwi(s)‖2

L1(L2(Ω))

))
.

Use of Cauchy-Schwarz, Poincaré and Young's inequalities with constant ε2 > 0

implies

R2 ≤ C h(∆t)
n∑
j=1

|`j|1,Ω‖ηjp‖0,Ω ≤ ε2∆t
n∑
j=1

‖∇ηjp‖2
0,Ω + Ch2‖`‖2

l2(H1(Ω)).
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Use of polynomial approximation and consistency of discrete bilinear form ãh,K2 (·, ·)
gives

R3 ≤ (∆t)(c0 + α2λ−1)
n∑
j=1

∑
K∈Th

(
‖δt(Sphp

f,j − Π0
Kp

f,j)‖0,K + ‖δt(Π0
Kp

f,j − pf,j)‖0,K

+ ‖δtpf,j − ∂tpf,j‖0,K

)
‖ηjp‖0,K

:= Ra
3 +Rb

3 +Rc
3.

The term Ra
3 can be bounded using Cauchy-Schwarz and Young's inequality as

Ra
3 ≤ (c0 + α2λ−1)

n∑
j=1

∑
K∈Th

(∫ tj

tj−1

∥∥∂t(Sphpf − Π0
Kp

f )(s)
∥∥

0,K
ds
)∥∥ηjp∥∥0,K

≤ (c0 + α2λ−1) h
n∑
j=1

(
∆t

∫ tj

tj−1

|∂tpf (s)|21,Ω ds
)1/2 ∥∥ηjp∥∥0,Ω

≤ C h2‖∂tpf‖2
L2(H1(Ω)) + ε2∆t

n∑
j=1

‖∇ηjp‖2
0,Ω.

Now the same steps leads to

Rb
3 ≤ (c0 + α2λ−1)

n∑
j=1

∑
K∈Th

‖(I − Π0
K)(pf,j − pf,j−1)‖0,K‖ηjp‖0,K

≤ C h2‖∂tpf‖2
L2(H1(Ω)) + ε2∆t

n∑
j=1

‖∇ηjp‖2
0,Ω.

The bound of Rc
3 is followed from (5.4.7) using Taylor's expansion as

Rc
3 = (∆t)(c0 + α2λ−1)

n∑
j=1

‖δtpf,j − ∂tpf,j‖0,Ω‖0,Ω‖ηjp‖0,Ω

≤ C(∆t)3
∥∥∂ttpf∥∥2

L2(L2(Ω))
+ ε2∆t

n∑
j=1

‖∇ηjp‖2
0,Ω.

An application of Lemma 5.1 and Young's inequality implies

R4 = (∆t)αλ−1

n∑
j=1

‖δtSψhψ
j − ∂tψj‖0,Ω‖ηjp‖0,Ω
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≤ C
(
h2

∫ tn

0

‖∂tψ(s)‖2
1,Ω ds+ (∆t)3 ‖∂ttψ‖2

L2(L2(Ω))

)
+ ε2∆t

n∑
j=1

‖∇ηjp‖2
0,Ω.

Use of the estimates (5.4.3a) and Lemma 5.1 as seen in bound of Ra
3 with constant

ε3 > 0 gives

R5 ≤ Cαλ−1∆t
n∑
j=1

∥∥∥∥∥
∫ tj

tj−1

∂tρp(s) ds

∥∥∥∥∥
0,Ω

‖ηjψ‖0,Ω

≤ C h2‖∂tpf‖2
L2(H1(Ω)) + ε3∆t

n∑
j=1

‖ηjψ‖
2
0,Ω.

Similar to bound of term R5, we get

R6 = −
n∑
j=1

a3(ρjψ − ρ
j−1
ψ , ηjψ) ≤ C h2‖∂tψ‖2

L2(H1(Ω)) ds+ ε3∆t
n∑
j=1

‖ηjψ‖
2
0,Ω.

Combining the bounds of Ri's, we get

µ(‖ε(ηnu)‖2
0,Ω − ‖ε(η0

u)‖2
0,Ω) + κ1η

−1∆t
n∑
j=1

‖∇ηnp ‖2
0,Ω

+
1

2

∑
K∈Th

(
λ−1

(
‖αΠ0

Kη
n
p − ηnψ‖2

0,K − ‖αΠ0
Kη

0
p − η0

ψ‖2
0,K

)
+ c0(‖Π0

Kη
n
p ‖2

0,K − ‖Π0
Kη

0
p‖2

0,K)

+
(
c0 + α2λ−1

) (
‖(I − Π0

K)ηnp ‖2
0,K − ‖(I − Π0

K)η0
p‖2

0,K

))
≤ C(h2 + ∆t2) + 2ε3∆t

n∑
j=1

‖ηjψ‖
2
0,Ω + C

n∑
j=1

2∑
i=1

‖ηj−1
wi
‖2

0,Ω

+ 2ε1‖ε(ηnu)‖2
0,Ω + 5ε2∆t

n∑
j=1

‖∇ηjp‖2
0,Ω.

Using inf-sup condition of b1(·, ·) and error equation (5.4.4a), we obtain

‖ηnψ‖0,Ω ≤ sup
vs
h∈Vh\{0}

C

‖vsh‖1,Ω

(
F n
b,r(w

n
1 , w

n
2 ;vsh)− F

h,n
b,r (wn−1

1,h , w
n−1
2,h ;vsh)− ah1(ηnu,v

s
h)
)

≤ C
(
h
(
|bn|1,Ω +

2∑
i=1

|wn−1
i |1,Ω

)
+ (∆t)

2∑
i=1

(
‖∂twni ‖0,Ω + ‖∂ttwi(s)‖L1(tn−1,tn;L2(Ω))

)
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+
2∑
i=1

‖ηn−1
wi
‖0,Ω + µ‖ε(ηnu)‖0,Ω

)
.

Therefore, the adequate choices of ε's and choosing the initial conditions using pro-

jections as

us,0h := usI(0) and pf,0h := pfI (0)

conclude the error bounds (5.4.8).

Note that the initial conditions are chosen so that the estimates of ηnu, η
n
p and ηnψ

are known, and can consider another such choice for analysis and computations.

Next, we approach the remaining error equations corresponding to ADR equations

to avail the following lemma.

Lemma 5.6 (Coupled ADR error bounds). Let (wn1 , w
n
2 ) ∈ [W ]2 be the solution to

the continuous problem (5.2.1d)-(5.2.1e) and (wn1,h, w
n
2,h) ∈ [Wh]

2 be the solution of

the fully discrete problem (5.3.6) for each n. Then the following estimate holds, with

constant C independent of h and ∆t,

2∑
i=1

(
‖ηnwi
‖2

0,Ω +Da
1(∆t)

n∑
j=1

|ηjwi
|21,Ω
)

≤ ∆t2
n∑
j=1

(2ε1‖ε(ηju)‖2
0,Ω + 6ε4|ηjw1

|21,Ω)

+ C
(
h2 + ∆t2 +

n∑
j=1

(‖ηj−1
u ‖2

0,Ω +
2∑
i=1

‖ηj−1
wi
‖2

0,Ω)
)
.

(5.4.9)

Proof. Taking sh = ηnw1
in (5.4.4d), then multiplying with ∆t and summing over n

enable us to get

(‖ηnw1
‖2

0,Ω − ‖η0
w1
‖2

0,Ω) +Da
1∆t

n∑
j=1

‖∇ηjw1
‖2

0,Ω

≤ C∆t
n∑
j=1

((
J jf (wj1, w

j
2,u

s,j; ηjw1
)− Jh,jf (wj−1

1,h , w
j−1
2,h ,u

s,j
h ; ηjw1

)
)

−
(
m(∂tw

j
1, η

j
w1

)−mh(δtS
w1
h wj1, η

j
w1

)
)

−
(
c(us,j;wj1, η

j
w1

)− ch(us,jh ;wj1,h, η
j
w1

)
) )
,

:= A1 + A2 + A3.

137



Use of estimates for projection Π0
K , use of (5.4.3) and (5.4.6), and Young's inequality

with ε1ε4 = C2/4 with ε1, ε4 > 0 gives

A1 ≤ C∆t
n∑
j=1

∑
K∈Th

(∥∥fh(wj−1
1,h , w

j−1
2,h ,u

s,j)− fh(wj−1
1,h , w

j−1
2,h ,u

s,j
h )
∥∥

0,K

+
∥∥fh(wj−1

1 , wj−1
2 ,us,j)− fh(wj−1

1,h , w
j−1
2,h ,u

s,j)
∥∥

0,K

+
∥∥Π0

Kf(wj−1
1 , wj−1

2 ,us,j)− fh(wj−1
1 , wj−1

2 ,us,j)
∥∥

0,K

+
∥∥(I − Π0

K)f(wj−1
1 , wj−1

2 ,us,j)
∥∥

0,K

)∥∥ηjw1

∥∥
0,K

≤ C∆t
n∑
j=1

(
‖ρju‖0,Ω + ‖ηju‖0,Ω + h|f(wj−1

1 , wj−1
2 ,us,j)|1,Ω

+
2∑
i=1

(
‖ρj−1

wi
‖0,Ω + ‖ηj−1

wi
‖0,Ω + ‖wji − w

j−1
i ‖0,Ω

)) ∥∥ηjw1

∥∥
0,Ω

≤ C
n∑
j=1

2∑
i=1

‖ηj−1
wi
‖2

0,Ω + ε1 ∆t‖ηju‖2
0,Ω + ε4 ∆t

n∑
j=1

∥∥ηjw1

∥∥2

0,Ω

+ C
n∑
j=1

(
h2
(
|us,j|22,Ω + |f(wj−1

1 , wj−1
2 ,us,j)|21,Ω +

2∑
i=1

|wj−1
i |22,Ω

)
+ (∆t)2

2∑
i=1

(
‖∂twji ‖0,Ω +

∫ tj

tj−1

‖∂ttwi(s)‖0,Ω ds
)2
)
.

The use of consistency for bilinear form mh(·, ·) and bounds (5.4.6)-(5.4.7) with

Young's inequality for ε4 > 0 gives

A2 = C∆t
n∑
j=1

∑
K∈Th

(
mK(∂tw

j
1 − δtΠ0

Kw
j
1, η

j
w1

)−mh,K(δt(S
w1
h wj1 − Π0

Kw
j
1), ηjw1

)
)

≤ C∆t
n∑
j=1

∑
K∈Th

(
‖∂twj1 − δtΠ0

Kw
j
1‖0,K + ‖δt(wj1 − Sw1

h wj1)‖0,K

)
‖ηjw1
‖0,K

≤ ε4∆t
n∑
j=1

‖∇ηjw1
‖2

0,Ω + C
(
h2

∫ tn

0

|∂tw1(s)|21,Ω ds+ (∆t)2

∫ tn

0

‖∂ttw1(s)‖2
0,Ω ds

)
.

Assume that ∇wj1 and u
s,j
h are bounded for each j then the values of ‖∇wj1‖∞,K and

‖Π0
Ku

s,j
h ‖∞,K (by use of inverse estimate) are �nite respectively. Thus, by applying
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the Cauchy-Schwarz and Young's inequalities implies

A3 = C∆t
n∑
j=1

∑
K∈Th

( (
us,j · ∇wj1, (I − Π0

K)ηjw1

)
0,K

+
(
(us,j −Π0

Ku
s,j
h ) · ∇wj1,Π0

Kη
j
w1

)
0,K

+
(
Π0
Ku

s,j
h · (∇w

j
1 −Π0,0

K ∇w
j
1,h),Π

0
Kη

j
w1

)
0,K

)
≤ C∆t

n∑
j=1

∑
K∈Th

(
‖(I−Π0

K)(us,j · ∇wj1)‖0,K + ‖(I−Π0
K)us,j‖0,K‖∇wj1‖∞,K

+ ‖Π0
K(us,j − us,jh )‖0,K‖∇wj1‖∞,K

+ ‖Π0
Ku

s,j
h ‖∞,K‖∇w

j
1 −Π0,0

K ∇w
j
1,h)‖0,K

)
‖ηjw1
‖0,K

≤ C h2

n∑
j=1

(
‖(us,j · ∇wj1)‖2

1,Ω + |us,j|21,Ω + |∇wj1|21,Ω
)

+ ∆t2
n∑
j=1

(ε1‖ηju‖2
0,Ω + ε4|ηjw1

|21,Ω).

Thus, the bounds of Ai's gives

‖ηnw1
‖2

0,Ω + ∆t
n∑
j=1

‖∇ηjw1
‖2

0,Ω ≤ C
(
h2 + ∆t2 + ‖η0

w1
‖2

0,Ω +
n∑
j=1

2∑
i=1

‖ηj−1
wi
‖2

0,Ω

)
+ ∆t

n∑
j=1

(ε1‖ηju‖2
0,Ω + 3ε4|ηjw1

|21,Ω).

Similar to the above bounds, taking sh = ηnw2
in (5.4.4e), we get the error bounds

in the terms of ηw2 . Thus, the addition of the bounds for w1 and w2 concludes the

proof.

We proceed to apply the discrete Gronwall's inequality in Lemma 5.3.9 with the

combination of results from Lemma 5.5 and 5.6 yield

‖ε(ηnu)‖2
0,Ω + ‖ηnψ‖2

0,Ω + ‖ηp‖2
l2(H1(Ω)) + ‖ηw1‖2

l2(H1(Ω)) + ‖ηw2‖2
l2(H1(Ω)) ≤ C(h2 + ∆t2).

Finally, usage of triangle's inequality with the estimates (5.4.3a)-(5.4.3c) give rise to

the �nal result:

Theorem 5.3 (Fully-discrete error estimates). Let (us(tn), pf (tn), ψ(tn), w1(tn), w2(tn)) ∈
V be the solution to the system (5.2.1), and (us,nh , pf,nh , ψnh , w

n
1,h, w

n
2,h) ∈ Vh be the solu-
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tion to the system (5.3.5)-(5.3.6) for each n = 1, . . . , N . Then the following estimate

holds, with constant C independent of h and ∆t,

‖ε(us(tn)− us,nh )‖2
0,Ω + ‖ψ(tn)− ψnh‖2

0,Ω + ‖pf − pfh‖
2
l2(H1(Ω))

+
2∑
i=1

‖wi − wi,h‖2
l2(H1(Ω)) ≤ C(∆t2 + h2).

Remark 5.2. The lowest order case is considered throughout the thesis, and the anal-

ysis for higher-order approximation can be derived in a similar manner by carefully

handling the discrete trilinear form ch(·; ·, ·) and also considering the stable pair of VE
spaces for displacement and total pressure. In addition, the VE spaces corresponding

to displacement and pressure variables are required to have the same approximation

order, to obtain the optimal error estimates.

5.5 Numerical investigations

The algorithm for the numerical scheme (5.3.5)-(5.3.6) can be described as: For given

initial conditions of displacement and pressure with solution of problem (5.3.6) at

previous time step tn−1, we solve the fully discrete poroelastic problem (5.3.5) to get

us,nh , pf,nh , ψnh for any n = 1, . . . , N . Now, we further use the solution us,nh as well as

the initial conditions of concentration variables to look for the solution of the linear

system of equations (5.3.6). We repeat the process till the solution of (5.3.5)-(5.3.6)

at the �nal time T is obtained.

We de�ne the L2 and H1 errors for the approximation spaces as

E0(v) :=
∑
K∈Th

‖v − Π0
Kvh‖0,K and E1(v) :=

∑
K∈Th

‖∇v −Π0,0
K ∇vh‖0,K ,

where v can be global displacement us, �uid pressure pf , total pressure ψ and con-

centrations w1, w2. The convergence rates of the errors Ek(v) and E ′k(v) with k = 0, 1

for the corresponding mesh sizes h and h′ respectively, are calculated as

rk(v) =
log(Ek(v)/E ′k(v))

log(h/h′)
.
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(a) (b) (c)

Figure 5.1: Samples of meshes employed for the numerical tests: (a) Concave mesh
Nh, (b) Distorted triangular mesh Hh, and (c) Distorted square mesh Dh.

5.5.1 Space and time convergence

We initiate the tests in the domain Ω := (0, 1)2 and verify the spatial convergence

rate of the VEM for given exact solutions by discretizing the domain into elements

containing non-convex polygons seen in Figure 5.1(a). For this, we consider the

following exact solutions for global displacement and �uid pressure,

us(x, y, t) =

(
t (− cos(2πx) sin(2πy) + sin(2πy) + sin2(πx) sin2(πy))

t (sin(2πx) cos(2πy)− sin(2πx));

)
,

pf (x, y, t) = t sin2 πx sin2 πy,

together with the parametric values

ν = 0.3, E = 100, κ = 1, α = 1, c0 = 1, η = 0.1,

λ =
ν E

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

and scalar function r(w1, w2) := w1 +w2. Also, the exact concentration solutions are

given as

w1(x, y, t) = w2(x, y, t) = t sinπx sin πy,

and the reaction kinematics with unit value of D1, D2, β1, β2, β3, and γ = 0.1 making

the concentration equations with di�erent load functions. However, the load functions

b, `, and the exact global pressure ψ is obtained from the respective equations (5.1.1)
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in domain Ω with τ = 1, ρ = 1. We show the computed rate of convergence for

meshes in Figure 5.1 with h = ∆t in the Figure 5.2, supporting the theoretical results

in Section 5.4.

(a) (b)

(c)

Figure 5.2: Computed errors with varying mesh size h and ∆t for three meshes: (a)
Nh, (b) Hh, and (c) Dh.

5.5.2 Space convergence with mixed boundary conditions

For this, we consider the following exact solutions for global displacement and �uid

pressure in domain Ω,

us(x, y, t) =

(
exp(−t) sinπx sin πy

exp(−t) sinπx sin πy

)
, pf (x, y, t) = exp(−t) sinπx (1 + cos πy),
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together with the parametric values

ν = 0.495, E = 100, κ = 0.5, α = 0.1, c0 = 1e− 03, η = 0.1,

λ =
ν E

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

and scalar function r(w1, w2) := w1 +w2. Also, the exact concentration solutions are

given as

w1(x, y, t) = exp(−t)(− cos 2πx sin 2πy + sin 2πy + sin2 πx sin2 πy),

w2(x, y, t) = exp(−t)(sin 2πx cos 2πy − sin 2πx),

taking the di�usion constants D1 = 0.01, D2 = 1, and the reaction kinematics with

smaller values γ = 0.0001, β3 = 0.80, β1, β2 = 0.15. Taking τ = 10, ρ = 1, the

load functions b, ` and the exact global pressure ψ are obtained from the respective

problem (5.1.1) in domain Ω. We can note that we have considered the parametric

values to check the extend of method with small c0 and D1 as well as large values of

λ.

We display the computed rate of convergence in the Table 5.1 with ∆t = 0.005

and varying mesh sizes h on a distorted triangular meshes (shown in �gure 5.1(b)).

h−1 E1(u) r1(u) E1(p) r1(p) E0(ψ) r0(ψ) E1(w1) r1(w1) E1(w2) r1(w2)

10 9.5977 − 0.7165 − 1.722e03 − 3.20087 − 2.4415 −
20 6.363 0.60 0.3882 0.88 0.986e03 0.81 1.71905 0.90 1.4639 0.74
40 3.3798 0.91 0.1816 1.10 0.494e03 1.00 0.75061 1.20 0.71354 1.04
80 1.7046 0.99 0.0903 1.01 0.243e03 1.02 0.36788 1.03 0.3543 1.01
160 0.8712 0.97 0.04501 1.00 0.123e03 0.99 0.18661 0.98 0.17916 0.98
320 0.4327 1.01 0.02245 1.00 0.061e03 1.02 0.09323 1.00 0.08955 1.00

Table 5.1: Computed errors and its rate of convergence with mesh size h

The computed error in the total pressure is seeming high due to the high value of

the exact solution, and the computed convergence rate shows the decrease in error.
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Chapter 6

Conclusions

In this dissertation, we have proposed new VEMs for the approximation of non-

stationary incompressible �uid �ow problems, linear poroelasticity equations, and

coupled poroelasticity advection-di�usion-reaction equations. We have contributed

to introducing new VE spaces suitable for this type of problem, and we have devel-

oped the well-posedness analysis of the associated discrete formulations. Moreover,

we have established optimal error estimates in natural norms for all the unknown

variables that appeared in the formulations. We emphasize that the classical lowest

order VE space from, e.g. [29] does not compute the L2 projection onto piecewise

linear polynomials, which is necessary for de�ning the discrete bilinear form corre-

sponding to reaction terms. Therefore, we have modi�ed the spaces accordingly. The

VE spaces proposed here contribute to the satisfaction of the inf-sup condition, and

therefore, the resulting schemes for poroelasticity are locking-free [97]. Apart from the

theoretical aspects, we have addressed computational aspects of the proposed family

of discretizations for each of the problems under investigation. We have generated

numerical implementations targeting the experimental validation of the theoretical

convergence rates, and we have also tested the proposed methods in problems of

more applicative character.

In what follows we summarize the main �ndings obtained in each chapter of the

thesis in Section 6.1 and the general conclusions based on these �ndings in Section 6.2.

Furthermore, we present the possible extensions of this thesis in Section 6.3.

6.1 Summary

Chapter 1 dealt with the review and applications of �uid �ow problems governed by

a class of time-dependent PDEs and an extensive literature survey of VEMs with
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their advancement during the last decade. This chapter also highlighted the related

work and speci�c contribution of the thesis as far as VE approximations of non-

stationary �uid �ow problems are concerned. Moreover, we addressed the suitability

and advantages of the proposed method in comparison with other existing numerical

schemes, such as �nite element methods, �nite volume methods, and discontinuous

Galerkin methods in the context of �uid �ow problems.

In Chapter 2, we have proposed a VEM for approximating the transient Stokes

problem de�ned over polygonal domains. The semi-discrete formulation is based on

the lowest order VE spaces associated with pressure and velocity, and they have been

constructed in such a fashion that they satisfy the inf-sup condition and are also

locally divergence-free. We stress that considering the regularity (in the context of

non-stationary Stokes equations), the choice of stable higher-order VEMs (k ≥ 2)

given in [30, 36] may not be appropriate, since in that case, one would require the

higher regularity assumptions on the continuous solutions which may not be realis-

tic (see [68]). The fully discrete scheme obtained by employing the backward Euler

method is also discussed and analyzed. With the help of L2 and Stokes projection

operator, we established the optimal error estimates under minimum regularity as-

sumptions on the continuous solutions. Numerical experiments are also conducted to

support the theoretical �ndings.

In Chapter 3, we have extended the analysis of Chapter 2 to nonstationary Navier-

Stokes equation. Establishment of optimal a priori error estimates and the well-

posedness for both semi and fully discrete schemes can be considered as novelty

and major contributions of this work. Newton's method has been exploited to solve

the resulting nonlinear system of equations, and several numerical tests have been

performed to validate the theoretical rate of convergence.

In Chapter 4, we have proposed a new VEM for Biot's equation of linear poroe-

lasticity. The �nite-dimensional formulation is based on the VE spaces introduced

in [29], which can be regarded as low-order and stable VEs, hence being computa-

tionally competitive compared to other existing stable pairs for incompressible �ow

problems. Both semi and fully discrete formulations are discussed and analyzed, and

they constitute the �rst fully VEM discretization for poroelasticity problems. Opti-

mal and Lamé-robust error estimates have been established for solid displacement,

�uid pressure, and total pressure, in natural norms without weights. This has been

achieved with the help of appropriate poroelastic projection operators. Numerical ex-

periments have been performed using di�erent polygonal meshes, and they not only
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put evidence to computational veri�cation for convergence of scheme (where rates

of error decay in space and time are in excellent agreement with the theoretically

derived error bounds) but also its performance in simple poromechanical tests.

By extending the analysis of [39, 83], we have discussed and analyzed the lowest

order conforming VEMs for the approximation of coupled poroelasticity and ADR

equations in Chapter 5. The major contributions of this chapter are: well-posedness

of fully discrete schemes and establishing the optimal a priori error estimates for

all the variables that naturally appeared in the weak formulation. A set of numer-

ical experiments have been also provided for justifying convergence analysis of the

proposed scheme. The possible extensions of this work include the study of general

�ow-transport problems and the coupling with other phenomena such as di�usion of

solutes in multilayer poromechanics or multiple-network consolidation models [96].

6.2 Concluding remarks

We would like to make the following remarks/comments on theoretical and compu-

tational aspects of VE approximations applied to the problems listed in Chapters

2�5.

� Considering computational advantages, in this thesis, we have constructed the

lowest order, i.e., k = 1 virtual spaces, such that they satisfy the required LBB

condition and the discrete velocities are locally divergence-free for Stokes and

Navier-Stokes equations, which are essential in view of the physical nature of the

problems. Nonetheless, the present analysis can easily be extended to higher-

order spaces that satisfy the LBB condition. We emphasize that the other lowest

order spaces that contain P1 − P1 type elements can also be employed for the

approximation of these problems. Of course, as these pairs are not inf-sup stable,

suitable stabilization is required. Depending on the type of stabilization, some

drawbacks could include issues related to small-time steps producing unstable

solutions, but including consistently stabilized methods (see [82] for transient

Stokes and Navier-Stokes equations) should su�ce.

� For the VE schemes proposed to approximate poroelastic and coupled poroelastic-

ADR equations, we have derived error estimates only in energy norms for dis-

placement by utilizing the properties of L2-projection onto the piecewise con-

stant functions. We can also establish optimal L2− error estimates for displace-
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ment by taking the L2-projection onto the piecewise linear functions, choosing

appropriate approximation of the right-hand side, and exploiting the idea of

enhanced spaces introduced in [83]. However, in that case, a more sophisticated

analysis has to be carried out to accomplish this purpose, as standard dual-

ity arguments cannot be readily used due to the fact that we have an overall

unsymmetric discrete formulation.

� For the time-dependent incompressible �uid �ow problem, we mention that

there has been a series of studies regarding the unrealistic regularity assump-

tions near initial time t → 0 (for more details, we refer to, e.g., [68, 75]).

The analysis in these works cannot be extended from the parabolic problem to

unsteady Stokes equations in a usual way since we do not have the required

regularity requirements of the solution. And imposing such conditions would

lead to unrealistic compatibility conditions. In view of these regularity con-

straints, we have proposed divergence-free lowest order stable VE schemes and

have established optimal error estimates in natural norms. We stress that this

analysis can be extended to higher-order provided the continuous solution has

enough regularity.

� For the poroelasticity problem, we derive stability for semi-discrete and fully-

discrete schemes and establish the optimal convergence of the VE scheme in

the natural norms. These bounds turn to be robust with respect to the dilation

modulus of the deformable porous structure (which tends to in�nity as the

Poisson ratio approaches 0.5) and of the speci�c storage coe�cient (reaching

very small values in some regimes), and therefore the method is considered

as locking-free. A further advantage of the proposed virtual discretization is

that it combines primal and mixed VE spaces. We would like to mention that

the present analysis can be extended for general k and variable parametric

data, which may be the case while dealing with more realistic problems such as

interface problems, by following the analysis of [25, 32, 120].

� The fully discrete scheme proposed for approximating the coupled ADR-poroelastic

problem is a decoupled linear explicit scheme at each time level, and therefore,

it is relatively cheap. We could have opted for other implicit schemes such as

those proposed in [109, 127, 105]. However, the fully discrete formulation of

these schemes will turn out to be a system of coupled nonlinear equations. In
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that case, the �xed-point theory along with Gronwall's inequality can be uti-

lized to show the well-posedness of the resultant system. We stress that the

convergence analysis will be more involved in this case, and a modi�cation of

the techniques is required for deriving optimal convergence rates.

6.3 Future work

Possible extensions emanating from this thesis are manifold. In particular, we aim at

applying and generalizing the VE approximation developed so far, in the solution of

a wider class of coupled transport �uid �ow problems. A uni�ed VE analysis would

help in the study of such problems. From these milestone problems, we mention the

following two concrete examples to be studied in forthcoming contributions.

6.3.1 Coupled sedimentation-consolidation.

Consider an incompressible mixture of �uid and solid particles �owing through a

porous medium occupying the domain Ω ⊂ Rd, d = 2 or d = 3 in [128, 129]. We

assume that the suspended solid particles do not attach to the porous skeleton. Then

the motion of the mixture and the evolution of the solids concentration within it

can be described by the initial-boundary value problem (here con�ned, for the sake

of simplicity of the presentation, to the so-called batch case, where �uid velocity is

simply zero everywhere on the boundary): we seek the volume-averaged �ow velocity

of the mixture u, the solids concentration c, and the pressure �eld p such that

φ ∂tc+ u · ∇c− div(ϑ(c)∇c− fb(c)k) = 0 in Ω× (0, T ],

∂tu+ (∇u)u− div
(
µ(c)ε(u)− pI

)
− ρscg = 0 in Ω× (0, T ],

divu = s in Ω× (0, T ],

with given initial and boundary conditions, where µ = µ(c) is the concentration-

dependent viscosity, φ is the porosity of the underlying porous structure, µ(c)ε(u)−pI
is the Cauchy stress tensor, ε(u) = 1

2
(∇u +∇uT) is the in�nitesimal rate of strain,

and g is the gravity acceleration. The material speci�c di�usion function ϑ = ϑ(c)

and the �ux density vector fb(c)k describes the e�ect of hindered settling aligned

with gravity, and where k is the upwards-pointing unit vector and fb denotes the
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Kynch batch �ux density function.

For this problem, we would like to analyze higher-order VE approximation by

following the ideas given in [83, 39, 32] with emphasis on both implementation and

convergence analysis. We also show the well-posedness of the discrete formulation

and establish optimal error estimates under suitable assumptions on the mesh.

6.3.2 Coupled poroelasticity and elasticity problem

Let us consider a bounded Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3}, together with a

partition into non-overlapping and connected subdomains ΩE, ΩP representing zones

of non-pay rock (where we will set the equations of linear elasticity) and a reservoir

(where we aim at solving the poroelasticity equations), respectively [120, 106]. We

also assume that the reservoir is completely immersed in the overall domain: ΩP ⊂ Ω,

such that the interface between the two subdomains, denoted as Σ = ∂ΩP ∩ ∂ΩE,

coincides with the boundary of the pay zone. Note that on the interface we consider

that the normal unit vector n is pointing from ΩP to ΩE. The boundary of the

domain Ω is separated in terms of the boundaries of two individual subdomains, that

is ∂Ω := ΓP ∪ ΓE, and then subdivided as the disjoint Dirichlet and Neumann type

condition as ΓP := ΓP
D ∪ ΓP

N and ΓE := ΓE
D ∪ ΓE

N respectively.

In the overall domain, our problem stated as: for given body loads bP(t) : ΩP →
Rd, bE : ΩE → Rd, and a volumetric source or sink `P(t) : ΩP → R, one seeks for each
time t ∈ (0, T ], the vector of solid displacements uE : ΩE → Rd of the non-pay zone,

the elastic pressure ψE : ΩE → R, the displacement uP(t) : ΩP → Rd, the pore �uid

pressure pP(t) : ΩP → R, and the total pressure ψP(t) : ΩP → R of the reservoir,

satisfying:

−div(2µPε(uP)− ψPI) = bP in ΩP × (0, T ],(
c0 +

α2

λP

)
∂tp

P − α

λP
∂tψ

P − 1

η
div(κ∇pP) = `P in ΩP × (0, T ],

ψP − αpP + λP divuP = 0 in ΩP × (0, T ],

−div(2µEε(uE)− ψEI) = bE in ΩE × (0, T ],

ψE + λE divuE = 0 in ΩE × (0, T ].

Here κ(x) is the hydraulic conductivity of the porous medium η is the constant

viscosity of the interstitial �uid, c0 is the storativity coe�cient, α is the Biot-Willis
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consolidation parameter, and µE, λE and µP, λP are the Lamé parameters associated

with the constitutive law of the solid on the elastic and on the poroelastic subdomain,

respectively. The poroelastic stress σ̃ = σ − αpPI is composed by the e�ective

mechanical stress λP(divuP)I + 2µPε(uP) plus the non-viscous �uid stress (the �uid

pressure scaled with α).

This system must be complemented by mixed boundary conditions, a set of trans-

mission conditions, representing the continuity of the medium, the balance of total

tractions, and no-�ux of �uid at the interface, respectively; and initial conditions

pP(0) and uP(0) in ΩP × {0}.
As far as VE approximations are concerned, here, we would like to employ the

virtual spaces introduced in [39] by admitting the polynomial of degree k ≥ 1. We

plan to propose the mixed discrete formulation in a way that the corresponding VE

scheme does not require Lagrange multipliers to impose the transmission conditions

(continuity of displacement and total traction, and no-�ux for the �uid) on the in-

terface. In the implementation procedure, arbitrary small edges will be allowed in

the process of mesh generation, and theoretical convergence analysis will be carried

out by borrowing the ideas from [54] in which small edges are considered for the

approximation of elliptic problems.
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