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Abstract

Fan blade-out event and windmilling of the turbofan engine, generated as a consequence
of bird strike, is a potential threat to the aircraft during its flight. The tight clearance
between the blades and casing can cause the multi-disk rub-impact in the engine whenever
the rotor deflection exceeds the clearance. As a result, the Federal Aviation Administration
has introduced some stringent rules and regulations in testing aircraft engines so that the
engine can contain damages without catching fire. However, the conduction of tests to prove
the engine’s safety is costly and sometimes leads to severe injuries to the test personnel.
In this work, a numerical model of the aero-engine dual-rotor similar to the CFM56-5B
engine is utilized to analyze the response characteristics of the engine under multi-disk
rub-impact. The rotor system is modelled using the tapered Timoshenko beam elements,
including rotary inertia, gyroscopic moments and shearing effects. A modified model
reduction technique based on component mode synthesis is utilized to reduce the size of
the finite element model in which the whole model is divided into primary and secondary
components. The primary component consists of all the nonlinear degrees of freedoms, while
the secondary component is reduced using the Craig-Bampton substructuring technique
based on the quadratic eigenvalue decomposition. The proposed method is effective in
the model reduction of systems involving asymmetric global matrices. The steady-state
response of the model under multi-disk rub impact is investigated using a semi-analytic
technique called the approximate time variational method. It is a time-domain method and is
suitable for solving multi-frequency excitation problems. Moreover, a hypersphere based
continuation technique is also incorporated to trace the solution branches beyond bifurcation
points. The type of bifurcations is determined by monitoring the Floquet exponents. While
analyzing the results, it is observed that the nonlinearities are intensified, and the rightward
bending of the response curve is increased during the multi-disk rub-impact. Limit point
and Neimark-Sacker bifurcations are observed, and their onset points are dependent on the
multi-disk rub-impact. The responses such as period-5, quasi-periodic, and dry friction
backward whirl motions are noticed for different values of the rub parameters. As a result,
a parametric analysis is also performed to understand the effects of rub and squeeze film
damper parameters.
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Chapter 1

Introduction

1.1 Background

The fan blade-out (FBO) in a turbofan engine is one of the most critical failures that will
threaten the integrity of the aircraft engine and the safety of passengers. The loss of blades
may occur due to several reasons such as corrosion/erosion, high cycle fatigue, foreign
body ingestion, manufacturing and material defects, etc. An FBO event can create a lot
of complexities in the aircraft engine, such as sudden imbalance, asymmetry of rotors,
and blade-casing interactions. Several aircraft accidents have been reported worldwide
regarding blade loss and subsequent blade-casing rubbing within the past few decades. On
November 3, 1973, National Airlines Flight 27 was subjected to an emergency landing
because of an uncontained engine failure resulting from the disintegration of fan assembly
from the engine (John et al. (1975)). As a result, the fragments of the fan penetrated the
fuselage and caused decompression of the aircraft cabin and loss of certain electrical and
hydraulic services. The accident caused the death of a passenger, and 24 persons were treated
for smoke inhalation, ear problems, and minor injuries. On February 3, 2007, a Boeing
747-438 aircraft had a compressor blade failure that happened due to the distortion of its
casing and subsequent tip rubbing (ATSB (2008)). The released blade damaged the engine’s
high-pressure compressor, causing loud noise and vibrations in the aircraft. On May 13,
2014, a Beechcraft Beechjet 400A suffered a bird strike to its right engine, resulting in the
cracking of fan blades at the root. During the examination, it was found that the engine
cowling had multiple penetrations, indicating severe blade-stator interactions. After the
inspection, the National Transportation Safety Board (NTSB) recommended modifying all
JT15D-5 engines installed on Raytheon/Hawker Beechjet 400A aeroplanes to dampen the
rub-induced excitation that can happen between the engine fan and casing during the FBO
event (Christopher et al. (2017)).
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As a consequence of several accidents in the past, the Federal Aviation Administration
imposes strict rules and regulations in the design, construction, and testing of aircraft engines.
As per 14 CFR § 33.94a, the manufacturers have to conduct an engine test demonstration
to prove that the engine can contain damages without catching fire and shut it off within 15
seconds. Such certified engines are used in modern aircraft, and they will shut off rapidly
when an FBO event occurs during a flight. However, the aircraft has to fly for some more
hours before it lands at an en-route alternate airport. During this diversion flight, the engine
fan rotates because of the aerodynamic forces called windmilling. It is observed through
certain field events that the windmilling of the damaged rotor resulted in severe blade-casing
interactions in the aircraft engines (Christie (1996)). Fortunately, in all the incidents, the
aircraft was landed safely without any severe injuries to the passengers or damage to itself.
As a result, the FAA made the rules and regulations more stringent by introducing 14 CFR §
33.74. According to this rule, the engine manufacturers must show that the continued rotation
after blade loss doesn’t create unwanted circumstances in the aircraft during its diversion
flight. However, conducting the tests to prove the engine’s safety during FBO and continued
rotation is extremely expensive and sometimes leads to severe problems for the rig and the
test personnel. As a result, developing analytical and numerical models of the rotor-stator
rubbing is essential for predicting the response characteristics of the engine. During the past
few decades, several research works have been conducted to understand the mechanism of
rub-impact happening in rotor systems (Muszynska (2005)). A review of how the rotor-stator
interaction studies are evolved during the past few decades is described as follows.

1.2 Literature review

The rotor-stator rubbing was first observed in steam turbines around the 1920s; since then, it
has become a challenging topic for many researchers. Initially, Taylor (1924) and Newkirk
(1927) noticed that when a rotor rubs the stator below its first critical speed, the shaft gets
bowed due to the uneven temperature distribution. As a result, its lateral vibrations are
amplified with time. Dimarogonas (1973, 1974) provided a quantitative explanation for
this phenomenon and is termed as the Newkirk effect. Meantime, Black (1966) studied the
influence of rotor-stator rub on the global dynamics of the system using an experimental setup.
The test rig consisted of a long mild steel shaft carrying a disk at the centre. Mass unbalance
is adjusted by attaching small amounts of plasticine to the central mass. A clearance bush
made up of brass is used as the annulus. Due to the flexibility of the shaft, whirling took
place, and the rotor touched the annular surface when the rotating speed was very close to
the critical speed and altered its high-speed behaviour. A forward-leaning of the critical peak
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is observed and is termed as super whirling. When the bush is made sufficiently dry and
clean, counter-whirling is observed in the response with its amplitude greater than that of
forward whirling (Black (1968)). Ehrich and O’Connor (1967) included the stator dynamics
in the model and observed a stator motion showing some resemblance to the hula hoop and is
termed as stator whirl. The stator whirl attained a considerable amplitude when the rotating
speed became equal to the stator’s natural frequency.

Fig. 1.1 Comparison of the rotor lateral responses during the start-up and shut down tests
with and without seal rubbing (Yu et al. (2002)).

Later, Yu et al. (1998, 2002) provided a clear picture of the rotor-stator interaction
using an experimental test rig consisting of a two-disk rotor model in which the shaft is
made to rub against seals made up of Teflon and bronze. Mainly, two types of steady-state
vibration regimes are observed in the rotor response depending upon the system parameters,
such as rotor-stator friction coefficient, rotor unbalance and support stiffness. They are i)
unbalance-excited synchronous rub and ii) self-excited dry whip. Compared to dry whip, the
synchronous rub is less dangerous and occurs when the rotor contacts a properly lubricated
stator due to mass unbalance effect (Zhang et al. (2009)). Sometimes, the accidental presence
of some tiny materials in the radial clearance may also be a reason for the light synchronous
rub (Vania et al. (2018)). During the contact, the seal acts as an additional bearing and
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increases the stiffness of the model. As a result, the response changes in the range of
original resonance and a forward-leaning can be observed as explained by Black (1966).
After passing a certain rotational speed, the amplitude of whirling decreases rapidly, and a
jump-down phenomenon happens to the no-rub response. However, the behaviour of the
rotor during run-down is entirely different from that of run-up. The range of forward-leaning
is shortened, and a jump-up phenomenon is observed during run-down, as shown in Fig.
1.1. Generally, the synchronous full annular rub is identified by the occurrence of a single
point in the Poincaré map, one peak amplitude in the frequency spectrum, and one closed
circle in phase portrait. It is a stable, periodic response with a very low vibration amplitude.
The abradable coating on the casing may be slightly ground during the synchronous full
annular rub, avoiding metal to metal contact. It doesn’t lead to any unwanted situations that
may affect the engine’s integrity. Therefore, the synchronous full annular rub is the ideal
operation status during the rubbing event.

The dry whip is the most destructive rotor motion in which the rotor continuously contacts
the stator while orbiting in the backward direction. The whirling amplitude and frequency of
the dry whip are so high that they can destroy the integrity of the rotor system. To determine
the excitation mechanism that initiates the dry whip, Bartha (2000) built a test rig with
realistic parameters to mimic the rubbing in a small turbo-compressor. A magnetic exciter is
used to trigger the backward whirl, and different excitation levels are applied to determine
the critical excitation force. After the analysis, it is concluded that an outside disturbance
(hitting the shaft) is required to initiate the dry whip. However, contradictory to Bartha’s
conclusion, Bently et al. (2002) experimentally proved that dry whip could occur without
any outside disturbance. Sufficiently high mass unbalance with a high coefficient of friction
can initiate the dry whip. In addition, the rotor foundation had a substantial effect on the
occurrence of the dry whip. For the same test rig, backward whirl could quickly occur for
a foundation made up of stiff concrete, while only synchronous forward whirling could be
generated for a flexible foundation.

In 2005, Jiang and Ulbrich (2005) explained the physical reason for the onset of dry whip
analytically. According to their study, the onset of dry whip occurs when the rotor speed
becomes equal to the negative natural frequency of the coupled nonlinear rotor-stator system,
and no external mechanism is necessary, underlying the conclusion of Bently et al. (2002).
Moreover, the rotor maintains continuous contact with the stator and whirls backwards with
a super-synchronous frequency which is lower than the rotor-stator coupled linear natural
frequency (Jiang (2007); Jiang et al. (2010)). As a result, the abradable coating may be
wholly removed, and direct contact of blade tip with casing material occurs. This will induce
localized thermal heating and disturb the thermal equilibrium of the model. The shaft will
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undergo considerable deformations and be prone to high-frequency stresses, which may cause
fatigue damage in the shaft and eventually lead to the complete failure of the machinery.

In addition to synchronous rub and dry whip, sub and super-harmonic responses are
also observed in the rotating machinery. Sub-harmonic response refers to the bouncing of
the rotor at exactly or nearly its natural frequency when the rotor rotates at a speed that
is exactly or nearly a whole number (N) multiples of its natural frequency. Ehrich (1966)
first identified the second-order sub-harmonics in the rotor response which is confirmed by
Bently (1974) through experimental observations. According to Bently (1974), this kind
of vibration occurs mainly due to the asymmetry in radial flexibility induced as a result of
partial rubbing. Later, Childs (1979, 1982) analytically explained the occurrence of 1/2×
and 1/3× sub-harmonics in the response using linear parametric analysis of a rotor system.
Sub-harmonics are indicated by multiple closed circles in phase portrait, multiple peaks
in the frequency spectrum, and multiple points in the Poincaré map (Chu and Lu (2005)).
The presence of higher-order sub-harmonics (Ehrich (1988, 1991)) and super-harmonics
(Ehrich (1992)) are also observed, depending on the model parameters. Super-harmonics is
the mirror image of sub-harmonics, i.e. the rotor will bounce at exactly or nearly its natural
frequency when the rotor rotates at a speed which is exactly or nearly 1/N times of its natural
frequency (Ehrich (1992)). Sub and super-harmonic responses have all the characteristics of
the critical response of the system, and they can excite the components of a turbomachine,
such as a turbine disk, bearings, fastenings, couplings, etc. This may lead to the failure of
such components and affect machinery’s integrity.

It has been observed through different experiments and numerical studies that the tran-
sition zones between successive orders of the sub and super-harmonic responses have all
the characteristics of chaotic nature (Muszynska and Goldman (1995)). They are charac-
terized by irregular and non-repetitive multiple orbits (Gonsalves et al. (1995)). A fractal
structure of points in the Poincaré map indicates the occurrence of chaotic behaviour in
rotor responses (Khanlo et al. (2011)). The presence of nonlinearities in the rotor system,
such as piecewise discontinuous stiffness, surface friction, and local impact, are the primary
sources of chaotic responses (Goldman and Muszynska (1994); Karpenko et al. (2002)). In
addition, the constant external excitations due to gravity load also induce complex nonlinear
behaviours such as sub-harmonic, quasi-periodic, and chaotic motions (Hou et al. (2019)).
Detailed post-processing analysis of rubbing reveals that the rotor motion alternates between
periodic, quasi-periodic, and chaotic behaviours through different bifurcation points such as
Neimark-Sacker bifurcation, quasi-periodic Hopf bifurcation, saddle-node bifurcation, and
pitchfork bifurcation. The quasi-periodic vibration is generally indicated by the presence of
incommensurate frequency components in the frequency spectrum and a closed curve in the
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Poincaré map (Peletan et al. (2014)). Moreover, the entry and exit to chaos have different
kinds of routes, i) a sudden transition from periodic response to the chaos, ii) through period-
doubling bifurcation, and iii) through grazing bifurcation in which the period increases by a
value of one, after each region of chaos (Chu and Zhang (1998)). The appearance of chaotic
vibrations in the rotor response is a possible threat to aerospace structures because of their
unpredictable time histories. Proper control of the design parameters and the construction of
active controllers are the two practical measures for displacing the structure from chaotic
regimes or stopping the chaos from occurring. As a result, the development of efficient
numerical models is necessary for conducting the detailed rub-impact analysis, thereby
reducing the possibilities of machinery failure.

1.2.1 Numerical models of rotor-stator rub

Numerical modelling of the rotor-stator rub was started in the late sixties using simple two
degrees of freedom (DOF) models. Later, many modifications were applied incrementally to
the basic models and developed complex rotor models for simulating the rub phenomenon.
Establishing a numerical model mainly includes two steps: i) constructing a mechanical
model for analyzing the vibrational behaviour of the system and ii) developing a proper
contact model for determining the rubbing forces. A detailed review of different numerical
models used for simulating the rub-impact is presented in the article by Ma et al. (2016b).

Mechanical models

The main task in the numerical modelling of rotor-stator rub is constructing a mechanical
model for simulating the global response characteristics of the rotor system. The ability
of a rotor model in predicting the complete response characteristics is mainly dependent
on how well the system is modelled. The majority of the previous research works on the
rotor-stator interactions utilized the modified Jeffcott rotor model, which is a 2 DOF rotor
consisting of a thin, rigid disk mounted at the midspan of a flexible massless shaft, supported
at the ends on bearings (Choi and Noah (1987); Jiang and Ulbrich (2001); Karpenko et al.
(2003)). The schematic diagram of a modified Jeffcott rotor model is shown in Fig. 1.2. The
structure of the Jeffcott rotor model is far away from the actual turbomachine. However, the
researchers have utilized this model for investigating the response characteristics, stability
ranges, and bifurcation pattern during rub-impact. Later, more modified Jeffcott rotor models
are introduced by the researchers, incorporating oil film bearings, flexible disks, torsion and
thermal bow. They are explained as follows.



1.2 Literature review 7

Fig. 1.2 Schematic diagram of a modified Jeffcott rotor model consisting of a thin, rigid disk
mounted at the midspan of a flexible massless shaft, supported at the ends on bearings.

In a simple Jeffcott rotor model, the bearing is assumed to have linearized damping and
stiffness applied at the rotor geometric centre. But, in most rotating machines, the rotor
is supported on oil film bearings. The oil film bearings are the main source of nonlinear
excitation forces that are self-exciting in nature. They can be calculated using the Reynolds
equation assuming the short bearing approximation (Ghosh et al. (1979), Chu and Zhang
(1997), Balaji and Krishna (2018)). It is observed that the unbalance response of the rotor can
be significantly reduced by optimizing the bearing parameters such as the diameter, clearance,
and the oil viscosity (Bhat et al. (1982)). Tiwari et al. (2004) presented a detailed review of
different experimental techniques for the identification of dynamic parameters of bearings
and similar components. Mainly vibration-based identification methods such as impulse and
random response measurements are used (Tiwari (2017); Tiwari and Chakravarthy (2006,
2009); Tiwari and Vyas (1995)). Through the theoretical analysis, the direct and cross-
coupled coefficients of stiffness and damping can be calculated and are applied at the bearing
location during the analysis (Rao et al. (1980)). Depending on the values of the cross-coupled
stiffness, backward whirling can be noticed in the rotor response (Rao (1982)). Moreover,
the rotor becomes unstable when one of the cross-coupled stiffness coefficients is negative
(Rao (1983, 1985); Sharan and Rao (1985)). As a result, oil whirl and oil whip appear in
the rotor response. Oil whip is the main fluid film instability observed at a rotor speed far
above the linearized first critical. It is one of the main sources of rub-impact and leads to
quasi-periodic and chaotic vibrations of the rotor.
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A very few researchers (Flowers and Ryan (1991); Flowers and Wu (1996, 1993); Kumar
et al. (1997)) analyzed the modified Jeffcott rotor with flexible disks. Most often, a model
consisting of a rigid ring elastically connected to a rigid hub is utilized for studying the effects
of disk flexibility (Flowers and Wu (1993)). In the mathematical formulation, additional
equations corresponding to the disk vibration are appended to the equations of shaft vibration.
The studies demonstrated that super-harmonic vibrations produced as a result of rub-impact
could excite the disk vibrations considerably, leading to increased bearing loads.

Most of the past research on rotor-stator interactions avoided the torsional vibrations,
assuming the rotor is torsionally rigid. But, the presence of friction and tangential forces
due to contact may induce torsional vibrations in the response. The addition of the torsional
DOF to the Jeffcott model provides an efficient way for the analysis of lateral-torsional
vibrations ( Al-bedoor (2000); Lu and Chu (2014); Mokhtar et al. (2017); Patel and Darpe
(2009); Patel et al. (2012); Yang et al. (2019)). It forms a 6 DOF model with two lateral
and one torsional motion for both rotor and stator. The results from this model showed
a substantial amount of variations in the response from a model without torsional effects
(Popprath and Ecker (2007)). Each contact with the stator excited torsional vibrations in the
rotor with its amplitude decaying at a frequency equal to the torsional natural frequency of
the model. During each contact, localized heating happens at the contact point, and it leads
to a non-uniform heat distribution in the rotor (Newkirk (1927)). It induces a thermal bow
in the shaft, and the stability of the model is highly dependent on the phase angle between
static and dynamic bow (Goldman and Muszynska (1995); Goldman et al. (2000)).

In the past, there have been many studies that happened using the modified Jeffcott rotor.
However, the excessive simplification of these lumped parameter models restricts them in the
qualitative analysis only. In recent years, the finite element (FE) models of rotating machinery
have been extensively used for the nonlinear dynamic analysis of the rub phenomenon (Rao
(1996, 2011)). Most of the researchers have utilized one-dimensional beam elements for the
FE modelling, based on Nelson and McVaugh (1976) rotor model. In this model, a rotor
system is considered as an interconnection of different components made up of rigid disks,
shaft elements, and linear bearings. The shaft elements have distributed mass and elasticity
and are modelled using the Euler-Bernoulli or Timoshenko beam formulations, whereas
the bearings are simplified as a linear spring-damper model. The rigid disks are included
in the model by adding their inertial properties to the corresponding nodal properties of
the shaft. Compared to the Jeffcott rotor, the FE models of the rotor system provide more
accurate results quantitatively. In literature, most of the rotor FE models are developed in a
single-spool configuration, consisting of a single rotor mounted on bearing supports (Mokhtar
et al. (2017); Pennacchi et al. (2009); Torkhani et al. (2012)). However, the information
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received from a single-spool rotor model won’t be sufficient enough to predict the response
behaviour of a modern aircraft engine since most of them have a two-spool configuration.
For the analysis of such machines, a dual-rotor model will be appropriate.

Dual-rotor model: The aircraft engines are composed of two-spool rotors that will induce
multiple excitations when they are subjected to unbalanced forces and external excitations.
During the analysis, the aircraft engine is modelled as a dual-rotor consisting of two co-axial
rotors connected using inter-shaft bearings. The presence of inter-shaft bearing makes the
model’s behaviour unique and results in the coupling of both rotor vibrations. As a result,
the dynamic behaviour of such machines appears to be more complicated in the presence
of rub-impact. The detailed studies on rub-impact in dual-rotor models have been started
recently. Xu et al. (2016) performed an experimental research for understanding the dynamic
characteristics of a two-spool rotor with rub-impact fault. The experimentation consisted of
a dual-rotor model with a single-stage compressor and a turbine disk in each rotor. While
observing the spectrums of rotor vibration, it is seen that the response of the dual-rotor
model under rub-impact not only contains the excitation frequency components but also
includes their linear combinations. Similar results are obtained for Yang et al. (2016) when
the analysis is performed numerically. In their model, the fixed point rub happening in the
dual-rotor is studied by considering the effects of coatings applied on the disks and casing.
The Lankarani and Nikravesh (1990) model is used to determine the contact force generated
between coated casing and disks. Later, Yang et al. (2017) investigated a two-disk rub-impact
problem by assuming the contact occurring at compressor and turbine positions. A linear
interpolation method is used to predict the instant of contact. Due to the two-disk rub-impact,
the nonlinearities are intensified, and a rich mixture of nonlinear vibrations are observed in
the response.

Recently, the researchers have introduced more complexities to the basic dual-rotor
model. Rao (2013) studied the dynamics of a dual-rotor model by including stress stiffening
and spin softening effects. The shafts with variable cross-sections were used to build a
dual-rotor model (Rao and Sreenivas (2003)). Hou et al. (2017) and Wang et al. (2017)
modified the dual-rotor model by incorporating ball bearings in place of inter-shaft bearing
and studied the effects of bearing clearance and contact stiffness on the primary resonance
of the model. Later, Gao et al. (2019) introduced a local defect on the bearing outer race
and investigated its effects on the nonlinear dynamic characteristics of the dual-rotor model.
Four abnormal resonances are observed in the frequency response curve due to the local
defect, apart from the primary resonances. Moreover, a steady-state heat transfer model is
also incorporated in the inter-shaft bearing using Palmgren’s empirical formula (Gao et al.
(2020)). It is observed that the thermal behaviour of the dual-rotor model became much
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more complex due to the nonlinear dynamic characteristics of the inter-shaft ball bearing.
Liu et al. (2020a,b, 2021) modelled the inter-shaft bearings based on the nonlinear spring
characteristics of the rotor deflections and observed subharmonic resonances and internal
resonances. The nonlinear spring characteristics are expressed in terms of power series as
mentioned in the study of Yamamoto and Ishida (1977).

In recent time, Lu et al. (2021) investigated the nonlinear dynamic characteristics of a
dual-rotor model when the ball bearing is located at a position other than the inter-shaft
bearing. A resonance hysteresis phenomenon is observed in the frequency-response curve
when the clearance of the ball bearing is increased. It is found that the performance of ball
bearings highly influences the dynamic response of the rotor model. The performance can be
improved by conducting a multi-objective optimization procedure during the design (Gupta
et al. (2007)) of ball bearings. The dynamic capacity, the static capacity and the minimum
film thickness can be optimized separately, pair-wise and simultaneously using a genetic
algorithm. The design parameters include the rolling element diameter, the bearing pitch
diameter, the number of rolling elements and inner and outer-race groove curvature radii (Rao
and Tiwari (2007)). As a result of design optimization, the ball bearings deliver excellent
performance, high reliability and maximum fatigue life (Verma and Tiwari (2021)).

Xinxing et al. (2021) included the squeeze film dampers (SFD) in the dual-rotor model
and analyzed its nonlinear dynamic characteristics when supported by rolling contact bearings.
The steady-state vibration responses of the model with or without SFD are solved by the
numerical integration method. The influences of the ball bearing clearance, unbalance,
centralizing spring stiffness and oil film clearance of SFD on the nonlinear steady-state
vibration responses of the dual-rotor model are analyzed. Results show that SFD can
effectively suppress the amplitude jump of the dual rotor model sustaining two rotors
unbalance excitations. Even though this arrangement is for reducing the amplitude of
vibration, it acts as an additional source of nonlinearity (Mohan and Hahn (1974)). The
oil-film forces produced as a result of wedging action introduce nonlinearities in the model
and results in the nonlinear dynamic responses (Gunter et al. (1977)). Reynold’s equation
with a short bearing approximation is employed to determine the oil-film forces (Chen et al.
(2020); Humes and Holmes (1978)). A change in the SFD static eccentricity ratio and
supply pressure can produce enough damping in the model, and it affects the rotor responses
significantly. Inayat-Hussain (2009) performed the stability analysis of a rotor model with
the SFD and observed different types of bifurcations in the response. Some researchers have
designed the inter-shaft ball bearings in combination with the SFDs and observed remarkable
variations in the response of dual-rotor models (El-Shafei (1991); Li et al. (1986); Luo et al.
(2019); Wang et al. (2018)).
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Recently, Wang et al. (2019) introduced a dual-rotor-blade-casing (DRBC) model by
incorporating blades and thin-walled casing in the simple dual-rotor model. The vibration
signals are measured from the casing surface, and certain periodic impact characteristics are
observed in the signal with its frequency equal to the product of the rotational frequency
and the number of blades. Yang et al. (2020) modelled a dual-rotor-bearing-double casing
system (DRBDC) consisting of multilayered casings. It consisted of two separate casings for
inner and outer rotors with a soft coating applied on the outer casing while a hard coating
was applied on the inner casing. The local interaction between rotating blades and casing
generates stresses and thermal loads on the blades (Bahree et al. (1989); Rao and Vyas
(1990)). As a result, a coupled bending-torsional analysis of rotating blades is required
to obtain the localized effects of rub-impact (Banerjee and Rao (1976); Rao and Banerjee
(1977); Rao and Carnegie (1970); Subrahmanyam et al. (1981)). Yu et al. (2018) developed a
complex aero-engine dual-rotor model consisting of multi-stage compressors and turbines.
The model analyses the transient response during fan blade-out and steady-state response
during windmilling. One-dimensional FE modelling is utilized to obtain the dynamic model
of the system. Jin et al. (2019) constructed the FE model by combining cylindrical and
conical beam elements. The total size of the FE model is reduced by a two-level model
reduction method, including component mode synthesis (Hurty (1960)) and proper orthogonal
decomposition (Lu et al. (2019)) technique. Recently, Ivanov et al. (2019) and Sun et al.
(2018) proposed 3D finite element models of a turbofan engine using FE software packages.
An eight-node hexahedral element is utilized to discretize the rotors. The model consisted
of a 4-stage low-pressure compressor and a 9-stage high-pressure compressor. The main
problem with the FE analysis is that it consumes more time during the nonlinear analysis
because of the large DOF of the FE model. In such circumstances, a proper model reduction
technique has to be used.

Model reduction techniques: Model reduction techniques are intended to reduce the size
of FE models without losing the completeness of the information. The main idea of these
techniques is to obtain a lower-order model such that it effectively captures the dynamics of
the original high-order model. There are different techniques available in the literature that
efficiently perform the reduction procedure (Besselink et al. (2013); Friswell et al. (2010);
Koutsovasilis and Beitelschmidt (2008); Qu (2004)). In most of the reduction techniques,
a master-slave substructuring is utilized. Guyan (1965) developed a reduction technique
based on static condensation. In this technique, the stiffness terms are only included in the
transformation matrix by omitting the inertia and damping terms. As a result, the method is
ineffective in the higher frequency ranges, even though it is efficient in the lower frequency
ranges.
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Leung (1978) developed a dynamic condensation technique including the inertia term
in the model. The method reduced the model accurately over the whole frequency range.
Later, O’Callahan (1989a) modified the Guyan condensation method and included the inertia
term partially in the formulation. The new technique is called the improved reduced system
(IRS) method. In this technique, the transformation matrix is perturbed from the static case
by including the inertia terms as pseudo-static forces. The method results in a reduced
model that ideally matches the full model at low-frequency resonance regions. However,
the reduced stiffness matrix resulting from the IRS method is stiffer than that of the Guyan
reduction method and is less suitable for orthogonality checks. As a result, Friswell et al.
(1995) extended the IRS method in two ways: by performing the basic transformation on
dynamic reduction rather than static reduction and by introducing an iterative scheme in
which the corrective term is generated iteratively using the current best estimate of the
reduced model. The convergence of the iterated IRS scheme is dependent on the choice of
the master coordinates, and it is found that the lower modes converge more quickly than the
higher modes (Friswell et al. (1998)). To prove the accuracy of the method in the reduction
process, a linear structure with local nonlinearities is analyzed (Friswell et al. (1996). Two
cantilever beams joined with a cubic spring are utilized, and the coordinates corresponding
to the nonlinearities are chosen as the master DOF during the analysis. Better quality results
are obtained when the master coordinates are selected accurately.

Meantime, O’Callahan (1989b) introduced another method called system equivalent
reduction expansion process (SEREP), in which an eigenvalue decomposition process is
utilized to get a low dimensional subspace through a set of selected modes and a set of
master DOFs. Friswell and Inman (1999) used this method for the reduction of structures
with viscoelastic components. The damping of the viscoelastic material is incorporated into
the method by utilizing the complex eigenvectors. It is found that the SEREP method can
approximate the high-frequency responses perfectly.

Another commonly used reduction technique is the component mode synthesis (CMS)
method, in which different components of a model, either in the experimental or numerical
form, are coupled together to predict the response of the whole model. Generally, the
Craig-Bampton substructuring (Craig Jr and Bampton (1968)) technique is employed to
achieve coupling of the different components. In this technique, the interior coordinates of
the substructures are reduced using modal truncation while the boundary coordinates are
kept as such. The transformation matrix includes the eigenvectors of the interior DOFs and
a constraint matrix obtained using the geometric compatibility conditions of the boundary
DOFs. The CMS technique and Craig-Bampton substructuring are implemented in some of
the commercial FEM software.
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There are some reduction techniques that are based on projection methods (Gildin (2006)).
One of them is the proper orthogonal decomposition (POD), in which the response function
is projected onto an orthonormal basis (Lu et al. (2019)). In this technique, the relevant
POD modes are selected in such a way that they capture the complete characteristics of the
original higher-order model accurately. The POD technique is equivalent to the singular value
decomposition (SVD) and principal component analysis (PCA) (Chatterjee (2000)). The
advantage of the POD over eigenvalue decomposition is that it can also handle the non-square
matrices. Another reduction technique is based on the Krylov subspace method in which
the response function is projected onto the Krylov subspace (Liesen and Strakos (2013)).
It is an iterative approach, avoiding the matrix-matrix multiplications but using the matrix-
vector multiplications (Saad (2003)). Bai (2002) employed a Lanczos process-based Krylov
subspace technique for reducing the dynamical systems arising from circuit simulation,
structural dynamics, and microelectromechanical systems. Xiang et al. (2018) utilized the
Krylov subspace-based scheme for the reduced-order modelling of piezoelectric energy
harvesters with complicated mechanical geometries and nonlinear circuits. It is observed that
the method has improved the simulation efficiency by several orders of magnitude. Recently,
Haller and Ponsioen (2016) utilized the spectral submanifold (SSM) theory for performing
the model reduction. In this technique, the relevant normal modes are determined using the
SSM theory, which facilitates a reliable projection of the governing nonlinear equations onto
modal subspaces (Buza et al. (2021)). Ponsioen et al. (2020) demonstrated this technique
using high-dimensional damped-forced beam models.

In the field of rotordynamics, the use of model reduction techniques are very signifi-
cant since their dynamic models include asymmetric stiffness, localized nonproportional
damping and frequency-dependent gyroscopic effects (Wagner et al. (2010)). Rouch and
Kao (1980) used the Guyan reduction technique for predicting the forced response and
stability of an unbalanced rotor model. Later, Kim and Noah (1991) utilized the dynamic
condensation technique for reducing the rotor model undergoing rub-impact at the bearing
clearance. However, the CMS technique with Craig-Bampton substructuring is widely used
in rotordynamic systems since it is very effective in handling the mechanical systems with
localized nonlinearities (Krishna and Padmanabhan (2011)). In this technique, the nodes
containing the nonlinearities are included in the master component, while the linear nodes
are assembled in the slave component. Based on the CMS technique, Zuo and Wang (2015)
developed the reduced model of an aero-engine rotor system for proving the accuracy and
efficiency of the technique. As a result, a reduction efficiency of 99.83% is obtained with
an error of 0.81%. Later, Sun et al. (2018) reduced the three-dimensional FE model of a
complicated aero-engine dual-rotor system using the CMS method and studied the effects
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of rub-impact on the global response of the model. Recently, Jin et al. (2019) proposed a
two-level model reduction method combining the CMS and POD techniques. According to
their results, the proposed method has higher computational efficiency and accuracy in terms
of mode expansion than the direct model reduction by using the POD method alone.

Contact models

Once the mechanical model is defined, the next task is to develop a contact model for
determining the interacting forces during the rotor-stator rub. The contact models are mainly
intended to describe the momentum exchange happening during rotor-stator interactions and
to establish an explicit functional relationship between the contact force and the corresponding
indentation. Mainly, there are two different approaches for performing the contact analysis.
In the first approach, referred to as discrete methods, the contact occurs for a very short
interval of time, and a sudden change in the momentum happens for each contacting body. In
the second approach, referred to as continuous methods, the impact forces act continuously
during the contact period, and the analysis is performed in a usual way, by adding the impact
forces to the governing equations during their action period (Gilardi and Sharf (2002)). In
literature, most of the researchers have used the continuous contact models, especially the
piecewise linear force model (Jiang (2009); Krishna and Padmanabhan (2018); Shang et al.
(2011)) and the Lankarani and Nikravesh model (Lankarani and Nikravesh (1990)). The
appropriate choice of the contact model decides its capability in simulating the complex
rub-impact phenomenon. The loads generated by the contact models are incorporated in the
mechanical model. Then, the overall vibration behaviour of the rotating machine can be
determined accurately using the different solution techniques as explained as follows.

1.2.2 Solution techniques

The time integration method is the most commonly used solution technique for solving the
governing equations of a nonlinear mechanical system. In this technique, the solution process
starts with an initial guess and then marches in the time domain. Two types of numerical
integration schemes exist; they are explicit and implicit schemes. In explicit schemes, the
future of a system is calculated from its current state. The Fourth-order Runge-Kutta method
is an explicit scheme, based on the Taylor series expansion with a local truncation error of
the order O(h5). Many researchers have used this technique to obtain the rotor response
under rub-impact and found it suitable for contact problems (Moreira and Paiva (2018);
Wang et al. (2020a); Yang et al. (2016)). The main drawback of explicit schemes is that they
require impractically tiny time steps to solve stiff differential equations to keep the numerical
stability, which will consume a lot of computational power. On the other hand, the implicit
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schemes are ideally suited for solving stiff differential equations with less computational
time. It uses the current state and the future state of a system for calculating the state later.
The Newmark-beta method is a popular implicit scheme that is used for solving nonlinear
differential equations (Ma et al. (2016a); Xu et al. (2016)). It can use large time steps even
for stiff differential equations without losing its stability and accuracy. However, the time
integration methods are computationally expensive and time-consuming because one has to
wait until the attenuation of the transient to obtain the steady-state response.

To get the steady-state solutions of a nonlinear differential equation fastly, a frequency
domain method called harmonic balance method (HBM) is introduced by Urabe and Reiter
(1966). It is a special version of Galerkin’s method in which the response is assumed in
terms of truncated Fourier series of Nh harmonics. The method is found to be accurate with
less than 5% error and efficient compared to time integration methods (Kim et al. (1991)).
In literature, many researchers have used the HBM for finding the steady-state solutions
of the rubbing phenomenon (Petrov (2012, 2016); Zhao et al. (2015)). However, recent
studies revealed that a simple HBM could not capture specific response characteristics of
rotor models such as quasi-periodicity. The quasi-periodic response generally arises in a
rotor when it undergoes certain fault conditions such as rub-impact, crack, misalignment,
and pedestal looseness. It is observed that during the quasi-periodic response, the rotor
whirls with a frequency, which is a linear combination of two incommensurable frequencies.
Such a quasi-periodic nature of the response can be captured by introducing the concept of
multi-dimensional time into the HBM. The modified method is called the multi-harmonic
balance method (MHBM) or quasi-periodic harmonic balance method.

In addition to the application of capturing quasi-periodicity, the MHBM is also employed
for analyzing the vibrations in self-excited aperiodic rotor systems, dual rotor systems in
aircraft engines, and nonlinear dynamical systems subjected to multi-frequency excitations.
Sun et al. (2016) developed an 8 DOF model of a dual-rotor system and investigated the
effects of rub-impact using the MHBM technique. An alternating frequency-time (AFT)
technique that uses a direct fast Fourier transform (FFT) is utilized for the determination of
the Jacobian matrix and the nonlinear force vector (Cameron and Griffin (1989)). Later, Hou
et al. (2017) continued the analysis by using the same method for determining the effects of
bearing clearance at the inter-shaft ball bearing location. Bifurcation and stability analysis is
also carried out when the rotor is subjected to constant excitation and rub-impact (Hou et al.
(2019)). Since the MHBM-AFT is a frequency domain technique, Hsu’s method is used to
predict the stability and bifurcation nature of the model.

Even though the MHBM-AFT technique is formulated to solve multi-frequency excitation
problems, most of the research works that presented the MHBM solved up to two-frequency
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excitation problems. It is because the programming of the AFT procedure becomes cumber-
some when higher dimensional FFTs need to be calculated. Complex matrix operations are
required to be performed for obtaining the Fourier coefficients (Ju et al. (2017)). However, a
multi-excitation problem can be transformed into a single excitation problem by expressing
the excitation frequencies in terms of their common divisor (Guskov and Thouverez (2012)).
Now, a simple HBM can solve the transformed equations of motion. But, a higher number of
harmonic coefficients are required to capture the complete nonlinear phenomena. Moreover,
the alternate transformation between time and frequency domains to calculate the nonlinear
Jacobian becomes complex. One way to overcome the issue is by performing the complete
analysis in the time domain.

A new time-domain technique called the time variational method (TVM) is introduced
by Rook (2002) which didn’t require the alternate transformation between the frequency
and time domains during the calculation of the Jacobian and nonlinear forces. It is a semi-
analytic technique generally employed to solve periodic and single excitation problems.
Krishna and Padmanabhan (2011) used the TVM for investigating the response behaviour
of nonlinear, multi DOF mechanical models subjected to external excitations. Later, the
method is extended in the rotordynamic analysis as well (Krishna and Padmanabhan (2018)).
However, in literature, there aren’t many studies using the TVM in response analysis; hence,
there is a vast area for future research, exploring the TVM in different problem scenarios.

1.3 Research gap

In aero-engines, the possibility for the multi-disk rub-impact is high during the FBO event
and subsequent windmilling action. However, most of the researchers in this area developed
a simplified dual-rotor model of the aero-engine, consisting of a single-stage compressor
and turbine, and analyzed single-disk rub-impact only. In their model, the nonlinearities are
applied at a single-disk position only by assuming no contact at other disk positions. Such
assumption won’t be practical for a two-spool aero-engine, consisting of multi-disks that
may undergo rub-impact simultaneously. As a result, the influence of multi-disk rub-impact
on the dynamic characteristics of an aircraft engine needs to be appropriately studied to avoid
the adverse effects of the FBO and windmilling actions.

Since the rotordynamic analysis includes asymmetric matrices and frequency-dependent
gyroscopic effects, the model reduction techniques that are effective in structural dynamic
problems won’t be suitable for rotordynamic problems. In most of the previous works, the
gyroscopic effects of the shaft elements were negligible; hence, no difficulties were observed
during the reduction process as the skew-symmetric gyroscopic matrices are only at specific
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disk locations. However, when the shaft gyroscopic effects are significant, the whole model
becomes asymmetric, and the diagonalization is only possible by considering both the right
and left eigenvectors. In such cases, the existing model reduction technique needs to be
modified to reduce the rotor FE model efficiently even when the asymmetric matrices are
present.

As mentioned earlier, the MHBM-AFT technique has certain limitations when more than
two-frequency excitations come into the picture. In such circumstances, the AFT procedure
is so complex that the determination of the nonlinear Jacobian matrix is cumbersome. The
literature shows that the TVM is an appropriate solution technique for solving periodic
excitation problems, and it operates without any transformation between time and frequency
domains. Till now, the works that employed the TVM analyzed periodic and single excitation
problems only. However, the TVM can also be extended to systems involving multiple-
frequency excitations. This thesis attempts to address these issues and fill the research
gap.

1.4 Objectives and Scope

The overall research objective of the current study is “to analyze the steady-state nonlinear
response of a two-spool aero-engine model undergoing multi-disk rub-impact using a semi-
analytical method." The major objectives of the present study can be summarized as:

1. To understand the nonlinear responses observed in the model during multi-disk rub-
impact by:

• Developing a modified model reduction technique capable of handling asymmet-
ric matrices.

• Developing an approximate TVM in effectively solving the multi-frequency
excitation problems.

• Validating the method with existing numerical techniques.

2. To evaluate the stability of the model when it experiences multi-disk rub-impact by:

• Investigating the different steady-state rotor motions observed in the model.

• Studying the different bifurcations noticed in the model when it undergoes multi-
disk rub-impact.

3. To study the effects of parameter variations on the dynamic characteristics of the model
by:
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• Varying the coefficient of friction and the rotor-stator contact stiffness.

• Introducing the squeeze film damper to the dynamic model and varying the
squeeze film clearance and oil viscosity.

1.5 Contributions of thesis

The major contributions of this thesis can be summarized as follows,

1. The importance of multi-disk rub-impact studies over single-disk rub-impact studies is
well stated in this work. The comparison is performed using a two-spool aero-engine
model similar to the CFM56-5B engine. This is the main contribution of the thesis,
and there aren’t any studies in the literature that analyze the multi-disk rub-impact
in the aero-engine models. The proposed model reduction and solution techniques
are utilized for this analysis and present the response and stability of the aero-engine
model using different post-processing techniques.

2. A modified model reduction technique is developed to reduce the models having
asymmetric global matrices. It is a generalized method that can be applied to all
mechanical models. In this technique, the reduction is carried out using a method of
quadratic eigenvalue decomposition, and it is validated with the existing results. The
proposed technique is efficient in terms of accuracy and solution time. As a result, it
is applied to reduce the aero-engine dual-rotor model consisting of skew-symmetric
gyroscopic matrices.

3. An approximate TVM is introduced to solve the multi-frequency excitation problems.
It is developed by transforming the multi-frequency excitation problem into a single-
frequency excitation by expressing the frequencies in terms of their common divisor.
An optimization procedure is also incorporated to minimize the error between the
actual and approximated frequency ratios. The proposed ATVM technique is used
to solve the aero-engine dual-rotor model undergoing multi-frequency excitations.
The method accurately captures the model response when it undergoes multi-disk
rub-impact.

4. The procedures for evaluating the stability and bifurcation nature of mechanical models
are described using the ATVM. It is performed by determining the Floquet exponents
of the perturbed model. The main advantage of this procedure is that it calculates
the stability of the model along with the continuation technique, thereby reducing the
evaluation time.
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5. A parametric analysis is carried out to understand the effects of rub parameters on
the multi-disk rub-impact. The parameters such as rotor-stator friction coefficient
and contact stiffness are varied to study their impact on the stability of the aero-
engine model. It is observed that the values of rub parameters significantly influence
the stability of the model and lead to different kinds of bifurcations in the response.
Moreover, the onset of quasi-periodic response and dry whip is dependent on the values
of rub parameters.

6. A squeeze film damper is also incorporated into the aero-engine model to understand
its influence on the multi-disk rub-impact. It is attached to a bearing near the fan disk,
and it significantly reduces the vibration amplitudes of the engine fan. In addition,
the effects of SFD parameters on multi-disk rub-impact are also determined. The
parameters such as oil viscosity and SFD clearance are used for the analysis.

1.6 Organization of thesis

The thesis is organized as follows. After the introduction, Chapter 2 explains the methodology
formulation in which the modified model reduction technique and the approximate TVM are
described in detail. Moreover, the implementation of the hyper-sphere-based continuation
technique and the stability theory are also discussed. In Chapter 3, the proposed model
reduction technique and the ATVM are validated. Three different mechanical models are
considered for the demonstration of the ATVM, while a Nelson and McVaugh (1976) rotor
model is used to verify the model reduction technique. In Chapter 4, the proposed numerical
methodology is applied in a simplified dual-rotor model to obtain steady-state, periodic
responses under single-disk rub-impact. The model stability is also assessed, and the
bifurcation types are determined. Chapter 5 provides the nonlinear dynamic responses of an
aero-engine dual-rotor model under multi-disk rub-impact. The model consists of multi-stage
compressors and single-stage turbines that undergo rubbing whenever their deflection exceeds
the clearance. The frequency response, stability, and parametric analyses are performed to
understand the significance of multi-disk rub-impact studies. In Chapter 6, the influence of
SFD on the multi-disk rub-impact responses of the aero-engine model is investigated for
different values of the SFD parameters. Finally, Chapter 7 summarizes the work and gives
directions for future work.





Chapter 2

Formulation of Modified Model
Reduction Technique & Approximate
Time Variational Method

This chapter is mainly intended to formulate a modified model reduction technique and
an approximate time variational method for obtaining the response characteristics of an
aero-engine model. This is the main contribution of the thesis that makes the solution process
efficient. The proposed model reduction technique can handle the models having asymmetric
global matrices; hence, it can be used in the applications of rotor systems. The proposed
ATVM can be employed to analyse multi-frequency excitation problems in the time domain,
thereby reducing the effort of programming.

To carry out the analysis, an aero-engine model similar to CFM 56-5B engine is utilized
and its schematic diagram is shown in Fig. 2.1. The CFM 56-5B engine comprises a
sophisticated rotordynamic structure consisting of multi-stage bladed disks, hollow & conical
shafts, thin-walled casing, rolling contact bearings, and dampers (CFMI (2000)). It consists
of two rotors, namely low-pressure and high-pressure rotors which operate at two different
speeds. The two rotors are connected using an inter-shaft bearing, which leads to the
coupling of the dynamics of both rotors. The low-pressure rotor has a heavy fan, a four-stage
compressor, and a four-stage turbine supported on three bearings, whereas the high-pressure
rotor has a nine-stage compressor and a single-stage turbine supported on two bearings as
shown in Fig. 2.1. However, in the present work, a single-stage turbine is considered at the
low-pressure side according to the article by Jin et al. (2019). The dynamic modelling of
the dual-rotor model is carried out using the FE method in which the shafts are discretized
using the Timoshenko beam elements, including rotary inertia, shear factor, and gyroscopic
effects. Based on the section type, cylindrical and conical beam elements are used for the FE
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modelling. The dynamic equations of an aero-engine rotor model undergoing multi-frequency
excitation can be formulated in the FE method as,

Mq̈+Cq̇+G(ω1,ω2) q̇+Kq+Fnl(q, q̇, t) = F (ω1,ω2, ...,ωn, t) (2.1)

where ω1,ω2..,ωn are the excitation frequencies that may be fractional multiples of each
other; out of which ω1 and ω2 constitute the rotating speeds of low-pressure and high-
pressure rotors respectively. The other excitation frequencies may be due to aerodynamic
excitations and engine vibrations. M, C, G, and K represent the mass, damping, gyroscopic,
and stiffness matrices of size N ×N. The mass matrix M is symmetric, while the damping
matrix C may be symmetric or asymmetric depending upon the components of the model.
The gyroscopic matrix G is always skew-symmetric, which includes the gyroscopic effects of
the shaft as well as disk. In a dual-rotor model, the gyroscopic matrix is always a function of
low-pressure and high-pressure rotor speeds ω1 and ω2. The stiffness matrix K is symmetric
or asymmetric, depending upon the type of problem and material model. The vector q is
of size N×1, representing the displacement vector while Fnl and F represent the nonlinear
and external force vectors respectively. q̇ and q̈ are the first and second derivatives of q
with respect to time t. Equation 2.1 constitutes a multi-frequency excitation problem that is
common in the engineering systems such as electronic circuits, vehicle suspensions, gears,
and multi-spool gas turbine engines.

Fig. 2.1 The schematic diagram of a CFM 56-5B aero-engine model(CFMI (2000))
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Figure 2.2 shows the flow chart of the present work. Once the FE modelling of the dual-
rotor model is completed, a modified model reduction technique is introduced to reduce the
size of the FE model. The proposed method is developed based on the quadratic eigenvalue
decomposition, and it is validated using the existing numerical results. Later, the response
characteristics of the model under multi-disk rub-impact are determined using the ATVM,
whose performance is initially verified using existing numerical methods. The analyses
such as modal, unbalance response, single-disk rub-impact and multi-disk rub-impact are
performed to understand the dynamic characteristics of the aero-engine model. The post-
processing of results is carried out using different tools such as Campbell diagrams, frequency
response diagrams, orbit plots, FFT spectra and Poincaré maps. It can provide a clear picture
of the aero-engine response characteristics under multi-disk rub-impact scenarios occurring
due to FBO events.

Fig. 2.2 Flow chart of the present work
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2.1 Modified model reduction technique

In the majority of the mechanical systems, the nonlinearities are localized. Hence, it won’t
be advisable to use the nonlinear solution technique to all the DOFs, as it increases the
computational expense and complexity of the solution process. In the proposed technique,
the CMS method is employed for the model reduction in which the model is divided into two
components, namely primary and secondary components (Krishna and Padmanabhan (2011)).
The primary component consists of all the DOFs where the nonlinearity comes, whereas the
secondary component includes all the remaining DOFs. During the reduction process, the
secondary component is reduced using the Craig-Bampton substructuring technique (Craig Jr
and Bampton (1968)), while the primary component is kept as it is. However, the Craig-
Bampton substructuring becomes inefficient when the global matrices are asymmetric in
nature. In such cases, the diagonalization of the global matrices using modal transformation
won’t work, resulting in an inefficient reduction process. The CMS method is modified in
the proposed technique by utilizing the quadratic eigenvalue transformation that effectively
diagonalizes the global matrices when expressed in the state-space form. The equation of
motion for the secondary component is written as,

Ms q̈s +(Cs +ωGs) q̇s +Ks qs = Fs (2.2)

where subscript ‘s’ stands for the secondary component. The nonlinear term won’t be there
in the governing equations of the secondary component since it contains the linear nodes
only. Unlike the existing reduction techniques, the complete damped equation of motion in
its state-space form is utilized to perform the reduction procedure. It is written as follows,[
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]{
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}
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{
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0
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(2.3)

According to the Craig-Bampton substructuring (Craig Jr and Bampton (1968)), the dis-
placement vector in Eq. 2.3 is partitioned into the interior and boundary coordinates. The
associated state vector is expressed as,
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where qi
s is the interior coordinate and qb

s is the boundary coordinate.
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For further simplicity of derivation, the state vector h is transformed using the relation,

hs = T us (2.5)

where

T =


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I
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 (2.6)

Equation 2.5 is substituted in Eq. 2.3 and pre-multiplied with the transpose of transformation
matrix, T to obtain the first order component equation as,
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Now, Eq. 2.7 can be re-written as,[
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}
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(2.8)

Subsequently, the state vector in Eq. 2.8 is transformed into a new set of coordinates using
the relation given below. {

ui
s

ub
s

}
=

[
ΦΦΦR ΨΨΨ

000 III

]{
qmod

ub
s

}
= VR zs (2.9)

The associated left transformation matrix is written as,

VL =

[
ΦΦΦL ΨΨΨ

000 III

]
(2.10)

where ΦΦΦR and ΦΦΦL are the retained right and left modal matrices and qmod is the retained
modal coordinate such that,

ΦΦΦ
T
L Aii

s ΦΦΦR = D

ΦΦΦ
T
L Bii

s ΦΦΦR =−ΛD
(2.11)

where D is the diagonal matrix of normalization constants and Λ is the diagonal matrix
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of retained eigenvalues, both are of size m×m. The number of retained modes is selected
based on the convergence study. The value of m is far less than the total DOF of the model,
facilitating the model reduction. ΨΨΨ is the constraint mode function which is determined using
the relation,

ΨΨΨ =

[
−(Kii

s )
−1Kib

s 0
0 −(Kii

s )
−1Kib

s

]
(2.12)

The substitution of Eq. 2.9 into Eq. 2.8 and pre-multiplying with the transpose of VL yields
the reduced equation of the secondary component as,

Ps żs +Qs zs = Ls (2.13)

where

Ps =
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}
(2.14)

The size of the reduced secondary component is equal to the sum of the number of retained
normal modes and twice the number of the boundary coordinates (i.e. Ns = m+2nb). It is
very small compared to that of the complete model. For the primary component, all the DOFs
are retained in physical coordinates due to the presence of nonlinearity. The state-space form
of the primary component is written as,[
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(2.15)

The state vector in the Eq. 2.15 is transformed as in Eq. 2.5 and pre-multiplied with the
transpose of T to get the equation of motion as,[
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(2.16)

In order to keep the component mode procedure the same as that of the secondary component,
an identity matrix transformation is used instead of VR and VL, leading to the governing
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equation of the primary component as,

Pp żp +Qp zp +Enl p = Lp (2.17)

Finally, the reduced dynamic equations of the model can be obtained by assembling Eq. 2.13
and Eq. 2.17 and can be written as,

Pż+Qz+Enl = L(ω1,ω2, ...,ωn, t) (2.18)

The total DOF of the reduced model expressed in Eq. 2.18 is Nr = Ns +(Np − 2ns.nnod),
where Ns is the DOF of the reduced secondary component, Np is the DOF of the primary
component, ns is the number of secondary components and nnod is the nodal DOF. It should
be noted that the value of Nr is very much less than that of the total DOF. The use of the state-
space form of the governing equation and the quadratic eigenvalue transformation facilitates
the efficient reduction of the models containing asymmetric global matrices, especially in
rotordynamic systems.

2.2 Solution techniques

As mentioned earlier, multi-frequency excitation problems are common in specific mechanical
systems such as articulated loading platforms, vehicle suspensions, gears, and multi-spool gas
turbine engines. The model response becomes very complex when the ratios of the excitation
frequencies are fractional, besides the existence of localized nonlinearities. Generally, the
time integration methods are used for solving the nonlinear systems undergoing multi-
frequency excitations. However, the time integration methods are computationally expensive
and time-consuming since one has to wait until the attenuation of the transient to obtain
the steady-state response. As a result, semi-analytic techniques such as the multi-harmonic
balance method and time variational method are required to get the steady-state responses at
a faster rate.

2.2.1 Multi-harmonic balance method

The multi-harmonic balance method is an extension of the basic HBM in which the concept
of hyper-time is utilized. The main assumptions in generating the governing equations of the
MHBM are stated as follows.

• Since there are ‘n’ excitation frequencies, the hyper-time is n-dimensional, and the
solution is supposed to be periodic for each dimension.
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• The response vector, external force vector and the nonlinear function are assumed to
contain the linear combinations of excitation frequencies. Hence, they all are expressed
in a similar form in the governing equations.

• The Fourier coefficients are assumed to be constant numbers.

As a result, the response vector, external force vector and the nonlinear function are expressed
as a truncated Fourier series (Sun et al. (2016)) as given,

z(t) =
Nh

∑
i1=−Nh

..
Nh

∑
in=−Nh

[ai1..in cos(i1ω1 + ..+ inωn)t +bi1..in sin(i1ω1 + ..+ inωn)t] (2.19)

Enl(t) =
Nh

∑
i1=−Nh

..
Nh

∑
in=−Nh

[ci1..in cos(i1ω1 + ..+ inωn)t +di1..in sin(i1ω1 + ..+ inωn)t] (2.20)

L(t) =
Nh

∑
i1=−Nh

..
Nh

∑
in=−Nh

[ei1..in cos(i1ω1 + ..+ inωn)t + fi1..in sin(i1ω1 + ..+ inωn)t] (2.21)

where Nh represents the number of harmonics selected for the analysis. (ai1..in ,bi1..in),
(ci1..in ,di1..in) and (ei1..in , fi1..in) are the Fourier coefficients of the response, nonlinear force
and external force vectors respectively. By substituting these equations in the governing
equation of the reduced model and applying the Galerkin procedure, the algebraic expression
for the residual can be obtained as,

R(z̃) = Y z̃+ ẽnl − f̃ (2.22)

where ẽnl and f̃ are the vectors containing the Fourier coefficients of the nonlinear force and
external force of size 2Nt ×1 in which Nt = (2Nh +1)n. The matrix Y can be expressed as,

Y =



Y0 0 · · · 0 0 0
0 Y1 · · · 0 0 0
...

... . . . ...
...

...
0 0 · · · Yk 0 0
...

... . . . . . .
. . . ...

0 0 · · · 0 . . . YNt


Yk =

[
Q P(i1ω1 + ..+ inωn)

−P(i1ω1 + ..+ inωn) Q

]

(2.23)
Equation 2.22 can be solved using the Newton-Raphson method. The initial value of z̃ is
determined by neglecting the nonlinear term and performing the linear response analysis
alone. The obtained linear solution will be in the frequency domain, which is transformed
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into the time domain using the inverse FFT. Later, the nonlinear function is calculated by
substituting the linear solution into the nonlinear equation. Then, the corresponding nonlinear
vector is calculated in the frequency domain using the direct FFT. It indicates that an alternate
transformation between the frequency and time domains is always required to calculate the
nonlinear vector ẽnl in Eq. 2.22. A similar procedure is required to calculate the nonlinear
Jacobian as well. Generally, an AFT technique is employed to perform the transformation
between the frequency and time domains. However, the AFT technique has limitations
when dealing with more than two-frequency excitation problems. In such problems, the
AFT procedure becomes cumbersome since it involves complex matrix operations while
calculating the higher dimensional FFT. This limitation of the AFT technique makes the
MHBM technique complicated in more than two-frequency excitation problems.

2.2.2 Approximate time variational method

The TVM is a periodic solution methodology generally employed to solve single excitation
problems (Krishna and Padmanabhan (2011)). However, in a multi-frequency excitation
problem such as in aero-engines, the TVM becomes ineffective when the frequency ratios are
fractional or irrational multiples of each other. In such situations, the TVM can be extended
to the multi-frequency excitation problems by introducing an approximate time variational
method (ATVM). In this study, the ATVM is formulated by expressing the frequencies in
terms of a fundamental frequency that is the common divisor of the excitation frequencies.
In case the frequency ratio is irrational, it is approximated to the nearest rational number, and
then, the greatest common divisor of the approximated frequency components are obtained
as given,

ω0 =
ω̃ j

p j
, j = 1,2, ..,n p j ∈ N (2.24)

where ω̃ j is the approximated value of ω j obtained by approximating the irrational excitation
frequencies to rational ones. As a result, the response will be approximate, and its accuracy
is highly dependent on how close the approximated ratios are with the actual ones. An
optimization procedure can achieve the optimum frequency ratio that minimizes the error
between the actual and approximated responses. The objective function can be written as,

Minimize Zob j = ∑

∣∣r j − r̃ j
∣∣

r j
, j = 1,2, ..,n (2.25)

where r j and r̃ j are the actual and approximated values of the frequency ratios, such that
r j =

ω1
ω j

and r̃ j =
ω̃1
ω̃ j

= p1
p j

. p1, p2,...., pn are the integers that represent the decision variables
of the optimization. The constraint equation is written as,
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γmin < p j < γmax and p j ≥ 0, j = 1,2, ..,n (2.26)

where γmin and γmax are the integers chosen by the user. The stepwise procedure to implement
the optimization algorithm is explained as follows.

• Initially, the values of γmin and γmax are chosen based on the computation requirements.
They need to be integer numbers with values greater than zero.

• Different combinations of p j’s are determined by satisfying the constraint equations.

The values of p j’s are connected to each other using the expression, p j = round
(

p1
r j

)
where round ( ) is a function that rounds off the decimal points.

• The optimization is carried out by determining the global minima of the objective
function. The values of p j’s for which the objective function is minimum are used to
calculate the optimized frequency ratio.

Once the optimized frequency ratios are obtained, the greatest common divisor can be
calculated using Eq. 2.24. Now, the transformed form of Eq. 2.18 can be expressed as,

ω0 Pz′+Qz+Enl = L(τ) (2.27)

where z′ is the first derivative of z with respect to τ . Fortunately, Eq. 2.27 is equivalent to a
periodic, single excitation problem with a fundamental frequency ω0, and it can be solved
using the TVM. More information about the TVM can be obtained from the article by Rook
(2002). In this method, the response, nonlinear function, and external force vectors can be
expressed in terms of a basis function as follows,

z(τ) = Ẑ . χ(τ) Enl (τ) = Ênl . χ(τ) L(τ) = L̂ . χ(τ) (2.28)

where χ(τ) maybe a wavelet scaling function or a finite element shape function. This
approximation helps to discretize the periodic response function into several time points.
The discretized response function is determined using the Newton-Raphson method and the
complete analysis is performed in the time domain. In Eq. 2.28, Ẑ represents a matrix whose
ith row denotes the ith DOF value calculated at discrete time points. Its column size is equal
to the number of discrete time points Npt taken for the analysis. Similarly, L̂ and Ênl are the
external and nonlinear force matrices calculated at discrete time points respectively. The
substitution of Eq. 2.28 in Eq. 2.27 and then, applying the Galerkin method, a weak residual
form of Eq. 2.27 is obtained as,



2.2 Solution techniques 31

R(ẑ) =
[
ω0

(
P⊗D(1))+ (

Q⊗D(0))]ẑ+ (
I⊗D(0))(ênl − f̂

)
= 0 (2.29)

where ẑ = vec (ẐT
), ênl = vec (ÊT

nl) and f̂ = vec (L̂T
). vec ( ) is the vectorize operator that

stacks the columns of the matrix operated upon and ⊗ is the Kronecker product. D(0) and
D(1) are the differentiation matrices of order 0 and 1 respectively. Equation 2.29 is a set
of nonlinear algebraic equations of size Npt Nr and are solved using the Newton-Raphson
method. The modified method is called the approximate time variational method.

Fig. 2.3 A group of cubic splines translated to each other representing a basis function

The main step in the formulation of the ATVM is the determination of differentiation
matrices. It is mainly dependent on the type of basis function chosen for the analysis. A
cubic spline function has a good convergence rate compared to the other functions due to
the narrow banded structure of the differentiation matrices (Rook (2002)). A cubic spline
is a type of B-spline of order three which passes through a set of control points. Fig 2.3
shows a group of cubic splines that are translated to each other, together which represents the
basis function χ(τ). In Fig 2.3, χ1 is the representation of χ3,4 and the other splines are its
translated forms. The basis function of a B-spline can be written in general form as,

χi,k(τ) =
(τ − ti)χi,k−1

(ti+k−1 − ti)
+

(ti+k − τ)χi+1,k−1

ti+k − ti+1
(2.30)
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where ti’s are called knot values and are obtained as,

ti =


0 for i < k

i− k+1 for k ≤ i ≤ Np

Np − k+2 for i > Np

(2.31)

where i = 0 to Np + k. The value of k decides the spline type, whether it is linear, quadratic
or cubic. For cubic spline, the value of k is 4. Now, the differentiation matrices can be
determined as in Eq. 2.32.

D(0) =
1

2π

∫ 2π

0
χ(τ) .χT (τ)dτ

D(1) =
1

2π

∫ 2π

0
χ(τ) .χ(τ)′

T dτ

(2.32)

2.2.3 Parametric continuation

The presence of strong nonlinearities in the system leads to the occurrence of different
solution branches for a certain set of system parameters. The point at which the new solution
branches are originated is called the bifurcation point. A proper understanding of bifurcation
is essential in nonlinear dynamic analyses, and all the possible vibration regimes need to
be included in the design stages to avoid undesirable events. The occurrence of a particular
vibration regime is mainly dependent on the initial conditions of the system. Generally, a
continuation algorithm is employed for the tracing of solution branches by incorporating an
additional tracing equation in Eq. 2.29 as,

R1(ẑ,ω0) =

{
R(ẑ,ω0)

r(ẑ,ω0)

}
= 0 (2.33)

where r(ẑ,ω0) = 0 is the tracing equation which may take the form of arc-length continuation,
pseudo-arc-length continuation or hypersphere continuation (Krishna and Padmanabhan
(2011)). The tracing equation of the hyper-sphere based continuation algorithm is written as,

r(ẑ,ω0) = (ẑ2 − ẑ2
c)+(ω2

0 −ω
2
0c)− r̄2 = 0 (2.34)

where r̄ is the radius of the hypersphere, and the variables with subscript c are the previous
steady-state points representing the centre of the hypersphere. Now, the Newton-Raphson
equation can be expressed as,
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[
J Rω0
∂r
∂ ẑ

∂r
∂ω0

]{
∆ẑ

∆ω0

}
= J1(ẑ,ω0)

{
∆ẑ

∆ω0

}
=

{
R(ẑ,ω0)

r(ẑ,ω0)

}
(2.35)

where J = ∂R
∂ ẑ and Rω0 =

∂R
∂ω0

. The increments, determined using Eq. 2.35 are added to the
current solution point to obtain the future solution point and eventually, traces the complete
solution branch.

2.2.4 Stability theory

Once the complete solution branches are determined, it is necessary to assess the stability of
the solution points. It is achieved by introducing a small perturbation ε in the steady-state
solution point z∗ to obtain the modified equation as,

ω0 P (z∗+ ε)′+Q (z∗+ ε)+Enl(z∗+ ε) = L (2.36)

By linearizing the nonlinear force Enl around z∗ using the Taylor series expansion, Eq. 2.36
is changed as,

ω0 P (z∗+ ε)′+Q (z∗+ ε)+Enl(z∗)+
∂Enl(z∗)

∂z
ε = L (2.37)

Since z∗ is an equillibrium point,

ω0 P z∗
′
+Q z∗+Enl(z∗)−L = 0 (2.38)

Hence, the remaining perturbation equation is written as,

ω0 P ε
′+Q ε +

∂Enl(z∗)
∂z

ε = 0 (2.39)

According to the Floquet theory, ε(τ) = eλτφ(τ), where λ is the eigenvalue and φ(τ) is a
periodic function. By substituting the expression of ε(τ) and its derivatives into Eq. 2.39,
the modified equation is written as,{

[ω0 Pφ ]λ + [ω0 Pφ
′+Qφ +

∂Enl(z∗)
∂z

φ ]
}

eλτ = 0 (2.40)

Now, the periodic function φ(τ) is expressed in terms of the basis function as φ(τ)= Φ̂ . χ(τ).
Substitution of this expression into Eq. 2.40 and following the Galerkin procedure, an
eigenvalue problem is obtained as (Rook (2002)),
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(λΞ1 +Ξ0)Φ̂ = 0 where

Ξ1 = ω0
(
P⊗D(0))

Ξ0 = ω0
(
P⊗D(1))+ (

Q⊗D(0))+ (
I⊗D(0))∂ ênl

∂ ẑ

(2.41)

Even though, Eq. 2.41 provides NptNr eigenvalues, only Nr eigenvalues have physical
meaning. Hence, the first Nr eigenvalues with the smallest imaginary part can be calculated
instead of determining the complete set of eigenvalues. The system is stable when real parts
of the first Nr eigenvalues are negative, while it is unstable when at least one of them is
positive. The advantage of this method is that all the terms in Eq. 2.41 are determined during
each iteration of the continuation procedure. Hence, the stability analysis can be performed
along with the continuation procedure, which saves time.

2.3 Post-processing techniques

Once the results are obtained using the ATVM, the next step is to present them properly for
providing useful information to the readers. There are specific post-processing techniques
available to extract information from the numerical response and to present them in various
diagrams/plots. In this work, different techniques such as Campbell diagram, time response,
frequency response, orbit plot, FFT spectrum and Poincaré maps are used and are explained
as follows.

2.3.1 Campbell diagram

The Campbell diagrams are used to obtain the critical speeds of the rotor system by perform-
ing the modal analysis. Due to the presence of gyroscopic moments, the natural frequencies
of the rotor will vary with the rotating speed. The plot showing the variation of natural
frequency with respect to the rotating speed is called the Campbell diagram. The stepwise
procedure to plot the Campbell diagram is explained as follows.

• Initially, the eigenvalue analysis of the rotor model is performed using the expression
as given,

AI = λ I where A =

[
0 I

−M−1K −M−1(C+ωG)

]
(2.42)

In Eq. 2.42, the characteristic matrix A is a function of rotating speed ω .



2.3 Post-processing techniques 35

• Once the analysis is completed, the eigenvalues are obtained in the form of complex
numbers due to damping and gyroscopic terms. The imaginary part of the complex
eigenvalue gives the natural frequency of the model.

• Later, the natural frequency is plotted against the rotating speed to obtain the Camp-
bell diagram. The critical speeds are calculated by noting the intersection points of
frequency curves with the synchronous excitation line (1×).

2.3.2 Time response signal

The time response signals are used to present the variations in rotor responses with respect to
time. They provide the history of rotor motions during a period. Since the ATVM operates in
the time domain, the numerical responses are obtained directly as a function of time. When
they are plotted against time, the time response signals are received.

2.3.3 Frequency response diagram

The frequency response diagrams show the variations in rotor responses with respect to
the frequency. They provide complete information about the system resonances within the
operating range. To get the frequency response diagram, the rotating speed of the rotor is
varied between certain frequency limits and the steady-state response signals are obtained at
each frequency using the ATVM. Then, the maximum amplitude of the response signals is
recorded and plotted against the frequencies to obtain a frequency response diagram.

2.3.4 Orbit plot

The orbit plots are used to present the trajectories of the rotor during its operation. It shows
the whirling nature of the rotor within the clearance space. The direction of whirling, whether
it is forward or backward, can also be understood from the orbit plot. Through ATVM, the
rotor’s horizontal and vertical (X and Y) displacements are received in the time domain.
When they are plotted against each other, the orbit plots are obtained.

2.3.5 FFT spectrum

The FFT spectrum is used to understand the frequency contents in the response during its
operation. It is obtained by performing the FFT of the time signal recorded using the ATVM.
It is found that the FFT spectrum of a linear model always shows the excitation frequency
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components alone. However, the FFT spectrum of the nonlinear model may show the other
frequency components as well due to the nonlinearity.

2.3.6 Poincaré map

The Poincaré map is a collection of points obtained by storing a single point of the trajectory
onto the phase space for each cycle of motion, with consistent timing (Moon (2008)). It
helps to understand the type of motion, whether periodic or nonperiodic. If the Poincaré map
contains a single point, then the motion is said to be periodic. If it includes closed curves, the
motion is said to be quasi-periodic. Moreover, a fractal structure of points in the Poincaré
map indicates the occurrence of chaotic behaviour. The stepwise procedure to obtain the
Poincaré map from the numerical response is explained as follows.

• Initially, the rotor displacements and velocities are obtained in the time domain using
the ATVM.

• Later, the displacements and velocities are recorded as points in the phase space with a
consistent time gap. As a result, a plot showing the collection of points is received,
which is called the Poincaré map.

2.4 Summary

In this chapter, the different numerical methods required for the analysis of aero-engine
dual-rotor model are formulated for studying the multi-disk rub-impact. It involves the
introduction of a modified model reduction technique and a semi-analytic solution technique
called the approximate time variational method. The proposed reduction technique is based
on the CMS method coupled with the Craig-Bampton substructuring. Using the quadratic
eigenvalue decomposition, the proposed method can reduce the models having asymmetric
global matrices. The MHBM-AFT technique is the most commonly used solution technique
for the two-frequency excitation problem; however, it has limitations while dealing with more
than two-frequency excitation problems. In such scenarios, the proposed ATVM technique
will be useful that expresses the excitation frequencies in terms of a fundamental frequency
which is the common divisor of the approximated frequency components. The proposed
ATVM can capture the solution branches effectively even when the excitation frequency
components are incommensurable. It has to be validated by comparing the results with the
existing numerical methods, as discussed in the following chapter.



Chapter 3

Validation of Modified Model Reduction
Technique & Approximate Time
Variational Method

This chapter is mainly intended to validate the proposed model reduction technique and the
ATVM using the existing numerical methods. The accuracy of results and the computation
time are compared to evaluate the performances of the proposed methods. A Nelson and
McVaugh (1976) rotor model is used to verify the performance of the modified model
reduction technique, while three mechanical models are utilized for validating the ATVM.

3.1 Validation of the modified model reduction technique

Figure 3.1 shows the schematic diagram of a Nelson and McVaugh (1976) rotor model.
In their paper, Nelson and McVaugh (1976) modelled the shaft as a six-element member
with each element consisting of several sub-elements. A reduction technique based on
static condensation was used to reduce the internal displacements into the element endpoint
displacements. However, in the current work, in order to verify the proposed technique, the
rotor-bearing system is modelled with 18 elements (equal to the total number of sub-elements)
and are partitioned into primary and secondary components as shown in Fig. 3.2. The node
containing the disk and its adjacent nodes are included in the primary component, while the
remaining nodes are added to the secondary components.

The details of model reduction are given in Table 3.1. The complete model has a total
DOF of 76. In the reduced model, the primary component contains three nodes and are
kept in physical coordinates, whereas the secondary components are reduced using the
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Fig. 3.1 Schematic diagram of the Nelson and McVaugh (1976) rotor model

Fig. 3.2 Component mode partition of the Nelson and McVaugh (1976) rotor

Craig-Bampton substructuring. The Secondary 1 component has four nodes, and its interior
DOFs are reduced using the modal transformation, with the first two modes are retained.
The state-space form of the equation leads to 8 DOF in the boundary node resulting in 10
DOF at the Secondary 1 component against the actual DOF of 16. Similarly, the Secondary
2 component is reduced to 12 DOF against the actual DOF of 56. Finally, after assembling
the primary and secondary components, the total DOF of the reduced model is obtained as
30 which is less than 50% of that of the complete model.

Table 3.1 The details of model reduction applied to the Nelson & McVaugh rotor

System # of nodes Actual DOF Retained modes Physical DOF State-space DOF Total DOF
Complete model 19 76 0 76 – 76
Secondary 1 4 16 2 4 8 10
Primary 3 12 0 12 24 24
Secondary 2 14 56 4 4 8 12
Reduced model After Assembly 30

The Campbell diagram and the unbalance response of the given rotor-bearing model
is obtained using the proposed methodology, and it is compared with the results from the
paper of Nelson and McVaugh (1976) as shown in Fig. 3.3. The critical speeds are also
compared and are listed in Tab. 3.2. The average error between the present results and
the existing results are very small and they are in good agreement. For the reduced model,
the computation time to obtain the unbalance response is 20 seconds, while the full model
took 52 seconds. It indicates that the proposed model reduction technique is effective, and
computation time is reduced by 50% of that of the complete model.
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Table 3.2 Critical speed comparison: full and reduced models of Nelson & McVaugh rotor

Spin speed (rpm)
Whirl natural frequency (rpm)

Reduced model(30 DOF) Full model(76 DOF) Reference
Avg. error (%)

Forward Backward Forward Backward Forward Backward

0
16276 16276 16276 16276 16267 16267 0.055
49830 49830 49830 49830 48384 48384 2.98
76522 76522 76522 76522 76382 76382 0.183

70000
19795 12872 19795 12872 19838 12815 0.33
51960 47052 51960 47052 50555 45599 2.98
91296 64171 91284 64171 91320 63990 0.15

Fig. 3.3 Comparisons of the (a) Campbell and (b) unbalance response diagrams of the full
and reduced models of the Nelson and McVaugh (1976) rotor

3.2 Validation of the ATVM

In order to demonstrate the ATVM, three different mechanical models are considered for the
analysis. The first model consists of a spring-mass-damper system with cubic nonlinearity. It
is a single DOF model subjected to multi-frequency quasi-periodic excitations. The second
model consists of a cantilever beam undergoing bending vibrations with its tip motion
constrained by a nonlinear spring. This is a multi-DOF model, and its size is effectively
reduced using the model reduction technique. The beam is excited by a multi-frequency
force applied at a point from the fixed end. The third one is a dual-rotor model undergoing
rub-impact. It is an FE model subjected to two-frequency excitation. The parameters of this
model are taken from a reference article (Yang et al. (2016))) and its results are reproduced
using the ATVM. Utilizing the above-said models, the effectiveness of the ATVM is compared
with the existing solution methodologies such as numerical integration and the MHBM-AFT
technique.
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3.2.1 Spring-mass-damper model

A nonlinear spring-mass-damper model undergoing multi-frequency quasi-periodic excitation
is shown in Fig. 3.4. The model parameters are given in Table 3.3. In this model, three
different cases of external forcing functions are analyzed for showing the applicability of
the proposed method in the multiple-frequency excitation problems. Especially, the quasi-
periodic nature of the responses is analyzed by taking appropriate excitation frequency ratios.
The ratios of the excitation frequencies for the three cases can be expressed as given below,

Fig. 3.4 A spring-mass-damper model with a cubic nonlinearity subjected to the multi-
frequency excitation with their ratios are irrational numbers.

ω1

ω2
= π for case 1

ω1

ω2
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√
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(3.1)

Case 1 : Two-frequency excitation

An external excitation consisting of two frequencies, namely ω1 and ω2, are applied at the
mass centre. Its ratio is given in Eq. 3.1. In order to find the approximated frequency
components, the optimization procedure is carried out by taking γmin and γmax as 10 and 100.
As a result, the value of p1 is obtained as 22, for which the objective function is minimum.
Later, the value of p2 is calculated and it is obtained as 7. The optimized frequency ratios and
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Table 3.3 Properties of the spring-mass-damper model with a cubic nonlinearity

Properties Value

Mass (kg) M = 10
Damping (Ns/m) C = 20
Stiffness (N/m) K = 4000
Nonlinear function
Fnl = αx3 α = 10000
Excitation force
F = f1cos(ω1t)+ f2cos(ω2t) f1 = 1000, f2 = 1000,
F = f1cos(ω1t)+ f2cos(ω2t)+ f3cos(ω3t) f1 = 400, f2 = 500, f3 = 500
F = f1cos(ω1t)+ f2cos(ω2t)+ f3cos(ω3t)+ f4cos(ω4t) f1 = 100, f2 = 200, f3 = 200, f4 = 100

the greatest common divisor of the approximated frequency components can be written as,

r̃1 =
ω̃1

ω̃1
=

22
22

= 1 r̃2 =
ω̃1

ω̃2
=

22
7

= 3.1428 ≈ π ω0 =
ω̃1

22
=

ω̃2

7
(3.2)

Now, it can be assumed that the spring-mass-damper model is undergoing a periodic exci-
tation with fundamental frequency ω0. It is solved using the ATVM by taking Npt = 800.
The accuracy of the proposed method is validated by comparing its results with that of the
MHBM technique and numerical integration (NI), as shown in Fig. 3.5. The number of
harmonics taken for the MHBM-AFT technique is Nh = 5. Exact matching is obtained
between the results of the proposed ATVM and the existing methods. The analysis is carried
out using a Fujitsu CELSIUS R940 workstation with intel® Xeon® processor with a clock
speed of 2.20 GHz. The computation time taken to complete the analysis using the ATVM,
MHBM and NI (without continuation) techniques is 358, 105 and 132 seconds, respectively.
Even though the computation time is more for the ATVM, its easiness of employing the
method for the multi-DOF and multi-frequency excitation problems validates its usefulness.

The stability analysis of the model is performed using the theory as described in Sec. 2.2.4.
Figure 3.6 shows the stability diagram of the response in which the stable part is represented
using the continuous line, whereas the unstable part is represented using the dashed line. The
bifurcations appearing in the model are determined by monitoring the Floquet exponents.
The limit point (LP) and Neimark-Sacker (NS) bifurcations are observed in the response, and
they are represented using the circle and triangle markers respectively in Fig. 3.6. Figure 3.7
shows the Floquet exponents in the vicinity of LP and NS bifurcations. As in Fig. 3.7a, an
LP bifurcation is detected when at least one of the Floquet exponents crosses the imaginary
axis along the real axis of the complex plane, whereas the NS bifurcation is identified when
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Fig. 3.5 Validation of the ATVM technique with the MHBM and numerical integration for
the two-frequency quasi-periodic excitation problem. Exact matching is obtained between
the proposed ATVM and the existing methods.

Fig. 3.6 Stability diagram of the two-frequency excitation problem showing the LP and NS
bifurcations represented by circle and triangle markers, respectively.
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a pair of Floquet exponents crosses the imaginary axis as a pair of complex conjugates as in
Fig. 3.7b.

(a) LP at ω = 39.94 rad/s (b) NS at ω = 34.42 rad/s

Fig. 3.7 Floquet exponents in the vicinity of (a) LP and (b) NS bifurcations (for two-frequency
excitation problem)

The LP bifurcation indicates a sudden jumping phenomenon in which a jump-down
occurs during the run-up and a jump-up occurs during run-down, respectively. Generally,
the NS bifurcation represents a transition from the periodic regime to the quasi-periodic
regime. However, in the case of quasi-periodic excitation problems, the response is already
quasi-periodic. Hence, in this study, the NS bifurcation represents a transition from one
quasi-periodic to another quasi-periodic regime. The proposed ATVM technique cannot
capture the quasi-periodic branches; hence it can be generated using numerical integration.

More information can be acquired by analyzing the Poincaré maps and FFT diagrams of
the motions before and after the NS bifurcation, as shown in Fig. 3.8. Since the Poincaré
maps of both motions are closed curves, the motions are said to be quasi-periodic. Now,
the FFT of the responses are analyzed to determine the frequency contents. It is found
that the motion before the NS bifurcation contains the frequency components that are the
linear combinations of the excitation frequencies. Hence, this kind of motion is predictable
using the current solution method. However, the motion after the NS bifurcation includes
certain frequency components that aren’t known before the methodology formulation, such
as 0.614ω1, 0.659ω1 and 0.704ω1. The determination of such a quasi-periodic branch is
difficult using the proposed method since the frequency components are unknown initially.
However, the main advantage of the proposed method is that it can detect the onset points of
the quasi-periodic branches accurately with less computation time than numerical integration,
especially for the MDOF models.
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(a) (b)

Fig. 3.8 Poincaré map and FFT spectra of the responses (a) before and (b) after NS bifurcation
for two-frequency excitation problem (obtained using numerical integration). Both the
responses are quasi-periodic in nature; however, some of the frequency components are a
priori unknown in the responses after NS bifurcation.

Case 2 : Three-frequency excitation

In order to validate the effectiveness of the ATVM in more than two-frequency excitation
problems, a three-frequency excitation is applied at the mass centre with a ratio as given in
Eq. 3.1. During the optimization procedure, the values of γmin and γmax are taken as 10 and
100. After the calculation, the value of p1 is obtained as 68. Later, the value of p2 and p3 are
found as 48 and 25 respectively. Since the excitation frequencies are expressed as the large
multiples of ω0, more time points are required to approximate the time response. Hence, for
the ATVM, the number of discrete time points Npt is taken as 1000. Now, r̃ j’s and ω0 can be
expressed as,

r̃1 =
ω̃1

ω̃1
=

68
68

= 1 r̃2 =
ω̃1

ω̃2
=

68
48
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√

2

r̃3 =
ω̃1

ω̃3
=

68
25

= 2.72 ≈ e ω0 =
ω̃1

68
=

ω̃2

48
=

ω̃3

25

(3.3)
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The frequency response of the model undergoing three-frequency quasi-periodic excitation
is shown in Fig. 3.9. In the case of the MHBM technique, the AFT method becomes
cumbersome since calculating the three-dimensional FFT matrix is time-consuming. Hence,
the results are compared with numerical integration (without continuation). Figure 3.9 shows
the validation of the ATVM results with the numerical integration, and an excellent agreement
is obtained. The stability analysis is also performed along with the parametric continuation,
and the diagram is shown in Fig. 3.10. As seen in the previous section, an LP bifurcation is
observed in the response, indicating the sudden jumping phenomenon. Since the number of
time points Npt is increased, the computation time is also increased to 872 seconds leading to
a slower solution process for the three-frequency excitation problem.

Fig. 3.9 Validation of the ATVM technique
with numerical integration for the three-
frequency quasi-periodic excitation.

Fig. 3.10 Stability diagram of the three-
frequency excitation problem showing the
LP bifurcation.

Case 3 : Four-frequency excitation

In this case, the spring-mass-damper model is subjected to four-frequency excitation with
their ratios as given in Eq. 3.1. The values of γmin and γmax are taken as 10 and 100. Hence,
the values of p1, p2, p3 and p4 are obtained as 95, 55, 35 and 67 respectively. Now, the
optimized frequency ratios and the greatest common divisor can be written as,
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46
Validation of Modified Model Reduction Technique & Approximate Time Variational

Method

The response curve is plotted using the ATVM technique by taking Npt = 2000. The
variation in the response with respect to nonlinear stiffness is also shown in Fig. 3.11. It is
noticed that as the value of nonlinear stiffness increases, the forward-leaning of the response
curve is increased, which is captured by the ATVM technique. The number of time points
required for the analysis is also increased, which in turn increases the computation time.
However, the formulation of the ATVM technique is simple compared to the MHBM-AFT,
and the performance is good compared to numerical integration. From the above analysis,
the effectiveness of the ATVM in multi-frequency quasi-periodic excitation problems is
validated, though the results are approximate.

Fig. 3.11 Variations in the nonlinear responses of a four-frequency excitation problem for
different values of α

3.2.2 Cantilever beam supported by nonlinear spring

The majority of the engineering systems are treated as continuous systems while studying
their dynamical behaviour. Such continuous systems are modelled using finite element
formulations that discretize them into finite DOF models. Generally, suitable model reduction
techniques are employed for reducing their model size. To understand the effectiveness of the
ATVM in analyzing the reduced models, a cantilever beam with a nonlinear spring is studied
as shown in Fig. 3.12. It is a multi-DOF model undergoing multi-frequency excitation.
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Fig. 3.12 Cantilever beam with a nonlinear spring undergoing bending vibrations

Table 3.4 Properties of the beam bending model

Properties
Density (kg/m3) 2700
Young’s Modulus (GPa) 69
Cross section (mm × mm) 48 × 3
Length of beam (L) (mm) 370
Distance of excited point from fixed end (L1) (mm) 74
DOF per node 2
Number of Elements 10
Rayleigh damping coefficient (mass) 2.45
Rayleigh damping coefficient (Stiffness) 1.75 × 10−3

Nonlinear force α = 1300800×10, α = 1300800×20
Fnl= αy3 α = 1300800×30, α = 1300800×40
External force, f1 = 6, f2 = 10
F= f1cos(ω1t)+ f2sin(ω2t)+ f3sin(ω3t)+ f4cos(ω4t) f3 = 6, f4 = 10

A four-frequency excitation is applied on the beam to determine its responses at the free
end. The excitation frequencies are related to each other as follows,

ω2

ω1
= 0.7,

ω3

ω1
= 1.8,

ω4

ω1
= 0.3 (3.5)

The properties of the beam are reported in Table 3.4. The beam model is discretized into
finite elements, and later, its size is reduced using the proposed model reduction technique.
However, the system equations aren’t converted into the state-space form since all the
matrices are symmetric in nature. Figure 3.13 shows the component mode partition of the
beam, and Table 3.5 gives the details of the model reduction. The approximated excitation
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frequency components are given below,
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Fig. 3.13 Component mode partition of the beam model

Table 3.5 The details of model reduction of beam bending model

System
No. of
nodes

Actual
DOF

Retained
modes

Physical
DOF

Total
DOF

Complete model 10 20 0 20 20
Primary 2 4 0 4 4
Secondary 9 18 2 2 4
Assembled model After component mode synthesis 6

In the model reduction technique, the number of retained modes for the secondary
component is taken as 2. It is chosen based on a convergence study. Since the response near
the first mode is mainly analyzed, increasing the number of modes beyond two does not
affect the model response. The stiffness of the clamped-pinned beam (α = 1300800) is taken
as the base nonlinear stiffness of the spring, and its multiples are taken for the study. To show
the effectiveness of the model reduction technique, frequency responses of the full model
and the reduced model are compared for α = 1300800×20. The comparison plot is shown
in Fig. 3.14 and a good agreement is obtained.

The response curves of the reduced model for different values of nonlinear stiffnesses
are shown in Fig. 3.15. It is observed that the forward-leaning of the response curves is
increased as the values of nonlinear stiffness are increased. Table 3.6 gives the number of
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Fig. 3.14 Comparison of the responses of the reduced and full models of the cantilever beam
(α = 1300800×20)

Fig. 3.15 The response curves of the reduced beam model for different values of nonlinear
stiffnesses
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time points required for obtaining each response along with the solution time consumed. It
is seen that the number of time points is increased as the values of nonlinear stiffness are
increased. This is because, as the model becomes more nonlinear, a large number of time
points are required to capture the complete response signal. As a result, the size of governing
equations (Npt Nr) is also increased, thereby increasing the solution time.

Table 3.6 Time points and solution time consumed for beam bending model

Nonlinear stiffness
α

No. of time points
Np

Solution time
(sec)

α = 1300800×00 75 2.3
α = 1300800×10 400 2572
α = 1300800×20 800 13672
α = 1300800×30 900 20053
α = 1300800×40 1200 30125

3.2.3 Simplified dual-rotor model undergoing rub-impact

In order to validate the proposed ATVM with existing numerical/experimental results, a dual-
rotor model from the article of Yang et al. (2016) is analyzed. The details of model parameters
are given in the article. The Timoshenko beam elements are utilized for developing the
FE models of the low-pressure and high-pressure shafts. A fixed elastic limiter is used
as the stator representing the convex protuberance on the casing. The disk and the fixed
limiter are applied with softer coatings and several local contacts happen during the orbital
motion. Hence, a Lankarani–Nikravesh model is employed to obtain the contact force
generated between the rotor disk and the fixed limiter. In literature, Yang et al. (2016) used
the numerical integration technique to acquire the rubbing response, whereas, in the present
study, the ATVM is utilized. As a result, the computation time is significantly reduced since
the ATVM provides the steady-state response directly.

Initially, the unbalance response of the model without rub-impact is studied. Figure 3.16 &
3.17 show the comparison of the results of the present study with the numerical/experimental
results from the article of Yang et al. (2016). From Fig. 3.16 & 3.17, it is clear that the results
of the present study are well-matched with numerical/ experimental results. Once rub-impact
happens, the model response becomes nonlinear and different combinations of excitation
frequencies can be seen in the frequency spectrum. Figure 3.18 shows the comparison of
the frequency spectra obtained from the present study and the reference article. A clear
agreement is obtained between both results. However, a slight variation is observed with the
experimental results. The frequency dispersion that is observed in the experimental result is
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not obtained in the numerical results. Still, the amplitudes and frequencies of both results
have good matching.

(a) (b)

Fig. 3.16 Vertical vibration of the low-pressure compressor disk at ω1 = 216.8 rad/s and
speed ratio = 1.2 (a) present study (b) numerical study from the article of Yang et al. (2016)

(a) (b)

Fig. 3.17 Vertical vibration of the the low-pressure compressor disk at ω1 = 252.6 rad/s &
ω2 = 301.2 rad/s (a) present study (b) experiment from the article of Yang et al. (2016)

The current analysis validates the use of the ATVM in the multi-DOF systems undergoing
multi-frequency excitations. Now, the proposed technique needs to be applied in the stability
analysis of rotor systems which will be explained in the following chapter.
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(a) (b) (c)

Fig. 3.18 Frequency spectra of the low-pressure compressor disk at ω1 = 184.1 rad/s after
rub-impact (a) present study (b) numerical study from the article of Yang et al. (2016) (c)
experimental study from the article of Yang et al. (2016)

3.3 Summary

In this chapter, the validations of the proposed model reduction technique and the ATVM
are carried out using the existing numerical methods. A Nelson and McVaugh (1976) rotor
model is used to verify the efficiency of the model reduction technique. It is observed that
the computation time for the reduced model is decreased by 50% of that of the complete
model with the results exactly matching to each other, underlining the efficiency of the
reduction technique. The ATVM technique is validated using three nonlinear mechanical
models, and the results are compared with that of the MHBM-AFT and numerical integration
techniques. The results are exactly matching when proper approximated frequency ratios are
taken after the optimization procedure. However, the time taken for obtaining the solution
is large for the ATVM compared to the MHBM-AFT technique, and it increases with the
extent of nonlinearity. But, the easiness of the ATVM in extending the analysis beyond
two-frequency excitation problems validates its usefulness. Compared to the numerical
integration technique, the ATVM determines the solution fastly, especially for the multi-DOF
systems undergoing multi-frequency excitations.



Chapter 4

Stability of a simplified dual-rotor
undergoing single-disk rub-impact

This chapter is mainly intended to perform the stability analysis of a simplified dual-rotor
model undergoing a single-disk rub-impact. Mainly, the bifurcations occurring in the model
are investigated using the proposed numerical procedure. It detects the onset points of the
bifurcations at a faster rate compared to the existing numerical techniques. This is the main
contribution of the work. The dual-rotor model is composed of a pair of co-axial rotors that
are connected together using an inter-shaft bearing. In this model, the compressor and turbine
units are simplified as four rigid disks without incorporating the blades. There are two modes
of rotor operations possible in a dual-rotor model: co-rotation in which both the rotors spin
in the same direction and counter-rotation in which one rotor spins in the opposite direction
to the other. The effects of co-rotation and counter-rotation on the response behaviour must
be investigated in detail.

4.1 Mechanical model of simplified dual-rotor

Figure 4.1 shows the schematic diagram of a simplified dual-rotor model. The inner rotor is
made up of a long and slender shaft supported at the ends using two isotropic bearings. In
contrast, the outer rotor consists of a hollow shaft whose one end is connected to the frame
through an isotropic bearing while the other end is connected to the inner rotor through an
inter-shaft bearing. The presence of inter-shaft bearing couples the rotor vibrations and leads
to combined harmonic responses. The outer rotor is spinning at a speed that is 1.2 times
the speed of the inner rotor (speed ratio κ = 1.2). The following assumptions are made to
perform the nonlinear dynamic analysis,
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1. All the bearings are modelled using linear springs and viscous dampers.

2. All the disks are rigid and are represented using lumped masses with symmetric
moments of inertias in the XY plane.

3. No coatings are applied on the casing and disk surfaces

4. The axial and torsional vibrations are small, hence ignored.

Fig. 4.1 The schematic diagram of a simplified dual-rotor model (Friswell et al. (2010))

Table 4.1 and 4.2 give the details of the bearings and disks used in the model. The
complete rotor model is cyclically symmetric with the elastic modulus as 207 GPa, the
Poisson’s ratio as 0.3, and the mass density as 8300 kg/m3. The geometric properties of the
shafts are given in Table 4.3. Disk 1 and 3 have mass unbalances of magnitude 0.0001 kgm
each that forces the rotors to whirl during their operation.

Table 4.1 Properties of the isotropic bearings used in the dual-rotor (Friswell et al. (2010))

Properties
Bearing

1 2 3 Inter-shaft
Stiffness (N/m) 52×106 36×106 36×106 9×106

Damping (Ns/m) 100 100 100 100
Distance from left end bearing (m) 0 0.508 0.152 0.406

Table 4.2 Properties of the disks used in the dual-rotor (Friswell et al. (2010))

Properties
Disk

1 2 3 4
Mass (kg) 10.5 7.0 7.0 3.5
Polar inertia (kgm2) 0.086 0.068 0.042 0.026
Diametral inertia (kgm2) 0.043 0.034 0.021 0.013
Distance from left end bearing (m) 0.076 0.457 0.203 0.356
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Table 4.3 Geometric properties of the shafts used in the dual-rotor (Friswell et al. (2010))

Shaft Length (m) Inner Dia (m) Outer dia (m)
Outer Shaft 0.254 0.05 0.06
Inner Shaft 0.508 0 0.03

The schematic diagram of the rub-impact is shown in Fig. 4.2. The stator is assumed as a
rigid ring with its centre at ‘O’. The XY coordinates are fixed at the stator centre, pointing
to horizontal and vertical directions. The geometric centre of the rotor is located at ‘o’ that
coincides with the stator centre at rest. The mass centre of the rotor is located at a distance
‘e’ from the geometric centre, generating an unbalance force during its operation. As a result,
the rotor whirls with an amplitude ‘r’ as shown in Fig. 4.2.

Fig. 4.2 Schematic diagram of the rub-impact model. Rotor-stator contact happens whenever
the rotor displacement exceeds the clearance. As a result, a normal and tangential force acts
on the rotor at the contact point (Jiang (2007)).

When the whirling amplitude of the rotor exceeds the clearance δ , disk 2 impacts the
stator. During the contact, a normal ( fn) and tangential ( ft) force acts on the rotor at the
contact point, as shown in Fig. 4.2. They are determined using a piecewise contact modelling
strategy as given,

fn =

0 for r < δ

kc(r−δ ) for r ≥ δ

; ft = µ fn (4.1)
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where kc is the rotor-stator contact stiffness and µ is the coefficient of friction. The friction at
the contact interface is modelled according to Coulomb’s frictional law without considering
the thermal effect and the material removal. Now, the normal and tangential forces are
resolved along the X and Y directions as given (Jiang (2009)),

fnx = Θkc

[
1− δ

r

]
(x−µ sign(vrel) y)

fny = Θkc

[
1− δ

r

]
(µ sign(vrel) x+ y)

(4.2)

where vrel = ωrdisk + vtang represents the relative velocity between the rotor and the stator at
the contact point. rdisk is the radius of the disk, ω is the angular velocity of the disk, and vtang

is the instantaneous tangential velocity of whirling at the contact point. The relative velocity
will be larger than the circumferential speed of the rotor at the contact point when the rotor
whirls forward (with a positive vtang). It will be less than the circumferential speed when the
rotor whirls backward (with a negative vtang). Θ is a switching function that is equal to one
when contact occurs and equal to zero when no contact occurs.

4.2 Rotor FE modelling and dynamic analysis

The dual-rotor model is completely modelled using one-dimensional finite elements. Mainly,
Timoshenko beam elements are used for discretizing the shafts with rotary inertia, shearing,
and gyroscopic effects are taking into account. Each node has 4 DOFs: two translational and
two rotational displacements. The complete model is discretized into 13 elements with a
total of 52 DOFs. Later, its size is reduced using the proposed model reduction technique
as described in Sec. 2.1. The component mode partition of the dual-rotor model is shown
in Fig. 4.3 and its details are given in Table 4.4. The primary component includes all the
nodes containing nonlinearity and their adjacent nodes, while the secondary component has
the remaining linear nodes. This is the criteria for dividing a structure into primary and
secondary components.

Table 4.4 The details of the model reduction of simplified dual-rotor model

System No. of nodes Actual DOF Retained modes Physical DOF Total DOF
Complete model 13 52 0 52 52
Primary 3 12 0 12 12
Secondary 11 44 2 16 18
Assembled model After component mode synthesis 26
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In this dual-rotor model, disk 2 undergoes rub-impact; hence, the node containing disk
2 is kept in the primary component along with its adjacent nodes. As a result, the primary
component includes 3 nodes with 12 DOFs; all are held in physical coordinates. The
secondary component has the remaining 11 linear nodes and is reduced using the Craig-
Bampton substructuring to get 18 DOFs. After assembling the primary and secondary
components, the reduced size of the dual-rotor model is obtained as 26, which is 50% of the
complete model.

Fig. 4.3 Component mode partition of the simplified dual-rotor model

4.2.1 Co-Rotation

In this mode of rotor operation, the rotors are co-rotating with a speed ratio of κ = 1.2; hence
the approximated excitation frequency components and their common divisor ω0 can be
determined as,

ω̃2

ω̃1
=

6
5
= 1.2 ω0 =

ω̃1

5
=

ω̃2

6
(4.3)

Now, by expressing the external excitations in terms of ω0, the ATVM can be utilized for
finding the responses. At first, the modal analysis is performed to determine the natural
frequencies of the model. The first five natural frequencies of the model under the non-rotating
condition are given in Table 4.5. However, for a rotating system, the natural frequencies
vary with the rotor speed due to the presence of the gyroscopic effect. This variation is
displayed through the Campbell diagram. Figure 4.4a and 4.4b show the Campbell diagrams
of the two-spool rotor model when excited by the inner and outer rotors, respectively. Due to
the gyroscopic effects, the frequencies split into forward and backward whirls. The critical
speeds of the model are obtained by noting the rotational speeds at the crossing points of
the frequency curves with the synchronous excitation line (1×). They have listed in Table
4.6. For each vibration mode, there are two critical speeds corresponding to the forward and



58 Stability of a simplified dual-rotor undergoing single-disk rub-impact

the backward whirl motions as listed in Table 4.6. Figure 4.4 also gives a comparison of the
Campbell diagrams of the complete and the reduced models. It shows the effectiveness of
the model reduction technique. A perfect agreement is observed between the results of both
models.

Table 4.5 Natural frequencies of the dual-rotor model under the non-rotating condition

Two-spool rotor
Order

1st 2nd 3rd 4th 5th
Frequency (Hz) 91.807 197.485 318.329 403.455 421.738

(a) excited by inner rotor (b) excited by outer rotor

Fig. 4.4 Campbell diagram of the simplified dual-rotor model (co-rotation)

Table 4.6 Critical speeds of the simplified dual-rotor model (co-rotation)

Order
Excited by inner rotor (rpm) Excited by outer rotor (rpm)
backward forward backward forward

1 4346 7872 4493 7363
2 10003 13350 10300 13150
3 14020 21060 14650 20960

4.2.2 Counter-Rotation

In this mode of rotor operation, one rotor rotates in the opposite direction to the other with
a speed ratio of κ = −1.2. The approximated excitation frequency components and their
common divisor ω0 can be determined as,

ω̃2

ω̃1
=−6

5
=−1.2 ω0 =

ω̃1

5
=−ω̃2

6
(4.4)



4.3 Unbalance response 59

The Campbell diagrams for this mode of operation are shown in Fig. 4.5 and the correspond-
ing critical speeds are listed in Table 4.7. While comparing the critical speeds of the co &
counter-rotating models, it is observed that the forward speeds are lower and backward speeds
are higher for the counter-rotating model. It means that the separation between the forward
and backward speeds are reduced. This behaviour can be seen in the Campbell diagrams
as well. The forward and backward speeds are close to each other for the counter-rotating
model. This happens mainly due to the cancellation of the gyroscopic moments of the two
rotors during the counter-rotation.

(a) excited by inner rotor (b) excited by outer rotor

Fig. 4.5 Campbell diagram of the simplified dual-rotor model (counter-rotation)

Table 4.7 Critical speeds of the simplified dual-rotor model (counter-rotation)

Order
Excited by inner rotor (rpm) Excited by outer rotor (rpm)
backward forward backward forward

1 4533 6815 6609 4667
2 10860 12190 12110 11120
3 15320 20410 20590 15610

4.3 Unbalance response

The presence of mass unbalances in disks 1 and 3 produces centrifugal forces in the rotors,
leading to rotor whirling during their operation. Initially, by assuming no stationary compo-
nents in the model, it is possible to study the nature of whirling and the frequency contents.
Since both the rotors are excited together, the model response will contain both frequency
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components. The number of discrete-time points Npt is taken as 200 for the ATVM to capture
the response completely. To validate its performance, the model response is compared with
that of the MHBM-AFT. Figure 4.6 shows the unbalance responses of the inner rotor at disk
2 position under two-frequency excitations. Exact matching is observed between the results
of the ATVM and the MHBM.

(a) co-rotation (b) counter-rotation

Fig. 4.6 Response of inner rotor at disk 2 position when mass unbalances are at disk 1 & 3

In Fig. 4.6, only forward whirling modes are excited since all the bearings used in the
model are isotropic. The peaks A and C represent the resonance when the rotating speed is
equal to 1

1.2 times the critical speeds of the model with respect to the outer rotor excitations.
The peaks B and D correspond to the resonance when the rotating speed becomes equal to the
critical speeds of the model with respect to the inner rotor excitation. In order to analyze the
whirling nature and the frequency content, the orbit plot and the frequency response plot are
constructed for different rotating speeds of the rotors. Figure 4.7 and 4.8 show the orbit plots
and the frequency response plot during the co & counter-rotation of the rotors respectively.
In Fig. 4.7 and 4.8, the frequency response are plotted for the vertical responses measured at
disk 2 position. It is observed that the rotor response contains the combinations of the inner
and outer rotor excitations. Generally, the linear combinations of the inner and outer rotor
excitations are expressed as iω1 + jω2. For simplicity, it can be denoted using (i, j), where i
and j are integers. Since, the unbalance response is linear, (1,0) and (0,1) components are
observed in the rotor displacements as shown in Fig. 4.7 and 4.8.

The direction of the rotor whirl can be obtained from the orbit plot. It is seen that during
co-rotation, the inner and outer rotors (disk 2 and disk 4) whirls in the same direction as the
rotor rotation (in an anti-clockwise direction) for all the values of rotating speeds. However,
during counter-rotation, the whirling nature of the rotors is different at different rotating
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(a) ω1 = 6135 rpm (b) ω1 = 7872 rpm (c) ω1 = 10958 rpm

Fig. 4.7 Orbit plot and the frequency response plot of the rotor displacements during co-
rotation of rotors

(a) ω1 = 3889 rpm (b) ω1 = 6815 rpm (c) ω1 = 9265 rpm

Fig. 4.8 Orbit plot and the frequency response plot of the rotor displacements during counter-
rotation of rotors
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speeds. It can be observed from Fig. 4.8a and Fig. 4.8c that when the rotating speed lies
in the region of resonance with respect to the outer rotor excitation, both rotors whirl in the
same spin direction as the outer rotor, i.e. in the clockwise direction. But, when the rotor
speed is in the region of resonance with respect to the inner rotor excitation, both rotors whirl
in the same spin direction as the inner rotor, i.e. in an anti-clockwise direction, as in Fig.
4.8b. It indicates that the direction of whirling is dependent on the value of rotating speed
when the rotors are counter-rotating.

4.4 Rub-impact in the dual-rotor model

As the whirling amplitude of the rotor exceeds the clearance at disk 2 position, it contacts the
stator during a rotor orbit. As a result, the nature of the rotor response changes significantly.
To study this nonlinear behaviour, the ATVM is employed. The number of discrete-time
points Npt is increased to 300. It is because a more number of time points are required to
capture the complete nonlinearities arising due to rub-impact. Figure 4.9 and 4.10 show
the rubbing responses of the rotor at disk 2 position when it is undergoing co-rotation and
counter-rotation respectively. The model parameters are taken as kc = 5 × 106 N/m, δ = 0.1
mm and µ = 0.01. As the rotor touches the stator, a forward-leaning is observed along with a
resonance shift which is happening mainly due to the addition of contact stiffness. In a speed
range of [0,15000] rpm, four contact regions are noticed in the response which are zoomed
in Fig. 4.9 and 4.10.

Fig. 4.9 Response at disk 2 position when rotors are co-rotating

When rotors are co-rotating, the initial contact happened at ω1 = 6096.3 rpm, whereas
for the counter-rotation, it happened at ω1 = 3882 rpm. It shows that the counter-rotating
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Fig. 4.10 Response at disk 2 position when rotors are counter-rotating

model undergoes early rub-impact for the same set of model parameters. This is due to
the lower critical speeds of the counter-rotating model compared to the co-rotating model.
The validation of the ATVM with the MHBM-AFT is also displayed in Fig. 4.9 and 4.10.
The MHBM-AFT technique is utilized by taking the number of harmonics as 5. An exact
agreement is obtained between the results of both methods. To verify the coupling of the
inner and outer rotor vibrations, the responses are also determined at the disk 4 position.
They are shown in Fig. 4.11 and 4.12. It is observed that the outer rotor also experiences
a similar kind of forward-leaning as the inner rotor, even though it doesn’t undergo any
rub-impact. It shows the coupling of the inner and outer rotor vibrations, which is mainly
occurring due to the presence of the inter-shaft bearing. Moreover, it is also noticed that the
amplitude of the outer rotor response is slightly larger than that of the inner rotor.

Fig. 4.11 Response at disk 4 position when rotors are co-rotating
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Fig. 4.12 Response at disk 4 position when rotors are counter-rotating

4.5 Stability analysis

Co-rotation: The stability analysis of the model is performed using the theory as described
in Sec. 2.2.4. Figure 4.13 shows the stability diagrams of the model during co-rotation.
The first four rub-impact regions are only displayed in the plot due to the lack of space. In
Fig. 4.13, the stable part is represented using the continuous line, whereas the unstable part
is represented using the dotted line. The LP and NS bifurcations are indicated using the
circle and triangle markers respectively. The response is stable until the rotating speed ω1 =
6338.1 rpm. An NS bifurcation is detected at ω1 = 6338.1 rpm by monitoring the Floquet
exponents of the model. Figure 4.14a shows the Floquet exponents of the model before and
after NS bifurcation. It is seen that a pair of Floquet exponents crossed the imaginary axis as
a pair of complex conjugates that confirms the occurrence of NS bifurcation at ω1 = 6338.1
rpm. As a result, a quasi-periodic regime can be initiated from this bifurcation point. The
proposed methodology cannot capture the quasi-periodic regime since the quasi-periodicity
contains the irrational frequency components that are unknown. However, the ATVM can
detect the onset points of the quasi-periodic branches accurately with less computation time
than numerical integration. It will help the designer in choosing the appropriate parameters
to avoid the entry of the model into the quasi-periodic regime and dry friction backward
whirl. Later, the numerical integration technique can get the quasi-periodic curve beyond
the NS bifurcation point. It saves computation time since the numerical integration isn’t
required to run from the starting rotor speed. In future, the TVM will be modified to capture
the quasi-periodic regime accurately by using the concept of hypertime as in the case of the
MHBM.
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(a) Peak 1 (b) Peak 2

(c) Peak 3 (d) Peak 4

Fig. 4.13 Stability analysis of the dual-rotor model when rotors are co-rotating

(a) NS at ω1 = 6338.1 rpm (b) LP at ω1 = 6596 rpm

Fig. 4.14 Floquet exponents in the vicinity of NS and LP bifurcations (co-rotation)
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(a) Peak1 (b) Peak2

Fig. 4.15 Comparison of rub-impact responses determined using the ATVM and NI for the
first two peaks (co-rotation)

Figure 4.15 shows the comparison of rub-impact responses determined using the ATVM
and NI for the first two peaks. It is observed that the response is periodic until the NS
bifurcation point; hence, the results obtained using the ATVM and NI match each other
during this period of motion. While analyzing the orbit plot, a period-5 motion is observed
in the response before the NS bifurcation point, indicating the full annular rub. It is shown in
Fig. 4.16a at a speed of 6250 rpm.

(a) Speed = 6250 rpm (b) Speed = 6550 rpm

Fig. 4.16 Orbit plots of the rotor at disk 2 position (a) before and (b) after the NS bifurcation
(co-rotation), obtained using numerical integration. Forward whirl is noticed before the NS
bifurcation, while dry friction backward whirl is observed beyond the NS bifurcation.
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The direction of the whirl is the same as that of the rotor rotation; hence, it is a forward
whirl. While noticing the FFT diagram in Fig. 4.17a, it is found that in addition to (1,0) and
(0,1) components, other components such as (1,-2) and (2,-1) are also seen in the response.
However, their amplitudes are small compared to that of the excitation frequency components.
The additional frequency components appear mainly due to nonlinearities induced by rub.

(a) Speed = 6250 rpm (b) Speed = 6550 rpm

Fig. 4.17 FFT diagram of the rotor response at disk 2 position (a) before and (b) after the NS
bifurcation (co-rotation), obtained using numerical integration.

Beyond the NS bifurcation, the quasi-periodic regime starts, and it suddenly changes
into the BW motion as shown in Fig. 4.15. During this period of motion, the results of the
ATVM and NI don’t match because the ATVM is unable to capture the quasi-periodic branch.
However, the NI captures the quasi-periodic branch effectively. From Fig. 4.15, it is seen
that the ATVM predicts the onset point of the quasi-periodic branch precisely. It saves a
lot of time during the computation since the complete analysis doesn’t require numerical
integration. The NI is required only beyond the NS bifurcation. The orbit plot at ω1 = 6550
rpm is shown in Fig. 4.16b indicating the BW motion in which the direction of the whirl
is opposite to that of the rotor rotation. From the FFT diagram in Fig. 4.17b, it is observed
that a single frequency component is coming in the response with its amplitude being very
high of the order of 2. This kind of motion is harmful to the rotor system and may lead to
machinery failure.

Beyond ω1 = 6338.1 rpm, the periodic response obtained using the ATVM becomes
unstable, and the dotted line shows it in Fig 4.13. At ω1 = 6596 rpm, an LP bifurcation is
identified, which indicates the presence of a sudden jump phenomenon. To verify this, the
Floquet exponents are determined and displayed in Fig. 4.14b. It is observed that one of the
Floquet exponents crossed the imaginary axis along the real axis. It confirms the occurrence
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of LP bifurcation at ω1 = 6596 rpm. Similar to the first peak, the NS and LP bifurcations are
observed for the other peaks also.

(a) 10882 rpm (b) 11055 rpm

Fig. 4.18 Stability diagram, FFT spectrum, and orbit plot of the two additional peaks. An
additional (2,-1) component is also present in the response besides (1,0) and (0,1) components.
As a result, the rub-impact happens occasionally, indicating the bouncing motion of rotor.

Two additional small peaks are also observed in the response between 10885-10892 rpm
and 11038-11043 rpm. They are analyzed using the stability diagrams, FFT spectra, and
orbit plots. In Fig. 4.18, the orbit plots and FFT diagrams are determined at the stable regions
of the response, marked as points a and b. While observing the frequency components, it
is seen that an additional (2,-1) component is also present in the response besides (1,0) and
(0,1) components. Due to the presence of this frequency component, additional peaks appear
in the response. Since the damping in the model is very low, the (2,-1) component also
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dominates in the response along with the excitation frequency components. Some other
frequency components also exist in the frequency spectrum; however, their effects are not
visible due to their low amplitudes. From the orbit plots, it is seen that the rotors are whirling
in multiple orbits, and they are moving in and out of the clearance space. It also indicates the
presence of multiple frequency components in the response.

Counter-rotation: The stability analysis is performed for the counter-rotating model as
well. It is shown in Fig. 4.19. The periodic response became unstable when the rotational
speed reached ω1 = 3883.3 rpm. An NS bifurcation is detected at ω1 = 3883.3 rpm, and it is
verified by comparing the results with that of NI as shown in Fig. 4.20.

(a) Peak 1 (b) Peak 2

(c) Peak 3 (d) Peak 4

Fig. 4.19 Stability analysis of the model when rotors are counter-rotating

The rotor enters into the dry friction backward whirl very fastly and continues in this
motion for a wide range of speed. The periodic response obtained using the ATVM becomes
unstable during the remaining contact period, and an LP bifurcation is identified at ω1 =
4130.6 rpm as shown in Fig. 4.19a. The Floquet exponents in the vicinity of the NS and
LP bifurcations are shown in Fig. 4.21, and it verifies the occurrence of the NS and LP
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bifurcations. The model became unstable immediately after the contact for the other peaks
as well. Hence, for the same set of model parameters, the NS bifurcation and the onset of the
quasi-periodic regime are happening early for the counter-rotation. Therefore, a co-rotating
system will be preferable in a dual-rotor model when considering the model stability during
rub-impact.

(a) Peak1 (b) Peak2

Fig. 4.20 comparison of rub-impact responses determined using the ATVM and NI for the
first two peaks (counter-rotation)

(a) NS at ω1 = 3883.3 rpm (b) LP at ω1 = 4130.6 rpm

Fig. 4.21 Floquet exponents in the vicinity of NS and LP bifurcations (counter-rotation)

The proposed method has to be applied in the complex aero-engine model consisting of
multi-stage compressors and turbines to investigate the effects of multi-disk rub-impact. It
will be explained in detail in the following chapter.
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4.6 Summary

In this chapter, the stability analysis of a simplified dual-rotor model undergoing a single-
disk rub-impact is performed using the proposed methodology. The study is carried out
by developing a one dimensional FE model of a dual-rotor model using the Timoshenko
beam elements. Later, its size is reduced using an efficient model reduction technique based
on component mode synthesis. Two modes of rotor operations, namely co-rotation and
counter-rotation, are included in the analysis to study their effects on the response behaviour.
The Campbell diagrams and the unbalance responses of the dual-rotor model are determined
for both modes of rotor operations. From the Campbell diagrams, it is observed that the
critical speeds are different for both co and counter rotations. For counter-rotation, the
forward critical speeds are smaller, and backward critical speeds are larger than that of
co-rotation. This is mainly due to the cancellation of the gyroscopic moments in the case
of counter-rotation. Moreover, during the counter-rotation, the whirling direction depends
on the value of rotating speed. When the rotating speed is in the range of resonance with
respect to the outer rotor excitation, both the rotors whirled in the same spin direction as
the outer rotor. In contrast, when the speed is in the range of resonance with respect to the
inner rotor excitation, both the rotors whirled in the same spin direction as the inner rotor.
However, during the co-rotation, the whirling always happens in one direction irrespective of
the rotating speed.

When contact is initiated, a rightward bending of the response curve is observed as it
touches the stator. Due to the presence of inter-shaft bearing, the coupling of the inner and
outer rotor vibrations have happened. As a result, the outer rotor also showed a similar
rightward bending, although it didn’t undergo any rub-impact. The stability of the model
is assessed using a technique based on the Floquet theory. The Floquet exponents are
monitored to detect the bifurcation points during the continuation procedure. Mainly, LP
and NS bifurcations are observed in the responses when the rotor touches the stator. It
is observed that the direction of rotor rotation has a significant effect on the onset of NS
bifurcation. For the same model parameters, the onset of NS bifurcation happened earlier
for the counter-rotating model than for the co-rotating model. As a result, a co-rotating
model will be preferable in a dual-rotor when considering the stability of the model during
rub-impact.





Chapter 5

Multi-disk rub-impact in the two-spool
aero-engine model

This chapter is mainly intended to discuss the nonlinear dynamic characteristics of a two-
spool aero-engine model undergoing multi-disk rub-impact using the proposed numerical
procedure. This is the main contribution of the thesis, and there aren’t any studies in the
literature that analyze the multi-disk rub-impact in the aero-engine models. The two-spool
rotor model consists of multi-stage compressors and single-stage turbines that experience
rubbing whenever their deflection exceeds the clearance. In most of the previous works,
rub-impact is studied by assuming the contact is happening at a single disk position only.
However, in a multi-disk rotor model like an aircraft engine, the rotor-stator contacts may
happen at more than one disk position under large unbalance forces. As a result, the model
response may get complicated and sometimes lead to the machinery’s failure. It necessitates
the multi-disk rub-impact studies in the aero-engine rotor models.

5.1 Dynamic modelling of the two-spool aero-engine rotor

The real aero-engine comprises a sophisticated rotordynamic structure consisting of multi-
stage bladed disks, hollow & conical shafts, thin-walled casing, rolling contact bearings, and
dampers. The schematic diagram of a complex aero-engine model is shown in Fig. 5.1. The
modelling of such a system is very complicated since it involves the dynamics of the different
rotor components such as blades, disks, and drums. Hence, in this work, a simplified form
of the aircraft engine is developed for analyzing its nonlinear responses under multi-disk
rub-impact by referring to the model constructed by Jin et al. (2019). In this model, the
rotor structure is built by combining the cylindrical and conical sections as shown in Fig.
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Fig. 5.1 Schematic diagram of an aero-engine dual-rotor model consisting of multi-stage
compressors and single-stage turbines supported on bearings (Sun et al. (2018)). The low
and high-pressure rotors operate at two different speeds, ω1 and ω2, and are connected using
an inter-shaft bearing.

Fig. 5.2 The sectional view of the aero-engine dual-rotor model, which is made up of
cylindrical and conical shaft sections, rigid disks, and rolling contact bearings (Jin et al.
(2019)).

5.2. The model consists of two rotors, namely low-pressure and high-pressure rotors which
operate at two different speeds, ω1, and ω2. As a result, the dual-rotor model undergoes
two-frequency excitation with their ratio may not be an integer. The two rotors are connected
using an inter-shaft bearing, leading to the coupling of low-pressure and high-pressure rotor
dynamics. The inter-shaft bearing is replaced by a linear spring similar to a model presented
in the paper by Sun et al. (2018). The bladed disks are assumed as rigid cylindrical disks,
and the supporting pedestals are simplified as spring-damper models. The low-pressure rotor
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has a four-stage compressor and a single-stage turbine supported on three bearings, whereas
the high-pressure rotor has a nine-stage compressor and a single-stage turbine supported on
two bearings. The compressors are made up of titanium alloy whose material properties such
as the elastic modulus, density, and Poisson ratio are denoted as ETi, ρTi and νTi. They are
connected to the corresponding turbines using inter-connecting shafts that are made up of
nickel-based alloy with material properties ENi, ρNi and νNi. The geometrical dimensions
and the physical properties of the aero-engine dual-rotor model are listed in Appendix A.

5.1.1 Finite element discretization of the model

The dynamic modelling of the dual-rotor model is carried out using the FE method. Mainly,
the Timoshenko beam elements are used for discretizing the shafts, including the rotary
inertia, shear factor, and gyroscopic effects in the formulation. Based on the section type,
two kinds of beam elements are used for the FE modelling, such as cylindrical and conical
elements.

Dynamic equations of a conical beam element

In this work, the lateral vibrations of the shaft element are only considered, ignoring the
axial and torsional vibrations. Each element has two nodes with 4 DOFs in each node:
two translations and two angular motions. Hence, the coordinate vector is given as, qe =

[xA,yA,θxA,θyA,xB,yB,θxB,θyB]
T , where A and B are the two endpoints of a beam element.

Now, the dynamic equation of a conical beam element can be written as,([
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vector of the element. The expansion of these matrices are given in Appendix B.

Dynamic equations of a cylindrical beam element

The cross-section parameters of a cylindrical beam element are constant throughout the
section. Hence, its dynamic matrices can be obtained by substituting the cross-section
parameters in the dynamic matrices of a conical beam element. Let,
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cyl represent the mass, rotary inertia, gyroscopic and stiffness matrices of a

cylindrical beam element respectively. Then, its dynamic equation can be expressed as,
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Dynamic equations of a rigid disk

Rigid disk is a single-noded element with the coordinate vector, qd = [x,y,θx,θy]
T . Its

dynamic equation can be written as,[
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where md , Id , and Ip are the mass, diametral moment of inertia, and polar moment of inertia
of the disk respectively.

[
Fd

]
is the excitation force vector due to mass unbalances in the

disks.

Total dynamic equations of the aero-engine dual-rotor model

The total dynamic equation of the aero-engine dual-rotor model is obtained by assembling
the equations of disks, bearings, cylindrical, and conical shaft elements. In this study, the
low-pressure rotor is discretized using 53 beam elements, whereas the high-pressure rotor is
discretized using 31 beam elements. The compressor and turbine disks are assumed as rigid
disks, and their inertial properties are added to the corresponding nodal positions. The final
dynamic equation of the dual-rotor model is expressed as,

Mq̈+Cq̇+G (ω1,ω2) q̇+Kq+Fnl(q, t) = F (ω1,ω2, t) (5.4)

where M, C, G and K are the total mass, damping, gyroscopic and stiffness matrices of the
aero-engine dual-rotor model. The damping matrix consists of two components, namely
Rayleigh damping and support bearing damping. The Rayleigh damping coefficients are
given in Tab. A.1. The vectors q, F and Fnl represent the displacement vector, excitation
force vector, and nonlinear force vector, respectively. The nonlinear force vector Fnl consists
of the rolling contact bearing force and rub-impact force (Fnl = Fb + Frub). The details of
rub-impact force are already discussed in Sec. 4.1 and the formulation of rolling contact
bearing is discussed as follows.
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Rolling contact bearing model: The schematic diagram of a rolling contact bearing
model is shown in Fig. 5.3. In this model, the inner ring of the bearing is jointed to the rotor
shaft while the outer ring is connected to the housing. During the operation, a point or line
contact happens between the roller and the inner raceway. There exists a small clearance
‘c0’ between the rollers and outer raceway during the normal running conditions. When the
deflection of the rollers exceeds the clearance, a nonlinear force is generated at the point of
contact. It is derived using the Hertz contact theory, as explained (Hou et al. (2017)).

Fig. 5.3 Schematic diagram of a rolling contact bearing model (Hou et al. (2017))

fbx =
Nb

∑
j=1

Cb(xcosβ j + ysinβ j − c0)
n H(xcosβ j + ysinβ j − c0)cosβ j

fby =
Nb

∑
j=1

Cb(xcosβ j + ysinβ j − c0)
n H(xcosβ j + ysinβ j − c0)sinβ j

(5.5)

where fbx and fby are the bearing forces in X and Y directions respectively. x and y are the
relative displacements of inner and outer rings. n is the nonlinear index of Hertz contact
deformation (n = 3

2 for ball bearing and n = 10
9 for cylindrical roller bearing). H(.) is the

heavy side function and β j is the angular position of the jth roller which is described as
follows.
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β j = ωcage × t +
2π

Nb
( j−1), j = 1,2, ...,Nb

ωcage = ωi ×
rb

Rb + rb

(5.6)

where ωi is the angular velocity of the inner ring, it is assumed to be equal to the angular
velocity of the respective rotor. rb and Rb are the radii of the inner and outer rings, respectively.
The bearing force vector Fb is formed by inserting fbx and fby in the respective positions
corresponding to each rolling contact bearing.

5.2 Verification of the model

This study assumes that both the low-pressure and high-pressure rotors are co-rotating
with a speed ratio of 1.2. Initially, the natural frequencies and the mode shapes of the
aero-engine dual-rotor model are determined and compared with the ANSYS model. In
ANSYS, the beam 188 element is used to model the shaft, with the rotor being discretized
into 94 elements. The tapered beam sections are utilized to represent the conical shafts. The
disks are modelled using the mass21 element, while the linear bearings are modelled using
the combin14 elements. The QR damped method is employed to determine the complex
eigenvalues and it allows the processing of asymmetric matrices. Table 5.1 gives the first
four natural frequencies of the model calculated using the present method and the ANSYS.
The percentage of errors is calculated and listed in Tab. 5.1. It is observed that the variation
is under 1 %. Later, the mode shapes of the aero-engine dual-rotor model are determined and
compared with that of the ANSYS model as shown in Fig. 5.4.

Table 5.1 Natural frequencies of the aero-engine model under non-rotating condition

dual-rotor
Order

1st 2nd 3rd 4th
Present model Frequency (Hz) 121.75 249.80 361.56 514.37
ANSYS model Frequency (Hz) 121.12 250.85 360.19 511.52
Percentage of error (%) 0.52 -0.42 0.38 0.55

The first two modes are only presented since the rubbing responses at the first two
vibration modes are mainly analyzed in this work. From Fig. 5.4, it is noticed that the results
obtained using the present method are well-matched with that of the ANSYS model. While
analyzing the first two modes, it is seen that the deformation of the low-pressure compressor
(LPC) is very low compared to that of the high-pressure compressor (HPC) and turbines
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(a) (b)

Fig. 5.4 Mode shapes of the aero-engine model at (a) 121.75 Hz (first mode) and (b) 249.8
Hz (second mode). They are well-matched with the ANSYS model, proving the effectiveness
of the dynamic modelling method. Blue circles show the location of mass points.

(HPT). Hence, the LPC disks cannot rub against the casing surface. All the nodes containing
disks and bearings are included in the primary component during the model reduction process.
To verify the effectiveness of the model reduction technique, the Campbell diagrams of the
full and reduced models are compared. It is shown in Fig. 5.5. Good matching is obtained
between the results of the full and reduced models up to a frequency of 1000 Hz. The critical
speeds of the aero-engine dual-rotor model are listed in Tab. 5.2.

(a) (b)

Fig. 5.5 Campbell diagrams of the aero-engine model when excited by (a) low-pressure rotor
and (b) high-pressure rotor. The Campbell diagrams of the full and reduced models are
well-matched, proving the effectiveness of the model reduction technique.

Later, the unbalance responses of the model are determined without considering the
rub-impact. The mass unbalances are applied at LPC-3, HPC-7, LPT, and HPT disks with
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Table 5.2 Critical speeds of the aero-engine model

Order
Excited by low-pressure rotor (rpm) Excited by high-pressure rotor (rpm)
(BW) (FW) (BW) (FW)

1 6275 8685 6425 8435
2 13440 16360 13690 16170
3 19920 24110 20150 23730

their eccentricities are given in Tab. A.1. The ATVM is used to calculate the steady-state
responses of the model by taking the number of time points, Npt as 150.

Fig. 5.6 Comparison of the frequency responses of the models supported on linear bearings
and rolling contact bearings. A rightward shifting of the resonant curve is observed for the
model with rolling contact bearings. It is mainly due to the hard spring characteristics of the
rolling contact bearings.

In Fig. 5.6, the unbalances response of the aero-engine dual-rotor model with and without
rolling contact bearings are compared. Four resonance peaks are observed in the response in
which the first two corresponds to the first vibration mode, and the last two corresponds to the
second vibration mode. In the first vibration mode, the displacements at the bearing locations
are negligible, which is evident from Fig. 5.4. As a result, there aren’t many variations in the
response of both models. However, for the second mode of vibration, the displacement at
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bearing 4 is so significant that a rightward shifting of the resonant curve is noticed. The first
resonant curve of the second mode is shifted from 13490 rpm to 14980 rpm, while the second
curve is shifted from 16360 rpm to 17380 rpm. In addition, a mode splitting is observed
at the second vibration mode due to the hard spring characteristics of the rolling contact
bearings.

(a) (b) (c)

Fig. 5.7 Orbit plots, Poincaré maps, and FFT spectrum calculated at HPC-7 position when
the rotor speed is (a) 8680 rpm, (b) 14980 rpm, and (c) 17380 rpm. For all speeds, the
orbit plots show five closed circles, and the Poincaré maps show five points, indicating a
period-5 motion. Due to the presence of ball bearing nonlinearity, some additional frequency
components are appearing in the FFT spectrum.

Figure 5.7 shows the orbit plots, Poincaré maps, and FFT spectra of the response at
resonant speeds. Five closed circles are observed in the orbit plots, while five points are seen
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in the Poincaré maps, indicating a period-5 motion. While analyzing the FFT spectrum, it
is observed that only excitation frequency components such as ω1 and ω2 are seen in the
first mode regions [0 - 10370 rpm], indicating that the effects of rolling contact bearings
are negligible within this speed range. However, additional frequency components such
as (ω1 − 2ω2), (2ω1 −ω2), (2ω1 − 3ω2) and (3ω1 − 2ω2) are noticed in the second mode
regions [10370 - 18000 rpm]. They are denoted as (1,-2), (2,-1), (2,-3) and (3,-2) in the FFT
diagrams displayed in this report. The additional frequency components appear mainly due
to the nonlinearity in the rolling contact bearings, and it is more visible during the second
resonant region as shown in Fig. 5.7c.

Meanwhile, the time response signals obtained using the ATVM are verified with the
numerical integration results. Fig. 5.8 shows the validation of the ATVM with the numerical
integration (NI) method. As per Fig. 5.8, the results of the ATVM are well-matched with
that of the NI method.

(a) (b)

(c) (d)

Fig. 5.8 X-dir displacements calculated at HPC-7 disk position when the rotor speed is (a)
7050 rpm, (b) 8680 rpm, (c) 14980 rpm, and (d) 17380 rpm under the no-rub condition using
the ATVM and numerical integration. In ATVM, the number of time points Npt is taken as
150. A good agreement in the results of both methods is obtained.
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5.3 Response of the model under multi-disk rub-impact

Once the whirling amplitudes of the rotors exceed the clearance, it contacts the stator. As
a result, the response of the model changes significantly, and it becomes nonlinear. The
nonlinear forces are determined by taking the parameters kc = 0.3×108, µ = 0.2 and δ = 0.1.
The rub-impact responses are obtained using the ATVM by taking Npt as 180.

5.3.1 Significance of multi-disk rub-impact studies

As mentioned earlier, most of the research works in the past analyzed the single-disk rub-
impact problems in which the rub is considered at a single disk position only. However, in a
multi-disk rotor, there is a possibility for more than one disk in the rotor to undergo rubbing.

(a) (b)

(c) (d)

Fig. 5.9 Frequency response diagram calculated at (a) LPC (b) LPT (c) HPC and (d) HPT
disk positions when rub-impact nonlinearity is assumed at HPT disk position alone. Due to
the coupling of rotors, similar behaviour is observed for other disks as well, even though they
didn’t undergo any rub-impact.
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To verify this, a single-disk rub-impact is applied to the present model, and the response
curves are obtained as shown in Fig. 5.9. Referring to the papers by Sun et al. (2016); Wang
et al. (2017, 2020b), the contact is assumed to happen at the HPT disk position alone. During
the analysis, the rotor-stator clearance is considered constant for all the disks. Until the point
of contact, the response is similar to that of the no-rub response. At 6523 rpm, the HPT
disk initiates the contact, and a rightward bending is observed due to the modification of
the model stiffness. Even though the rub nonlinearities aren’t assigned for the other disks,
a similar kind of rightward bending is noticed. It is due to the coupling of rotors. While
analyzing Fig. 5.9b & 5.9c, it is seen that the deflections of LPT, HPC-8, and HPC-9 disks are
exceeding the clearance for the first peak; still, no changes are observed in the response since
the nonlinearity is applied at the HPT disk position alone. Similarly, for the third resonance
peak, all the HPC disks are exceeding the clearance, but no variations are observed, as shown
in Fig. 5.9c. It proves the limitations of the single-disk rub-impact studies and underlines the
importance of multi-disk rub-impact studies.

Figure 5.10 shows the frequency response curves of the aero-engine dual-rotor model
determined at different disk positions during multi-disk rub-impact. Once the engine is
started, the rotors begin to whirl within the clearance space till 6522 rpm, representing the
no-rub response. At 6522 rpm, the HPT disk initiates the contact, and a rightward bending
occurs due to the modifications in the model stiffness. Due to the coupling of rotors, all
other disks also show a similar trend in the response characteristics. The sequence in which
the disks are rubbing can be understood by monitoring the nonlinear function, as shown in
Fig. 5.11. The rub nonlinearity in X-direction, fnx is plotted in Fig. 5.11 to find the status
of contact at a particular speed. Initially, the HPT disk alone rubs the stator within a speed
range of 6522 ≤ Nspeed ≤ 6985 rpm. It can be validated by checking the nonlinear function
at a speed of 6640 rpm within this range, as shown in Fig. 5.11a. The nonlinear function
corresponding to the HPT disk is only existing in Fig. 5.11a, indicating the HPT disk rubbing
alone. It means that the multi-disk rub response is similar to that of the single-disk rub-impact
till this rotating speed of 6985 rpm.

At 6985 rpm, the LPT disk as well starts to contact the stator, and the corresponding
rub-impact happens in the range of 6985 ≤ Nspeed ≤ 7465 rpm. It is verified by checking the
nonlinear function at a speed of 7350 rpm where the rub nonlinearity corresponding to the
HPT and LPT disks are coming as shown in Fig. 5.11b. As a result, the extend of rightward
bending is increased in comparison to the single-disk rub-impact, which is evident from Fig.
5.10b & 5.10d. As the speed is increased beyond 7465 rpm, the deflection of the HPC-9
disk also exceeds the clearance, and it commences to participate in the rub, followed by the
contact of the HPC-8 disk at 7710 rpm. It is confirmed by monitoring the rub nonlinearity
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(a) (b)

(c) (d)

Fig. 5.10 Frequency response diagram calculated at (a) LPC (b) LPT (c) HPC and (d) HPT
positions when the multi-disk rub-impact is analyzed. The extend of rightward bending is
increased for multi-disk rub-impact since more disks undergo rub-impact simultaneously.

function at a speed of 7836 rpm. The nonlinearities of HPT, LPT, HPC-9 and HPC-8 have
nonzero values, as shown in Fig. 5.11c.

For the second resonance peak, the initial contact has happened at 8443 rpm. The HPT
disk started the contact, and it alone rubs the stator in the whole frequency range of 8443-
8890 rpm, which is verified by checking the nonlinear function at a speed of 8600 rpm, as
shown in Fig. 5.11d. Within this speed range, both the single and multi-disk rub-impact
responses coincide with each other. During the third resonance peak, the HPC-9 disk initiated
the contact at a speed of 13574 rpm, followed by the HPC-8 disk at 13600 rpm. Later on,
all the HPC disks start to contact the stator one by one. Beyond 14897 rpm, the HPT disk
as well begins to rub the stator along with the HPC disks. It can be validated by checking
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(a) Speed = 6640 rpm (b) Speed = 7350 rpm

(c) Speed = 7836 rpm (d) Speed = 8600 rpm

(e) Speed = 14852 rpm (f) Speed = 15717 rpm

Fig. 5.11 Rub-impact nonlinearity in X-direction ( fnx) at different rotating speeds for identi-
fying the sequence of disk’s rub.
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Fig. 5.11e & 5.11f. In order to find the time lag between the different disks during contact,
time response plots are obtained in the X direction as shown in Fig. 5.12. They are plotted
between the two extreme disks undergoing rub-impact. Figure 5.12a gives the time lag
between HPC-9 & LPT disks measured at a speed of 7680 rpm. The time lag is obtained
as 0.0485 milliseconds which is equal to an angular deviation of 2.23 degrees. At 16110
rpm, the time lag is measured as 0.054 milliseconds which is equal to an angular deviation of
5.216 degrees between the HPC-2 & HPT disks. Hence, it can be noted that at any particular
rotating speed, the disks start contacting the stator one by one with certain angular deviations
to each other.

(a) X-dir response at speed = 7680 rpm

(b) X-dir response at speed = 16110 rpm

Fig. 5.12 Time response plot in X direction for finding the time lag between different disks.

Whenever, new disk contacts the stator, the extend of rightward bending is increased,
and it is reflected in the responses of other disks also as shown in Fig. 5.10. In addition,
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the deflections of rotors are significantly reduced due to the constraint effect of the stators.
However, the deflection of the LPT disk is slowly exceeding the no-rub deflection during the
third resonance peak, indicating that the dynamics of the LPT disk are significantly affected
by the rub-impact at the HPC disks. These observations prove the importance of multi-disk
rub-impact studies in dual-rotor models.

5.3.2 Stability of aero-engine model during multi-disk rub-impact

The stability of the system is analyzed using the Floquet theory as described in Sec. 2.2.4.
Figure 5.13 shows the stability diagrams of the single and multi-disk rub-impact problems
calculated at HPC-7 compressor position. It is found that for the multi-disk rub-impact

Fig. 5.13 Stability diagram calculated at HPC-7 compressor position during single and multi-
disk rub-impact problems, obtained for the same set of system parameters. Stable responses
are shown by a continuous line, while the dashed line shows the unstable part. The NS and
LP bifurcations are indicated by triangle and circle markers, respectively.

problem, the response is stable till 7010 rpm, and then, it is subjected to the NS bifurcation.
However, for the single-disk rub-impact problem, the response becomes unstable through the
NS bifurcation at a speed of 7140 rpm. It means that the stable periodic response is changed
into the unstable part so early due to the multi-disk rub-impact. Beyond the NS bifurcation
point, the periodic response is unstable and is determined using the parametric continuation.
A dashed line indicates the unstable response in Fig. 5.13.
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Later, an LP bifurcation is observed at 7895 rpm, which is denoted by a circle marker in
Fig. 5.13. The next rub-impact happens in the speed range of 8443-8890 rpm. During this
period, the HPT disk alone undergoes contact. While analyzing the stability, it is found that
the rubbing response is stable within this speed range, and no NS and LP bifurcations are
observed. Moreover, the nature of stability is similar for both the single and multi-disk rub-
impact problems. In the case of the third resonance peak, the NS bifurcation has happened at
13750 rpm for the multi-disk rub-impact problem, while it occurred at 14540 rpm for the
single-disk rub-impact problem. It again proves that the multi-disk rub-impact results in an
early loss of stability than the single-disk rub-impact problem.

5.3.3 Verification with numerical integration

To verify the results obtained using the ATVM, they are compared with the outputs of
numerical integration. It is shown in Fig. 5.14. The responses at stable regimes are only
compared and are found perfectly matching.

(a) (b) (c)

Fig. 5.14 X-dir displacements calculated at HPC-7 disk position when the rotor speed is (a)
6960 rpm, (b) 8630 rpm, and (c) 13660 rpm under multi-disk rub-impact using the ATVM
and numerical integration.

Later, the orbit plots and Poincaré maps of the HPC-7 disk are analyzed at different
speeds for verifying the existence of the NS bifurcation. They are shown in Fig. 5.15. It is
seen that a period-5 motion is noticed in the response before the NS bifurcation, representing
the stable response. During this motion, the orbit is fully circular, and the rotors undergo
full annular rub as shown in Fig. 5.15a. Beyond the NS bifurcation point, the orbit plots and
Poincaré maps are obtained using numerical integration. It is observed that the motion is
completely quasi-periodic, indicated by the closed curves in the Poincaré maps. During this
motion, the rotors bounce inside the stator. Thus, the detection of the NS bifurcation using
the proposed method is verified using numerical integration.
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(a) (b) (c)

Fig. 5.15 Orbit plots and Poincaré maps calculated at HPC-7 disk position during multi-disk
rub-impact when the rotor speed is (a) 6960 rpm, (b) 7150 rpm, and (c) 7390 rpm. Before the
NS bifurcation, the response is period-5 motion indicated by five points in the Poincaré map.
After the NS bifurcation, the response is quasi-periodic in nature, indicated by the closed
curves in the Poincaré map.

In order to find out the frequency contents in the rub-impact response, the FFT spectra
of the X-dir displacements are plotted for different values of the rotational speeds as shown
in Fig. 5.16. When the rotor is undergoing synchronous full annular rub, the frequency
components such as (1,-2), (2,-1), (2,-3), and (3,-2) appear in the response. They are the
linear combinations of the excitation frequency components (1,0) and (0,1). However, when
the response becomes quasi-periodic, some unknown fractional frequency components such
as 0.716ω1, 0.766ω1, 0.916ω1 and 0.964ω1 are coming in the response, and the proposed
ATVM technique can’t detect them. Moreover, the dry friction backward whirl is observed
beyond 14450 rpm, and it continues to exist as the rotating speed increases. The orbit plots
and FFT spectra of the model during the dry friction backward whirl are shown in Fig. 5.17.
The rotors are orbiting in the clockwise direction, which is opposite to the rotor spin direction;
hence it is said to be a backward whirl. The amplitude of whirling is of the order of 2, which
is very large, causing the destruction of the rotor system. From the FFT spectra, it is noticed
that a superharmonic frequency component is alone appearing in the model.
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(a) (b) (c)

Fig. 5.16 The FFT spectra of the X-dir displacements calculated at HPC-7 disk position
when the rub-impact has happened for different rotational speeds of (a) 6960 rpm, (b) 7150
rpm, and (c) 7390 rpm. For the full annular rub response, the frequency components are
the linear combinations of the excitation frequencies, while for the quasi-periodic response,
some unknown components are coming in the response.

5.4 Parametric analysis

It is obvious that the response of the rotor will vary according to the rubbing parameters,
such as the coefficient of friction and contact stiffness. A parametric analysis needs to be
conducted to understand their effects on the model dynamics. It helps to analyze the variations
in the response characteristics and the stability when a parameter is altered. Generally, the
parametric analysis is performed by varying a parameter while keeping the others constant.
This understanding will assist the designers in selecting the suitable parameters of the model
such that undesirable working conditions are avoided.

5.4.1 Effect of coefficient of friction

Figure 5.18 shows the variations in the model response when the friction coefficient is varied.
The contact stiffness is assumed as a constant, and its value is taken as kc = 0.5×108N/m for
the analysis.

It is found that the amplitude of rightward bending is shortened as the value of µ is
increased. This is because the increased friction offers resistance to the whirling, thereby
reducing its amplitude. While analyzing the stability of the response, it is found that for
lower values of µ (0 ≤ µ ≤ 0.05), no NS bifurcation is observed, and the complete response
contains period-5 vibrations. However, as the friction coefficient increases, the model loses
its stability through the NS bifurcation. For µ = 0.1, the NS bifurcation happened at 7740
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(a) (b) (c)

Fig. 5.17 The orbit plot and FFT spectra of the dual-rotor during the dry friction backward
whirl at a rotating speed of (a) 14640 rpm, (b) 15550 rpm, and (c) 16410 rpm. The rotors
are whirling in clockwise which is opposite to the direction of rotation. A superharmonic
frequency component is noticed in the response while analyzing the FFT spectra.

rpm, whereas it occurred at 6615 rpm for µ = 0.5. It indicates that the NS bifurcation is
happening early for large values of µ . An arrow mark indicates it in Fig. 5.18. As a result,
the model enters into the quasi-periodic regime fastly as the friction coefficient increases,
and the rotors will be bouncing inside the stator for a longer duration. It may destroy the
rotor and stator surfaces. It is also noticed that there is no NS bifurcation observed for the
second rub-impact peak, even for large values of µ .

5.4.2 Effect of contact stiffness

Figure 5.19 shows the variations in the model response when the contact stiffness is altered.
In this analysis, the coefficient of friction is assumed as a constant, and its value is taken as
µ = 0.2.

It is noticed that as the value of contact stiffness increases, the extent of rightward bending
also increases. This is due to the modifications in the model stiffness when the value of kc is
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Fig. 5.18 Variations in the response when the coefficient of friction is increased. The
amplitude of rightward bending is shortened as the value of µ increases. No NS bifurcation is
observed for lower values of µ (0 ≤ µ ≤ 0.05), and the complete response contains period-5
vibrations. As the friction coefficient increases, the model loses its stability through the NS
bifurcation, and it happens early for large values of µ . An arrow mark indicates it.

increased. In addition, the amplitude of whirling decreases for higher values of the contact
stiffness. It indicates that the whirling of the rotor is prevented by the stator when its stiffness
is increased. During the stability analysis, it is found that the response is completely periodic
for smaller values of the contact stiffness (for kc < 0.1×108 N/m), and a period-5 motion is
observed throughout the response. As the value of kc increases, the occurrence of the NS
bifurcation is noticed. It happens at a speed of 7010 rpm for kc = 0.3×108 N/m and it occurs
at 6810 rpm for kc = 0.9×108 N/m. It indicates that the NS bifurcation takes place early
for larger values of the contact stiffness. Similar to the coefficient of friction, there is no
NS bifurcation observed in the second rub-impact peak, even for large values of the contact
stiffness.

5.5 Summary

In this chapter, the dynamic characteristics of an aero-engine under multi-disk rub-impact
is investigated using a dual-rotor model consisting of multi-stage compressors and single-
stage turbines. The rub nonlinearity is applied at all the disk positions, and it appears
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Fig. 5.19 Variations in the response when the contact stiffness is increased. The extent of
rightward bending increases as the value of contact stiffness increases. The amplitude of
whirling is decreasing for higher values of the contact stiffness. The response is completely
periodic for smaller values of the contact stiffness. As the value of kc is increased, the
occurrence of the NS bifurcation is noticed, and it happens early for larger values of the
contact stiffness.

whenever the disks exceed the clearance space. The dual-rotor system is modelled using
the tapered Timoshenko beam elements, rigid disks, and linear bearings. The total size
of the FE model is reduced using the component mode synthesis method, based on the
Craig-Bampton substructuring. The steady-state response of the model is calculated using
the approximated time variational method by taking the discrete-time points Npt as 180. A
hypersphere-based continuation technique is incorporated with ATVM to trace the unstable
branches beyond bifurcation points. The model stability is determined by perturbing them
from the equilibrium positions and monitoring the real parts of their eigenvalues. The effects
of the rub parameters such as friction coefficient and contact stiffness are also investigated
by performing a parametric analysis.

From the rub-impact analysis, it is observed that the model response is significantly
affected by the multi-disk rub-impact. The total stiffness of the model is increased when
more than two disks contact the stator simultaneously. It resulted in an increased rightward
bending of the response compared to the single-disk rub-impact problem. The amplitude of
whirling is also decreased due to the constraint effects of the casing. The bifurcations such
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as the LP and NS bifurcations are observed in the response, indicating a sudden jump and
the origin of a quasi-periodic branch, respectively. The responses such as full annular rub
and partial rub are identified by analyzing the orbit plots and the Poincaré maps. Mainly,
a period-5 motion is observed before the NS bifurcation, while a quasi-periodic motion is
noticed after the NS bifurcation. During quasi-periodic motion, some unknown fractional
components such as 0.716ω1, 0.766ω1, 0.916ω1 and 0.964ω1 are appeared in the response.
Beyond the quasi-periodic regime, the model enters into the dry friction backward whirl
in which the rotors orbit backwards with a huge amplitude. It is the most violent motion
of the rotor, and it happens at a superharmonic frequency. The results are verified using
numerical integration, and a good agreement is obtained. While performing the parametric
analysis, it is found that the amplitude of forward-leaning is shortened, and the onset of
NS bifurcation is happening early as the value of the coefficient of friction is increased. It
happened mainly due to the increased friction resistance that intensified the nonlinearities
in the model. Similarly, when the contact stiffness increases, the extent of forward-leaning
increases, and the onset of NS bifurcation is happening early.

In the proposed dual-rotor model, the fan and the squeeze film dampers (SFD) aren’t
included. However, in an actual aero-engine, a heavy bypass ratio fan and SFDs are present
at the front of the low-pressure compressor. The presence of such components completely
changes the dynamics of the system. Hence, the influence of a heavy fan disk and the SFDs
are discussed in the following chapter.





Chapter 6

The influence of squeeze film damper on
rub-impact

This chapter is mainly intended to study the influence of squeeze film damper (SFD) on
the rubbing response of an aero-engine dual-rotor model mounted on nonlinear bearing
supports. The SFD is a device mainly employed to reduce the amplitude of vibrations in
the aircraft rotor models. It is achieved by supplying a fluid film between the bearing and
housing, thereby acquiring enough damping in the bearing support. The effects of SFD on
the multi-disk rub-impact in aero-engines aren’t studied so far; hence, it is the contribution of
this work. For performing the numerical study, the dual-rotor models described in Chapters
4 & 5 have been modified by incorporating a heavy fan disk and nonlinear bearing support
at specific locations of the model. The nonlinear bearing support includes rolling contact
bearings, squirrel-cage elastic support, and squeeze film damper arrangements. Due to the
presence of heavy fan disk and the SFD, the dynamics of both the models can be completely
altered as compared to those described in Chapters 4 & 5. It is explained in detail as follows.

6.1 Dynamic modelling of nonlinear bearing support

The nonlinear bearing support generates ball bearing forces due to the Hertzian contact and
SFD forces due to the wedging of the oil (Fnl = Fball +Fs f d). The details of rolling bearings
are discussed in the previous chapter and the formulation of SFD is explained as follows.

6.1.1 Squeeze film damper model

A schematic diagram of the SFD arrangement is shown in Fig. 6.1. The rotating shaft and
the ball bearing together constitute the damper’s journal, and it whirls inside the SFD during
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its motion. Meantime, the rotation of the ball bearing’s outer ring is prevented by connecting
it to the squirrel-cage elastic support. During the whirling motion, the oil is squeezed inside
the annular clearance to produce radial and tangential oil film forces. They are derived from
Reynold’s equation based on short bearing approximation.

Fig. 6.1 Schematic diagram of the SFD arrangement including journal, squirrel-cage elastic
support, and housing.

The pressure distribution inside a cavitated oil film is written in rotating coordinates
(Chen et al. (2020)) as,

P(θ ,z) =
6η

c2

(
z2 − L2

4

)(εω sinθ + ε̇ cosθ)

(1+ ε cosθ)3 (6.1)

where ε and ε̇ are the eccentricity ratio (ε = e/c) and its first derivative respectively. Now,
the force components in radial and tangential direction can be written as,{
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By expanding the Eq. 6.2, the radial and tangential force components can be rewritten as,

fsr =−ηRL3

c2 [I1ε̇ + I2εω] fsθ =−ηRL3

c2 [I2ε̇ + I3εω] (6.3)
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where,
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∫
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The integrals I1, I2 and I3 can be determined analytically by taking the integral interval
as [π,2π]. Finally, the nonlinear oil film forces in radial and tangential direction can be
expanded as (Inayat-Hussain (2009)),

fsr =
ηRL3

c2

[
πε̇(1+2ε2)

2(1− ε2)5/2 +
2ωε2

(1− ε2)2

]

fsθ =
ηRL3

c2

[
2εε̇

(1− ε2)2 +
πωε

2(1− ε2)3/2

] (6.5)

For the numerical analysis, the radial and tangential squeeze film forces are transformed into
the Cartesian coordinate system as,{

fsx

fsy

}
=

[
cosθ −sinθ

sinθ cosθ

]{
fsr

fsθ

}
(6.6)

The oil-film force vector Fs f d is formed by inserting fsx and fsy in the respective positions
corresponding to the SFD location. In this study, two dual-rotor models are utilized to
investigate the influence of SFD on the rub-impact responses. They are explained in detail as
follows.

6.2 Simplified dual-rotor with overhung fan and SFD

The simplified dual-rotor model described in Chapter 4 has been modified by attaching an
overhung fan at the front of disk 1 and incorporating an SFD near the fan disk as shown
in Fig. 6.2. Both the rotors are supported on ball bearings except the inter-shaft bearing,
which is assumed as a linear spring-damper model. The SFD is incorporated with bearing 1
since the deflection of the rotor at the bearing 1 location may be significant due to the heavy
unbalanced forces in the fan. The physical parameters of the fan disk, ball bearings and SFD
are listed in Tab. 6.1-6.3. A Rayleigh damping is also accommodated in the model with its
parameters as listed in Tab. 6.1.
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Fig. 6.2 Schematic diagram of a simplified dual-rotor model consisting of an overhung fan
and SFD arrangement.

Table 6.1 Physical properties of the fan disk and elastic support

Physical property Value
Mass of fan disk (kg) 16.2
Diametral moment of inertia of fan disk (kg.m2) 0.255
Polar moment of inertia of fan disk (kg.m2) 0.509
Rayleigh Damping Coeff. (Mass) 11.63
Rayleigh Damping Coeff. (Stiffness) 2.55e-6
Elastic support stiffness ks1 (N/m) 36e6
Elastic support damping cs1 (Ns/m) 100
Elastic support stiffness ks2 (N/m) 36e6
Elastic support damping cs2 (Ns/m) 100
Mass unbalance in fan disk (kgm) 4e-5
Mass unbalance in disk 3 (kgm) 6e-5

Table 6.2 Parameters used in the ball bearing models

Bearing order Rb (mm) rb (mm) Nb Cb (N/m
3
2 ) c0 (µm)

Bearing 1 22.746 15.246 18 6.58e8 10
Bearing 2 22.746 15.246 33 13.25e8 12
Bearing 3 31.196 30.126 24 11.58e8 16

Table 6.3 Parameters of the SFD used in the modified dual-rotor model

Parameter Description Value
R (mm) Journal radius 22.746
L(mm) Width of damper 11.000
c (mm) Clearance 0.1
η (Pa.s) Viscosity 5.66e-3

Ka (N/m) Squirrel-cage stiffness 52e6
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Initially, the mode shapes and Campbell diagrams of the modified dual-rotor model
are determined. The first two mode shapes are shown in Fig. 6.3 in which the first mode
represents the pitching vibration of the fan disk about the bearing 1 position. Fig. 6.4
shows the Campbell diagrams of the model when the speed ratio is 1.2. Due to the presence
of overhanging fan disk, the gyroscopic effect becomes very significant. As a result, the
separation between the forward and backward whirl frequencies is large compared to Fig.
4.4, especially for the first mode of vibration. It indicates that the dynamics of the dual-rotor
model is remarkably altered by the addition of an overhanging fan disk.

(a) (b)

Fig. 6.3 The first two mode shapes of the modified dual-rotor model at (a) 47.18 Hz and (b)
123.94 Hz.

(a) excited by inner rotor (b) excited by outer rotor

Fig. 6.4 Campbell diagrams of the modified dual-rotor model

In order to understand the effects of SFD, a frequency response analysis is performed
by applying mass unbalances at the fan and disk 3 locations. The magnitudes of unbalance
forces are listed in Tab. 6.1. The analysis is performed using the numerical integration
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technique. Figure 6.5 shows the comparison of rotor responses for different values of
the SFD clearance and oil viscosity. Due to the presence of ball bearings, a jump-down
phenomenon is noticed in the frequency response diagram. It is mainly due to the hard
spring nature of the ball bearings. When an SFD has been introduced in the model significant
reduction in the amplitude is happened. The percentage reduction in the amplitudes of model
responses for different values of SFD parameters is listed in Tab. 6.4. It is noticed that as
the value of the clearance decreases, the amplitude of the model response also decreases. In
contrast, a reduction in the oil viscosity increases amplitude. It implies that an SFD with
low clearance and moderately high oil viscosity can significantly reduce vibration amplitude.
However, reducing the clearance below a certain value may result in contact nonlinearity,
and increasing the viscosity above a particular value may result in locking. Hence, it is the
designer’s responsibility to calculate the optimum SFD parameters for the effective reduction
of vibration.

(a) (b)

Fig. 6.5 Comparison of the unbalance responses of the modified dual-rotor model determined
at fan disk location for different values of (a) SFD clearance and (b) oil viscosity.

Table 6.4 Percentage reduction in the amplitudes compared to no SFD response

Parameter
SFD Clearance (mm) SFD oil viscosity (Pa.s)
c = 0.10 c = 0.05 η = 2.56 ×10−3 η = 5.66 ×10−3 η = 8.86 ×10−3

% of reduction 31.12 73.57 22.37 31.12 37.46
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6.2.1 Rub-impact response of dual-rotor in the presence of SFD

In order to study the influence of SFD on the rub-impact response, a stator is introduced at
the fan disk location. When the deflection of the fan disk exceeds the clearance value, it
contacts the stator. The value of rotor-stator contact stiffness, clearance and coefficient of
friction are taken as kc = 0.3×108 N/m, δ = 0.1 mm, µ = 0.01. When the rotor-stator contact
has happened, a forward-leaning of the response curve is observed due to the increase in the
model stiffness. The analysis is carried out using numerical integration to obtain the nature of
the rub-impact response. The graphs showing the comparison of rub-impact responses with
respect to the SFD clearance and oil viscosity are given in Fig. 6.6. It shows the response at
the fan location. The introduction of the SFD in the model made significant variations in the
response. From Fig. 6.6, it is seen that by decreasing the clearance and by increasing the oil
viscosity, the range of speed for which the rub-impact happens can be reduced remarkably.
For low clearance and high viscosity, the jump-down phenomenon happens so early that the
model shifts to no rub region fastly. This is the main advantage of incorporating the SFD
into the model.

(a) (b)

Fig. 6.6 Comparison of the model response during rub-impact for different values of (a) SFD
clearance and (b) oil viscosity determined at the fan disk location; kc = 0.3×108 N/m, δ =
0.1 mm, µ = 0.01.

Figure 6.7 shows the variations in the response when the contact stiffness is altered. The
values of SFD viscosity and clearance are taken as η = 5.66×10−3 Pa.s and c = 0.1 mm
respectively. As observed earlier, the extend of rightward bending is increased as the value
of contact stiffness is increased. For large values of kc, some irregularities are noticed during
a certain speed range. In order to understand more about them, the Poincaré maps and FFT
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spectra are determined at different rotating speeds as shown in Fig. 6.8-6.9. The contact
stiffness is taken as kc = 1.025 ×108 N/m. A period-5 motion is noticed before the initial
rub-impact, which is verified by checking the Poincaré map at a speed of 11800 rpm as shown
in Fig. 6.8a. While observing the FFT spectrum, it is seen that in addition to the excitation
frequency components, additional components such as (1, -2), (2, -1), (2, -3), (3, -2) and (4,
-3) are also noticed in the response. This is mainly due to the presence of nonlinearity in the
ball bearings.

Fig. 6.7 Variations in the response when the contact stiffness is altered; η = 5.66×10−3 Pa.s,
c = 0.1 mm

Once the contact has happened, a chaotic nature is observed in the speed range of 11940-
12940 rpm that can be identified by looking at the Poincaré map and the FFT spectrum at
12100 rpm and 12600 rpm. The Poincaré map contains multiple scattered points, and the FFT
diagram shows unknown frequency components, indicating the chaotic behaviour. Beyond
12940 rpm, a period-5 motion is again noticed in the spectrum, which can be verified from
the Poincaré map at 13400 rpm and 14200 rpm. At 14410 rpm, a jump-down phenomenon
has happened, and the motion is transferred to no rub region. While analyzing the FFT
spectrum at 15500 rpm, it is seen that only excitation frequency components are coming
in the response, indicating that the effects of ball bearings are negligible. When the SFD
parameters are varied, there are no variations observed in the nature of the responses as
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(a) (b) (c)

Fig. 6.8 Poincaré map and FFT spectrum of the model during rub-impact at a) 11800 rpm b)
12100 rpm and c) 12600 rpm, obtained using numerical integration; kc = 1.025 ×108 N/m, η

= 5.66×10−3 Pa.s, c = 0.1 mm

(a) (b) (c)

Fig. 6.9 Poincaré map and FFT spectrum of the model during rub-impact at a) 13400 rpm b)
14200 rpm and c) 15500 rpm, obtained using numerical integration; kc = 1.025 ×108 N/m, η

= 5.66×10−3 Pa.s, c = 0.1 mm
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shown in Fig. 6.10. For all values of the SFD parameters, a period-5 motion is observed
before the initial rub-impact, and a chaotic motion is noticed after the rub-impact. Later,
the rotor undergoes a period-5 motion beyond a certain speed, and finally, a jump down
happens to no-rub motion. As described earlier, the presence of SFD made the jump-down
phenomenon early and reduced the speed range for which the rub-impact has happened.

(a) (b)

Fig. 6.10 Comparison of the responses when contact stiffness is kc = 1.025 ×108 N/m for
different values of (a) SFD clearance and (b) oil viscosity. Irregularities in the response are
still there, even though the SFD parameters are altered.

6.3 Aero-engine model with an overhung fan and SFD

The aero-engine dual-rotor model described in Chapter 5 has been modified by adding a
high bypass ratio fan at the front of the low-pressure compressor and an SFD at bearing 1
location. The schematic diagram of the modified aero-engine model is shown in Fig. 6.11.
The parameters of the SFD are listed in Tab. 6.5 and the properties of fan disk are provided
in Tab. A. The range of allowable eccentricities for which no rub happens is determined
using the unbalance response analysis as 1.684×10−3 kg m. Hence, in this work, the fan
eccentricity is taken as 2.2642×10−3 kg m to study the effects of rub-impact.

Table 6.5 Parameters of the SFD used in the modified aero-engine model

Parameter Description Value
R (mm) Journal radius 59.314
L(mm) Width of damper 28.7
c (mm) Clearance 0.03
η (Pa.s) Viscosity 5.66e-3

Ka (N/m) Squirrel-cage stiffness 1.22e9
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Fig. 6.11 Schematic diagram of the aero-engine dual-rotor model consisting of an overhung
fan and SFD arrangement

Figure 6.12 shows the Campbell diagrams of the modified aero-engine model. Due to the
presence of a heavy fan disk, pitching happens about the bearing 1 location during the first
mode of vibration. As a result, the separation between forward and backward frequencies
is increased, as shown in Fig. 6.12. The presence of the heavy fan disk made significant
variations in the dynamics of the model compared to that described in Chapter 5. The critical
speeds of the modified aero-engine model are listed in Tab. 6.6.

(a) excited by inner rotor (b) excited by outer rotor

Fig. 6.12 Campbell diagrams of the modified aero-engine dual-rotor model
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Table 6.6 Critical speeds of the modified aero-engine model

Order
Excited by low pressure rotor (rpm) Excited by high pressure rotor (rpm)
(BW) (FW) (BW) (FW)

1 2850 6675 2998 6520
2 6260 8710 6408 8462

The unbalance responses of the model with and without rolling contact bearings are
plotted at the fan disk location as shown in Fig. 6.13. It is obtained using the ATVM
technique by taking Npt as 150. The four peaks corresponding to the first two modes of
vibrations are seen in the response, in which the resonance peak corresponding to the first
critical speed (speed = 6675 rpm) is significant at the fan disk location. Other resonance
amplitudes are small due to the damping in the model. A forward-leaning is observed in the
response because of the hard spring characteristics of the contact bearings.

Fig. 6.13 Unbalance response of the modified aero-engine determined at the fan disk. The
responses of the model when supported on linear and rolling contact bearings are compared.

The unbalance responses are plotted at other disk locations as well. It is shown in Fig.
6.14. Similar to the fan disk, the LPC disks also have large displacements during the first
critical speed. However, the LPT, HPC and HPT disks are displaced more during the second
vibration mode (Speed = 7051 and 8710 rpm). In Fig. 6.14b-6.14d, the first peak corresponds
to the resonance when the rotor speed is 1/1.2 times the critical speed of the system with
respect to the high-pressure rotor excitation, whereas the second peak corresponds to the
resonance when the rotor speed is equal to the critical speed of the model with respect to the
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low-pressure rotor excitation. When the SFD is incorporated, the amplitudes of vibrations
are reduced remarkably, as shown in Fig. 6.15. The percentage of reduction in amplitudes
compared to the no SFD response is listed in Tab. 6.7.

(a) (b)

(c) (d)

Fig. 6.14 Unbalance responses calculated at (a) LPC (b) LPT (c) HPC and (d) HPT disk
positions. LPC disks have large displacements during the first critical speed. However, the
LPT, HPC and HPT disks are displaced more during the second mode of vibration.

Table 6.7 Percentage reduction in the amplitudes of aero-engine vibration compared to no
SFD response

Parameter
SFD Clearance (mm) SFD oil viscosity (Pa.s)
c = 0.40 c = 0.25 η = 5.66 ×10−3 η = 8.13 ×10−3 η = 10.85 ×10−3

% of reduction 11.44 53.08 30.6 43.31 55.72

6.3.1 Rub-impact response of the modified aero-engine model

For the rub-impact analysis, the rotor-stator contact stiffness, clearance and coefficient of
friction are taken as kc = 0.3×108 N/m, δ = 0.1 mm and µ = 0.2. The analysis is carried
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(a) (b)

Fig. 6.15 Comparison of unbalance responses of the aero-engine model determined at fan
disk location when SFD (a) clearance and (b) viscosity are varied.

(a) (b)

(c) (d)

Fig. 6.16 Rub-impact responses calculated at (a) LPC (b) LPT (c) HPC and (d) HPT disk
positions when no SFD is incorporated into the model
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out using the ATVM technique by taking Npt as 180. Figure 6.16 shows the rub-impact
responses of the aero-engine model, determined at different disk locations when no SFD
is incorporated at bearing 1 location. It is observed that in addition to the fan disk, LPC-1,
LPT, HPC-7, HPC-8, HPC-9, and HPT disks are also undergoing rub-impact at different
rotating speeds as shown in Fig. 6.16. Hence, it can be stated that the multi-disk rub-impact
is happening in the model.

Later, the stability of the model is analyzed, and it is plotted at the fan disk location as
shown in Fig. 6.17. An NS bifurcation is noticed at a speed of 6900 rpm, which is verified by
checking the orbit plot and Poincaré map at different speeds, before and after NS bifurcation
as shown in Figs. 6.18-6.19. A period-5 motion is observed before the NS bifurcation at
6650 rpm, while a chaotic motion is noticed after the NS bifurcation at a speed of 6980 rpm.
In Fig. 6.17, a small peak is observed in the response curve between the speed range of
7700-8100 rpm as circled. It actually happens due to the rub-impact of LPT, HPT and HPC
disks during the second vibration mode. Because of the coupling of rotors, such behaviour
appears in the response of the fan and LPC disks as well. It can be seen from Fig. 6.20 in
which the rub-impact curves of LPT and HPT disks are compared with that of the fan disk.

Fig. 6.17 Stability diagram plotted at the fan disk location without considering the presence
of SFD. The circled part shows the small peak appearing due to rub-impact.
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Fig. 6.18 Orbit plot and Poincaré map plotted at the fan location when the rotating speed is
6650 rpm which is before the NS bifurcation. A period-5 motion is observed in the response.

Fig. 6.19 Orbit plot and Poincaré map plotted at the fan location when the rotating speed is
6980 rpm which is after the NS bifurcation. A chaotic motion is observed in the response.

In order to understand the influence of SFD, the model responses during different values
of the SFD clearance and oil viscosity are compared at the fan disk location as shown in
Fig. 6.21. In the absence of the SFD, the initial rub-impact has happened at a speed of 6400
rpm. The NS bifurcation is noticed at a speed of 6900 rpm, and the maximum amplitude
of whirling is reached up to 0.193 mm. When an SFD with clearance c = 0.025 mm is
introduced, the initial rub-impact is delayed to 6632 rpm. However, the NS bifurcation is
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Fig. 6.20 The small peak observed in the fan response is compared against the rub-impact
response of the LPT and HPT disks during the second mode of vibration (between the speed
range of 7700-8100 rpm). It is the second resonance curve and it is amplified in the fan
response due to the rub-impact at other disks.

(a) (b)

Fig. 6.21 Comparison of the system response during rub-impact for different values of (a)SFD
clearance and (b) SFD oil viscosity. Clearance is varied between c = 0.025-0.04 mm and oil
viscosity is varied between η = 5.66×10−3- 10.85×10−3 Pa.s

noticed at the same speed as that of the model with no SFD. The maximum amplitude of
whirling is significantly reduced to 0.127 mm that proves the importance of the SFD. When
the oil viscosity of the SFD is increased to η = 10.85 ×10−3 Pa.S, the initial rub-impact is
delayed to 6651 rpm, and the maximum amplitude is reduced to 0.123 rpm. Hence, it can
be stated that due to the presence of SFD, the initial rub-impact is delayed, and the range of



114 The influence of squeeze film damper on rub-impact

rub-impact is also reduced. The amplitudes of vibrations are significantly reduced, and it is
listed in Tab. 6.8. Figure 6.22 shows the rub-impact responses at other disk locations when
the SFD is incorporated at the bearing location. In addition to the fan disk, the vibrations
of the LPC disks are also reduced due to the SFD. However, there are no variations in
the responses of LPT, HPC and HPT disks. This is mainly happening because the SFD is
incorporated at bearing 1 location, which is far away from LPT, HPC and HPT disks.

Table 6.8 Percentage of reduction in rub-impact amplitudes of the aero-engine for different
values of the SFD parameter

Parameter
SFD Clearance (mm) SFD oil viscosity (Pa.s)
c = 0.040 c = 0.025 η = 5.66 ×10−3 η = 8.13 ×10−3 η = 10.85 ×10−3

% of reduction 7.46 34.19 19.68 27.97 36.27

(a) (b)

(c) (d)

Fig. 6.22 Rub-impact responses calculated at (a) LPC (b) LPT (c) HPC and (d) HPT disk
positions when SFD is incorporated into the model. In addition to the fan disk, the vibrations
of the LPC disks are also reduced due to the SFD.
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6.4 Summary

In this chapter, the influence of SFD parameters on the rub-impact response of a dual-rotor
model mounted on the nonlinear bearing support is investigated. Mainly two rotor models,
namely, a simplified dual-rotor model and a two-spool aero-engine model, are utilized to
perform the analysis. The nonlinear bearing support includes the rolling contact bearings,
SFD and squirrel-cage elastic support. The rolling contact bearing is modelled using the
Hertz contact theory, while the SFD is modelled based on Reynold’s equation. Due to the
presence of rolling contact bearings, the frequency components such as (1, -2), (2, -1), (2, -3),
(3, -2) and (4, -3) are seen in the response in addition to the excitation frequency components.
Due to the hard spring characteristics of the ball bearing, a jump-down phenomenon has
happened to a low amplitude orbit. In the presence of SFD, the amplitude of rotor vibrations
are significantly reduced. It is observed that by decreasing the clearance and increasing oil
viscosity, the range of speed for which the rub-impact happens can be reduced remarkably.
The initial rub-impact is also delayed due to the introduction of the SFD in the model. Thus,
an SFD with proper parameters can significantly reduce the consequences of the multi-disk
rub-impact occurring due to the FBO and windmilling action.





Chapter 7

Conclusions

In this study, the dynamic analysis of an aero-engine undergoing the multi-disk rub-impact is
investigated in detail. The aircraft engine is made up of a multi-disk rotor system; hence, the
possibility of multi-disk rub-impact is high during the FBO and windmilling action. Since
the conduction of the experimental tests to analyze the FBO is very expensive, it is necessary
to carry out the numerical analysis of rub-impacts. In literature, most of the researchers have
examined the single-disk rub-impact problem happening in a simplified dual-rotor models.
However, the study of multi-disk rub-impact occurring in an aero-engine is necessary to
reduce the consequences of the FBO and windmilling. As a result, the main contribution of
the work is to study the multi-disk rub-impact happening in an aero-engine by developing a
dual-rotor model consisting of multiple disks, rolling contact bearings and dampers.

A dual-rotor model similar to CFM56-5B engine is utilized to carry out the analysis, which
consists of multi-stage compressors and turbines in both rotors. The dynamic modelling of
the dual-rotor is performed using the FE method, including the tapered Timoshenko beam
elements. However, the FE modelling resulted in a very large DOF model that will consume
much computation time during the solution process. Hence, a proper model reduction
technique needs to be used. It should be noted that the rotordynamic analysis includes
asymmetric matrices and frequency-dependent gyroscopic effects. As a result, the model
reduction techniques that are effective in structural dynamic problems won’t be suitable
for rotordynamic problems. In this work, a modified model reduction technique has been
developed that can reduce the models with asymmetric matrices using quadratic eigenvalue
decomposition. The method is based on the CMS technique coupled with the Craig-Bampton
substructuring. A Nelson-McVaugh rotor model is used to verify the effectiveness of the
model reduction technique. It is observed that the computation time for the reduced model is
decreased by 50% of that of the complete model with the results exactly matching to each
other, underlining the efficiency of the reduction technique.
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Under the action of unbalaced forces and external excitations, the aero-engine model
is subjected to multi-frequency excitation, with the frequency components being fractional
multiples of each other. Generally, the MHBM-AFT technique is employed to solve the multi-
frequency excitation problems. However, its formulation is very complicated for more than
two-frequency excitation problems since the formulation of the higher dimensional FFT is
very complex during the AFT procedure. Moreover, the alternate transformation between the
time and frequency domain during the calculation of the nonlinear Jacobian is cumbersome.
The ATVM technique overcomes this difficulty and performs the complete analysis in the
time domain alone. In this technique, the multi-frequency excitation is expressed in terms of a
fundamental frequency which is the common divisor of the excitation frequency components.
If the frequency ratio is irrational, it is approximated to the nearest rational number, and then
the greatest common divisor of the approximated frequency components is calculated. As a
result, the response is approximate, and its accuracy is highly dependent on how close the
approximated ratios are with the actual ones. It is achieved by an optimization procedure
that will find an optimum frequency ratio that minimizes the error between the actual and
approximated responses. The modified method is called the approximate time variational
method.

The effectiveness of the ATVM technique is validated using three nonlinear mechanical
models subjected to the multi-frequency quasi-periodic excitations. The results are compared
with that of the MHBM-AFT and numerical integration techniques. An excellent match is
obtained when proper approximated frequency ratios are taken after the optimization proce-
dure. However, the time taken for getting the solution is large for the ATVM compared to the
MHBM-AFT technique, and it increases with the extent of nonlinearity. But, the easiness of
the ATVM in extending the analysis beyond the two-frequency excitation problems validates
its usefulness.

After validating the proposed methodology, it is applied in the nonlinear dynamic analysis
of a simplified dual-rotor models undergoing a single-disk rub-impact. Two modes of rotor
operations, namely co-rotation and counter-rotation, are included in the analysis to study their
effects on the response behaviour. The Campbell diagrams and the unbalance responses of
the dual-rotor model are determined for both modes of rotor operations. From the Campbell
diagrams, it is observed that the critical speeds are different for both co and counter rotations.
For counter-rotation, the forward critical speeds are smaller, and backward critical speeds
are larger compared to that of co-rotation. This is mainly due to the cancellation of the
gyroscopic moments in the case of counter-rotation. Moreover, during the counter-rotation,
the whirling direction depends on the value of rotating speed. When contact is initiated,
a rightward bending of the response curve is observed as it touches the stator. Due to the
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presence of inter-shaft bearing, the coupling of the inner and outer rotor vibrations has
happened. As a result, the outer rotor also showed a similar rightward bending, although
it didn’t undergo any rub-impact. The stability of the model is assessed using a technique
based on the Floquet theory. The Floquet exponents are monitored during the continuation
procedure to detect the bifurcation points. Mainly, LP and NS bifurcations are observed
in the responses when the rotor touches the stator. It is observed that the direction of rotor
rotation has a significant effect on the onset of NS bifurcation and dry friction backward
whirl. For the same set of model parameters, the onset of NS bifurcation and dry friction
backward whirl happened early for the counter-rotating model compared to the co-rotating
model. As a result, a co-rotating model will be preferable in a dual-rotor when considering
the stability of the model during rub-impact.

Finally, the proposed numerical technique is employed for obtaining the dynamic charac-
teristics of an aero-engine under multi-disk rub-impact. From the rub-impact analysis, it is
observed that the response of the model is significantly affected by the multi-disk rub-impact.
The total stiffness of the model is increased when more than two disks contact the stator
simultaneously. It resulted in an increased rightward bending of the response compared to
the single-disk rub-impact problem. The amplitude of whirling is also decreased due to the
constraint effects of the casing. The bifurcations such as the LP and NS bifurcations are
observed in the response, indicating a sudden jump and the origin of a quasi-periodic branch,
respectively. The responses such as full annular rub and bouncing motion are identified by
analyzing the orbit plots and the Poincaré maps. Mainly, a period-5 motion is observed before
the NS bifurcation, while a quasi-periodic motion is noticed after the NS bifurcation. During
quasi-periodic motion, some unknown fractional components such as 0.716ω1, 0.766ω1,
0.916ω1 and 0.964ω1 are appeared in the response. Beyond the quasi-periodic regime, the
model enters into the dry friction backward whirl in which the rotors orbit backwards with a
huge amplitude. It is the most violent motion of the rotor, and it happens at a superharmonic
frequency. A parametric analysis is also conducted to understand the effects of rub and SFD
parameters on the model response. It is found that the amplitude of rightward bending is
shortened, and the onset of NS bifurcation is happening early as the value of the friction
coefficient is increased. As a result, the model quickly enters into the quasi-periodic motions
for large values of µ . Similar nature is observed for the rotor-stator contact stiffness as well.
When an SFD has been introduced in the model significant reduction in the amplitude has
happened. It is seen that by decreasing the clearance and increasing oil viscosity, the range
of speed for which the rub-impact happens can be reduced remarkably. For low clearance
and high oil viscosity, the jump-down phenomenon occurs so early that the model quickly
shifts to no rub region.
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From the complete analysis, it can be concluded that the study of multi-disk rub-impact in
the aero-engines is critical in avoiding the consequences of FBO and windmilling. However,
there are certain limitations in the current work. The proposed ATVM technique can’t capture
the quasi-periodic branches beyond bifurcation points since it involves unknown irrational
frequency components. The numerical integration is required to get the quasi-periodic
branches beyond the NS bifurcation. This is a major limitation of the proposed ATVM, and
it needs to be modified in future. Moreover, the experimental validation of the multi-disk
rub-impact is lacking in this work. Although the numerical procedure is experimentally
validated, the results of the multi-disk rub-impact in the aero-engine model need to be verified
experimentally. Hence, the possible research extensions of this work are listed as follows.

• The extension of the TVM in capturing the quasi-periodic motions and dry friction
backward whirl will be a challenging topic in the future. The TVM can be modified by
introducing the concept of hypertime in the formulation as in the MHBM. Then, the
response will be periodic for each of the dimensions, even though it contains irrational
frequency components. The technique may be termed as the multi-time variational
method, and its development in the quasi-periodic excitation problems will be an
exciting area.

• An experimental study of the multi-disk rub-impact in an aero-engine model will be
an interesting topic in the future. The development of the experimental setup will
be a massive task since the aero-engine model has a complex structure. Hence, the
analysis can be started with a simplified dual-rotor model consisting of a single-stage
compressor and turbine in each rotor. The results of the present numerical study can
be validated with the experimental results for further clarifications of the multi-disk
rub-impact phenomenon.



Appendix A

Physical properties and geometrical
dimensions of the model

Table A.1 Physical properties of the model (Jin et al. (2019))

Physical property Value Physical property Value
Mass of LPC-1 disk (kg) 6.386 Moment of inertia of LPC-1 disk (kg.m2) 0.143
Mass of LPC-2 disk (kg) 5.723 Moment of inertia of LPC-2 disk (kg.m2) 0.122
Mass of LPC-3 disk (kg) 5.397 Moment of inertia of LPC-3 disk (kg.m2) 0.115
Mass of LPC-4 disk (kg) 4.511 Moment of inertia of LPC-4 disk (kg.m2) 0.101
Mass of HPC-1 disk (kg) 1.727 Moment of inertia of HPC-1 disk (kg.m2) 0.035
Mass of HPC-2 disk (kg) 2.002 Moment of inertia of HPC-2 disk (kg.m2) 0.038
Mass of HPC-3 disk (kg) 3.075 Moment of inertia of HPC-3 disk (kg.m2) 0.048
Mass of HPC-4 disk (kg) 2.922 Moment of inertia of HPC-4 disk (kg.m2) 0.053
Mass of HPC-5 disk (kg) 3.424 Moment of inertia of HPC-5 disk (kg.m2) 0.068
Mass of HPC-6 disk (kg) 3.774 Moment of inertia of HPC-6 disk (kg.m2) 0.073
Mass of HPC-7 disk (kg) 4.003 Moment of inertia of HPC-7 disk (kg.m2) 0.081
Mass of HPC-8 disk (kg) 4.098 Moment of inertia of HPC-8 disk (kg.m2) 0.083
Mass of HPC-9 disk (kg) 4.005 Moment of inertia of HPC-9 disk (kg.m2) 0.086
Mass of LPT-disk (kg) 18.257 Moment of inertia of LPT-disk (kg.m2) 0.749
Mass of HPT-disk (kg) 26.331 Moment of inertia of HPT-disk (kg.m2) 0.86
Mass of fan disk (kg) 254.40 Moment of inertia of fan disk (kg.m2) 10.86
Elastic modulus of Ti alloy ETi (GPa) 105 Elastic modulus of Ni alloy ENi (GPa) 206
Density of Ti alloy ρTi (Kg/m3) 4350 Density of Ni alloy ρNi (Kg/m3) 8200
Poisson ratio of Ti alloy νTi 0.26 Poisson ratio of Ni alloy νNi 0.3
Stiffness of bearing-1 (N/m) 1.22×109 Damping of bearing-1 (Ns/m) 2750
Stiffness of bearing-2 (N/m) 1.00×109 Damping of bearing-2 (Ns/m) 4200
Stiffness of bearing-3 (N/m) 1.18×109 Damping of bearing-3 (Ns/m) 5500
Stiffness of bearing-4 (N/m) 2.04×108 Damping of bearing-4 (Ns/m) 4700
Stiffness of bearing-5 (N/m) 1.37×109 Damping of bearing-5 (Ns/m) 5000
Eccentricity of LPC-3 disk (mm) 0.08 Eccentricity of HPC-7 disk (mm) 0.14
Eccentricity of LPT disk (mm) 0.03 Eccentricity of HPT disk (mm) 0.05
Rayleigh Damping Coeff. (Mass) 27.3374 Rayleigh Damping Coeff. (Stiffness) 5.5848×10−6
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Table A.2 Geometrical dimensions of the shaft elements (Jin et al. (2019))

Element length (m) Value Element radius Value
rLi (m) rLo (m) rRi (m) rRo (m)

l1 2×0.025 elements in l1 0.0355 0.0475 0.0355 0.0475
l2 3×0.016 elements in l2 0.0405 0.0475 0.1100 0.1180
l3 2×0.065 elements in l3 0.1100 0.1180 0.1740 0.1820
l4 2×0.047 elements in l4 0.1740 0.1820 0.1980 0.2060
l5 2×0.033 elements in l5 0.1980 0.2060 0.1980 0.2060
l6 3×0.041 elements in l6 0.1280 0.1380 0.0405 0.0475
l7 5×0.079 elements in l7 0.0355 0.0405 0.0355 0.0405
l8 1×0.018 elements in l8 0.0355 0.0475 0.0355 0.0405
l9 1×0.066 elements in l9 0.0355 0.0405 0.0355 0.0405
l10 2×0.029 elements in l10 0.0355 0.0405 0.0355 0.0440
l11 3×0.025 elements in l11 0.0355 0.0440 0.0395 0.0460
l12 6×0.045 elements in l12 0.0395 0.0460 0.0565 0.0625
l13 11×0.043 elements in l13 0.0565 0.0625 0.0565 0.0625
l14 2×0.048 elements in l14 0.0565 0.0625 0.0480 0.0625
l15 2×0.048 elements in l15 0.0480 0.0625 0.0570 0.0650
l16 2×0.052 elements in l16 0.0570 0.0650 0.0415 0.0495
l17 4×0.062 elements in l17 0.0415 0.0495 0.0415 0.0495
l18 1×0.026 elements in l18 0.0530 0.0590 0.0530 0.0590
l19 1×0.065 elements in l19 0.0530 0.0590 0.0540 0.0600
l20 1×0.028 elements in l20 0.0540 0.0600 0.0540 0.0610
l21 1×0.036 elements in l21 0.0540 0.0610 0.0550 0.0620
l22 1×0.036 elements in l22 0.0550 0.0620 0.0870 0.0920
l23 1×0.050 elements in l23 0.0870 0.0920 0.1630 0.1680
l24 1×0.072 elements in l24 0.1520 0.1580 0.1650 0.1710
l25 1×0.062 elements in l25 0.1650 0.1710 0.1840 0.1900
l26 1×0.050 elements in l26 0.1840 0.1900 0.2000 0.2060
l27 1×0.044 elements in l27 0.2000 0.2060 0.2160 0.2210
l28 1×0.038 elements in l28 0.2160 0.2210 0.2300 0.2350
l29 1×0.036 elements in l29 0.2300 0.2350 0.2410 0.2460
l30 1×0.036 elements in l30 0.2410 0.2460 0.2500 0.2540
l31 1×0.036 elements in l31 0.2500 0.2540 0.2570 0.2600
l32 1×0.035 elements in l32 0.2570 0.2600 0.2320 0.2370
l33 1×0.036 elements in l33 0.2130 0.2180 0.1280 0.1330
l34 1×0.036 elements in l34 0.1280 0.1330 0.1220 0.1280
l35 1×0.036 elements in l35 0.1220 0.1280 0.1220 0.1280
l36 1×0.035 elements in l36 0.1220 0.1280 0.1220 0.1280
l37 2×0.043 elements in l37 0.1220 0.1280 0.1020 0.1070
l38 6×0.060 elements in l38 0.1020 0.1070 0.1020 0.1070
l39 1×0.048 elements in l39 0.1020 0.1070 0.1080 0.1170
l40 1×0.074 elements in l40 0.1080 0.1170 0.0720 0.0800
l41 2×0.046 elements in l41 0.0720 0.0800 0.0720 0.0800

Table A.3 Parameters used in the rolling contact bearing models (Jin et al. (2019))

Bearing order Type Rb (mm) rb (mm) Nb Cb (N/mn) c0 (µm)
Bearing 1 Roller 59.314 51.786 18 6.58e9 10
Bearing 2 Ball 101.832 85.857 33 13.25e9 12
Bearing 3 Roller 65.858 55.126 24 11.58e9 16
Bearing 4 Ball 101.832 85.857 33 13.25e9 22



Appendix B

Dynamic matrices of a conical element

L = length of the element

ρ = mass density

ν = Poisson ratio

rLi = inner radii of the element at first node

rLo = outer radii of the element at first node

rRi = inner radii of the element at second node

rRo = outer radii of the element at second node

E = Young’s modulus

G = Shear modulus

Since the cross-section parameters of the conical element vary with the section position, they
are expressed in terms of their mean values by assuming the section is very short. Hence, the
shear deformation coefficient can be calculated using the expression given below,

ϕs =
12EImχ

GAmL2

where Am = π(r2
mo − r2

mi), Im = π

4 (r
4
mo − r4

mi) and χ = 7+6ν

6(1+ν)

[
1+ 20+12ν

7+6ν

(
rmormi

r2
mo+r2

mi

)2]
. Here,

rmo and rmi are the mean values of outer and inner radii respectively. Let, A and I are the
section area and second moment of area of the element at the left end.
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Now, the dynamic matrices of a conical shaft element can be written as,

[
Mt

e
]

con =
ρAL

1260(1+ϕs)2



m1 0 0 m2 m3 0 0 −m4

0 m1 −m2 0 0 m3 m4 0
0 −m2 m5 0 0 −m6 −m7 0

m2 0 0 m5 m6 0 0 −m7

m3 0 0 m6 m8 0 0 −m9

0 m3 −m6 0 0 m8 m9 0
0 m4 −m7 0 0 m9 m10 0

−m4 0 0 −m7 −m9 0 0 m10



[
Mr

e
]

con =
ρI

210L(1+ϕs)2



m11 0 0 m12 −m11 0 0 m13

0 m11 −m12 0 0 −m11 −m13 0
0 −m12 m14 0 0 m12 −m15 0

m12 0 0 m14 −m12 0 0 −m15

−m11 0 0 −m12 m11 0 0 −m13

0 −m11 m12 0 0 m11 m13 0
0 −m13 −m15 0 0 m13 m16 0

m13 0 0 −m15 −m13 0 0 m16



[
Ge

]
con =− ρI

105L(1+ϕs)2



0 −m11 m12 0 0 m11 m13 0
m11 0 0 m12 −m11 0 0 m13

−m12 0 0 −m14 m12 0 0 m15

0 −m12 m14 0 0 m12 −m15 0
0 m11 −m12 0 0 −m11 −m13 0

−m11 0 0 −m12 m11 0 0 −m13

−m13 0 0 m15 m13 0 0 −m16

0 −m13 −m15 0 0 m13 m16 0



[
Ke

]
con =

EI
105L3(1+ϕs)2

[
Ka

]
+

GAϕ2
s

12χL(1+ϕs)2

[
Kb

]
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[
Ka

]
=



k1 0 0 k2 −k1 0 0 k3

0 k1 −k2 0 0 −k1 −k3 0
0 −k2 k4 0 0 k2 k5 0
k2 0 0 k4 −k2 0 0 k5

−k1 0 0 −k2 k1 0 0 −k3

0 −k1 k2 0 0 k1 k3 0
0 −k3 k5 0 0 k3 k6 0
k3 0 0 k5 −k3 0 0 k6



[
Kb

]
=



k7 0 0 k8 −k7 0 0 k8

0 k7 −k8 0 0 −k7 −k8 0
0 −k8 k9 0 0 k8 k9 0
k8 0 0 k9 −k8 0 0 k9

−k7 0 0 −k8 k7 0 0 −k8

0 −k7 k8 0 0 k7 k8 0
0 −k8 k9 0 0 k8 k9 0
k8 0 0 k9 −k8 0 0 k9


where,

m1 =(468+882ϕs +420ϕ
2
s )+a1(108+210ϕs +105ϕ

2
s )+b1(38+78ϕs +42ϕ

2
s )

m2 =[(66+115.5ϕs +52.5ϕ
2
s )+a1(21+40.5ϕs +21ϕ

2
s )+b1(8.5+18ϕs +10.5ϕ

2
s )]L

m3 =(162+378ϕs +210ϕ
2
s )+a1(81+189ϕs +105ϕ

2
s )+b1(46+111ϕs +63ϕ

2
s )

m4 =[(39+94.5ϕs +52.5ϕ
2
s )+a1(18+40.5ϕs +21ϕ

2
s )+b1(9.5+21ϕs +10.5ϕ

2
s )]L

m5 =[(12+21ϕs +10.5ϕ
2
s )+a1(4.5+9ϕs +5.25ϕ

2
s )+b1(2+4.5ϕs +3ϕ

2
s )]L

2

m6 =[(39+94.5ϕs +52.5ϕ
2
s )+a1(21+54ϕs +31.5ϕ

2
s )+b1(12.5+34.5ϕs +21ϕ

2
s )]L

m7 =[(9+21ϕs +10.5ϕ
2
s )+a1(4.5+10.5ϕs +5.25ϕ

2
s )+b1(2.5+6ϕs +3ϕ

2
s )]L

2

m8 =(468+882ϕs +420ϕ
2
s )+a1(360+672ϕs +315ϕ

2
s )+b1(290+540ϕs +252ϕ

2
s )

m9 =[(66+115.5ϕs +52.5ϕ
2
s )+a1(45+75ϕs +31.5ϕ

2
s )+b1(32.5+52.5ϕs +21ϕ

2
s )]L

m10 =[(12+21ϕs +10.5ϕ
2
s )+a1(7.5+12ϕs +5.25ϕ

2
s )+b1(5+7.5ϕs +3ϕ

2
s )]L

2

m11 =252+126a2 +72b2 +45g2 +30d2

m12 =[21−105ϕs +a2(21−42ϕs)+b2(15−21ϕs)+g2(10.5−12ϕs)+d2(7.5−7.5ϕs)]L

m13 =[21−105ϕs +a2(−63ϕs)−b2(6+42ϕs)−g2(7.5+30ϕs)−d2(7.5+22.5ϕs)]L
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m14 =[(28+35ϕs +70ϕ
2
s )+a2(7−7ϕs +17.5ϕ

2
s )+b2(4−7ϕs +7ϕ

2
s )....

+g2(2.75−5ϕs +3.5ϕ
2
s )+d2(2−3.5ϕs +2ϕ

2
s )]L

2

m15 =[(7+35ϕs −35ϕ
2
s )+a2(3.5+17.5ϕs −17.5ϕ

2
s )+b2(3+10.5ϕs −10.5ϕ

2
s )....

+g2(2.75+7ϕs −7ϕ
2
s )+d2(2.5+5ϕs −5ϕ

2
s )]L

2

m16 =[(28+35ϕs +70ϕ
2
s )+a2(21+42ϕs +52.5ϕ

2
s )+b2(18+42ϕs +42ϕ

2
s )....

+g2(16.25+40ϕs +35ϕ
2
s )+d2(15+37.5ϕs +30ϕ

2
s )]L

2

k1 =1260+630a2 +504b2 +441g2 +396d2

k2 =[630+210a2 +147b2 +126g2 +114d2 −ϕs(105a2 +105b2 +94.5g2 +84d2)]L

k3 =[630+420a2 +357b2 +315g2 +282d2 +ϕs(105a2 +105b2 +94.5g2 +84d2)L

k4 =[420+210ϕs +105ϕ
2
s +a2(105+52.5ϕ

2
s )+b2(56−35ϕs +35ϕ

2
s )....

+g2(42−42ϕs +26.25ϕ
2
s )+d2(36−42ϕs +21ϕ

2
s )]L

2

k5 =[210−210ϕs −105ϕ
2
s +a2(105−105ϕs −52.5ϕ

2
s )+b2(91−70ϕs −35ϕ

2
s )....

+g2(84−52.5ϕs −26.25ϕ
2
s )+d2(78−42ϕs −21ϕ

2
s )]L

2

k6 =[420+210ϕs +105ϕ
2
s +a2(315+210ϕs +52.5ϕ

2
s )+b2(266+175ϕs +35ϕ

2
s )....

+g2(231+147ϕs +26.25ϕ
2
s )+d2(204+126ϕs +21ϕ

2
s )]L

2

k7 =12+6a1 +4b1

k8 =(6+3a1 +2b1)L

k9 =(3+1.5a1 +b1)L2

In the above expressions, a1, b1, a2, b2, g2, and d2 are the geometrical constants and can be
obtained as,

a1 =
2π

A
(rLo∆ro − rLi∆ri) b1 =

π

A
(∆r2

o −∆r2
i )

a2 =
π

I
(r3

Lo∆ro − r3
Li∆ri) b2 =

3π

2I
(r2

Lo∆r2
o − r2

Li∆r2
i )

g2 =
π

I
(rLo∆r3

o − rLi∆r3
i ) d2 =

π

4I
(∆r4

o −∆r4
i )

where ∆ro = rRo − rLo and ∆ri = rRi − rLi.
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