
Formulation of Learning Algorithms for Graph
Data Classification

A thesis submitted

in partial fulfillment for the award of the degree of

Doctor of Philosophy

by

Asif Salim

Department of Mathematics
Indian Institute of Space Science and Technology

Thiruvananthapuram, India

January 2023

Certificate
This is to certify that the thesis titled Formulation of Learning Algorithms for Graph
Data Classification submitted by Asif Salim, to the Indian Institute of Space Science and
Technology, Thiruvananthapuram, in partial fulfillment for the award of the degree of Doc-
tor of Philosophy is a bona fide record of the original work carried out by him under my
supervision. The contents of this thesis, in full or in parts, have not been submitted to any
other Institute or University for the award of any degree or diploma.

Dr. S. Sumitra
Associate Professor

Dr. C. V. Anil Kumar
Professor & Head

Place: Thiruvananthapuram
Date: January 2023

i

Declaration
I declare that this thesis titled Formulation of Learning Algorithms for Graph Data Clas-
sification submitted in partial fulfillment for the award of the degree of Doctor of Phi-
losophy is a record of the original work carried out by me under the supervision of Dr. S.
Sumitra , and has not formed the basis for the award of any degree, diploma, associateship,
fellowship, or other titles in this or any other Institution or University of higher learning. In
keeping with the ethical practice in reporting scientific information, due acknowledgments
have been made wherever the findings of others have been cited.

Place: Thiruvananthapuram Asif Salim
Date: January 2023 (SC16D020)

iii

This thesis is dedicated to all people who dominate intelligence over their emotions and

put rationality above their "blind" devotions.

v

Acknowledgements
Firstly, I would like to express my sincere gratitude to my research advisor Dr. Sumitra S.
for the continuous support in my course studies and the research,for the motivation, and the
vision. Her guidance helped me in all the time of research works, peer-reviewed publishing,
and preparation of this thesis.

Besides my advisor, I would like to thank the rest of my doctoral committee: Prof. Chi-
ranjib Bhattacharyya (Professor, Department of Computer Science and Automation, IISc,
Bangalore), Prof. Raju. K. George (Dean - R & D, IIST), Prof. Subrahamanian Moosath.
K.S. (Professor, Department of Mathematics, IIST), and Prof. Deepak Mishra (Professor
& Head, Department of Avionics, IIST), for their insightful reviews, comments, and en-
couragement, for the great inspiration to carry out my research from various perspectives.

I thank my fellow lab mates, master students, and research colleagues especially Dr.
Shiju S.S for the greater co-operation with my research program, valuable insights, inspir-
ing professionalism, work ethics, and all the fun we had and going to have. I thank my
friends at the Indian Institute of Space Science and Technology. I am also grateful to the
department office staff for making my life easy for helping with office related works and
the friendship.

I would also like to thank my family, my parents, and my fiance for supporting me
throughout my research period and for their greater patience.

Last but not the least, I would like to thank every being on this planet living and dead,
millions of years of learning and contribution of my predecessors, and the immense wisdom
they accumulated that helped me to put a "silly" contribution to that vast sea of knowledge.

Asif Salim

vii

Abstract

The data in the forms of graphs are crucial in many domains of science and technology
like bio-informatics, chemo-informatics, social media analysis, natural language process-
ing, etc. These domains create graphs in a variety of forms. For example, a collection of
graphs is created in bio-informatics and chemo-informatics domains where we need to do
a conventional classification or regression. The nodes in these graphs may be represented
as atoms in a molecule and edges represent the interaction between them. The nodes and
edges can be accompanied with a discrete label or some attributes in the form of a vec-
tor. In social media and natural language processing, the graph is in the form of a single
large network where we need to process on the nodes and edges. This thesis discusses the
design of techniques that process different types of graph data by making use of tools in
kernel methods and graph signal processing. Although the algorithms are discussed in the
context of classification, with appropriate changes in the learning algorithms, they are also
applicable for regression problems.

Our first approach is to make use of graph embedding techniques and multiple kernel
learning (MKL). The graph embedding is the process of representing the graph in a vector
space using properties of the graph while MKL is a framework where the optimal kernel
is learned as a linear combination of a set of base kernels. The technique of MKL allows
us to incorporate multiple graph embedding into a single learning framework. Hence we
designed graph embedding using a multi-view approach, where each view is an embedding
of the graph using a graph property. The reproducing kernel used in SVM is represented
as a linear combination of the kernels defined on the individual embeddings. The pro-
posed method helps to process a dataset of a collection of graphs with a categorical label
information over the nodes and edges.

In the second approach, we made use of the optimal assignment kernel framework to
design graph kernels. The bijection associated with the optimal assignment framework is
defined between sets that consist of the nodes of the graph kernel arguments. In the pro-
posed kernels, the nodes of the given data are divided into groups named as neighbourhood

sets on the basis of the labels generated by the Weisfeiler-Lehman (WL) test for graph iso-
morphism and a matrix representation is defined for them. A kernel is then defined over
the domain that consists of the neighbourhood sets in terms of the matrix and an aggregate

ix

measure of those kernel values is used for defining the kernels. The proposed kernels can
be used for analyzing a collection of graphs with categorical labels on the nodes/edges and
it can also be extended to the case of attributed graphs in which apart from the labels, the
nodes also contain vector information.

The third approach is specifically proposed for attributed graphs. We formulated the
design of a reproducing kernel suitable for processing the attributes, in which the similarity
between two graphs is defined on the basis of neighborhood information of the graph nodes
with the aid of a product graph formulation. We represent the proposed kernel as the
weighted sum of two other kernels of which one is an R-convolution kernel that processes
the attribute information of the graph and the other is an optimal assignment kernel that
processes label information. They are formulated in such a way that the edges processed
as part of the kernel computation have the same neighborhood properties and hence the
kernel proposed makes a well-defined correspondence between regions processed in the
graphs. We found that the kernel value of the argument graphs in each iteration of the WL
algorithm can be obtained recursively from the product graph formulated in our method.

The fourth approach is developed to classify the nodes of a single large network in
contrast to the previous approaches. The spectral graph convolutional neural networks
(SGCN) are utilized for this. In this work, it has been identified that the filters in the
state-of-the-art SGCNs are essentially graph kernels in the form of low pass filters. They
enforce a smoothness across the graph and use the functions of graph Laplacian as a tool
that injects graph structure into the learning algorithm. The existing SGCNs are reviewed
in the context of the relationship between graph Laplacian and regularization operators and
propose a framework where the state-of-the-art filter designs can be deduced as its special
cases. A new set of filters are designed that are associated with a well-defined low pass
behavior. We also deduce the connection of support vector kernels and SGCN filters based
on our framework.

The efficiency of the first three approaches are evaluated by incorporating the proposed
kernels on support vector machines for classification task and the fourth approach on neural
networks for semi-supervised node classification task on the real-world data sets and they
have shown superior performance in comparison with that of the state-of-the-arts.

x

Contents

List of Figures xv

List of Tables xix

List of Algorithms xxi

Abbreviations xxiii

Nomenclature xxv

1 Introduction 1
1.1 Organization of the Thesis . 3

1.2 Major Contributions of the Thesis . 6

2 Background and Related Works 9
2.1 Kernel Theory . 9

2.2 1-dimensional Weisfeiler-Lehman color refinement algorithm 13

2.3 Spectral Graph Convolutions . 14

2.4 Related works . 14

3 Design of multi-view graph embedding using multiple kernel learning 21
3.1 Notations . 22

3.2 MKL for multi-view . 23

3.3 Construction of views based on graph embeddings 24

3.4 Representation Capability of the Views . 31

3.5 Experiment . 34

3.6 Conclusion . 38

xi

4 Graph Kernels Based on Optimal Node Assignment 41
4.1 Design of optimal node assignment graph kernels 42

4.2 Kernel computation using heirarchy . 47

4.3 Experiment . 50

4.4 Conclusions . 53

5 Neighborhood Preserving Kernels for Attributed Graphs 55
5.1 Neighborhood Preserving Kernel . 55

5.2 Neighborhood preserving shortest path kernel 67

5.3 Experiments . 69

5.4 Conclusion . 76

6 Spectral Graph Convolutional Neural Networks in the Context of Regulariza-
tion Theory 77
6.1 Regularized graph convolution filters . 78

6.2 Experiments . 86

6.3 Discussion on optimizing network architectures of SGCN 93

6.4 Conclusion . 97

7 Applications 99
7.1 Brain connectivity and social media data analysis 99

7.2 Location-wise spread of Covid-19 . 101

8 Conclusions and Future Works 103
8.1 Future Works . 104

Bibliography 107

List of Publications 121

Appendices 123

A From Chapter 4 123
A.1 Proof of optimal assignment of K̃ONA(G,G′) 123

A.2 Computing K̃ONA using hierarchy . 124

B From Chapter 6 127
B.1 Regularization in graphs, support vector kernels and spectral GCNN filters . 127

xii

B.2 Ablation studies on architectures . 128
B.3 Effects of hyper-parameter tuning in Citeseer and Pubmed datasets 130

xiii

List of Figures

2.1 Example for hierarchy . 13

3.1 Multi-view graph embedding . 23

3.2 View-I formulation: Feature representation of a sample graph (note that
node labels are given inside circles and the associated number indicates
node identification). The table shows the node label associated with each
edges. 25

3.3 View-II formulation: Feature representation of a sample graph. The right
table shows the length associated with each shortest paths and left table
shows the derived feature representation. 26

3.4 View-III formulation. (a) A sample graph (note that node labels are given
inside circles). (b) Labeled shortest path representations, LGΠ. (c) Corre-
sponding set P of the graph and its vector representation. 27

3.5 View IV Formulation. (a) A sample graph. (b) Corresponding set T and
vector representation of the graph. (c) Feature construction correspond-
ing to subtrees rooted at node 1, (d) Feature representations corresponding
to subtrees rooted at node 2. (e) Feature representations corresponding
to subtrees rooted at node 3. (f) Feature representations corresponding to
subtrees rooted at node 4. (g) Feature representations corresponding to
subtrees rooted at node 5. 30

4.1 (a) Two sample graphs. (b) The string representation of the nodes and
corresponding hashing to a color. (c) The graphs with WL labels marked
on nodes. 42

xv

4.2 The illustration of the kernel calculation corresponding to a WL label l5.
(a) Two graphs G and G′ with WL labels marked as different colors on
the nodes. (b) Constructing the sets gli . (c) Augmenting g′l5 with dummy
nodes (node marked as black). (d) Constructing the vectors Vvj and V ′vj
- vectors are obtained from the string representation of nodes 3,4, and 5
in G and node 4 in G′ as shown in the Figure 4.1 (b). The dummy node
vector representation is taken as zero vector. (e) Constructing Mgl5

and
M ′

gl5
corresponding to G and G′. (f) Applying the matrices into kernel

definitions kns1 and kns2 . 45

5.1 (a) Two sample graphs G1 and G2, (b) WL color refinement, (c) direct
product graph, (d) separation of neighborhood preserving or structurally
similar edges (bold lines) and dissimilar edges (dashed lines). 56

5.2 Two nodes u, v in the graph G and two nodes u′, v′ in the graph G′ with
the same WL refined labels and corresponding edges having similar label.
The product graphGP containing additional pair of nodes and an additional
edge. 59

5.3 Convolution as vectorization for a sample of two WL refined edge addresses

w1 and w2. (a) and (b) represents node attributes in G,G′ with an address
w1 and w2 respectively. (c) represents arranging attribute vectors to com-
pute convolution as a vectorization process, ⊕ denotes concatenation and
× denotes Hadamard product. 67

5.4 Runtime comparison of pairwise and global computation of NP kernel for
synthetic graphs at graph density 20%, 40%, 60%, and 80% respectively. . 71

5.5 The plot of cardinality of WL refined edge addresses and percentage of
kernel values getting updated against WL iterations for the datasets. 74

6.1 Regularization function, r(λ). (a) regularized Laplacian (s = {0.5, 1, 1.5, 2}),
(b) diffusion function (s = {0.5, 1, 1.5, 2}), (c) one-step random walk
(a = {2, 3, 4, 5}), (d) 2-step random walk (a = {2, 3, 4, 5}), (e) inverse
cosine function. 80

6.2 Regularization function, r(λ). (a) ChebyNet, (b) GCN, (c) GraphHeat,
(d) IGCN for k = 2 , (e) IGCN for k = 3. All graphs are for (c =

{0.2, 0.5, 1.0, 1.5}) . 84

6.3 SGCN two layer architecture. 88

xvi

6.4 Accuracy variation with hyper-parameters. (a) Diffusion, (b) 1-step RW,
(c) 2-step RW, (d) 3-step RW . 91

6.5 SGCN three layer architecture. 92
6.6 Accuracy plot with standard deviation of GCN, ChebyNet and best per-

forming model for Flickr, GitHub, Europe Deezer and Facebook Page-page
datasets. 92

6.7 SGCN architecture with a collection of filters. C/A stands for concatena-
tion/averaging . 96

7.1 Procedure in constructing edges of the graph. Red nodes indicate training
points and blue nodes testing points. 102

B.1 Accuracy variation with hyper-parameters in Citeseer dataset. (a) Diffu-
sion, (b) 1-step RW, (c) 2-step RW, (d) 3-step RW 129

B.2 Accuracy variation with hyper-parameters in Pubmed dataset. (a) Diffu-
sion, (b) 1-step RW, (c) 2-step RW, (d) 3-step RW 130

xvii

List of Tables

3.1 Dataset details: |D|: cardinality of the data set D, |P |: cardinality of pos-
itive class, |N |: cardinality negative class, V avg =: average of {|V |, V ∈
D}, Eavg = average of {|E|, E ∈ D}, V max = max{|V |, V ∈ D},
Emax = max{|E|, E ∈ D}. 36

3.2 Accuracy (along with standard deviation) of the multi-view graph embed-
ding along with state-of-the-art embedding techniques and graph kernels.
The rank in statistical significance test is given in the bracket. 37

3.3 Kernel weights of different views in MKL setting 38

3.4 Accuracy using designed R-convolution kernels, graph embeddings & sin-
gle view. 39

4.1 Accuracy (along with standard deviation) of the multi-view graph embed-
ding along with state-of-the-art embedding techniques and graph kernels.
The rank in statistical significance test is given in the bracket. 51

4.2 Runtime (wall clock time) of the algorithms 52

5.1 Classification accuracy of the proposed kernels with state-of-the-arts. 69

5.2 Classification accuracy in MNIST dataset 73

5.3 Runtime of the proposed kernels with state-of-the-arts. 74

6.1 Frequency response function and output of filters of SGCNs 78

6.2 Filters, corresponding regularization function (r(λ)) and its filter definition 79

6.3 Summary of the datasets . 87

6.4 Classification accuracy (in percentage ± standard deviation) along with
average time taken for one epoch (in brackets). 89

6.5 Classification accuracy (in percentage ± standard deviation). 93

6.6 Accuracy of the filters. Std dev. is given in brackets. 95

xix

7.1 Dataset details: |D|: cardinality of the data set D, |P |: cardinality of pos-
itive class, |N |: cardinality negative class, V avg =: average of {|V |, V ∈
D}, Eavg = average of {|E|, E ∈ D}, V max = max{|V |, V ∈ D},
Emax = max{|E|, E ∈ D}. 100

7.2 Accuracy of the multi-view graph embedding along with state-of-the-art
embedding techniques and graph kernels in brain connectivity and social
media data. 100

7.3 Kernel weights of different views in MKL setting 101

B.1 Classification accuracy (in percentage ± standard deviation) for the models. 131

xx

List of Algorithms

3.1 Computation of view-III embedding . 28
3.2 Computation of view-IV embedding . 31

4.1 Calculating the histogram vectorGV of graphG for h iterations of WL color
refinement . 48

5.1 Computation of histogram vector GV . 61
5.2 Pairwise computation . 65
5.3 Global computation for one iteration of WL color refinement 66

xxi

Abbreviations

MKL Multiple Kernel Learning
WL Weisfeiler-Lehman
SGCN Spectral Graph Convolutional Networks
SimpleMKL Simple Multiple Kernel Learning
SVM Support Vector Machine
OA Optimal Assignment
NP Neighborhood Preserving
G2V Graph2vec
S2V Subgraph2vec
N2V Node2vec
GE-FSG Graph Embedding with Frequent Sub-Graphs
DGK Deep graph kernels
RW Random walk
SP Shortest path
GL Graphlet
WL-S WL subtree
WL-E WL edge
WL-SP WL shortest path
WL-OA WL optimal assignment
TK+MKL Treelet kernel+MKL
ONA Optimal Node Assignment
NPE Neighborhood Preserving Edge
NPO Neighborhood Preserving Optimal edge assignment
NPS Neighborhood Preserving Shortest path
CNN Convolutional Neural Network

xxiii

Nomenclature

f Function to be learned
xi Data point indexed by i
X Space where xi lies
k Kernel function
yi Label of data point xi
N Number of data points
F Reproducing kernel Hilbert space
T Hierarchy tree
V Set of nodes
E Set of edges
G A graph represented as tuple (V,E)

l Function that assigns a label to nodes/edges
G Set of all graphs and the class labels
Σ Alphabet of node/edge labels
Π Shortest path
LΠ Labelled shortest path
≤ Total order
ΣC Alphabet of WL labels
lC Function that assigns WL label to nodes
li Member in ΣWL

dli Cardinality difference of gli and g′li
gli Set of nodes with the WL label li and dli dummy nodes
D Domain set consisting all gli , ∀ li ∈ ΣC for all graphs
Vvj/Vli Vector representation of member node: j in gli or equivalently that of li
M ′

gli
Matrix representation of gli whose rows are filled with VTvj

σ Function that assigns an integer to the rows of Mgli

Ṽ Set of union of all glis in a graph

xxv

Bli Bijective function from gli of G to g′li of G′

B Bijective function from Ṽ of G to Ṽ ′ of G′

h Number of WL iterations
VT Set of nodes in T except the nodes in the zero level
GV Vector that counts frequency of occurrence of elements in VT for a graph G
NT Vector that stores norm of Vvj corresponding to the members in VT
W Adjacency matrix of G
D Degree matrix of G
L graph Laplacian
L̃ normalized graph Laplacian
λ, λ̃ Eigenvalue of L and L̃
F Filter of a SGCN
gθ Frequency response function of F
r(.) regularization function

xxvi

Chapter 1

Introduction

The graphs are considered to be universal data structures. It has a philosophical impor-
tance in the sense that any real world phenomena can be represented in the form of graphs
[1]. Many real world applications can be considered as a set of agents (nodes) interact-
ing together. The interaction can be modelled as the edges of the graph. Nowadays the
usage of graphical tools in representing and analyzing real world applications have been
increased. For example, fields like bioinformatics, chemoinformatics social networks, and
medical imaging generate large amount of structured data in the form of graphs. Not only
that, in domains like Natural language processing (NLP), recommender systems and fraud
management, the data is represented using graph structure for the analysis. Hence develop-
ment of efficient algorithms for knowledge extraction from graph based data is very much
essential.

The algorithms that process the graph data mainly falls under the domains of kernel
methods and graph neural networks. A wide variety of graph kernels were developed for
learning tasks such as classification and regression. Most of them were developed for
graphs that contain discrete labels over nodes and edges. They are formulated mainly us-
ing the principles of R-convolution [2] and focused on a particular graph property for the
representation learning. Hence our works focused on (i) developing graph kernels that can
make use of multiple graph properties, (ii) processing vector information together with dis-
crete labels and (iii) utilizing other frameworks apart from the conventional R-convolution
kernel designs.

The area of graph neural networks has attained significant developments recently. The
advancements happened with respect to two classes of algorithms namely spectral and
spatial approaches. The spectral graph convolutional networks (SGCNs) use functions of
graph Laplacian to define a graph filtering operation. This filtering is defined over the in-
formation in graph nodes while spectral approach define a message passing mechanism in

1

graph nodes through information aggregation and sharing. There are a collection of net-
works that can be categorized into SGCN family. All these networks, in a fundamental
level, differs in the function of graph Laplacian used for the filtering. Despite having this
common feature, a general platform to combine these networks are not available. We anal-
ysed these networks and proposed a common framework connecting graph Laplacian based
filtering to its regularization properties. We derived the connection between the SGCN fil-
ters and proposed novel ones.

The main challenge related to developing algorithms is to deal with graphs of different
types. We developed methods to analyze three types of graph data.

1. Type I: Collection of graphs each having a separate sets of nodes and edges. The
nodes and edges have a categorical label associated with them.

Example: a dataset of chemical molecules to check for carcinogenecity or toxicity.
The atomic symbol can be the label on nodes and type of chemical bond as label on
edges.

2. Type II: This category is of type-I but contains attribute information in addition. The
attribute information are the ones that reside in nodes/edges as a vector information
apart from their labels.

Example: If we consider atomic properties or spatial coordinates of atoms (nodes)
they can be categorized as attributed information.

3. Type III: In contrast to type-I and II, this is a single large network consisting of
thousands of nodes and edges. The nodes most often contain a vector information
and for some graphs the edges also carry such information.

Example: Social media networks - the persons/pages can be considered as nodes and
an edge can be formed between them if they interact. The data can then be analyzed
to design an advertisement campaign or to detect malicious activities.

Each type require specialized treatments in designing algorithms for downstream learn-
ing tasks. We have leveraged kernel methods paradigms for developing algorithms for
type-I and type-II graphs. While for type-III graphs, spectral graph convolutional networks
in the context of regularization theory have been made use of. In addition to this, we have
also established how the filters are related to graph kernels. The theoretical foundations of
these methods are discussed in Chapter 2.

For type-I and type-II graphs, the efficiency of the designed kernels is evaluated for the
classification task using the support vector machines (SVM) algorithm, and that of filters

2

developed for type-III graphs is evaluated for the semi-supervised node classification task
using a neural network. However, the designed kernels can also be used for regression
tasks. For this purpose, a kernel regression algorithm such as support vector regression
may be used for type-I and type-II graphs. For type-III graphs, the developed filters can be
used for regression with an appropriate neural network architecture and loss function.

1.1 Organization of the Thesis

The thesis is organized into the following chapters whose highlights are described below.

1.1.1 Theoretical Foundations and Related Works

This chapter describes the foundations of the kernel method theory, state-of-the-art graph
kernels, basics of spectral graph neural network and related state-of-the-arts.

1.1.2 Design of multi-view graph embedding using multiple kernel
learning

The graph embedding is the process of representing the graph in a vector space using
properties of the graphs. The existing graph embeddings rely mostly on a single property of
graphs for data representation. Hence the effectiveness of embedding depends on the ability
of the chosen graphical properties in representing the structural and topological properties
of the graph. So a single embedding may be incapable to capture all the characteristics
of the data. Hence we designed graph embedding using multi-view approach, where each
view is an embedding using a graph property. The method is proposed for learning in type-I
graphs.

Multi-view learning deals with the process of learning from data that can be represented
by heterogeneous features or views [3], [4]. By considering such data as a single unit could
result in problems such as over-fitting as each view has a specific statistical property. This
demands for a learning setting where the views shall be treated separately and at the same
time it shall also fuse the information from the views in an efficient manner. We made use
of multiple kernel learning (MKL) for this purpose. The input space of multi-view learning
is then taken as the direct sum of the subspaces in which the graph embeddings lie.

We did analysis on real world data by incorporating the proposed model on support
vector machines (SVM). The reproducing kernel used in SVM is represented as the linear

3

combination of the kernels defined on the individual embeddings. The optimization tech-
nique used in simple multiple kernel learning (simpleMKL) is used to find the parameters
of the optimal kernel.

To analyze the individual representation capability of the embeddings, an R-convolution
graph kernel is designed over each of the views. In our experimental analysis, the multi-
view graph embedding showed a superior performance in comparison with that of the state-
of-the-art graph embeddings as well as graph kernels.

1.1.3 Graph Kernels based on Optimal Node Assignment

The R-convolution kernel [2] is a widely adopted framework to design graph kernels where
as optimal assignment (OA) framework [5] has not yet gained as much visibility as the
former. There are some inherent advantages as well as disadvantages in both the methods.
In the case of R-convolution, each graph component has to be compared with each com-
ponent in the counterpart graph. The same component is part of many computations and
hence the graph similarity metric gets over estimated resulting in artificially high value. On
the other hand, resorting to OA framework can be a solution to this issue as it compares
one component with only one counterpart in the other graph.

The core part of the OA framework is to form a bijection between graph components.
The components can be characterized through nodes, edges, shortest paths or any other
similar entities. In this work, we formed a well-defined bijection between the nodes to
form OA graph kernels. The bijection is enabled through a grouping of the nodes that gath-
ers those ones which have similar neighborhood. The WL test for graph isomorphism is
utilized for this purpose. A vector representation is designed for each group that encodes
their neighborhood information. The kernel functions are then defined in terms of these
vectors. We have proved that the functions are valid OA kernels and hence positive semi-
definite. For efficient computations of these kernels, the hierarchy structure associated with
the OA framework is utilized. The efficiency of the designed kernels was analyzed using
real-world problems by incorporating the kernels in support vector machines. The results
were found to be superior in comparison with the other state-of-the-art graph kernels. Al-
though the methods are proposed for type-I graphs, the concepts can be extended to process
type-II also.

4

1.1.4 Neighborhood Preserving Kernels for Attributed Graphs

The first two approaches have been developed for type-I graphs. In this chapter, we pro-
posed a kernel that can be used for type-II graphs. It is formulated as a linear combination
of two kernels. The attribute information in the graphs are processed by an R-convolution
kernel while the label information by an OA kernel.

The main constituent of this is a product graph from which the structurally similar re-
gion of the argument graphs are found out. The kernel value is found out by processing only
through these similar regions and hence the name neighborhood preserving (NP). An algo-
rithm is proposed in which the kernel value is computed from the product graph by iterating
through the edges that are NP. The NP property helps to establish a structural correlation
between the edges of the argument graphs. Using this correlation, an R-convolution kernel
is defined to process attribute information and an OA kernel to process label information.
It has been proved that the product graph in each iteration of the WL color refinement al-
gorithm is a subgraph of that in the previous iteration and this property helps in efficient
computation of the kernel values in certain types of graphs.

The concepts formulated are also extended to the case of shortest paths. We have also
identified the state-of-the-art graph kernels that can be mapped to the proposed framework.
The efficiency of the developed kernels were tested in real world datasets and their perfor-
mance was found to be superior. The concepts were also applied to image processing and
the results are found to be in par with the deep neural networks.

1.1.5 Spectral Graph Convolutional Neural Networks in the Context
of Regularization Theory

The methods developed for type-III graphs are described in this chapter. They are formu-
lated using the spectral graph neural network (SGCN) approach. The motivation behind
this work is the relation between filters of SGCNs and graph kernels which we explain in
detail. In this context, the graph kernels are those ones defined between the nodes. It has
been found that the filters used in SGCNs are essentially low pass filters that enforce a
smoothness across the data in graph nodes.

A framework has been developed for designing SGCN filters in the context of regu-
larization theory. The properties of regularization operators in terms of graph Laplacian
are studied and methods are developed to use them as SGCN filters. The condition where
the filters become valid support vector kernels on the graph is also discussed. Based on
the framework, we developed novel filters and found that the filters used in state-of-the-

5

art SGCNs are its special cases. The filtering property of the state-of-the-art SGCN filters
are analyzed with the developed framework and useful observations are deduced. The pro-
posed filters are applied in a semi-supervised node classification task and their performance
was found to be superior.

The chapter also discusses about certain points that can help in improving the conven-
tional architecture of SGCN in the context of our observations. We have identified certain
latest works that are done in this direction and discuss about further possible improvisa-
tions.

1.1.6 Practical Applications

In this chapter, the practical applications of the methods have been discussed. The proposed
graph kernel methods are applied in brain connectivity and social media data analysis. The
proposed filters of SGCN are applied in a proof-of-concept way in the prediction of location
wise prediction of Covid-19 cases.

1.1.7 Conclusions and Future Works

The conclusion and the future works are discussed in this chapter.

1.2 Major Contributions of the Thesis

The major contributions of the thesis are listed below.

1. The existing graph embedding as well as graph kernels are designed mostly on the
basis of single graph property and hence cannot capture all the characteristics of
the data. Hence in the first approach we proposed a multi-view learning strategy in
which the graph data is represented as the direct sum of the vectors corresponding to
the views. For applying kernel algorithms on the data, a suitable kernel is selected
for each view and the optimal kernel associated with the data is represented as the
linear combination of such kernels. The Simple MKL setting assigns a weight to each
of the views and they add to one. Hence it is possible to identify the contribution of
each of the views in representing the graph via the optimal kernel. This helps to bring
valuable insights in identifying the importance of individual graph representations.

2. The graph kernels were designed using the relatively less explored OA kernel frame-
work for graph kernel designs. The bijection required for graph comparison is char-

6

acterized among the graph nodes. For efficient graph representations, the nodes are
assigned to well-defined groups on the basis of their neighborhood information. The
graph kernels are then defined in terms of these groups. The validity of the kernels
were mathematically proved in the context of OA framework. The algorithms for the
efficient computations using the hierarchy structure defined in OA framework were
also developed.

3. We designed a product graph from which the structurally similar regions of the ar-
gument graphs can be found out. Such regions in the graph are called neighborhood
preserving (NP). By processing through NP edges it is possible to define kernels that
process the attribute information of the graphs along with their labels. The state-
of-the-art graph kernels were identified that fit in this framework. It had also been
proved that kernel value obtained in each iteration of the Weisfeiler-Lehman (WL)
color refinement algorithm using argument graphs can be obtained in a recursive
manner from the product graph formulated in our method. Using this property, we
developed algorithms to compute the proposed kernels. The concepts were extended
to shortest paths. This method can be applied to image processing use cases. If an
image consists of super pixels whose neighborhood structures are visually evident,
we can convert the pixels as nodes and connection between structures as edges. An
example is the images of digits.

4. The family of Spectral Graph Convolutional Neural Networks (SGCN) in the context
of regularization theory in graphs has been explored. We studied regularization op-
erators in graphs characterized by its Laplacian, its relation to SGCN filters and the
conditions where the filters become valid support vector kernels. In the context of
this work, it can be proved that the SGCN filters are essentially low pass filters. Their
filtering behaviour had also been thoroughly examined. A general platform was de-
veloped for designing filters of desired filtering behaviours. A set of novel filters
were proposed using this platform. The state-of-the-art SGCN filters can be deduced
as a special case of these filters. Based on the formulated theories, the improvisations
that can be done on the conventional SGCN architecture were discussed.

7

8

Chapter 2

Background and Related Works

The theoretical background on which the algorithms are formulated and the related works
are discussed in this chapter. The methods proposed for type-I and type-II graphs are based
on kernel methods and the related theory is discussed in Section 2.1. There are a collection
of graph embedding and graph kernels proposed in the literature. These works which are
related to the proposed works in this thesis are discussed in Sections 2.4.1 and 2.4.2. The
Section 2.4.1 discusses about graph embedding methods and 2.4.2 discusses about graph
kernels. These discussions are helpful to understand the approaches and methodologies
that are applied to graph classification. It helps in identifying the novelties of the pro-
posed approaches and its benefits. In the proposed works, we have used 1-dimensional
Weisfeiler-Lehman color refinement as a major tool for label aggregation in the nodes and
it is explained in Section 2.2.

The theoretical foundation of spectral graph theory used for developing methods for
type-III graphs is discussed in Section 2.3. A discussion on state-of-the-arts SGCNs is
given in Section 2.4.3. These sections describe how spectral graph theory is incorporated
into the neural network paradigm to enable learning on graphs. Our proposed work on
SGCNs is a generalization of these networks to a common framework in the context of
regularization theory in graphs. The works that discuss the regularization in graphs are dis-
cussed in Section 2.4.4 and works that analyze spectral properties of SGCNs are discussed
in Section 2.4.5.

2.1 Kernel Theory

Let D = {(xi, yi)|i = 1, ..., N} be the training data points, where xi ∈ X ⊆ Rn and
yi ∈ R. Let f be the function that generates the data and let it belongs to a Reproducing
Kernel Hilbert Space (F). By definition, RKHS is a space of functions in which every point

9

evaluations are bounded linear functionals. Therefore, if we define Lxi(f) : F → R, such
that Lxi(f) = f(xi), xi ∈ X , f ∈ F , then by definition of RKHS, Lxi , i = 1, 2, ... are
bounded linear functional and hence by Riesz representation theorem, ∃kxi ∈ F such that

Lxi(f) = f(xi) = 〈f, kxi〉, f ∈ F

where kxi is unique and depends only on Lxi , that is, xi. Hence we can define a function
k : X × X → R such that

k(xi, xj) = 〈kxi , kxj〉, xi, xj ∈ X

where k is called the reproducing kernel of F . Corresponding to every RKHS there exists
a unique reproducing kernel and vice versa. F is the closure of the span of {kxi , xi ∈ X}
and hence every f ∈ F can be written as f =

∑
i αikxi , αi ∈ R. The inner product 〈., .〉F

induces a norm on f ∈ F : ‖f‖2
F = 〈f, f〉F =

∑
i

∑
j αiαjk(xi, xj).

The kernel learning methods use regularized risk functional defined as

R(f) =
N∑
i=1

l(yi, f(xi)) +
λ

2
‖f‖2 (2.1)

where λ > 0 is the regularization parameter and l(yi, f(xi)) is empirical loss term.

The solution to (2.1) has the general form

f̃(x) = f(x) + b

where αi, b ∈ R, xi, x ∈ X . In this case, by semi-parametric representer theorem f̃ can be
represented as

f̃ =
N∑
i=1

αikxi +
M∑
i=1

βiψi

where βi ∈ R and {ψi}Mi=1 are a set of real valued functions on X .

2.1.1 Multiple Kernel Learning

In multiple kernel learning paradigm, there are many ways of learning the kernel k. One of
the techniques is to represent it as a linear combination of base kernels under consideration.
That is,

k(x, z) =

p∑
l=1

wlkl(x, z) (2.2)

10

where kernel weights wl ≥ 0, l = 1, 2 . . . p, p is the number of base kernels and x, z ∈ X .

The SimpleMKL [6] is one of the prominent works in multiple kernel learning algo-
rithms. In this technique, in order to make the kernel weights sparse, an additional con-
straint,

∑
l wl = 1, has been incorporated. The dual function of the SVM classification in

terms of SimpleMKL can be formulated as,

J(α) =
∑
i

αi−
1

2

∑
i,j

αiαjyiyj

p∑
l=1

wlkl(xi, xj)

subj. to∑
i

αiyi = 0

0 ≤ αi ≤ C∑
l

wl = 1

wl ≥ 0

(2.3)

The positive semi-definiteness of k is guaranteed as the coefficients wl, l = 1, 2, . . . p are
non-negative [6]. Each wl value can be considered as the weight corresponding to each
kernel. As higher the value of wl, the higher is the influence of the corresponding kernel
on determining the optimal kernel.

2.1.2 R-convolution kernels

The R-convolution kernel formulated by Haussler [2] is a generalized framework for pro-
cessing structured data. This framework involves the decomposition of data into its con-
stituent parts and a kernel is defined in terms of such decomposition. The shortest path
kernel [7], subgraph matching kernel [8] etc. are examples of R-convolution kernels.

Let X be a separable metric space consisting of discrete structures like string, trees or
graphs. Let x ∈ X . Assume that x can be decomposed to D number of components or
parts. Let x̃ = {x1, . . . , xD} be this decomposition, where xi ∈ Xi and Xi, 1 ≤ i ≤ D, be
a non empty, separable metric space. Define a relation R as

R = {(x̃, x) ∈ X1 × · · · ×XD ×X|x̃ are parts of x}.

That is, R is true iff x̃ is a valid decomposition of x. Now it is possible to define the inverse
relation, R−1(x) = {x̃ : R(x̃, x)}. Note that R is finite if R−1 is finite ∀x ∈ X . Then the

11

R-convolution kernel KRconv : X × X → R is defined as

KRconv(x, y) =
∑

x̃∈R−1(x),ỹ∈R−1(y)

D∏
i=1

ki(xi, yi)

where (xi, yi) is the ith component of (x̃, ỹ) and ki(., .) : Xi ×Xi → R, 1 ≤ i ≤ D is the
kernel corresponding to ith component.

2.1.3 Valid optimal assignment kernel framework

The optimal assignment kernel is defined as follows: Let X n, n ∈ N denote the set of
all n-element subsets of X and B(X, Y) the set of all bijections between X, Y , where
X, Y ∈ X n. The optimal assignment kernel Kk

B: X n ×X n → R is defined as

Kk
B(X, Y) = max

β∈B(X,Y)
W (β) where W (β) =

∑
(x,β(x))

k(x, β(x)), (2.4)

where k is a strong kernel defined on X × X [5]. The above concept can be extended to
the case where the underlying domain consists of sets with unequal cardinality by adding
dummy objects d to the smaller set, where k(d, x) = 0, ∀x ∈ X . The concept of the strong
kernel is discussed below.

2.1.3.1 Strong kernels and hierarchies

The strong kernel can be explained using two different concepts:
1. In terms of an inequality constraint on the kernel values.
A function k : X × X → R+ is called strong kernel if

k(x, y) ≥ min {k(x, z), k(z, y)} ∀x, y, z ∈ X .

That is, once we consider x and y, there is no other element z in X where both x and y are
more similar to z than themselves.

2. In terms of hierarchy defined on the domain of the kernel.
The hierarchy can be constructed in the form of a rooted tree, T , as follows. It is

assumed that the leaves of T correspond to elements in X . It has to be noted that the tree
forms a nested structure, that is, each inner node in T apart from the leaves corresponds to
a subset of elements in X . For example, consider a hierarchy in Figure 2.1, the node v is
an inner vertex that corresponds to nodes a, b in X , and node r corresponds to node c in X .

12

v

c

r

ba

Figure 2.1: Example for hierarchy

A weight is defined to each of the nodes in T . Letw : V (T)→ R+ be a weight function
such that w(v) ≥ w(p(v)) for all v in T where p(v) denotes parent node of the node v and
V (T) is the set of nodes in T . The tuple (T,w) is referred as hierarchy. It has to be noted
that the base kernels which are strong in X ×X mentioned earlier can be derived from the
hierarchy structure [5].

With the above concepts, Kriege et.al [5] proved that a kernel k on X × X is strong if

and only if it is induced by a hierarchy on X .

It has to be noted that the hierarchy corresponding to a base kernel k is not unique.
Considering this, to prove that a kernel is an optimal assignment on a structured data, it is
enough to prove that the underlying base kernel is strong and there exists a hierarchy that
induces the corresponding base kernel from which (2.4) can be calculated.

Examples for optimal assignment kernels are kernels defined on vertices and edges,
WL-optimal assignment kernel by Kriege et.al [5] and optimal assignment kernels on
molecular graphs by Frohlich et.al [9].

2.2 1-dimensional Weisfeiler-Lehman color refinement al-
gorithm

1-dimensional Weisfeiler-Lehman color refinement [10] algorithm is a tool that has been
recurrently used in our graph kernel designs. A brief discussion about the technique is
given below.

The algorithm creates a representation for each node in the graph in the form of a string.
The node label is the first element of the string and the remaining elements are node labels
of the neighbouring nodes, which are arranged in lexicographic order. A new label is then
assigned to each such string representation using a hashing function. The above process is
repeated until the labels become consistent. An example of the processes involved in the
algorithm is given in Figure 4.1.

13

2.3 Spectral Graph Convolutions

The work we proposed for type-III graphs are based on SGCNs. In this section, we discuss
the basic foundations of spectral graph convolution and graph filtering.

Spectral convolutions on graphs can be defined as the multiplication of a signal on
nodes with a graph filter. We define f = (f1, . . . , fn) ∈ Rn as a signal on n nodes on a
graphG. The graph filter, F , can be regarded as a function that takes f as input and outputs
another function y. The convolution operation can be written as,

y = Ff = Ugθ(Λ)UTf,

where gθ(Λ) ∈ Rn×n = diag(gθ(λ1), . . . , gθ(λn)) is a diagonal matrix. The function gθ() :

R→ R (with parameters {θ}) is defined as frequency response function of the filter F .

2.4 Related works

In this section, we discuss the existing graph embeddings, graph kernels, and spectral graph
convolutional networks.

2.4.1 Graph embeddings

The hierarchical graph embedding by Mousavi et.al [11] builds a hierarchical represen-
tation of graphs by clustering the nodes at each layer to form super nodes for the next
layer. The edges corresponding to such newly formed nodes are defined with respect to
the edges of the previous layer. At each level, an embedding is done in terms of node and
edge attributes and then such embeddings are stacked together to form the final embedding.
Riesen et.al [12] made the vector representation of the graph with respect to a set of pro-
totype graphs. A measure based on the concept of graph edit distance computes how the
graph under consideration differs from prototype graphs and that information is used for the
embedding. Gibert et.al [13] assumes that a multidimensional attribute is present with each
node. They proposed a method to map each of such attribute to a prototype vector. The
embedding is then built based on the statistical properties of those mappings. In the work of
Luqman et.al [14], the features of a graph are constructed from its topological, structural,
and attribute information using a predefined set of rules. These features are encoded as
fuzzy histograms in a vector space to define the embedding. The frequency of predefined
sub graphs is used for vector representation by Sidere et.al (2008) [15] whereas Wilson

14

et.al [16] encode the spectral features of Laplacian matrix into symmetric polynomials to
achieve permutation independence of nodes and then the coefficients of those polynomials
are used to formulate the graph embedding.

A recent development in graph embedding involves the incorporation of the concepts of
neural word and doc2vec embedding methods developed by Mikolov et.al [17], [18] and Le
et.al [19] respectively. The neural word embedding or word2vec is a systematic embedding
of words to a vector space by taking the context of the word into consideration. This helps
to capture the semantic relations between the words. On the other hand, the doc2vec by Le
et.al [19] is formulated on the basis of the embedding of documents. The word2vec and
doc2vec concepts are adopted to the case of graphs, for which the embeddings are built
upon nodes, subgraphs, graph as a whole etc. Such designs can be seen in the works like
graph2vec by Narayanan et.al [20], subgraph2vec by Narayanan et.al [21] and node2vec
by Grover et.al [22]. This concept is further improvised by Nguyen et.al [23] by taking into
consideration the occurrence of frequent subgraphs. Yanardag et.al [24] introduced these
concepts into Weisfeiler-Lehman kernel [25] and called it deep graph kernel.

2.4.2 Graph kernels

The graph kernels can be classified into two: (a) kernel between nodes within a graph (b)
kernel between graphs. In the first category, notable work is the diffusion kernel devel-
oped by Kondor et.al [26]. In this, the random walks (of length zero to infinity) happening
in graphs are transformed into a diffusion setting and a kernel has been designed in dis-
crete space which is analogous with Gaussian kernel in continuous cases. Another work
in this direction is done by Smola et.al [27], called the regularized kernels. In this case, a
class of monotonically decreasing functions are utilized to build kernels and corresponding
regularization operators [28].

The second category of kernels are formulated by using graph properties such as ran-
dom walks, shortest paths, tree or subtree structures and subgraphs. In the random walk
kernels by Gartner et.al [29], the random walks are done on the graphs under considera-
tion and the number of matching walks are utilized as an information to build kernel. This
work was modified by Vishwanathan et.al [30] by taking the pair of graphs into a common
platform using direct product graph for finding the similar random walks. Another notable
work was done by Kashima et.al [31] called marginalized kernels in which the labeled
graphs are used, that is, each node has a label and random walks are done by considering
the labels and the count of these labeled paths are taken into consideration for feature rep-

15

resentation. This work was modified by Mahe et.al [32] by introducing Morgan indexing
[33] in nodes. They also developed a mechanism to avoid tottering (repeated visits to a
node). Borgwardt et.al [34] improvised the random walk kernels proposed in [29, 31] to
process the attribute information. Zhang et.al [35] used the return probabilities of random
walks of fixed length in their kernel design for the attributed graphs.

The graph kernels using shortest paths are usually formulated by constructing a vector
for each graph based on the number of occurrence of i-lengthed shortest paths. Along with
this information, sometimes the label information is also being used. The notable work in
this direction was done by Borgwardt et.al [7]. The GraphHopper kernel formulated by
Feragen et.al [36] processes the attributed graphs by making use of shortest paths.

The formulation using subtree structures is the most popular approach for graph kernel
construction and a lot of work has been done in this direction. The subtree kernel de-
fined by Gartner et.al [37] makes use of subtree patterns and node labels. Mahe et.al [38]
modified this work by reducing the complexity of subtree patterns. They also introduced a
controlling parameter in the formulation that gives a greater flexibility in kernel definitions.
The Weisfeiler-Lehman (WL) kernel defined by Shervashidze et.al [25] makes use of WL
test for graph isomorphism and it is formulated by retrieving the subtree patterns with node
labels in an iterative fashion. Bai et.al [39] proposed aligned subtree kernel which takes
into account the relative positions of the nodes within the subgraphs. Martino et.al [40]
designed a kernel from the tree structures by capturing the specific graph visits. Truncated
tree based kernel proposed by Ye et.al [41] uses a feature vector for the graphs in which
the number of breadth first search (BFS) trees rooted on each node are counted and the
structural role of the individual vertices are compared in this way.

There exist graph kernels that are based on the properties of subgraph structures. The
cyclic pattern kernels developed by Horvath et al [42] utilized pairs of matching cyclic
patterns along with tree patterns in graphs to define kernels. Shervashidze et.al [43] made
use of graphlets, that is, graphs as collection of many subgraphs, in a systematic manner
such that an exhaustive feature extraction is avoided. A computationally efficient procedure
for this kernel is proposed by Aziz et.al [44]. De Grave et.al’s [45] formulation is based on
the similarity between subgraphs within a graph. The kernel design of Kriege and Mutzel
[8] made use of isomorphic subgraphs while the work of Orsini and Frasconi [46] is on
the basis of vertex similarity in subgraphs and both of these kernels are suited for attributed
graphs also. Bai et.al [47] formulated a subgraph representation on each vertex and kernel is
defined on the basis of Jensen-Shannon divergence of the subgraph structures. The ordered
decomposition directed acyclic graph (ODD) kernel [40] creates a representation of the

16

graph as a bag of directed acyclic graphs (DAG). Each node pair in each DAG pair is then
processed in a similarity function to derive the kernel value.

The other formulations of graph kernels include global graph kernels by Johansson
et.al [48] which is built on the basis of geometric properties in graphs by making use of
Lovasz number, propogation kernels by Neumann et.al [49] whose framework depends
on the pattern of information flow through a graph, kernel fomulated by Guazere et.al
[50] that makes use of graph edit distance and the kernels based on information theory by
Bai et.al [51] and Xu et.al [52], [53]. Kriege et.al [5] formulated the optimal assignment
kernels where optimal bijection is done between graph components to make the kernel
definition. There also exist domain specific kernels, for example, the kernel tailored for
chemoinformatics domain by Guazere et.al [54], in which the chemical properties such
as stereo isomerism and graph theoretic approach are made use of in the design. The
Wasserstein WL graph kernels formulated by Togninalli et.al [55] model a distribution
over the graph components rather than using the corresponding feature vectors directly into
a kernel definition. Multiscale Laplacian kernel proposed by Kondor et.al [56] uses a base
kernel to extract information from vertices and this kernel is used recursively on subgraphs
in their design. Rieck et.al [57] used persistent homology (PH) concept in topological data
analysis in formulating a graph classification algorithm where the PH is modeled on WL
subtree features. In addition to this, there are graph kernels proposed for attributed graphs
that are based on the discretization of attributes. Propagation kernel [58] by Neumann et.al,
Hash graph kernels by Morris et.al [59] etc, are examples.

MKL strategy is applied in several works related with graph learning. Aiolli et.al [60]
used MKL to group the similar features involved in a graph kernel design and to define
a kernel for each group. Gauzere et.al [54] used MKL to assign a weight for each of
the feature they used for kernel construction, whereas Donini et.al [61] applied MKL to
subsample the dataset. It has to be noted that our proposed method based on multi-view
learning is different from these since we use multiple embeddings and MKL to assign a
weight for each embedding to derive the optimal graph representation.

2.4.3 Spectral Graph Convolutional Neural Networks

The spectral filter designs for GCNNs start with the work by Bruna et.al [62] where the
graph Fourier transform of the signals on nodes is utilized. The filter is learned as a di-
agonal matrix with learnable weights which can be interpreted as direct interaction with
the eigenvalues of graph Laplacian. Henaff et.al [63] improvised this work by incorpo-

17

rating the localization of the filters. In ChebyNet [64], the filter is defined as the linear
combination of powers of the Laplacian. The scaling factors of the linear combination
are considered as the parameters to be learned from the network. Kipf et.al [65] proposed
graph convolutional network (GCN) as the first-order approximation to spectral convolu-
tions defined in ChebyNet. GraphHeat [66] uses a negative exponential processing on the
eigenvalues of graph Laplacian to improve the smoothness of the function to be learned by
penalizing high-frequency components of the signal. Li et al [67] proposed improved graph
convolution networks (ICGN) by proposing higher-order filters used in [65]. Our proposed
method analyses these architectures and for the sake of clarity we describe these methods
as traditional SGCNs. Apart from traditional SGCNs, there are a few networks that can be
categorized into the spectral class as described below.

The filters of the traditional networks are computed in the fourier domain described by
the eigenspace of (normalized) graph Laplacian. The graph wavelet network [68] on the
other hand defines the convolution over graph wavelet transform rather than graph fourier
transform. There are certain works that can be categorized as spectral approaches although
they learn additional graph connectivity information apart from that provided by graph
Laplacian. Adaptive graph convolutional network [69] models the residual connections
between the nodes that are not directly connected and given by the graph Laplacian. The
dual graph convolutional network [70] proposed positive pointwise mutual information
(PPMI) matrix to capture global information along with the Laplacian that captures only
local information about the graph structure.

CayleyNets [71] are SGCNs in which the Cayley polynomials are used to compute the
filters that give a control over the frequency reponse compared to the traditional approach.
LanczosNet [72] uses Lanczos algorithm to construct the low rank approximation of graph
Laplacian and constructs learn-able filters.

2.4.4 Regularization in graphs

Regularization associated with graphs has emerged along with the development of algo-
rithms related to semi-supervised learning [73]. The data points are converted into a net-
work and the unknown label of a data point can be learned in a transductive setting. A gen-
eralized regularization theory is formulated where the classical formulation is augmented
with a smoothness functional on a graph in terms of its Laplacian. These concepts are used
for semi-supervised learning and in related applications [74], [75], [76], [77]. Smola et.al
[27] leverage these concepts to define support vector kernels on graph nodes and they also

18

formulated its connection with regularization operators.

2.4.5 Spectral analysis of SGCNs

There are works that analyse the frequency response of the filters of SGCNs. NT et.al [78]
have shown that the filters learned by traditional SGCNs are low-pass filters. They have
experimentally analyzed this by checking the accuracy against the frequency components
in citation datasets and found that the addition of high pass components cause decrease in
accuracy. They also proposed a simplified architecture for graph learning where the graph
filters are made parameter free and had observations that is similar to ours as explained
in Section 6.3.1. The low pass filtering property of ChebyNet and GCN networks are
analyzed by Wu et.al [79]. They have shown that the renormalization trick [65] applied
to GCN shrinks the spectrum of the modified Laplacian from [0, 2] to [0, 1.5] which favors
the low pass filtering process. Li et.al [67] and Klicpera et.al [80] has given the frequency
response analysis of their proposed filters.

There have been certain works that modify or propose new architecture in the context
of low pass behaviors of SGCNs. Li et.al [81] have analyzed the low pass filtering property
to observe the need for incorporating high frequency components for certain applications
and proposed modifications to the SGCN architectures. Similarly, Balcilar et.al [82] have
observed the need for high pass and band pass components for certain applications. Chang
et.al [83] have suggested separate learn-able parameters for low pass and high pass com-
ponents of the features rather than treating them in a single unit. Bo et.al [84] theoretically
analyze the influence of low and high pass components for node representation learning and
proposed new propagation techniques that incorporate various components suitable for the
learning task. Fu et.al [85] have deduced that SGCNs basically denoise the node features
while graph attentions [86] denoise edge weights.

Li et.al [87] have observed that graph convolution in traditional SGCNs are equivalent
to a Laplace smoothing operation. The operation enforces a similar representation for those
nodes which are topologically similar. Inspired by the low pass behaviors of graph Lapla-
cian, Wu et.al [79] have simplified the SGCN architecture by removing certain weights and
non-linearities between the layers. Zhang et.al [88] analyze the low pas filtering property
of GCN and propose higher order graph convolution suitable for graph clustering applica-
tions. Adding to this, Gama et.al [89] study the perturbation of graphs, consequent effects
in filters, and proposed the conditions under which the filters are stable to small changes in
the graph structure.

19

In the next chapters, we discuss the proposed methods starting with the multi-view
MKL approach formulated for type-I graphs.

20

Chapter 3

Design of multi-view graph embedding us-
ing multiple kernel learning

The graph embedding is the process of representing a graph in a vector space [90]. This
is done with the aid of a vector constructed using the graph properties of the data. Hence
the effectiveness of embedding depends on the ability of the chosen graph properties in
representing the structural and topological properties of the graph. Many methods have
been proposed for graph embedding that differs in the graph properties used for its formu-
lation. On the other hand, graph kernel does not undergo any intermediate embedding as
it refers to a kernel function whose domain is the input space of graphs [91], [92] [30].
The R-convolution framework proposed by Haussler(1999) is one of the most widely used
designs for formulating graph kernels [2].

The multi-view learning deals with the process of learning from data that can be repre-
sented by hetrogeneous features or views [3], [4]. By considering such data as a single unit
could result in problems such as over-fitting as each view has a specific statistical prop-
erty. The multi-view approaches use a separate function to optimize each view individually
and then these functions are jointly optimized, which in turn helps to improve the learning
performance. Examples can be found in [93], [94], [95].

We adopted the technique of multi-view learning in designing the graph embedding
where view of a graph related to a graph property involves the generation of a vector from
the graph using that property. The data from chemo-informatics, brain connectivity and
social media domains are selected for our study. The efficiency of the proposed method
was experimentally verified by incorporating the multi-view embedding on support vector
machine. The multi-view embedding approach produced superior results in comparison
with that of state-of-the-art techniques. The representation capability of the individual
embedding has also been analyzed by designing an appropriate graph kernel based on R-

21

convolution kernel framework.

The rest of the chapter is organized as follows. The notations used in the chapter are
discussed in Section 3.1. In Section 3.3, the techniques we used for constructing the views
are described. The Section 3.4 describes about the R-convolution designs we have formu-
lated to assess the individual embeddings. The experiments results are in Section 4.3 while
concluding remarks are given in Section 3.6.

3.1 Notations

We represent a graph as G = (V,E) where V and E are the set of nodes and edges re-
spectively. Define a mapping l : V → Σ, such that l(v) is the label associated with a
node v and (Σ,≤) is a total ordered set that consists of node and edge labels. The shortest
path between node vi and node vj in a graph is represented as Π(vi, vj) = {v0, v1, . . . , vn}
where v0 = vi and vn = vj and (vl, vl+1) ∈ E, l = 0, 1, . . . n − 1. The labeled path
is defined as the path where nodes are replaced with their corresponding labels, that is,
LΠ(v0, vn) =

[
l(v0), l(v1), . . . , l(vn)

]
.

Let G = {(G1, y1), (G2, y2) . . . (GN , yN)} be the given data, where each Gi is a graph
and yi, i = 1, 2, . . . N is a class label associated with the data. The data for the learning
task of classification is considered for our analysis.

The graph properties are used for embedding the graphs into vector spaces. Let M
properties of graph are considered and using each property, Gi, i = 1, 2, . . . N is converted
into a vector. Let Xm ⊆ Rn be the vector space in which the vectors generated from the
graphs using the mth property lie, where m = 1, 2, ...M . Then the input space of multi-
view learning is

X = X1 ⊕X2 ⊕ . . .XM (3.1)

The M components of x ∈ X are called its views. Thus each view is a set of attributes
(features) of the data based on a graph embedding. We used kernel methods for data analy-
sis and for that, graph kernel on X ×X is represented and learned with the help of multiple
kernel learning (MKL) framework, whose discussion is given in Section 2.1.1.

The representation capacity of each view has been analysed using graph kernel as well
as embedding approach. The graph kernel for individual views is formulated using the
concept of R-convolution framework which is explained in Section 2.1.2.

22

Multiple
Kernel

Learning

View – I :

Labeled edge

information

View – III :

Labeled shortest

path information

View – IV :

Sub-tree pattern

information

View – II :

Shortest path

length information

1

The vectorial representation from

individual views are jointly

optimized in the MKL framework

to find the optimal kernel measure

2 3 4

view-I view-II view-III view-IV

Input space for multi-view learning is the direct sum of individual spaces

Figure 3.1: Multi-view graph embedding

3.2 MKL for multi-view

In (2.2), all the kernels are defined on the same input space while in (3.2), each kernel has
its own input space.

The multi-view learning involves as much kernels as the number of views and hence
the technique of MKL is adopted for representing the multi-view kernel. We define the
multi-view kernel as

kmulti−view(xi, xj) =
M∑
m=1

dmkm(xmi , x
m
j), dm ≥ 0 (3.2)

where km is the kernel defined on Xm × Xm, dm is the associated weight of the kernel
km, xi = x1

i ⊕ x2
i · · · ⊕ xMi , xmi ∈ Xm, i = 1, 2, . . .M, and M is the total number of views

under consideration.

The positive semi-definiteness of kmulti−view is guaranteed as the coefficients dm are
non-negative [6]. Each dm value can be considered as the weight corresponding to that
kernel. A higher value of dm indicates a higher influence of the corresponding kernel on

23

determining the optimal one. Hence this formulation helps to find the important views and
brings a further insight into the effectiveness of different feature representations we used.
This approach is flexible in the sense that any further feature extraction results can be added
as another view in a plug-in mode.

3.3 Construction of views based on graph embeddings

The views are constructed corresponding to an embedding strategy by making use of the
structural as well as intrinsic properties of the graphs. The description of the formulation
of views is given below.

• View-I is formulated on the basis of the information of the edges in the graph.

• View-II is constructed on the basis of shortest path length information.

• View-III considers labels involved with shortest paths.

• View-IV is built using the subtree patterns.

The four views together help to capture the characteristic properties of the data and they
form the different embeddings of the graph data. The data point is represented as the direct
sum of the vectors corresponding to these views, that is,

x = xview:I ⊕ xview:II ⊕ . . . xview:IV

3.3.1 View-I: Embedding based on labeled edge information

In view I, the information of the labels associated with each edge of the graph is used. As
each edge is associated with two labels, for getting their information, a set of strings of
length two, that is, Σ2 = {xy|x, y ∈ Σ, x ≤ y} is constructed. As the strings xy and yx
convey the same meaning as far as undirected graphs are concerned, with the aid of the
constraint ≤ imposed on Σ, only one among them becomes a member in Σ2. The elements
of Σ2 are arranged on the basis of the total order ≤.

The similarity between two graphs increases as the number of similar edges increase.
Therefore in this view, the feature vector of each graph is found out by finding the number
of times the elements of Σ2 appear as edges of the graph. That is,

xviewI (G) = (c1, c2, . . . c|Σ
2|)

24

where ci is the number of times ith element of Σ2 appear as edges in G and |Σ2| is the
cardinality of Σ2. Therefore the input space for view I is R|Σ2|. An example is shown in
Figure 3.2.

Edge
Labeled

representation

{1, 2} {C C}

{4, 1} {B C}

{3, 2} {A C}

{4, 2} {B C}

{3, 4} {A B}

{3, 5} {A A}

A

C

B

C1 2

3
4

5

A

Figure 3.2: View-I formulation: Feature representation of a sample graph (note that node
labels are given inside circles and the associated number indicates node identification). The
table shows the node label associated with each edges.

In this view only the immediate neighbours are considered. It is required to have the
information of the entire neighbourhood. Hence we constructed two more views that deals
with the neighbourhood information.

3.3.2 View-II:Embedding based on shortest path length information

This view extracts the density of the neighborhood of each vertex by looking into the length
of the shortest paths between vertices. That is, it looks into how fast one can reach from
one vertex to another. The works like [7] used shortest path in constructing kernels for
unlabeled graph processing.

In this view, two graphs become similar when they are similar in terms of the reach-
ability between the nodes. Therefore each graph is represented as a vector

xviewII (G) = (c0, c1, . . . c|pmax|)

where ci, i ≥ 0 is the number of occurrence of shortest paths of length i in G, pmax is the
maximum length of the shortest path we considered and c0 is the number of zero length
paths or equivalently number of vertices in the graph. Thus the input space X2 for this view
is R|pmax|. An example is shown in the Figure 3.3.

25

Shortest paths Path Length

Path 1-2: {1, 2} 1

Path 1-3: {1, 2, 3} 2

Path 1-4: {1, 4} 1

Path 1-5: {1, 4, 3, 5} 3

Path 2-3: {2, 3} 1

Path 2-4: {2, 4} 1

Path 2-5: {2, 3, 5} 2

Path 3-4: {3, 4} 1

Path 3-5: {3, 5} 1

Path 4-5: [4, 3, 5} 2

Attributes following total order Value

Number of nodes 5

No: of occurrence of Path Length: 1 6

No: of occurrence of Path Length: 2 3

No: of occurrence of Path Length: 3 1

Feature representation

A

C

B

C1 2

3

5

A

4

Figure 3.3: View-II formulation: Feature representation of a sample graph. The right table
shows the length associated with each shortest paths and left table shows the derived feature
representation.

3.3.3 View-III: Embedding based on labeled shortest path informa-
tion

The information of the labels of the nearest neighbors of each node is used to construct this
view. For that, the labels appearing in the shortest path between each vertex are considered.
The construction of the feature corresponding to view-III is done as given in [96].

A vertex vi is taken as a nearest neighbour of vj if the length of the shortest path vi
and vj is less than or equal to a predefined number pmax. Let N (vi) = {vj ∈ G :

vj is a neighbour of vi within a shortest path of finite length}. In this view, we are only
interested in which all labels appearing in the shortest path that connects vi with that of
its neighbours and not in their order of appearance in the path. Hence the labeled shortest
path is constructed as: LGΠ(vi, vj) = [l1, l2, . . . ln], n ≤ pmax, vj ∈ N (vi). The end points
of LGΠ(vi, vj) are the labels of its arguments and lk, k = 2, . . . n−1 are the labels appearing
in the shortest path between vi and vj such that

1. l1 ≤ ln

2. ls ≤ lt , 1 < s < t < n

As the information related with the shortest path between vi and vj is same as that of
between vj and vi, the constraint l1 ≤ ln has been imposed on LGΠ(vi, vj).

26

Consider the class of sets

P = ∪Nl=1{LGlΠ (vi, vj) : vi ∈ Gl, vj ∈ N (vi)} (3.3)

Now
xviewIII (G) = {c1, c2,c|P |}

where cl = |(vi, vj) ∈ G : LGΠ(vi, vj) ≡ P l|, P l is the lth element of P and |P | is the
cardinality of P . That is, cl is the number of vertex pairs inG for which their corresponding
labelled shortest path is equivalent to the lth element of P . Hence the input space for View-
III is R|P |.

An example for the feature extraction process is shown in the Figure 3.4. It should also
be noted that the length of the shortest paths so chosen are limited within a tolerance level.
The tolerance level was fixed by cross validation.

Shortest paths
Associated
node labels

Path 1-2: {1, 2} {C C} {C C}

Path 1-3: {1, 2, 3} {C C A} {A C C}

Path 1-4: {1, 4} {C B} {B C}

Path 1-5: {1, 4, 3, 5} {C B A A} {A A B C}

Path 2-3: {2, 3} {C A} {A C}

Path 2-4: {2, 4} {C B} {B C}

Path 2-5: {2,3,5} {C A A} {A A C}

Path 3-4: {3, 4} {A B} {A B}

Path 3-5: {3, 5} {A A} {A A}

Path 4-5: [4, 3, 5} {B A A} {A A B}

A

C

B

C1 2

3

5

A

4

(a)

(c)

(b)

Figure 3.4: View-III formulation. (a) A sample graph (note that node labels are given
inside circles). (b) Labeled shortest path representations, LGΠ. (c) Corresponding set P of
the graph and its vector representation.

3.3.3.1 Note on computation of set P

Algorithm 3.1 can be used for computation of P . It can be seen that the shortest paths
between each pair of nodes has to be calculated. In practical computation, set P can be
made as a dictionary data type. Every LGiΠ (vj, vk) representation are stored in P along with

27

an associated key. The embedding vectors can be efficiently computed using these keys as
shown in the algorithm.

Algorithm 3.1: Computation of view-III embedding
Input : The graph dataset D
Output: The view-III vector embedding

1 Initialize P (key, value) as empty dictionary and p = 1
2 for every graph, Gi = (Vi, Ei) in G do
3 Initialize xviewIII (Gi) as zero vector
4 for every node vj in Vi do
5 for every node vk in Vi do
6 if j<k then
7 Find shortest path between vj and vk
8 Find LGiΠ (vj, vk) representation
9 if LGiΠ (vj, vk) /∈ P then

10 P = P ∪ {LGiΠ (vj, vk)}
11 key(LGiΠ (vj, vk)) = p
12 xviewIII (Gi)(p) = xviewIII (Gi)(p) + 1
13 p = p+ 1

14 else
15 xviewIII (Gi)(key(LGiΠ (vj, vk))) =

xviewIII (Gi)(key(LGiΠ (vj, vk))) + 1

16 end
17 end
18 end
19 end
20 Store xviewIII (Gi)

21 end

The View-III basically contains information in the form of chains running across the
graphs. But these chains could intersect in multiple nodes forming much more complex
graph structures. Hence we need to process these complex structures and for this purpose
View-IV is introduced.

3.3.4 View-IV: Embedding based on subtree patterns

The view-IV is designed as a set of features that could derive the structure of the graph in
a global perspective. This is achieved by considering the subtrees originating from each
vertex.

28

The subtree associated with a vertex v of a graph G are hierarchical structures in the
form of a tree, whose root node consists of v and the immediate children of each node in
the tree are those vertices which are adjacent to it. For subtree generation, the set of nodes
that are encountered at each level of the walks of depth k, (k ≥ 0) from the root node v is
represented as SGk (v), where,

SGk (v) =


{
v
}
, k = 0{

vi : (v, vi) ∈ E
}
, k = 1{

vj : (vi, vj) ∈ E ∧ vi ∈ Sk−1(v)
}
, k > 1

The View-IV is designed using the adjacency information in the form of labels appear-
ing in each level of the sub-tree. For that a function L over the domain consisting of such
SGk (v) is formulated, where

L
(
SGk (v)

)
=

{
l(v), k = 0{
|ε1||ε2| . . . |ε|Σ||

}
, k > 0

where εi is the ith element in Σ, |εi| gives the number of vertices in Sk(v) that has the label
εi and |Σ| is the cardinality of Σ.

Now corresponding to each v ∈ V and each depth d under consideration, where 1 ≤
d ≤ dmax, a feature FG(v, d) is constructed. Here, FG(v, d) is a string formed by the
concatenation of strings L(SGk (v)), k = 0, 1, . . . , d and dmax is the maximum depth of the
subtree considered for the design. The FG(v, d) has to be found for all nodes at all depths
under consideration and hence a total of |V |×dmax number of features is obtained for each
graph.

Consider the class of sets

T = ∪Nl=1{FGl(v, d) : v ∈ Vl, 1 ≤ d ≤ dmax} (3.4)

Note that T contains information about whole subtree pattern upto depth d rooted in
vertices of the all graphs.

Now
xviewIV (G) = {c1, c2,c|T |}

where cl = |(v, d), v ∈ G, 1 ≤ d ≤ dmax : FG(v, d) ≡ T l|, T l is the lth element of T
and |T | is the cardinality of T . That is, cl is the number of vertices in G for which its
corresponding subtree pattern representation is equivalent to the lth element of T . Hence
the input space for View-IV is R|T |. An example for the feature extraction scheme is given
in the Figure 3.5 where subtree patterns up to depth, d = 3 is computed.

29

C

C

AB

B

1

2 4

1 4 2

2 2 2

(Root node)

{1}

{C}

{2,4}

{0 1 1}

{1,3,4,1,2,3}

{2 1 3}

{2,4,2,4,5,1,2,3,2,4,1,3,4,2,4,5}

{4 5 7}

Feature representations for subtrees rooted at node: 1

Subtree pattern of depth k=1

{C}+{0 1 1} ≡ {C 0 1 1}

Subtree pattern of depth k=2

{C}+{0 1 1}+{2 1 3} ≡ {C 0 1 1 2 1 3}

Subtree pattern of depth k=3

{C}+{0 1 1} +{2 1 3}+{4 5 7} ≡ {C 0 1 1 2 1 3 4 5 7}

- - - - - - - - - - - - - -d=0

- - - d=2

- - - - - - d=1

- - - d=3

C B C

C

CA
3

A
3

C B A C C C A B C B AC B

1

4 2 4 5 1 3 4 3 41 2 4 5

Feature representations for subtrees rooted at node: 2

Subtree pattern of depth k=1

{C}+{1 1 1} ≡ {C 1 1 1}

Subtree pattern of depth k=2

{C}+{1 1 1}+{2 2 4} ≡ {C 1 1 1 2 2 4}

Subtree pattern of depth k=3

{C}+{1 1 1} +{2 2 4}+{7 5 9} ≡ {C 1 1 1 2 2 4 7 5 9}

Feature representations for subtrees rooted at node: 3

Subtree pattern of depth k=1

{A}+{1 1 1} ≡ {A 1 1 1}

Subtree pattern of depth k=2

{A}+{1 1 1}+{3 1 3} ≡ {C 1 1 1 3 1 3}

Subtree pattern of depth k=3

{A}+{1 1 1} +{3 1 3}+{5 6 8} ≡ {C 1 1 1 3 1 3 5 6 8}

Feature representations for subtrees rooted at node: 4

Subtree pattern of depth k=1

{B}+{1 0 2} ≡ {B 1 1 1}

Subtree pattern of depth k=2

{B}+{1 0 2}+{2 3 3} ≡ {B 1 0 2 2 3 3}

Feature representations for subtrees rooted at node: 5

Subtree pattern of depth k=1

{A}+{1 0 0} ≡ {A 1 0 0}

Subtree pattern of depth k=2

{A}+{1 0 0}+{1 1 1} ≡ {A 1 0 0 1 1 1}

Subtree pattern of depth k=3

{A}+{1 0 0}+{1 1 1} +{3 1 3}≡ {A 1 0 0 1 1 1 3 1 3}

Subtree pattern of depth k=3

{B}+{1 0 2}+{2 3 3} +{7 4 10}≡{B 1 0 2 2 3 3 7 4 10}

A

C

B

C1 2

3

5

A

4

Construction details of the vector representation

(a)

(c)

(d)

(e)

(f)

(g)

(b)

Figure 3.5: View IV Formulation. (a) A sample graph. (b) Corresponding set T and vector
representation of the graph. (c) Feature construction corresponding to subtrees rooted at
node 1, (d) Feature representations corresponding to subtrees rooted at node 2. (e) Feature
representations corresponding to subtrees rooted at node 3. (f) Feature representations
corresponding to subtrees rooted at node 4. (g) Feature representations corresponding to
subtrees rooted at node 5.

30

3.3.4.1 Note on computation of set T

Algorithm 3.2 can be used for computation of T . It can be seen that a tree traversal rooted
on every nodes are required for the computations till walks of step 3. In practical com-
putation, set T can be made as a dictionary data type. The FG(v, d) representation can be
efficiently calculated at each depth d and can be integrated with dictionary T as value along
with an associated key. The vectors then can be found out in the same way as explained in
the case of algorithm 3.1.

Algorithm 3.2: Computation of view-IV embedding
Input : The graph dataset D
Output: The view-IV vector embedding

1 Initialize T (key, value) as empty dictionary and p = 1
2 for every graph, Gi = (Vi, Ei) in G do
3 Initialize xviewIV (Gi) as zero vector
4 for every node vj in Vi do
5 L = l(v)
6 for depth,k from 1 to 3 do
7 Find SGik (vj) or nodes reachable through k step walk from vj
8 F = L � L

(
SGk (v)

)
, � represents string concatenation

9 if F /∈ T then
10 T = T ∪ {F}
11 key(F) = p
12 xviewIV (Gi)(p) = xviewIV (Gi)(p) + 1
13 p = p+ 1
14 L = F

15 else
16 xviewIV (Gi)(key(F)) = xviewIV (Gi)(key(F)) + 1
17 L = F

18 end
19 end
20 end
21 Store xviewIV (Gi)

22 end

3.4 Representation Capability of the Views

The views defined in the above section can be regarded as different representations of the
graph. The prediction capacity of each view was analysed using kernel algorithm and for

31

that we designed graph kernels using the concept of R-convolution framework[2] whose
descriptions are given below.

3.4.1 Kernel definition for view: I

In view-I, the similarity between two graphs increases when the number of similar edge
increases and hence we designed kernel in the following way.

Let Σ2
Gi

and Σ2
Gj

be the class of view-I feature sets corresponding to Gi and Gj respec-
tively. Then

KviewI (Gi, Gj) =
∑

eu∈Σ2
Gi

∑
ev∈Σ2

Gj

δ(eu, ev)

Because of the δ function the value of the kernel increases when the number of common
edges in Gi and Gj increase.

The proof of the positive definiteness of KviewI can be established once we prove it is
an R-convolution kernel.

For each element eu ∈ Σ2
Gi

, we define a relation R(eu, G
†
i , Gi) whose value equals 1

iff G†i is the graph obtained from Gi by removing the edge eu. Let R−1(Gi) be the set
containing all the decompositions of the graph Gi into eu and G†.

With this setting, R-convolution kernel Kedge can be defined as follows.

Kedge(Gi, Gj) =
∑

R−1(Gi)

∑
R−1(Gj)

δ(eu, ev)ktrivial(G
†
i , G

†
j)

=
∑

eu∈Σ2
Gi

∑
ev∈Σ2

Gj

δ(eu, ev) = KviewI (Gi, Gj)

where ktrivial is a trivial kernel whose value is always 1.

It is noteworthy that Kedge(Gi, Gj) = 〈xviewI (Gi), xviewI (Gj)〉. The reason can be
stated as: Kedge actually counts the common structures generated using the decompositions
specified by R. The vector representation xviewI of graphs Gi, Gj contains the information
of number of decomposed structures specified by the decomposition relation R and taking
their inner product is a measure of common structures as in the case of Kedge.

32

3.4.2 Kernel definition for view: II

The kernel for view-II is defined as follows:

KviewII (Gi, Gj) =
∑

ui,vi∈V (Gi)

∑
uj ,vj∈V (Gj)

δ
(
ΠGi(ui, vi),Π

Gj(uj, vj)
)

= 〈xviewII (Gi), xviewII (Gj)〉

where δ
(
ΠGi(ui, vi),Π

Gj(uj, vj)
)

= 1 iff ΠGi(ui, vi) and ΠGj(uj, vj) are of same length.
Note that this kernel definition is same as that of the shortest path kernel [7].

It is straight forward to define this kernel on the basis of R-convolution kernel as ex-
plained in the kernel definition for the View-I. In this case, corresponding to each shortest
path a decomposition relation R(p,G†, G) can be made where G† is the graph obtained
from G by removing the edges involved in the shortest path p.

3.4.3 Kernel definition for view: III

The view-III kernel is defined as

KviewIII (Gi, Gj) =
∑

ui,vi∈V (Gi)

∑
uj ,vj∈V (Gj)

δ(LGiΠ (ui, vi), L
Gj
Π (uj, vj))

= 〈xviewIII (Gi), xviewIII (Gj)〉

The above defined kernel is in fact an R convolution kernel. For each summation case,
we can define a relation R(pL, G

†, G) such that shortest path representation of the path pL
is LΠ(., .) and G† is the graph obtained from G by removing edges involved in the path pL.

3.4.4 Kernel definition for view: IV

The kernel for view IV is defined as follows:

KviewIV (Gi, Gj) =
dmax∑
d=1

∑
v∈Vi

∑
u∈Vj

δ
(
FGi
d (v), F

Gj
d (u)

)
The View-IV kernel can be explained in R-convolution framework. Let T be the set con-
taining whole trees with labeled nodes in all graphs. Now consider a graph G. For any
td ∈ T we define a relation R(td, G) = 1 iff td is a subtree in G of depth d, d = 1, . . . dmax.

33

With this assumptions, R−1(G) contains the set of all subtrees in G. Now we can define a
R-convolution kernel called subtree kernel(KST) as follows

KST (Gi, Gj) =
dmax∑
d=1

∑
tdi∈R−1(Gi)

∑
tdj∈R−1(Gj)

δ
(
FGi
d (v), F

Gj
d (u)

)
: ∀v ∈ Vi ∧ ∀u ∈ Vj

= KviewIV (Gi, Gj)

= 〈xviewIV (Gi), xviewIV (Gj)〉

where FGi
d (v), F

Gj
d (u) are the string representations of tdi rooted on node v and tdj rooted

on node u respectively and δ
(
FGi
d (v), F

Gj
d (u)

)
= 1 iff string representations of subtree

patterns of depth d rooted on node v in graphGi and node u in graphGj is same. Otherwise
it is 0.

3.5 Experiment

The experiments were done in real world datasets in the domains of chemo-informatics,
brain connectivity analysis and social media data analysis.

3.5.1 Experimental Setup

The classification algorithm used was SVM (with Libsvm implementation [97]). The per-
formance parameter used was accuracy. The experiments were done with Intel Xeon i5
CPU with 80 GB RAM.

The kernel for each view and other hyperparameters of the model were selected using
cross validation techniques, whose procedure was as follows. Using the hold out technique
70% of the data points were assigned for training and the remaining for testing. 10 fold
cross-validation was done on training data for selecting the hyperparameters. A model was
then built using the entire training data and its performance was tested on the testing data.
The above process was repeated 30 times and the results reported were averaged over these
30 iterations to nullify the effects of fold assignments in the hold-out split.

The hyperparameter associated with Gaussian kernel was searched in the interval (2−15,
23), degree of the polynomial kernels in the set {1, 2, 3, 4} and the penalty parameter C of
SVM in the interval (2−5, 215). The h value associated with WL kernel framework was
searched in the set {0,1,2,. . . , 10} for WL-subtree, {0,1,2,3} for WL-edge and {0,1,2} for
WL-shortest path kernels.

34

The models were subjected to paired t-test to check the statistical significance of the
results (significance level α = 0.05). The ranks to the algorithms were assigned in the
following way. Let P1 and P2 are the values of a performance measure P for a given
dataset corresponding to algorithms A1 and A2 respectively. Then we say that A1 is better
than A2 on the basis of P if P1 > P2 and the difference between P1 and P2 is statistically
significant.

3.5.2 Applications in chemoinformatics

The efficiency of the proposed multi-view embedding was analyzed by subjecting them
on real world data sets on chemo-informatics domain and compared its performance with
state-of-the-art graph embeddings namely: Graph2vec (G2V) [20], Subgraph2vec (S2V)
[21], Node2vec (N2V) [22], GE-FSG (Graph Embedding with Frequent Sub-Graphs) [23],
Deep graph kernels (DGK) [24] and graph kernels namely: Random walk (RW) kernel [30],
Shortest path (SP) kernel [7] (labelled and unlabelled version), Graphlet kernel (GL) [43],
Weisfeiler-Lehman (WL) kernels [25] (WL-subtree (WL-S), WL-edge (WL-E) and WL-
shortest path (WL-SP), WL-optimal assignment kernel (WL-OA) [5], RetGK kernels (the
variants with explicit RKHS mapping (RGK-1) and with approximated mapping (RGK-2))
[35], and Treelet kernel+MKL (TK+MKL) [54]. The results of multi-view approach are
abbreviated by MV. Node2vec gives the embedding of individual nodes and hence in our
analysis, the vector corresponding to a graph’s embedding was taken as the average of the
vectors corresponding to its node embeddings. We used deep graph kernel as an embedding
for our analysis because it constructs a matrix based on the concepts of word2vec [17] that
can be regarded as an embedding matrix, M . The feature map of state-of-the-art graph
kernels is then utilized to construct an augmented kernel measure of the form k(x, y) =

φ(x)TMφ(y) where, φ is the feature mapping.

3.5.2.1 Datasets

The classification datasets used for analysis were from the chemoinformatics domain. The
datasets used were MUTAG, PTC(MR), PTC(FR), PTC(MM), PTC(FM), PROTEINS, EN-
ZYMES, NCI1, and, NCI109. The MUTAG [98] is a dataset of 188 mutagenic aromatic
and heteroaromatic nitro compounds that are labeled according to whether or not they have
a mutagenic effect on the Gramnegative bacterium Salmonella typhimurium. The PTC-
FR, PTC-MR, PTC-FM and PTC-MM [99] describe the carcinogenicity of certain chem-
ical compounds on female rats, male rats, female mice, male mice respectively. The EN-

35

Table 3.1: Dataset details: |D|: cardinality of the data set D, |P |: cardinality of posi-
tive class, |N |: cardinality negative class, V avg =: average of {|V |, V ∈ D}, Eavg =
average of {|E|, E ∈ D}, V max = max{|V |, V ∈ D}, Emax = max{|E|, E ∈ D}.

Dataset |D| |P | |N | V avg Eavg V max Emax

MUTAG 188 125 63 17.93 19.79 28 33
PTC-MR 344 152 192 25.55 25.96 109 108
PTC-FR 351 121 230 27.08 26.47 109 104
PTC-FM 349 143 206 26.24 25.57 109 104
PTC-MM 336 129 207 26.03 25.34 109 104
PROTEINS 1113 663 450 39.05 72.81 620 1049
ENZYMES 600 NA NA 32.63 46.66 126 81
NCI1 4110 2057 2053 29.86 32.30 111 119
NCI109 4127 2079 2048 29.68 32.13 111 119

ZYMES is a data set of 600 protein tertiary structures obtained from the BRENDA enzyme
database [100]. The PROTEINS dataset consists of chemical compounds with two classes
(enzyme and non-enzyme) [101]. The NCI1 and NCI109 [102] are two datasets of chemi-
cal compounds that are screened for activity against non-small cell lung cancer and ovarian
cancer cell lines respectively. The ENZYMES is a 6 class classification problem whereas
all the other are binary class problems. The further details of the datasets are given in Table
3.1.

3.5.2.2 Results and Discussion

The accuracy results of different models we used in our analysis are tabulated in Table 3.2.
The multi-view approach secured rank 1 in all datasets. This shows that relative with other
graph embeddings and graph kernels that rely on a single class of graph property, multi
view approach succeeded to capture the characteristics of the data in a better way. In the
PTC datasets, the multi-view approach has a significantly better performance compared to
other models - an improvement of 5%, 4%, 2% and 3% respectively. When it comes to
the large datasets - NCI1 and NCI109 - the improvement is approximately 1.3% and 2%
respectively compared to the second best performing model.

Among the embedding methods, G2V, S2V and DGK has shown consistent perfor-
mance. The performance of N2V is low and it can be attributed to the node level averag-
ing. In PCI datasets, G2V has the better performance while in MUTAG it is S2V. Note
that the corresponding scores are on par with the best scores from the kernel algorithms.
In large datasets - PROTEINS, NCI1, NCI109 - it is DGK that has better performance and
GE-FSG that performs lower in small datasets are second best. In the case of ENZYMES,
it is G2V that has better performance than others. Comparing the performance with ker-

36

Table 3.2: Accuracy (along with standard deviation) of the multi-view graph embedding
along with state-of-the-art embedding techniques and graph kernels. The rank in statistical
significance test is given in the bracket.

Embed. MUTAG PTC-MR PTC-FR PTC-FM PTC-MM
G2V 84.26 ± 10.25 (5) 61.23 ± 5.67 (2) 67.23 ± 4.77 (2) 61.23 ± 5.05 (3) 66.58 ± 5.65 (2)
S2V 88.23 ± 1.89 (2) 60.76 ± 1.49 (3) 65.44 ± 1.78 (4) 59.77 ± 2.12 (4) 63.79 ± 1.83 (4)
N2V 73.42 ± 8.75 (9) 57.45 ± 8.94 (7) 61.56 ± 9.44 (6) 56.82 ± 9.74 (7) 60.66 ± 8.35 (7)
GE-FSG 83.54 ± 0.03 (5) 58.94 ± 0.82 (5) 60.17 ± 0.71 (6) 56.29 ± 1.13 (6) 59.83 ± 0.86 (7)
DGK 88.46 ± 2.87 (2) 60.15 ± 3.08 (4) 66.36 ± 3.64 (3) 60.54 ± 4.88 (4) 65.44 ± 5.14 (3)
Kernel MUTAG PTC-MR PTC-FR PTC-FM PTC-MM
RW 74.27 ± 3.79 (8) 58.19 ± 3.63 (5) 65.56 ± 0.80 (4) 58.83 ± 2.48 (5) 62.50 ± 0.76 (4)
SP 2 87.84 ± 5.66 (3) 59.65 ± 6.02 (5) 65.66 ± 4.77 (4) 63.13 ± 5.12 (2) 62.88 ± 5.78 (5)
GL 74.16 ± 3.60 (8) 58.25 ± 3.68 (5) 66.91 ± 2.44 (3) 56.70 ± 3.96 (6) 64.78 ± 3.50 (3)
WL-S 85.04 ± 4.70 (4) 58.95 ± 3.99 (5) 67.95 ± 2.74 (1) 62.41 ± 4.73 (2) 67.87 ± 3.85 (1)
WL-E 83.70 ± 3.99 (5) 57.61 ± 4.23 (6) 67.44 ± 2.05 (2) 60.06 ± 4.98 (4) 66.00 ± 2.84 (2)
WL-SP 85.82 ± 5.19 (4) 58.40 ± 4.78 (5) 62.86 ± 2.93 (5) 54.84 ± 4.49 (8) 60.56 ± 4.21 (6)
WL-OA 87.27 ± 4.46 (3) 60.59 ± 3.66 (3) 66.62 ± 2.88 (2) 59.30 ± 3.91 (4) 67.15 ± 3.47 (1)
RGK-1 65.80 ± 3.52 (10) 58.43 ± 3.63 (5) 65.22 ± 1.66 (4) 58.44 ± 2.53 (5) 60.71 ± 2.55 (6)
RGK-2 65.51 ± 3.91 (10) 56.25 ± 2.23 (7) 66.29 ± 3.08 (3) 58.77 ± 1.67 (5) 61.78 ± 0.42 (5)
TK+MKL 81.61 ± 5.61 (7) 51.12 ± 6.48 (8) 59.45 ± 4.38 (6) 56.66 ± 5.22 (6) 58.33 ± 5.69 (8)
MV 90.24 ± 4.85 (1) 66.96 ± 4.32 (1) 72.44 ± 2.78 (1) 65.32 ± 4.03 (1) 69.33 ± 3.56 (1)

Embed. PROTEINS ENZYMES NCI1 NCI109 Avg. Rank
G2V 73.48 ± 1.83 (3) 36.67 ± 7.05 (6) 74.05 ± 1.53 (8) 74.87 ± 1.49 (8) 4.33
S2V 74.17 ± 1.82 (2) 32.55 ± 3.86 (8) 78.12 ± 1.85 (7) 78.67 ± 1.64 (7) 4.55
N2V 56.82 ± 4.05 (8) 26.44 ± 9.89 (11) 55.64 ± 2.06 (13) 52.37 ± 1.62 (13) 9.00
GE-FSG 73.85 ± 0.03 (2) 28.44 ± 2.68 (9) 78.61 ± 0.02 (7) 78.15 ± 0.02 (7) 6.00
DGK 74.98 ± 0.82 (2) 34.62 ± 5.02 (7) 81.35 ± 0.94 (6) 80.49 ± 0.92 (6) 4.11
Kernel PROTEINS ENZYMES NCI1 NCI109 Avg. Rank

RW 59.32 ± 0.38 (7) 20.40 ± 2.85 (12) 50.12 ± 0.13 (14) 50.39 ± 0.06 (12) 7.88
SP2 73.83 ± 2.93 (3) 34.77 ± 3.22 (7) 67.15 ± 1.63 (10) 70.63 ± 1.80 (9) 5.33
GL 71.52 ± 1.76 (4) 32.06 ± 3.22 (8) 63.42 ± 1.01 (11) 63.69 ± 1.42 (10) 6.44
WL-S 74.40 ± 2.05 (2) 49.85 ± 4.15 (4) 84.61 ± 1.03 (3) 84.17 ± 1.31 (2) 2.66
WL-E 71.05 ± 2.10 (4) 52.02 ± 4.13 (3) 82.97 ± 0.99 (4) 81.25 ± 1.88 (5) 3.88
WL-SP 68.12 ± 1.72 (5) 53.50 ± 2.54 (2) 82.84 ± 0.96 (4) 80.62 ± 1.13 (6) 5.00
WL-OA 75.18 ± 2.04 (1) 53.76 ± 3.36 (2) 85.13 ± 0.83 (2) 85.22 ± 0.96 (1) 2.11
RGK-1 74.97 ± 1.26 (2) 55.28 ± 3.89 (1) 83.14 ± 0.89 (4) 82.73 ± 0.81 (3) 4.44
RGK-2 74.35 ± 1.46 (2) 54.85 ± 3.52 (1) 82.09 ± 1.09 (5) 81.95 ± 0.78 (4) 4.66
TK+MKL 67.91 ± 2.34 (6) 40.75 ± 4.68 (5) 72.64 ± 0.98 (9) 73.02 ± 0.81 (8) 7.00
MV 75.31 ± 2.69 (1) 56.88 ± 3.45 (1) 86.56 ± 0.84 (1) 86.13 ± 0.86 (1) 1.00

nels, the kernel algorithms - WL methods, RGK - have better performance than embedding
methods.

Among the kernel algorithms, WL kernels show consistent performance across all
datasets. The WL-S and WL-OA have better performance among the WL variants. SP
kernel has good performance in smaller and PROTEINS datasets but performance is low in
others. TK+MKL have good performance in smaller datasets than the larger ones. On the
other hand, the performance of RGK kernels is lower in smaller datasets and comparitively

37

Table 3.3: Kernel weights of different views in MKL setting

Kernel View-I View-II View-III View-IV
MUTAG 0.38 0.41 0.11 0.10
PTC-MR 0.25 0.35 0.06 0.34
PTC-FR 0.31 0.28 0.15 0.26
PTC-FM 0.23 0.31 0.08 0.38
PTC-MM 0.28 0.23 0.17 0.32

PROTEINS 0.00 0.03 0.11 0.86
ENZYMES 0.00 0.07 0.16 0.77

NCI1 0.00 0.00 0.09 0.91
NCI109 0.00 0.00 0.09 0.91

higher in larger ones. The performance of RW and GL kernels are comparitively lower.

The weights learned by SimpleMKL are given in Table 3.3. This information gives
an insight into the prominence of each view in the multi-view setting. It is noteworthy
that in large datasets such as PROTEINS, ENZYMES, NCI1 and NCI109, view-IV has the
largest weight while for other smaller datasets the weights for view-I and view-II are large
compared to others. This points out that global graph properties help to produce better
results in larger datasets while in smaller datasets localized features should also be taken
into consideration.

The experiments were also done to assess the ability of each view for capturing the
information. For that, graph kernels as well as embedding techniques were used. In the
case of graph kernels, R-convolution kernels defined in Section 3.4 were used and in this
process, for each view, the information corresponding to that was considered for analysing
the data. For embedding approach, for each view, the vectors related to that were used for
data representation and the optimal kernel was selected using MKL approach. The single
view embedding approach was also applied on the data and in this technique, for each data
point, a vector was constructed by concatenating the vectors corresponding to each of the
views under consideration. The MKL method was used for selecting the optimal kernel.
The results are shown in Table: 3.4 in which the best results are given in bold letters.
These experiments clearly demonstrated the merit of using multi-view graph embedding
approach.

3.6 Conclusion

The data in the form of graphs has to be converted into suitable mathematical objects
like vectors for designing an embedding technique while for graph kernels an appropri-
ate RKHS mapping has to be found out using the graphical properties. The state-of-the-art

38

Table 3.4: Accuracy using designed R-convolution kernels, graph embeddings & single
view.

Approach View MUTAG PTC-MR PTC-FR PTC-FM PTC-MM
View-I 88.68 ± 4.82 57.81 ± 5.65 60.34 ± 4.13 61.05 ± 4.59 61.22 ± 4.77

Graph Kernel View-II 88.68 ± 3.96 58.42 ± 5.87 59.64 ± 3.21 62.26 ± 4.88 60.27 ± 4.14
View-III 89.64 ± 3.49 62.08 ± 4.00 65.27 ± 3.74 62.94 ± 3.49 65.64 ± 3.18
View-IV 88.85 ± 5.07 60.89 ± 4.19 63.67 ± 3.64 60.83 ± 3.77 64.64 ± 3.02
View-I 88.68 ± 4.82 57.81 ± 5.65 61.77 ± 3.40 61.05 ± 4.59 61.22 ± 4.77

Graph Embedding View-II 89.87 ± 4.15 59.27 ± 5.38 59.64 ± 3.21 63.18 ± 4.71 60.27 ± 4.14
View-III 89.64 ± 3.49 62.08 ± 4.01 67.58 ± 4.53 63.00 ± 3.72 66.32 ± 4.55
View-IV 89.84 ± 4.61 62.36 ± 4.43 65.81 ± 3.45 61.17 ± 4.22 65.65 ± 3.84

Single-view 85.93 ± 4.71 61.40 ± 4.91 66.34 ± 3.67 59.40 ± 4.33 64.85 ± 4.07

Approach View PROTEINS ENZYMES NCI1 NCI109
View-I 71.45 ± 2.39 35.71 ± 4.66 72.10 ± 1.42 76.11 ± 1.13

Graph Kernel View-II 57.56 ± 2.84 40.64 ± 4.18 72.56 ± 1 74 71.73 ± 1.89
View-III 71.52 ± 2.36 47.65 ± 4.06 81.01 ± 0.91 80.32 ± 1.14
View-IV 74.55 ± 2.83 48.77 ± 4.22 81.87 ± 1.22 81.52 ± 1.27
View-I 72.56 ± 2.19 35.71 ± 4.66 74.35 ± 1.52 78.35 ± 1.27

Graph Embedding View-II 58.84 ± 2.76 41.45 ± 3.95 74.24 ± 1.84 74.09 ± 2.15
View-III 72.67 ± 2.18 47.65 ± 4.06 82.24 ± 1.15 82.67 ± 1.37
View-IV 74.55 ± 2.83 49.54 ± 3.94 82.67 ± 1.34 82.78 ± 1.51

Single-view 71.73 ± 1.80 48.33 ± 3.63 82.44 ± 1.24 81.60 ± 1.09

graph embeddings and kernels depend on a single property of graphs in their design. We
selected a number of characteristic properties of graphs for their vector space embedding
and used multiple kernel learning approach for optimal kernel representation. The opti-
mization technique used to solve the model is same as that in SimpleMKL formulation.
The graph embedding designed using multi-view approach gave promising results in our
analysis. The approach of multi-view is flexible in the sense that any new feature of a
graph can be included by appending it as a view. The MKL approach we used helps to
assign appropriate weights to the views and these weights help to create further insight into
the relative role of individual views in prediction.

39

40

Chapter 4

Graph Kernels Based on Optimal Node
Assignment

The common approaches used for graph kernel designs are R-convolution kernel and graph
embedding. In the previous chapter, we used their combination to design multi-view graph
kernels. Similar to R-convolution, optimal assignment kernel is a framework for designing
kernels on structured data. However, R-convolution domain is widely studied compared to
that of the optimal assignment.

The R-convolution kernel processes the structural similarity of its argument graphs by
comparing each substructure of a data point with all substructures in the other. This results
in visiting the same part multiple times which causes some redundancy in the graph struc-
ture learning. The optimal assignment framework is devoid of such problems as it involves
the bijection between graph structures. This chapter describes graph kernels we designed
using the principles of optimal assignment kernel framework.

In this work, we used optimal assignment (OA) kernel framework [5] and 1-dimensional
Weisfeiler-Lehman (WL) color refinement algorithm [10]. A brief description of OA kernel
framework is discussed in Section 2.1.3 and that of WL algorithm is discussed in Section
2.2. An example of the processes involved in the WL algorithm is given in Figure 4.1.

The rest of the chapter is organized as follows. Section 4.1 describes the theoretical
formulation of the optimal assignment kernels and Section 4.2 discusses the kernel com-
putation procedure using the associated hierarchy. The experimental results and related
discussions are in Section 4.3, and concluding remarks are given in Section 4.4.

41

G

G’

(a)

A

A
A

A

AB

B
B

B B

1

2
3

4
5

6
7

8
9

10

1: A, AAB
2: A, A
3: B, ABB
4: B, ABB
5: B, ABB
6: A, AABB
7: A, AABB
8: B, A
9: A, A
10: B, A

B

A
A

B

B
B

B

A
1

2
3

4

5

6

7
8

1: A, AAB
2: A, AAB
3: A, AAB
4: B, ABB
5: B, AB
6: B, AB
7: B, B
8: B, B

1

2
3

4
5

6
7

8
9

10

2
3

4

5

6

8

1

7

(b) (c)

Figure 4.1: (a) Two sample graphs. (b) The string representation of the nodes and corre-
sponding hashing to a color. (c) The graphs with WL labels marked on nodes.

4.1 Design of optimal node assignment graph kernels

The motivation behind optimal node assignment (ONA) kernels and its description are
given in this section.

4.1.1 Characteristics of the Problem Under Study

As discussed in Section 2.4.2, most of the kernel designs are formulated based on the
enumeration through the graph substructures with the aid of either an R-convolution or
some explicitly designed comparison methods. On the other hand, the optimal assignment
domain is a less explored area.

The objective of our work is to design a graph kernel by making use of the properties
of an assignment problem. The major challenge in this regard is to find out the criterion
of assigning a graph substructure to that of one in the counterpart graph. Once this is
done, it is important to design the base kernel that processes the substructures and satisfies
the strong property. Also, the kernel values have to be calculated by making use of the
hierarchy structure for faster computations. The kernels designed in this fashion have the
optimal comparison operations between the argument graphs as each substructure in one
graph is compared with one and only one in the other graph and that is why we have chosen

42

optimal assignment framework for the kernel design.

In our formulation of the optimal assignment kernels, the substructure we used for
comparing two graphs are their nodes, as it is one of the convenient ways for comparison.
For that, the nodes in a graph are grouped into subsets called neighbourhood sets, based
on their local neighbourhood structure extracted using WL test and a vector representation
is defined for them. A bijection is defined between the corresponding neighbourhood sets

of the argument graphs after incorporating necessary steps for equalizing the cardinality
of the sets. Using this bijection and vector representations, the neighbourhood sets are
represented as a matrix. A kernel is then defined over the domain that consists of the
neighbourhood sets in terms of these matrices. An aggregate measure of these kernel values
is taken as the final graph kernel value. We designed two OA kernels which differ in the
kernel defined over the neighbourhood sets. The validity of those kernels has been proved
mathematically. We have also described the efficient computation of the kernels using the
concept of the hierarchy associated with the OA framework. The efficiency of the designed
kernels was analyzed using real-world problems by incorporating the kernels in support
vector machines. The results were found to be superior in comparison with the other state-
of-the-art graph kernels. The concepts are discussed in detail in the next sections.

4.1.2 Neighbourhood sets

For the kernel definitions, a bijection has to be formed between V and V ′. This is done
with the construction of neighbourhood sets as defined below.

4.1.2.1 Formulation of neighbourhood sets

The nodes that have similar neighbourhoods have to be grouped for defining the bijections
involved in the optimal assignment kernels we have designed. The labels generated by the
1-dimensional Weisfeiler-Lehman color refinement algorithm [10] on the graphs are used
for this purpose.

Let ΣC be the alphabet that consists of labels generated by an iteration of WL algorithm
on these graphs. A total order ≤ is defined on ΣC such that a < b if a appears before b
in ΣC . Consider a mapping lC : V → ΣC , where lC(v) is the WL refined label of v.
Corresponding to each element li ∈ ΣC , a neighbourhood set gli is constructed where,
gli = {v ∈ V : lC(v) = li}. Because of the peculiarity of WL algorithm, the members
of gli have similar neighbourhood. Similarly g′li is constructed for graph G′. Consider
D = {gkli , k = 1, 2. . . . N, i = 1, 2, . . . |ΣC |} where |ΣC | is the cardinality of ΣC . A matrix

43

representation for each element of D is constructed as given below.

4.1.2.2 Matrix representation for the neighbourhood sets

The cardinality of gli and g′li may differ. To rectify that, dummy nodes are added to the
deficient set where dummy nodes are considered as separate entities that do not affect the
graph structure. Let dli = max(|gli |, |g′li |)− |gli|. Let gli := gli ∪ vdli where vdli be a set of
dli number of dummy nodes with the WL label li. For each vj ∈ gli , a vector Vvj of length
|Σ| is constructed as follows. If vj is a non-dummy node, its kth component represents how
many of its neighbours have the kth element of Σ as the node label. If it is a dummy node,
all elements of Vvj are taken to be zero. The vector representation of the non-dummy nodes
are identical since their WL label, li, is same. Hence the vector representation of the WL
label li is taken to be the vector representation of non-dummy nodes in gli and it is notated
as Vli .

Now a matrix Mgli
of dimension |gli | × |Σ| and a function σ : gli → {1, 2, . . . |gli |} are

created where jth row of Mgli
is VTvj and σ(vj) = j. Similarly M ′

gli
and σ′ are constructed

for graph G′. Let Ṽ = ∪|ΣC |i=1 gli and Ṽ ′ = ∪|ΣC |i=1 g
′
li

. Now Ṽ and Ṽ ′ are sets of equal
cardinality which consist of nodes in G and G′ respectively along with the corresponding
dummy nodes.

4.1.3 Optimal node assignment (ONA) graph kernels

The ONA kernels are defined with the aid of two kernels kns1 and kns2 which are formulated
using the matrix representation of neighbourhood sets. The definitions of those kernels are
as follows.

Define kernel

kns1 : D ×D → R such that kns1(glp , g
′
lq) = exp

(
−γ
∥∥(Mglp

−M ′
glq

)
∥∥
L21

)
(4.1)

where γ > 0 is a tuning parameter, lp, lq ∈ ΣC , and ‖.‖L21 is the L21 matrix norm. Here
L21 norm is defined for a matrix A as, ‖A‖L21 =

∑
i ‖A[i]‖ where A[i] is the ith row of A

and ‖.‖ is the Euclidean norm.

Define kernel

kns2 : D ×D → R such that kns2(glp , g
′
lq) =

∑
i

〈
(Mglp

(i, .)), (M ′
glq

(i, .))
〉

(4.2)

44

Constructing vector
representation
of , and

Constructing matrix
representation

Constructing matrix
representation

Kernel
definitions
kns1, kns2

G

G’

(a) (b) (c) (d) (e)

(f)

1

2
3

4
5

6
7

8 9
10

2
3

4

5

6

8

1

7

1

2

9

3
4

5

6 7

8 10

1

2 3
4

5

6

7

8

For , = [1, 2]

For , = [0, 0]

dummy node

[1, 2
1, 2
1, 2

=]

[=]1, 2
0, 0
0, 0

Figure 4.2: The illustration of the kernel calculation corresponding to a WL label l5. (a)
Two graphs G and G′ with WL labels marked as different colors on the nodes. (b) Con-
structing the sets gli . (c) Augmenting g′l5 with dummy nodes (node marked as black). (d)
Constructing the vectors Vvj and V ′vj - vectors are obtained from the string representation
of nodes 3,4, and 5 in G and node 4 in G′ as shown in the Figure 4.1 (b). The dummy node
vector representation is taken as zero vector. (e) ConstructingMgl5

andM ′
gl5

corresponding
to G and G′. (f) Applying the matrices into kernel definitions kns1 and kns2 .

where M(..)(i, .) denotes ith row of matrix M .

The entire process involved in the construction of kns1 and kns2 is summarized in Figure
4.2. Using kns1 and kns2 , ONA graph kernels are formulated whose description is given
below.

ONA kernel definition corresponding to kns1 is defined as,

KONA : G × G → R such that KONA(G,G′) =
∏
li∈ΣC

kns1(gli , g
′
li
) (4.3)

ONA kernel definition corresponding to kns2 is defined as,

K̃ONA : G × G → R such that K̃ONA(G,G′) =
∑
li∈ΣC

kns2(gli , g
′
li
) (4.4)

Theorem 4.1. KONA(G,G′) is an optimal assignment kernel.

Proof. First we prove that corresponding to a WL label li, kns1(gli, g
′
li) is an optimal as-

signment kernel. Consider,

45

kns1(gli , g
′
li
) = exp

(
−γ‖(Mgli

−M ′
gli

)‖L21

)
=

|gli |∏
j=1

exp
(
−γ‖M j

gli
−M ′j

gli
‖
)

where M j
gli

and M ′j
gli

are the jth row of Mgli
and M ′

gli
respectively.

Define the bijective function

Bli : gli → g′li , where Bli(v) = v′ if σ(v) = σ(v′)

Using Bli , kns1 can be written as,

kns1(gli , g
′
li
) =

∏
(v,Bli (v))

exp
(
−γ‖Vv − VBli (v)‖

)
=

∏
(v,Bli (v))

kli(v,Bli(v))

where Vv and VBli (v) are the vectors as defined in Section 4.1.2.2 and for each li ∈ ΣC ,
kli : gli × g′li → R is a valid kernel. kli is a strong kernel since its range set{

1, exp(−γ‖Vv − VBli (v)‖)
}

is of cardinality two [5].

The permutations of the rows of the matrices Mgli
and M

′
gli

correspond to different
bijections. The value of kns1 remains the same for all of them due to the formulation
characteristics of kli and the fact that the matrices Mgli

and M ′
gli

have identical non-zero
rows by virtue of the WL label li. Hence kns1(gli , g

′
li
) is an optimal assignment kernel as

per (2.4).

Now consider

B : Ṽ → Ṽ ′ where B(v) = Bli(v) if lC(v) = li

.

B is a bijection as each Blis are bijective functions. Using B, KONA can be written as

KONA(G,G′) =
∏
v,B(v)

exp(−γ‖Vv − VB(v)‖)

46

Therefore KONA(G,G′) is an optimal assignment kernel.

The proof to show K̃ONA is an optimal assignment kernel is given in A.1. As the
bijection involved in the kernel formulations is between the sets of nodes of the argument
graphs augmented with dummy nodes, we named the kernels as optimal node assignment
kernels.

Till now we have considered the case of one WL iteration. It is straight forward to
extend the concepts to further iterations of WL color refinement. Let h be the number of
iterations. Then the graph kernel corresponding to KONA for h iterations can be defined as

KONA(G,G′) =
h∏
j=1

∏
li∈ΣjC

kns1(gli , g
′
li
) (4.5)

Similarly

K̃ONA(G,G′) =
h∑
j=1

∑
li∈ΣjC

kns2(gli , g
′
li
) (4.6)

where Σj
C is the WL alphabet obtained in iteration j.

The ONA kernels can be extended to the case of attributed graphs which contains addi-
tional vector information in the nodes along with its label. In this case, the base kernel kli
can be multiplied with a function that process these vectors such that the resultant function
is a strong kernel.

It has been shown that the optimal assignment kernel can be computed efficiently from
the hierarchy corresponding to the strong kernel rather than using the definition equations
as such [5]. In the following section, we describe how the hierarchy can be constructed for
the proposed ONA kernels and the tree traversal algorithms for their computation.

4.2 Kernel computation using heirarchy

The WL iterations are applied on the set G and the hierarchy T is then constructed as
follows. As there are h WL iterations, the number of levels in T is h + 1. Elements in Σ

form the nodes in the zero level of T . The nodes in the 0 < i ≤ h level are formed by the
labels in Σi

C . If the first element of the WL string of node v in the level i is the WL label
of node v′ in the level (i− 1), we define v as the child of v′ and an edge is formed between
them.

Let VT be the set of nodes in T except the nodes in the zero level. Let VTij be the node

47

in T that lies in position 0 < j ≤ |Σi
C | in the WL iteration 0 < i ≤ h. A total order, ≤, is

defined on nodes of T as follows: (i) VTij < VTik if j < k and (ii) VTip < VTjq if i < j.

The number of occurrences of WL labels across whole iterations in a graph G can be
found out from T as follows. As each leaf node in T corresponds to a label in WL iteration
h, there exists a unique path that connects them to the root node. By the characteristics of
the WL algorithm, each node in a graph G is associated with a leaf node in T . Hence by
traversing through the paths that connect the leaf nodes to the root node in T , it is possible
to find the WL labels that have been generated forG in the whole WL iterations. Using this
information, a vector GV of length |VT | is constructed where ith element of GV represents
the number of times ith element of VT appears in WL iterations of G. The process is
summarized in Algorithm 4.1.

Algorithm 4.1: Calculating the histogram vector GV of graph G for h iterations
of WL color refinement

Input : The hierarchy tree T for h number of WL iterations and a graph G(V,E).
Output: The vector GV for graph G.

1 Initialize GV to zero vector of dimensions |VT | × 1
2 for every node v in V do
3 Find the leaf node in T corresponding to WL label of v in iteration: h
4 Find the path P corresponding to the leaf node
5 for every elements p in P do
6 Find the position (i, j) of p in T as per the total order, ≤
7 GVij = GVij + 1

8 end
9 end

10 return GV

A vector NT of the dimension |VT | is constructed whose ith element is the norm of the
vector representation V (as explained in Section 4.1.2.2) of the ith element of VT . Now we
define a kernel that is calculated using NT , GV , and G′V as follows.

KT (G,G′) = exp
(
− γ × ‖(GV −G′V)�NT‖1

)
(4.7)

Theorem 4.2. KT (G,G′) = KONA(G,G′) ∀ G,G′ ∈ G.

48

Proof.

KT (G,G′) = exp
(
− γ × ‖(GV −G′V)�NT‖1

)
= exp

(
− γ ×

|VT |∑
j=1

|GV (j)−G′V (j)| ×NT (j)
)

= exp
(
− γ ×

|VT |∑
j=1

|GV (j)−G′V (j)| × ‖Vj‖
)

where Vj is the vector representation of the WL label corresponding to jth node in T as
explained in Section 4.1.2.2.

GV (j), and G′V (j) are equal to the number of non-dummy nodes in gj , and g′j respec-
tively or equivalently, the number of non-zero rows inMgj andM ′

gj
respectively. Therefore,

|GV (j)−G′V (j)| × ‖Vj‖ = ‖(Mgj −M ′
gj

)‖L21 .

Hence,

exp
(
− γ ×

|VT |∑
j=1

|GV (j)−G′V (j)| × ‖Vj‖
)

= exp
(
− γ ×

|VT |∑
j=1

‖(Mgj −M ′
gj

)‖L21

)
.

Now VT =
⋃h
j=1

⋃|ΣjC|
i=1 {li}, where li is the ith element of Σj

C . Therefore,

exp

−γ × |VT |∑
j=1

∥∥∥(Mgj −M ′
gj

)∥∥∥
L21

 = exp

−γ × h∑
j=1

∑
li∈ΣjC

∥∥∥(Mgli
−M ′

gli

)∥∥∥
L21


=

h∏
j=1

∏
li∈ΣjC

exp

(
−γ
∥∥∥(Mgli

−M ′
gli

)∥∥∥
L21

)

=
h∏
j=1

∏
li∈ΣjC

kns1(gli , g
′
li
) = KONA(G,G′)

49

Similarly, kernel value K̃ONA(G,G′) in (4.6) can be computed as per (4.8),

K̃T (G,G′) =

|VT |∑
k=1

min
(
GV (k), G′V (k)

)
×
(
NT (k)

)2 (4.8)

The proof of K̃T (G,G′) = K̃ONA(G,G′) ∀ G,G′ ∈ G is shown in A.2.

4.2.1 Computational complexity analysis

The kernel evaluation is done in two stages. First stage involves the application of WL
algorithm and formulation of the vector GV . This involves operations of O(hN |Σ||V |).
In the second stage, to find kernel value using hierarchy, N2O(|VT |) operations are re-
quired. Considering the above two steps the kernel computation requires operation of
O(hN |Σ||V |+N2|VT |).

4.3 Experiment

The efficiency of the proposed ONA kernels (KONA and K̃ONA) was analyzed by subject-
ing them on real-world data sets and compared its performance with state-of-the-art graph
embeddings namely: Graph2vec (G2V) [20], Subgraph2vec (S2V) [21], Node2vec (N2V)
[22], GE-FSG (Graph Embedding with Frequent Sub-Graphs) [23], Deep graph kernels
(DGK) [24] and graph kernels namely: Random walk (RW) kernel [30], Shortest path
(SP) kernel [7] (labelled and unlabelled version), Graphlet kernel (GL) [43], Weisfeiler-
Lehman (WL) kernels [25] (WL-subtree (WL-S), WL-edge (WL-E) and WL-shortest path
(WL-SP), WL-optimal assignment kernel (WL-OA) [5], RetGK kernels (the variants with
explicit RKHS mapping (RGK-1) and with approximated mapping (RGK-2)) [35], and
Treelet kernel+MKL (TK+MKL) [54]. The description about the datasets are given in
Section 3.5.2.1 and that of the experimental setup in Section 3.5.1.

4.3.1 Results and Discussion

The accuracy results are shown in Table 4.1. The best results are marked in bold letters.
The KONA and K̃ONA have shown excellent performance in all datasets as they secured an
average rank of 1 and 2 respectively. In PTC-MR and PTC-FM datasets, the performance of
the KONA kernel is significantly higher from the rest of the models as it has more than 1%
increase in accuracy from the second-best performer of those data. Comparing KONA, and

50

Table 4.1: Accuracy (along with standard deviation) of the multi-view graph embedding
along with state-of-the-art embedding techniques and graph kernels. The rank in statistical
significance test is given in the bracket.

Embed. MUTAG PTC-MR PTC-FR PTC-FM PTC-MM
G2V 84.26 ± 10.25 (5) 61.23 ± 5.67 (2) 67.23 ± 4.77 (2) 61.23 ± 5.05 (3) 66.58 ± 5.65 (2)
S2V 88.23 ± 1.89 (2) 60.76 ± 1.49 (3) 65.44 ± 1.78 (4) 59.77 ± 2.12 (4) 63.79 ± 1.83 (4)
N2V 73.42 ± 8.75 (9) 57.45 ± 8.94 (7) 61.56 ± 9.44 (6) 56.82 ± 9.74 (7) 60.66 ± 8.35 (7)
GE-FSG 83.54 ± 0.03 (5) 58.94 ± 0.82 (5) 60.17 ± 0.71 (6) 56.29 ± 1.13 (6) 59.83 ± 0.86 (7)
DGK 88.46 ± 2.87 (2) 60.15 ± 3.08 (4) 66.36 ± 3.64 (3) 60.54 ± 4.88 (4) 65.44 ± 5.14 (3)
Kernel MUTAG PTC-MR PTC-FR PTC-FM PTC-MM
RW 74.27 ± 3.79 (8) 58.19 ± 3.63 (5) 65.56 ± 0.80 (4) 58.83 ± 2.48 (5) 62.50 ± 0.76 (4)
SP 87.84 ± 5.66 (3) 59.65 ± 6.02 (5) 65.66 ± 4.77 (4) 63.13 ± 5.12 (2) 62.88 ± 5.78 (5)
GL 74.16 ± 3.60 (8) 58.25 ± 3.68 (5) 66.91 ± 2.44 (3) 56.70 ± 3.96 (6) 64.78 ± 3.50 (3)
WL-S 85.04 ± 4.70 (4) 58.95 ± 3.99 (5) 67.95 ± 2.74 (1) 62.41 ± 4.73 (2) 67.87 ± 3.85 (1)
WL-E 83.70 ± 3.99 (5) 57.61 ± 4.23 (6) 67.44 ± 2.05 (2) 60.06 ± 4.98 (4) 66.00 ± 2.84 (2)
WL-SP 85.82 ± 5.19 (4) 58.40 ± 4.78 (5) 62.86 ± 2.93 (5) 54.84 ± 4.49 (8) 60.56 ± 4.21 (6)
WL-OA 87.27 ± 4.46 (3) 60.59 ± 3.66 (3) 66.62 ± 2.88 (2) 59.30 ± 3.91 (4) 67.15 ± 3.47 (1)
RGK-1 65.80 ± 3.52 (10) 58.43 ± 3.63 (5) 65.22 ± 1.66 (4) 58.44 ± 2.53 (5) 60.71 ± 2.55 (6)
RGK-2 65.51 ± 3.91 (10) 56.25 ± 2.23 (7) 66.29 ± 3.08 (3) 58.77 ± 1.67 (5) 61.78 ± 0.42 (5)
TK+MKL 81.61 ± 5.61 (7) 51.12 ± 6.48 (8) 59.45 ± 4.38 (6) 56.66 ± 5.22 (6) 58.33 ± 5.69 (8)
KONA 88.50 ± 3.10 (1) 62.40 ± 4.10 (1) 68.63 ± 2.20 (1) 64.27 ± 3.56 (1) 67.65 ± 3.86 (1)
K̃ONA 86.88 ± 3.75 (3) 60.40 ± 3.77 (3) 67.85 ± 2.33 (1) 60.81 ± 1.24 (3) 68.37 ± 4.03 (1)

Embed. PROTEINS ENZYMES NCI1 NCI109 Avg. Rank
G2V 73.48 ± 1.83 (3) 36.67 ± 7.05 (6) 74.05 ± 1.53 (8) 74.87 ± 1.49 (8) 4.33
S2V 74.17 ± 1.82 (2) 32.55 ± 3.86 (8) 78.12 ± 1.85 (7) 78.67 ± 1.64 (7) 4.55
N2V 56.82 ± 4.05 (8) 26.44 ± 9.89 (11) 55.64 ± 2.06 (13) 52.37 ± 1.62 (13) 9.00
GE-FSG 73.85 ± 0.03 (2) 28.44 ± 2.68 (9) 78.61 ± 0.02 (7) 78.15 ± 0.02 (7) 6.00
DGK 74.98 ± 0.82 (2) 34.62 ± 5.02 (7) 81.35 ± 0.94 (6) 80.49 ± 0.92 (6) 4.11
Kernel PROTEINS ENZYMES NCI1 NCI109 Avg. Rank

RW 59.32 ± 0.38 (7) 20.40 ± 2.85 (12) 50.12 ± 0.13 (14) 50.39 ± 0.06 (12) 7.88
SP 73.83 ± 2.93 (3) 34.77 ± 3.22 (7) 67.15 ± 1.63 (10) 70.63 ± 1.80 (9) 5.33
GL 71.52 ± 1.76 (4) 32.06 ± 3.22 (8) 63.42 ± 1.01 (11) 63.69 ± 1.42 (10) 6.44
WL-S 74.40 ± 2.05 (2) 49.85 ± 4.15 (4) 84.61 ± 1.03 (3) 84.17 ± 1.31 (2) 2.66
WL-E 71.05 ± 2.10 (4) 52.02 ± 4.13 (3) 82.97 ± 0.99 (4) 81.25 ± 1.88 (5) 3.88
WL-SP 68.12 ± 1.72 (5) 53.50 ± 2.54 (2) 82.84 ± 0.96 (4) 80.62 ± 1.13 (6) 5.00
WL-OA 75.18 ± 2.04 (1) 53.76 ± 3.36 (2) 85.13 ± 0.83 (2) 85.22 ± 0.96 (1) 2.11
RGK-1 74.97 ± 1.26 (2) 55.28 ± 3.89 (1) 83.14 ± 0.89 (4) 82.73 ± 0.81 (3) 4.44
RGK-2 74.35 ± 1.46 (2) 54.85 ± 3.52 (1) 82.09 ± 1.09 (5) 81.95 ± 0.78 (4) 4.66
TK+MKL 67.91 ± 2.34 (6) 40.75 ± 4.68 (5) 72.64 ± 0.98 (9) 73.02 ± 0.81 (8) 7.00
KONA 75.91 ± 2.07 (1) 55.36 ± 3.04 (1) 85.90 ± 0.78 (1) 85.34 ± 0.97 (1) 1.00
K̃ONA 74.90 ± 2.00 (2) 52.39 ± 3.30 (2) 85.24 ± 0.81 (2) 85.12 ± 0.97 (1) 2.00

K̃ONA, KONA performed significantly better in the case of MUTAG, PTC-MR, PTC-FM,
PROTEINS, and ENZYMES datasets whereas the performance is similar in other datasets.
It has to be noted that the average rank of K̃ONA kernel and WL-OA kernel are almost the
same.

The proposed kernels and WL-OA belong to the category of optimal assignment kernels
while the rest of the models can be considered as R-convolution kernels. Comparing the

51

models based on this categorization, the performance of the optimal assignment models
were found to be better in the datasets we used.

The RW, SP, and GL kernels process only structural information of the graphs and do
not make use of label information compared with the rest of the models. That might have
attributed to the lower performance of these kernels. Comparing the performances of WL
kernels and RetGK kernels, the WL-subtree (WL-S) variant had the best performance. The
performance of the WL-edge (WL-E) variant and RetGK kernels were similar and that of
the WL-shortest path (WL-SP) variant was the lowest.

The run time of the algorithms except the methods based on embeddings and MKL is
shown in Table 4.2. These algorithms are avoided as they involve an embedding process and
then applying MKL algorithms and as our aim is to compare between the kernel algorithms.
We can see that the runtime of OA kernels are higher compared to that of R-convolution
kernels despite having higher performance.

Table 4.2: Runtime (wall clock time) of the algorithms

Kernel MUTAG PTC-MR PTC-FR PTC-FM PTC-MM
RW 4.5" 25" 23" 21" 19"
SP 0.37" 1.20" 0.94" 1.10" 1.25"
GL 0.67" 1.45" 3.12" 3.06" 2.68"
WL-S 2.2" 4.5" 4.6" 4.3" 4.1"
WL-E 1.0" 1.9" 1.6" 1.5" 1.6"
WL-SP 0.8" 1.7" 1.8" 1.5" 1.6"
WL-OA 5.6" 42.7" 1’ 04" 57" 51"
RGK-1 2" 6" 6.2" 6.2" 6.4"
RGK-2 0.15" 0.20" 0.20" 0.20" 0.20"
KONA 2.2" 6.8" 7.7" 6.9" 7"
K̃ONA 2.1" 6.3" 7.2" 6.6" 6.7"
Kernel PROTEINS ENZYMES NCI1 NCI109

RW 9’ 42" 1’ 08" > 2h > 2h
SP 1’ 53" 3.25" 21" 23"
GL 26.0" 12.1" 21" 20"
WL-S 24.6" 10.5" 1’ 14" 1’15"
WL-E 14.0" 4.8" 27" 28"
WL-SP 36.3" 14.4" 1’ 15" 1’ 17"
WL-OA 1h 29" 7’ 30" > 2h >2 h
RGK-1 1’ 26" 23" 16’ 50" 16’ 57"
RGK-2 2" 0.60" 8.0" 6.5"
KONA 2’ 18" 50" 1h 12’ 1h 13’
K̃ONA 1’ 50" 27" 54’ 54’

52

4.4 Conclusions

We designed two graph kernels based on the optimal assignment kernel framework. The
bijection as a part of the framework is built between the nodes of the argument graphs
and the validity of the proposed kernels is mathematically proved. For making the kernel
computation effective, the hierarchy tree associated with the framework has been utilized.
By plugging the ONA kernels into the SVM, their efficiency was analyzed using real-world
graph datasets and their performance was found to be superior compared to the other state-
of-the-art graph kernels.

We also found that the performance of the kernels belonging to the family of optimal
assignment framework is better than the R-convolution kernels. This is a promising direc-
tion to further explore the kernel designs based on the OA kernel framework. However, the
runtime of OA kernels is higher compared with R-convolution instances as the latter can be
computed through a matrix multiplication operation. The higher runtime of the OA kernel
designs is attributed to the element wise subtraction/minimum computation of the feature
vector. But the runtime can be improved through the parallel computing techniques.

53

54

Chapter 5

Neighborhood Preserving Kernels for At-
tributed Graphs

Generally, the graph data has labels and attributes associated with each of its node and
edge, where the label is usually a discrete character while an attribute is a vector. The main
challenge in designing a kernel for attributed graphs is to define a similarity function that
could capture all the characteristic properties of data by making use of the label as well as
the attribute information along with the overall graph structure. By taking into account all
these aspects, the description of the kernel we have designed is presented in this chapter.

Most of the existing graph kernels process only the label information in the nodes and
edges ignoring the attributes.The kernel we propose use the node and edge labels as well
as their attribute information for finding kernel values. For that, we formulated the repro-
ducing kernel as the weighted sum of two kernels of which one is an R-convolution kernel
that processes the attribute information and the other is an optimal assignment kernel that
processes the label information. By incorporating the proposed kernels on support vector
machines, we experimentally verified its performance using real-world data sets selected
from the chemoinformatics domain.

The chapter is organized as follows. We define the concept of neighborhood preserv-
ing regions and the neighborhood preserving kernel based on edges in Section 5.1. The
extension of these concepts to shortest paths are discussed in Section 5.2. Experiments and
related discussion are in Section 5.3 and conclusions in Section 5.4.

5.1 Neighborhood Preserving Kernel

In this section, we discuss the design aspects of the neighborhood preserving kernel.

55

5.1.1 Neighborhood preserving regions

The Neighborhood Preserving (NP) kernels process the structurally similar regions of the
argument graphs. In our design, the concept of structural similarity is defined using neigh-
borhood preserving property, whose concept is given below.

To formalize the neighborhood preserving regions, 1-dimensional WL color refinement
[10] is done on the graphs. A product graph [29] is then constructed to find the structural
similar regions, where the product graph is defined as follows :

Definition 5.1. [Direct product graph]: Let G = (V,E) and G′ = (V ′, E ′) be two graphs
under consideration. The direct product graph, GP = G × G′, represented as (VP , EP) is
defined as

VP = {(u, u′) ∈ V × V ′ : lC(u) = lC(u′)}

EP =
{(

(u, u′), (v, v′)
)

: (u, v) ∈ E ∧ (u′, v′) ∈ E ′ ∧ l((u, v)) = l((u′, v′))
}

An example is shown in the Figure 5.1(a),(b),(c) of two sample graphs, their WL col-
oring, and product graph formation. The set of neighborhood preserving or structurally
similar edges of the two given graphs based on preserving its structure and node/edge la-
bels information can be deducted from the product graph as per the definition given below.

B B

BB

A

A

CC

C

C

C

CC

CC

C

A

A

B B

1’

2’

3’

4’

5'

6’

7’ 8’

9’ 10’

11’

1

2

3

45

6

7

8 9
1,4’ 1,5’

3,4

3,5

7,6’

7,11’

3,5’

3,4’

9,8’ 9,7’ 8,10’ 8,9’

2,3’

2,1’

8,7’

8,8’

9,9’ 9,10’

B B

BB

A

A

CC

C

C

C

CC

CC

C

A

A

B B

1’

2’

3’

4’

5’

6’

7’ 8’

10’

11’

1

2

3

45

6

7

8 9

(a) (c) (d)

9’

G1

G2

Similar edge

Dissimilar edge

1: C,ACC
2: A,CCC
3: C,ACC
4: C,CCC
5: C,ACCC
6: A,C
7: C,ABB
8: B,C
9: B,C

1’: A,CCC
2’: C,AACC
3’: A,CCC
4’: C,ACC
5’: C,ACC
6’: C,ABB
7’: B,C
8’: B,C
9’: B,C

10’: B,C
11’: C,ABB

(b)

Figure 5.1: (a) Two sample graphs G1 and G2, (b) WL color refinement, (c) direct product
graph, (d) separation of neighborhood preserving or structurally similar edges (bold lines)
and dissimilar edges (dashed lines).

Definition 5.2. [Neighborhood preserving edges]:

The set of neighborhood preserving edges in graph G with respect to G′, is

SG:G′ = {(u, v) ∈ E : ((u, u′), (v, v′)) ∈ EP}

56

An example for the extraction of neighborhood preserving edges of the graphs is shown
in Figure 5.1 (d). Note that the WL color refinement algorithm processes the information
about the neighborhood of the nodes. Now, corresponding to each (u, v) ∈ SG:G′ there
exists atleast one (u′, v′) ∈ E ′ such that u, u′ as well as v, v′ has the same label and neigh-
borhood information. Hence the edges are termed as neighborhood preserving edges. This
helps to process kernel computation with subgraphs having well defined correspondences
in terms of the neighborhood of the component nodes and it also gives a visualization of
the structural similarity between the graphs.

We designed a kernel that defines the similarity of the argument graphs with the aid of
neighborhood preserving edges, whose description is given below.

5.1.2 Neighborhood preserving edge kernel

Let κV and κE be positive semi-definite kernels defined on V ×V ′ and E×E ′ respectively
and λ ∈ R+ be a weight function. Then the neighborhood preserving edge kernel, KNPE ,
is defined as

KNPE(G,G′) = λ(G,G′)
∑

(u,v)∈E

∑
(u′,v′)∈E′

κV (u, u′).κE
(
(u, v), (u′, v′)

)
.κV (v, v′) (5.1)

where κV is defined in terms of the attribute information of argument nodes and κE is
defined as

κE
(
(u, v), (u′, v′)

)
= δ
(
l(u, v), l(u′, v′)

)
.

δ(lC(u), lC(u′)).k(
(
(u, v), (u′, v′)

)
).δ(lC(v), lC(v′))

where λ is a normalization constant, δ is the Kronecker delta function and k is a valid kernel
defined in terms of attributes on edges. If no attributes are present on edges, the value of k
can be taken as 1. Note that delta functions ensure that the edges processed for the kernel
computation are from the neighborhood preserving edges only and hence the name for the
kernel. The function of weight λ is to give a normalizing effect to avoid artificially high
similarity value if the argument graph sizes vary unevenly and if some WL refined labels
in a graph is very high compared to its counterpart resulting in a large number of edge
combinations of a particular type.

Theorem 5.1. The neighborhood preserving edge kernel is a valid kernel.

57

Proof. We prove KNPE as an R-convolution kernel [2]. Let Σ3 be the set of strings of
length three formed by members of ΣC and Σ, that is, Σ3 = {xyz|x, z ∈ ΣC , x ≤ z, y ∈ Σ}
which satisfy a total order, ≤. Consider two graphs G and G′ and Λ ⊆ Σ3 where

Λ = ∪
(u,v)∈E

lC(u)� l(u, v)� lC(v)
⋂

∪
(u′,v′)∈E′

lC(u′)� l(u′, v′)� lC(v′)

where� is a concatenation operator, lC(u)�l(u, v)�lC(v), lC(u′)�l(u′, v′)�lC(v′) ∈ Σ3.
We call elements of Λ as WL refined edge address.

Now we define a relationR corresponding to each member ε ∈ Λ. LetR(e,G†, G; ε) be
a relation where R(e,G†, G; ε) = 1 iff G† is the graph obtained from G if an edge e corre-
sponding to a member ε in Λ is removed. Now,R−1(G; ε) =

{
(e,G†) : R(e,G†, G; ε) = 1

}
is the decomposition of a graph into an edge with WL refined edge address ε and rest of the
graph. Now KNPE is defined as

KNPE(G,G′) =
∑
ε∈Λ

1

|Eε × E ′ε|
∑

(e,G†)∈R−1(G;ε)

(e′,G†′)∈R−1(G′;ε)

kedge(e, e
′)× ktriv(G†, G†

′
) (5.2)

where Eε, E ′ε are set of edges in G,G′ corresponding to WL refined edge address ε, Eε×E ′ε
being their cartesian product, ktriv is a trivial kernel whose value is always 1 and

kedge(e, e
′) = κV (u, u′)× k(e, e′)× κV (v, v′) (5.3)

where e = (u, v) and e′ = (u′, v′). Now kedge is a valid kernel [103]. Also, |Eε × E ′ε| is a
well-defined function on G×G′ and hence KNPE is a R convolution kernel.

The effect of the cardinality of Λ has to be considered and hence included the weight
1

|Eε×E′ε|
in (5.2). The λ in (5.1) can be considered as the counterpart of this term.

By constructing a product graph, the information used in KNPE kernel can be extracted
as explained below.

Theorem 5.2. Each edge in the direct product graph corresponds to a product calculation

in convolution operation defined in (5.2) except for few edges of the form
(
(u, u′), (v, v′)

)
∈

EP where lC(u) = lC(v) = lC(u′) = lC(v′) and l(u, v) = l(u′, v′).

Proof. Consider a particular edge (u, v) ∈ E in a graph G which is neighborhood pre-
serving. Note that the nodes in the direct product graph contain all combination of nodes
from graphs G and G′ whose label and neighborhood information is identical. Hence the

58

u

v
u’

v’

G G’ GP

(u, u’)

(u, v’)
(v, u’)

(v, v’)

Figure 5.2: Two nodes u, v in the graph G and two nodes u′, v′ in the graph G′ with the
same WL refined labels and corresponding edges having similar label. The product graph
GP containing additional pair of nodes and an additional edge.

edge (u, v) is a part of a set of edges of the form
(
(u, u′), (v, v′)

)
in direct product graph

where u′ ∈ {x ∈ V ′ : lC(x) = lC(u)}, v′ ∈ {y ∈ V ′ : lC(y) = lC(v)}, (u′, v′) ∈ E ′ and
l(u, v) = l(u′, v′). Hence these set of edges correspond to a convolution of edge (u, v) ∈ E
with its counterpart edges in E ′. Similarly, we can find out other convolutions correspond-
ing to every edge in G.

But a duplication arises in a special case when lC(u) = lC(u′) = lC(v) = lC(v′) and
l(u, v) = l(u′, v′). Consider such a case as shown in the Figure 5.2. We can see that in
the direct product graph, GP , 4 nodes are created with two edges. But as per convolution
operation the edge pair (u, v) and (u′, v′) shall be counted only once. Hence avoiding this
duplication, KNPE can be calculated from GP .

Note that the ordering of the nodes in the case of the duplication can be resolved through
a lexicographic ordering among the graph nodes.

The NPE kernel can be found out for multiple iterations of WL color refinement. In
this case, the final kernel is taken as the sum of kernels in individual iteration.

The neighborhood preserving edge kernel processes node and edge attributes with the
labels on them acting as a guidance for the R-convolution process. For processing the node
and edge labels alone, another kernel named neighborhood preserving optimal edge assign-
ment kernel is formulated, whose description is given in the next section. The objective is
to analyze the importance of the label information.

59

5.1.3 Neighborhood preserving optimal edge assignment kernel

The neighborhood preserving optimal edge assignment kernel KNPO processes only node
labels and defined as

KNPO(G,G′) =
∑
ε∈Λ

min(|Eε|, |E ′ε|) (5.4)

The minimum value is taken as it represents a normalized score of structural similarity.
Note that the edges processed for KNPO computation is only neighborhood preserving
ones. Note that KNPO can also be defined for multiple WL color refinement steps where
the kernel value in the individual iteration are summed up.

With the aid of an optimal assignment kernel KB(E,E ′), we prove KNPO(G,G′) as a
valid kernel. We define KB(E,E ′) as,

KB(E,E ′) =
h∑
i=1

max
βi∈B(E,E′)

∑(
(u,v),βi(u,v)

)kib((u, v), βi(u, v)
)

(5.5)

where B(E,E ′) is the set of all bijections between the members of the set E and E ′

corresponding to the base kernel kib at iteration:i of WL color refinement, (u, v) ∈ E,
βi(u, v) ∈ E ′ and, βi is assumed to be that bijection in B that maximizes the kernel value
in iteration:i. Here we assume that the sets among E and E ′ that contain the least cardinal-
ity have enough dummy members to make up the difference between the cardinalities and
WL iteration is done h times.

The base kernel kib is defined as,

kib
(
(u, v), (u′, v′)

)
=


1, if liC(u) = liC(u′) ∧ liC(v) = liC(v′)

∧ l
(
(u, v)

)
= l
(
(u′, v′)

)
0, otherwise

(5.6)

where liC(.) indicates the WL color of the concerned node at iteration:i of the WL color
refinement. The base kernel defined above is strong as the cardinality of its range set is
two. [5].

The hierarchy tree corresponding to base kernel kb can be constructed in the following
way. Consider the application of WL color refinement algorithm on the given graphs.
Corresponding to each WL refined edge address obtained in the first iteration, a root node
is created. The WL refined edge addresses obtained for iteration i > 1 form the nodes
for the level i of the hierarchy tree. As the nodes in the higher level are related to the

60

nodes in the lower level, a parent-child relationship between two subsequent levels can
be established. Thus a tree structure T can be built by adding edge between parents and
children. Note that T is constructed for the entire graphs in the training data considering
the whole WL iterations.

Lemma 5.1. KB(E,E ′) can be calculated from the hierarchy.

Proof. With the help of the hierarchy T , KB can be calculated as a histogram intersection
kernel [5] as follows. Corresponding to each graph G, a histogram vector GV of length
VT is created where VT is the set of nodes of the tree. The ith element of GV is the num-
ber of times it produces the ith element of VT during the WL color refinement algorithm
procedure. The histogram vector calculation is explained in Algorithm 5.1.

Algorithm 5.1: Computation of histogram vector GV

Input : The hierarchy T for h iterations of WL color refinement algorithm and a
graph G = (V,E).

Output: Histogram vector GV

1 Assign a unique location starting from 1 to |VT | to all the nodes in T
2 Initialize GV as |VT | × 1 vector
3 for every edge e in E do
4 Find the leaf node n in T corresponding to WL refined edge addresses of edge

e at WL iteration: h
5 i = h
6 while i ≥ 1 do
7 GV (location(n)) = GV (location(n)) + 1
8 n = parent(n)
9 i = i− 1

10 end
11 end

Note that the above algorithm corresponds to a tree traversal for each edge in a graph
starting from the leaf nodes. Since the hierarchy contains all possible occurrences of WL

refined edge addresses in h iterations of WL color refinement, each visit of a node in T
at level i with respect to the edge under traversal corresponds to an occurrence of that
particular WL refined edge address characterizing the node in T at iteration:i. Hence the
tree traversals as per the algorithm give the frequency of occurrences of WL refined edge

addresses in the entire h number of WL iterations, that is, GV . Let GV and G′V be the
histogram vectors of graphs G and G′. Then KB(E,E ′) in (5.5) can be calculated as

61

histogram intersection kernel of GV and G′V [5], that is,

KB(E,E ′) =

|GV |∑
i=1

minimum (GV (i), G′V (i)) (5.7)

It is straightforward now to establish that KB(E,E ′) for h iterations of WL color re-
finement steps is the summation of KNPO kernels in individual refinement steps. That
is,

KB(E,E ′) =
h∑
i=1

Ki
NPO(G,G′)

where Ki
NPO is the NPO kernel at iteration i.

Based on the above discussion, it is clear that neighborhood preserving optimal edge
assignment kernel is a valid optimal assignment kernel as the base kernel is strong and it is
induced by the hierarchy T .

It has to be noted that KNPO in actual experiments is calculated as explained in Section
5.1.8.

5.1.4 Neighborhood preserving kernel definition

The neighborhood preserving (NP) kernel for h iterations of WL color refinement algorithm
is defined as

K(G,G′) = α
h∑
i=1

Ki
NPE(G,G′) + (1− α)

h∑
i=1

Ki
NPO(G,G′) (5.8)

where α ∈ (0, 1) is a tuning parameter, Ki
NPE is the NPE kernel and Ki

NPE is the NPO
kernel defined for ith iteration. The purpose of α is to have a trade-off between the two
components of NP kernel.

5.1.5 Other neighborhood preserving kernels

It can be seen that to ensure a graph kernel to process only on the neighborhood preserving
regions, it is enough to take features from the edges that have common WL refined edge

address in the graphs. The application of WL refinement iteration on WL-edge kernel [25]
results in the process of the neighborhood preserving regions. However, this kernel does

62

not process attribute information. Hence the neighborhood preserving edge (NPE) kernel
can be considered as a generalization of WL-edge kernel.

In the case of the WL-subtree kernel and WL-shortest path kernel [25], the regions
processed may include non-neighborhood preserving edges as well. However, the WL-
shortest path kernel can be made to a neighborhood preserving kernel by imposing an
additional constraint such that the shortest paths considered for feature extraction shall
contain only neighborhood preserving edges.

It is evident that the walks in the formulated product graph corresponds to neighborhood
preserving walks in the argument graphs. Hence random walk kernel [34] can be made
neighborhood preserving. It is possible to distinguish the shortest paths from the neighbor-
hood preserving walks. Hence it is possible to make GraphHopper kernel neighborhood
preserving and WL-shortest path kernel [25] can be generalized to attributed graphs in the
same way as the proposed NPE kernel generalizes the WL edge kernel.

If we insert d-edges in the direct product graph definition, as explained in [8], the
cliques correspond to neighborhood preserving subgraph isomorphism and hence subgraph
matching kernel [8] can be made neighborhood preserving.

5.1.6 Recursive computation of NPE kernel from product graph

We prove with the following theorem that the neighborhood preserving edge kernel can be
computed at each WL iteration from the product graph defined for the previous iteration
which is obtained in a recursive fashion, i.e, the initial product graph formulation alone
is enough to find out the product graphs in proceeding WL iterations without explicitly
finding them.

Theorem 5.3. Product graph at any iteration >1 of WL color refinement algorithm is the

subgraph of the product graph defined for the previous iteration.

Proof. Product graph (GPi) in iteration : i > 1 can be obtained from product graph (GPi−1
)

in iteration: (i − 1) by deleting certain edges. Suppose GPi is the product graph obtained
by deleting the whole edges of the form ((u, v), (u′, v′)) in GPi−1

where lCi(u) 6= lCi(u
′)

and lCi(v) 6= lCi(v
′) where lCi is the WL alphabet in iteration : i. We argue that the edges

that can occur in GPi is already embedded in GPi−1
except for the deleted edges based on

the above rule.
Suppose there exists an edge ((y, y′), (z, z′)) in GPi that does not exist in GPi−1

. That
is label and neighborhood of y, y′ and z, z′ with respect to WL labels lCi−1

at the iteration
h = i − 1 are identical. If their neighborhood are identical at the iteration h = i − 1,

63

they would have formed nodes in GPi−1
and so the edge between them. Hence the edge

((y, y′), (z, z′)) in GPi is already embedded in GPi−1
. Hence GPi formed with the above

edge deletion rule is the subgraph of GPi−1
.

5.1.7 Computational complexity analysis

With efficient sorting techniques, WL color refining for one iteration can be done in O(m)

operations, where m is the number of edges. NPE kernel defined in 5.1 requires O(m2)

operations. Considering d be the dimension of attributes, the base kernel computation is of
O(d). Hence NPE kernel is computed in O

(
h×N2(m2 × d)

)
where N is the dataset size

and h is the number of WL iterations.

The computational complexity ofKNPO isO(N2×|Σ3|3), where |Σ3|3 is the maximum
possible size of Λ bounded bym2 for a pair of graphs. This makes the overall computational
complexity of NP kernel to be O

(
h×N2(m2 × d)

)
.

5.1.8 Algorithms for computing NP kernel

We can compute KNPE and hence K(G,G′) in two ways.

1. In a pairwise manner with product graph.

Although kernel computation with product graph using recursion property described
in Theorem 5.3 can have n2 nodes in the worst case where n is the number of nodes, the
number of edges are bounded by c×m2 where c is a factor that accounts for the edges that
result in duplication as explained in Theorem 5.2. The computation steps are detailed in
Algorithm 5.2.

2. In a global manner.

We can create a list of WL refined edge addresses derived from Λ ⊆ Σ3 that occurs
across the training data and a pre-computed feature information data can be formed for
each graph listing the edges corresponding to each WL refined edge address. Then the
kernel can be computed by iterating through this pre-computed feature information data.
This method by default provides the provision to calculate KNPO because it only requires
to process the cardinality of individual refined addresses in the feature information data.
The computation steps are detailed in Algorithm 5.3.

In the Algorithm 5.3, the convolution operation is done by vectorization rather than the
brute force approach of running for loops as required in computing 5.2. As part of the
vectorization, the vectors to be processed are stacked one after the other corresponding to

64

Algorithm 5.2: Pairwise computation
Input : The graph dataset G, h
Output: The neighborhood preserving edge kernel matrix KNPE and optimal edge

assignment kernel matrix KNPO

1 Do WL color refinement on the graphs h times and store in memory
2 for every graph, Gi = (Vi, Ei) in |G| do
3 Initialize Λi(key, value) as empty dictionary
4 for every edge e = (vp, vq) in Ei do
5 Find WL refined edge address, ε
6 if ε /∈ Λi then
7 Add ε as a key in Λi

8 Initialize the value of the key: ε, as an empty list
9 Append edge e to the list

10 else
11 Append edge e to the list corresponding to the key:ε
12 end
13 end
14 Save Λi

15 end
16 for every graph, Gi = (Vi, Ei) in |G| do
17 for every graph, Gj = (Vj, Ej) in |G| do
18 if i <= j then
19 Find the NP edges EP = {(u, u′), (v, v′)}from GP for h = 1 using Λi

and Λj

20 if NP edges exist then
21 Find KNPE(i, j) and KNPO(i, j) for h = 1 using EP .
22 for k = 2 to h do
23 Delete the edges in EP that does not satisfy NP property at WL

iteration: k
24 Find Kk

NPE(i, j) and Kk
NPO(i, j) at iteration: k

25 KNPE(i, j) = KNPE(i, j) +Kk
NPE(i, j)

26 KNPO(i, j) = KNPO(i, j) +Kk
NPO(i, j)

27 end
28 else
29 KNPE(i, j) = 0
30 KNPO(i, j) = 0
31 end
32 end
33 end
34 end

65

Algorithm 5.3: Global computation for one iteration of WL color refinement
Input : The graph dataset G and ΣC

Output: Kernel matrices KNPE and KNPO

1 for every graph, Gi = (Vi, Ei) in |G| do
2 Initialize Λi(key, value) as empty dictionary
3 for every edge e = (vp, vq) in Ei do
4 Find WL refined edge address, ε
5 if ε /∈ Λi then
6 Add ε as a key in Λi

7 Initialize the value of the key: ε, as an empty list
8 Append edge e to the list
9 else

10 Append edge e to the list corresponding to the key:ε
11 end
12 end
13 Save Λi

14 end
15 Initialize KNPE and KNPO as kernel matrices
16 for every graph, Gi = (Vi, Ei) in |G| do
17 for every graph, Gj = (Vj, Ej) in |G| do
18 if i <= j then
19 Find the common keys in Λi and Λj

20 if common keys exist then
21 Initialize the empty array fEiend1 and fEiend2 for storing the vectors

corresponding the pair of nodes of edges in Ei for Gi

22 Initialize empty matrix aEi for storing vector corresponding to the
edges (if any) for Gi

23 Initialize the empty matrices fEjend1 , fEjend2 , and aEj for Gj

24 for every common key ε do
25 Find the lists of edges corresponding to ε in Λi and Λj

26 Using the lists, populate fEiend1 , fEiend2 , aEi , fEjend1 , fEjend2 , and aEj
with the corresponding attribute vectors

27 end
28 Find KNPE(i, j) and KNPO(i, j) by processing fEiend1 , fEiend2 , aEi ,

f
Ej
end1

, fEjend2 , and aEj

29 else
30 KNPE(i, j) = 0, KNPO(i, j) = 0
31 end
32 KNPE(j, i) = KNPE(i, j), KNPO(j, i) = KNPO(i, j)

33 end
34 end
35 end

66

C
o

n
vo

lu
tio

n
 as ve

cto
rizatio

n

(a)

(b)
n

o
d

e
s

w
it

h

W
L

re
fi

n
e

d
 e

d
ge

ad
d

re
ss

:
w

2

(c)

X

X

X

X

X

X

n
o

d
e

s
w

it
h

W

L
re

fi
n

e
d

 e
d

ge
ad

d
re

ss
: w

1
Figure 5.3: Convolution as vectorization for a sample of two WL refined edge addressesw1

and w2. (a) and (b) represents node attributes in G,G′ with an address w1 and w2 respec-
tively. (c) represents arranging attribute vectors to compute convolution as a vectorization
process, ⊕ denotes concatenation and × denotes Hadamard product.

the common WL refined edge addresses or common keys (lines 25 to 28 of algorithm 5.3).
Then the vectors are duplicated in an appropriate form necessary to perform the convolution
in the form of matrix Hadamard product and then row wise summation later. An example
is given in Figure 5.3.

5.2 Neighborhood preserving shortest path kernel

It is straightforward to extend the concepts of neighborhood preserving edge kernel de-
fined in Section 5.1.2 to the shortest paths. One disadvantage with NPE kernel is that the
information that gets processed is in terms of edges only, even though the neighborhood
preserving regions may be connected. Hence if we process larger subgraphs, the kernel
measure is much more accurate. The shortest paths are a good candidate for analyzing
these larger connected regions.

Let κV be a positive semi-definite (psd) kernel defined on V × V ′. We assume P, P ′ as
the sets that contain the shortest paths in graphs G,G′ respectively. Then the neighborhood
preserving shortest path kernel, (KNPS), is defined as,

KNPS(G,G′) =
∑

Π(u1,un)∈P

∑
Π(u′1,u

′
n)∈P ′

κV (u1, u
′
1)×kδ

(
Π(u1, un),Π(u′1, u

′
n)
)
×κV (un, u

′
n)

(5.9)

67

kδ can be defined as a psd kernel as follows.

kδ
(
Π(u1, un),Π(u′1, u

′
n)
)

=



1, if |Π(u1, un)| = |Π(u′1, u
′
n)| ∧

n∑
i=1

δ
(
lC(ui), lC(u′i)

)
= n ∧

n−1∑
i=1

δ
(
l(ui, ui+1), l(u′i, u

′
i+1)
)

= n− 1

0, otherwise

(5.10)

In the above definition, edges involved in the shortest paths are compared for neigh-
borhood preserving property. Note that for kernel computation, only attributes in source
and sink nodes are considered. We can modify this to have kernel value computation of
attributes of the nodes in between as well.

The above kernel can be proved as a psd kernel in the same way as the NPE kernel.
We can formulate the R-convolution relation as a decomposition of the shortest path and
the rest of the graph. For each shortest path, we can assign an address like we assign an
edge with a WL refined edge address. The address can be a string where WL labels of the
nodes and edge labels involved in the concerned shortest path are concatenated. With this
setting, as in the case of the NPE kernel in Section 5.1.2 we can define an R-convolution
kernel corresponding to these addresses. Note that if these addresses take the form of a
palindrome, the matching between sink and source nodes can happen in either way. In
such a case, matching can be resolved based on the lexicographic ordering of the nodes.

5.2.1 Computational complexity analysis

The complexity associated with finding the shortest paths for a single graph is of O(V 2).

For kernel computation, the shortest paths have to be compared against each other which
is of O(V 2) and along with each comparison, the base kernel has to be computed twice
for source and sink nodes. If the attributes are of dimension d, this makes the kernel
computation O(V 2 × d). So the overall computational complexity for a set of N graphs as
O(NV 2 + hN2V 2d).

To improve the computational complexity, it is possible to relax the conditions for
neighborhood preserving property of the shortest paths. A simple way is to relax the con-
dition in (5.10). For example, the number of neighborhood preserving edges in the paths
can be limited to a predefined threshold. This prevents the requirement to check labels of

68

each and every nodes/edges in the paths. Now it is possible to use computationally efficient
shortest path kernel computation algorithm such as the one described in [36]. This will help
to reduce the complexity approximately to O(N2V d).

5.3 Experiments

The efficiency of the proposed neighborhood preserving kernels was analyzed by subject-
ing them to real-world data sets and compared its performance with state-of-the-art graph
kernels namely: Shortest path(SP) kernel [7], GraphHopper(GH) kernel [36], RetGK ker-
nels [35], Graph invariant kernel (GIK) [46], Propagation kernels [58] and Hash graph
kernels [59].

The components of the proposed NP kernel is analyzed separately, i.e, when α = 1 in
5.8, it corresponds to NPE kernel component alone that process the attributes and when
α = 0 in 5.8, it corresponds to the NPO kernel component alone that processes the labels.
This helps in evaluating the role of attributes and labels separately and also the effectiveness
of NP kernel where both information is utilized.

Table 5.1: Classification accuracy of the proposed kernels with state-of-the-arts.

Kernel PROTEINS ENZYMES BZR COX2 DHFR SYN.new
SP 73.42 ± 1.11 66.58 ± 4.06 85.76 ± 2.35 79.88 ± 1.73 79.52 ± 2.40 86.72 ± 3.68
GH 73.19 ± 1.79 66.33 ± 2.78 82.90 ± 2.73 79.66 ± 1.17 76.65 ± 3.21 88.81 ± 3.41
RetGK-I 75.94 ± 1.79 65.67 ± 3.07 85.58 ± 2.20 78.19 ± 0.47 80.83 ± 2.10 97.08 ± 1.54
RetGk-II 74.69 ± 1.60 62.34 ± 2.94 85.76 ± 1.61 78.25 ± 0.35 81.66 ± 2.41 96.94 ± 1.47
GIK 72.36 ± 2.17 52.32 ± 3.89 86.31 ± 2.25 79.68 ± 2.41 81.25 ± 2.56 91.73 ± 2.22
Prop-diff 72.60 ± 2.32 38.19 ± 2.27 78.46 ± 0.59 77.94 ± 0.47 72.58 ± 0.78 48.59 ± 1.17
Prop-WL 74.23 ± 1.80 44.85 ± 1.63 78.92 ± 0.41 78.25 ± 0.35 73.41 ± 0.53 46.38 ± 1.39
HGK-WL 74.69 ± 1.98 64.30 ± 3.37 81.48 ± 1.84 78.50 ± 0.57 75.47 ± 2.40 81.00 ± 3.69
HGK-SP 75.57 ± 1.89 62.60 ± 3.00 82.38 ± 1.79 78.55 ± 0.65 76.61 ± 2.72 96.38 ± 1.92
NPE(α=1) 71.08 ± 2.80 64.93 ± 2.97 87.13 ± 1.98 82.36 ± 2.02 82.70 ± 2.35 99.51 ± 0.67
NPO(α=0) 72.74 ± 2.02 45.67 ± 3.24 88.81 ± 1.70 80.71 ± 2.92 81.07 ± 2.89 97.81 ± 1.53
NP 73.66 ± 2.55 58.10 ± 3.16 89.12 ± 2.03 81.16 ± 2.13 83.98 ± 2.35 99.74 ± 0.64
NPS 73.87 ± 2.47 58.94 ± 3.58 89.24 ± 2.18 81.37 ± 2.26 84.16 ± 2.43 99.85 ± 0.71

5.3.1 Datasets

The classification datasets used for analysis were ENZYMES, PROTEINS, BZR, COX2,
DHFR, and SYNTHETICnew. The description of ENZYMES and PROTEINS dataset are
given in Section 3.5.2.1. In contrast to two previous chapters, their attribute information
are also considered for the experiments. BZR, COX2 and DHFR [104] are taken from the

69

Graph data repository [105]. SYNTHETICnew is a synthetic dataset introduced in [36].
The datasets are all of binary class except for ENZYMES which has six classes.

5.3.2 Experimental setup

The validation process was carried out in the following way. Using hold out technique,
70% of the data points were assigned for training and the remaining for testing. The 10
fold cross-validation was done on training data for selecting the hyperparameters. A model
was then built using the entire training data and its performance was tested on the testing
data. The above process was repeated 30 times and the results reported were averaged over
these 30 iterations to nullify the effects of fold assignments.

The classification algorithm used was SVM (with Libsvm implementation [97]). The
penalty parameter C of SVM was searched in the interval [2−7, 215]. The performance
parameter used was accuracy. The number of iterations of WL color refinement algorithm
was from {1, 2, 3} which is fixed through cross-validation. The experiments were done in
a machine with Intel Xeon i5 2.4 GHz CPU with 80 GB RAM.

We wrote the code for SP and GIK kernel while GH, RetGK kernels and Hash graph
kernel were done with the codes published by authors. Propagation kernel implementation
and (its hyper-parameter selection) was done by the codes published by authors of GH
kernel. The linear and Gaussian kernel

(
k(x, y) = e−β‖x−y‖

2) where β = 1/d, (d the
dimension of attribute information) were used as the base kernels within the state-of-the-
arts. The coding of the proposed kernels and Hash graph kernel is done in Python while
others in Matlab.

For GIK kernels, WL coloring was taken as vertex invariant. Two variants of the Prop-
agation kernel were implemented. In the ’Prop-diff’ variant, the propagation scheme used
is diffusion [58]. In the ’Prop-WL’ variant, labels of the nodes are first hashed and a WL
propagation scheme is used. Total variance distance was used as the hashing function in
both the propagation schemes. The bin width of the hash function was set to 10−5 and the
number of propagation steps for both variants was fixed through cross-validation from the
set {1, 2, 3, 4, 5}. RetGK kernels used also have two variants. RetGK-I is the one with an
explicit feature map in RKHS and RetGK-II is the one with approximated mapping. For
both approaches, 50 steps of random walks are assumed. For Hash graph kernels, WL
subtree (HGK-WL) and shortest path (HGK-SP) kernels [25] were employed as the base
kernels, and the hashing function used is 2-stable Locality sensitive hashing (LSH) with bin
width 1, label and hashed attribute information were propagated separately as suggested by

70

the authors. Number of WL refinement steps were fixed through cross-validation from the
set {1, 2, 3, 4, 5}.

For the SYNTHETICnew dataset, the node labels were given identical label discarding
the original continuous type values and attributes are used as such. For the proposed kernels
and GH kernel, the result reported is the best among the case between Linear and Gaussian
kernels where they are employed as base kernels.

5.3.3 Runtime experiments with pairwise and global computation of
NP kernel

For the algorithms explained in Section 5.1.8, an experiment is done to evaluate the pair-
wise and global computation schemes in calculating the NP kernel 1. For this experiment, 4
artificial datasets of 100 graphs with 300 nodes and graph density 20%, 40%, 60% and 80%
respectively were created. Each dataset has experimented 3 times with the nodes being se-
lecting a random label out of an alphabet Σ of size 1, 2, and 3 respectively and edge labels
are assumed to be identical. The node attributes are assumed to be in a dimension of 30.
The experiment is done for 3 steps of WL color refinement where calculation for pairwise
computation is done as per Theorem 5.2 and Theorem 5.3. The runtime (in seconds) for
both approaches are plotted against the size of WL alphabet ΣC and size of Λ for the label
size, |Σ| =1,2, and 3 respectively in Figure 5.4. The variation in graph density is studied
since it is the number of edges that affects the computation time as explained in Section
6.1.2.1.

|Σ
C
|=

27
9
06
|Λ
|=

8
.7
X

10
5

gr
ap

h
d

en
si

ty
=

20
%

|Σ
C
|=

5
98

02
|Λ
|=

16
.8
X

10
5

gr
a
p

h
d

en
si

ty
=

40
%

|Σ
C
|=

6
00

46
|Λ
|=

24
.0
X

10
5

gr
a
p

h
d

en
si

ty
=

60
%

|Σ
C
|=

3
29

92
|Λ
|=

30
.0
X

10
5

gr
a
p

h
d

en
si

ty
=

80
%

0

5000

10000

15000

ru
n
ti

m
e

|Σ| = 1

|Σ
C
|=

6
10

34
|Λ
|=

10
.3
X

10
5

gr
a
p

h
d

en
si

ty
=

20
%

|Σ
C
|=

6
16

62
|Λ
|=

19
.8
X

10
5

gr
a
p

h
d

en
si

ty
=

40
%

|Σ
C
|=

6
21

65
|Λ
|=

28
.7
X

10
5

gr
a
p

h
d

en
si

ty
=

60
%

|Σ
C
|=

6
23

33
|Λ
|=

44
.1
X

10
5

gr
a
p

h
d

en
si

ty
=

80
%

0

200

400

ru
n
ti

m
e

|Σ| = 2

|Σ
C
|=

6
76

60
|Λ
|=

13
.6
X

10
5

gr
a
p

h
d

en
si

ty
=

20
%

|Σ
C
|=

7
28

51
|Λ
|=

25
.3
X

10
5

gr
a
p

h
d

en
si

ty
=

40
%

|Σ
C
|=

7
59

66
|Λ
|=

35
.3
X

10
5

gr
a
p

h
d

en
si

ty
=

60
%

|Σ
C
|=

7
79

67
|Λ
|=

45
.2
X

10
5

gr
a
p

h
d

en
si

ty
=

80
%

0

100

200

300

ru
n
ti

m
e

|Σ| = 3

pairwise

global

Figure 5.4: Runtime comparison of pairwise and global computation of NP kernel for
synthetic graphs at graph density 20%, 40%, 60%, and 80% respectively.

1Implementations in : https://github.com/asif-salim/NP-graph-kernels

71

It can be seen from Figure 5.4 that when |Σ| is small, global computation takes less
amount of time. In this case, more nodes are sharing common WL labels and this results in
smaller |Λ|. But the product graph involves lots of nodes and hence larger computation time
for pairwise computation scheme. But as |Σ| becomes larger, pairwise computation time is
much better compared to the global. In this case, the nodes sharing common WL labels are
relatively less and it will result in a larger |Λ|. In comparison with the smaller number of
nodes in the product graph, global computation of these larger Λ feature information takes
more time than pairwise computation. These effects are more evident as graph density
increases. Hence pairwise computation is suitable for dense graphs with a large |Λ| or
|ΛC |.

5.3.4 Results and discussion

The accuracy with standard deviation obtained are tabulated in Table 5.1 and runtime (wall-
clock time) in Table 5.3. We did experiments with the proposed kernels with NPE kernel
alone (α = 1) and NPO kernel alone (α = 0) as well as with the formal NP kernel definition,
NPS kernel and compared the results with that of state-of-the-arts. The best results are
given in bold letters.

The NP and NPS kernels have a significant improvement over state-of-the-arts in the
case of BZR, COX2, DHFR and SYNTHETICnew datasets and their performance is rea-
sonably good in the case of PROTEINS and ENZYMES datasets. Note that the NPE ker-
nel which processes attribute information and the NPO kernel which processes only labels
where α tuning is not required performs better than state-of-the-art in BZR, COX2, and
SYNTHETICnew datasets. In the case of DFHR dataset, NPE kernel outperforms the state
of the arts whereas the performance of NPO kernel is in par with them. For datasets except
for ENZYMES and COX2, NP kernel augmented with NPO kernel performs significantly
better than the NPE kernel. This validates our argument about the need for processing the
label and attribute information independently. This also gives evidence to the fact that in
the case of graph data analysis, the attributes cannot be neglected if they are present. This
is important since most of the kernels developed in this regard could only process labels.
In comparison with the performance of the proposed kernels with the discretization algo-
rithms (Propagation and HGK kernels), the proposed designs perform better although the
runtime of discretization-based approaches are low.

The runtime of NP and NPS kernels is reported for the global computation approach
with the linear kernel being the base kernel. An exception is for SYNTHETICnew whose

72

Table 5.2: Classification accuracy in MNIST dataset

CNN NPE
Accuracy 95.57 94.46

NP kernel is calculated with the pairwise approach. The runtime performance is better than
most of the state-of-the-arts. Considering the runtime, propagation kernels are the fastest.
But they use discretized attribute information and hence their performance is lower than the
state-of-the-arts. Although the runtime of RetGK kernels is better, NP kernel processes the
label and the attribute information independently which makes the performance of those
better. Since the NP and NPS kernel establish a well-defined correspondence between
subgraphs, their performance is better than GraphHopper kernel with better runtime. In
comparison with Shortest path kernel and Graph invariant kernels, the runtime of NP kernel
is better. The performance of GIK kernel is close to that of NP kernel while performance
of NP kernels compared to Shortest path kernel is better in the datasets, an exception being
ENZYMES.

Note that the runtime of NPS kernel can be improvised with the efficient computation
approaches like the strategies introduced in [36]. The difference in the runtime of NPE
and NP kernels are negligible. The reason is that when we calculate the NPE kernel, the
steps involved by default provides a way to calculate NPO kernel as well with the help of
dictionaries Λ’s defined in Algorithm 5.3. To be specific, NPO kernel can be calculated by
taking the minimum of the cardinality of the lists of edges corresponding to common keys
in Λ. But once we are only concerned with the computation of NPO kernel, the runtime is
significantly reduced since the processing of attributes are not required.

5.3.5 A heuristic to choose value of h

If we consider a pair of graphs, it is highly likely that some nodes may get a different color
in WL iterations from any other nodes in both graphs and hence they do not contribute any
neighborhood preserving (NP) edges for the kernel value. As the WL iteration proceeds,
the number of NP edges are going to decrease because as more hops are taken in the graphs
with respect to nodes, the likelihood of similarity decreases. Hence at a particular iteration
the NP edges vanish for all pair of distinct graphs. Any further iterations are not going to
contribute to the kernel value but they create computation overheads.

One heuristic to carefully choose the value of h is to track the cardinality of the unique
WL refined edge addresses that occur across every graph and the pair of graph whose kernel

73

Table 5.3: Runtime of the proposed kernels with state-of-the-arts. .

Kernel PROTEINS ENZYMES BZR COX2 DHFR SYNnew∗

SP >5 day >3 day >2 day >2 day >3 day >2 day
GH 13’ 1" 3’ 4" 58" 1’ 22" 3’ 7" 4’ 2"
RetGK-I 2’ 57" 37" 17" 24" 1’ 15" 30"
RetGk-II 2.5" 1" 0.7" 0.9" 1.4" 13.3"
GIK 22’ 34" 8’ 43" 7’ 16" 12’ 49" 30’ 39" 35’ 11"
Prop-diff 7" 5" 3.5" 3.7" 7.5" 4"
Prop-WL 12" 5.3" 4" 5.2" 9" 8"
HGK-WL 3’ 42" 1’ 25" 1’ 2" 1’ 9" 1’ 55" 2’ 11"
HGK-SP 3’ 8" 1’ 6" 48" 52" 1’ 28" 1’ 38"
NPE(α=1) 1’ 40" 34" 48" 1’ 20" 3’ 40" 1’ 46"
NPO(α=0) 18.3" 6" 2.7" 3.6" 9" 19"
NP 1’ 49" 35" 52" 1’ 26" 3’ 58" 1’ 58"
NPS 27’ 42" 2’ 19" 3’ 55" 7’ 49" 16’ 10" 55’ 58"

1 2 3 4 5 6
WL iteration

9

10

11

lo
g

|
|

PROTEINS

1 2 3 4 5 6
WL iteration

0

20

40

60

N
o:

of
 u

pd
at

es
 in

 (%
)

1 2 3 4 5 6
WL iteration

8

9

10

ENZYMES

1 2 3 4 5 6
WL iteration

0

20

40

60

1 2 3 4 5 6
WL iteration

6

7

8

9

BZR

1 2 3 4 5 6
WL iteration

25

50

75

100

1 2 3 4 5 6
WL iteration

6

7

8

9

COX2

1 2 3 4 5 6
WL iteration

40

60

80

100

1 2 3 4 5 6
WL iteration

6

7

8

9

DHFR

1 2 3 4 5 6
WL iteration

25

50

75

100

1 2 3 4 5 6
WL iteration

4

6

8

10

SYN.new

1 2 3 4 5 6
WL iteration

0

25

50

75

100

Figure 5.5: The plot of cardinality of WL refined edge addresses and percentage of kernel
values getting updated against WL iterations for the datasets.

values are getting updated. The cardinality of WL refined edge addresses increases as
the WL iteration proceeds and it can become saturated after a finite number of iterations.
On the other hand, the graph similarity decreases as more neighborhood hops are taken
as the WL iterations proceed and the pair of graphs whose kernel values getting updated
decreases.

The Figure 5.5 gives the cardinality of WL refined edge addresses and the percentage
of kernel values getting updated (in logarithmic scale) against WL iterations. It is observed
that at a particular iteration, the number of kernel values getting updated steeply decreases
whereas the cardinality does not have significant increase. This point can be used as a
heuristic to choose the value of h in the context of the above discussions.

74

5.3.6 Scaling for large graphs

Scaling requirement for the graph kernels in the case of attributed graphs can happen in two
scenarios - (1) when the number of nodes is large and (2) the attribute dimension is very
high. As far as the proposed kernel is concerned, the computation load happens around
finding the WL refined edge address, correlating the edges to these addresses and finding
the kernel values via convolution by processing the attributes over nodes/edges.

Now considering the scaling requirement when the number of nodes are larger, finding
WL refined edge address and correlating the edges to them can be done via parallel pro-
cessing. The graph structure that is stored in the form of an adjacency list can facilitate
this. The nodes can be divided into smaller groups and each group can be fed into separate
cores for the processing. The individual results from the cores can then later be consoli-
dated. For both the scaling scenarios, convolution in the form of vectorization can be done
as discussed in Section 5.1.8. But in the scaling scenario of attributes of larger dimension,
the hardware accelerators like GPU can be utilized.

5.3.7 Applications in image processing

We applied the proposed kernel design in image processing tasks in which neighborhood
structures are implicitly defined. An example case is the MNIST digit dataset [106]. In
this case, apart from the natural image features the filters of a convolutional neural network
(CNN) learn, it is the underlying neighborhood structure that helps in the classification
tasks. In this context, we have applied the NPE kernel to MNIST images after converting
them to graphs and compared the results with CNN. The experiment is done as a sanity
check towards the efficiency of neighborhood matching procedure in the proposed approach
in the fields apart from the chemo-informatics domain.

For converting the image to a graph, the method described by Defferrard et.al [64] is
adopted. The MNIST image data is in the form of a 2D grid of size 28 × 28. Following
[64], a 8-nearest neighborhood graph of the 2D grid is constructed in the form of a grid with
976 nodes (282 = 784 and 192 fake nodes), with 3198 edges, the attributes over the nodes
are pixel values scaled in the range [0,1] and, the node/edge labels are taken as uniform.
This graph conversion process is done using the Spektral library [107]. The NPE kernel is
applied only for one iteration of WL color refinement.

For the experiments, 10000 images are chosen at random out of the total of 70000. The
architecture followed in [64] is used for CNN. The results are given in Table 5.2. From
the experiments we can see that the performance of the NPE kernel is on par with that of

75

CNN. In this context, in the image processing tasks in which the neighborhood structure
is relevant, NPE kernel can be useful for the learning tasks. The challenge associated with
such tasks is to define a suitable graph. The nearest neighbor approach over the pixels as
described above is an obvious choice. If the domain knowledge permits in selecting the
region of interest as nodes and the interaction between them as edges, such a method can
be more effective than the nearest neighbor approach. The method can also be applied in
volumetric data analysis where an underlying graph structure can be defined.

5.4 Conclusion

We designed kernels based on the neighborhood preserving property where the attribute
and label information of nodes/edges are utilized. It helps to define a well-defined corre-
spondence between subgraphs computed during kernel computations. The kernels can be
recursively computed from the product graph that helps in an efficient computation proce-
dure for dense graphs with large alphabets occurring in the WL color refinement algorithm.
The proposed kernel which independently processes the attribute and label information is
found to be very effective in the graph classification tasks. The method can also be extended
to image analysis where an underlying graph structure can be formulated.

76

Chapter 6

Spectral Graph Convolutional Neural Net-
works in the Context of Regularization
Theory

The success of CNNs as a powerful feature extractor for data in the Euclidean domain mo-
tivated researchers to extend the concepts to non-euclidean domains such as manifolds and
graphs [108]. Among this, spectral graph convolutional networks based on the principles
of spectral graph theory [109] and signal processing on graphs [110] have emerged as a
powerful tool.

The relation between regularization theory and neural networks were formulated by
Girosi et.al [111]. They have found that a class of smoothness functionals when used as
stabilizers for the ill-posed problems [112] leads to regularization scheme that are equiva-
lent to a single layer neural network called regularization networks. In the case of graphs,
Smola et.al [27], [28] have studied the regularization property of graph Laplacian and how
the regularization operators and support vector kernels are related. They have found that
a smoothness functional on graphs can be obtained in terms of graph Laplacian and regu-
larization properties on graphs can be achieved by processing on its eigenfunctions. Our
work is mainly motivated by Smola et.al [27] as we observe that the support vector kernels
proposed by them using the function of graph Laplacian can act as a convolution filter for
SGCNs.

In this work, we propose a framework for filter designs in SGCNs from which its regu-
larization behavior can be analyzed. The regularization behavior is attributed to smoothness
the filters impart in the learning. It has to be noted that the proposed theoretical analysis
is equally applicable for filter designs with high pass or band-pass behaviors. We also
noted some insights in the direction of optimizing the network and the possibilities of new

77

Table 6.1: Frequency response function and output of filters of SGCNs

Network Freq. response (gθ(λ)) Output, y
ChebyNet [64]

∑K−1
k=0 θkλ

k (θ0I +
∑K−1

k=1 θkL̃
k)f

GCN [65]
(
θ(1− λ)

)
θ(I − L̃)f

GraphHeat [66] θ0 + θ1exp (−sλ)) (θ0I + θ1e
−sL̃)f

IGCN [67]
(
θ(1− λ)

)K
θ(I − L̃)Kf

architectures for graph learning.

The rest of the chapter is organized as follows. Section 6.1 discusses the framework for
designing regularized graph convolution filters. Section 6.2 discusses the experiments and
results. A discussion on improvising the SGCN architecture is discussed in Section 6.3 and
conclusions are made in Section 6.4.

6.1 Regularized graph convolution filters

The adjacency matrix of the graph G = (V,E) is defined as W where Wij = wij denotes
the weight associated with the edge [i, j] and otherwise 0. The degree matrix, D, is defined
as the diagonal matrix where Dii =

∑
j wij . The Laplacian of G is defined as L := D−W

and the normalized Laplacian is defined as L̃ := D−
1
2LD−

1
2 = I − D−

1
2WD−

1
2 . As

L̃ is a real symmetric positive semi definite matrix, it has a complete set of orthonormal
eigenvectors {ul}nl=1 ∈ Rn, known as the graph Fourier modes and the associated ordered
real non negative eigenvalues {λl}nl=1, identified as the frequencies of the graph. Let the
eigen decomposition of L̃ be UΛUT where U is the matrix of eigenvectors {ul}nl=1 and Λ is
the diagonal matrix of eigenvalues. Graph Fourier Transform (GFT) of a signal f : V → R
is defined as f̂ = UTf and inverse GFT is defined as f = Uf̂ [110].

The frequency response function and corresponding output of SGCNs discussed in Sec-
tion 2.4.3 are summarized in the Table 6.1. In our work, the objective is to propose a frame-
work to design regularized graph convolution filters and for this, regularization theory over
graphs via graph Laplacian is used as discussed in the following section. We also found that
the spectral filters in Table 6.1 can be deduced as special cases of the proposed frequency

response functions in our framework.

It has to be noted that our framework is proposed for the traditional SGCN filters.
However, it is straight forward to extend this theory to the networks such as graph wavelet
network [68]. The only difference is that instead of taking the spectrum of L̃, the wavelet
spectrum may be considered. Hence the theory developed can be extended to any networks

78

Table 6.2: Filters, corresponding regularization function (r(λ)) and its filter definition

Filter Regularization function (r(λ)) Filter definition
Reg. Laplacian 1 + sλ, s > 0 (I + sL̃)−1

Diffusion exp
(
sλ
)
, s > 0 exp (−sL̃)

p-step random walk (aI − λ)−p a ≥ 2, p ∈ N (aI − L̃)p

Cosine
(
cos λπ

4

)−1
cos (L̃π

4
)

that operate on wavelet transform.

Consider a signal on the nodes of the graph which is generated from the function
f : V → R. Without loss of generality, we assume only the case of 1-dimensional sig-
nal in this section. It is being identified that the eigenvectors of L corresponding to lower
frequencies or smaller eigenvalues are smoother on graphs [113]. The smoothness corre-
sponding to the k−th eigenvector is,

∑
i∼j wij[uk(i)−uk(j)]2 = uTkLuk = λk where i ∼ j

implies that nodes i and j are connected by an edge. It can be inferred that a smoothly
varying graph signal corresponds to eigenvectors with smaller eigenvalues. This is under
the assumption that the neighborhood of topologically identical nodes would be similar. In
real-world applications, the signals over the graph could be noisy. In this context, the high-
frequency content of the signal should be filtered out as it contains noise and low-frequency
contents (eigenvectors corresponding to lower eigenvalues) should be maintained as it con-
tains robust information. In other words, smoothness corresponds to spatial localization in
the graphs which is important to infer local variability of the node neighborhoods and it
attributes to lower eigenvalues. This is where the regularization behavior of the frequency

response function of a SGCN becomes important. Now we can define the smoothness
functional on graph G as,

SG(f) =
∑
i∼j

wij(fi − fj)2 = fTLf. (6.1)

The smoothness property associated with L or L̃ also indicates its potential applica-
tion to design regularized filters for SGCNs. Since the spectrum of L̃ is limited in [0, 2],
normalized Laplacian is used in this work. In the following section, we discuss how graph
Laplacian can be used for the regularization in graphs and propose our framework to design
regularized graph convolution filters. It has to be noted that the regularized filters will be
later defined as the ones that amplify low pass filtering and/or attenuates the high frequency
components. Although there is an assumption that the low frequency components as robust
and high frequency components as noise, there are instances where the latter can be useful
for the learning tasks.

79

6.1.1 Graph Laplacian and regularization

Regularization functionals on Rn can be written as,

〈f, Pf〉 =

∫
|f̄(ω)|2r(‖ω‖2)dω = 〈f, r(∆)f〉 (6.2)

where f ∈ L2(Rn), P is a regularization operator, f̄(ω) denotes Fourier transform of f ,
r(‖ω‖2) is a frequency penalizing function and r(∆) is a function that acts on the spectrum
of the continuous Laplace operator ∆. The equation in (6.2) can be mapped into the case
of graphs by making an analogy between the continuous Laplace operator and its discrete
counterpart which is the graph Laplacian [27]. Analogous to (6.2), Smola et.al [28] used
a function of Laplacian, r(L̃), in the place of P under Laplacian’s capability to impart
a smoothness functional on graphs. Hence regularization functionals on graphs can be
written as 〈f, Pf〉 = 〈f, r(L̃)f〉, where r(L̃) =

∑n
i=1 r(λi)uiu

T
i .

The choice of r(λ) should be in such a way that it favors the low pass filtering of the
graph convolution filter, that is, the function r(λ) should be high for a higher value of
λ to impose more penalization on high frequency (high eigenvalue) content of the graph
signal. Similarly, the penalization of low frequency should be less. Hence we name r(λ) as
regularization function. The examples for choices of r(λ) are listed in the second column
of Table 6.2 and they are plotted in Figure 6.1.

0.0 0.5 1.0 1.5 2.0

λ

0

1

2

3

4

5

r(
λ

)

(a)

s=0.5
s=1.0
s=1.5
s=2.0

0.0 0.5 1.0 1.5 2.0

λ

0

1

2

3

4

5

r(
λ

)

(b)

s=0.5
s=1.0
s=1.5
s=2.0

0.0 0.5 1.0 1.5 2.0

λ

0

1

2

3

4

5

r(
λ

)

(c)

a=2
a=3
a=4
a=5

0.0 0.5 1.0 1.5 2.0

λ

0

1

2

3

4

5

r(
λ

)

(d)

a=2
a=3
a=4
a=5

0.0 0.5 1.0 1.5 2.0

λ

0

1

2

3

4

5

r(
λ

)

(e)

π/4

Figure 6.1: Regularization function, r(λ). (a) regularized Laplacian (s = {0.5, 1, 1.5, 2}),
(b) diffusion function (s = {0.5, 1, 1.5, 2}), (c) one-step random walk (a = {2, 3, 4, 5}),
(d) 2-step random walk (a = {2, 3, 4, 5}), (e) inverse cosine function.

Remark 6.1. There exists an inverse relationship between the regularization function and
frequency response function. To impose high penalization on higher frequencies, the regu-

larization function is supposed to be a monotonically increasing function of the eigenval-
ues. At the same time, for the low pass filtering characteristics, to make high filter gain

80

on a lower frequency and vice versa, the frequency response function is supposed to be a
monotonically decreasing function of the eigenvalues.

Remark 6.2. Smola et.al [28] has shown that P−1 (pseudo-inverse if not invertible) is a
positive semidefinite (p.s.d) support vector kernel in a reproducing kernel Hilbert space
(RKHS) H where P ∈ Rn×n is a positive semidefinite regularization matrix and H is the
image of Rn under P .

Remark 6.1 and 6.2 points out in the direction of using the inverse of a regularization

function, as a frequency response function for SGCN filters. The corresponding filters take
the form,

(
r(L̃)

)−1. In this context, regularized filters corresponding to their regularization

functions can be obtained as,

F =
(
r(L̃)

)−1
=

n∑
i=1

(
r(λ)

)−1
uiu

T
i (6.3)

where {(ui, λi)} is the eigensystem of L̃ and
(
r(λ)

)−1 is the reciprocal function of regular-

ization function. In the context of Remark 6.2, we can see that filters of SGCNs defined as
per (6.3) are also support vector kernels on graphs provided their parameterization (if any)
maintains positive semidefiniteness. The detailed discussion is provided in Appendix B.1.

Regularized graph filters which are defined as follows, can be designed by making use
of (6.3).

Definition 6.1 (Regularized graph convolution filter). : The graph filter whose frequency

response function gθ(λ) behaves like a low-pass filter, i.e, gθ(λ) should be a monotoni-
cally decreasing function in λ or equivalently the associated regularization function r(λ) =(
gθ(λ)

)−1 should be a monotonically increasing function in λ.

The design strategy for regularized graph convolution filters is summarized in Theorem
6.1.

Theorem 6.1. A monotonically increasing function in the interval [0, λmax] is a valid reg-

ularization function to design regularized graph convolution filters using (6.3) where λmax
is the largest eigenvalue of L̃.

Proof. Note that Laplacian L̃ can be decomposed as UΛUT . Equivalently, this decom-
position can be considered as a sum of the matrix of projections onto a one-dimensional
subspace spanned by the eigenvectors (Fourier basis), i.e, L̃ =

∑n
i=1 λiPλi , where the linear

map Pλi(x) = uiu
T
i x is the orthogonal projection onto the subspace spanned by the Fourier

81

basis vector ui corresponding to the eigenvalue λi. Consider a regularization function r(λ)

that is monotonically increasing. Note that frequency response function gθ(λ) = 1/r(λ)

is monotonically decreasing. The filtering operation of a signal f by the filter F can be
written in terms of the mappings Pλi , 1 ≤ i ≤ n, i.e, y = Ff =

∑n
i=1 g(λi)Pλi(f) =∑n

i=1 gθ(λi)uiu
T
i f .

The values gθ(λi) can be considered as weights that measure the importance of the
corresponding eigenspace in the amplification or attenuation of the signal f . As gθ(λ) is
monotonically decreasing the weight of eigenspace corresponding to eigenvectors of lower
frequencies (lower eigenvalues) of L̃ are higher and vice versa. The filter gain of the lower
frequency components of f is higher compared to the higher frequencies or F is a low pass
filter. The validity of r(λ) is established by the low pass filtering and hence the proof.

Note that the proof is under the assumption that the parameters θ involved in the SGCN
learning are in such a way that it ensures the monotonically decreasing property of gθ(λ).
The theorem also holds for other definitions of normalized or unnormalized Laplacian and
any spectrum in [0,∞), provided the monotonicity property is maintained. To design reg-
ularized filters in the context of Theorem 6.1, it is enough to pick a valid regularization

function and to plug it into (6.3) to define the filter.

Note that although Theorem 6.1 specifies the low pass filters, we can design filters with
custom frequency responses like high pass or band pass filtering characteristics using the
same settings. In this case, we need to choose an appropriate function r(λ) with desired
filtering behavior and plug it in (6.3). Hence the framework has its utility beyond low pass
filters.

6.1.1.1 Factors affecting the choices of the regularization function

We can have custom designs for the regularization function. However, to define a closed-
form expression for the filter F , the regularization function should be able to be expressed
in a closed-form. Hence the choice of r(λ) should be limited to the functions with power
series expansion to get the closed-form expressions for easier computations.

The powers of the graph Laplacian involved in the expression can also affect graph
learning since (LK)ij = 0 if the shortest path distance between nodes i and j is greater
than K [114]. This can be a factor in the choice of filters. For example, the regularization
function form of a one-step random walk (where a = 2) and inverse cosine is approxi-
mately the same. But the computation of cosine filter involves higher-order even powers of
Laplacian whose non-zero elements are determined by graph structure and it also lacks the

82

information from the neighborhood of odd number hops. Similarly, it is possible to pre-
compute the values of hyper-parameters to design the form of the regularization function
by knowing the precise spectrum of the Laplacians. In the next section, we discuss a set of
filters corresponding to the regularization functions given in Table 6.2.

6.1.2 Regularized filters for SGCNs

We take equations in the second column of the Table 6.2 and plug into (6.3) to define the
regularized filters. The results are summarized in the third column of Table 6.2. Note that
variants of some filters are already familiar in the literature as explained below.

• Case 1: In a p-step random walk filter, if we put a = 1, p = 1 and add self loops, we
get the filter corresponding to GCN [65].

• Case 2: The filter used in IGCN [67] uses higher powers of the GCN filter. Hence
it corresponds to a p-step random walk filter with a value of p ≥ 2, a = 1 and self
loops.

• Case 3: As per [67], the graph filter of the label propagation (LP) method for semi-
supervised learning takes the form of the regularized Laplacian filter.

• Case 4: GraphHeat filter is similar to a diffusion filter together with an identity ma-
trix.

6.1.2.1 Computational complexity

The learning complexity of regularized Laplacian is O(n3) as it involves matrix inversion.
For other filters, it is O(K|E|), where K is the maximum power of the Laplacian involved
in the approximation of the filter equation.

6.1.3 Analysis of regularization behavior of SGCNs

In this section, we analyze the regularization behaviors of state-of-the-art SGCNs. The
idea is to identify the regularization function corresponding to the state-of-the-art networks
from their filter definition. This helps to analyze the regularization capability of their filters.

83

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
(a)

c=0.2
c=0.5
c=1.0
c=1.5

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
(b)

c=0.2
c=0.5
c=1.0
c=1.5

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
(c)

c=0.2
c=0.5
c=1.0
c=1.5

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
(d)

c=0.2
c=0.5
c=1.0
c=1.5

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
(e)

c=0.2
c=0.5
c=1.0
c=1.5

Figure 6.2: Regularization function, r(λ). (a) ChebyNet, (b) GCN, (c) GraphHeat, (d)
IGCN for k = 2 , (e) IGCN for k = 3. All graphs are for (c = {0.2, 0.5, 1.0, 1.5})

6.1.3.1 Chebynet

ChebyNet filtering [64] is defined as, y = U(
∑K−1

i=0 θkΛ
k)UTf ≈ exp(L̃)f, where we

assume parameters θk are the coefficients of the expansion of matrix exponential exp(L̃). In
this case, the regularization function, r(λ) =

(
gθ(λ)

)−1
= (
∑K−1

i=0 θkλ
k)−1 ≈ c.exp (−λ)

where c is a constant determined by {θ}, the parameters learned by the network.

Hence the regularization happening in ChebyNet is the exact opposite of the expected
behavior since small eigenvalues are attenuated more and large ones are attenuated less as
shown in Figure 6.2(a). In other words, the corresponding filter is a high pass filter. To make
the ChebyNet a low pass filter, the filtering shall be done as per the negative exponential
or diffusion regularization function and for this, we shall change the filtering operation as,
y = U(

∑K−1
i=0 (−1)kθkΛ

k)UTf ≈ exp(−L̃)f with the constraint θk > 0 to keep up with
the desired regularization property. We can also bring an additional hyper-parameter s > 0

into the power of exponential function. Note that in this case, it corresponds to the diffusion

filter.

6.1.3.2 GCN

GCN filtering [65] operation can be written as, y = θ(I − L̃)f ≈ exp(−λ), where we
assume parameter θ is 1 in the approximation of an exponential function. The regularization
function, r(λ) = c.(1−λ)−1 ≈ c.exp(λ) where c is a constant determined by the parameter
θ. Hence the regularization happening in GCN is like that of a low-pass filter shown in
Figure 6.2(b). Note that the filter of GCN corresponds to the first-order approximation of
the diffusion filter. So in effect, it is the diffusion process that harnesses the representation
capability of GCN by changing the sign of parameters [65] (θ0 = −θ1 = θ) compared to
ChebyNet.

84

Spectral analysis of renormalization trick : The trick refers to the process of adding
self-loops [65] to the graphs for stable training of the network. Wu et.al [79] have shown
that adding self-loops help to shrink the Laplacian spectrum from [0, 2] to [0, 1.5] which
boosts the low pass filtering behavior. So the regularization function remains in the same
form as mentioned above, but the range of eigenvalues being in the interval [0, 1.5].

6.1.3.3 GraphHeat

GraphHeat filtering [66] operation can be written as y = (θ0I + θ1e
−sL̃)f. The regulariza-

tion function, r(λ) = c.(1 + exp (−sλ))−1 where we assume c is a factor determined by
θ0 and θ1. The regularization function is shown in Figure 6.2(c) and it behaves as that of a
low pass filter.

6.1.3.4 IGCN

Improved graph convolutional network (IGCN) filtering [67] operation can be written as,
y = θ(I−L̃)kf ≈ exp(−kλ). The regularization function, r(λ) = c.(1−λ)−k ≈ c.exp(kλ)

where c is a constant determined by the parameter θ. Hence the regularization happening
in IGCN is like that of a low-pass filter as shown in Figure 6.2 (d).

6.1.3.5 Generalization via rational filters

A rational filter design [115] takes the form,

g(λ) =

∑q
i=0 biλ

i

1 +
∑p

i=1 aiλ
i
.

The filter of this form is called the auto-regressive moving average (ARMA) filter of order
(p, q) denoted by ARMA(p, q). It is possible to approximate desired frequency response
using ARMA filters although a matrix inversion process is involved. If ais are set to zero,
g(λ) reduces to a polynomial filter. The filters of state-of-the-art SGCNs belong to this cat-
egory. It has to be noted that the theoretical analysis provided in Section 6.1.1 is applicable
for ARMA filters also. For example, Bianchi et.al [116] have proposed a convolutional
ARMA filter of order K whose frequency response, g(λ) =

∑K
k=1

bk
1−akλ

. The regular-
ization behavior or the filtering property, in this case, is dependent on the values of the
parameters {a,b} and the corresponding regularization function is provided by (g(λ))−1.

85

6.1.4 Limitations

The analysis in the proposed framework is limited to polynomial filters of SGCNs in which
the regularization function can be deduced. Hence it cannot be applied to spatial networks
such as GraphSage [117], GAT [86], etc unless we can recover their corresponding fre-

quency response function.

The regularization behavior of SGCNs shown in Figure 6.2 is based on the approxima-
tion of learning parameters collapsed into a single hypothetical parameter c. However, in
practice, the exact form of r(λ) of SGCNs may deviate depending on the actual values of
parameters, θ. Hence the default filtering behaviors, as explained in Section 6.1.3 of the
models, are also subjected to change and is dependent upon the features and downstream
learning task.

6.2 Experiments

The variants of proposed filters as in Table 6.2 are compared with state-of-the-art SGCNs
namely ChebyNet [64], GCN [65], GraphHeat [66], and IGCN (RNM variant of the filter)
[67]. The comparison is also made with graph regularization based algorithms for semi-
supervised learning namely - manifold regularization (ManiReg) [73], semi-supervised em-
bedding (SemiEmb) [77], and label propagation (LP) [76]. Other baselines used are Plan-
etoid [118], DeepWalk [119], and iterative classification algorithm (ICA) [120]. The com-
putational complexity of SGCN baselines is O(K|E|), where K is the maximum power of
the Laplacian as explained in Section 6.1.2.1. For other baselines, the approximate com-
plexity is as follows, for ManiReg, SemiEmb, and Planetoid- O(n2), for LP, DeepWalk,
and ICA-O(nd) where n is the number of nodes and d is the dimension of the node feature
space.

The citation network datasets [118] - Cora, Citeseer, and Pubmed is used for the study.
In these graphs, nodes represent documents and edges represent citations. The datasets also
contain ’bag-of-words’ feature vectors for each document and further details are given in
Table 6.3 where the label rate denotes the ratio of labeled nodes that are used for training
to the total number of nodes.

Diffusion filter which is a matrix exponential is approximated for first K+ 1 terms, i.e,

gθ(Λ) = θ

K∑
k=0

(−1)k
1

k!
Λk (6.4)

86

Table 6.3: Summary of the datasets

Dataset Nodes Edges Classes Features Label rate
Cora 2708 5429 7 1433 0.052
Citeseer 3327 4732 6 3703 0.036
Pubmed 19717 44338 3 500 0.003
Flickr 89250 899756 7 500 0.010
GitHub 37300 578006 2 128 0.010
Deezer Eur. 28281 185504 2 128 0.010
Facebook-PP 22470 342004 4 128 0.010

where there is only a single parameter θ is learned. For diffusion filter, ChebyNet and
GraphHeat the value of K used for the approximation of matrix exponential is tuned from
{1, 2, 3, 4}. Similarly, cosine filter which involves cosine of a matrix is taken as,

gθ(Λ) = θ
K∑
k=0

(−1)k
1

2k!
Λ2k. (6.5)

The value of K is tuned from {1, 2, 3}. For diffusion and GraphHeat filter, the value of s
is tuned in the range [0.5, 1.5] and for p-step randomwalk filters, the value of a is tuned in
the range [2,24]. For GCN and IGCN, the author’s code was reproduced for experiments.

6.2.1 Experimental setup

In the experiments, network architecture proposed by Kipf et.al [65] is used. An ablation
study with networks of one layer, two layers, and three layers of graph convolution (GC)
are used to evaluate all the filters under study and along with this, networks with a GC
layer followed by one and two layers of dense layers are also studied. In the ablation
studies, it has been found that the network with two layers of GC has outperformed other
architectures. The architecture takes the form,

Z = softmax(F(L̃) ReLU(F(L̃)XΘ(1))Θ(2)) (6.6)

where F(L̃) ∈ Rn×n is the filter, X ∈ Rn×d is the input feature matrix, Θ(1) ∈ Rd×c1 is
the filter parameters of first layer (c1 is the number of filters) and Θ(2) ∈ Rc1×c2 is the filter
parameters of second layer (c2 is the number of filters). The architecture is illustrated in
Figure 6.3. Note that the value of c2 equals the total number of classes in the data. Here
Z ∈ Rn×c2 in which the softmax function is applied row wise. The loss function optimized

87

is the cross-entropy error over the labeled examples [65] defined as follows,

L = −
∑
i∈Y

c2∑
j=1

yij ln(Zij) (6.7)

where Y is the set of nodes whose labels are known and yij is defined as 1 if label of node
i is j and 0 otherwise.

R
eL

U
 A

ct
iv

at
io

n

G
ra

p
h

 C
o

n
vo

lu
ti

o
n

 la
ye

r

So
ft

m
ax

 o
p

er
at

io
n

G
ra

p
h

 C
o

n
vo

lu
ti

o
n

 la
ye

r
Node
feature inputs

Output class
probabilities

Graph
filter

Figure 6.3: SGCN two layer architecture.

For training, all the feature vectors and 20 labels per class are used. The same dataset
split as used by Yang et.al [118] is followed in the experiments. All the SGCN models
corresponding to different filters are trained 10 times each according to a unique random
seed selected at random. All models are trained for a maximum of 200 epochs using the
ADAM optimizer [121] with the learning rate fixed as 0.01. Early stopping is done in the
training if the validation loss does not decrease for 10 consecutive epochs. Network weight
initialization and normalization of input feature vectors of the nodes are done as per [122].
Implementation is done using Tensorflow [123]. The hardware used for the experiments
is Intel Xeon E5-2630 v3 2.4 GHz CPU, 80 GB RAM, and Nvidia GeForce GTX 1080-Ti
GPU.

The higher powers of graph Laplacian are computed with the Chebyshev polynomial
approximations [114] in calculating ChebyNet and p-step random walk filters consider-
ing its computational advantage. Chebyshev polynomial of order k is computed by the
recurrence relation Tk(x) = 2xTk−1(x) − Tk−2(x), where T0 and T1 is defined as 1 and
x respectively. The polynomials form an orthogonal basis for L2([−1, 1], dy√

1−y2
), i.e, the

space of square integrable-functions with respect to the measure dy/
√

1− y2. Hence when

88

Table 6.4: Classification accuracy (in percentage± standard deviation) along with average
time taken for one epoch (in brackets).

Methods Cora Citeseer Pubmed
ManiReg 59.5 60.1 70.7
SemiEmb 59.0 59.6 71.1
LP 68.0 45.3 63.0
DeepWalk 67.2 43.2 65.3
ICA 75.1 69.1 73.9
PLanetoid 75.7 64.7 77.2
MLP 56.2 57.1 70.7
GCN 81.78 ± 0.64 (1.02) 70.73 ± 0.53 (1.03) 78.48 ± 0.58 (1.21)
IGCN 80.49 ± 1.58 (1.02) 68.86 ± 1.01 (1.06) 77.87 ± 1.55 (1.25)
ChebyNet 82.16 ± 0.74 (1.03) 70.46 ± 0.70 (1.04) 78.24 ± 0.43 (1.21)
GraphHeat 81.38 ± 0.69 (1.04) 69.90 ± 0.50 (1.05) 75.64 ± 0.64 (1.34)
Diffusion 83.12 ± 0.37 (1.11) 71.17 ± 0.43 (1.06) 79.20 ± 0.36 (1.80)
1-step RW 82.36 ± 0.34 (1.02) 71.05 ± 0.34 (1.03) 78.74 ± 0.27 (1.21)
2-step RW 82.51 ± 0.22 (1.03) 71.18 ± 0.59 (1.05) 78.64 ± 0.20 (1.29)
3-step RW 82.56 ± 0.24 (1.05) 71.21 ± 0.63 (1.04) 78.28 ± 0.36 (1.81)
Cosine 75.53 ± 0.52 (1.03) 67.29 ± 0.64 (1.03) 75.52 ± 0.53 (1.29)

it comes to computing the powers of L̃, its spectrum has to be rescaled in the interval [-1,
1] as follows Ls = 2

λmax
L̃− In, where Ls is the rescaled Laplacian, λmax is the maximum

eigenvalue of L̃.

Except for the spectral SGCNs, the results related to other models are taken from [65]
and [118]. The comparison is meaningful since all the results are taken from the same
dataset split as in [118] and we also follow the same split for SGCN models. The hyper-
parameters used for the models are: dropout rate = 0.5, L2 regularization factor for the first
layer weights = 5× 10−4, and the number of filters used in each layer is tuned from 16, 32,
64, and 128. These hyper-parameters are optimized on an additional validation set of 500
labeled examples as followed in [65]. Accuracy is used as the performance measure where
models are evaluated on a test set of 1000 labeled examples. Since the focus of the study
is on the comparison of spectral filters, mean accuracy along with standard deviation is
reported for SGCN variants. For algorithms other than SGCN, accuracy on a single dataset
split reported by Kipf et.al [65] is given.

6.2.2 Results and Discussion

The results are tabulated in Table 6.4. The best results are bolded. Compared with graph
regularization and label propagation methods, SGCN methods have better performance.
The diffusion filter has the highest accuracy in Cora and Pubmed. In Citeseer, it is the

89

3-step RW but the difference with diffusion filter is negligible. Among methods other than
SGCNs, ICA and Planetoid have better performance.

1-step RW filter is an improvised version of GCN and IGCN in terms of regularization
capability. Analyzing their comparison, 1-step RW filter performs better in all datasets.
The three variants of RW filters have higher performance in Cora and Citeseer datasets
compared with GCN and IGCN, the reason being attributed to the tuning of parameter a
and in the case of Pubmed, RW filters and GCN have better performance than IGCN. From
Figure 6.1 (c),(d) and Figure 6.2 (b),(d),(e), we can observe that RW filters, GCN and
IGCN have better regularization properties and hence their performance is stable across
all datasets. This observation suggests that selection of hyper-parameters a, p and k can
be done prior to training by designing the regularization function and this method can be
applied for any filters with hyper-parameters.

ChebyNet, GraphHeat, and diffusion filters calculate the first few powers of the Lapla-
cian in their learning settings. It has been observed that the performance of the diffusion

filter is better than both despite using one parameter to learn. It is noteworthy that although
ChebyNet is having an opposite regularization behavior compared with diffusion filters and
GraphHeat, there is no significant difference in their performance. This can be explained as
follows. The parameters Θs associated with the network are optimized with respect to the
loss function. The final parameters learned after the network learning can affect the form of
the regularization function since the loss function does not explicitly optimize the desired
filtering behavior. This suggests the need for a regularized loss function as discussed in
Section 6.3.

The performance of the cosine filter is lower compared with other filters. The reason
is due to the approximation of the cosine filter that requires higher even powers of the
Laplacian whose elements can be mostly zeros based on the graph structure as discussed
in Section 6.1.1.1. It also requires skipping odd hops in the graph resulting in some infor-
mation loss while learning. The experiments with regularized Laplacian filter are omitted
since it involves costly matrix inversion.

The average time required for one training epoch (in seconds) is shown in the brackets
along with the accuracy. It can be noted that the time taken increases for those models
which use the higher-order powers of the Laplacian and a higher number of filters.

6.2.2.1 Effects of hyper-parameter tuning

The variation in accuracy against hyper-parameters of the proposed filters applied to the
Cora dataset is given in Figure 6.4. For diffusion filter (K = 3), accuracy increases as s

90

0.5 1.0 1.5
value of s

65

70

75

80

85

A
cc

ur
ac

y

(a)

2 4 6
value of a

65

70

75

80

85
(b)

5 10 15
value of a

65

70

75

80

85
(c)

10 15 20
value of a

65

70

75

80

85
(d)

Figure 6.4: Accuracy variation with hyper-parameters. (a) Diffusion, (b) 1-step RW, (c)
2-step RW, (d) 3-step RW

is increased but there is a drop in accuracy after a peak value of s. Similar is the case of
1-step RW. In the case of 2-step and 3-step RW filters, accuracy increases as the value of
a increases but after a threshold point, accuracy variation is minimal. Similar is the trend
observed for other datasets. For these experiments, the network with two layers of GC
having 32 filters is used.

6.2.3 Experiments with large datasets

The performance of the proposed filters is analyzed with large datasets to check their effi-
ciency. They are compared with GCN and ChebyNet. The datasets used are Flickr [124],
GitHub [125], Deezer Europe [126] and Facebook Page-page [127]. The nodes in Flickr
dataset correspond to images uploaded. The two images with similar properties are con-
nected by an edge. These properties are identical geographic location, similar gallery,
comments by the same user, etc. The node features correspond to 500 dimensional bag-
of-word representation of the corresponding image. The task is to predict the class of the
nodes from 7 choices. In GitHub dataset, the nodes correspond to the developers and edges
are formed if one of the user follows the other. The features are based on location, biog-
raphy, etc. The learning task is to classify the nodes into either machine learning or web
developer.

The Deezer Europe dataset is a social network data of Deezer users in Europe. The
users are represented as nodes and links are formed based on follower relationships. The
classification task is to predict the user’s gender. Facebook Page-Page is a dataset where
nodes correspond to Facebook pages. Edges are formed based on mutual likes between the
pages. The node features are extracted from the site descriptions and the task is to classify
them into one of the 4 classes. The datasets are downloaded using PyTorch-Geometric
[128] and their details are provided in Table 6.3.

91

6.2.3.1 Experimental Setup

The label rate for the experiments is 0.01 and 1 % of the nodes are taken for the validation
set. The nodes are selected at random for training and validation. The testing is done with
the remaining nodes. A three-layer network is used for the experiments, that is, output
Z = softmax

(
F(L̃)

(
ReLU(F(L̃)X2Θ(2))

)
Θ(3)

)
, where X2 = ReLU(F(L̃)XΘ(1)) and

batch normalization is applied in the first two layers. The architecture is illustrated in
Figure 6.5. However, two-layer network as in (6.6) is used for Deezer Europe dataset. The
hyper-parameter tuning is as per the details given in Section 6.2.1. The proposed filters
are compared with GCN and ChebyNet. The other experimental setup remains the same as
explained in Section 6.2.1 except the hardware - 2 x Intel Xeon Silver 4114, 128 GB RAM
and Tesla V-100/16 GB GPU.

R
eL

U
 A

ct
iv

at
io

n

G
ra

p
h

 C
o

n
vo

lu
ti

o
n

 la
ye

r

G
ra

p
h

 C
o

n
vo

lu
ti

o
n

 la
ye

r

Node
feature inputs

Output class
probabilities

Graph
filter

So
ft

m
ax

 o
p

er
at

io
n

G
ra

p
h

 C
o

n
vo

lu
ti

o
n

 la
ye

r

R
eL

U
 A

ct
iv

at
io

n

Figure 6.5: SGCN three layer architecture.

GCN ChebyNet Diffusion

44

45

46

47

48

49

50
Flickr

GCN ChebyNet p-step RW
84.2

84.4

84.6

84.8

85.0

85.2

85.4

85.6
GitHub

GCN ChebyNet Diffusion

59.0

59.5

60.0

60.5

61.0

Deezer Europe

GCN ChebyNet Diffusion

84.0

84.5

85.0

85.5

Facebook Page-page

Figure 6.6: Accuracy plot with standard deviation of GCN, ChebyNet and best performing
model for Flickr, GitHub, Europe Deezer and Facebook Page-page datasets.

92

Table 6.5: Classification accuracy (in percentage ± standard deviation).

Methods Flickr GitHub Deezer E. Facebook-PP
GCN 45.31 ± 1.63 84.87 ± 0.37 59.04 ± 0.33 84.09 ± 0.45
ChebyNet 47.74 ± 0.78 84.60 ± 0.36 60.34 ± 0.23 84.51 ± 0.51
Diffusion 49.73 ± 0.22 85.33 ± 0.56 61.13 ± 0.21 85.45 ± 0.34
p-step RW 48.92 ± 0.24 85.38 ± 0.16 60.88 ± 0.36 85.28 ± 0.46
Cosine 42.67 ± 0.35 70.88 ± 0.61 56.96 ± 0.40 35.37 ± 0.78

6.2.3.2 Results and Discussion

The results are provided in Table 6.5 with the best results bolded and they are reported for
10 runs at different random seeds. From the results, it can be seen that the performance of
diffusion and p-step RW are better than GCN and ChebyNet. The standard deviation of the
best performing models is lower as shown in the Figure 6.6 and it shows their robustness.
The performance of the Cosine filter is lower compared to other methods. As discussed in
Section 6.2.2, this may be due to the skipping of odd hops in the graph that results in some
information loss during message passing.

6.3 Discussion on optimizing network architectures of SGCN

We discuss certain points on optimizing the SGCN architectures in the context of our pro-
posed framework. This is mainly motivated by the following observations.

• The traditional SGCNs work only on the basis of low pass filtering. But it has been
shown that for some applications high frequency components are also useful as dis-
cussed in Section 2.4.5.

• The loss function optimization for network parameters Θs associated with the down-
stream tasks in SGCNs may not guarantee the expected regularization behavior of the
frequency response function. Although the low pass filtering is implicitly embedded
in the procedure, it is not reflected in the loss function. This case is very evident in
the case of ChebyNet as it is showing decent performance in the learning task despite
having a high pass behavior.

As an investigation to analyze the existing architecture in the above contexts, we have
experimented as described below.

93

6.3.1 Decoupling filtering from network learning

To understand the practical impact of the framework we proposed, an experiment is done
that decouples the low pass filtering from the network learning inspired by [79]. First, the
filtering is done separately using F (with no learning parameters) and the resulting filtered
features are given into a two-layer MLP (chosen after ablation studies among 1 & 3 layer
models). This helps to identify the impact of the choice of r(λ) formulated in our work
independent of the filter parameters in the routine learning. The results are given in Table
6.6.

6.3.1.1 Observations

From the results, we can see that a simple low pass filtering is enough to give the re-
sult within a 2-3% margin of the results given by classical SGCNs. The performance of
ChebyNet in this experiment is lower compared to other filters. In Section 6.1.3, we found
that, unlike other networks, ChebyNet is a high pass filter. Its performance degradation is
evident since the filter is made parameter-free and its high pass behavior is exposed. This
has to be read in conjunction with the observation that it is the low-frequency component
that contributes more to the efficient learning in the case of Cora, Citeseer, and Pubmed
datasets [78].

All other filters except the ChebyNet satisfy Theory 6.1, and hence their performance
is better under the low pass filtering property. But the overall results are lower compared to
the conventional GCN architecture [65] followed in the experiment described in the Section
6.2.1. This points out to the possibility that the network optimization is not explicitly
guaranteeing the desired filtering properties. The case of the ChebyNet is an example as its
performance is good in conventional GCN architecture despite having contradictions with
Theory 6.1 whereas its performance in the new experiment is lower.

From the experiment, we can make further research directions that help in optimizing
the current SGCN architectures proposed in [65]. They are briefly discussed in the follow-
ing sections.

6.3.2 A new regularization term in the loss function

We have seen that the default nature of traditional SGCNs is to employ a low pass filtering
of the features. But at the same time a high pass filter with a good localization property
like ChebyNet can give good performance. This can be explained as follows.

94

Table 6.6: Accuracy of the filters. Std dev. is given in brackets.

Methods g(λ) Cora Citeseer Pubmed
MLP – 56.50 (1.21) 53.57 (2.71) 71.87 (0.21)
GCN (1− λ) 77.99 (0.75) 68.28 (0.51) 76.05 (0.33)
IGCN (1− λ)K 81.44 (0.41) 70.64 (0.67) 78.46 (0.70)
ChebyNet

∑K−1
k=0 λ

k 27.18 (1.46) 28.63 (1.08) 59.99 (0.58)
GraphHeat 1+exp(−sλ) 73.57 (0.72) 66.31 (0.59) 73.50 (0.85)
Diffusion exp(−sλ) 78.47 (0.32) 68.47 (0.61) 76.72 (0.59)
1-step RW (a− λ) 77.31 (0.52) 67.95 (0.80) 76.34 (0.47)
2-step RW (a− λ)2 78.08 (0.62) 69.41 (0.44) 76.90 (0.23)
3-step RW (a− λ)3 78.98 (0.28) 69.23 (0.71) 71.49 (0.81)
Cosine cos(λπ/4) 70.38 (0.82) 64.67 (0.62) 72.01 (0.74)

As per (6.7), the parameter optimization is with respect to the classification loss only.
But the weights learned by minimizing this loss is not reflecting any explicit information
about the filtering characteristics required for the task. Hence we can think about adding a
regularizer in the loss function that finds a trade-off between the downstream learning task
and the required filtering.

In this context, it is useful to recollect that the GCN architecture followed in this study
was proposed as an alternative to minimize the explicit graph-based regularization. It is
characterized by the loss function, L = L0 + λ fT L̃f , of a semi-supervised learning
problem [76] whereL0 is the loss function specific to the corresponding learning task, λ is a
hyper-parameter and f is the function to be learned. The GCN architecture is proposed as a
means to optimize L0 with the assumption that the graph-based regularization characterized
by the second term is not required. The reason is attributed to the property of f(.) learned
by the network being conditioned on the adjacency matrix of the graph and hence it could
learn the representation of both labeled and unlabeled nodes together [65]. But the low pass
filtering property of the filters used in this architecture was not taken into consideration until
recently. Hence there is room for further research in proposing a regularizer term into the
current loss function optimization given by (6.7).

Some recent works discuss adding a new regularizer term although it is not strictly
attributed to the above discussion. Yang et.al [129] further propagate the output Z given
in (6.6) by the SGCN by multiplying Z with L̃. Then the regularizer term is introduced
as a function that reduces the difference between Z and L̃Z. The motivation is to use the
prediction of the neighborhood nodes as soft supervision for the model output on the node
of interest. To alleviate the over-smoothness issue that can arise from the conventional
filtering in SGCNs, Chen et.al [130] proposed to use a regularizer term in the loss function.

95

The regularizer is inspired by a metric that calculates mean average distance of the node
embeddings and the optimization is done to improve the information-to-noise ratio. A
different approach was proposed by Bianchi et.al [116] in which the desired frequency

response is learned by using rational filters as explained in Section 6.1.3.5.

Apart from adding a regularizer, another alternative is to use a collection of filters that
give the individual amplification to a wider portion in the eigenspectrum. This will be
discussed in the following section.

6.3.3 Architectures that use a collection of filters

.

.

.

.

.

.

Dense

Dense

Dense

Dense

C/A MLP
Output

Figure 6.7: SGCN architecture with a collection of filters. C/A stands for concatena-
tion/averaging

It has been noted that the frequency components useful for a learning task for an arbi-
trary dataset cannot be known in advance. The computationally feasible SGCN filters can
only be made as either low pass or high pass filters. Hence an obvious choice is to deploy
a collection of filters that can cover a wide spectrum of frequency amplifications by de-
signing custom frequency response functions and combining the resultant features through
some aggregation function like averaging or concatenation. Such an architecture is shown
in Figure 6.7. Associated with this, there are multiple ways to configure such a network.
For example, one can use learn-able parameters in the filters Fis or can make it simply as
a feature pre-processor as explained in the decoupling experiment in Section 6.3.1. The
dense layers in the architecture can be optional, that is, they can be removed in the case of
using learn-able filters. The concatenated or averaged feature representation can then be
used as an input to a perceptron or a dense layer for downstream learning tasks.

96

A few works were done in this direction although most of them are proposed as a new
architecture rather than being presented as a solution to include all types of frequency com-
ponents. The network proposed by Frasca et.al [131] uses a collection of learn-able low
pass filters and the features smoothed by them are concatenated and given to a dense layer
for prediction. The architecture proposed by Wang et.al [132] uses a collection of tradi-

tional SGCN filters as well as specific feature extractors for node embeddings and topolog-
ical structures. The features corresponding to each node are taken as a linear combination
of the output of filters/extractors learned by an attention mechanism. The architecture pro-
posed by Gao et.al [133] projects the input features to a collection of subspaces where a
filter is used to learn about the relevant frequency characteristics of the projection. They
specifically deploy the filters to learn from the wide frequency spectrum. Wang et.al [134]
proposed a scoring mechanism to assess the effectiveness of a filter in downstream tasks
and used the score to make a linear combination of the filtered features given by the filters.

6.3.3.1 Challenges

While the type of architectures depicted in Figure 6.7 has a theoretical justification in the
context of our proposed framework, it comes with certain challenges when it comes to
the implementation. Using a large collection of filters may result in over parameterization
of the networks that could result in large variance and over-fitting in small graphs. It is
also difficult to identify the utility of a particular filter beforehand and the optimal filter
combination varies according to the applications and datasets.

6.4 Conclusion

We formulated a framework to design regularized filters for spectral graph convolution net-
works based on regularization in graphs modeled by graph Laplacian. A new set of filters
are proposed and identified the state-of-the-art filter designs as their special cases. The reg-
ularization behavior of the state-of-the-arts are also analyzed. The new filter designs pro-
posed in the context of the framework have shown superior performance in semi-supervised
classification tasks compared to conventional methods and state-of-the-art SGCNs. Con-
sidering the practical impacts of the framework, we proposed two directions that can further
optimize the SGCN architectures. The first one is to add a regularizer to the current op-
timization problem. The second one is to use a collection of filters that could give the
filtering outputs across the wide spectrum of frequencies rather than relying only on low
pass features. We have also identified certain related works in both directions.

97

98

Chapter 7

Applications

In this section, we discuss certain applications of the proposed approaches as a proof-of-
concept. For analyzing the proposed kernels, multi-view and optimal node assignment, they
are applied in the areas of brain connectivity, social media data analysis and prediction of
spread of Covid-19 pandemic.

7.1 Brain connectivity and social media data analysis

The proposed methods - mutli-view MKL kernel and optimal assignment kernel - is applied
in brain net datasets OHSU, KKI and PEKING and social media dataset IMDB-BINARY
and REDDIT-BINARY along with certain state-of-the-art graph embeddings and kernels
namely graph2vec [20], GE-FSG [23], WL-subtree kernel [25] and Treelet kernel+MKL
[54].

7.1.1 Datasets

The OHSU, KKI and PEKING data is constructed from the whole brain fMRI atlas [135].
The graphical data is basically a mapping where brain is considered as a network (or a
graph) where each node corresponds to a region of interest (ROI) and the edges indicate
correlations between two ROIs. The label information of the datasets are with respect to
attention-deficit/hyperactivity disorder (ADHD) classification, hyperactive-impulsive (HI)
classification, and gender classification (GD) respectively.

The social media dataset used is IMDB-BINARY [24]. It is a movie collaboration
dataset. The nodes in the graph represent actors/actresses and there is an edge between them
if they appear in the same movie. The objective is to classify the genre of the corresponding
film as Action or Romance. REDDIT-BINARY [24] is a balanced dataset where each graph

99

corresponds to an online discussion thread where nodes correspond to users, and there is
an edge between two nodes if at least one of them responded to another’s comment. The
classification task is to identify whether the given graph belongs to question/answer-based

community or a discussion-based community. The dataset details are given in Table 7.1.

Table 7.1: Dataset details: |D|: cardinality of the data set D, |P |: cardinality of posi-
tive class, |N |: cardinality negative class, V avg =: average of {|V |, V ∈ D}, Eavg =
average of {|E|, E ∈ D}, V max = max{|V |, V ∈ D}, Emax = max{|E|, E ∈ D}.

Dataset |D| |P | |N | V avg Eavg V max Emax

OHSU 79 44 35 82.0 199.6 171 823
KKI 83 46 37 26.9 48.4 90 237

PEKING 85 36 49 39.3 77.3 134 535
IMDB.BIN 1000 500 500 19.7 96.5 136 1249
REDD.BIN 2000 1000 1000 429.6 497.7 3782 4071

7.1.2 Results and Discussion

The results obtained are given in the Table 7.2 and the weights learned by SimpleMKL
are given in Table 7.3. The result reported for OA kernel is the best among KONA and
K̃ONA. It has to be noted that the brain connectivity datasets, OHSU, KKI, and PEKING
have similar weight settings with View-II weights being prominent compared to others. In
the case of the social media dataset which is comparatively larger than the other domain,
view-IV weight is prominent followed by view-III. This is similar to the observation of
weight pattern for larger datasets in chemoinformatics domain namely NCI1 and NCI109.

Table 7.2: Accuracy of the multi-view graph embedding along with state-of-the-art em-
bedding techniques and graph kernels in brain connectivity and social media data.

Methods OHSU KKI PEKING IMDB-BIN. REDD-BIN.
Graph2vec 54.81 ± 10.47 52.61 ± 10.57 56.81 ± 11.47 68.81 ± 10.57 55.82 ± 8.73
GE-FSG 53.17 ± 0.04 51.18 ± 0.02 55.64 ± 0.03 70.48 ± 0.01 59.38 ± 0.01

WL subtree 57.06 ± 9.82 53.90 ± 8.45 58.12 ± 7.27 73.79 ± 2.15 62.91 ± 2.10
TK+MKL 52.47 ± 8.84 50.45 ± 8.49 53.28 ± 9.42 65.76 ± 2.59 54.27 ± 3.84
Multi-view 58.89 ± 8.39 55.13 ± 8.78 56.83 ± 8.30 75.86 ± 1.85 60. 57 ± 1.94
OA kernel 57.66 ± 7.19 54.27 ± 8.83 59.22 ± 7.65 75.43 ± 2.12 61. 58 ± 2.05

For OHSU, and KKI datasets, the best result is obtained for multi-view method while
in PEKING it is the OA method. In the case of social media datasets, multi-view has better
result for IMDB-BINARY while in the case of REDDIT-BINARY it is WL subtree kernel.

100

Table 7.3: Kernel weights of different views in MKL setting

Kernel View-I View-II View-III View-IV
OHSU 0.00 0.50 0.25 0.25
KKI 0.01 0.51 0.26 0.22

PEKING 0.03 0.49 0.27 0.21
IMDB-BIN. 0.00 0.00 0.19 0.81
REDD-BIN. 0.00 0.00 0.15 0.85

7.2 Location-wise spread of Covid-19

The proposed SGCN filters are used for predicting the number of Covid-19 outbreaks ge-
ographically, that is, if we are supplied with the data of number of Covid-19 outbreaks in
specific areas, the number of outbreaks in the surrounding areas is predicted.

7.2.1 Dataset

We attempted to predict the spread of Covid-19 in the counties of New-Jersey, USA for the
study. The data is taken from the internet. The county wise count of number of Covid-19
patients from 30 March 2020 to 04 April 2020 is taken for the modeling. The spread of 8
counties on 4th April is predicted using the past data of all counties till 03rd April 2020
and using the data of remaining 13 counties on 4th April. The objective of the case study is
to predict the spread of Covid-19 across a region given the information of the surrounding
regions.

7.2.1.1 Data construction procedures

Nodes of the graph represent the counties. A link between two counties is made if the
distance between the head quarters of the counties is less than 75 miles. The nodes colored
blue are used for prediction of the model and the nodes colored red are used to train the
machine learning model. An example is shown in the Figure 7.1.

For each node, a set of information is assumed for building the model. The nodes
contain number of patients from 30th March to 03rd April and the population density of the
county. Each county was classified into one among four groups –

1. If number of patients less than 100 - class A.

2. If number of patients between 100 and 1000 - class B.

3. If number of patients between 1000 and 2600 - class C.

101

Figure 7.1: Procedure in constructing edges of the graph. Red nodes indicate training
points and blue nodes testing points.

4. If number of patients greater than 2600 - class D.

7.2.1.2 Results

Out of 8 counties used for the prediction, 7 were accurately predicted. The best result was
with the diffusion filter.

102

Chapter 8

Conclusions and Future Works

The data in the form of graphs have wide applications in many domains of science and tech-
nology. Four methods were developed for analysing different types of graph data and their
efficiency was tested in the classification tasks. These methods are also equally applicable
in the case of regression as well.

In the first approach, graph embedding techniques were formulated using a collection
of graph properties such as edges, shortest paths, and subtree patterns. Each embedding
was considered as a separate view of the graph and they were jointly optimized in a MKL
framework. The individual views were assigned weights and they were helpful to analyze
the effectiveness of the corresponding embedding process. The representation capability of
each view was analyzed by designing an R-convolution kernel and effectiveness of multi-
view approach was empirically verified.

In the second approach, kernels were designed using the relatively less explored area
viz optimal assignment kernel framework. The kernels were formulated as an assignment
problem between the nodes of the argument graphs and efficient computation algorithms
were developed using the hierarchy concept in the OA framework. We compared the ker-
nels based on the R-convolution and the OA frameworks and made useful observations.
The first two methods are applicable to a dataset that has a collection of graph in which
each having a set of node and edge labels.

In the third approach, graph kernels were developed for attributed graphs. A product
graph is formulated from which the structurally similar regions of argument graphs can be
found out in terms of the edges that preserve the neighborhood. A kernel was proposed
that utilize the label and attribute information separately and was found to be effective.
Methods were proposed to compute the kernel value in the WL iterations recursively from
the product graph. The proposed methods were applied in image classification and gave
promising results.

103

The fourth approach is for the graph data that is in the form of a large network whose
nodes are needed to be classified. For this, a framework was formulated to design filters
of spectral graph convolution neural networks based on the regularization theory in graphs
characterized by its Laplacian. We proposed a new set of filters, identified the state-of-
the-arts as its special cases and formulated the relation between the filters and support
vector kernels. The state-of-the-art architecture of SGCNs were reviewed in this context
and deduced useful directions for its further improvement.

8.1 Future Works

Based on our contribution to the field, there are a few related works that can be done. They
are briefly discussed in this section.

8.1.1 Optimal assignment kernel for attributed graphs

The proposed OA kernel designs based on node assignment can be extended to the case of
attributed graphs. In this case, efficient base kernels that satisfy the strong kernel criterion
has to be formed for processing the vector information.

The challenge in designing OA kernels is in the design of base kernels. In the case of
attributed graphs, additional complexity is involved as the base kernel needs to process the
vector information. Hence an explicit sorting of kernel values will be required to make
a strong kernel to satisfy (2.4) which makes the kernel design costly. With an efficient
computation strategy to avoid this sorting can enable application of OA kernels in the case
of attributed graphs.

8.1.2 Exploring neighborhood preserving property in image process-
ing

The concept of neighborhood preserving property can be useful in images in which the ob-
jects can be distinguished with the neighborhood structures. In this direction, methods can
be developed to convert an image to graph, and computationally efficient feature extraction
methods.

It is possible to convert grayscale digit images into a graph structure as explained in
Section 5.3.7. But advanced techniques are required to convert a color picture into a graph
structure. For this purpose, techniques like image segmentation built on top of graph parti-

104

tioning problem can be considered. To define the attribute information over the nodes also
require further research.

8.1.3 Introducing a regularizer term in SGCN loss function

The state-of-the-art SGCN architectures are optimized only for the loss related to the learn-
ing task. However, the filtering characteristics of the filter used also need to be considered
and for this purpose a regularizer term can be introduced.

The filter in existing SGCNs are chosen without considering their filtering characteris-
tics. Instead of this, they are chosen as a localization and information aggregating mech-
anism over the nodes. The network learning is having a direct influence on the filtering
properties but the loss function optimized concerns only about the downstream learning
task. So there lies a possibility of adding an explicit regularizer that can make a trade-off
between desired filtering behavior and loss function optimization for the learning task.

8.1.4 Filter banks and attention mechanism to improve SGCN archi-
tecture

This is an alternative to address the requirement of regularizer term explained in Section
8.1.3. Since it is difficult to find the desired filtering characteristic required for a learning
problem, a collection of filters each having unique filtering properties can be employed.
The domain knowledge can also be incorporated in choosing the right filter combinations.

The filter bank can also be formulated in an attention mechanism where the individual
node embedding may be attended from the output of multiple filters. These output are
also some embeddings in their own capacity and hence each nodes will have a collection
of embeddings. To find the final embedding, this collection may be incorporated into an
appropriate attention mechanism.

105

106

Bibliography

[1] R. R. Dipert, “The mathematical structure of the world: The world as graph,” The

Journal of Philosophy, vol. 94, no. 7, pp. 329–358, 1997.

[2] D. Haussler, “Convolution kernels on discrete structures,” Citeseer, Tech. Rep.,
1999.

[3] S. Sun, “A survey of multi-view machine learning,” Neural Computing and Applica-

tions, vol. 23, no. 7-8, pp. 2031–2038, 2013.

[4] C. Xu, D. Tao, and C. Xu, “A survey on multi-view learning,” arXiv preprint

arXiv:1304.5634, 2013.

[5] N. M. Kriege, P.-L. Giscard, and R. Wilson, “On valid optimal assignment kernels
and applications to graph classification,” in Advances in Neural Information Pro-

cessing Systems, 2016, pp. 1623–1631.

[6] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet, “Simplemkl,” Journal

of Machine Learning Research, vol. 9, no. Nov, pp. 2491–2521, 2008.

[7] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on graphs,” in Fifth IEEE

International Conference on Data Mining (ICDM’05). IEEE, 2005, pp. 8–pp.

[8] N. Kriege and P. Mutzel, “Subgraph matching kernels for attributed graphs,” in Pro-

ceedings of the 29th International Conference on Machine Learning (ICML-12),
2012, pp. 1015–1022.

[9] H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell, “Optimal assignment kernels for
attributed molecular graphs,” in Proceedings of the 22nd international conference

on Machine learning. ACM, 2005, pp. 225–232.

[10] B. Weisfeiler and A. Leman, “The reduction of a graph to canonical form and the
algebra which appears therein,” NTI, Series, vol. 2, 1968.

107

[11] S. F. Mousavi, M. Safayani, A. Mirzaei, and H. Bahonar, “Hierarchical graph embed-
ding in vector space by graph pyramid,” Pattern Recognition, vol. 61, pp. 245–254,
2017.

[12] K. Riesen and H. Bunke, “Graph classification based on vector space embedding,”
International Journal of Pattern Recognition and Artificial Intelligence, vol. 23,
no. 06, pp. 1053–1081, 2009.

[13] J. Gibert, E. Valveny, and H. Bunke, “Graph embedding in vector spaces by node
attribute statistics,” Pattern Recognition, vol. 45, no. 9, pp. 3072–3083, 2012.

[14] M. M. Luqman, J.-Y. Ramel, J. Lladós, and T. Brouard, “Fuzzy multilevel graph
embedding,” Pattern Recognition, vol. 46, no. 2, pp. 551–565, 2013.

[15] N. Sidère, P. Héroux, and J.-Y. Ramel, “A vectorial representation for the indexa-
tion of structural informations,” in Joint IAPR International Workshops on Statisti-

cal Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern

Recognition (SSPR). Springer, 2008, pp. 45–54.

[16] R. C. Wilson, E. R. Hancock, and B. Luo, “Pattern vectors from algebraic graph
theory,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27,
no. 7, pp. 1112–1124, 2005.

[17] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Advances in neural

information processing systems, 2013, pp. 3111–3119.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre-
sentations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[19] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in
International Conference on Machine Learning, 2014, pp. 1188–1196.

[20] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal,
“graph2vec: Learning distributed representations of graphs,” arXiv preprint

arXiv:1707.05005, 2017.

[21] A. Narayanan, M. Chandramohan, L. Chen, Y. Liu, and S. Saminathan, “sub-
graph2vec: Learning distributed representations of rooted sub-graphs from large
graphs,” arXiv preprint arXiv:1606.08928, 2016.

108

[22] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,”
in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining. ACM, 2016, pp. 855–864.

[23] D. Nguyen, W. Luo, T. D. Nguyen, S. Venkatesh, and D. Phung, “Learning graph
representation via frequent subgraphs,” in Proceedings of the 2018 SIAM Interna-

tional Conference on Data Mining. SIAM, 2018, pp. 306–314.

[24] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing. ACM, 2015, pp. 1365–1374.

[25] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K. M. Borg-
wardt, “Weisfeiler-lehman graph kernels,” Journal of Machine Learning Research,
vol. 12, no. Sep, pp. 2539–2561, 2011.

[26] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other discrete input
spaces,” in ICML, vol. 2, 2002, pp. 315–322.

[27] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in Learning

theory and kernel machines. Springer, 2003, pp. 144–158.

[28] A. J. Smola, B. Schölkopf, and K.-R. Müller, “The connection between regular-
ization operators and support vector kernels,” Neural networks, vol. 11, no. 4, pp.
637–649, 1998.

[29] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results and efficient
alternatives,” in Learning Theory and Kernel Machines. Springer, 2003, pp. 129–
143.

[30] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt, “Graph
kernels,” Journal of Machine Learning Research, vol. 11, no. Apr, pp. 1201–1242,
2010.

[31] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between labeled
graphs,” in ICML, vol. 3, 2003, pp. 321–328.

[32] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert, “Extensions of marginal-
ized graph kernels,” in Proceedings of the twenty-first international conference on

Machine learning. ACM, 2004, p. 70.

109

[33] H. Morgan, “The generation of a unique machine description for chemical
structures-a technique developed at chemical abstracts service.” Journal of Chem-

ical Documentation, vol. 5, no. 2, pp. 107–113, 1965.

[34] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and H.-P.
Kriegel, “Protein function prediction via graph kernels,” Bioinformatics, vol. 21, no.
suppl_1, pp. i47–i56, 2005.

[35] Z. Zhang, M. Wang, Y. Xiang, Y. Huang, and A. Nehorai, “Retgk: Graph kernels
based on return probabilities of random walks,” in Advances in Neural Information

Processing Systems, 2018, pp. 3964–3974.

[36] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, and K. Borgwardt, “Scalable
kernels for graphs with continuous attributes,” in Advances in Neural Information

Processing Systems, 2013, pp. 216–224.

[37] J. Ramon and T. Gärtner, “Expressivity versus efficiency of graph kernels,” in First

international workshop on mining graphs, trees and sequences. Citeseer, 2003, pp.
65–74.

[38] P. Mahé and J.-P. Vert, “Graph kernels based on tree patterns for molecules,” Ma-

chine learning, vol. 75, no. 1, pp. 3–35, 2009.

[39] L. Bai, L. Rossi, Z. Zhang, and E. Hancock, “An aligned subtree kernel for weighted
graphs,” in International Conference on Machine Learning, 2015, pp. 30–39.

[40] G. Da San Martino, N. Navarin, and A. Sperduti, “Tree-based kernel for graphs with
continuous attributes,” IEEE transactions on neural networks and learning systems,
vol. 29, no. 7, pp. 3270–3276, 2017.

[41] W. Ye, Z. Wang, R. Redberg, and A. Singh, “Tree++: Truncated tree based graph
kernels,” IEEE Transactions on Knowledge and Data Engineering, 2019.

[42] T. Horváth, T. Gärtner, and S. Wrobel, “Cyclic pattern kernels for predictive graph
mining,” in Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2004, pp. 158–167.

[43] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt, “Ef-
ficient graphlet kernels for large graph comparison,” in Artificial Intelligence and

Statistics, 2009, pp. 488–495.

110

[44] F. Aziz, A. Ullah, and F. Shah, “Feature selection and learning for graphlet kernel,”
Pattern Recognition Letters, 2020.

[45] F. Costa and K. De Grave, “Fast neighborhood subgraph pairwise distance kernel,”
in Proceedings of the 26th International Conference on Machine Learning. Omni-
press, 2010, pp. 255–262.

[46] F. Orsini, P. Frasconi, and L. De Raedt, “Graph invariant kernels,” in Proceedings

of the 24th International Conference on Artificial Intelligence. AAAI Press, 2015,
pp. 3756–3762.

[47] L. Bai and E. R. Hancock, “Fast depth-based subgraph kernels for unattributed
graphs,” Pattern Recognition, vol. 50, pp. 233–245, 2016.

[48] F. Johansson, V. Jethava, D. Dubhashi, and C. Bhattacharyya, “Global graph kernels
using geometric embeddings,” in Proceedings of the 31st International Conference

on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, 2014.

[49] M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting, “Propagation kernels:
efficient graph kernels from propagated information,” Machine Learning, vol. 102,
no. 2, pp. 209–245, 2016.

[50] B. Gaüzere, L. Brun, and D. Villemin, “Two new graphs kernels in chemoinformat-
ics,” Pattern Recognition Letters, vol. 33, no. 15, pp. 2038–2047, 2012.

[51] L. Bai, L. Rossi, A. Torsello, and E. R. Hancock, “A quantum jensen–shannon graph
kernel for unattributed graphs,” Pattern Recognition, vol. 48, no. 2, pp. 344–355,
2015.

[52] L. Xu, X. Jiang, L. Bai, J. Xiao, and B. Luo, “A hybrid reproducing graph kernel
based on information entropy,” Pattern Recognition, vol. 73, pp. 89–98, 2018.

[53] L. Xu, L. Bai, X. Jiang, M. Tan, D. Zhang, and B. Luo, “Deep rényi entropy graph
kernel,” Pattern Recognition, p. 107668, 2020.

[54] B. Gaüzere, P.-A. Grenier, L. Brun, and D. Villemin, “Treelet kernel incorporating
cyclic, stereo and inter pattern information in chemoinformatics,” Pattern Recogni-

tion, vol. 48, no. 2, pp. 356–367, 2015.

111

[55] M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. Borgwardt, “Wasser-
stein weisfeiler-lehman graph kernels,” in Advances in Neural Information Process-

ing Systems, 2019, pp. 6439–6449.

[56] R. Kondor and H. Pan, “The multiscale laplacian graph kernel,” in Advances in Neu-

ral Information Processing Systems, 2016, pp. 2990–2998.

[57] B. Rieck, C. Bock, and K. Borgwardt, “A persistent weisfeiler-lehman procedure for
graph classification,” in International Conference on Machine Learning, 2019, pp.
5448–5458.

[58] M. Neumann, N. Patricia, R. Garnett, and K. Kersting, “Efficient graph kernels by
randomization,” in Joint European Conference on Machine Learning and Knowl-

edge Discovery in Databases. Springer, 2012, pp. 378–393.

[59] C. Morris, N. M. Kriege, K. Kersting, and P. Mutzel, “Faster kernels for graphs with
continuous attributes via hashing,” in 2016 IEEE 16th International Conference on

Data Mining (ICDM). IEEE, 2016, pp. 1095–1100.

[60] F. Aiolli, M. Donini, N. Navarin, and A. Sperduti, “Multiple graph-kernel learning,”
in 2015 IEEE Symposium Series on Computational Intelligence, 2015, pp. 1607–
1614.

[61] M. Donini, N. Navarin, I. Lauriola, F. Aiolli, and F. Costa, “Fast hyperparameter se-
lection for graph kernels via subsampling and multiple kernel learning,” in ESANN,
2017.

[62] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[63] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on graph-
structured data,” arXiv preprint arXiv:1506.05163, 2015.

[64] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” in Advances in neural information

processing systems, 2016, pp. 3844–3852.

[65] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

112

[66] B. Xu, H. Shen, Q. Cao, K. Cen, and X. Cheng, “Graph convolutional networks
using heat kernel for semi-supervised learning,” in Proceedings of the 28th Interna-

tional Joint Conference on Artificial Intelligence. AAAI Press, 2019, pp. 1928–
1934.

[67] Q. Li, X.-M. Wu, H. Liu, X. Zhang, and Z. Guan, “Label efficient semi-supervised
learning via graph filtering,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2019, pp. 9582–9591.

[68] B. Xu, H. Shen, Q. Cao, Y. Qiu, and X. Cheng, “Graph wavelet neural network,”
arXiv preprint arXiv:1904.07785, 2019.

[69] R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convolutional neural net-
works,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
no. 1, 2018.

[70] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-based semi-
supervised classification,” in Proceedings of the 2018 World Wide Web Conference,
2018, pp. 499–508.

[71] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cayleynets: Graph convolu-
tional neural networks with complex rational spectral filters,” IEEE Transactions on

Signal Processing, vol. 67, no. 1, pp. 97–109, 2018.

[72] R. Liao, Z. Zhao, R. Urtasun, and R. S. Zemel, “Lanczosnet: Multi-scale deep graph
convolutional networks,” arXiv preprint arXiv:1901.01484, 2019.

[73] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples,” Journal of machine

learning research, vol. 7, no. Nov, pp. 2399–2434, 2006.

[74] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-supervised learning
on large graphs,” in International Conference on Computational Learning Theory.
Springer, 2004, pp. 624–638.

[75] D. Zhou and B. Schölkopf, “A regularization framework for learning from graph
data,” in ICML 2004 Workshop on Statistical Relational Learning and Its Connec-

tions to Other Fields (SRL 2004), 2004, pp. 132–137.

113

[76] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using gaus-
sian fields and harmonic functions,” in Proceedings of the 20th International confer-

ence on Machine learning (ICML-03), 2003, pp. 912–919.

[77] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, “Deep learning via semi-
supervised embedding,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 639–655.

[78] H. Nt and T. Maehara, “Revisiting graph neural networks: All we have is low-pass
filters,” arXiv preprint arXiv:1905.09550, 2019.

[79] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph
convolutional networks,” in Proceedings of the 36th International Conference on

Machine Learning, 2019, pp. 6861–6871.

[80] J. Klicpera, S. Weißenberger, and S. Günnemann, “Diffusion improves graph learn-
ing,” in Advances in Neural Information Processing Systems, 2019, pp. 13 333–
13 345.

[81] S. Li, D. Kim, and Q. Wang, “Beyond low-pass filters: Adaptive feature propagation
on graphs,” arXiv preprint arXiv:2103.14187, 2021.

[82] M. Balcilar, G. Renton, P. Héroux, B. Gaüzère, S. Adam, and P. Honeine, “Ana-
lyzing the expressive power of graph neural networks in a spectral perspective,” in
International Conference on Learning Representations, 2020.

[83] H. Chang, Y. Rong, T. Xu, W. Huang, S. Sojoudi, J. Huang, and W. Zhu, “Spectral
graph attention network,” arXiv preprint arXiv:2003.07450, 2020.

[84] D. Bo, X. Wang, C. Shi, and H. Shen, “Beyond low-frequency information in graph
convolutional networks,” arXiv preprint arXiv:2101.00797, 2021.

[85] G. Fu, Y. Hou, J. Zhang, K. Ma, B. F. Kamhoua, and J. Cheng, “Understanding
graph neural networks from graph signal denoising perspectives,” arXiv preprint

arXiv:2006.04386, 2020.

[86] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

114

[87] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional networks
for semi-supervised learning,” in Thirty-Second AAAI conference on artificial intel-

ligence, 2018.

[88] X. Zhang, H. Liu, Q. Li, and X.-M. Wu, “Attributed graph clustering via adaptive
graph convolution,” arXiv preprint arXiv:1906.01210, 2019.

[89] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph neural networks,”
arXiv preprint arXiv:1905.04497, 2019.

[90] R. Kaspar and B. Horst, Graph classification and clustering based on vector space

embedding. World Scientific, 2010, vol. 77.

[91] B. Schölkopf, A. J. Smola, F. Bach et al., Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2002.

[92] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern analysis. Cambridge
university press, 2004.

[93] H. Feng and T.-S. Chua, “A bootstrapping approach to annotating large image collec-
tion,” in Proceedings of the 5th ACM SIGMM international workshop on Multimedia

information retrieval, 2003, pp. 55–62.

[94] Y. Li, B. Geng, Z.-J. Zha, D. Tao, L. Yang, and C. Xu, “Difficulty guided image
retrieval using linear multiview embedding,” in Proceedings of the 19th ACM inter-

national conference on Multimedia, 2011, pp. 1169–1172.

[95] H. Feng, R. Shi, and T.-S. Chua, “A bootstrapping framework for annotating and
retrieving www images,” in Proceedings of the 12th annual ACM international con-

ference on Multimedia, 2004, pp. 960–967.

[96] A. Salim, S. Shiju, and S. Sumitra, “Effectiveness of representation and length varia-
tion of shortest paths in graph classification,” in International Conference on Pattern

Recognition and Machine Intelligence. Springer, 2017, pp. 509–516.

[97] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,” ACM

Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, p. 27, 2011.

115

[98] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and
C. Hansch, “Structure-activity relationship of mutagenic aromatic and heteroaro-
matic nitro compounds. correlation with molecular orbital energies and hydropho-
bicity,” Journal of medicinal chemistry, vol. 34, no. 2, pp. 786–797, 1991.

[99] H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma, “Statistical eval-
uation of the predictive toxicology challenge 2000–2001,” Bioinformatics, vol. 19,
no. 10, pp. 1183–1193, 2003.

[100] I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, and D. Schom-
burg, “Brenda, the enzyme database: updates and major new developments,” Nucleic

acids research, vol. 32, no. suppl_1, pp. D431–D433, 2004.

[101] P. D. Dobson and A. J. Doig, “Distinguishing enzyme structures from non-enzymes
without alignments,” Journal of molecular biology, vol. 330, no. 4, pp. 771–783,
2003.

[102] N. Wale, I. A. Watson, and G. Karypis, “Comparison of descriptor spaces for chem-
ical compound retrieval and classification,” Knowledge and Information Systems,
vol. 14, no. 3, pp. 347–375, 2008.

[103] C. Cortes, P. Haffner, and M. Mohri, “Rational kernels: Theory and algorithms,”
Journal of Machine Learning Research, vol. 5, no. Aug, pp. 1035–1062, 2004.

[104] J. J. Sutherland, L. A. O’brien, and D. F. Weaver, “Spline-fitting with a genetic
algorithm: A method for developing classification structure- activity relationships,”
Journal of chemical information and computer sciences, vol. 43, no. 6, pp. 1906–
1915, 2003.

[105] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and M. Neumann,
“Benchmark data sets for graph kernels,” 2016. [Online]. Available: http:
//graphkernels.cs.tu-dortmund.de

[106] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
Nov 1998.

[107] D. Grattarola and C. Alippi, “Graph neural networks in tensorflow and keras with
spektral [application notes],” Comp. Intell. Mag., vol. 16, no. 1, p. 99–106, Feb.
2021. [Online]. Available: https://doi.org/10.1109/MCI.2020.3039072

116

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
https://doi.org/10.1109/MCI.2020.3039072

[108] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein, “Ge-
ometric deep learning on graphs and manifolds using mixture model cnns,” in 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017,
pp. 5425–5434.

[109] F. R. Chung, Spectral graph theory. American Mathematical Soc., 1997, no. 92.

[110] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains,” IEEE signal processing maga-

zine, vol. 30, no. 3, pp. 83–98, 2013.

[111] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural networks ar-
chitectures,” Neural computation, vol. 7, no. 2, pp. 219–269, 1995.

[112] R. A. Willoughby, “Solutions of ill-posed problems (an tikhonov and vy arsenin),”
SIAM Review, vol. 21, no. 2, p. 266, 1979.

[113] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthesis

lectures on artificial intelligence and machine learning, vol. 3, no. 1, pp. 1–130,
2009.

[114] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spec-
tral graph theory,” Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp.
129–150, 2011.

[115] N. Tremblay, P. Gonçalves, and P. Borgnat, “Chapter 11 - design of graph filters
and filterbanks,” in Cooperative and Graph Signal Processing, P. M. Djurić
and C. Richard, Eds. Academic Press, 2018, pp. 299–324. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128136775000110

[116] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural networks with
convolutional arma filters,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, pp. 1–1, 2021.

[117] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Advances in neural information processing systems, 2017, pp. 1024–
1034.

117

https://www.sciencedirect.com/science/article/pii/B9780128136775000110

[118] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised learning
with graph embeddings,” in Proceedings of the 33rd International Conference on

International Conference on Machine Learning-Volume 48, 2016, pp. 40–48.

[119] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-
sentations,” in Proceedings of the 20th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2014, pp. 701–710.

[120] Q. Lu and L. Getoor, “Link-based classification,” in Proceedings of the 20th Inter-

national Conference on Machine Learning (ICML-03), 2003, pp. 496–503.

[121] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[122] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the thirteenth international conference on arti-

ficial intelligence and statistics, 2010, pp. 249–256.

[123] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[124] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graphsaint:
Graph sampling based inductive learning method,” in International Conference on

Learning Representations, 2020. [Online]. Available: https://openreview.net/forum?
id=BJe8pkHFwS

[125] B. Rozemberczki, O. Kiss, and R. Sarkar, “Karate club: An api oriented
open-source python framework for unsupervised learning on graphs,” ser. CIKM
’20. New York, NY, USA: Association for Computing Machinery, 2020, p.
3125–3132. [Online]. Available: https://doi.org/10.1145/3340531.3412757

[126] B. Rozemberczki and R. Sarkar, “Characteristic functions on graphs: Birds of a
feather, from statistical descriptors to parametric models,” ser. CIKM ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 1325–1334.
[Online]. Available: https://doi.org/10.1145/3340531.3411866

[127] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-Scale attributed node
embedding,” Journal of Complex Networks, vol. 9, no. 2, 05 2021, cnab014.
[Online]. Available: https://doi.org/10.1093/comnet/cnab014

118

https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=BJe8pkHFwS
https://doi.org/10.1145/3340531.3412757
https://doi.org/10.1145/3340531.3411866
https://doi.org/10.1093/comnet/cnab014

[128] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geo-
metric,” in ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

[129] H. Yang, K. Ma, and J. Cheng, “Rethinking graph regularization for graph neural
networks,” arXiv preprint arXiv:2009.02027, 2020.

[130] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020,
pp. 3438–3445.

[131] F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, and F. Monti, “Sign:
Scalable inception graph neural networks,” arXiv preprint arXiv:2004.11198, 2020.

[132] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, and J. Pei, “Am-gcn: Adaptive multi-
channel graph convolutional networks,” in Proceedings of the 26th ACM SIGKDD

International conference on knowledge discovery & data mining, 2020, pp. 1243–
1253.

[133] X. Gao, W. Dai, C. Li, J. Zou, H. Xiong, and P. Frossard, “Message passing in graph
convolution networks via adaptive filter banks,” arXiv preprint arXiv:2106.09910,
2021.

[134] Y. Wang, Z. Hu, Y. Ye, and Y. Sun, “Demystifying graph neural network via graph
filter assessment,” 2019.

[135] S. Pan, J. Wu, X. Zhu, G. Long, and C. Zhang, “Task sensitive feature exploration
and learning for multitask graph classification,” IEEE Transactions on Cybernetics,
vol. 47, no. 3, pp. 744–758, 2017.

119

List of Publications

Journals

1. Asif Salim, S. S. Shiju, and S. Sumitra. "Neighborhood Preserving Kernels for At-
tributed Graphs." IEEE Transactions on Pattern Analysis and Machine Intelligence

45.1 (2022): 828-840.

2. Asif Salim, and S. Sumitra. "Spectral Graph Convolutional Neural Networks in
the Context of Regularization Theory." IEEE Transactions on Neural Networks and

Learning Systems (2022): 1-12, doi:10.1109/TNNLS.2022.3177742

3. Asif Salim, S. S. Shiju, and S. Sumitra. "Graph kernels based on optimal node as-
signment." Knowledge-Based Systems 244 (2022): 108519.

4. Asif Salim, S. S. Shiju, and S. Sumitra. "Design of multi-view graph embedding us-
ing multiple kernel learning." Engineering Applications of Artificial Intelligence 90
(2020): 103534.

Conference

1. Asif Salim, Shiju S. S., and S. Sumitra. "Effectiveness of representation and length
variation of shortest paths in graph classification." In International Conference on

Pattern Recognition and Machine Intelligence, pp. 509-516. Springer, Cham, 2017.

121

Appendix A

From Chapter 4

A.1 Proof of optimal assignment of K̃ONA(G,G
′)

Theorem A.1. K̃ONA(G,G′) =
∑

li∈ΣWL

kns2(gli , g
′
li
) is an optimal assignment kernel.

Proof. First we prove that corresponding to a WL label li, kns2(gli, g
′
li) is an optimal as-

signment kernel. Consider,

kns2(gli , g
′
li
) =

∑
i

〈
(Mgli

(i, .))T ,M ′
gli

(i, .)T
〉

Define the bijective function

Bli : gli → g′li , where Bli(v) = v′ if σ(v) = σ(v′)

With this kns2 can be written as,

kns2(gli , g
′
li
) =

∑
(v,Bli (v))

〈
Vv,VBli (v)

〉
=

∑
(v,Bli (v))

kli(v,Bli(v))

where Vv, VBli (v) are the vector representation as explained in Section 4.1.2.2 and for
each li ∈ ΣWL, kli : gli × g′li → R is a valid kernel. kli is a strong kernel since its range set{

0,
〈

(Mgli
(i, .))T ,M ′

gli
(i, .)T

〉}
is of cardinality two [5].

Define,
B : Ṽ → Ṽ ′ where B(v) = Bli(v) if lWL(v) = li

.

123

B is a bijection as each Blis are bijective functions. Now

K̃ONA(G,G′) =
∑

(v,B(v))

〈
Vv,VBli (v)

〉
.

Hence K̃ONA(G,G′) is an optimal assignment kernel.

A.2 Computing K̃ONA using hierarchy

Theorem A.2. K̃T (G,G′) = K̃ONA(G,G′) ∀ G,G′ ∈ G.

Proof.

K̃T (G,G′) =

|VT |∑
i=1

min (GV (i), G′V (i))× (NT (i))2

=

|VT |∑
i=1

min (GV (i), G′V (i))× ‖Vi‖2

where Vi is the vector representation of the WL label corresponding to ith node in T as
explained in Section 4.1.2.2.

GV (i), and G′V (i) are equal to the number of non-dummy nodes in gi, and g′i respec-
tively. Therefore,

min (GV (i), G′V (i))× ‖Vi‖2 =
∑
k

〈
(Mgi(k, .)), (M

′
gi

(k, .))
〉

where (Mgi(k, .) and (M ′
gi

(k, .)) are the kth row of Mgi and M ′
gi

respectively.

Hence

|VT |∑
i=1

min (GV (i), G′V (i))× ‖Vi‖2 =

|VT |∑
i=1

∑
k

〈
(Mgi(k, .)), (M

′
gi

(k, .))
〉

Now VT =
⋃h
j=1

⋃|ΣjWL|
i=1 {li}, where li is the ith element of Σj

WL. Therefore

124

|VT |∑
i=1

∑
k

〈
(Mgi(k, .)), (M

′
gi

(k, .))
〉

=
h∑
j=1

∑
li∈ΣjWL

∑
k

〈
(Mgi(k, .)), (M

′
gi

(k, .))
〉

=
h∑
j=1

∑
li∈ΣjWL

kns2(gli , g
′
li
) = K̃ONA(G,G′).

125

126

Appendix B

From Chapter 6

B.1 Regularization in graphs, support vector kernels and
spectral GCNN filters

The support vector kernel k : X ×X → R is considered as a similarity measure between
a pair of data points in a space X . Support vector kernels can be formulated by solving the
self-consistency condition ([28]), 〈k(x, .), Pk(x′, .)〉 = k(x, x′) where P is the regulariza-
tion operator. Analyzing this, Smola et.al [28] found that given a regularization operator
P , there exist a support vector kernel k that minimize the regularized risk functional,

Rreg[f] = Remp +
λ

2
‖Pf‖2, (B.1)

that also enforce flatness (determined by P) in the feature space or Reproducing Kernel
Hilbert Space (RKHS) of functions. They also found that given a support vector kernel k,
regularization operator P can be found out such that a regularization network [28] using
P is equivalent to a support vector machine that uses the kernel k. Note that Remp is the
empirical loss function and λ is a hyper-parameter.

Smola et.al [27] used the above concepts to design support vector kernels on graphs.
As shown in (6.2), graph Laplacian (L̃) can be used to define a smoothness functional on
graphs that aids in designing regularization operators. They proved that if H is the image

of Rn under P ∈ Rn×n (a positive semidefinite regularization matrix), then H whose dot

product is defined as 〈f, Pf〉 is a RKHS and the corresponding support vector kernel is

defined as k(i, j) = [P−1]ij , where P−1 denotes the psuedo-inverse if P is not invertible.

Now if we consider the case of SGCN filters, we can observe that if the parameters
θs associated with the filter definition maintains positive definiteness of the matrix F =(
r(L̃)

)−1, then the filter can be considered as a valid and equivalent support vector kernel

127

that solves the regularized risk functional in (B.1). The regularization behavior induced by
P in (B.1) can be attributed to the corresponding regularization function, r(λ).

B.2 Ablation studies on architectures

The proposed filters and that of the state-of-the-arts have experimented with the following
architectures. The base architecture followed is the one proposed by Kipf et.al [65]. It
consists of two graph convolution (GC) layers. We tried models with one, two, and three
GC layers and also the models with one GC layer followed by one and two dense layers.
The details of the models are explained in the following sections. We assume cn is the
number of classes in which the nodes can belong.

Model with one GC layer: It takes the form

Z = softmax(F(L̃) Θ),

where F(L̃) ∈ Rn×n is the filter, X ∈ Rn×d is the input feature matrix, θ(1) ∈ Rd×c1 is the
filter parameters of the first layer (c1 is the number of filters) and θ(2) ∈ Rc1×cn is the filter
parameters of the second layer.

Model with two GC layers: The model computes

Z = softmax(F(L̃) ReLU(F(L̃)XΘ(1))Θ(2)),

where F(L̃) ∈ Rn×n is the filter, X ∈ Rn×d is the input feature matrix, θ(1) ∈ Rd×c1 is the
filter parameters of the first layer (c1 is the number of filters) and θ(2) ∈ Rc1×cn is the filter
parameters of the second layer.

Model with three GC layers: It takes the form

Z = softmax
[
F(L̃)

(
ReLU(F(L̃)O1Θ(2))

)
Θ(3)],

where O1 = ReLU(F(L̃)XΘ(1)) is the output of first layer in which F(L̃) ∈ Rn×n is the
filter, X ∈ Rn×d is the input feature matrix and, θ(1) ∈ Rd×c1 is the filter parameters of first
layer (c1 is the number of filters) which is a GC layer. Similarly, θ(2) ∈ Rc1×c2 is the filter
parameters of the second layer (c2 is the number of filters) and θ(3) ∈ Rc2×cn is the filter
parameters of the third layer.

Model with one GC layer followed by one dense layer (GD1): The output of the

128

model is
Z = softmax(ReLU(F(L̃)XΘ(1))Θ(2)),

where F(L̃) ∈ Rn×n is the filter, X ∈ Rn×d is the input feature matrix, θ(1) ∈ Rd×c1 is the
filter parameters of the first GC layer (c1 is the number of filters) and θ(2) ∈ Rc1×cn is the
parameters of the second layer which is dense.

Model with one GC layer followed by two dense layers (GD2):
Output is computed as

Z = softmax
(

ReLU
(
ReLU(O1Θ(2))Θ(3)

))
,

O1 = ReLU(F(L̃)XΘ(1)) where F(L̃) ∈ Rn×n is the filter, X ∈ Rn×d is the input feature
matrix, θ(1) ∈ Rd×c1 is the filter parameters of first layer (c1 is the number of filters) which
is GC layer. θ(2) ∈ Rc1×c2 is the parameters of the second layer and θ(2) ∈ Rc2×cn is the
parameters of the third layer which are dense.

B.2.1 Results and observations

The results of the models are tabulated in Table B.1. Note that the results reported are the
best after hyper-parameter tuning and tuning the layer size among the set {16, 32, 64, 128}.
The results reported are average of 10 runs corresponding to the random seeds selected at
random.

0.25 0.50 0.75 1.00 1.25 1.50
value of s

60

62

64

66

68

70

72

74

Ac
cu

ra
cy

(a)

2 4 6 8
value of a

60

62

64

66

68

70

72

74
(b)

2.5 5.0 7.5 10.0 12.5
value of a

60

62

64

66

68

70

72

74
(c)

7.5 10.0 12.5 15.0 17.5 20.0
value of a

60

62

64

66

68

70

72

74
(d)

Figure B.1: Accuracy variation with hyper-parameters in Citeseer dataset. (a) Diffusion,
(b) 1-step RW, (c) 2-step RW, (d) 3-step RW

If we compare the models only with GC layers, we can see that model with two layers
of GC performs best (the results reported in the article corresponds to this model). The
performance of the three-layer GC model is better than one-layer GC model. The variance
of the accuracy of the ChebyNet in the three-layer GC model is very high while that of
others is low.

129

0.25 0.50 0.75 1.00 1.25 1.50
value of s

66

68

70

72

74

76

78

80

Ac
cu

ra
cy

(a)

2 4 6 8
value of a

66

68

70

72

74

76

78

80
(b)

5 10 15 20
value of a

66

68

70

72

74

76

78

80
(c)

5 10 15 20
value of a

66

68

70

72

74

76

78

80
(d)

Figure B.2: Accuracy variation with hyper-parameters in Pubmed dataset. (a) Diffusion,
(b) 1-step RW, (c) 2-step RW, (d) 3-step RW

The performance of the GD1 model is in par with the three-layer GC model for most
of the methods but the performance of GD2 is the lowest among all models. Also, the
variance of GD2 models is high compared with other models. From the experiments, it can
be seen that the model with two layers of GC is the most robust one.

B.3 Effects of hyper-parameter tuning in Citeseer and Pubmed
datasets

For the experiments, the network with two layers of GC having 32 number of filters is used
and for diffusion filter, the value of K is taken as 3. The analysis in the case of the Cora
dataset is already provided in the manuscript.

The variation in accuracy against hyper-parameters of the proposed filters applied to the
Citeseer dataset is given in Figure B.1. In the case of diffusion, the accuracy increases till a
threshold point, and then it decreases slowly. Similar is the trend of variation of parameter
a in 1-step RW filter. In the case of 2-step and 3-step RW filters, accuracy increases as
the value of a increases but after a threshold point, accuracy variation is minimal. For the
Pubmed dataset as well, the observations are similar as shown in Figure B.2.

130

Table B.1: Classification accuracy (in percentage ± standard deviation) for the models.

Model Methods Cora Citeseer Pubmed
GCN 72.59 ± 1.01 65.78 ± 1.05 72.17 ± 0.49
ChebyNet 71.38 ± 0.72 62.90 ± 1.38 71.57 ± 0.56
GraphHeat 64.89 ± 0.63 59.94 ± 1.47 63.31 ± 0.41

GCN one layer Diffusion 77.35 ± 0.79 65.56 ± 1.08 72.05 ± 0.62
1-step RW 75.18 ± 0.56 63.58 ± 1.32 71.70 ± 0.53
2-step RW 75.06 ± 0.52 62.98 ± 1.37 71.11 ± 0.37
3-step RW 65.42 ± 0.34 63.02 ± 1.48 71.28 ± 0.64
Cosine 66.84 ± 0.75 59.35 ± 1.74 65.79 ± 0.69
GCN 81.78 ± 0.64 70.73 ± 0.53 78.48 ± 0.58
ChebyNet 82.16 ± 0.74 70.46 ± 0.70 78.24 ± 0.43
GraphHeat 81.38 ± 0.69 69.90 ± 0.50 75.64 ± 0.64

GCN two layer Diffusion 83.12 ± 0.37 71.17 ± 0.43 79.20 ± 0.36
1-step RW 82.36 ± 0.34 71.05 ± 0.34 78.74 ± 0.27
2-step RW 82.51 ± 0.22 71.18 ± 0.59 78.64 ± 0.20
3-step RW 82.56 ± 0.24 71.21 ± 0.63 78.28 ± 0.36
Cosine 75.53 ± 0.52 67.29 ± 0.64 75.52 ± 0.53
GCN 78.26 ± 6.58 67.36 ± 3.85 75.14 ± 3.92
ChebyNet 64.28 ± 23.48 53.57 ± 17.24 59.02 ± 14.98
GraphHeat 77.89 ± 2.37 68.51 ± 1.37 74.80 ± 1.32

GCN three layer Diffusion 81.01 ± 0.72 68.37 ± 1.24 76.36 ± 1.28
1-step RW 80.96 ± 0.56 68.81 ± 2.05 75.76 ± 1.06
2-step RW 81.02 ± 0.71 68.85 ± 1.46 75.89 ± 1.40
3-step RW 81.12 ± 0.69 69.57 ± 1.83 76.66 ± 1.23
Cosine 75.66 ± 1.65 66.07 ± 0.80 74.59 ± 1.00
GCN 79.61 ± 0.62 68.27 ± 1.84 76.42 ± 0.78
ChebyNet 78.73 ± 1.45 67.16 ± 0.85 74.33 ± 0.34

GCN one layer + GraphHeat 69.48 ± 0.73 61.46 ± 0.94 69.52 ± 0.38
one dense layer Diffusion 80.92 ± 0.72 70.24 ± 0.88 76.04 ± 0.70
(GD1) 1-step RW 79.88 ± 0.60 69.34 ± 0.93 76.25 ± 0.58

2-step RW 79.21 ± 0.77 70.01 ± 0.87 76.02 ± 0.44
3-step RW 80.26 ± 0.62 70.11 ± 0.90 76.81 ± 0.44
Cosine 72.61 ± 0.82 55.46 ± 1.06 72.82 ± 0.76
GCN 32.64 ± 17.07 30.38 ± 6.07 67.75 ± 12.69
ChebyNet 26.35 ± 4.57 31.58 ± 6.39 61.30 ± 13.96

GCN one layer + GraphHeat 28.11 ± 8.22 31.33 ± 6.07 59.58 ± 13.99
two dense layer Diffusion 48.03 ± 19.42 30.73 ± 6.62 63.60 ± 11.28
(GD2) 1-step RW 29.00 ± 10.33 26.91 ± 6.86 64.56 ± 17.43

2-step RW 31.28 ± 12.86 29.36 ± 5.92 65.04 ± 12.08
3-step RW 33.76 ± 9.39 27.79 ± 5.48 65.39 ± 11.83
Cosine 24.57 ± 5.15 28.51 ± 7.48 65.48 ± 13.51

131

	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Nomenclature
	Introduction
	Organization of the Thesis
	Major Contributions of the Thesis

	Background and Related Works
	Kernel Theory
	1-dimensional Weisfeiler-Lehman color refinement algorithm
	Spectral Graph Convolutions
	Related works

	Design of multi-view graph embedding using multiple kernel learning
	Notations
	MKL for multi-view
	Construction of views based on graph embeddings
	Representation Capability of the Views
	Experiment
	Conclusion

	Graph Kernels Based on Optimal Node Assignment
	Design of optimal node assignment graph kernels
	Kernel computation using heirarchy
	Experiment
	Conclusions

	Neighborhood Preserving Kernels for Attributed Graphs
	Neighborhood Preserving Kernel
	Neighborhood preserving shortest path kernel
	Experiments
	Conclusion

	Spectral Graph Convolutional Neural Networks in the Context of Regularization Theory
	Regularized graph convolution filters
	Experiments
	Discussion on optimizing network architectures of SGCN
	Conclusion

	Applications
	Brain connectivity and social media data analysis
	Location-wise spread of Covid-19

	Conclusions and Future Works
	Future Works

	Bibliography
	List of Publications
	Appendices
	From Chapter 4
	Proof of optimal assignment of ONA(G,G')
	Computing ONA using hierarchy

	From Chapter 6
	Regularization in graphs, support vector kernels and spectral GCNN filters
	Ablation studies on architectures
	Effects of hyper-parameter tuning in Citeseer and Pubmed datasets

