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Abstract
This thesis addresses various higher-order accurate fitted mesh methods (FMMs) for solving singularly per-

turbed linear and nonlinear parabolic partial differential equations (PDEs) with smooth and nonsmooth data.

The diffusion coefficient of those PDEs is generally considered as a small parameter ε, called “singular pertur-

bation parameter ”. Depending on the smooth and nonsmooth data, generally singularly perturbed differential

equations (SPDEs) exhibit boundary or/and interior layers. These are thin regions in the vicinity of the bound-

ary line of the given domain or/and the line of discontinuity of the given data where the gradients of the solution

change rapidly as the perturbation parameter ε gets smaller; and hereby, the analytical solution of SPDEs in-

herently adapts to the multi-scale character.

Several real-life problems are often modeled as linear and nonlinear PDEs involving space and time vari-

ables, which can be viewed as SPDEs with smooth and nonsmooth data. Indeed, computational analysis of

those PDEs that appeared, particularly in mathematical biology, has become incredibly significant for an un-

derstanding of the various biological processes and also for the application of such models to the medical

sciences. As a prominent example in the context of mathematical biology, one can consider the chemo-taxis

model, which arises in the mathematical modeling of tumor angiogenesis. On the other hand, the drift-diffusion

equations are the most widely used mathematical models for describing semiconductor devices, which usually

represent SPDEs with discontinuous source term. Henceforth, from the application point of view as well as for

the multi-scale character of the analytical solution, the construction of effective numerical techniques are es-

sential and challenging for analyzing SPDEs. It is well-known that devising FMMs constituted on appropriate

layer-resolving non-uniform meshes is of natural and prime interest to the scientific community so as to achieve

“parameter-robust”(also familiar as “ε-uniformly convergent ”) numerical solution that converges independent

of the parameter ε.

The major objective of the thesis is to devise, analyze, and compute parameter-robust, cost-effective high-

order numerical approximations for a class of singularly perturbed linear parabolic PDEs of the convection-

diffusion type with smooth and nonsmooth data; and their extensions to the semilinear parabolic PDEs.

Our investigation in this thesis begins with developing an ε-uniformly convergent robust numerical algo-

rithm for solving a class of singularly perturbed one-dimensional linear parabolic convection-diffusion initial-

boundary-value problems (IBVPs) with time-dependent convection coefficient and possessing a regular bound-

ary layer. The current numerical algorithm consists of two parts. The first one is the development of a new

hybrid FMM for higher-order numerical approximation in the spatial variable; the other one is the implemen-

tation of the Richardson extrapolation technique solely in the temporal direction (called temporal Richard-

son extrapolation) for enhancing the temporal accuracy. The idea behind the newly developed algorithm is

further extended for the cost-effective higher-order numerical approximation of two-dimensional singularly

perturbed linear parabolic problems with time-dependent boundary conditions by proposing a new fractional-

step fitted mesh method (FSFMM) and, later, by the temporal Richardson extrapolation. Next, a complete

convergence analysis is provided towards higher-order numerical approximations for a class of singularly per-

turbed one-dimensional semilinear parabolic convection-diffusion IBVPs exhibiting a regular boundary layer
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by proposing two novels FMMs (the fully-implicit FMM and the implicit-explicit (IMEX) FMM) followed

by the extrapolation technique. Our further investigation involves cost-effective higher-order numerical ap-

proximations of two-dimensional semilinear singularly perturbed parabolic convection-diffusion problem with

non-homogeneous boundary data by developing two new fractional-step fitted mesh methods (FSFMMs) (the

fully-implicit FSFMM and the IMEX-FSFMM); and later, by the extrapolation technique. Next, we turn our

attention to investigating singularly perturbed PDEs with nonsmooth data. In this regard, efficient numerical

methods are proposed and analyzed for two different classes of model problems with nonsmooth data. The

first one is the singularly perturbed parabolic PDEs exhibiting strong interior layers, and the other one is the

singularly perturbed parabolic PDEs exhibiting both boundary and weak interior layers. Finally, we focus

our attention on devising and analyzing a higher-order time-accurate FMM for a class of singularly perturbed

semilinear parabolic convection-diffusion IBVPs exhibiting both boundary and weak interior layers.
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3.6 Maximum point-wise local errors êN,∆tloc and order of convergence r̂N,∆tloc for Example 3.2 with

alternative boundary conditions (3.13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.7 Comparison of temporal accuracy with natural and alternative boundary conditions after tem-

poral Richardson extrapolation for Example 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.8 Comparison of temporal accuracy with natural and alternative boundary conditions after tem-

poral Richardson extrapolation for Example 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.9 Comparison (region wise) of maximum point-wise errors and order of convergence for Example

3.1, with alternative boundary data and using temporal Richardson extrapolation with ∆t = 1
N . 110

3.10 Comparison (region wise) of maximum point-wise errors and order of convergence for Example

3.2, with alternative boundary data and using temporal Richardson extrapolation with ∆t = 1
N . 111

4.1 Comparison of ε-uniform maximum point-wise errors for Example 4.1 . . . . . . . . . . . . . 154

4.2 Comparison of ε-uniform maximum point-wise errors for Example 4.2 . . . . . . . . . . . . . 154

4.3 Comparison of the temporal accuracy for Example 4.1 computed using the IMEX-FMM (4.30) 156

4.4 Comparison of the temporal accuracy for Example 4.1 computed using the fully-implicit FMM

(4.29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.5 Comparison of the temporal accuracy for Example 4.2 computed using the IMEX-FMM (4.30) 158

4.6 Comparison of the temporal accuracy for Example 4.2 using the fully-implicit FMM (4.29) . . 158

4.7 Comparison of the spatial accuracy in the outer region, i.e., [0, 1− η] for Example 4.1 . . . . 160

4.8 Comparison of the spatial accuracy in the layer region, i.e., (η, 1] for Example 4.1 . . . . . . 161

4.9 Comparison of the spatial accuracy in the outer region, i.e., [0, 1− η] for Example 4.2 . . . . 163

4.10 Comparison of the spatial accuracy in the layer region, i.e., (η, 1] for Example 4.2 . . . . . . 164

4.11 Comparison of computational time (in seconds), taking ∆t = 1
N . . . . . . . . . . . . . . . . 166

5.1 Comparison of ε-uniform errors and order of convergence for Example 5.1 using the IMEX-

FSFMM (5.37) computed with ∆t = 1.6/N without using Richardson extrapolation in time

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

xviii



5.2 Comparison of ε-uniform errors and order of convergence for Example 5.1 using the fully-

implicit FSFMM (5.102) computed with ∆t = 1.6/N without using Richardson extrapolation

in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5.3 Maximum point-wise local errors eN,∆tloc and order of convergence rN,∆tloc for Example 5.1 using

the IMEX-FSFMM (5.37) for natural boundary conditions (5.21) and without using Richardson

extrapolation in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5.4 Maximum point-wise local errors eN,∆tloc and order of convergence rN,∆tloc for Example 5.1 us-

ing the IMEX-FSFMM (5.37) for alternative boundary conditions (5.22) and without using

Richardson extrapolation in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5.5 Maximum point-wise local errors eN,∆tloc and order of convergence rN,∆tloc for Example 5.1 using

the fully-implicit FSFMM (5.102) for natural boundary conditions (5.82) and without using

Richardson extrapolation in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.6 Maximum point-wise local errors eN,∆tloc and order of convergence rN,∆tloc for Example 5.1 using

the fully-implicit FSFMM (5.102) for alternative boundary conditions (5.83) and without using

Richardson extrapolation in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.7 Comparison (region-wise) of maximum point-wise errors and order of convergence for Exam-

ple 5.1, with alternative boundary conditions (5.22) and (5.83) . . . . . . . . . . . . . . . . . 226

5.8 Comparison of temporal accuracy for IMEX-FSFMM (5.37) with natural and alternative bound-

ary conditions after Richardson extrapolation for the time variable for Example 5.1 . . . . . . 227

5.9 Comparison of temporal accuracy for fully-implicit FSFMM (5.102) with natural and alter-

native boundary conditions after Richardson extrapolation for the time variable for Example

5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

6.1 ε-uniform maximum point-wise errors and order of convergence for Example 6.1 . . . . . . . 258

6.2 ε-uniform maximum point-wise errors and order of convergence for Example 6.2 . . . . . . . 258

6.3 ε-uniform maximum point-wise errors and order of convergence for Example 6.3 . . . . . . . 258

6.4 Comparison (regionwise) of maximum point-wise errors and order of convergence for Example

6.1, taking ∆t = 1
N2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

6.5 Comparison (regionwise) of maximum point-wise errors and order of convergence for Example

6.2, taking ∆t = 1
N2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

6.6 Comparison (region wise) of maximum point-wise errors and order of convergence for Example

6.3, taking ∆t = 1
N2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

6.7 Comparison of computational time (in seconds) for Example 6.1, taking ∆t = 1
N2 . . . . . . . 266

6.8 Comparison of computational time (in seconds) for Example 6.2, taking ∆t = 1
N2 . . . . . . . 266

6.9 Comparison of computational time (in seconds) for Example 6.3, taking ∆t = 1
N2 . . . . . . . 266

6.10 ε-uniform maximum point-wise errors and order of convergence for Example 6.4 . . . . . . . . 294

6.11 ε-uniform maximum point-wise errors and order of convergence for Example 6.4 computed

with ∆t = 0.8/N using classical upwind scheme. . . . . . . . . . . . . . . . . . . . . . . . . 294

6.12 ε-uniform maximum point-wise errors and order of convergence for Example 6.5 . . . . . . . . 295

6.13 ε-uniform maximum point-wise errors and order of convergence for Example 6.5 computed

with ∆t = 0.8/N using classical upwind scheme. . . . . . . . . . . . . . . . . . . . . . . . . 295

xix



6.14 ε-uniform maximum point-wise errors and order of convergence for Example 6.6 . . . . . . . . 296

6.15 ε-uniform maximum point-wise errors and order of convergence for Example 6.6 computed

with ∆t = 0.8/N using classical upwind scheme. . . . . . . . . . . . . . . . . . . . . . . . . 296

6.16 Comparison of spatial errors for Example 6.4 computed in the region i.e., in [0, d + η], using

∆t = 1/N2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

6.17 Comparison of spatial errors for Example 6.4 computed in the region i.e., in (d + η, 1], using

∆t = 1/N2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

6.18 Comparison of spatial errors for Example 6.5 computed in the region i.e., in [0, d + η], using

∆t = 1/N2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

6.19 Comparison of spatial errors for Example 6.5 computed in the region i.e., in (d + η, 1], using

∆t = 1/N2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

6.20 Comparison of spatial errors for Example 6.6 computed in the region i.e., in [0, d + η], using

∆t = 1/N2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

6.21 Comparison of errors for Example 6.6 computed in the region i.e., in (d + η, 1], using ∆t =

1/N2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

7.1 ε-uniform maximum point-wise errors and order of convergence for Example 7.1 computed

with ∆t = 1/N using the proposed nonlinear scheme (7.29) . . . . . . . . . . . . . . . . . . 324

7.2 Comparison of the temporal accuracy for Example 7.1 computed using the FMMs (7.29) and

(7.59) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

xx



Nomenclature

SPPs Singular perturbation problems

SPDEs Singularly perturbed differential equations

BVP, IBVP Boundary value problem, initial-boundary value problem

ODE Ordinary differential equation

FOM, FMMs Fitted operator method, fitted mesh methods

FSFMM, IMEX Fractional-step fitted mesh method, implicit-explicit

ε, R Singular perturbation parameter, set of real numbers

N,M Discretization parameters

C Generic positive constant independent of ε, N, M∣∣ · ∣∣ or
∥∥ · ∥∥ Supremum norm over the domain D and D

O(·), o(·) Landau order symbols

Ω, Ω, Ω−, Ω+ (0, 1), [0, 1], (0, d), (d, 1), 0 < d < 1

D, D and D̃ Ω× (0, T ], Ω× [0, T ] and (0, 1
ε )× (0, T ]

D− and D+ Ω− × (0, T ] and Ω+ × (0, T ]

Ω
N and Ω̂2N Piecewise-uniform layer-adapted meshes in the spatial direction

Λ∆t, Λ∆t/2, Λ∆t Equidistant meshes in the temporal direction

D
N,∆t

, D
N,M

, D̂2N,∆t/2, D̂2N,2M Ω
N × Λ∆t, Ω

N × ΛM , Ω̂2N × Λ∆t/2, Ω̂2N × Λ2M

G, G, D, D (0, 1)2, [0, 1]2, G× (0, T ], G× [0, T ]

G
N
x and G

N
y Piecewise-uniform layer-adapted meshes in the x and y directions

G
N
, D

N,∆t
G
N
x × G

N
y , G

N × Λ∆t

η, η̂, η1, η2, η̂1, η̂2 Transition parameters

xxi



y(x, t), u(x, y, t) Solution of the continuous problem

yn+1(x), un+1(x, y) Solutions of the time semidiscrete problem

Y n+1
j , Un+1

i,j Solution of the fully discrete problem
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Ỹ n+1
j , Ũn+1
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eN,∆tε , eN,Mε , êN,∆tε , êN,Mε Maximum point-wise errors
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Chapter 1

Introduction

This chapter begins with the general introduction and historical perspective to singularly perturbed problems

(SPPs). It further highlights specific applications of singularly perturbed differential equations (SPDEs) to the

real life problems which are relevant to the model problems considered in this thesis. Apart from this, it consists

of review of the related literature emphasizing computational difficulties and several numerical methods as well

as motivation and objectives of the research works carried out in this thesis, and also contains some preliminaries

followed by a brief description of the model problems and the structure of the thesis.

1.1 Introduction to SPPs and brief history

Mathematical and numerical aspects of the model problems consisting of partial differential equations (PDEs)

with the highest order spatial derivative multiplied by a small parameter ε, known as SPPs, are always being the

subject of interest to many researchers because of the application of SPPs in the various fields of engineering

and applied sciences; and also due to the occurrence of the interior and boundary layers in the solutions of

SPDEs. Interior or/and boundary layers, which are thin regions in the vicinity of the boundary line of the given

domain or/and the line of discontinuity of the given data where the gradient of the solution changes rapidly as

the perturbation parameter ε gets smaller, are usually common features of the solutions of SPDEs.

SPDEs can be classified into two subcategories: SPDEs with smooth data and SPDEs with nonsmooth data.

We call the problems with smooth data when the coefficients and the right-side term of the differential equation

are continuous in the domain under consideration. However, if the coefficients and the right-side term of the

differential equation are not continuous in the domain, we call them SPDEs with nonsmooth data. Note that

the problems with nonsmooth data can sometimes consist of discontinuous initial or boundary conditions ( see

[46, 47, 51]).

In 1904, at the Third International Congress of Mathematicians in Heidelberg, Prandtl’s seven-pages report,

which was published in that conference proceedings [93], introduced the boundary layer theory as the funda-

mental building block of fluid dynamics; and subsequently laid the foundations of SPPs. Prandtl highlighted

the significance of viscous flow demonstrating how a quantity as small as the viscosity of common fluids like

water and air may play a significant role in determining their flow. The key factor behind his analysis was that

any flow over a surface can be separated into two regions: a thin region close to the surface (called the boundary

layer) where the effect of viscosity is strong; and a region outside the boundary layer where the effect viscosity

is negligible. In 1964, Friedrichs and Wasow used the term singular perturbation for the first time in their paper

[42] while studying nonlinear vibration theory at New York University. Even though Prandtl initiated work on
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boundary layer theory; but Wasow’s contribution in [117] and his other works for next few decades on asymp-

totic theory of solution of SPDEs gave it considerably more generality to SPPs from theoretical perspective.

1.2 Applications of SPDEs to specific models

Several real-life problems are modeled in linear and nonlinear PDEs involving space and time variables which

can be viewed as SPDEs with smooth and nonsmooth data. One can explore and analyze such PDEs for

understanding the physical significance of SPDEs; and some of them are cited below in relevance with of the

model problems discussed in this thesis.

As a prominent example, one can consider the advection-dispersion equation which governs many physical

process including advective transport, molecular diffusion, and hydrodynamic dispersion, chemical reaction in

the liquid phase, contaminant decay or production with the solid phase. This model equation appears often in

geology, hydrology, environmental engineering, chemical and petroleum engineering (see [64]). Even for the

understanding of biological processes, one can study the advection-dispersion equation used for modeling oral

drug absorption phenomena (see [40]).

In the context of application of SPDEs to the mathematical biology, particularly to the medical sciences,

we cite an interesting model, known as chemo-taxis model [54], which arises in mathematical modeling of tu-

mor angiogenesis [38], spatial and temporal evolution of chemotactic bacterial bands [8] etc. As an illustration

of the tumor angiogenesis, we consider the one-dimensional model equations which essentially describe the

growth of solid tumors from the dormant avascular state to the vascular state. In that case, the tumour cells

stimulate angiogensis, the process whereby tumour secrets a diffusible chemical substance, known as tumour

angiogenesis factor (TAF), that induces neighboring endothelial cells to migrate towards the tumor through a

chemotaxis phenomena; and further continues to spread to the other organs of the body. The model is therefore

composed of two phenomenon: the diffusion of TAF into the surrounding tissue, and its effect on the neighbor-

ing endothelial cells; and thus consists of two coupled equations: one for the concentration of TAF, denoted by

c(x, t); and the other for the the endothelial cell density, denoted by ρ(x, t). After normalizing the PDEs, the

population diffusion chemotaxis equation for the endothelial cells, and the diffusion equation for the TAF are

respectively given as follows:
∂ρ

∂t
= ε

∂2ρ

∂x2
− ∂

∂x

(
k
∂c

∂x
ρ
)

+ µρ(1− ρ) max(0, c− c∗)− βρ,

∂c

∂t
= δ

∂2c

∂x2
− λc− αρc

γ + c
,

subject to appropriate initial and boundary conditions. When the diffusion coefficient ε of the endothelial cells

in the population equation is substantially smaller than the speed of migration caused by the taxis term, the

corresponding model behaves like SPDEs. For more details, we refer [13] and the references therein.

On the other hand, the drift-diffusion equations, the most widely used mathematical model for describing

semiconductor devices, can be considered as a significant application of SPDEs with nonsmooth data. The

drift-diffusion equations govern the evolution of the flow of electrons and holes in semiconductor devices on

the dielectrical relaxation time scale. In this regard, the one-dimensional model equations subject to suitable
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initial and boundary conditions are mentioned below:

∂n

∂t
= ε

∂2n

∂x2
− ∂

∂x

(
n
∂Φ

∂x

)
,

∂p

∂t
= ε

∂2p

∂x2
+

∂

∂x

(
p
∂Φ

∂x

)
,

∂2Φ

∂x2
= n− p− C(x),

where x ∈ (0, 1) and t > 0 with suitable initial-boundary conditions. The functions (n, p,Φ) represents

the electron concentration, the hole concentration, and the electric potential, respectively. The function C(x)

models the doping concentration and the preconcentration of electrons and holes in the semiconductor; and

treated as discontinuous function. Due the small diffusion coefficient ε, the above equations behave like SPDEs.

For more details, see [74] and the references therein.

1.3 Computational challenges and opportunities in SPDEs

It is well-known that the investigation and construction of the asymptotic approximation as well as the numerical

approximation to the solutions of SPPs are of great importance in applied mathematics. One can construct an

asymptotic approximation to the analytical solution by employing the perturbation technique which consists

at least two asymptotic expansions, called the inner-expansion and the outer-expansion, which are respectively

valid inside and outside the boundary layer. To know more about the perturbation techniques, we refer to the

books of Bush [10], Eckhaus [31], Kevorkian and Cole [62], Lagerstrom [66], O’Malley [87], Van Dyke [30]

and the review article [67] of Lagerstrom and Casten.

From computational point of view, finding efficient numerical solutions of SPDEs are of extreme impor-

tance. Classical numerical techniques which are appropriate when ε is O(1); and are often inappropriate when

ε → 0, unless the number of mesh intervals, N , satisfies the condition N = O(ε−1). Failing to satisfy this

condition, the classical numerical techniques are not adequate on the uniform meshes for small ε, as they may

not able to capture the gradient of the solution accurately inside the layers generally, the region of most inter-

est. This goes against the natural expectation that error of a numerical method can decrease when the mesh is

refined. In this regard, one can refer to the books [77, 99] and the article [76] of Miller et al. This disadvantage

motivates researchers to develop and analyze numerical methods that are robust to the perturbation parameter

ε; and it has become a very active field of study since past few decades. Such "parameter robust" (also known

as "ε-uniformly convergent") numerical methods play a key role to achieve accurate numerical results without

much resolving the boundary layer, whether ε = 10−2 or ε = 10−6.

There are two basic numerical approaches in the literature in connection with parameter robust numerical

methods: One is called the fitted operator method (FOM) and the other is called the fitted mesh method (FMM).

The FOMs approximate the differential operator by a specified difference operator by introducing an artificial

diffusion parameter, called exponential fitting factor, and the methods utilize uniform meshes (see the book

[29]). Despite the fact that the FOM, such as the Il’-in Allen-Southwell method, performs well when applied

to one dimensional SPDEs; but the extension of FOMs to 2D SPDEs are difficult and even impossible in the

case of characteristic boundary layers (see [39, Example 2.2]). On the other hand, FMMs utilize a specified

difference operator on special layer-resolving meshes (which is fine inside the layer region and coarse outside
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the layer region) adapted to the nature of the differential operator (see the book [77]) . Because of their easy im-

plementation and extension to address higher dimensional and nonlinear problems, FMMs offer an advantage

over FOMs and often considered as a well-known methodology for solving SPPs to overcome the limitations

of the traditional methods. In the context of FMMs, Shishkin [102] is the first person to introduce a special

nonuniform mesh fitted accurately to capture the layer phenomena, known as the Shishkin mesh. This well-

known layer-resolving mesh can be constructed easily if the location and the width of the boundary/interior

layers are known a-priori. There is also a growing interest recently in the generation of layer-adapted meshes

other than Shishkin meshes that not only allow layer structure resolution, but also provide ε-uniform conver-

gence of the numerical solutions for different FMMs. To know about construction of different layer-resolving

meshes and associated FMMs, we refer to the books [32, 77, 99, 105, 113], the survey articles of Kadalbajoo

and Gupta [56], and kadalbajoo and Patidar [57], the latest survey article [98] of Roos as well as to the mono-

graphs [68, 110]. Further, one can refer the articles of Hemkar et al. [52] and Clavero et al. [15, 16] for dealing

with high-order FMMs for singularly perturbed parabolic PDEs. Apart from this, the further development of

FMMs based on the equidistribution principle, one can look into the research work of Beckett in [3]; and couple

of recent research findings of Natesan with his co-authors in [2, 28, 43, 78].

As the thesis mainly focuses on computational and theoretical aspects of various classes of linear and

nonlinear parabolic PDEs which are singularly perturbed in nature; a quick review of the literature in connection

with numerical approximations of general class of parabolic PDEs is also furnished below.

In this regard, we want to highlight contributations of Kadalbajoo with his co-authors in [49, 50, 59]; and

recently, by Gowrisankar and Natesan in [44] for efficient numerical apprximation of Burgers’ equation. To cite

a few, we refer the standard books [14, 53, 79, 107, 112] which address various numerical techniques including

finite difference and finite element methods for solving parabolic PDEs. In addition to these, one can also recall

contributations of Wade et al. in [63, 1, 114, 115, 116] and that of Gracia et al. in [48, 108], respectively

towards advancement of numerical techniques for the non-homogeneous parabolic evolution problems and for

the time-fractional evolution problems.

1.4 Motivation and objectives

The major objective of the thesis is to devise, analyze, and compute parameter-robust cost-effective high-order

numerical approximations for a class of singularly perturbed linear parabolic PDEs of convection-diffusion

type with smooth and nonsmooth data; and their extensions to the semilinear parabolic PDEs. In the following,

we cite a brief survey of research works which significantly contributed towards parameter-robust numerical

techniques for solving SPDEs with smooth and nonsmooth data; and pose the possible relevant questions in-

vestigated in this thesis.

Construction of parameter-uniform higher-order FMMs for SPDEs is always a difficult undertaking. No-

table among them is the hybrid numerical scheme which in the recent years has become popular as an efficient

FMM for solving numerous stationary and non-stationary convection-diffusion SPPs. In the context of SPDEs

with smooth data, the hybrid scheme is proposed for solving singularly perturbed convection-diffusion BVP by

Stynes and Roos in [109]. The similar method is also investigated by kadalbajoo and Ramesh in [58] for sin-

gularly perturbed second-order differential-difference equation of convection-diffusion type; and for system of

singularly perturbed convection-diffusion BVPs by Priyadharshini et al. in [94]. Further, Mukherjee and Nate-
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san in [81] proposed the similar hybrid scheme for singularly perturbed parabolic convection-diffusion IBVP;

and Das and Natesan in [26] investigated the same for singularly perturbed parabolic convection-diffusion

IBVP with time delay. The above literature shows that the hybrid scheme converges with almost second-order

accuracy in the spatial variable on a piecewise-uniform Shishkin mesh, unless the condition ε � N−1 is sat-

isfied. On the contrary, it can be demonstrated through the numerical experiments that whenever ε � N−1,

the spatial accuracy reduces to O(N−1), specifically outside the boundary layer. On the other hand, it is no-

ticed that the numerical scheme in [26, 81] produces first-order accurate numerical solution of the parabolic

IBVP with respect to the temporal discretization; and thus, the corresponding fully discrete approximation

yields globally first-order convergent numerical solution (considering both the spatial and temporal accuracy).

However, achieving globally higher-order convergent numerical solutions to SPDEs are always a desirable and

challenging task. In view of the above observations, we pose the following natural question:

• “Is it possible to construct and analyze a new FMM followed by a post-processing technique to obtain ε-

uniformly convergent globally higher-order accurate numerical solution (with respect to both space and

time) for a class of singularly perturbed 1D parabolic IBVPs with time-dependent convection coefficient

so as to overcome the drawback of the existing method?”

In this context, we want to mention that there are couples of research works on the post-processing technique

found in the literature for obtaining better approximation to the numerical solutions of SPDEs. For instance,

the articles [27, 82] can be referred to the Richardson extrapolation technique for non-stationary convection-

diffusion SPPs. However, these cited articles mostly focus on the convergence analysis of the extrapolated

solution with respect to the spatial variable apart from enhancing the temporal order of convergence. We now

discuss about couple of research outcomes related to fractional-step fitted mesh methods (FSFMMs), which

play vital role for solving singularly perturbed multidimensional evolutionary PDEs. The advantage of using

the fractional-step method is that it reduces the computational cost remarkably because only tridiagonal linear

systems need to be solved at each time level instead of solving the block tridiagonal linear system to compute

the numerical solution. In connection with the fractional implicit Euler methods, for instance, one can refer

[25, 69] for singularly perturbed 2D parabolic reaction-diffusion IBVPs; and [24] for singularly perturbed 2D

parabolic convection-diffusion IBVPs. These methods are uniformly convergent with first-order accurate in

time. Further, we refer contributions of Clavero et al. in [17], Mukherjee and Natesan in [84] and Bujanda et

al. in [9] to develop higher-order (with respect to both space and time) FSFMMs for singularly perturbed 2D

parabolic IBVPs by using the Peaceman-Rachford fraction-step method. Note that most the above cited articles

consider homogeneous boundary conditions.

It is observed that in the case of fully discrete numerical approximation of evolutionary PDEs with non-

homogeneous (in particular, time-dependent) boundary conditions; the classical evaluation of the boundary data

causes the order reduction in time. In the literature there are relatively few research articles which deal with

numerical approximation of singularly perturbed 2D parabolic PDEs with time-dependent boundary conditions.

In the recent past, Clavero and Jorge implement the fractional implicit Euler method in the time variable and

the classical finite difference schemes in the spatial variables to develop and analyze FSFMMs for solving

singularly perturbed 2D parabolic reaction-diffusion problems in [21] and convection-diffusion problems in

[22] with time-dependent boundary conditions. In both the cases, order reduction in time is observed if the

natural evaluation of the boundary data is used; and a suitable modification to the natural evaluation is suggested
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to eliminate such order reduction. Nevertheless, development and convergence analysis of higher-order ε-

uniform numerical approaches for singularly perturbed 2D parabolic convection-diffusion problems with time-

dependent boundary conditions are still in the early stages and challenging too. Here, we ask the following

relevant question:

• “Can we construct and analyze a new FSFMM followed by a post-processing technique to obtain ε-

uniformly convergent globally higher-order accurate numerical solution (with respect to both space and

time) for a class of singularly perturbed 2D linear parabolic IBVPs with time-dependent boundary con-

dition; and propose a suitable evaluation of the boundary data to avoid the order reduction phenomena

before and after extrapolation ? ”

Over the last few decades, the construction of parameter-robust numerical methods (on uniform or special

non-uniform meshes) for solving stationary and non-stationary semilinear SPPs has also drawn attention to

the several researchers due to various reasons such as modeling of real life problems via semilinear SPDEs,

the computational difficulty in tackling the nonlinearity etc. In this regard, we cite few articles which sig-

nificantly contributed to numerical approximation of singularly perturbed semilinear BVPs at the initial stage

of development. Farrell et al. in [35] prove that it is not possible to attain parameter-uniform convergence

of exponentially fitted finite difference method in the discrete supremum norm on uniform meshes. Contrary

to this, the fitted mesh methods (FMMs) (see the book [77]) which utilize a specified difference operator on

special layer-adapted meshes are quite successful to achive accurate numerical results with much resolving the

boundary layer, whether ε = 10−2 or ε = 10−6. Farrell et al. in [34] construct such uniformly convergent finite

difference methods on special piecewise-uniform meshes for solving singularly perturbed semilinear elliptic

BVPs; and they prove that the methods are first-order accurate in the discrete supremum norm. Further, Gra-

cia et al. in [45] analyze a first-order FMM for a system of semilinear SPDEs of reaction-diffusion type; and

recently, Mariappan and Tamilselvan in [72] analyze a higher-order FMM for a system of semilinear SPDEs of

reaction-diffusion type.

On the other hand, computational investigation of FMMs for solving semilinear parabolic SPDEs is still

in its growing phase. In this context, couple of research articles which deal with numerical approximation

of semilinear parabolic IBVPs are cited here. For instance, one can recall the contributions of Shishkina and

Shishkin in [106]; and Clavero and Jorge in [19] for efficient numerical solution of system of 1D singularly

perturbed semilinear parabolic reaction-diffusion IBVPs on layer-adapted non-uniform meshes. Recently, Rao

and Chaturvedi in [95] analyze a parameter-uniform second-order spatially accurate FMM for a system of

semilinear parabolic reaction-diffusion IBVPs. In addition to this, we recall contributions of Boglaev to propose

and analyze first-order uniformly convergent monotone iterative method in [6] and in [7] on layer resolving

non-uniform meshes for solving singularly perturbed 2D semilinear parabolic PDEs of reaction-diffusion and

convection-diffusion type with homogeneous boundary conditions. However, up to our knowledge, hardly

any research work is done towards ε-uniform higher-order numerical techniques in combination with a post-

processing technique for solving singularly perturbed semilinear parabolic PDEs of convection-diffusion type.

In connection with the above, we pose the following relevant questions:

• “Can we construct and analyze a new fully-implicit FMM followed by a post-processing technique to

obtain ε-uniformly convergent globally higher-order accurate numerical solution (with respect to both
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space and time) for singularly perturbed 1D semilinear parabolic PDEs of convection-diffusion type? ”

• “Is it possible to extend investigation of ε-uniformly convergent globally higher-order accurate numerical

solution (with respect to both space and time) for singularly perturbed 2D semilinear parabolic PDEs

of convection-diffusion type with time-dependent boundary condition by developing a new fully-implicit

FSFMM followed by a post-processing technique? ”

• “Note that the fully implicit method results in nonlinear systems and henceforth, it increases the computa-

tional cost due to the solvability of the nonlinear systems via iterative methods. We further ask regarding

possible formulation of fully discrete linearized FMM and FSFMM, respectively for singularly perturbed

1D semilinear parabolic PDEs and 2D semilinear parabolic PDEs of convection-diffusion type so that

we can avoid solving the nonlinear systems associated with the fully implicit method. ”

So far we discuss about various computational aspects and challenges related to singularly perturbed convection-

diffusion PDEs with smooth data. We now proceed further to look into various scopes for efficient numerical

approximation of convection-diffusion SPDEs with nonsmooth data. Firstly, we focus on SPDEs having dis-

continuous convection coefficient with alternating sign pattern. This type of problem can be viewed as the

linearized version of the time dependent viscous Burger’s equation exhibiting shock layer (see [88]). In the

recent years, the development of FMMs for solving such SPDEs has received significant attention by the sev-

eral authors. Likewise the smooth data case, the hybrid numerical scheme is also analyzed by Cen in [11] for

singularly perturbed BVPs with discontinuous data. Afterwards, Mukherjee and Natesan in [80, 83] analyze a

similar hybrid scheme for a class of singularly perturbed IBVPs possessing strong interior layers. They con-

struct the method on a piecewise-uniform Shishkin mesh resolving interior layers and prove that the method is

at least second-order (up to the logarithmic factor) accurate in space measured in the discrete supremum norm,

provided the parameter ε satisfies ε � N−1. However, one can observe from the numerical experiments that

whenever ε � N−1, the spatial order of convergence reduces to first-order, particularly outside the interior

layers. In view of this observations, the following typical question naturally arises:

• “Is it possible to design a new FMM which is at least second-order accurate in the spatial variable both

outside and inside the interior layers, regardless of the parameter ε, for a class of singularly perturbed

1D linear parabolic IBVPs having strong interior layers ? ”

Next, we consider convection-diffusion SPDEs whose right-hand side source term has a jump discontinuity at

the interior of the domain. Here, the convection coefficient has the same sign pattern through out the domain and

is possibly discontinuous at the same point. This type of problem appears in the semiconductor device modeling

(see, e.g., [73]); and the solution of which possesses a layer at the boundary in addition to an interior layer. In

this context, we recall contribution of Farrell et al. in [33], and Shishkin in [103], respectively for singularly

perturbed convection-diffusion BVPs and singularly perturbed parabolic IBVPs with discontinuous right-hand

side source term. Furthermore, differential equations with discontinuous data have been discussed in [100]. It is

to be noted that the structure of the Shishkin mesh near the point of discontinuity in case of convection-diffusion

SPDEs with weak interior layer is substantially different from that of convection-diffusion SPDEs with strong

interior layers. Due to the occurrence of weak interior layer in one side of the point of discontinuity, the Shishkin

mesh becomes finer on one side and coarser on other side of the interface point. Our current investigation in
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[119] reveals that this mesh structure indeed causes great difficulty while establishing inverse-monotonicity

of the higher-order FMM, a possible extension of the new FMM proposed for singularly perturbed parabolic

IBVPs with boundary and weak interior layers. Here, we pose the following objectives which are challenging

tasks from theoretical as well as computational point of view:

• “Can we construct a higher-order FMM for singularly perturbed 1D linear parabolic convection-

diffusion IBVPs having both boundary and weak interior layers, by suitable modification of the stan-

dard Shishkin mesh fitted to both the layers, so that we can overcome the theoretical difficulty in proving

inverse-monotonicity property of the method and also, achieve at least second-order accuracy across the

different regions, regardless of the parameter ε? ”

On the other hand, theoretical and numerical investigations of efficient FMMs for solving nonlinear SPDEs with

discontinuous data are still in its growing stage. In this regard, we highlight couple of research articles that made

significant contributions towards numerical approximation of stationary nonlinear SPDEs with discontinuous

data. To cite a few, Farrell et al. propose and analyze uniformly convergent nonlinear finite difference methods

on appropriate layer-adapted meshes, respectively for singularly perturbed semilinear reaction-diffusion BVPs

in [36] and for quasilinear convection-diffusion BVPs in [37] with discontinuous data. They also study exis-

tence of the solution of the continuous nonlinear problem by means of the upper and lower solution approach;

and also discuss about existence of the solution of the discrete nonlinear problem. In addition to this, we recall

contribution of Rao et al. in [96] for parameter uniform numerical solution of singularly perturbed system of

semilinear reaction-diffusion BVPs and IBVPs on non-uniform Shishkin mesh. However, to the best of our

knowledge, hardly any attempt has been made to investigate theoretical and computational aspects of singu-

larly perturbed nonlinear parabolic PDEs of convection-diffusion type with discontinuous data. In light of the

foregoing, we raise the following pertinent question:

• “Is it possible to analyze parameter-robust higher-order accurate numerical approximation of a class

of singularly perturbed 1D semilinear parabolic PDEs of convection-diffusion type with discontinuous

data; and to study existence of the solution of the continuous as well as the discrete nonlinear problems

? ”

1.5 Preliminaries

This part presents some important definitions, frequently used notations, and conventions that will be utilized

throughout the thesis.

We consider the following definition to call a numerical method “ε-uniform" or “parameter-robust" in the

thesis.

Definition 1.1 ([32]). Consider a family of mathematical problems parameterized by a perturbation parameter

ε, such that ε ∈ (0, 1]. Assume that uε be the unique solution of each problem in that family and Uε be

the numerical approximation of each uε obtained by a numerical method, where Uε is defined on the discrete

domain D
N,∆t with the discretization parameters N and M , respectively in the spatial and temporal directions

such that ∆t = T/M . Then, the numerical method is said to converge ε-uniformly in the norm ‖ · ‖, if there

exist some positive integers N0 and M0 (independent of ε) such that for some all N ≥ N0 and M ≥ M0, one
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gets

max
0<ε≤1

∥∥Uε − uε∥∥ ≤ C(N−p + (∆t)q
)
,

where C, p and q are positive numbers and are independent of ε,N,M .

Here, p and q are called ε-uniform order of convergence of the numerical method in the spatial and temporal

variables, respectively, and C is called the ε-uniform error constant.

To define how a function behaves as δ → 0, we introduce Landau’s order symbols O (big-oh) and o

(little-oh) used in the thesis. For further details, see the books [62, 85]. Let f = f(x, δ) and g = g(x, δ) be two

real valued functions with x lying in some domain D, where δ > 0.

Definition 1.2. We can write f(x, δ) = O(g(x, δ)), as δ → 0, if there exists positive numbers M and δ0

independent of ε such that

|f(x, δ)| ≤M |g(x, δ)|, for all δ ≤ δ0.

Definition 1.3. We can write f(x, δ) = o(g(x, δ)), as δ → 0, if

lim
δ→0

f(x, δ)

g(x, δ)
= 0.

Let us introduce the well-known function spaces considered in the thesis, particularly, for one-dimensional

parabolic problem. Let D ⊂ R × [0, T ]. For each integer ` ≥ 0, C`(D) denotes the set of functions which are

continuously differentiable up to order ` in D. Let γ ∈ (0, 1). Then, Cγ(D) denotes the set of Hölder continuous

functions in D. Below, we define the Hölder continuous function.

Definition 1.4 ([41, 92]). A function f : D → R is said to be Hölder continuous of exponent γ if there exist a

constant M such that

∣∣f(X, t)− f(Y, τ)
∣∣ ≤M(|X − Y |2 + |t− τ |

)γ/2
, for all (X, t), (Y, τ) ∈ D.

Then, for each integer ` ≥ 1, C`+γ(D) is denoted as the parabolic Hölder space and is defined as

C`+γ(D) :=

{
f :

∂j+kf

∂xj∂tk
∈ Cγ(D), ∀ j, k ∈ N ∪ {0} and with 0 ≤ j + 2k ≤ `

}
.

Note that the above definitions and notations are often used with D, ∂D.

We use the standard supremum norm throughout the thesis, which is denoted by ‖ · ‖D, and for a function

f : D→ R defined by

‖f‖D = max
(X,t)∈D

|f(X, t)|.

When the domain is obvious, we sometimes omit “D" from the above notation.

Next, we furnish the following definition of M-matrix used in the thesis.

Definition 1.5. [32, 91] A matrix A ∈ RN,N is called an M-matrix if A is invertible, A−1 ≥ 0, and ai,j ≤ 0

for all i, j = 1, . . . , N, i 6= j.
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In the following, we introduce the difference operators which are used frequently to describe the finte

difference schemes in the subsequent chapters. For this purpose, for one-dimensional parabolic problem, we

consider arbitrary meshes respectively in the spatial and the temporal domains as DN = {xj}Nj=0 and Λ∆t =

{tn}Mn=0, where N and M are positive integers. Let us denote ∆t = tn − tn−1, n = 1, . . .M ; and hj =

xj − xj−1, j = 1, 2, . . . , N and ĥj = hj + hj+1, j = 1, 2, . . . , N − 1.

For a given mesh function ψnj = ψ(xj , tn), we then define the forward difference, backward diffrence,

modified-central difference, second-order central operators in space, respectively denoted by

D+
x , D

−
x , D

∗
x, δ

2
x(orD+

xD
−
x ) and the backward difference operator in time, denoted by D−t , as follows:

D−x ψ
n
j =

ψnj −ψnj−1

hj
, D+

x ψ
n
j =

ψnj+1 −ψnj
hj

, D∗xψ
n
j =

hj

ĥj
D+
x ψ

n
j +

hj+1

ĥj
D−x ψ

n
j ,

D+
xD
−
x ψ

n
j = δ2

xψ
n
j =

2

ĥj
(D+

x ψ
n
j −D−x ψnj ), and D−t ψ

n
j =

ψnj −ψ
n−1
j

∆t
.

Further, for two-dimensional parabolic problem, we consider arbitrary mesh in the spatial domain as D
N

=

{xi, yj}i/j=Ni/j=0 . and we denote hxi = xi − xi−1, 1, 2, . . . N and ĥxi = hxi + hxi+1 , 1, 2, . . . N − 1. in the

x-direction.

For a given mesh function ψni,j = ψ(xi, yj , tn), the difference operators denoted by

D+
x , D

−
x , D

∗
x, δ

2
x in the x-direction and the backward difference operator denoted by D−t in the t-direction, are

defined as follows:

D+
x ψ

n
i,j =

ψni+1,j −ψni,j
hxi

, D−x ψ
n
i,j =

ψni,j −ψni−1,j

hxi
, D∗xψ

n
i,j =

hxi

ĥxi
D+
x ψ

n
i,j +

hi+1

ĥxi
D−x ψ

n
i,j ,

δ2
xψ

n
i,j =

2

ĥxi
(D+

x ψ
n
i,j −D−x ψni,j), δ2

xψ
n
i,j =

2

ĥxi
(D+

x ψ
n
i,j −D−x ψni,j),

and D−t ψ
n
i,j =

ψni,j −ψ
n−1
i,j

∆t
.

Similarly for the y-direction, we define the difference operators denoted by D+
y , D

−
y , D

∗
y, δ

2
y . Throughout the

thesis, C (sometimes subscripted) denotes a positive constant that is independent of the perturbation parameter

ε, N and M (number of mesh-intervals in the spatial and the temporal directions, respectively). Note that an

unsubscripted C may take a generic value but whenever a subscripted C is used, we treat it as a fixed constant

for that particular position. However, for clarity of our presentation, we also use the notations M0,M1,K0,K1

which are fixed constants and independent of perturbation parameter and discretization parameters.

1.6 List of model problems

In this section, we describe model problems briefly that are considered in this thesis.
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1.6.1 Singularly perturbed 1D linear parabolic PDE with smooth data

Here, we consider the following class of singularly perturbed parabolic convection-diffusion initial-boundary

value problems (IBVPs) posed on the domain D = Ω× (0, T ] = (0, 1)× (0, T ]:

(
∂

∂t
+ Lx,ε

)
y(x, t) = g(x, t), (x, t) ∈ D,

y(x, 0) = q0(x), on Ω = [0, 1],

y(0, t) = sl(t), y(1, t) = sr(t), t ∈ [0, T ],

(1.1)

where

Lx,εy = −ε
∂2y
∂x2

+ a(x, t)
∂y
∂x

+ b(x, t)y , (1.2)

and ε is a small parameter such that ε ∈ (0, 1]. The coefficients a(x, t), b(x, t) and the source term g(x, t) are

considered to be sufficiently smooth with

a(x, t) ≥ m > 0, b(x, t) ≥ β ≥ 0, on D = Ω× [0, T ]. (1.3)

The boundary and the initial data, i.e., sl, sr and q0 are also assumed to be sufficiently smooth. The solution

of the IBVP (1.1)-(1.3) generally possesses boundary layer at x = 1 of width O(ε).

1.6.2 Singularly perturbed 2D linear parabolic PDE with smooth data

Here, we consider the following class of singularly perturbed parabolic convection diffusion IBVPs posed on

the domain D = G× (0, T ]; G = (0, 1)× (0, 1) :

( ∂
∂t

+ Lε

)
u(x, y, t) = g(x, y, t), (x, y, t) ∈ D,

u(x, y, 0) = q0(x, y), (x, y) ∈ G = [0, 1]× [0, 1],

u(x, y, t) = s(x, y, t), in ∂G× (0, T ],

(1.4)

where  Lεu = −ε∆u + ~v(x, y, t).~∇u + b(x, y, t)u,

~v(x, y, t) =
(
v1(x, y, t), v2(x, y, t)

)
,

(1.5)

and ε is a small parameter such that ε ∈ (0, 1]. The coefficients ~v(x, y, t), b(x, y, t) and the source term

g(x, y, t) are considered to be sufficiently smooth with

v1(x, y, t) ≥ m1 > 0, v2(x, y, t) ≥ m2 > 0, b(x, y, t) ≥ 0, on D. (1.6)

The boundary and the initial data, i.e., s and q0 are also assumed to be sufficiently smooth. The solution of

the IBVP (1.4)-(1.6) generally possesses exponential layers of width O(ε) at the outflow boundaries x = 1 and

y = 1.
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1.6.3 Singularly perturbed 1D semilinear parabolic PDE with smooth data

Here, we consider the following class of singularly perturbed semilinear 1D parabolic convection-diffusion

IBVPs posed on the domain D = Ω× (0, T ] = (0, 1)× (0, T ]:
∂y(x, t)

∂t
+ Lx,εy(x, t) + b

(
x, t, y(x, t)

)
= g(x, t), (x, t) ∈ D,

y(x, 0) = q0(x), x ∈ Ω = [0, 1],

y(0, t) = sl(t), y(1, t) = sr(t), t ∈ (0, T ],

(1.7)

where

Lx,εy = −ε
∂2y
∂x2

+ a(x)
∂y
∂x
,

and ε is a small parameter such that ε ∈ (0, 1]. The coefficient a(x), the source term g(x, t) are considered to

be sufficiently smooth with

a(x) ≥ m > 0, on Ω. (1.8)

In addition, it is assumed that the function b
(
x, t, y

)
satisfies that

∂b
(
x, t, y

)
∂y

≥ β > 0, (x, t, y
)
∈ D× R. (1.9)

The boundary and the initial data, i.e., sl, sr and q0 are also assumed to be sufficiently smooth. The solution

of the IBVP (1.7)-(1.9) generally possess boundary layer of width O(ε) at x = 1.

1.6.4 Singularly perturbed 2D semilinear parabolic PDE with smooth data

Here, we consider the following class of singularly perturbed parabolic convection-diffusion IBVPs posed on

the domain D = G× (0, T ]:
∂u(x, y, t)

∂t
+ Lεu(x, y, t) + b

(
x, y, t, u(x, y, t)

)
= g(x, y, t), (x, y, t) ∈ D,

u(x, y, 0) = q0(x, y), (x, y) ∈ G = [0, 1]× [0, 1],

u(x, y, t) = s(x, y, t), in ∂G× (0, T ],

(1.10)

where  Lεu = −ε∆u + ~v(x, y, t).~∇u,

~v(x, y, t) =
(
v1(x, y, t), v2(x, y, t)

)
,

(1.11)

and ε is a small parameter such that ε ∈ (0, 1]. The coefficients ~v(x, y, t) and the source term g(x, y, t) are

considered to be sufficiently smooth with

v1(x, y, t) ≥ m1 > 0, v2(x, y, t) ≥ m2 > 0, on D. (1.12)
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In addition, it is assumed that the function b
(
x, y, t, u

)
satisfies that

∂b(x, y, t, u)

∂u
≥ β > 0, (x, y, t, u) ∈ D× R. (1.13)

The boundary and the initial data, i.e., s and q0 are also assumed to be sufficiently smooth. The solution of the

IBVP (1.10)-(1.13) generally possesses exponential layers of width O(ε) at the outflow boundaries x = 1 and

y = 1.

1.6.5 Singularly perturbed linear parabolic PDE with nonsmooth data

In the beginning, for describing the model problem, we introduce the following notations:D− = Ω− × (0, T ] = (0, d)× (0, T ], D+ = Ω+ × (0, T ] = (d, 1)× (0, T ], 0 < d < 1,

D = Ω× (0, T ] = (0, 1)× (0, T ], D = Ω× [0, T ] = [0, 1]× (0, T ].

Here, we consider the following class of singularly perturbed parabolic IBVPs:

(
Lx,ε −

∂

∂t

)
y(x, t) = g(x, t), (x, t) ∈ D− ∪D+,

y(x, 0) = q0(x), x ∈ Ω,

y(0, t) = sl(t), y(1, t) = sr(t), t ∈ (0, T ],

(1.14)

where

Lx,εy = ε
∂2y
∂x2

+ a(x)
∂y
∂x
− b(x, t)y ,

together with the following interface conditions:

[y ](d, t) = 0,
[∂y
∂x

]
(d, t) = 0, t ∈ (0, T ]. (1.15)

Here, ε is a small parameter such that ε ∈ (0, 1]; and we assume that the convection coefficient a(x), the reaction

term b(x, t), and the source term g(x, t) are sufficiently smooth on Ω− ∪ Ω+, D and D− ∪ D+, respectively;

such that  |[a](d)| ≤ C, |[g ](d, t)| ≤ C,

b(x, t) ≥ β ≥ 0, on D.
(1.16)

We consider two cases for the convection coefficient:

Case I : −m∗1 < a(x) < −m1 < 0, x < d, m∗2 > a(x) > m2 > 0, x > d, (1.17)

Case II : a(x) ≥ m0 > 0, Ω
− ∪ Ω+

. (1.18)

The boundary and the initial data, i.e., i.e., sl, sr and q0 are also assumed to be sufficiently smooth. Here,

[g ](d, t) = g(d+, t) − g(d−, t), where g(d±, t) = limx→d±0 g(x, t). In Case I, the solution of the IBVP

(1.14)-(1.16) with (1.17) generally possess strong interior layers of width O(ε) in the vicinity of the point

x = d; and in Case II, the solution of the IBVP (1.14)-(1.16) with (1.18) generally possess a boundary layer at
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left boundary x = 0 and a weak interior layer in the right side of the point x = d of width O(ε).

1.6.6 Singularly perturbed semilinear parabolic PDE with nonsmooth data
Here, we consider the following class of singularly perturbed parabolic IBVPs of the form:

Lx,εy(x, t)− b
(
x, t, y(x, t)

)
−
∂y
∂t

= g(x, t), (x, t) ∈ D− ∪D+,

y(x, 0) = q0(x), x ∈ Ω = [0, 1],

y(0, t) = sl(t), y(1, t) = sr(t), t ∈ (0, T],

(1.19)

where

Lx,εy = ε
∂2y
∂x2

+ a(x)
∂y
∂x
,

together with the interface conditions

[y ](d, t) = 0,
[∂y
∂x

]
(d, t) = 0, t ∈ (0, T]. (1.20)

Here, ε is a small parameter such that ε ∈ (0, 1]; and it is assumed that the convection coefficient a(x) is smooth

on Ω
− and Ω

+, and the source term g(x, t) is smooth enough on D
− and D

+ such that

a(x) > m > 0, ∀ x ∈ Ω− ∪ Ω+,
∣∣[a](d)

∣∣ ≤ C, ∣∣[g ](d, t)
∣∣ ≤ C. (1.21)

In addition, it is assumed that the function b
(
x, t, y

)
satisfies that

∂b
(
x, t, y

)
∂y

≥ β > 0, (x, t, y
)
∈ D× R. (1.22)

The boundary and the initial data, i.e., s and q0 are also assumed to be sufficiently smooth. The solution of

the IBVP (1.19)-(1.22) generally possesses a weak interior layer to the right side of x = d, in addition to the

boundary layer at x = 0 of width O(ε).

1.7 Structure of the thesis

The thesis is composed of eight chapters and the rest of the chapters are structured as follows:

The major research contributions are presented in Chapters 2-7; out of which the first four chapters are

devoted to investigation of robust numerical methods for time-dependent SPDEs with smooth data; and the

remaining two chapters are for time-dependent SPDEs with nonsmooth data. A concise description of research

works in those chapters are sequentially unveiled below.

In Chapter 2, we propose and examine a robust numerical method for one-dimensional singularly perturbed

linear parabolic IBVPs of the form (1.1)-(1.3), which can consist of the time-dependent convection coefficient.

At the beginning, we discuss about the analytical properties which include stability and asymptotic behavior of

the solution of the continuous problem. We then analyze a new FMM together with the Richardson extrapolation

technique (solely in the temporal direction) for achieving higher-order numerical approximation (with respect

to both space and time) of the IBVP (1.1)-(1.3). To constitute the fully discrete scheme associated with the

new FMM, firstly we discretize the governing PDE using the backward-Euler method in the temporal direction;
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and afterwards, the resulting semidiscrete problem is approximated by proposing a new hybrid finite difference

scheme in the spatial direction. To achieve this, the spatial domain is discretized by means of a piecewise-

uniform Shishkin mesh accumulated near the boundary at x = 1, and the time domain by an equidistant

mesh. At the end, numerous numerical results are presented to corroborate the theoretical findings; and also

to demonstrate the computational efficiency (in terms of computational time) and the accuracy of the present

numerical method in comparison with the existing numerical method given in [81]. Further, we carry out

numerical experiments for the semi-linear parabolic problems using using the Newton’s linearization technique.

In Chapter 3, we extend our study for cost-effective higher-order numerical approximation of two-dimensional

singularly perturbed linear parabolic IBVPs of the form (1.4)-(1.6) consisting of the time-dependent boundary

conditions. Firstly, we present the analytical properties of the solution of the continuous problem; and thereafter,

we study computational aspects of the IBVP (1.4)-(1.6) by proposing a new FSFMM, followed by the Richard-

son extrapolation technique solely in the temporal direction. The proposed FSFMM combines the fractional

implicit Euler method to discretize in time and a new hybrid finite difference scheme to discretize in space. To

constitute this method, we discretize the spatial domain using a non-uniform rectangular mesh (tensor-product

of 1D piecewise-uniform Shishkin meshes with N mesh-intervals in each spatial direction), and the time do-

main by an equidistant mesh. In addition to this, we discuss the order reduction phenomena in connection with

the classical evaluation of the time-dependent boundary conditions. Finally, numerous numerical experiments

demonstrate that the theoretical findings match well with the numerical results. We also compare the accuracy

of the proposed method with the FSFMM proposed in [22] to show the robustness of the current algorithm.

Chapter 4 is devoted to the study of two novel computational methods for one dimensional singularly

perturbed semilinear parabolic IBVPs of the form (1.7)-(1.9). The study begins with stability analysis and

derivation of asymptotic behavior of the analytical solution of the governing semilinear problem. We approxi-

mate the IBVP (1.7)-(1.9) by proposing two new FMMs followed by the extrapolation technique; and provide

convergence analysis of those methods. The first one is the fully-implicit method which utilizes the implicit

Euler method for the temporal discretizing; and the other one is the implicit-explicit (IMEX) method which

utilizes the IMEX-Euler method for the temporal discretizing. The spatial discretization for both the numerical

methods is based on a new finite difference scheme. To accomplish this, the spatial domain is discretized by

means of a piecewise-uniform Shishkin mesh accumulated near the boundary at x = 1, and the time domain

by an equidistant mesh. Finally, numerous numerical results are presented to validate the theoretical findings,

and a comparative study is made among the proposed methods along with the standard implicit upwind finite

difference scheme to test the effectiveness of the newly developed methods with regard to the order of accuracy

and the computational cost.

In Chapter 5, we extend our study of analyzing different computational methods for two-dimensional sin-

gularly perturbed semilinear parabolic IBVPs of the form (1.10)-(1.13). At first, the analytical properties of the

solution of the continuous problem is discussed. At first, two new FSFMMs are developed and analyzed for

cost-effective numerical approximations of the IBVP (1.10)-(1.13), and later on, the extrapolation technique

is applied solely in the temporal direction to achieve globally higher-order accurate numerical solution. The

proposed methods are the fully-implicit fractional-step method, which utilizes the the fractional implicit Euler

method for the temporal discretizing; and the IMEX fractional-step method, which utilizes the fractional IMEX-

Euler method for the temporal discretizing. The spatial discretization for both the numerical methods is based
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on a new finite difference scheme. To constitute this method, we discretize the spatial domain using a non-

uniform rectangular mesh (tensor-product of 1D piecewise-uniform Shishkin meshes with N mesh-intervals in

each spatial direction), and the time domain by an equidistant mesh. In addition to this, we analyze the order

reduction phenomena in connection with the classical evaluation of the time-dependent boundary conditions.

Finally, we carry out extensive numerical experiments to validate the theoretical findings. Moreover, the nu-

merical results of the proposed methods are compared with the fractional-step implicit upwind finite difference

scheme to examine the robustness of the newly developed methods.

Chapter 6 deals with two different class of singularly perturbed linear parabolic convection-diffusion IB-

VPs of the form (1.14)-(1.16) with nonsmooth data. At first we focus our attention on the IBVP (1.14)-(1.16)

together with the condition (1.17), whose solution possesses strong interior layers. Here, we devise and analyze

a new efficient FMM, which is constituted utilizing a suitable layer-resolving Shishkin mesh in the spatial di-

rection. Next, we turn our attention to the IBVP (1.14)-(1.16) together with the condition (1.18), whose solution

exhibits both boundary and weak interior layers. Here, we propose and analyze a new efficinet FMM, which is

constituted utilizing a modified layer-adapted mesh in the spatial direction. The modified layer-adapted mesh

is a modification of the standard Shishkin mesh adapted to both boundary and weak interior layers. In the

both cases, we use an equidistant mesh in the temporal direction. Finally, extensive numerical experiments are

conducted in both the cases to support the theoretical findings and also to show the improvement in terms of

spatial order of convergence in comparison with the existing numerical method. Further, we carry out numerical

experiments for the semi-linear parabolic problems using using the Newton’s linearization technique.

In Chapter 7, we focus on robust numerical approximation of a class of singularly perturbed semilinear

parabolic IBVPs of the form (1.19)-(1.22) with nonsmooth data. Here, the solution exhibits both boundary

and weak interior layers. At first, we study existence, stability of the analytical solution of the governing

semilinear problem and derive asymptotic behavior of the analytical solution. We then propose and analyze a

higher-order time accurate FMM utilizing a suitable layer-adapted Shishkin meshin the spatial direction and

an equidistant mesh in the temporal direction. Finally, The theoretical error estimates are finally verified by

numerical experiments, which also include comparison of the proposed numerical method with the implicit

upwind method in terms of order of accuracy.

The thesis ends with a summary of the research contributions in Chapter 8; and also provides intuitive

ideas for possible future scopes of the current research works. It is to be noted that the examples considered in

the thesis satisfy the required compatibility conditions. In this context, one can see Appendix B which verifies

the compatibility conditions for examples considered in Chapter 3 and 5.
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Chapter 2

On ε-Uniform Higher-Order Accuracy of New Efficient
Numerical Method for Singularly Perturbed 1D Linear
Parabolic PDEs with Smooth Data

This chapter aims to achieve higher-order numerical approximation to the solutions of a class of singularly per-

turbed parabolic problems which can consist of the time-dependent convection coefficient and generally possess

regular boundary layer. In order to fulfill the aim, at first we develop and analyze an efficient numerical method

by discretizing the model problem using a new finite difference scheme on an appropriate layer-adapted mesh

in the spatial direction, and the time derivative using the backward-Euler method on an equidistant mesh. We

adopt the two-stage discretization process to establish the parameter-uniform estimate in the discrete supremum

norm; and provide stability analysis in both the temporal and spatial discretization cases. Afterwards, we apply

the Richardson extrapolation technique solely in the temporal direction for enhancing the temporal accuracy.

We finally show that the resulting numerical solution is globally second-order convergent with respect to both

the spatial and temporal variables. At the end, numerous numerical results are presented to corroborate the

theoretical findings; and also to demonstrate the computational efficiency and the accuracy of the present nu-

merical method in comparison with the existing numerical method. Besides this, we extend the computational

experiment by solving the singularly perturbed semi-linear parabolic problem.

2.1 Introduction

In this chapter, we study the following class of singularly perturbed parabolic convection-diffusion initial-

boundary value problems (IBVP) posed on the domain D = Ω× (0, T ] = (0, 1)× (0, T ]:

( ∂
∂t

+ Lx,ε

)
y(x, t) = g(x, t), in D,

y(x, 0) = q0(x), on Ω = [0, 1],

y(0, t) = sl(t), y(1, t) = sr(t), t ∈ [0, T ],

(2.1)

where

Lx,εy = −ε
∂2y
∂x2

+ a(x, t)
∂y
∂x

+ b(x, t)y ,
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ε ∈ (0, 1] is a small parameter, and the coefficients a(x, t), b(x, t) and the source term g(x, t) are considered to

be sufficiently smooth with

a(x, t) ≥ m > 0, b(x, t) ≥ β ≥ 0, on D = Ω× [0, T ]. (2.2)

The existence of the solution y(x, t) of the IBVP (2.1)-(2.2) follows from [Chapter IV, §5] of the book [65] by

Ladyzenskaja et al. The solution of the IBVP (2.1)-(2.2) generally possesses boundary layer at x = 1 of width

O(ε). In the model problem, apart from imposing the smoothness criterion on a, b and g , the boundary and the

initial data, i.e., sl, sr and q0 are assumed to be sufficiently smooth. Besides this, the following compatibility

conditions are imposed at the corner points (0, 0) and (1, 0):

q0(0) = sl(0), q0(1) = sr(0), (2.3)

and 
dsl(0)

dt
= g(0, 0) + ε

d2q0(0)

dx2
− a(0, 0)

dq0(0)

dx
− b(0, 0)q0(0),

dsr(0)

dt
= g(1, 0) + ε

d2q0(1)

dx2
− a(1, 0)

dq0(1)

dx
− b(1, 0)q0(1).

(2.4)

Under these hypothesis the IBVP (2.1)-(2.2) exhibits a unique solution y ∈ C2+γ(D). Further, in order to derive

the bounds of the derivatives up to fourth-order in space and second-order in time in Lemma 2.3, we require

the solution y ∈ C4+γ(D), which is ensured by the assumption of the compatibility conditions in (2.3)-(2.4)

together with the following compatibility conditions at the corner points (0, 0) and (1, 0):
d2sl(0)

dt2
=
∂g(0, 0)

∂t
− q0(0)

∂b(0, 0)

∂t
− q′0(0)

∂a(0, 0)

∂t
− Lx,ε

(
g − Lx,εq0

)
(0, 0),

d2sr(0)

dt2
=
∂g(1, 0)

∂t
− q0(1)

∂b(1, 0)

∂t
− q′0(1)

∂a(1, 0)

∂t
− Lx,ε

(
g − Lx,εq0

)
(1, 0).

(2.5)

Here, it is important to note that papers [26, 81] assume the convection coefficient ′a′ as the function of x only,

i.e., a = a(x). However, we consider time dependent convection coefficient in the considered PDE in (2.1)

which makes the theoretical and computational analysis more interesting and challenging.

The layout of this chapter is structured as follows: The properties of the analytical solution consisting of the

stability and the asymptotic behavior are discussed in Section 2.2. Section 2.3 provides an appropriate layer-

adapted mesh and describes the newly proposed numerical method. In Section 2.4, we perform the convergence

analysis by adopting the two-stage discretization process. Firstly, we estimate the error related to the time

semidiscretization and later, we estimate the error related to the spatial discretization of the resulting stationary

problem (2.15). Finally, we prove the main convergence result related to the ε-uniform error estimate of the

proposed method. In Section 2.5, we discuss about the temporal Richardson extrapolation. Further, Section 2.6

presents the Newton’s linearization method for solving the singularly perturbed semi-linear parabolic problem.

Finally, the numerical results are presented in Section 2.7 for several test examples to validate the theoreti-

cal results; and the computational efficiency accuracy as well as the accuracy of the present method are also
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compared with the existing scheme. The chapter is ended up with a brief summary in Section 2.8.

2.2 The analytical solution of continuous problem

In this section, we discuss properties of the analytical solution of the IBVP (2.1)-(2.2) and its derivatives. These

properties are essential for convergence analysis related to the numerical approximation of the IBVP (2.1)-(2.2).

At first, we show that the differential operator
( ∂
∂t

+ Lx,ε

)
corresponding to our model problem (2.1) satisfies

the maximum principle in Lemma 2.1 and consequently, we obtain the stability result in Lemma 2.2. A concise

proof of Lemma 2.1 is furnished below for clarity of the presentation. Let ∂D = D\D.

Lemma 2.1. Let the function φ ∈ C0(D) ∩ C2(D) be such that φ ≤ 0, on ∂D and
( ∂
∂t

+ Lx,ε

)
φ ≤ 0, in D,

then it implies that φ ≤ 0 on D.

Proof: Here, we use method of contradiction. Firstly, φ ∈ C0(D) =⇒ there exists (s, τ) ∈ D such that

φ(s, τ) = max
(x,t)∈D

φ(x, t),

and without loss of generality, we assume that φ(s, τ) > 0. Now, in conformity with the hypothesis of the

maximum principle, φ(x, t) ≤ 0 on ∂D =⇒ (s, τ) ∈ D. Therefore, under the above assumption, we have( ∂
∂t

+ Lx,ε

)
φ(s, τ) > 0, and this contradicts the hypothesis that

( ∂
∂t

+ Lx,ε

)
φ(x, t) ≤ 0 for all (x, t) ∈ D.

Hereby, we complete the proof.

The following ε-uniform stability result is deduced by applying Lemma 2.1.

Lemma 2.2. The solution y(x, t) of the IBVP (2.1)-(2.2) satisfies that ‖y‖D ≤ ‖y‖∂D +
1

m
‖g‖D.

Now, according to the result stated in [[90], Lemma 2.2], without loss of generality, we assume that y ≡ 0

on ∂D. Hence, the first-order compatibility conditions in (2.4) and the second-order compatibility conditions

in (2.5), respectively imply that

g(0, 0) = 0 = g(1, 0), and
∂g(0, 0)

∂t
− Lx,εg(0, 0) = 0 =

∂g(1, 0)

∂t
− Lx,εg(1, 0). (2.6)

Now, apart from assuming the conditions on the function g at the corner points (0, 0) and (1, 0), we further

assume the following conditions:

∂j+kg(0, 0)

∂xj∂tk
= 0, for 0 ≤ j + 2k ≤ 3, (2.7)

which are required to show that the reduced solution U(x, t) of the IBVP (2.1)-(2.2) is sufficiently smooth.

Afterwards, we decompose the solution y(x, t) as

y(x, t) = U(x, t) + V (x, t) + W (x, t),

where V is a boundary layer type function and W is the remainder term which is ofO(ε); and derive the bounds

of the derivatives given in (2.8) by adopting the approach given in [90], as mentioned in [99, Part II, Section

2.2, Remark 2.8].
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Lemma 2.3. The derivatives of the solution y(x, t) of the IBVP (2.1)-(2.2) satisfy the following estimate

∣∣∣∂j+ky(x, t)

∂xj∂tk

∣∣∣ ≤ C(1 + ε−j exp(−m(1− x)/ε)
)
, (x, t) ∈ D, (2.8)

∀ j, k ∈ N ∪ {0} satisfying 0 ≤ j + 2k ≤ 4.

2.3 The discrete solution of continuous problem

This section provides the description of the layer-adapted mesh for discretizing the domain D and the proposed

numerical method for discretizing the IBVP (2.1)-(2.2).

2.3.1 Discretization of the domain

Let N(≥ 4) be an even positive integer. Now, to discretize the domain D, we construct a mesh D
N,∆t

=

Ω
N × Λ∆t. Here, ΩN is denoted as the piecewise-uniform Shishkin mesh on the spatial domain Ω as depicted

in Fig 2.1. To construct the mesh, we partition Ω into two sub-intervals [0, 1 − η] and [1 − η, 1], where the

transition parameter η is defined by

η = min
{1

2
,η0ε lnN

}
, η0 = 2/θ,

where θ is a positive constant to be determined later. We consider non-uniform mesh in the analysis and for

that we consider η = η0ε lnN .

0 1− η 1
N
2

N
2

Figure 2.1: Shishkin mesh

Now, on each sub-interval we place equidistant mesh with N/2 mesh-intervals such that ΩN = {xj}Nj=0,

where

xj =


2(1− η)j

N
, for 0 ≤ j ≤ N/2,

(1− η) +
(
j − N

2

)2η

N
, for N/2 < j ≤ N.

On the other hand, we construct an equidistant mesh, denoted by Λ∆t :=
{
tn
}M
n=0

, with M mesh-intervals in

the temporal direction having the step-size ∆t = T/M . Next, hj = xj − xj−1, 1 ≤ j ≤ N, is denoted as the

step-size in the spatial direction such that ĥj = hj + hj+1, 1 ≤ j ≤ N − 1; and it follows from the definition

of xj’s that

hj =

 H = 2(1− η)/N, for 1 ≤ j ≤ N
2 ,

h = 2η/N, for N2 < j ≤ N.
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2.3.2 Proposed numerical method
Firstly, we discretize (2.1) by using the backward-Euler method with respect to the the temporal variable and it

yields the following semidiscrete scheme:
y0(x) = q0(x), x ∈ Ω,

(I + ∆tLn+1
x,ε )yn+1(x) = yn(x) + ∆tg(x, tn+1), x ∈ Ω,

yn+1(0) = sl(tn+1), yn+1(1) = sr(tn+1),

(2.9)

where

Ln+1
x,ε ≡ −ε

∂2

∂x2
+ a(x, tn+1)

∂

∂x
+ b(x, tn+1).

Here, yn(x) denotes the semidiscrete approximation to the exact solution y(x, t) of the IBVP (2.1)-(2.2) at the

time level tn = n∆t.

Afterwards, in order to constitute the fully discrete scheme, we discretize (2.9) in the spatial direction by

proposing a new hybrid finite difference scheme. The scheme consists of a modified central difference scheme

whenever ε > ‖a‖N−1; and whenever ε ≤ ‖a‖N−1, the scheme is constituted by combining the midpoint

upwind scheme in the outer region (0, 1− η] and the modified central difference scheme in the boundary layer

region (1− η, 1).

Thus, to get the numerical solution of the IBVP (2.1)-(2.2) on D
N,∆t, we use the fully discrete finite difference

scheme of the following form:

Y 0
j = q0(xj), 0 ≤ j ≤ N,

Y n+1
j + ∆tLn+1

N,mcdY
n+1
j = Y n

j + ∆tgn+1
j ,

for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

Y n+1
j−1/2 + ∆tLn+1

N,mupY
n+1
j = Y n

j−1/2 + ∆tgn+1
j−1/2,

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

Y n+1
j + ∆tLn+1

N,mcdY
n+1
j = Y n

j + ∆tgn+1
j ,

for N/2 < j ≤ N − 1,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), n = 0, 1, . . . ,M − 1,

(2.10)

where  Ln+1
N,mupY

n+1
j = −εδ2

xY
n+1
j + an+1

j− 1
2

D−x Y
n+1
j + bn+1

j−1/2Y
n+1
j− 1

2

,

Ln+1
N,mcdY

n+1
j = −εδ2

xY
n+1
j + an+1

j D∗xY
n+1
j + bn+1

j Y n+1
j .
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Let ρj =
(
ε−

an+1
j hj

2

)
. Then, we rewrite the difference scheme (2.10) in the following form:



Y 0
j = q0(xj), 0 ≤ j ≤ N,

L∆t
N,hybY

n+1
j ≡ µ−j Y

n+1
j−1 + µcjY

n+1
j + µ+

j Y
n+1
j+1 = Gn+1

j ,

for 1 ≤ j ≤ N − 1,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), n = 0, 1, . . . ,M − 1.

(2.11)

Here, the coefficients µ−j , µ
c
j , µ

+
j are given by

µ−j = ∆t µ−mcd,j , µcj = ∆t µcmcd,j + 1, µ+
j = ∆t µ+

mcd,j ,

for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

µ−j = ∆t µ−mup,j + 1
2 , µcj = ∆t µcmup,j + 1

2 , µ+
j = ∆t µ+

mup,j ,

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

µ−j = ∆t µ−mcd,j , µcj = ∆t µcmcd,j + 1, µ+
j = ∆t µ+

mcd,j ,

for N/2 < j ≤ N − 1,

(2.12)

where 

µ−mup,j = − 2ε

ĥjhj
−
an+1
j−1/2

hj
+
bn+1
j−1/2

2
,

µcmup,j =
2ε

hjhj+1
+
an+1
j−1/2

hj
+
bn+1
j−1/2

2
,

µ+
mup,j = − 2ε

ĥjhj+1

,

and



µ−mcd,j = − 2ρj

ĥjhj
−
an+1
j

hj
,

µcmcd,j =
2ρj

hjhj+1
+
an+1
j

hj
+ bn+1

j ,

µ+
mcd,j = − 2ρj

ĥjhj+1

,

(2.13)

and the right hand side vector Gn+1 in (2.11) is given by

Gn+1
j =



Y n
j + ∆t gn+1

j , for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

1
2(Y n

j−1 + ∆t gn+1
j−1 ) + 1

2(Y n
j + ∆t gn+1

j ),

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

Y n
j + ∆t gn+1

j , for N/2 < j ≤ N − 1.

(2.14)

2.4 Convergence analysis

In this section, we derive the ε-uniform error estimate associated with the fully discrete scheme (2.11)-(2.14).

In order to derive the required estimate, we adopt the two-stage discretization process. Firstly, we estimate the
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error related to the time semidiscretization and later, we estimate the error related to the spatial discretization

of the resulting stationary problem.

2.4.1 Error related to the time semidiscretization
Here, we estimate the global temporal error related to the approximation of the exact solution y(x, t) of the

IBVP (2.1)-(2.2) at the time level t = tn+1 by the semidiscrete solution yn+1(x). For this purpose, we perform

the stability analysis and also present the consistency result of the scheme (2.9).

2.4.1.1 Stability
In the following lemma, it is shown that the operator (I + ∆tLn+1

x,ε ) satisfies the maximum principle.

Lemma 2.4. Let the function ψ ∈ C0(Ω)∩C2(Ω) be such that ψ(0) ≤ 0, ψ(1) ≤ 0, and (I + ∆tLn+1
x,ε )ψ(x) ≤

0, for all x ∈ Ω, then it implies that ψ(x) ≤ 0, for all x ∈ Ω̄.

Proof: The outline of the proof is similar to that of Lemma 2.1.

Now, the result in Lemma 2.5 guarantees the stability of the time semidiscrete scheme (2.9) and hereby

ensures that the scheme (2.9) produces a unique solution after each time step.

Lemma 2.5. Let the function Z ∈ C0(Ω) ∩ C2(Ω) be such that Z(0) = 0 = Z(1). Then we have

∥∥Z∥∥ ≤ 1

(1 + β∆t)

∥∥(I + ∆tLn+1
x,ε )Z

∥∥.
Proof: Consider the following functions

ψ±(x) =
−1

(1 + β∆t)

∥∥(I + ∆tLn+1
x,ε )Z

∥∥± Z(x), x ∈ Ω.

It is obvious that ψ±(0) ≤ 0, ψ±(1) ≤ 0, and since,

(I + ∆tLn+1
x,ε )

∥∥(I + ∆tLn+1
x,ε )Z

∥∥
(1 + β∆t)

≥
∥∥(I + ∆tLn+1

x,ε )Z
∥∥ =⇒ (I + ∆tLn+1

x,ε )ψ±(x) ≤ 0, x ∈ Ω,

by applying Lemma 2.4, we obtain the desired result.

2.4.1.2 Temporal error
We define en+1(x) = y(x, tn+1)− yn+1(x) as the global error related to the time semidiscrete scheme (2.9) at

the time level tn+1. It is to be noted that for deriving the required estimate of the global error at the final time

step, one needs to consider the contribution of the local error obtained at each time step. Due to this reason, we

obtain estimate of the local error in Lemma 2.6.

Now, let us denote ỹn+1(x) as the solution of the semidiscrete scheme (2.9) obtained at the time level tn+1, by

choosing y(x, tn) as the initial data instead of yn(x), x ∈ Ω; and hereby, we introduce the following auxiliary

BVP:  (I + ∆tLn+1
x,ε )ỹn+1(x) = y(x, tn) + ∆tg(x, tn+1), x ∈ Ω,

ỹn+1(0) = sl(tn+1), ỹn+1(1) = sr(tn+1).
(2.15)
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Lemma 2.6. The local error related to the time semidiscrete scheme (2.9) at the time level tn+1, defined as

ẽn+1(x) = y(x, tn+1)− ỹn+1(x), satisfies the following estimate:

∥∥ẽn+1
∥∥ ≤ C(∆t)2. (2.16)

Proof: Applying Taylor’s theorem on the analytical solution y(x, t) with respect to the temporal variable, we

have

y(x, tn) = y(x, tn+1)−∆t
∂y(x, tn+1)

∂t
+

(∆t)2

2

∂2y(x, s)

∂t2
, tn < s < tn+1,

= (I + ∆tLn+1
x,ε )y(x, tn+1)−∆tg(x, tn+1) +

(∆t)2

2

∂2y(x, s)

∂t2
. (2.17)

On the other hand, from (2.15) we have

y(x, tn) = (I + ∆tLn+1
x,ε )ỹn+1(x)−∆tg(x, tn+1). (2.18)

Since, ẽn+1(0) = 0 = ẽn+1(1), by using Lemma 2.5 on ẽn+1, we obtain from (2.17) and (2.18) that

∥∥ẽn+1
∥∥ ≤ C∥∥(I + ∆tLn+1

x,ε )ẽn+1
∥∥ ≤ C(∆t)2

∥∥∥∂2y
∂t2

∥∥∥.
Thus, the proof is completed by using the bound of

∂2y
∂t2

from Lemma 2.3.

Now, we rewrite the global error as

en+1(x) = ẽn+1(x) + dn+1(x),

where the term dn+1(x) = ỹn+1(x)− yn+1(x), satisfies the following:{
(I + ∆tLn+1

x,ε )dn+1(x) = en(x), x ∈ Ω,

dn+1(0) = 0, dn+1(1) = 0.

Then, by using Lemma 2.5 on dn+1(x), we obtain that

∥∥en+1
∥∥ ≤ ∥∥ẽn+1

∥∥+
1

(1 + β∆t)

∥∥en∥∥.
Finally, using the above relation recursively and by invoking the consistency result in Lemma 2.6, we obtain

the desired estimate of the global error stated in the following Lemma.

Theorem 2.1 (Global error). Under the hypothesis of Lemma 2.6, the global error en+1 satisfies the following

estimate:

sup
(n+1)∆t≤T

∥∥en+1
∥∥ ≤ C∆t.
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2.4.2 Error related to the spatial discretization
Here, we analyze the following discrete problem, which is obtained by discretizing (2.15) with respect to the

spatial variable using the proposed hybrid scheme as described in Section 2.3:
L∆t
N,hybỸ

n+1
j ≡ µ−j Ỹ

n+1
j−1 + µcj Ỹ

n+1
j + µ+

j Ỹ
n+1
j+1 = G̃n+1

j ,

for 1 ≤ j ≤ N − 1,

Ỹ n+1
0 = sl(tn+1), Ỹ n+1

N = sr(tn+1),

(2.19)

where the coefficients µ−j , µ
+
j , µ

c
j are described in (2.12)-(2.13) and G̃n+1

j is given by

G̃n+1
j =



y(xj , tn) + ∆t gn+1
j , for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

1
2(y(xj−1, tn) + ∆t gn+1

j−1 ) + 1
2(y(xj , tn) + ∆tgn+1

j ),

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

y(xj , tn) + ∆t gn+1
j , for N/2 < j ≤ N − 1.

(2.20)

In the subsequent sections, we analyze the stability and the truncation error associated with the above discrete

problem; and finally, we derive the local error estimate related to the spatial discretization of (2.15).

2.4.2.1 Stability
In the following lemma, we prove that the difference operator L∆t

N,hyb defined in (2.11)-(2.13) satisfies the

discrete maximum principle.

Lemma 2.7 (Discrete maximum principle). Assume that the following conditions hold for N ≥ N0:

N/lnN > η0

∥∥a∥∥ and (2.21)

mN ≥
(∥∥b∥∥+

1

∆t

)
, (2.22)

where N0 is some positive integer. Then, for fixed n, if any mesh function ψn+1 : Ω
N → R satisfies that

ψn+1
0 ≤ 0, ψn+1

N ≤ 0, and L∆t
N,hybψ

n+1
j ≤ 0, for 1 ≤ j ≤ N − 1; then it implies that ψn+1

j ≤ 0, for all j.

Proof. In conformity with the hypothesis of the discrete maximum principle, without loss of generality we

consider ψn+1
j = ψj for fixed n; and assume that the mesh function ψj satisfies the following system: L∆t

N,hybψj = ωj , for 1 ≤ j ≤ N − 1,

ψ0 = ω0, ψN = ωN ,
(2.23)

where ωj ≤ 0, for 0 ≤ j ≤ N . Now, we consider the following two cases to prove that the (N+1)×(N+1)

matrix A , associated with the coefficients of ψj in (2.23) for 0 ≤ j ≤ N , is an M-matrix.
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Case.1 Let ε > ‖a‖N−1. Since H ≤ 2N−1, for 1 ≤ j ≤ N/2, we have

ρj ≥
(
ε− ‖a‖H

2

)
> 0,

and also for N/2 + 1 ≤ j ≤ N − 1, we have

ρj ≥
(
ε− ‖a‖h

2

)
≥
(
ε− ‖a‖H

2

)
> 0.

Hence, it follows from (2.12)-(2.13) that µ−j < 0, µ+
j < 0 and |µcj | − |µ

−
j | − |µ

+
j | ≥ 0, for 1 ≤ j ≤ N − 1.

Case 2. When ε ≤ ‖a‖N−1. Here, for N/2 + 1 ≤ j ≤ N − 1, using (2.21) we obtain that

ρj ≥
(
ε− ‖a‖h

2

)
= ε
(

1− ‖a‖η0N
−1lnN

)
> 0,

and hence it follows from (2.12)-(2.13) that µ−j < 0, µ+
j < 0 and |µcj | − |µ

−
j | − |µ

+
j | ≥ 0, for N/2 + 1 ≤ j ≤

N − 1. Again, for 1 ≤ j ≤ N/2, we have µ+
j < 0 and using (2.22) we obtain that

µ−j = ∆tµ−mup,j +
1

2

= −2ε∆t

h̃jhj
−∆t

[an+1
j−1/2

H
−
bn+1
j−1/2

2
− 1

2∆t

]
< −∆t

2

[
mN − ‖b‖ − 1

∆t

]
≤ 0,

and further we have

∣∣µ−j ∣∣+
∣∣µ+
j

∣∣ ≤ ∆t
( 2ε

h̃jhj
+
an+1
j−1/2

hj
+
bn+1
j−1/2

2

)
+∆t

( 2ε

h̃jhj+1

)
+

1

2
<
∣∣µcj∣∣.

This shows that under the assumptions (2.21) and (2.22), the matrix A is an M-matrix, and since A is also

irreducible, A−1 ≥ 0. We thus obtain the desired result.

Remark 2.1. From Lemma 2.7, it can be concluded that the spatially discrete scheme (2.19)-(2.20) is uniformly

stable under the assumption (2.21) and (2.22) in the discrete supremum norm and the corresponding system has

a unique solution.

26



2.4.2.2 Truncation error
For the numerical scheme (2.19)-(2.20), the local truncation error is defined as

T
N,∆t
j,̃yn+1 = L∆t

N,hyb[ỹ
n+1
j − Ỹ n+1

j ],

=



µ−j ỹn+1
j−1 + µcj ỹ

n+1
j + µ+

j ỹn+1
j+1 −

(
ỹn+1
j + ∆t (Lx,εỹn+1)(xj)

)
,

for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

µ−j ỹn+1
j−1 + µcj ỹ

n+1
j + µ+

j ỹn+1
j+1 −

1

2

(
ỹn+1
j−1 + ∆t (Lx,εỹn+1)(xj−1)

)
−1

2

(
ỹn+1
j + ∆t (Lx,εỹn+1)(xj)

)
,

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

µ−j ỹn+1
j−1 + µcj ỹ

n+1
j + µ+

j ỹn+1
j+1 −

(
ỹn+1
j + ∆t (Lx,εỹn+1)(xj)

)
,

for N/2 < i ≤ N − 1,

= ∆tTNj,̃yn+1 . (2.24)

Here, for any sufficiently smooth function φ : Ω → R, TNj,φ denotes the truncation error corresponding to the

stationary singularly perturbed problem and is obtained by approximating the differential operator Lx,ε with

respect to the spatial variable using the newly proposed hybrid scheme. Let φj = φ(xj). Thus, it follows from

(2.24) that

TNj,φ =


Ln+1
N,mcdφj − (Lx,εφ)(xj), for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

Ln+1
N,mupφj − (Lx,εφ)j−1/2, for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

Ln+1
N,mcdφj − (Lx,εφ)(xj), for N/2 < j ≤ N − 1.

(2.25)

In the next lemma, the required estimates of TNj,φ are derived by making use of the Taylor’s theorem on the func-

tion φ and in this regard, we consider the remainder term in the integral form, i.e.,
1

k!

∫ x

ξ
(x− s)kφk+1(s)ds,

which arises while approximating φ(x) by a Taylor polynomial of degree k around a point ξ ∈ Ω.

Lemma 2.8. One can obtain the following estimates:

(i) when ε > ‖a‖N−1,

∣∣∣Ln+1
N,mcd(φj)− (Lx,εφ)(xj)

∣∣∣ ≤ Chj[ε ∫ xj+1

xj−1

|φ(4)(s)|ds+

∫ xj+1

xj−1

|φ(3)(s)|ds
]
,

for 1 ≤ j < N/2,∣∣∣Ln+1
N,mcd(φj)− (Lx,εφ)(xj)

∣∣∣ ≤ C[ε∫ xj+1

xj−1

|φ(3)(s)|ds+ hj

∫ xj+1

xj−1

|φ(3)(s)|ds
]
,

for j = N/2,

(2.26)
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and when ε ≤ ‖a‖N−1, for 1 ≤ j ≤ N/2,∣∣∣Ln+1
N,mup(φj)− (Lx,εφ)j−1/2

∣∣∣
≤
[
Cε

∫ xj+1

xj−1

|φ(3)(s)|ds+ Chj

∫ xj

xj−1

(
|φ(3)(s)|+ |φ(2)(s)|+ |φ(1)(s)|

)
ds
]
, (2.27)

(ii) for N/2 < j ≤ N − 1,∣∣∣Ln+1
N,mcd(φj)− (Lx,εφ)(xj)

∣∣∣ ≤ Chj[ε∫ xj+1

xj−1

|φ(4)(s)|ds+

∫ xj+1

xj−1

|φ(3)(s)|ds
]
. (2.28)

Now, to derive the bounds of the truncation error TN,∆t
j,̃yn+1 , one needs to know about the asymptotic behavior

of the analytical solution of the auxiliary BVP (2.15) and its derivatives. For this purpose, the solution ỹn+1(x)

is decomposed in the form (2.29) and the required bounds of its components are obtained in the following

lemma.

Lemma 2.9. The analytical solution of (2.15) is decomposed as

ỹn+1(x) = p̃n+1(x) + γq̃n+1(x), x ∈ Ω, (2.29)

where the components p̃n+1(x) and q̃n+1(x) of the solution ỹn+1(x) satisfy the following bounds:
∣∣∣dj p̃n+1(x)

dxj

∣∣∣ ≤ C[1 + ε−j+1 exp(−m(1− x)/ε)
]
, for 0 ≤ j ≤ 4,

q̃n+1(x) = exp(−a(1, tn+1)(1− x)/ε), γ =
ε

a(1, tn+1)

dỹn+1(1)

dx
.

(2.30)

Proof: The proof follows from [18].
In the following lemma, we obtain the bounds of the truncation error TN,∆t

j,̃yn+1 .

Lemma 2.10. The truncation error given by (2.24) satisfies the following bounds:

|TN,∆t
j,̃yn+1 | ≤



C∆t
[
H2 + ε−1 exp(−m(1− xj)/ε)

]
,

for 1 ≤ j < N/2, and when ε > ‖a‖N−1,

C∆t
[
εH +H2 +H−1 exp(−m(1− xj+1)/ε)

]
,

for 1 ≤ j < N/2, and when ε ≤ ‖a‖N−1,

C∆t
[
εH +H2 + ε−1 exp(−m(1− xj)/ε)

]
,

for j = N/2, and when ε > ‖a‖N−1,

C∆t
[
εH +H2 + ε−1 exp(−m(1− xj+1)/ε)

]
,

for j = N/2, and when ε ≤ ‖a‖N−1,

C∆t
[
h2 + h2ε−3 exp(−m(1− xj)/ε)

]
, for N/2 < j ≤ N − 1.
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Proof: From (2.24), it is clear that in order to obtain the bound of TN,∆t
j,̃yn+1 , one needs to determine the appropriate

bound of TNj,̃yn+1 . In doing so, firstly we decompose TNj,̃yn+1 using the decomposition of ỹn+1 in (2.29), as

TNj,̃yn+1 = TNj,̃pn+1 + γTNj,̃qn+1 (2.31)

where TNj,̃pn+1 and TN
j,̃qn+1 denote the truncation errors corresponding to p̃n+1(x) and q̃n+1(x), respectively.

Afterwards, by making use of Lemma 2.9 and 2.8 in (2.31), we obtain the required bounds of TNj,̃yn+1 by

considering different cases depending on the location of mesh point xj ∈ Ω
N , in the following way.

Case 1: Let 1 ≤ j < N/2. Here, two sub-cases are considered based on the relation between ε and N .

(i) When ε > ‖a‖N−1. Using the bounds of the derivatives of p̃n+1 given in Lemma 2.9 and the estimate

given in (2.26), we deduce that

|TNj,̃pn+1 | = |Ln+1
N,mcdp̃n+1

j − Lx,εp̃n+1(xj)|

≤ C
[
hj(hj + hj+1) + hjε

−1
{

exp(−m(1− xj+1)/ε)− exp(−m(1− xj−1)/ε)
}]

≤ C
[
H2 +Hε−1

{
exp(−m(1− xj+1)/ε)− exp(−m(1− xj−1)/ε)

}]
= C

[
H2 +Hε−1 exp(−m(1− xj)/ε) sinh(mH/ε)

]
.

Now, since ε > ‖a‖N−1 implies mH/ε < 2 and for 0 ≤ ξ ≤ 2, sinh ξ ≤ Cξ, we obtain that

|TNj,̃pn+1 | ≤ C
[
H2 +H2ε−2 exp(−m(1− xj)/ε)

]
.

Similarly, using the bounds of the derivatives of q̃n+1 given in Lemma 2.9 and the estimate given in

(2.26), we obtain that

|TNj,̃qn+1 | = |Ln+1
N,mcdq̃n+1

j − Lx,εq̃n+1(xj)|

≤ C
[
Hε−2

{
exp(−a(1, tn+1)(1− xj+1)/ε)− exp(−a(1, tn+1)(1− xj−1)/ε)

}]
≤ C

[
H2ε−3 exp(−a(1, tn+1)(1− xj)/ε)

]
.

Finally, using the bounds of TNj,̃pn+1 and TN
j,̃qn+1 in (2.31), we have

|TNj,̃yn+1 | ≤ C
[
H2 +H2ε−3 exp(−m(1− xj)/ε)

]
= C

[
H2 + ε−1 exp(−m(1− xj)/ε)

]
.

(ii) When ε ≤ ‖a‖N−1. Using the bounds of the derivatives of p̃n+1 given in Lemma 2.9 and the estimate
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given in (2.27), we deduce that

|TNj,̃pn+1 | = |Ln+1
N,mupp̃n+1

j − Lx,εp̃n+1(xj)|

≤ C
[
ε(hj + hj+1) + hj

2 +
{

exp(−m(1− xj+1)/ε)− exp(−m(1− xj−1)/ε)
}

+ hjε
−1
{

exp(−m(1− xj)/ε)− exp(−m(1− xj−1)/ε)
}]

≤ C
[
εH +H2 + exp(−m(1− xj+1)/ε) +Hε−1 exp(−m(1− xj)/ε)

]
.

Now, since hj = hj+1 = H and sk exp
(
− s
)
≤ C, we obtain that

|TNi,̃pn+1 | ≤ C
[
εH +H2 + exp(−m(1− xj+1)/ε)

]
.

To find the bound of
∣∣TN
j,̃qn+1

∣∣, we proceed by finding the bound for the exact expression of TN
j,̃qn+1 =

Ln+1
N,mupq̃n+1

j − (Lx,εq̃n+1)j−1/2. Here,

TNj,̃qn+1 = µ−mup,j(q̃n+1
j−1 − q̃n+1

j ) + µ+
mup,j(q̃n+1

j+1 − q̃n+1
j ) + (2.32)

bn+1
j−1

2

(
q̃n+1
j − q̃n+1

j−1

)
+

1

2
ε
(d2q̃n+1

j

dx2
+
d2q̃n+1

j−1

dx2

)
−1

2

(
an+1
j

dq̃n+1
j

dx
+ an+1

j−1

dq̃n+1
j−1

dx

)
. (2.33)

Now, using the expression in (2.33) and following the argument given in (2.30) for 1 ≤ j < N/2, we

obtain that

|TNj,̃qn+1 | ≤ CH−1 exp(−a(1, tn+1)(1− xj+1)/ε).

Finally, using the bounds of TNj,̃pn+1 and TN
j,̃qn+1 in (2.31), we have

|TNj,̃yn+1 | ≤ C
[
εH +H2 +H−1 exp(−m(1− xj+1)/ε)

]
.

Case 2: Let j = N/2. Here, we also consider two sub-cases.

(i) When ε > ‖a‖N−1. Using the bounds of the derivatives of p̃n+1 given in Lemma 2.9 and the estimate
given in (2.26), we deduce that

|TN
j,̃pn+1 | = |Ln+1

N,mcdp̃n+1
j − Lx,εp̃n+1(xj)|

= C
[
(ε+ hj)(hj + hj+1) +

{
exp(−m(1− xj+1)/ε)− exp(−m(1− xj−1)/ε)

}]
+ hjε

−1
{

exp(−m(1− xj+1)/ε)− exp(−m(1− xj−1)/ε)
}]

≤ C
[
εH +H2 +

{
exp(−m(1− xj+1)/ε)− exp(−m(1− xj−1)/ε)

}]
,

= C
[
εH +H2 +

{
exp(−m(1− xj)/ε)(exp(mh/ε)− exp(mH/ε))

}]
≤ C

[
εH +H2 + exp(−m(1− xj)/ε)

]
.
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Similarly, using the bounds of the derivatives of q̃n+1 given in Lemma 2.9 and the estimate given in

(2.26), we obtain that

|TNj,̃qn+1 | = |Ln+1
N,mcdq̃n+1

j − Lx,εq̃n+1(xj)|

≤ C
[
ε−1
{

exp(−a(1, tn+1)(1− xj+1)/ε)− exp(−a(1, tn+1)(1− xj−1)/ε)
}]

≤ C
[
ε−1 exp(−a(1, tn+1)(1− xj)/ε)

]
.

Finally, using the bounds of TNj,̃pn+1 and TN
j,̃qn+1 in (2.31), we have

|TNj,̃yn+1 | ≤ C
[
εH +H2 + ε−1 exp(−m(1− xj)/ε)

]
.

(ii) When ε ≤ ‖a‖N−1. Arguing in the same way as it is done before, we obtain that

|TNj,̃pn+1 | = |Ln+1
N,mupp̃n+1

j − Lx,εp̃n+1(xj)|

≤ C
[
εH +H2 + exp(−m(1− xj+1)/ε) +Hε−1 exp(−m(1− xj)/ε)

]
.

On the other hand, using the expression in (2.33) and following the argument given in (2.30) for j = N/2,

we obtain that

|TNj,̃qn+1 | ≤ Cε−1 exp(−a(1, tn+1)(1− xj)/ε).

Finally, using the bounds of TNj,̃pn+1 and TN
j,̃qn+1 in (2.31), we have

|TNj,̃yn+1 | ≤ C
[
εH +H2 + ε−1 exp(−m(1− xj+1)/ε)

]
.

Case 3: When N/2 < j ≤ N − 1. Here, we deduce that

|TNj,̃pn+1 | = |Ln+1
N,mcdp̃n+1

j − Lx,εp̃n+1(xj)|

≤ C
[
hj(hj + hj+1) + hjε

−1
{

exp(−m(1− xj+1)/ε)− exp(−m(1− xj−1)/ε)
}]

≤ C
[
h2 + hε−1

{
exp

(
− m(1− xj+1)/ε

)
− exp(−m(1− xj−1)/ε)

}]
= C

[
h2 + hε−2 exp(−m(1− xj)/ε) sinh(mh/ε)

]
≤ C

[
h2 + h2ε−3 exp(−m(1− xj)/ε)

]
,

since the assumption given in (2.21) yields mh/ε < 2 and for 0 ≤ ξ ≤ 2, sinh ξ ≤ Cξ. Likewise

∣∣TNj,̃qn+1

∣∣ ≤ Chε−2
[

exp
(
− a(1, tn+1)(1− xj+1)/ε

)
− exp(−a(1, tn+1)(1− xj−1)/ε)

]
≤ Ch2ε−3 exp(−a(1, tn+1)(1− xj)/ε),
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Finally, using the bounds of TNj,̃pn+1 and TN
j,̃qn+1 in (2.31), we have

∣∣TNj,̃yn+1

∣∣ ≤ C[h2 + h2ε−3 exp
(
− m(1− xj+1)/ε

)]
.

Hence, the proof.
2.4.2.3 Auxiliary results
This section begins with several vital results which is used in the error analysis.

Lemma 2.11. Consider the following mesh function

Sj(θ) =


N∏

k=j+1

(
1 +

θhk
ε

)−1
, for 0 ≤ j ≤ N − 1,

1, for j = N,

where θ is a positive constant. Then, we get the following results:

(i) If θ < m/2, then exp
(
− m(1− xj)/ε

)
≤ Sj(θ), for 0 ≤ j ≤ N − 1. (2.34)

(ii) SN/2(θ) ≤ CN−η0θ. (2.35)

Proof: See [109, Lemma 2.5] for the proof of (i) and [111, Lemma 3.1] for the proof of (ii).

Lemma 2.12. If θ < m/2, then under the hypothesis (2.21) of Lemma 2.7, we have

L∆t
N,hybSj(θ) ≥



C∆t

ε
Sj(θ), for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

C∆t

H
Sj(θ), for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

C∆t

ε
Sj(θ), for N/2 < j ≤ N − 1.

Proof. Here, we have Sj(θ)− Sj−1(θ) =
θhj
ε

. Firstly, we deduce that

Ln+1
N,mcdSj(θ) ≥ −2θhj

2

εh̃j
Sj−1(θ) + an+1

j

[hj
h̃j

(
θ

ε
Sj(θ)) +

hj+1

h̃j
(
θ

ε
Sj−1(θ))

]

≥


θ

ε+ θhj
Sj(θ)

[
an+1
j

hj+1

h̃j
− 2θ

hj

h̃j

]
, for j 6= N/2,

θhj

εh̃j
Sj(θ)

[
an+1
j − 2θε

ε+ θhj

]
, for j = N/2.

(2.36)
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and

Ln+1
N,mupSj(θ) ≥ −2θhj

2

εh̃j
Sj−1(θ) + an+1

j−1/2

[θ
ε
Sj−1(θ)

]

≥ θ

ε+ θhj
Sj(θ)

[
an+1
j−1/2 − 2θ

hj

h̃j

]
. (2.37)

Next, from (2.12)-(2.13), we obtain that

L∆t
N,hybSj(θ) = µ−j Sj−1(θ) + µcjSj(θ) + µ+

j Sj+1(θ)

=



∆tLn+1
N,mcdSj(θ) + Sj(θ),

for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1

∆tLn+1
N,mupSj(θ) +

1

2

(
1 +

ε

ε+ θhj

)
Sj(θ),

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

∆tLn+1
N,mcdSj(θ) + Sj(θ), for N/2 < j ≤ N − 1.

(2.38)

We now split the proof into the following two cases.

Case 1: Let 1 ≤ j ≤ N/2.

(i) When ε > ‖a‖N−1. From (2.36) and (2.38), we have

L∆t
N,hybSj(θ) ≥


∆t θ(m−θ)ε+θH Sj(θ), for 1 ≤ j < N/2,

∆t
θ(m− 2θ)

2ε
Sj(θ), for j = N/2.

Since ε > ‖a‖N−1 implies mH/ε < 2, utilizing the condition θ < m/2 we obtain the desired result.

(ii) When ε ≤ ‖a‖N−1. From (2.37) and (2.38), we have

L∆t
N,hybSj(θ) ≥


∆t

θ(m− θ)
ε+ θH

Sj(θ), for 1 ≤ j < N/2,

∆t
θ(m− 2θ)

ε+ θH
Sj(θ), for j = N/2.

Since ε ≤ ‖a‖N−1 implies H/ε ≤ 1/‖a‖, we obtain the desired result utilizing the condition θ < m/2.

Case 2: Let N/2 < j ≤ N − 1. From (2.36) and (2.38), we have

L∆t
N,hybSj(θ) ≥ ∆t

θ(m− θ)
ε+ θh

Sj(θ).

The desired result thus follows from the condition θ < m/2 and from the inequality mh/ε < 2, which holds due

to the assumption given in (2.21). Hence, this completes the proof.
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Further, a straightforward calculation yields the results obtained in the following lemma.

Lemma 2.13. Consider the following mesh function

ϕj =


xj

1− η
, for 0 ≤ j < N/2,

1, for N/2 ≤ j ≤ N.

Then, the discrete derivatives of the function ϕj are given by

δ2
xϕj =


0, for 1 ≤ j < N/2,

−2

(h+H)(1− η)
, for j = N/2,

0, for N/2 < i ≤ N − 1,

and

D∗ϕj =



1

1− η
, for 1 ≤ j < N/2,

h

(h+H)(1− η)
, for j = N/2,

0, for N/2 < j ≤ N − 1,

and hence, we obtain that

Ln+1
N,mcdϕj ≥



an+1
j

1− η
, for 1 ≤ j < N/2,

2εN + an+1
j hN

2(1− η)
, for j = N/2,

0, for N/2 < j ≤ N − 1.

2.4.2.4 Local spatial error
Here, we estimate the error |ỹn+1

j −Ỹ n+1
j

∣∣ in the outer region (i.e., for 1 ≤ j ≤ N/2) as well as in the boundary

layer region (i.e., forN/2 < j < N) separately related to the spatial discretization of the semidiscrete problem

(2.15) by newly developed method (2.19).

Lemma 2.14. Assume that N ≥ N0 satisfies conditions (2.21) and (2.22). Then, if θ < m/2, the local error

related to the spatial discretization of (2.15) satisfies the following estimate:

∣∣ỹn+1
j − Ỹ n+1

j

∣∣ ≤ C((N−1 + χε)N
−1 +N−η0θ

)
, for 1 ≤ j ≤ N/2, (2.39)

where

χε =

 ε, when ε ≤ ‖a‖N−1,

0, when ε > ‖a‖N−1.

Proof. We split up the proof into two cases.
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(i) When ε > ‖a‖N−1. Consider the following discrete function

Φj(θ) = C
[
H2
(

1 + xj

)
+H2ϕj + Sj(θ)

]
, for 0 ≤ j ≤ N,

where C is sufficiently large. Using the inequality (2.35) and Lemmas 2.12 and 2.13, we have

L∆t
N,hybΦj(θ) ≥



C∆t
[
mH2 +

mH2

1− η
+ ε−1exp(−m(1− xj)/ε)

]
, for 1 ≤ j < N/2,

C∆t
[
mH2 +

(2εN + mhN)H2

2(1− η)
+ ε−1exp(−m(1− xj)/ε)

]
, for j = N/2,

C∆t
[
mH2 + ε−1exp(−m(1− xj)/ε)

]
, for N/2 < j ≤ N − 1.

Then, using Lemma 2.10, we obtain that

L∆t
N,hybΦj(θ) ≥

∣∣TN,∆t
j,̃yn+1

∣∣, for 1 ≤ j ≤ N − 1.

Thus, by employing the discrete maximum principle to Φj(θ) ±
(

ỹn+1
j − Ỹ n+1

j

)
, over ΩN

⋂
[0, 1], we

have ∣∣ỹn+1
j − Ỹ n+1

j

∣∣ ≤ Φj(θ), for 1 ≤ j ≤ N − 1.

Therefore, for 1 ≤ j ≤ N/2,

∣∣ỹn+1
j − Ỹ n+1

j

∣∣ ≤ C[H2 + SN/2(θ)
]
.

Now, using H ≤ 2N−1 and invoking the inequality (2.35), finally we get

∣∣ỹn+1
j − Ỹ n+1

j

∣∣ ≤ C(N−2 +N−η0θ
)
, for 1 ≤ j ≤ N/2.

(ii) When ε ≤ ‖a‖N−1. Consider the following discrete function

Ψj(θ) =


C
[
(ε+H)H

(
1 + xj

)
+ Sj+1(θ)

]
, for 0 ≤ j ≤ N/2,

C
[
(ε+H)H

(
1 + xj

)
+
(

1 +
θh

ε

)
Sj(θ)

]
, for N/2 < j ≤ N,

where C is chosen sufficiently large. Using the inequality (2.35) and Lemma 2.12, we have

L∆t
N,hybΨj(θ) ≥


C∆t

[
m(ε+H)H +H−1exp(−m(1− xj+1)/ε)

]
, for 1 ≤ j < N/2,

C∆t
[
m(ε+H)H + ε−1exp(−m(1− xj+1)/ε)

]
, for j = N/2,

C∆t
[
mH2 +

θh

ε2
exp(−m(1− xj)/ε)

]
, for N/2 < j ≤ N − 1.

Afterwards, Lemma 2.10 implies that

L∆t
N,hybΨj(θ) ≥

∣∣TN,∆t
j,̃yn+1

∣∣, for 1 ≤ j ≤ N − 1,
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since the assumption given in (2.21) yields mh/ε < 2. Thus, by employing the discrete maximum

principle to Ψj(θ)±
(

ỹn+1
j − Ỹ n+1

j

)
, over ΩN

⋂
[0, 1], we have

∣∣ỹn+1
j − Ỹ n+1

j

∣∣ ≤ Ψj(θ), for 1 ≤ j ≤ N − 1.

Therefore, for 1 ≤ j ≤ N/2, it implies that

∣∣ỹn+1
j − Ỹ n+1

j

∣∣ ≤ C[εH +H2+
(

1 +
θh

ε

)
SN/2(θ)

]
,

and we finally obtain the desired result using H ≤ 2N−1, (2.34) and the inequality mh/ε < 2.

Corollary 2.1. It is straightforward from Lemma 2.14 that the estimate in (2.39) reduces to the following form:

∣∣ỹn+1
j − Ỹ n+1

j

∣∣ ≤ C(N−2 +N−η0θ
)
, for 1 ≤ j ≤ N/2, (2.40)

when ε > ‖a‖N−1 and (2.40) also holds if we select ε ≤ ‖a‖N−1.

Lemma 2.15. Assume that N ≥ N0 satisfies conditions (2.21) and (2.22). Then, if θ < m/2, the local error

related to the spatial discretization of (2.15) satisfies the following estimate:

∣∣ỹn+1
j − Ỹ n+1

j

∣∣ ≤ C(η2
0N
−2 ln2N +N−η0θ

)
, for N/2 < j ≤ N − 1. (2.41)

Proof: Consider the following discrete function

Υj(θ) = C
[
(N−2 +N−η0θ)

(
1 + xj

)
+ h2ε−2Sj(θ)

]
, for N/2 ≤ j ≤ N,

where C is chosen sufficiently large. Then, it is clear that |ỹn+1
N − Ỹ n+1

N

∣∣ ≤ ΥN (θ) and also from (2.40), we

have |ỹn+1
N/2 − Ỹ

n+1
N/2

∣∣ ≤ ΥN/2(θ). Further, using the inequality (2.34) and Lemma 2.12, we have

L∆t
N,hybΥj(θ) ≥ C∆t

[
(N−2 +N−η0θ) + h2ε−3Sj(θ)

]
,

≥ C∆t
[
(N−2 +N−η0θ) + h2ε−3 exp(−m(1− xj)/ε)

]
.

Hence, it follows from Lemma 2.10 that

L∆t
N,hybΥj(θ) ≥

∣∣TN,∆t
j,̃yn+1

∣∣, for N/2 + 1 ≤ j ≤ N − 1

Therefore, using h = 2η0εN
−1 lnN and by employing the discrete maximum principle to Ψj(θ) ±

(
ỹn+1
j −

Ỹ n+1
j

)
, over ΩN

⋂
[1− η, 1], we get

∣∣ỹn+1
j − Ỹ n+1

j

∣∣ ≤ Υj(θ) ≤ C
(
η2

0N
−2 ln2N +N−η0θ

)
,

for N/2 < j ≤ N − 1.

Theorem 2.2. Assume that N ≥ N0 satisfies conditions (2.21) and (2.22). Then, if θ < m/2 and η0 ≥ 2/θ, the
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local error related to the spatial discretization of (2.15) satisfies the following estimate:

∣∣ỹn+1
j − Ỹ n+1

j

∣∣ ≤
 CN−2, for 1 ≤ j ≤ N/2,

CN−2 ln2N, for N/2 < j ≤ N − 1.
(2.42)

Proof: The proof follows from (2.40) and (2.41).

2.4.3 Error related to the fully discrete scheme
We define En+1(xj) = [y(xj , tn+1)−Y n+1

j ], for 0 ≤ j ≤ N , as the global error related to the fully discrete

scheme (2.11) at the time level tn+1. Now, to show the ε-uniform convergence of the fully discrete scheme

(2.11), we rewrite the global error in the following form:

En+1(xj) = ẽn+1(xj) + Ẽn+1(xj) + [Ỹ n+1
j − Y n+1

j ]. (2.43)

Here, ẽn+1(xj) = [y(xj , tn+1)− ỹn+1(xj)] and Ẽn+1(xj) = [ỹn+1(xj)−Ỹ n+1
j ], respectively, denote the local

error related to the time semidiscretization of the IBVP (2.1)-(2.2) and the spatial discretization of the auxiliary

BVP (2.15) at time level tn+1. Now, consider the fully discrete scheme after one step by taking Y n = En and

the source term g = 0. Then, the term [Ỹ n+1 − Y n+1] can be written as the solution of the following systems: L∆t
N,hybR

n+1
j = y(xj , tn)− Y n

j , 1 ≤ j ≤ N − 1,

Rn+1
0 = Rn+1

N = 0,

whereRn+1
j = [Ỹ n+1

j −Y n+1
j ], and by employing the discrete maximum principle for the operator L∆t

N,hyb, one

can obtain that ∥∥∥{Ỹ n+1
j

}
j
−
{
Y n+1
j

}
j

∥∥∥ ≤ ∥∥∥{y(xj , tn)
}
j
−
{
Y n
j

}
j

∥∥∥. (2.44)

Afterwards, from (2.43) and (2.44), we obtain that∥∥∥{En+1(xj)
}
j

∥∥∥ ≤ ∥∥∥{ẽn+1(xj)
}
j

∥∥∥+
∥∥∥{Ẽn+1(xj)

}
j

∥∥∥+
∥∥∥{En(xj)

}
j

∥∥∥, for 1 ≤ j ≤ N − 1. (2.45)

Now, by invoking the estimates obtained in (2.16) and (2.42) in (2.45), with the assumption that N−δ ≤ C∆t,

0 < δ < 1, we have

∥∥∥{En+1(xj)}j
∥∥∥ ≤


C
(

∆tN−2+δ + ∆t2
)

+
∥∥∥{En(xj)}j

∥∥∥, for 1 ≤ j ≤ N/2,

C
(

∆tN−2+δ ln2N + ∆t2
)

+
∥∥∥{En(xj)}j

∥∥∥, for N/2 < j ≤ N − 1.

Hence, we obtain the required estimate of the global error in (2.46), which is stated in the following theorem as

the main convergence result of this chapter.

Theorem 2.3 (Global error). Assume that N ≥ N0 satisfies conditions (2.21) and (2.22). Then, if θ < m/2

and η0 ≥ 2/θ, the global error related to the fully discrete scheme (2.11) at the time level tn+1 satisfies the
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following estimate:

∥∥∥{y(xj , tn+1)
}
j
−
{
Y n+1
j

}
j

∥∥∥ ≤


C
(
N−2+δ + ∆t

)
, for 1 ≤ j ≤ N/2,

C
(
N−2+δ ln2N + ∆t

)
, for N/2 < j ≤ N − 1,

(2.46)

where N and ∆t are such that N−δ ≤ C∆t, 0 < δ < 1.

Remark 2.2. We would like point out that the error estimate (2.46) holds true for the existing hybrid scheme

proposed in [81] under the restrictive condition ε < CN−1 and we demonstrate this phenomenon in Section

2.7. Besides this, it is shown in Section 2.7 that the existing scheme converges with at least first-order accuracy

in the spatial variable both outside and inside the boundary layer when ε � N−1; and this observation is

contrary to the computational results of the newly developed method. As consequence of this, one can see in

Section 2.7 that the existing scheme after using the temporal Richardson extrapolation converges ε-uniformly

with first-order global accuracy as N increases; whereas the ε-uniform global accuracy of the proposed method

combined with the temporal extrapolation is of almost order two. A theoretical justification for the accuracy of

the proposed method related to the temporal Richardson extrapolation is given in Section 2.5.

2.5 Error related to temporal Richardson extrapolation

On the domain [0, T ], we construct a fine mesh, denoted by Λ∆t/2 =
{
t̃n
}2M

n=0
, by bisecting each mesh interval

of Λ∆t. So, t̃n+1 − t̃n = T/2M = ∆t/2 is the step-size. Let Y N,∆t(xj , tn+1) and ZN,∆t(xj , t̃n+1) be the

respective solutions of the fully discrete problem (2.10) on the mesh Ω
N × Λ∆t and Ω

N × Λ∆t/2. Then, as

consequence of Theorem 2.3, the global error can be expressed as

y(xj , tn+1)− Y N,∆t(xj , tn+1) = C1(∆t) + C2(N−2+δ ln2N) + o(∆t)+

o(N−2+δ ln2N), (xj , tn+1) ∈ Ω
N × Λ∆t,

(2.47)

where C1 and C2 are fixed arbitrary constants. Similarly, we have

y(xj , t̃n+1)− ZN,∆t(xj , t̃n+1) = C1(∆t/2) + C2(N−2+δ ln2N) + o(∆t)+

o(N−2+δ ln2N), (xj , t̃n+1) ∈ Ω
N × Λ∆t/2.

(2.48)

Now, from (2.47) and (2.48), we have

y(xj , tn+1)−
(

2ZN,∆t(xj , tn+1)− Y N,∆t(xj , tn+1)
)

= o(∆t) +O(N−2+δ ln2N)

= O(∆tk) +O(N−2+δ ln2N), (2.49)

(xj , tn+1) ∈ Ω
N × Λ∆t, for some k>1.

Remark 2.3. We set
(

2ZN,∆t(xj , tn+1)− Y N,∆t(xj , tn+1)
)

as the temporal extrapolation formula so that the

temporal accuracy can be improved from O(∆t) to O(∆tk), k > 1. However, it is clear from (2.49) that the

spatial accuracy due to the temporal extrapolation remains unaltered and is of O(N−2+δ ln2N).

Now, let y∆t(x, tn+1) and z∆t(x, t̃n+1) be the respective solutions of the time-semidiscrete problem (2.9)
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on the mesh Ω × Λ∆t and Ω × Λ∆t/2, such that y∆t(xj , tn+1) ≈ Y N,∆t(xj , tn+1) and z∆t(xj , t̃n+1) ≈
ZN,∆t(xj , t̃n+1), xj ∈ Ω

N
, and it follows that(

2z∆t(xj , tn+1)− y∆t(xj , tn+1)
)
≈
(

2ZN,∆t(xj , tn+1)− Y N,∆t(xj , tn+1)
)
. (2.50)

Again, utilizing Theorem 2.1, one can have

y(xj , tn+1)−
(

2z∆t(xj , tn+1)− y∆t(xj , tn+1)
)

= O(∆tk), k > 1, (xj , tn+1) ∈ Ω
N × Λ∆t, (2.51)

Thus, (2.51) implies that the term O(∆tk) appeared in (2.49) is due to the time-semidiscrete approximation.

Therefore, by analyzing the global error related to the temporal extrapolation of the solution to the time-

semidiscrete problem (2.9), one can determine the temporal order of accuracy due to the extrapolation, i.e.,

the exact value of k. Henceforth, we define the temporal extrapolation formula associated with the time-

semidiscrete problem by

y∆t
extp(x, tn+1) =

(
2z∆t(x, tn+1)− y∆t(x, tn+1)

)
, (x, tn+1) ∈ Ω× Λ∆t. (2.52)

The following expression gives the local truncation error related to the operator (I + ∆tLn+1
x,ε ):

(I + ∆tLn+1
x,ε )(y∆t(x, tn+1)− y(x, tn+1)) =

[
y∆t(x, tn)− y(x, tn)

]
+ (2.53)

(∆t)2

2

∂2y(x, tn+1)

∂t2
+O(∆t3).

Then, by following the approach in [60], we define a function φ(x, t) as the solution of the IBVP:

∂φ(x, t)

∂t
+ Lx,εφ(x, t) =

1

2

∂2y(x, t)

∂t2
, in D,

φ(x, 0) = 0, on Ω,

φ(0, t) = φ(1, t) = 0, t ∈ (0, T ],

(2.54)

where the coefficients associated with the operator Lx,ε satisfy the conditions given in (2.2). Since Lemma 2.3

implies that
∥∥∥∂2y
∂t2

∥∥∥
D
≤ C, letting g =

∂2y
∂t2

in Lemma 2.2, one can derive the following ε-uniform stability

result.

Lemma 2.16. The solution φ(x, t) of the IBVP (2.54) satisfies that ‖φ‖D ≤ C.

Lemma 2.17. The derivatives of the solution φ(x, t) of the IBVP (2.54) satisfies the bounds

∣∣∣∂j+kφ(x, t)

∂xj∂tk

∣∣∣ ≤ Cε−j , (x, t) ∈ D,

∀ j, k ∈ N ∪ {0} satisfying 0 ≤ j + 2k ≤ 4.

Proof: By changing the independent variable x to the new variable x̃ =
1− x
ε

and letting φ̃(x̃, t) = φ(x, t)
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with similar definitions of ã, b̃ and ỹ ; the IBVP (2.54) is transformed to the following form: −
∂2φ̃

∂x̃2
− ã∂φ̃

∂x̃
+ εb̃ φ̃− ε∂φ̃

∂t
=
ε

2

∂2ỹ
∂t2

, in D̃,

φ̃(x̃, t) = 0, on ∂D̃,

where D̃ = (0, 1
ε )× (0, T ] and ∂D̃ = D̃\D̃. For each (x̃, t) ∈ D̃, the rectangle Rx̃,δ := (x̃−δ, x̃+δ)× (0, T ),

for δ > 0 is denoted as a neighbourhood of (x̃, t) such that Rx̃,δ ⊂ Rx̃,2δ ⊂ D̃. Then, by applying the result

(10.5) from [65, p. 352], one can obtain that

∥∥∥ ∂j+kφ̃
∂x̃j∂tk

∥∥∥
Rx̃,δ

≤ C
[∥∥∥∂2ỹ
∂t2

∥∥∥
Rx̃,2δ

+
∥∥∥φ̃∥∥∥

Rx̃,2δ

]
, for 0 ≤ j + 2k ≤ 4, (2.55)

where the constant C independent of Rx̃,δ. Hence, for each (x̃, t) ∈ D̃, we apply Lemmas 2.3 and 2.16 in

(2.55) to obtain that ∣∣∣∂j+kφ̃(x̃, t)

∂x̃j∂tk

∣∣∣ ≤ C, for 0 ≤ j + 2k ≤ 4.

Thus, by changing the variable x̃ to the original variable x, we get the desired result.

Remark 2.4. In order to derive the bounds of the derivatives up to fourth-order in space and second-order

in time in Lemma 2.17, we require the function φ ∈ C4+γ(D), which is ensured by the assumption that the

function g =
1

2

∂2y
∂t2

must satisfy the compatibility conditions given in (2.6) at the corner points (0, 0) and (1, 0).

Therefore, we require the solution y ∈ C6+γ(D), which can be guaranteed by assuming sufficient smoothness

on the data associated with the IBVP (2.1)-(2.2) and the necessary compatibility conditions together with the

conditions in (2.3)-(2.5) at the corner points (0, 0) and (1, 0) (See [[65], Chapter IV, §5]).

Remark 2.5. Note that in order to derive the expression of the local truncation error in (2.53), it is required that∥∥∥∂3y
∂t3

∥∥∥
D
≤ C, which can be derived by applying the technique on the IBVP (2.1)-(2.2) as given in the proof of

Lemma 2.17.

Again, utilizing (2.54), we obtain that

(I + ∆tLn+1
x,ε )φ(x, tn+1) = φ(x, tn) + ∆t

( ∂
∂t

+ Ln+1
x,ε

)
φ(x, tn+1)−

(∆t)2

2

∂2φ(x, s)

∂t2
, tn < s < tn+1,

= φ(x, tn) +
∆t

2

∂2y(x, tn+1)

∂t2
+O(∆t2). (2.56)

Therefore, (2.53) and (2.56) imply that the semidiscrete solution of problem (2.9) on the mesh Ω× Λ∆t can be

written as follows:

y∆t(x, tn+1) = y(x, tn+1) + ∆tφ(x, tn+1) + R(x, tn+1), (2.57)

where R(x, tn+1) satisfies the following relation:

(I + ∆tLn+1
x,ε )R(x, tn+1) = R(x, tn) +O(∆t3). (2.58)
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Since, R(0, tn+1) = R(1, tn+1) = 0, by using Lemma 2.5 on R(x, tn+1), we have

∥∥R(tn+1)
∥∥ ≤ C∥∥R(tn)

∥∥+O(∆t)3. (2.59)

Finally, using the relation in (2.59) recursively, we obtain from (2.57) that

y(x, tn+1) = y∆t(x, tn+1) + ∆tφ(x, tn+1) +O(∆t2), (x, tn+1) ∈ Ω× Λ∆t. (2.60)

Similarly, we have

y(x, t̃n+1) = z∆t(x, t̃n+1) +
∆t

2
φ(x, t̃n+1) +O(∆t2), (x, t̃n+1) ∈ Ω× Λ∆t/2. (2.61)

Thus, by using the extrapolation formula in (2.52), and the expressions in (2.60) and (2.61), we have(
y(x, tn+1)− y∆t

extp(x, tn+1)
)

= 2
(

y(x, tn+1)− z∆t(x, tn+1)
)
−(

y(x, tn+1)− y∆t(x, tn+1)
)

= O(∆t)2, (x, tn+1) ∈ Ω× Λ∆t. (2.62)

Therefore, the above analysis shows that the global temporal error due to the temporal extrapolation is uniformly

convergent of second-order in time.

2.6 Singularly perturbed semilinear parabolic problem

Here, we discuss about the numerical solution of the following class of singularly perturbed semi-linear parabolic

IBVPs: 

∂y
∂t
− ε

∂2y
∂x2

+ a(x, t)
∂y
∂x

= g(x, t, y), (x, t) ∈ D,

y(x, 0) = q0(x), x ∈ Ω,

y(0, t) = sl(t), y(1, t) = sr(t), t ∈ [0, T ],

(2.63)

where ε ∈ (0, 1]. The convection coefficient a(x, t) is smooth enough and satisfy the conditions given in (2.2).

The nonlinear term g(x, t, y) satisfies that

k1 ≤
∂g(x, t, y)

∂y
≤ k2, for (x, t, y) ∈ D× R; k1, k2 > 0.

Further, adequate smoothness on the data q0, sl and sr; and the necessary compatibility conditions ensures that
the IBVP (2.63) has a unique solution (see [65] for further details). Now, we describe the Newton’s linearization
technique which generates the sequence {yk}∞k=0 with the initial guess y0 satisfying the initial and boundary
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conditions of the IBVP (2.63); and yk+1, for all k ≥ 0, is the solution of the following linear IBVP:


∂yk+1

∂t
− ε

∂2yk+1

∂x2
+ a(x, t)

∂yk+1

∂x
− bk(x, t)yk+1 = Gk(x, t), (x, t) ∈ D,

yk+1(x, 0) = q0(x), x ∈ Ω,

yk+1(0, t) = sl(t), yk+1(1, t) = sr(t), t ∈ [0, T ],

(2.64)

where bk(x, t) and Gk(x, t) are given by bk(x, t) =
∂g
∂y

(x, t, yk),

Gk(x, t) = g(x, t, yk)− bk(x, t)yk.

Next, for each iteration k, we compute the numerical solution of the IBVP (2.64) by using the newly developed

numerical method and apply the following condition as the stopping criterion:

max
0≤j≤N,n=M

∣∣Y k+1(xj , tn)− Y k(xj , tn)
∣∣ ≤ TOL, (2.65)

where Y k(xj , tn) is the numerical solution at the mesh point (xj , tn) ∈ D
N,∆t and where TOL is the specified

error constant. For further details, the book [29] can be referred. In the subsequent section, we present the

numerical results for the semi-linear parabolic IBVP (2.63).

2.7 Numerical experiments

Here, numerous numerical results are presented to validate the theoretical findings and also to demonstrate the

computational efficiency of the newly proposed numerical method. Moreover, those computational results are

compared with the hybrid scheme developed in [81]. We set η0 = 4.2, for all the experiments.

2.7.1 Test examples
Example 2.1. The first test problem is considered as the parabolic IBVP of the form:

∂y
∂t
− ε

∂2y
∂x2

+ (1 + x(1− x))
∂y
∂x

= g(x, t), (x, t) ∈ (0, 1)× (0, 1],

y(x, 0) = q0(x), x ∈ [0, 1],

y(0, t) = 0, y(1, t) = 0, t ∈ (0, 1],

where g(x, t) and q0(x) are to be selected to fit with the exact solution given by

y(x, t) = exp(−t)((1− exp(−(1− x)/ε))/(1− exp(−1/ε))− cos(π/2x)).

For each ε, the maximum point-wise errors eN,∆tε corresponding to the proposed numerical method without

and with extrapolation are respectively calculated by

max
0≤j≤N,n=M

∣∣y(xj , tn)− Y N,∆t(xj , tn)
∣∣,
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and

max
0≤j≤N,n=M

∣∣y(xj , tn)− Y N,∆t
extp (xj , tn)

∣∣.
Here, Y N,∆t(xj , tn) and Y N,∆t

extp (xj , tn) are respectively the numerical solution and the extrapolated solution

obtained at the mesh point (xj , tn) ∈ D
N,∆t. From these errors, the corresponding order of convergence is

computed by rN,∆tε = log2

(
eN,∆tε

e
2N,∆t/2
ε

)
. Afterwards, for each N and ∆t, the ε-uniform maximum point-wise

error and the corresponding order of convergence, are respectively calculated by

eN,∆t = max
ε
eN,∆tε and rN,∆t = log2

(
eN,∆t

e2N,∆t/2

)
.

Example 2.2. The second test problem is considered as the parabolic IBVP of the form:

∂y
∂t
− ε

∂2y
∂x2

+ (1 + xt− x2t2)
∂y
∂x

+ (1 + xt)y = 10t2x(1− x), (x, t) ∈ (0, 1)× (0, 1],

y(x, 0) = 0, x ∈ [0, 1],

y(0, t) = 0, y(1, t) = 0, t ∈ (0, 1],

The following technique is used for exhibiting the ε-uniform convergence and the accuracy of the proposed

method as we are not acquainted with the exact solution of Example 2.2. We denote Ŷ 2N,∆t/2(xj , tn) and

Ŷ
2N,∆t/2
extp (xj , tn) respectively, as the numerical solution and the extrapolated solution obtained at the mesh

point (xj , tn) ∈ D̂2N,∆t/2 = Ω̂2N ×Λ∆t/2, with ∆t/2 = T/2M . Here, similar to the mesh Ω
N , we construct a

piecewise-uniform Shishkin mesh Ω̂N with the transition parameter η̂ given by

η̂ = min
{

1

2
,η0ε ln

(
N

2

)}
,

such that for j = 0, 1, . . . N , the jth point of ΩN becomes 2jth point of Ω̂2N . For each ε, we calculate the maxi-

mum point-wise errors êN,∆tε corresponding to the proposed numerical method without and with extrapolation,

respectively by

max
0≤j≤N,n=M

∣∣Y N,∆t(xj , tn)− Ŷ 2N,∆t/2(xj , tn)
∣∣,

and

max
0≤j≤N,n=M

∣∣Y N,∆t
extp (xj , tn)− Ŷ 2N,∆t/2

extp (xj , tn)
∣∣.

Then, one can compute the corresponding order of convergence by r̂N,∆tε = log2

(
êN,∆tε

ê
2N,∆t/2
ε

)
. Finally, for

each N and ∆t, we compute the quantities êN,∆t and r̂N,∆t analogously to eN,∆t and rN,∆t.
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Example 2.3. The third test problem is considered as the semi-linear parabolic IBVP of the form:

∂y
∂t
− ε

∂2y
∂x2

+ (1 + xt− x2t2)
∂y
∂x

+ exp(y)y = g(x, t), (x, t) ∈ (0, 1)× (0, 1],

y(x, 0) = q0(x), x ∈ [0, 1],

y(0, t) = 0, y(1, t) = 0, t ∈ [0, 1],

where g(x, t) and q0(x) are to be selected to fit with the exact solution as given in Example 2.1.

Now, we apply the linearization technique discussed in Section 2.6 for Example 2.3 and solve the following

linear IBVP of the form (2.64) numerically for each iteration k:

∂yk+1

∂t
− ε

∂2yk+1

∂x2
+ (1 + xt− x2t2)

∂yk+1

∂x
+ exp(yk)(1 + yk)yk+1 =

g(x, t)− exp(yk)(1 + yk)(1− yk), (x, t) ∈ (0, 1)× (0, 1],

yk+1(x, 0) = q0(x), x ∈ [0, 1],

yk+1(0, t) = 0, yk+1(1, t) = 0, t ∈ [0, 1].

We use (2.65) as the stopping criterion with TOL = 10−10. Here, for each ε, we calculate the maximum

point-wise errors eN,∆tε corresponding to the proposed numerical method without and with extrapolation; and

the corresponding order of convergence rN,∆tε by using the definitions given in Example 2.1; and also compute

the quantities eN,∆t and rN,∆t, for each N and ∆t.

2.7.2 Numerical results and observations
One can observe from Fig 2.2 that the respective numerical solutions of Examples 2.1, 2.2 and 2.3 consist of

boundary layers nearest to the boundary at x = 1. Moreover, one can completely visualize the numerical solu-

tions from the surface plots depicted in Figs 2.3, 2.4 and 2.5. The above figures are obtained utilizing the newly

developed method with ∆t = 0.8/N . In the following we discuss about the numerical results corresponding

to ε-uniform convergence, effect of extrapolation on global and temporal accuracy, spatial accuracy, ε-uniform

global accuracy and computational efficiency of the proposed method. Note that for computing ε-uniform

errors, we select all the values of ε from Sε = {2−2, . . . , 2−20}.
2.7.2.1 ε-uniform convergence
In Tables 2.1,2.3 and 2.5, for different values of ε,N and ∆t, the maximum point-wise errors along with the

corresponding order of convergence calculated using the proposed method with ∆t = 1.6/N and ∆t = 0.8/N

are respectively presented for Examples 2.1, 2.2 and 2.3. This shows the monotonically decreasing behavior

of the ε-uniform errors with increasing N and it surely reflects ε-uniform convergence of the present method.

This also indicates that the rate of convergence of the ε-uniform errors increases when we select ∆t = 0.8/N

instead of ∆t = 1.6/N . In support of this observation, the calculated ε-uniform errors in Tables 2.1,2.3 and

2.5 are depicted in Figs 2.6, 2.7 and 2.8; and this clearly illustrates the influence of the temporal error over the

global error with the choice of the time step ∆t, as we know that the temporal accuracy (which is of order one)

before temporal extrapolation dominates the spatial accuracy of the proposed method according to the estimate

of Theorem 2.3.
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2.7.2.2 Effect of extrapolation on global and temporal accuracy
We therefore propose to implement the Richardson extrapolation technique in the temporal direction for im-

proving the temporal accuracy of the proposed method so that the dominance of the temporal error over the

global error can be reduced. For visualizing the effect of the temporal extrapolation on the global accuracy,

we select ∆t = 0.8/N , and further display the ε-uniform errors and the corresponding order of convergence

calculated using the proposed method in Tables 2.2, 2.4 and 2.6, respectively for Examples 2.1, 2.2 and 2.3; and

those numerical results are also plotted in Figs 2.6, 2.7 and 2.8, respectively. It demonstrates that the ε-uniform

order of convergence of the proposed method is significantly improved after using the temporal extrapolation.

Next, for visualizing the effect of the extrapolation on the temporal accuracy, we select sufficiently large

N to minimize the influence of the spatial error. In Tables 2.7,2.8 and 2.9, for different values of ε and ∆t,

the maximum point-wise errors along with the corresponding order of convergence calculated before and after

the temporal extrapolation using the proposed method are respectively presented for Examples 2.1, 2.2 and

2.3. For ε = 2−4, 2−6, those numerical results are also plotted in Figs 2.9, 2.10 and 2.11, respectively for

Examples 2.1, 2.2 and 2.3. Henceforth, the above numerical experiment shows that the temporal accuracy of

the resulting numerical solution after applying the temporal Richardson extrapolation improves from first-order

to second-order, irrespective of the parameter ε, as we discussed in Section 2.5.
2.7.2.3 Spatial accuracy (region-wise)
The above numerical experiment confirms that by applying the temporal Richardson extrapolation one can also

verify the spatial accuracy when selecting ∆t = 1/N in place of ∆t = 1/N2. So, the results provided in Tables

2.10, 2.11 and 2.12, respectively for Examples 2.1, 2.2 and 2.3, reflects the spatial accuracy of the proposed

method. Moreover, by selecting the same discretization parameter ∆t, those computational results are also

compared with the existing hybrid scheme. From Tables 2.10, 2.11 and 2.12, we get a strong evidence that the

spatial accuracy is at least O(N−2) outside the boundary layer and is O(N−2 ln2N) inside the boundary layer,

regardless of the smaller and the larger values of ε. This phenomenon agrees well with the theoretical output of

Theorem 2.2.

Contrary to the above observation, the results of those tables related to the existing hybrid scheme reveal that

the spatial accuracy is O(N−1) outside the boundary layer and is O(N−2 ln2N) inside the boundary layer,

when ε = 2−6. In addition, when ε = 2−4, we observe first-order spatial accuracy of the existing method

and second-order spatial accuracy of the present method for both outside and inside the boundary layer; and

in that case we recognize the mesh Ω
N as the equidistant mesh. In support of this comparison, the maximum

point-wise errors for ε = 2−4, 2−6 in Tables 2.10, 2.11 and 2.12 are graphically presented in Figs 2.12, 2.13

and 2.14, respectively. As a result, when ε = 2−4, 2−6 satisfying ε � N−1, the newly developed method

produces region-wise higher-order accurate results in comparison with the existing method. At the same time,

when ε = 2−14, 2−20 satisfying ε� N−1, the spatial order of accuracy of both the numerical methods remains

same through out the domain.
2.7.2.4 ε-uniform global accuracy
To compare the ε-uniform global order accuracy of the proposed method with the existing hybrid scheme using

the temporal extrapolation, we select ∆t = 1/N , and display the ε-uniform error and the corresponding order

of convergence calculated using both the proposed method and the existing method in Tables 2.13, 2.14 and

2.15, respectively, for Examples 2.1, 2.2 and 2.3; and those numerical results are also graphically presented in
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Figs 2.15, 2.16 and 2.17, respectively. Here, we observe that the proposed method combined with the temporal

extrapolation converges ε-uniformly with at least ofO(N−2 ln2N) global accuracy which indeed matches with

the spatial accuracy of the proposed method, because the temporal accuracy is ofO(∆t2) after the extrapolation

as it is discussed previously. At same-time, the existing hybrid scheme combined with the temporal extrapola-

tion converges ε-uniformly with O(N−1) global accuracy. This shows that there is a significant improvement

in the ε-uniform global order accuracy of the proposed method over the existing method.

Remark 2.6. The numerical experiments confirm that the theoretical restriction N−δ ≤ C∆t, 0 < δ < 1

mentioned in Theorem 2.3 is not reflected in the computed ε-uniform accuracy of the proposed numerical

method. In this context, we want to point out that by following the error analysis provided in [26], one can

overcome this theoretical restriction. However, the convergence analysis presented in this chapter is very much

useful to extend and analyze the proposed method for solving multi-dimensional parabolic PDEs.

2.7.2.5 Computational efficiency
Finally, for the purpose of demonstrating the computational efficiency, we compare the computational time of

the newly developed method with the existing hybrid scheme in Tables 2.16, 2.17 and 2.18, respectively for

Examples 2.1, 2.2 and 2.3, taking ∆t = 1/N2; and those results are also compared with the computational time

of the proposed method after applying the Richardson extrapolation in the temporal direction by choosing ∆t =

1/N . We notice a small difference in the computational time of the present method with the existing method;

and the computational times of both the numerical methods are therefore comparable in case of ∆t = 1/N2.

However, we observe a significant reduction in the computational time corresponding to the newly developed

method together with the temporal Richardson extrapolation which indeed produces the globally second-order

convergent numerical solution with the choice of ∆t = 1/N , regardless of the smaller and the larger values of

ε.

2.8 Conclusion

In the recent time, the existing hybrid numerical method is proven to be a useful and popular technique among

various FMMs for finding efficient numerical solution of singularly perturbed convection-diffusion parabolic

PDEs. While investigating about the accuracy of the method, it is found that the existing hybrid scheme con-

verges with almost second-order accuracy in the spatial variable on a piecewise-uniform Shishkin mesh, unless

the condition ε � N−1 is satisfied. On the contrary, the method is not good enough to produce the numerical

solution with higher-order spatial accuracy, whenever ε � N−1. In this chapter, we overcome this drawback,

by developing and analyzing an ε-uniformly convergent robust numerical algorithm for a class of singularly

perturbed parabolic IBVPs of the form (2.1)-(2.2).

The current numerical algorithm consists of two parts. First one is the development of a new hybrid FMM,

which produces at least second-order accurate numerical solution with respect to the spatial variable both in the

outer region (outside the boundary layer) as well as in the boundary layer region (inside the boundary layer),

irrespective of the parameter ε. This finding overshadows the drawback of the existing hybrid scheme. In this

context, it is important to note that to derive the error estimate for the newly developed method, we analyze

the error separately for the time semidiscretization and the spatial discretization, which finally contribute to the

global error in relation with the fully discrete scheme.

The other one is the implementation of the Richardson extrapolation technique solely in the temporal direction
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for enhancing the temporal accuarcy of the numerical solution from first-order to second-order. As a result

of this, we show that the resulting numerical solution is not only second-order ε-uniformly convergent in the

spatial variable but also in the temporal variable.

These theoretical findings are very-well supported by the several numerical experiments and also agree well

with the numerical results corresponding to the singularly perturbed semi-linear parabolic problem. More-

over, one can observe a significant reduction in the computational time corresponding to the newly developed

FMM together with the temporal Richardson extrapolation, regardless of the smaller and the larger values of ε.

Keeping in mind the robustness of the newly proposed algorithm, we further study the computational and the

theoretical aspects of the proposed numerical algorithm for solving multi-dimensional parabolic PDEs (linear

and nonlinear) in the subsequent chapters.
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Figure 2.2: Numerical solutions computed at t = 1 for N = 128
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(a) for ε = 2−6, N = 128 (b) for ε = 2−20, N = 128

Figure 2.4: Surface plots of the numerical solutions of Example 2.2

(a) for ε = 2−6, N = 128 (b) for ε = 2−20, N = 128

Figure 2.3: Surface plots of the numerical solutions of Example 2.1

(a) for ε = 2−6, N = 128 (b) for ε = 2−20, N = 128

Figure 2.5: Surface plots of the numerical solutions of Example 2.3
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Table 2.1: ε-uniform maximum point-wise errors and order of convergence for Example 2.1 computed before
temporal extrapolation.

ε ∈ Sε Number of mesh intervals N / time step size ∆t ( ∆t = 1.6/N )

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

eN,∆t 4.7311e-03 1.8152e-03 6.9899e-04 2.8827e-04 1.2651e-04

rN,∆t 1.3820 1.3768 1.2778 1.1882

ε ∈ Sε Number of mesh intervals N / time step size ∆t( ∆t = 0.8/N )

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

eN,∆t 4.1296e-03 1.4964e-03 5.3899e-04 1.9965e-04 7.8348e-05

rN,∆t 1.4645 1.4731 1.4328 1.3540

Table 2.2: ε-uniform maximum point-wise errors and order of convergence for Example 2.1 computed after
temporal extrapolation with ∆t = 0.8/N .

ε ∈ Sε Number of mesh intervals N / time step size ∆t

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

eN,∆t 3.5314e-03 1.2137e-03 3.9124e-04 1.2368e-04 3.8105e-05

rN,∆t 1.5409 1.6332 1.6615 1.6985
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Figure 2.6: Loglog plot for comparison of ε-uniform maximum point-wise errors before and after the extrapo-
lation for Example 2.1.
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Table 2.3: ε-uniform maximum point-wise errors and order of convergence for Example 2.2 computed before
temporal extrapolation.

ε ∈ Sε Number of mesh intervals N / time step size ∆t( ∆t = 1.6/N )

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

êN,∆t 4.9037e-03 2.0489e-03 8.9582e-04 4.1339e-04 1.9956e-04

r̂N,∆t 1.2590 1.1935 1.1157 1.0507

ε ∈ Sε Number of mesh intervals N / time step size ∆t( ∆t = 0.8/N )

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

êN,∆t 3.7560e-03 1.4350e-03 5.6899e-04 2.3827e-04 1.0637e-04

r̂N,∆t 1.3881 1.3346 1.2558 1.1635

Table 2.4: ε-uniform maximum point-wise errors and order of convergence for Example 2.2 computed after
temporal extrapolation with ∆t = 0.8/N .

ε ∈ Sε Number of mesh intervals N / time step size ∆t

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

êN,∆t 2.2161e-03 7.3715e-04 2.3773e-04 7.5609e-05 2.3279e-05

r̂N,∆t 1.5880 1.6326 1.6527 1.6995
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Figure 2.7: Loglog plot for comparison of ε-uniform maximum point-wise errors before and after the extrapo-
lation for Example 2.2.
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Table 2.5: ε-uniform maximum point-wise errors and order of convergence for Example 2.3 computed before
temporal extrapolation.

ε ∈ Sε Number of mesh intervals N / time step size ∆t(∆t = 1.6/N )

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

eN,∆t 4.3634e-03 1.6061e-03 6.0580e-04 2.3846e-04 9.9783e-05

rN,∆t 1.4419 1.4067 1.3451 1.2569

ε ∈ Sε Number of mesh intervals N / time step size ∆t(∆t = 0.8/N )

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

eN,∆t 3.9039e-03 1.3737e-03 4.8721e-04 1.7568e-04 6.6081e-05

rN,∆t 1.5068 1.5014 1.4656 1.4141

Table 2.6: ε-uniform maximum point-wise errors and order of convergence for Example 2.3 computed after
temporal extrapolation with ∆t = 0.8/N .

ε ∈ Sε Number of mesh intervals N / time step size ∆t

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

eN,∆t 3.4930e-03 1.1846e-03 3.8203e-04 1.2087e-04 3.7261e-05

rN,∆t 1.5601 1.6327 1.6602 1.6977
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Figure 2.8: Loglog plot for comparison of ε-uniform maximum point-wise errors before and after the extrapo-
lation for Example 2.3.
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Table 2.7: Comparison of the temporal accuracy for Example 2.1 computed before and after the extrapolation.

Number of space intervals N = 8192

ε temporal extrapolation ∆t = 1
16 ∆t = 1

32 ∆t = 1
64 ∆t = 1

128 ∆t = 1
256

before 2.9210e-03 1.4560e-03 7.2642e-04 3.6277e-04 1.8128e-04

2−4 ≈ 10−1 1.0045 1.0031 1.0018 1.0008

after 1.1131e-05 3.4900e-06 9.6643e-07 2.4251e-07 5.3206e-08

1.6733 1.8525 1.9946 2.1884

before 3.9687e-03 1.9707e-03 9.8079e-04 4.8913e-04 2.4426e-04

2−6 ≈ 10−2 1.0100 1.0067 1.0037 1.0018

after 2.9210e-05 9.3082e-06 2.5975e-06 6.6327e-07 1.5776e-07

1.6499 1.8414 1.9694 2.0719

before 4.6936e-03 2.3270e-03 1.1567e-03 5.7642e-04 2.8769e-04

2−14 ≈ 10−4 1.0122 1.0084 1.0049 1.0026

after 4.0049e-05 1.3550e-05 3.8988e-06 1.0325e-06 2.7024e-07

1.5634 1.7972 1.9168 1.9339

before 4.7018e-03 2.3311e-03 1.1587e-03 5.7742e-04 2.8820e-04

2−20 ≈ 10−6 1.0122 1.0084 1.0049 1.0026

after 4.0090e-05 1.3570e-05 3.9022e-06 1.0291e-06 2.6486e-07

1.5628 1.7981 1.9228 1.9581
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(a) ε = 2−6. (b) ε = 2−20.

Figure 2.9: Loglog plot for compariosn of the temporal order of convergence for Example 2.1
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(a) ε = 2−6. (b) ε = 2−20.

Figure 2.10: Loglog plot for compariosn of the temporal order of convergence for Example 2.2

Table 2.8: Comparison of the temporal accuracy for Example 2.2 computed before and after the extrapolation.

Number of space intervals N = 4096

ε temporal extrapolation ∆t = 1
32 ∆t = 1

64 ∆t = 1
128 ∆t = 1

256 ∆t = 1
512

before 2.8611e-03 1.4364e-03 7.1953e-04 3.6007e-04 1.8011e-04

2−4 ≈ 10−1 0.99411 0.99736 0.99877 0.99941

after 1.2367e-05 2.8038e-06 6.5921e-07 1.5918e-07 3.9068e-08

2.1410 2.0886 2.0501 2.0266

before 3.3446e-03 1.6751e-03 8.3757e-04 4.1868e-04 2.0930e-04

2−6 ≈ 10−2 0.99759 0.99995 1.0003 1.0003

after 8.3233e-06 2.2380e-06 6.6411e-07 1.8149e-07 4.7483e-08

1.8949 1.7527 1.8715 1.9345

before 3.4827e-03 1.7397e-03 8.6711e-04 4.3235e-04 2.1581e-04

2−14 ≈ 10−4 1.0013 1.0046 1.0040 1.0024

after 1.7361e-05 7.0166e-06 2.4234e-06 7.2924e-07 1.8946e-07

1.3070 1.5337 1.7326 1.9445

before 3.4829e-03 1.7398e-03 8.6711e-04 4.3234e-04 2.1581e-04

2−20 ≈ 10−6 1.0014 1.0046 1.0040 1.0025

after 1.7436e-05 7.0569e-06 2.4425e-06 7.3390e-07 1.9000e-07

1.3050 1.5307 1.7347 1.9496
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Table 2.9: Comparison of the temporal accuracy for Example 2.3 computed before and after the extrapolation.

Number of space intervals N = 8192

ε temporal extrapolation ∆t = 1
16 ∆t = 1

32 ∆t = 1
64 ∆t = 1

128 ∆t = 1
256

before 2.0435e-03 1.0144e-03 5.0511e-04 2.5201e-04 1.2587e-04
2−4 ≈ 10−1 1.0104 1.0060 1.0031 1.0015

after 1.4985e-05 4.2548e-06 1.1151e-06 2.7124e-07 5.8131e-08
1.8163 1.9320 2.0395 2.2222

before 2.6901e-03 1.3325e-03 6.6262e-04 3.3036e-04 1.6496e-04
2−6 ≈ 10−2 1.0135 1.0079 1.0041 1.0019

after 2.5499e-05 7.3432e-06 1.9444e-06 4.8621e-07 1.4184e-07
1.7960 1.9171 1.9997 1.7773

before 3.1029e-03 1.5359e-03 7.6330e-04 3.8036e-04 1.8984e-04
2−14 ≈ 10−4 1.0145 1.0088 1.0049 1.0026

after 3.1084e-05 9.3408e-06 2.5694e-06 6.7420e-07 1.7628e-07
1.7345 1.8621 1.9302 1.9353

before 3.1071e-03 1.5380e-03 7.6432e-04 3.8087e-04 1.9010e-04
2−20 ≈ 10−6 1.0145 1.0088 1.0049 1.0026

after 3.1106e-05 9.3499e-06 2.5710e-06 6.7277e-07 1.7389e-07
1.7342 1.8626 1.9341 1.9519
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(a) ε = 2−6. (b) ε = 2−20.

Figure 2.11: Loglog plot for comparison of the temporal order of convergence for Example 2.3
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Table 2.10: Comparison (region-wise) of the spatial accuracy for Example 2.1 computed using extrapolation
with ∆t = 1/N .

N proposed method existing method [81]

outer region boundary layer region outer region boundary layer region
[0, 1 − η] (1 − η, 1] [0, 1 − η] (1 − η, 1]

ε = 2−4 ≈ 10−1

128 4.5441e-06 2.1310e-04 7.1657e-05 1.5010e-04
1.9994 2.0022 0.97552 1.9721

256 1.1365e-06 5.3195e-05 3.6442e-05 3.8256e-05
2.0000 1.9999 0.98813 0.93962

512 2.8413e-07 1.3300e-05 1.8371e-05 1.9945e-05
2.0000 2.000 0.99416 0.94916

1024 7.1031e-08 3.3246e-06 9.2229e-06 1.0330e-05

ε = 2−6 ≈ 10−2

128 1.0988e-05 1.2135e-03 3.8370e-05 1.1735e-03
2.4029 1.6332 1.2751 1.6418

256 2.0777e-06 3.9119e-04 1.5855e-05 3.7605e-04
2.4327 1.6614 1.3018 1.6777

512 3.8483e-07 1.2366e-04 6.4311e-06 1.1755e-04
2.4674 1.6985 1.3323 1.7185

1024 6.9583e-08 3.8102e-05 2.5540e-06 3.5719e-05

ε = 2−14 ≈ 10−4

128 1.0170e-05 1.1513e-03 1.0170e-05 1.1513e-03
2.0101 1.6295 2.0101 1.6295

256 2.5248e-06 3.7212e-04 2.5248e-06 3.7212e-04
2.0204 1.6579 2.0204 1.6579

512 6.2233e-07 1.1792e-04 6.2233e-07 1.1792e-04
1.9498 1.6972 1.9498 1.6972

1024 1.6109e-07 3.6367e-05 1.6109e-07 3.6367e-05

ε = 2−20 ≈ 10−6

128 1.0272e-05 1.1514e-03 1.0272e-05 1.1514e-03
1.9997 1.6293 1.9997 1.6293

256 2.5686e-06 3.7220e-04 2.5686e-06 3.7220e-04
2.0003 1.6575 2.0003 1.6575

512 6.4202e-07 1.1798e-04 6.4202e-07 1.1798e-04
2.0006 1.6965 2.0006 1.6965

1024 1.6044e-07 3.6401e-05 1.6044e-07 3.6401e-05
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(b) ε = 2−6.

Figure 2.12: Loglog plot for comparison of the spatial order of convergence for Example 2.1
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Table 2.11: Comparison (region-wise) of the spatial accuracy for Example 2.2 computed using extrapolation
with ∆t = 1/N .

N proposed method existing method [81]

outer region boundary layer region outer region boundary layer region
[0, 1 − η] (1 − η, 1] [0, 1 − η] (1 − η, 1]

ε = 2−4 ≈ 10−1

128 2.7217e-05 1.0362e-04 3.5989e-04 2.8470e-04
1.9999 2.0029 1.0205 1.0019

256 6.8049e-06 2.5853e-05 1.7741e-04 1.4216e-04
2.0000 1.9999 1.0103 1.0013

512 1.7012e-06 6.4640e-06 8.8073e-05 7.1015e-05
2.0000 2.0002 1.0052 1.0007

1024 4.2530e-07 1.6157e-06 4.3879e-05 3.5489e-05

ε = 2−6 ≈ 10−2

128 7.4496e-05 7.2634e-04 2.1879e-04 7.0382e-04
2.1986 1.6336 1.1966 1.6361

256 1.6229e-05 2.3408e-04 9.5454e-05 2.2644e-04
2.2141 1.6671 1.1545 1.6785

512 3.4979e-06 7.3708e-05 4.2880e-05 7.0745e-05
2.2314 1.6994 1.1382 1.7180

1024 7.4487e-07 2.2697e-05 1.9481e-05 2.1504e-05

ε = 2−14 ≈ 10−4

128 7.5565e-05 7.3649e-04 7.5565e-05 7.3649e-04
1.9751 1.6328 1.9751 1.6328

256 1.9220e-05 2.3749e-04 1.9220e-05 2.3749e-04
1.9512 1.6589 1.9512 1.6589

512 4.9705e-06 7.5210e-05 4.9705e-06 7.5210e-05
1.9062 1.697 1.9062 1.6972

1024 1.3261e-06 2.3194e-05 1.3261e-06 2.3194e-05

ε = 2−20 ≈ 10−6

128 7.4521e-05 7.3674e-04 7.4521e-05 7.3674e-04
1.9996 1.6327 1.9996 1.6327

256 1.8636e-05 2.3758e-04 1.8636e-05 2.3758e-04
1.9993 1.6586 1.9993 1.6586

512 4.6613e-06 7.5254e-05 4.6613e-06 7.5254e-05
1.9984 1.6968 1.9984 1.6968

1024 1.1666e-06 2.3213e-05 1.1666e-06 2.3213e-05
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(b) ε = 2−6.

Figure 2.13: Loglog plot for comparison of the spatial order of convergence for Example 2.2
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Table 2.12: Comparison (region-wise) of the spatial accuracy for Example 2.3 computed using extrapolation
with ∆t = 1/N .

N proposed method existing method [81]

outer region boundary layer region outer region boundary layer region
[0, 1 − η] (1 − η, 1] [0, 1 − η] (1 − η, 1]

ε = 2−4 ≈ 10−1

128 3.5116e-06 1.9332e-04 5.6553e-05 1.6133e-04
1.9996 2.0021 0.97820 2.2891

256 8.7815e-07 4.8257e-05 2.8707e-05 3.3007e-05
2.0000 2.0005 0.98924 1.1919

512 2.1954e-07 1.2060e-05 1.4461e-05 1.4449e-05
2.0000 2.0000 0.99479 0.99428

1024 5.4884e-08 3.0149e-06 7.2566e-06 7.2530e-06

ε = 2−6 ≈ 10−2

128 8.2994e-06 1.1845e-03 2.9347e-05 1.1650e-03
2.3637 1.6326 1.2338 1.6354

256 1.6126e-06 3.8200e-04 1.2478e-05 3.7498e-04
2.3971 1.6602 1.2689 1.6685

512 3.0613e-07 1.2086e-04 5.1781e-06 1.1796e-04
2.4352 1.6977 1.3031 1.7056

1024 5.6602e-08 3.7259e-05 2.0985e-06 3.6165e-05

ε = 2−14 ≈ 10−4

128 7.3375e-06 1.1562e-03 7.3375e-06 1.1562e-03
2.0089 1.6306 2.0089 1.6306

256 1.8231e-06 3.7340e-04 1.8231e-06 3.7340e-04
2.0172 1.6587 2.0172 1.6587

512 4.5037e-07 1.1827e-04 4.5037e-07 1.1827e-04
2.0332 1.6976 2.0332 1.6976

1024 1.1003e-07 3.6461e-05 1.1003e-07 3.6461e-05

ε = 2−20 ≈ 10−6

128 7.4022e-06 1.1562e-03 7.4022e-06 1.1562e-03
2.0002 1.6304 2.0002 1.6304

256 1.8503e-06 3.7347e-04 1.8503e-06 3.7347e-04
2.0003 1.6585 2.0003 1.6585

512 4.6249e-07 1.1830e-04 4.6249e-07 1.1830e-04
2.0005 1.6973 2.0005 1.6973

1024 1.1558e-07 3.6481e-05 1.1558e-07 3.6481e-05
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(a) ε = 2−4.
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(b) ε = 2−6.

Figure 2.14: Loglog plot for comparison of the spatial order of convergence for Example 2.3
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Table 2.13: Comparison of ε-uniform maximum point-wise errors and order of convergence for Example 2.1
computed using extrapolation with ∆t = 1

N .

Number of mesh intervals N / time step size ∆t

ε ∈ Sε 64 / 1
64 128/ 1

128 256/ 1
256 512/ 1

512 1024/ 1
1024

proposed method

eN,∆t 3.5307e-03 1.2135e-03 3.9119e-04 1.2366e-04 3.8102e-05

rN,∆t 1.5408 1.6332 1.6614 1.6985

ε ∈ Sε existing method [81]

eN,∆t 3.5307e-03 1.1735e-03 3.7605e-04 1.7242e-04 8.6268e-05

rN,∆t 1.5891 1.6418 1.1250 0.99903

Table 2.14: Comparison of ε-uniform maximum point-wise errors and order of convergence for Example 2.2
computed using extrapolation with ∆t = 1

N .

Number of mesh intervals N / time step size ∆t

ε ∈ Sε 64 / 1
64 128/ 1

128 256/ 1
256 512/ 1

512 1024/ 1
1024

proposed method

eN,∆t 2.2155e-03 7.3674e-04 2.3758e-04 7.5583e-05 2.3272e-05

rN,∆t 1.5884 1.6327 1.6523 1.6995

ε ∈ Sε existing method [81]

eN,∆t 2.2155e-03 7.3674e-04 2.8181e-04 1.4051e-04 7.0160e-05

rN,∆t 1.5884 1.3864 1.0040 1.0020

Table 2.15: Comparison of ε-uniform maximum point-wise errors and order of convergence for Example 2.3
computed using extrapolation with ∆t = 1/N .

Number of mesh intervals N / time step size ∆t

ε ∈ Sε 64 / 1
64 128/ 1

128 256/ 1
256 512/ 1

512 1024/ 1
1024

proposed method

eN,∆t 3.4925e-03 1.1845e-03 3.8200e-04 1.2086e-04 3.7259e-05

rN,∆t 1.5600 1.6326 1.6602 1.6977

ε ∈ Sε existing method [81]

eN,∆t 3.4925e-03 1.1650e-03 3.7498e-04 1.3116e-04 6.5608e-05

rN,∆t 1.5840 1.6354 1.5155 0.99935
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Figure 2.15: Loglog plot for comparison of the ε-uniform order of convergence computed using extrapolation
with ∆t = 1

N for Example 2.1
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Figure 2.16: Loglog plot for comparison of the ε-uniform order of convergence computed using extrapolation
with ∆t = 1

N for Example 2.2
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Figure 2.17: Loglog plot for comparison of the ε-uniform order of convergence computed using extrapolation
with ∆t = 1

N for Example 2.3
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Table 2.16: Comparison of computational time (in seconds) for Example 2.1.

N existing method [81] proposed method proposed method with
(∆t = 1/N2) (∆t = 1/N2) extrapolation (∆t = 1/N)

ε = 2−4 ≈ 10−1

128 2.447747 1.698225 0.082046

256 39.977219 33.678347 0.640903

512 471.538427 436.295669 5.213903

1024 6891.453204 6807.459580 40.902199

ε = 2−6 ≈ 10−2

128 2.467187 1.613887 0.080390

256 39.781018 33.799365 0.689698

512 470.013505 438.211076 5.578360

1024 6881.485278 6788.904188 40.775835

ε = 2−20 ≈ 10−6

128 2.366928 2.600754 0.111272

256 39.237350 43.213915 1.034624

512 463.726248 513.227230 6.906543

1024 6832.210552 7342.670128 43.881859

Table 2.17: Comparison of computational time (in seconds) for Example 2.2.

N existing method [81] proposed method proposed method with
(∆t = 1/N2) (∆t = 1/N2) extrapolation (∆t = 1/N)

ε = 2−4 ≈ 10−1

128 21.235057 16.562923 0.638085

256 298.134008 256.980466 5.249468

512 4321.015141 4044.483856 44.559408

1024 64571.722837 62886.556371 347.377197

ε = 2−6 ≈ 10−2

128 21.392572 16.693169 0.697348

256 304.132240 254.106250 6.147811

512 4411.644756 4086.152055 44.941473

1024 72732.595346 70987.220896 346.357530

ε = 2−20 ≈ 10−6

128 21.916113 22.348399 1.027123

256 302.573161 306.687003 7.525740

512 4356.711021 4370.601466 49.354894

1024 64683.607333 64840.945562 357.591586
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Table 2.18: Comparison of computational time (in seconds) for Example 2.3.

N existing method [81] proposed method proposed method with
(∆t = 1/N2) (∆t = 1/N2) extrapolation (∆t = 1/N)

ε = 2−4 ≈ 10−1

128 18.543270 12.507168 0.361790

256 303.828897 232.691973 2.983254

512 3511.456426 2832.781757 22.906101

1024 40343.169721 39689.100922 166.065631

ε = 2−6 ≈ 10−2

128 12.680438 9.632157 0.332569

256 195.416197 162.609039 2.905975

512 2500.498345 2147.380792 22.680907

1024 35257.318952 32977.883816 165.887013

ε = 2−20 ≈ 10−6

128 10.465427 10.448180 0.541479

256 168.2466500 170.295158 3.747230

512 2120.502122 2129.276525 26.207795

1024 32790.637608 33074.209161 175.229874
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Chapter 3

Higher-Order Efficient Numerical Method for Singu-
larly Perturbed 2D Linear Parabolic PDEs with Non-
homogeneous Boundary Data : ε-Uniform Convergence
and Order Reduction Analysis

The aim of this chapter is to develop and analyze a cost-effective high-order efficient numerical method

for a class of two-dimensional singularly perturbed linear parabolic convection-diffusion problems with non-

homogeneous boundary data. To achieve the goal, we develop a new fractional-step fitted mesh method

(FSFMM) that combines the fractional implicit-Euler method with an alternative evaluation of the boundary

data for discretizing in time and also consists of a new finite difference method for discretizing in space. To

constitute this method, we discretize the spatial domain using a non-uniform rectangular mesh (tensor-product

of 1D piecewise-uniform Shishkin mesh with N mesh-intervals in each spatial direction) and the time domain

by an equidistant mesh. We prove that the resulting fully discrete scheme is ε-uniformly convergent in the dis-

crete supremum norm. We further show that the order reduction in time associated with the classical evaluation

of the time-dependent boundary conditions can be eliminated by the suitable choice of the boundary data. In

addition to this, we implement the Richardson extrapolation solely for the time variable in order to increase

the order of convergence in the temporal direction; and as a result, we obtain a globally second-order accurate

numerical solution (in both space and time). Finally, we present the numerical results with the default and

alternative choices for the boundary data to validate the theoretical findings. We also compare the accuracy of

the proposed method with that of the implicit upwind method to show the robustness of the current algorithm.

3.1 Introduction

We consider the following class of two-dimensional singularly perturbed parabolic convection-diffusion-reaction

IBVPs posed on the domain D = G× (0, T ] = (0, 1)2 × (0, T ]; G = [0, 1]2 :

( ∂
∂t

+ Lε

)
u(x, y, t) = g(x, y, t), (x, y, t) ∈ D,

u(x, y, 0) = q0(x, y), (x, y) ∈ G,

u(x, y, t) = s(x, y, t), (x, y, t) ∈ ∂G× (0, T ],

(3.1)
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where  Lεu = −ε∆u + ~v(x, y, t) · ~∇u + b(x, y, t)u,

~v(x, y, t) =
(
v1(x, y, t), v2(x, y, t)

)
,

and ε is a small parameter such that ε ∈ (0, 1]. The coefficients ~v(x, y, t), b(x, y, t) and the source term

g(x, y, t) are considered to be sufficiently smooth with

v1(x, y, t) ≥ m1 > 0, v2(x, y, t) ≥ m2 > 0, b(x, y, t) ≥ β ≥ 0, on D. (3.2)

The solution of the IBVP (3.1)-(3.2) generally possesses exponential layers of widthO(ε) at the outflow bound-

aries x = 1 and y = 1 (see [77, 99]). We set Lε = L1,ε + L2,ε, where the differential operators L1,ε, L2,ε are

defined by 
L1,εu = −ε∂

2u
∂x2

+ v1(x, y, t)
∂u
∂x

+ b1(x, y, t)u,

L2,εu = −ε∂
2u
∂y2

+ v2(x, y, t)
∂u
∂y

+ b2(x, y, t)u,

with g = g1 + g2, b = b1 + b2 with bi ≥ βi ≥ 0, for i = 1, 2. We further assume that the initial and boundary

data of the problem are sufficiently smooth functions and also assume that necessary compatibility conditions

hold among them in order to u(x, y, t) ∈ C4+γ(D), which has continuous derivatives up to fourth-order in space

and second-order in time. The existence of the solution u(x, y, t) of the IBVP (3.1)-(3.2) follows from [Chapter

IV, §5] of the book [65] by Ladyzenskaja et al. The compatibility conditions are given below:

s(x, y, 0) = q0(x, y), on ∂G,

∂s(x, y, 0)

∂t
= −Lε(0)q0(x, y) + g(x, y, 0), on ∂G

∂2s(x, y, 0)

∂t2
= −Lεg(x, y, 0) + L2

ε(0)q0(x, y) +
∂g(x, y, 0)

∂t
, on ∂G,

∂s(x, y, t)

∂t
= −Lεs(x, y, t) + g(x, y, t), (x, y, t) ∈ {0, 1} × {0, 1} × (0, T ].

(3.3)

The rest of this chapter is structured as follows: Section 3.2 presents a priori bounds for the analytical solution

and its derivatives. In Section 3.3, we introduce the time semidiscrete scheme, that uses the fractional implicit-

Euler method and prove its uniform convergence. In order to avoid the order reduction while considering

non-homogeneous boundary conditions, an appropriate evaluation of the boundary data is suggested. The fully

discrete scheme is introduced in Section 3.4 and the description of an appropriate rectangular mesh is also given.

Then, by combining the errors due to the spatial and temporal discretization, we deduce parameter-uniform

convergence result of the fully discrete scheme. In Section 3.5, we discuss about the temporal Richardson

extrapolation. Finally, the numerical results are presented in Section 3.6 for several test examples to validate

the theoretical result. Here, we compare the accuracy of the present method with the implicit-upwind method

given in [22]. The conclusion of this chapter is provided in Section 3.7.
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3.2 Asymptotic behavior for the analytical solution

We decompose the solution u(x, y, t) such that

u(x, y, t) = v(x, y, t) + w(x, y, t), (x, y, t) ∈ D,

where v is the regular component and w is the singular component. Again, we consider the decomposition

w(x, y, t) = w1(x, y, t) + w2(x, y, t) + w11(x, y, t), (x, y, t) ∈ D,

where w1, w2 are the exponential layers near the sides x = 1 and y = 1 of G, respectively; and w11 is the

corner layer near the point (1,1). Following the approach given in [24], one can show that the components of

u(x, y, t) satisfy the following bounds:

∣∣∣∂j+kv(x, y, t)

∂xj1∂yj2∂tk

∣∣∣ ≤ C, (3.4)

∣∣∣∂j+kw1(x, y, t)

∂xj1∂yj2∂tk

∣∣∣ ≤ Cε−j1 exp
(
− m1(1− x)

ε

)
, (3.5)

∣∣∣∂j+kw2(x, y, t)

∂xj1∂yj2∂tk

∣∣∣ ≤ Cε−j2 exp
(
− m2(1− y)

ε

)
, (3.6)

∣∣∣∂j+kw11(x, y, t)

∂xj1∂yj2∂tk

∣∣∣ ≤ Cε−j min
{

exp
(
− m1(1− x)

ε

)
, exp

(
− m2(1− y)

ε

)}
, (3.7)

where ∀ j1, j2, k ∈ N ∪ {0}, j = j1 + j2, 0 ≤ j + 2k ≤ 4 and (x, y, t) ∈ D.

Lemma 3.1. The derivatives of the solution u(x, y, t) of the IBVP (3.1)-(3.2) satisfy the following bounds:

∣∣∣∂ku(x, y, t)

∂tk

∣∣∣ ≤ C, (3.8)

∣∣∣∂j1u(x, y, t)

∂xj1

∣∣∣ ≤ Cε−j1 exp
(
− m1(1− x)

ε

)
, (3.9)

∣∣∣∂j2u(x, y, t)

∂yj2

∣∣∣ ≤ Cε−j2 exp
(
− m2(1− y)

ε

)
, (3.10)

where j = j1 + j2, 0 ≤ j + 2k ≤ 4 and (x, y, t) ∈ D.

3.3 The time semidiscrete problem

In this section, we describe the numerical method to discretize the continuous problem (3.1)-(3.2) in the tem-

poral direction. We discuss the stability; and provide the error analysis by proposing a suitable choice of the

time-dependent boundary data instead of evaluating them classically in order to avoid the order reduction phe-

nomena.

We consider an equidistant mesh, denoted by Λ∆t := {tn}Mn=0 on the temporal domain [0, T ] with M mesh-
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intervals such that ∆t = tn − tn−1 = T/M, n = 1, . . . ,M . Let un(x, y) ≈ u(x, y, tn). Then, the semidis-

crete problem obtained by utilizing the fractional-steps implicit-Euler method which can be written as two half

scheme is given below:

(i) (initial condition)

u0(x, y) = q0(x, y), (x, y) ∈ G,

(ii) (first half)
(I + ∆tLn+1

1,ε )un+1/2(x, y) = un(x, y) + ∆tg1(x, y, tn+1), (x, y) ∈ G,

un+1/2(x, y) = sn+1/2(x, y), (x, y) ∈ {0, 1} × [0, 1],

(iii) (second half) (I + ∆tLn+1
2,ε )un+1(x, y) = un+1/2(x, y) + ∆tg2(x, y, tn+1), (x, y) ∈ G,

un+1(x, y) = sn+1(x, y), (x, y) ∈ [0, 1]× {0, 1},

(3.11)

for n = 0, . . . ,M − 1, where the operators Ln+1
1,ε and Ln+1

2,ε are defined by Ln+1
1,ε ≡ −ε ∂

2

∂x2 + v1(x, y, tn+1) ∂
∂x + b1(x, y, tn+1),

Ln+1
2,ε ≡ −ε ∂

2

∂y2 + v2(x, y, tn+1) ∂∂y + b2(x, y, tn+1).

The classical choice of the boundary conditions is given by sn+1/2(x, y) = s(x, y, tn+1), (x, y) ∈ {0, 1} × [0, 1],

sn+1(x, y) = s(x, y, tn+1), (x, y) ∈ [0, 1]× {0, 1}.
(3.12)

Here, we propose an alternative choice of the boundary data which is given by sn+1/2(x, y) = (I + ∆tLn+1
2,ε )s(x, y, tn+1)−∆tg2(x, y, tn+1), (x, y) ∈ {0, 1} × [0, 1],

sn+1(x, y) = s(x, y, tn+1), (x, y) ∈ [0, 1]× {0, 1}.
(3.13)

We show that the operators (I + ∆tLn+1
1,ε ) and (I + ∆tLn+1

2,ε ) satisfy the following maximum principle.

Lemma 3.2 (Maximum principle). Let the function ψ ∈ C0(G) ∩ C2(G) such that ψ(x, y) ≤ 0 on ∂G and

(I + ∆tLn+1
k,ε )ψ(x, y) ≤ 0, k = 1, 2, for all (x, y) ∈ G. Then, it implies that ψ(x, y) ≤ 0 for all (x, y) ∈ G.

Proof. For the operator (I+∆tLn+1
1,ε ), we first prove the maximal principle. Let us fix y ∈ [0, 1]. Let (x∗, y) ∈ G

such that

ψ(x∗, y) = max
(x∗,y)∈G

ψ(x, y),

and without loss of generality, we assume that ψ(x∗, y) > 0. Now, in conformity with the hypothesis of

the maximum principle, ψ(x, y) ≤ 0 on ∂G, which implies that (x∗, y) ∈ G. Since ∂ψ
∂x (x∗, y) = 0 and
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∂2ψ
∂x2 (x∗, y) ≤ 0, this gives that

(I + ∆tLn+1
1,ε )ψ(x∗, y) > 0,

which is a contradiction to the hypothesis (I + ∆tLn+1
1,ε )ψ(x, y) ≤ 0, for all (x, y) ∈ G. Hence, we proved

the result for the operator (I + ∆tLn+1
1,ε ). Similarly, one can prove the maximum principle for the operator

(I + ∆tLn+1
2,ε ).

The following result ensures the stability of the time semidiscrete scheme (3.11).

Lemma 3.3. Let the function Z ∈ C0(G) ∩ C2(G). Then, we have

∥∥Z∥∥
G
≤
∥∥Z∥∥

∂G
+

1

1 + βk∆t

∥∥(I + ∆tLn+1
k,ε )Z

∥∥
G
,

where k = 1, 2.

Proof. Consider the following functions

Ψ±(x, y) = −‖Z‖∂G −
1

(1 + βk∆t)
‖
(
I + ∆tLn+1

k,ε

)
Z‖G ± Z(x, y), (x, y) ∈ G,

where k = 1, 2. It is obvious that Ψ±(x, y) ≤ 0 on ∂G, and

(I + ∆tLn+1
k,ε )Ψ±(x, y) ≤ − 1 + bk∆t

1 + βk∆t
‖
(
I + ∆tLn+1

k,ε

)
Z‖G ±

(
I + ∆tLn+1

k,ε

)
Z ≤ 0, (x, y) ∈ G.

By applying Lemma 3.2, we obtain the desired result.

3.3.1 Error analysis
Let us denote ẽn+1 as the local truncation error of the time semidiscrete scheme (3.11) at the time tn+1, i.e.,

ẽn+1(x, y) = ũn+1(x, y)− u(x, y, tn+1), where ũn+1 is the solution of the following auxiliary problem

(i)u0(x, y) = q0(x, y), (x, y) ∈ G,

(ii)

 (I + ∆tLn+1
1,ε )ũn+1/2(x, y) = u(x, y, tn) + ∆tg1(x, y, tn+1), (x, y) ∈ G,

ũn+1/2(x, y) = sn+1/2(x, y), (x, y) ∈ {0, 1} × [0, 1],

(iii)

 (I + ∆tLn+1
2,ε )ũn+1(x, y) = ũn+1/2(x, y) + ∆tg2(x, y, tn+1), (x, y) ∈ G,

ũn+1(x, y) = sn+1(x, y), (x, y) ∈ [0, 1]× {0, 1},

(3.14)

for n = 0, . . . ,M − 1.

Lemma 3.4 (Local error). Under the alternative boundary data of sn+1/2 and sn+1 given in (3.13), the local

error ẽn+1 at the time level tn+1 satisfies that

‖ẽn+1‖G ≤ C(∆t)2. (3.15)
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Proof. From (3.14), we easily deduce that

(I + ∆tLn+1
1,ε )

(
(I + ∆tLn+1

2,ε )ũn+1(x, y)−∆tg2(x, y, tn+1)
)

= u(x, y, tn) + ∆tg1(x, y, tn+1). (3.16)

We expand Taylor’s series expansion of the function u(x, y, tn) in the temporal variable to obtain that

u(x, y, tn) = u(x, y, tn+1)−∆t
∂u(x, y, tn+1)

∂t
+O(∆t)2,

and using equation (3.11), we write

(I + ∆tLn+1
1,ε )

(
(I + ∆tLn+1

2,ε )u(x, y, tn+1)−∆tg2(x, y, tn+1)
)

= u(x, y, tn) + ∆tg1(x, y, tn+1) +O(∆t)2.

(3.17)

Subtracting equations (3.16) and (3.17), we get

(I + ∆tLn+1
1,ε )(I + ∆tLn+1

2,ε )ẽn+1(x, y) = O(∆t)2.

Now, by using the alternative boundary data given in (3.13), the local error can be written as the solution of a

following problem:  (I + ∆tLn+1
1,ε )ẽn+1/2(x, y) = O(∆t)2, (x, y) ∈ G,

ẽn+1/2(0, y) = 0, ẽn+1/2(1, y) = 0, y ∈ [0, 1],
(3.18)

 (I + ∆tLn+1
2,ε )ẽn+1(x, y) = ẽn+1/2(x, y), (x, y) ∈ G,

ẽn+1(x, 0) = 0, ẽn+1(x, 1) = 0, x ∈ [0, 1].
(3.19)

From (3.18) and (3.19), using the stability property of Lemma 3.3, we get the desired estimate of the local error.

Let us denote en+1(x, y) as the global error of the time semidiscrete scheme (3.11) at time tn+1 as usual

i.e., en+1(x, y) = u(x, y, tn+1) − un+1(x, y). The following result shows that the fractional-steps implicit-

Euler method converges uniformly with first-order accurate in time.

Theorem 3.1 (Global error). Under the alternative boundary data of sn+1/2 and sn+1 given in (3.13), the

global error en+1 satisfies that

sup
(n+1)∆t≤T

∥∥en+1
∥∥
G
≤ C∆t.

Proof. We rewrite the global error as

en+1(x, y) = ẽn+1(x, y) + dn+1(x, y),

where the term dn+1(x, y) = ũn+1(x, y)− un+1(x, y) can be deduced from the following problems:{
(I + ∆tLn+1

1,ε )dn+1/2(x, y) = en(x, y), in G,

dn+1/2(0, y) = 0, dn+1/2(1, y) = 0, in [0, 1],
(3.20)
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and {
(I + ∆tLn+1

2,ε )dn+1(x, y) = dn+1/2(x, y), in G,

dn+1(x, 0) = 0, dn+1(x, 1) = 0, in [0, 1].
(3.21)

Then, applying Lemma 3.3 to the equations (3.20) and (3.21), we obtain that

∥∥en+1
∥∥
G
≤
∥∥ẽn+1

∥∥
G

+
1

(I + β1∆t)(I + β2∆t)

∥∥en∥∥
G
.

Finally, using the above relation recursively and by invoking the consistency result in Lemma 3.4, we obtain

the desired estimate of the global error.

Remark 3.1. In case of non-homogeneous boundary data s(x, y, t), we generally see that, Ln+1
2,ε s(x, y, tn+1)

−g2(x, y, tn+1) 6= 0, for (x, y) ∈ {0, 1}×[0, 1]. This shows that, in the first half of (3.14), a term of sizeO(∆t)

appears as the difference between the classical choice (3.12) and the alternative choice (3.13) of the boundary

data sn+1/2(x, y). As a result, if the the natural choice of the boundary data is used, there is an order reduction

in the global error which finally becomes O(∆t)0 = O(1).

3.4 The fully discrete problem

On the spatial domain G = [0, 1]2, we construct a rectangular mesh G
N

= G
N
x ×G

N
y ⊂ G, having (N +1)2 mesh

point as depicted in Fig 3.1. Here, N ≥ 4 is an even positive integer; and G
N
x and G

N
x denote the appropriate

piecewise-uniform Shishkin meshes, respectively in the x and y directions. The detail construction of GNx is

given below. We divide the spatial domain [0, 1] into two sub-intervals as [0, 1− η1] and [1− η1, 1], where the

transition parameter η1 is defined by

η1 = min
{1

2
,η1,0ε lnN

}
,

and η1,0 is a positive constant. In the analysis, we consider non-uniform mesh and for that we assume that

η1 = η1,0ε lnN . Now, on each sub-interval we introduce equidistant mesh with N/2 mesh-intervals such that

G
N
x = {0 = x0, x1, . . . , xN/2 = 1− η1, . . . , xN = 1}.

Analogously, we define GNy such that

G
N
y = {0 = y0, y1, . . . , yN/2 = 1− η2, . . . , yN = 1},

where

η2 = min
{1

2
,η2,0ε lnN

}
.
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Figure 3.1: Shishkin mesh in the spatial direction

Further, the mesh widths in the spatial directions are denoted by hxi = xi − xi−1, 1 ≤ i ≤ N, hyj = yj − yj−1, 1 ≤ j ≤ N,

ĥxi = hxi + hxi+1 , 1 ≤ i ≤ N − 1, ĥyj = hyj + hyj+1 , 1 ≤ j ≤ N − 1.

Let hxi = H1 = 2(1−η1)
N , 1 ≤ i ≤ N/2 and hyj = H2 =

2(1− η2)

N
, 1 ≤ j ≤ N/2. Also let hxi = h1 =

2η1

N , N/2 + 1 ≤ i ≤ N and hyj = h2 = 2η2

N , N/2 + 1 ≤ j ≤ N .

3.4.1 Proposed fully discrete scheme
For a given function Ψn

i,j = Ψ(xi, yj , tn), defined on the mesh D
N,∆t

= G
N × Λ∆t, we define Ψn

i− 1
2
,j

=

Ψn
i,j + Ψn

i−1,j

2
, Ψn

i,j− 1
2

=
Ψn
i,j + Ψn

i,j−1

2
. Also, we define vn1,i−1/2,j =

vn1,i,j + vn1,i−1,j

2
,

vn2,i,j−1/2 =
vn2,i,j + vn2,i,j−1

2
; and bn1,i−1/2,j , b

n
2,i,j−1/2, gn1,i−1/2,j , gn2,i,j−1/2 are defined similarly. Let us

denote GNx = G
N
x ∩ (0, 1) and GNy = G

N
y ∩ (0, 1). In order to constitute the fully discrete scheme for the IBVP

(3.1)-(3.2), we consider spatial discretization of (3.11) in each half by a new hybrid finite difference scheme.

The scheme is composed of a modified central difference scheme whenever ε > ‖vi‖N−1, i = 1, 2; and a

combination of the midpoint upwind scheme in the outer region and the modified central difference scheme

in the layer region whenever ε ≤ ‖vi‖N−1, i = 1, 2. On the mesh D
N,∆t, the fully discrete scheme takes the
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following form:

(i) U0
i,j = q0(xi, yj), for i, j = 0, 1, . . . , N,

(ii)



U
n+1/2
i,j + ∆tLn+1

1,ε,mcdU
n+1/2
i,j = Uni,j + ∆tg1(xi, yj , tn+1),

for 1 ≤ i ≤ N/2, yj ∈ GNy and when ε > ‖v1‖N−1,

U
n+1/2

i− 1
2
,j

+ ∆tLn+1
1,ε,mupU

n+1/2
i,j = Un

i− 1
2
,j

+ ∆tgn+1
1,i−1/2,j ,

for 1 ≤ i ≤ N/2, yj ∈ GNy and when ε ≤ ‖v1‖N−1,

U
n+1/2
i,j + ∆tLn+1

1,ε,mcdU
n+1/2
i,j = Uni,j + ∆tg1(xi, yj , tn+1),

for N/2 < i ≤ N − 1, yj ∈ GNy ,

U
n+1/2
i,j = sn+1/2(xi, yj), for i = 0, N , yj ∈ G

N
y ,

(iii)



Un+1
i,j + ∆tLn+1

2,ε,mcdU
n+1
i,j = U

n+1/2
i,j + ∆tg2(xi, yj , tn+1),

for 1 ≤ j ≤ N/2, xi ∈ GNx and when ε > ‖v2‖N−1,

Un+1
i,j− 1

2

+ ∆tLn+1
2,ε,mupU

n+1
i,j = U

n+1/2

i,j− 1
2

+ ∆tgn+1
2,i,j−1/2,

for 1 ≤ j ≤ N/2, xi ∈ GNx and when ε ≤ ‖v2‖N−1,

Un+1
i,j + ∆tLn+1

2,ε,mcdU
n+1
i,j = U

n+1/2
i,j + ∆tg2(xi, yj , tn+1),

for N/2 < j ≤ N − 1, xi ∈ GNx ,

Un+1
i,j = sn+1(xi, yj), for j = 0, N , xi ∈ G

N
x ,

(3.22)

where sn+1/2, sn+1 are defined in (3.13) and Ln+1
1,N,mcd, L

n+1
1,N,mup, L

n+1
2,N,mcd, L

n+1
2,N,mup are given by

Ln+1
1,N,mcdU

n+1/2
i,j = −εδ2

xU
n+1/2
i,j + v1(xi, yj , tn+1)D∗xU

n+1/2
i,j + b1(xi, yj , tn+1)U

n+1/2
i,j ,

Ln+1
1,N,mupU

n+1/2
i,j = −εδ2

xU
n+1/2
i,j + vn+1

1,i− 1
2
,j
D−x U

n+1/2
i,j + bn+1

1,i− 1
2
,j
U
n+1/2

i− 1
2
,j
,

Ln+1
2,N,mcdU

n+1
i,j = −εδ2

yU
n+1
i,j + v2(xi, yj , tn+1)D∗yU

n+1
i,j + b2(xi, yj , tn+1)Un+1

i,j ,

Ln+1
2,N,mupU

n+1
i,j = −εδ2

yU
n+1
i,j + vn+1

2,i,j− 1
2

D−y U
n+1
i,j + bn+1

2,i,j− 1
2

Un+1
i,j− 1

2

.
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Let ρxi =
(
ε− v1(xi, yj , tn+1)hxi

2

)
and ρyj =

(
ε−

v2(xi, yj , tn+1)hyj
2

)
. Then, after rearranging the terms

in (3.22), we obtain the following form of the difference scheme:

U0
i,j = q0(xi, yj), for (xi, yj) ∈ G

N
,

L
N,∆t
1,ε U

n+1/2
i,j ≡ µ−xiU

n+1/2
i−1,j + µcxiU

n+1/2
i,j + µ+

xiU
n+1/2
i+1,j = F∆t1 (xi, yj)

for 1 ≤ i ≤ N − 1, yj ∈ GNy ,

U
n+1/2
i,j = sn+1/2(xi, yj), for i = 0, N , yj ∈ G

N
y ,

L
N,∆t
2,ε Un+1

i,j ≡ µ−yjU
n+1
i,j−1 + µcyjU

n+1
i,j + µ+

yjU
n+1
i,j+1 = F∆t2 (xi, yj),

for 1 ≤ j ≤ N − 1, xi ∈ GNx ,

Un+1
i,j = sn+1(xi, yj), for j = 0, N , xi ∈ G

N
x ,

for n = 0, . . . ,M − 1,

(3.23)

where the right hand side terms F∆t1 (xi, yj), F∆t2 (xi, yj) in (3.23) are respectively given by

F∆t1 (xi, yj) =



1
2(Uni−1,j + ∆t gn+1

1,i−1,j) + 1
2(Uni,j + ∆t gn+1

1,i,j ),

for 1 ≤ i ≤ N/2, and when ε ≤ ‖v1‖N−1, yj ∈ GNy ,

Uni,j + ∆t gn+1
1,i,j , for 1 ≤ i ≤ N/2, and when ε > ‖v1‖N−1, yj ∈ GNy ,

Uni,j + ∆t gn+1
1,i,j , for N/2 < i ≤ N − 1, yj ∈ GNy ,

(3.24)

and

F∆t2 (xi, yj) =



1
2(U

n+1/2
i,j−1 + ∆t gn+1

2,i,j−1) + 1
2(U

n+1/2
i,j + ∆t gn+1

2,i,j ),

for 1 ≤ j ≤ N/2, and when ε ≤ ‖v2‖N−1, xi ∈ GNx ,

U
n+1/2
i,j + ∆t gn+1

2,i,j , for 1 ≤ j ≤ N/2, and when ε > ‖v2‖N−1, xi ∈ GNx ,

U
n+1/2
i,j + ∆t gn+1

2,i,j , for N/2 < j ≤ N − 1, xi ∈ GNx .

(3.25)
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Here, the coefficients µ−zk , µ
c
zk
, µ+

zk
for zk = xk/yk, k = i or j and l = 1, 2 are given by

µ−zk = ∆t µ−mcd,zk , µczk = ∆t µcmcd,zk + 1, µ+
zk

= ∆t µ+
mcd,zk

,

for 1 ≤ k ≤ N/2, and when ε > ‖vl‖N−1,

µ−zk = ∆t µ−mup,zk + 1
2 , µczk = ∆t µcmup,zk + 1

2 , µ+
zk

= ∆t µ+
mup,zk

,

for 1 ≤ k ≤ N/2, and when ε ≤ ‖vl‖N−1,

µ−zk = ∆t µ−mcd,zk , µcz = ∆t µcmcd,zk + 1, µ+
zk

= ∆t µ+
mcd,zk

,

for N/2 < k ≤ N − 1,

(3.26)

where

µ−mup,zk = − 2ε

h̃zkhzk
−
vn+1

1,i− 1
2
,j

hzk
+
bn+1
1,i− 1

2
,j

2
,

µcmup,zk =
2ε

hzkhzk+1

+
vn+1

1,i− 1
2
,j

hzk
+
bn+1
1,i− 1

2
,j

2
,

µ+
mup,zk

= − 2ε

h̃zkhzk+1

,

and



µ−mcd,zk = − 2ρzk

h̃zkhzk
−
vn+1

1,i,j

hzk
,

µcmcd,zk =
2ρzk

hzkhzk+1

+
vn+1

1,i,j

hzk
+ bn+1

1,i,j ,

µ+
mcd,zk

= − 2ρzk

h̃zkhzk+1

.

We show that the difference operators LN,∆t1,ε , LN,∆t2,ε defined in (3.23) satisfy the following discrete maximum

principle. Let GN = G
N ∩ G and ∂GN = G

N \ GN .

Lemma 3.5 (Discrete maximum principle). Suppose that the following conditions hold for N ≥ N0 :

N

lnN
> ηk,0‖vk‖ and mkN ≥

(
‖bk‖+

1

∆t

)
, k = 1, 2, (3.27)

where N0 is a positive integer. If any mesh function Zi,j = Z(xi, yj) defined on G
N satisfies that Zi,j ≤ 0 on

∂GN and L
N,∆t
k,ε Zi,j ≤ 0, k = 1, 2, in GN , then it implies that Zi,j ≤ 0 for all i, j.

Proof. At first, we prove the discrete maximum principle for the operator LN,∆t1,ε . Let us fix the index j and

we denote Zi,j = Zi. Without loss of generality, we assume that the mesh function Zi satisfies the following

system:  L
N,∆t
1,ε Zi = ωi, for 1 ≤ i ≤ N − 1,

Z0 = ω0, ZN = ωN ,
(3.28)

where ωi ≤ 0, for 0 ≤ i ≤ N . By adopting the approach given in [Chapter 2, Lemma 2.7], one can show that

the matrix A ∈ RN+1×N+1 associated with the coefficient of Zi is an M-matrix. Since A is also irreducible,

A−1 ≥ 0. We thus obtain the desired result for the operator LN,∆t1,ε . Similarly, one can prove the maximum

principle for the operator LN,∆t2,ε .
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3.4.2 Error analysis
In the beginning, we study the asymptotic behavior of the analytical solution of the semidiscrete problem

(3.14) and its derivatives. This will be used later to derive the bounds of the truncation errors T
N,∆t

xi,ũn+1/2 and

T
N,∆t
yj ,ũn+1 . From Lemma 3.3, it is clear that ‖ũn+1/2‖ ≤ C and ‖ũn+1‖ ≤ C, since u(x, y, tn), g1, g2, s

n+1/2

and sn+1 are ε-uniformly bounded. At first, we deduce a priori bounds for ũn+1/2(x, y) and its derivatives

in the x-direction and also for ũn+1(x, y) and its derivatives in the y-direction. For the proof of Lemma 3.6,

apart from the requirement of ε-uniform boundedness and smoothness criteria on the given data, we also need

certain compatibility conditions at (0, tn) and (1, tn) as mentioned in (3.38). Note that, we also take care of the

presence of the non-homogeneous boundary data sn+1/2, sn+1, in the following derivations.

Lemma 3.6. The solutions ũn+1/2(x, y) and ũn+1(x, y) of the time semidiscrete scheme (3.14) and their deriva-

tives satisfy that

∣∣∣∂j ũn+1/2(x, y)

∂xj

∣∣∣ ≤ C(1 + ε−j exp(−m1(1− x)/ε)
)
, j = 0, 1, 2, 3, 4, (3.29)

and ∣∣∣∂j ũn+1(x, y)

∂yj

∣∣∣ ≤ C(1 + ε−j exp(−m2(1− y)/ε)
)
, j = 0, 1, 2, 3, 4, (3.30)

for all (x, y) ∈ G.

Proof. We split up the proof into two parts. In the first part, we derive the result (3.29) for ũn+1/2(x, y) and in

the second part, the result (3.30) is established for ũn+1(x, y).

Part-I: Consider the auxiliary BVP

(I + ∆tLn+1
1,ε )ζ(x, y) = −Ln+1

1,ε u(x, y, tn) + g1(x, y, tn+1) ≡ H1(x, y), (3.31)

where

ζ(x, y) =
ũn+1/2(x, y)− u(x, y, tn)

∆t
,

with boundary conditions:

ζ(0, y) =
ũn+1/2(0, y)− u(0, y, tn)

∆t
,

=
(I + ∆tLn+1

2,ε )s(0, y, tn+1)−∆tg2(0, y, tn+1)− s(0, y, tn)

∆t
,

= Ln+1
2,ε s(0, y, tn+1)− g2(0, y, tn+1) +

ds(0, y, tn)

dt
+O(∆t),

(3.32)

ζ(1, y) = Ln+1
2,ε s(1, y, tn+1)− g2(1, y, tn+1) +

ds(1, y, tn)

dt
+O(∆t). (3.33)
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Therefore, (3.31)-(3.33) reduces to the following form:
(I + ∆tLn+1

1,ε )ζ(x, y) = H1(x, y),

ζ(0, y) = Ln+1
2,ε s(0, y, tn+1)− g2(0, y, tn+1) + ds(0,y,tn)

dt +O(∆t),

ζ(1, y) = Ln+1
2,ε s(1, y, tn+1)− g2(1, y, tn+1) + ds(1,y,tn)

dt +O(∆t).

(3.34)

We see boundary conditions of problem (3.34) are (ε,∆t)-uniformly bounded. Let |Ln+1
1,ε u(x, y, tn)| ≤ C, then

|H1(x, y)| ≤ C. Hence, applying Lemma 3.3 , we obtain that |ζ(x, y)| ≤ C. We have
Ln+1

1,ε ũn+1/2(x, y) = −ζ(x, y) + g1(x, y, tn+1), (x, y) ∈ G,

ũn+1/2(0, y) = (I + ∆tLn+1
2 )s(0, y, tn+1)−∆tg2(0, y, tn+1),

ũn+1/2(1, y) = (I + ∆tLn+1
2 )s(1, y, tn+1)−∆tg2(0, y, tn+1).

(3.35)

Using the argument of Kellogg and Tsan technique [61], one can obtain that

∣∣∣∂ũn+1/2(x, y)

∂x

∣∣∣ ≤ C[1 + ε−1 exp(−m1(1− x)/ε)
]
, (x, y) ∈ G. (3.36)

Let ζ1(x, y) = Ln+1
1,ε ζ(x, y), which satisfies that



(I + ∆tLn+1
1,ε )ζ1(x, y) = −(Ln+1

1,ε )2u(x, y, tn) + Ln+1
1,ε g1(x, y, tn+1) ≡ H2(x, y),

ζ1(0, y) = −ζ(0, y)

∆t
+

1

∆t

[
g1(0, y, tn+1)− Ln+1

1,ε u(0, y, tn)
]
,

ζ1(1, y) = −ζ(1, y)

∆t
+

1

∆t

[
g1(1, y, tn+1)− Ln+1

1,ε u(1, y, tn)
]
.

(3.37)

Let |(Ln+1
1,ε )2u(x, y, tn)| ≤ C, then |H2(x, y)| ≤ C. Now, from the compatibility conditions (3.3), one can

obtain that
ds(0, y, tn)

dt
= −Lnε s(0, y, tn) + g(0, y, tn),

ds(1, y, tn)

dt
= −Lnε s(1, y, tn) + g(1, y, tn).

(3.38)

By using the equations (3.37) and (3.38), we get
(I + ∆tLn+1

1,ε )ζ1(x, y) = H2(x, y),

ζ1(0, y) =
∂g(0, y, tn)

∂t
− Ln+1

2,ε

∂s(0, y, tn)

∂t
+ C1,

ζ1(1, y) =
∂g(1, y, tn)

∂t
− Ln+1

2,ε

∂s(1, y, tn)

∂t
+ C2,

(3.39)

whereC1 andC2 are independent of ε and ∆t. We see that H2(x, y) = −(Ln+1
1,ε )2u(x, y, tn)+Ln+1

1,ε g1(x, y, tn+1)

is bounded (ε-uniformly) and boundary conditions are (ε,∆t)-uniformly bounded. Hence, applying Lemma
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3.3 , we obtain that |ζ1(x, y)| ≤ C. Afterwards, one can deduce that∣∣∣∂ζ(x, y)

∂x

∣∣∣ ≤ C[1 + ε−1 exp(−m1(1− x)/ε)
]
, (x, y) ∈ G, (3.40)

by invoking Kellogg and Tsan technique [61] to the following BVP:
Ln+1

1,ε ζ(x, y) = ζ1(x, y),

ζ(0, y) = Ln+1
2,ε s(0, y, tn+1)− g2(0, y, tn+1) +

ds(0, y, tn)

dt
+O(∆t),

ζ(1, y) = Ln+1
2,ε s(1, y, tn+1)− g2(1, y, tn+1) +

ds(1, y, tn)

dt
+O(∆t).

(3.41)

Now, differentiate (3.35) with respect to x, we consider that ζ(x, y) =
∂ũn+1/2

∂x
satisfies the following problem Ln+1

1,ε ζ(x, y) = H3(x, y),

ζ(0, y) = C1, ζ(1, y) = C2ε
−1,

(3.42)

where H3(x, y) = −∂ζ(x, y)

∂x
+
∂g1(x, y, tn+1)

∂x
− ∂v1(x, y, tn+1)

∂x

∂ũn+1/2

∂x
− ∂b1(x, y, tn+1)

∂x
ũn+1/2(x, y) and

we obtain that ∣∣H3(x, y)
∣∣ ≤ C[1 + ε−1 exp(−m1(1− x)/ε)

]
, (x, y) ∈ G.

Again, using the argument of Kellogg and Tsan technique [61] for (3.42), we get

∣∣∣∂ζ(x, y)

∂x

∣∣∣ =
∣∣∣∂2ũn+1/2(x, y)

∂x2

∣∣∣ ≤ C[1 + ε−2 exp(−m1(1− x)/ε)
]
, (x, y) ∈ G.

To establish result for j = 3, we follow the similar procedure. Firstly, we consider the function ζ2(x, y) =

(Ln+1
1,ε )2ζ(x, y) as the solution of the following BVP:

(I + ∆tLn+1
1,ε )ζ2(x, y) = −(Ln+1

1,ε )3u(x, y, tn) + (Ln+1
1,ε )2g1(x, y, tn+1) ≡ H4(x, y),

ζ2(0, y) =
1

∆t

[
− Ln+1

1,ε ζ(0, y) +
(
Ln+1

1,ε g1(0, y, tn+1)− Ln+1
1,ε Ln+1

1,ε u(0, y, tn)
)]
,

ζ2(1, y) =
1

∆t

[
− Ln+1

1,ε ζ(1, y) +
(
Ln+1

1,ε g1(1, y, tn+1)− Ln+1
1,ε Ln+1

1,ε u(1, y, tn)
)]
.

(3.43)

We simplify the boundary conditions of the problem (3.43) by using the compatibility conditions (3.38), to get

(I + ∆tLn+1
1,ε )ζ2(x, y) = H4(x, y),

ζ2(0, y) =
(1

2
Ln+1

1,ε

∂2s

∂t2

)
(0, y, tn+1) +

(
Ln+1

1,ε Ln+1
1,ε

∂s

∂t

)
(0, y, tn+1) +O(∆t),

ζ2(1, y) =
(1

2
Ln+1

1,ε

∂2s

∂t2

)
(1, y, tn+1) +

(
Ln+1

1,ε Ln+1
1,ε

∂s

∂t

)
(1, y, tn+1) +O(∆t).

(3.44)

We see that H4(x, y) = −(Ln+1
1,ε )3u(x, y, tn) + (Ln+1

1,ε )2g1(x, y, tn+1) is bounded (ε-uniformly) and boundary

conditions are (ε,∆t)-uniformly bounded. Hence, applying Lemma 3.3 , we obtain that |ζ2(x, y)| ≤ C. Now,
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similar arguments can be applied for the following BVP:
Ln+1

1,ε ζ1(x, y) = ζ2(x, y),

ζ1(0, y) =
∂g(0, y, tn)

∂t
− Ln+1

2,ε

∂s(0, y, tn)

∂t
+ C1,

ζ1(1, y) =
∂g(1, y, tn)

∂t
− Ln+1

2,ε

∂s(1, y, tn)

∂t
+ C2,

(3.45)

to prove that ∣∣∣∂2ζ(x, y)

∂2x

∣∣∣ ≤ C[1 + ε−2 exp(−m1(1− x)/ε)
]
, (x, y) ∈ G. (3.46)

Now, we differentiate (3.42) with respect to x, we consider that ζ̄1(x, y) =
∂2ũn+1/2(x, y)

∂x2
satisfies the fol-

lowing problem:  Ln+1
1,ε ζ̄1(x, y) = H5(x, y),

ζ̄1(0, y) = C1, ζ̄1(1, y) = C2ε
−2,

(3.47)

where |H5(x, y)| ≤ C
[
1 + ε−2 exp(−m1(1 − x)/ε)

]
, (x, y) ∈ G. From the argument of Kellogg and Tsan

technique [61] for (3.47), we get

∣∣∣∂ζ1(x, y)

∂x

∣∣∣ =
∣∣∣∂3ũn+1/2(x, y)

∂x3

∣∣∣ ≤ C[1 + ε−3 exp(−m1(1− x)/ε)
]
, (x, y) ∈ G.

Similar way one can obtain the bound for j = 4.

We now derive the bound of ũn+1/2(x, y) by differentiating the auxiliary BVP (3.14) at the first half with

respect to y, and we get

(I + ∆tLn+1
1,ε )

∂ũn+1/2(x, y)

∂y
=
∂u(x, y, tn)

∂y
+ ∆t

∂g1(x, y, tn+1)

∂y
− ∂v1(x, y, tn+1)

∂y

∂ũn+1/2(x, y)

∂x

−∂b1(x, y, tn+1)

∂y
ũn+1/2(x, y),

∂ũn+1/2(0,y)
∂y = (I + ∆tLn+1

2 )∂s(0,y,tn+1)
∂y + ∆t∂v2(0,y,tn+1)

∂y
∂s(0,y,tn+1)

∂y +

∆t∂b2(0,y,tn+1)
∂y s(0, y, tn+1)−∆t

∂g2(0,y,tn+1)
∂y , y ∈ [0, 1],

∂ũn+1/2(1,y)
∂y = (I + ∆tLn+1

2 )∂s(1,y,tn+1)
∂y + ∆t∂v2(1,y,tn+1)

∂y
∂s(1,y,tn+1)

∂y +

∆t∂b2(1,y,tn+1)
∂y s(1, y, tn+1)−∆t

∂g2(1,y,tn+1)
∂y , y ∈ [0, 1].

(3.48)

The following bounds are proven by using the bounds of ∂
j ũn+1/2(x,y)

∂xj
for j = 0, 1, 2, 3, 4,

∣∣∣∂j ũn+1/2(x, y)

∂yj

∣∣∣ ≤ C[1 + ε−j exp(−m2(1− y)/ε)
]
, (x, y) ∈ G, for j = 0, 1, 2, 3, 4. (3.49)

Part-II: Here, we prove the result (3.30) for ũn+1(x, y). We suppose that, based on prior technical criterion,

‖Ln+1
2,ε ũn+1/2(x, y)‖G ≤ C, ‖(Ln+1

2,ε )2ũn+1/2(x, y)‖G ≤ C, ‖(Ln+1
2,ε )3ũn+1/2(x, y)‖G ≤ C.
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Define the following auxiliary boundary value problems:
(I + ∆tLn+1

2,ε )Λ(x, y) = −Ln+1
2,ε ũn+1/2(x, y) + g2(x, y, tn+1) ≡ F1(x, y),

Λ(x, 0) = −Ln+1
2,ε s(x, 0, tn+1) + g2(x, 0, tn+1),

Λ(x, 1) = −Ln+1
2,ε s(x, 1, tn+1) + g2(x, 1, tn+1),

(3.50)

where Λ(x, y) =
ũn+1(x, y)− ũn+1/2(x, y)

∆t
. We see that boundary conditions are (ε,∆t)-uniformly bounded

and |F1(x, y)| ≤ C. Hence, applying Lemma 3.3 , we obtain that |Λ(x, y)| ≤ C. We have Ln+1
2,ε ũn+1(x, y) = −Λ(x, y) + g2(x, y, tn+1),

ũn+1(x, 0) = s(x, 0, tn+1), ũn+1(x, 1) = s(x, 1, tn+1).
(3.51)

Using the argument of Kellogg and Tsan technique [61], one can obtain that

∣∣∣∂ũn+1(x, y)

∂y

∣∣∣ ≤ C[1 + ε−1 exp(−m2(1− y)/ε)
]

(x, y) ∈ G. (3.52)

We introduce the function Λ1(x, y) = Ln+1
2,ε Λ(x, y), which is a solution of the following BVP:

(I + ∆tLn+1
2,ε )Λ1(x, y) = −(Ln+1

2,ε )2ũn+1/2(x, y) + Ln+1
2,ε g2(x, y, tn+1) ≡ F2(x, y),

Λ1(x, 0) = −Ln+1
2,ε Ln+1

2,ε s(x, 0, tn+1) + Ln+1
2,ε g2(x, 0, tn+1),

Λ1(x, 1) = −Ln+1
2,ε Ln+1

2,ε s(x, 1, tn+1) + Ln+1
2,ε g2(x, 1, tn+1).

(3.53)

We see that F2(x, y) = −(Ln+1
2,ε )2ũn+1/2(x, y) + Ln+1

2,ε g2(x, y, tn+1) is bounded (ε-uniformly) and boundary

conditions are (ε,∆t)-uniformly bounded. Hence, applying Lemma 3.3 , we obtain that |Λ1(x, y)| ≤ C.

Afterwards, one can deduce that∣∣∣∂Λ(x, y)

∂y

∣∣∣ ≤ C[1 + ε−1 exp(−m2(1− y)/ε)
]
, (x, y) ∈ G, (3.54)

by invoking Kellogg and Tsan technique [61] to the following BVP:
Ln+1

2,ε Λ(x, y) = Λ1(x, y),

Λ(x, 0) = −Ln+1
2,ε s(x, 0, tn+1) + g2(x, 0, tn+1),

Λ(x, 1) = −Ln+1
2,ε s(x, 1, tn+1) + g2(x, 1, tn+1).

(3.55)

For second order derivative bound of ũn+1(x, y), we differentiate (3.51) with respect y, to get Ln+1
2,ε Λ(x, y) = F3(x, y),

Λ(x, 0) = C1, Λ(x, 1) = C2ε
−1,

(3.56)
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where

F3(x, y) = −∂Λ(x, y)

∂y
+
∂g2(x, y, tn+1)

∂y
− ∂v2(x, y, tn+1)

∂y

∂ũn+1(x, y)

∂y
− ∂b2(x, y, tn+1)

∂y
ũn+1(x, y),

and Λ(x, y) =
∂ũn+1(x, y)

∂y
. We obtain that |F3(x, y)| ≤ C

[
1 + ε−1 exp(−m2(1 − y)/ε)

]
, (x, y) ∈ G.

Applying the methodology of Kellogg and Tsan to (3.56), we deduce that

∣∣∣∂Λ(x, y)

∂y

∣∣∣ =
∣∣∣∂2ũn+1(x, y)

∂y2

∣∣∣ ≤ C[1 + ε−2 exp(−m2(1− y)/ε)
]
, (x, y) ∈ G. (3.57)

We introduce the function Λ2(x, y) = (Ln+1
2,ε )2Λ(x, y) which is solution of the following BVP:

(I + ∆tLn+1
2,ε )Λ2(x, y) = −(Ln+1

2,ε )3ũn+1/2(x, y) + (Ln+1
2,ε )2g2(x, y, tn+1) ≡ F4(x, y),

Λ2(x, 0) = −(Ln+1
2,ε )3s(x, 0, tn+1 + (Ln+1

2,ε )2g2(x, 0, tn+1),

Λ2(x, 1) = −(Ln+1
2,ε )3s(x, 1, tn+1 + (Ln+1

2,ε )2g2(x, 1, tn+1).

(3.58)

We observe that F4(x, y) = −(Ln+1
2,ε )3ũn+1/2(x, y) + (Ln+1

2,ε )2g2(x, y, tn+1) is bounded (ε-uniformly) and

boundary conditions are (ε,∆t)-uniformly bounded. Hence, applying Lemma 3.3 , we obtain that |Λ2(x, y)| ≤
C. Now, similar arguments can be applied for the following BVP:

Ln+1
2,ε Λ1(x, y) = Λ2(x, y),

Λ1(x, 0) = −Ln+1
2,ε Ln+1

2,ε s(x, 0, tn+1) + Ln+1
2,ε g2(x, 0, tn+1),

Λ1(x, 1) = −Ln+1
2,ε Ln+1

2,ε s(x, 1, tn+1) + Ln+1
2,ε g2(x, 1, tn+1),

(3.59)

to prove that ∣∣∣∂2Λ(x, y)

∂y2

∣∣∣ ≤ C[1 + ε−2 exp(−m2(1− y)/ε)
]
, (x, y) ∈ G. (3.60)

To establish result for j = 3, we follow the similar procedure. Firstly, we differentiate (3.56) with respect to y

and rewrite in the form  Ln+1
2,ε Λ1(x, y) = F5(x, y),

Λ1(x, 0) = C1, Λ1(x, 1) = C2ε
−2,

(3.61)

where Λ1(x, y) = ∂2ũn+1(x,y)
∂y2 and |F5(x, y)| ≤ C

[
1 + ε−2 exp(−m2(1 − x)/ε)

]
, (x, y) ∈ G. Applying the

same methodology of Kellogg and Tsan to (3.61) we deduce that

∣∣∣∂Λ1(x, y)

∂y

∣∣∣ =
∣∣∣∂3ũn+1(x, y)

∂y3

∣∣∣ ≤ [1 + ε−3 exp(−m2(1− y)/ε)
]
. (3.62)

Similarly, way one can prove the bound for j = 4.

Lemma 3.7. The exact solutions ũn+1/2(x, y) and ũn+1(x, y) of the time semidiscrete scheme (3.14) can be
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decomposed as  ũn+1/2(x, y) = p̃n+1/2(x, y) + γ1q̃n+1/2(x, y),

ũn+1(x, y) = p̃n+1(x, y) + γ2q̃n+1(x, y),

where y ∈ (0, 1) the components of ũn+1/2(x, y) satisfy
∣∣∣∂j p̃n+1/2

∂xj

∣∣∣ ≤ C(1 + ε−j+1 exp
(
−m1(1− x)

ε

))
, j = 0, 1, 2, 3, 4,

q̃n+1(x, y) = exp(−v1(1, y, tn+1)(1− x)/ε), γ1 =
ε

v1(1, y, tn+1)

dũn+1

dx
(1, y),

and for x ∈ (0, 1) the components of ũn+1(x, y) satisfy
∣∣∣∂j p̃n+1

∂yj

∣∣∣ ≤ C(1 + ε−j+1 exp
(
−m2(1− y)

ε

))
, j = 0, 1, 2, 3, 4,

q̃n+1(x, y) = exp(−v2(x, 1, tn+1)(1− y)/ε), γ2 =
ε

v2(x, 1, tn+1)

dũn+1

dy
(x, 1),

Proof. The proof was carried out by using Lemma 3.6 and the approach described in ([24], Appendix A).

Next, we state several important lemmas which will be used in the next section.

Lemma 3.8. Consider the following mesh functions Θl,k(λl) with l = 1, 2
Θ1,k(λ1) =

N∏
j=k+1

(
1 +

λ1hxk
ε

)−1
, for 0 ≤ k ≤ N − 1, Θ1,N (λ1) = 1,

Θ2,k(λ2) =
N∏

j=k+1

(
1 +

λ2hyk
ε

)−1
, for 0 ≤ k ≤ N − 1, Θ2,N (λ2) = 1,

where λl is a positive constant. Then, we have the following inequalities:

(i) If λl < ml/2, then{
exp

(
− m1(1− xk)/ε

)
≤ Θ1,k(λ1), for 0 ≤ k ≤ N − 1,

exp
(
− m2(1− yk)/ε

)
≤ Θ2,k(λ2), for 0 ≤ k ≤ N − 1,

(3.63)

(ii) Θl,N/2(λl) ≤ CN−λlηl,0 , (3.64)

for some constant C.

Proof. Use the arguments given in [84, Lemma 5] for the proof of (i) and (ii).

83



Lemma 3.9. If λl < ml/2, l = 1, 2, then under the hypothesis (3.27) of Lemma 3.5, it follows that

L
N,∆t
l,ε Θl,k(λl) ≥



C∆t

ε
Θ2,k(λl), for 1 ≤ k ≤ N/2, and when ε > ‖vl‖N−1,

C∆t

Hl
Θl,k(λl), for 1 ≤ k ≤ N/2, and when ε ≤ ‖vl‖N−1,

C∆t

ε
Θl,k(λl), for N/2 < k ≤ N − 1.

Proof. The argument given in [Chapter 2, Lemma 12] can be used to prove this lemma.

3.4.2.1 Error due to spatial discretization
In order to estimate the spatial error related to the fully discrete scheme (3.22), we consider the spatial dis-

cretization of the auxiliary problem (3.14) using the new finite difference scheme as described in Section 3.4.1.

Hence, we obtain the following discrete problem:

Ũ0
i,j = q0(xi, yj), 0 ≤ i, j ≤ N,

L
N,∆t
1,ε Ũ

n+1/2
i,j ≡ µ−xiŨ

n+1/2
i−1,j + µcxiŨ

n+1/2
i,j + µ+

xiŨ
n+1/2
i+1,j = F̃∆t

1 (xi, yj),

for 1 ≤ i, j ≤ N − 1,

Ũn+1/2(x, y) = sn+1/2(x, y), (x, y) ∈ {0, 1} × G
N
y ,

L
N,∆t
2,ε Ũn+1

i,j ≡ µ−yj Ũ
n+1
i,j−1 + µcyj Ũ

n+1
i,j + µ+

yj Ũ
n+1
i,j+1 = F̃n+1

2 (xi, yj),

for 1 ≤ i, j ≤ N − 1,

Ũn+1(x, y) = sn+1(x, y), (x, y) ∈ G
N
x × {0, 1},

for n = 0, . . . ,M − 1,

(3.65)

where the coefficients µ−xi , µ
c
xi , µ

+
xi , µ

−
yj , µ

c
yj , µ

+
yj are described in (3.26); and the terms F̃∆t

1 (xi, yj), F̃
∆t
2 (xi, yj)

are respectively given by

F̃∆t
1 (xi, yj) =



1
2(u(xi−1, yj , tn) + ∆t gn+1

1,i−1,j) + 1
2(u(xi, yj , tn) + ∆t gn+1

1,i,j ),

for 1 ≤ i ≤ N/2, and when ε ≤ ‖v1‖N−1, yj ∈ GNy ,

u(xi, yj , tn) + ∆t gn+1
1,i,j , for 1 ≤ i ≤ N/2, and when ε > ‖v1‖N−1, yj ∈ GNy ,

u(xi, yj , tn) + ∆t gn+1
1,i,j , for N/2 < i ≤ N − 1, yj ∈ GNy ,

(3.66)
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and

F̃∆t
2 (xi, yj) =



1
2(Ũ

n+1/2
i,j−1 + ∆t gn+1

2,i,j−1) + 1
2(Ũ

n+1/2
i,j + ∆t gn+1

2,i,j ),

for 1 ≤ j ≤ N/2, and when ε ≤ ‖v2‖N−1, xi ∈ GNx ,

Ũ
n+1/2
i,j + ∆t gn+1

2,i,j , for 1 ≤ j ≤ N/2, and when ε > ‖v2‖N−1, xi ∈ GNx ,

Ũ
n+1/2
i,j + ∆t gn+1

2,i,j , for N/2 < j ≤ N − 1, xi ∈ GNx .

(3.67)

At first, we derive the estimate for the local error
∣∣Ũn+1/2

i,j − ũn+1/2(xi, yj)
∣∣. Here, for the discrete problem

(3.65), the local truncation error at the first half is defined as

T
N,∆t

xi,ũn+1/2 = L
N,∆t
1,ε [Ũ

n+1/2
i,j − ũn+1/2(xi, yj)],

=



µ−xiŨ
n+1/2
i−1,j + µcxiŨ

n+1/2
i,j + µ+

xiŨ
n+1/2
i+1,j −

(
ũn+1/2(xi, yj) + ∆tLn+1

1,ε ũn+1/2(xi, yj)
)
,

for 1 ≤ i ≤ N/2, and when ε > ‖v1‖N−1,

µ−xiŨ
n+1/2
i−1,j + µcxiŨ

n+1/2
i,j + µ+

xiŨ
n+1/2
i+1,j −

1

2

(
ũn+1/2(xi, yj) + ∆tLn+1

1,ε ũn+1/2(xi, yj)
)

−1

2

(
ũn+1/2(xi−1, yj) + ∆tLn+1

1,ε ũn+1/2(xi−1, yj)
)
,

for 1 ≤ i ≤ N/2, when ε ≤ ‖v1‖N−1,

µ−xiŨ
n+1/2
i−1,j + µcxiŨ

n+1/2
i,j + µ+

xiŨ
n+1/2
i+1,j −

(
ũn+1/2(xi, yj) + ∆tLn+1

1,ε ũn+1/2(xi, yj)
)
,

for N/2 < i ≤ N − 1,

=



∆t
[
Ln+1

1,N,mcdũn+1/2(xi, yj)− (Ln+1
1,ε ũn+1/2)(xi, yj)

]
,

for 1 ≤ i ≤ N/2, and when ε > ‖v1‖N−1,

∆t
[
Ln+1

1,N,mupũn+1/2(xi, yj)− (L1,εũn+1/2)i−1/2,j

]
,

for 1 ≤ i ≤ N/2, and when ε ≤ ‖v1‖N−1,

∆t
[
Ln+1

1,N,mcdũn+1/2(xi, yj)− (Ln+1
1,ε ũn+1/2)(xi, yj)

]
, for N/2 < i ≤ N − 1.

(3.68)
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By using Lemma 3.7 and the arguments given in [Chapter 2, Lemma 2.10], we can deduce from (3.68) that

|TN,∆t
xi,ũn+1/2 | ≤



C∆t
[
H2

1 + ε−1 exp(−m1(1− xi)/ε)
]
, for 1 ≤ i < N/2, and when ε > ‖v1‖N−1,

C∆t
[
(ε+H1)H1 +H−1

1 exp(−m1(1− xi+1)/ε)
]
,

for 1 ≤ i < N/2, and when ε ≤ ‖v1‖N−1,

C∆t
[
(ε+H1)H1 + ε−1 exp(−m1(1− xi)/ε)

]
,

for i = N/2, and when ε > ‖v1‖N−1,

C∆t
[
(ε+H1)H1 + ε−1 exp(−m1(1− xi+1)/ε)

]
,

for i = N/2, and when ε ≤ ‖v1‖N−1,

C∆t
[
h2

1 + h2
1ε
−3 exp(−m1(1− xi)/ε)

]
, for N/2 < i ≤ N − 1.

We now pursue the error analysis at the first half by considering two parts. We assume that λ1 < m1/2 and let

yj ∈ G
N
y .

Part-I: When ε > ‖v1‖N−1, for sufficiently large C, we consider the following discrete function:

Φ1,i(λ1) = C
[
H2

1

(
1 + xi

)
+H2

1ϕ1,i + Θ1,i(λ1)
]
, for 0 ≤ i ≤ N,

where

ϕ1,i =


xi

1− η1
, for 0 ≤ i ≤ N/2,

1, for N/2 ≤ i ≤ N.

Then, using the inequality (3.63) and Lemma 3.9, we get

L
N,∆t
1,ε Φ1,i(λ1) ≥ |TN,∆t

xi,ũn+1/2 |, for 1 ≤ i ≤ N − 1.

Thus, by applying Lemma 3.5 to Φ1,i(λ1)±
(
Ũ
n+1/2
i,j − ũn+1/2(xi, yj)

)
, for xi ∈ G

N
x , and using the inequality

(3.63), we get ∣∣Ũn+1/2
i,j − ũn+1/2(xi, yj)

∣∣ ≤ C[H2
1 + Θ1,N/2(λ1)

]
,

≤ C
[
N−2 +N−λ1,η1,0

]
, for 0 ≤ i ≤ N/2.

(3.69)

When ε ≤ ‖v1‖N−1, for sufficiently large C, we consider the following discrete function:

Ψ1,i(λ1) =


C
[
(ε+H1)H1

(
1 + xi

)
+ Θ1,i+1(λ1)

]
, for 0 ≤ i ≤ N/2,

C
[
(ε+H1)H1

(
1 + xi

)
+
(

1 +
λ1h1

ε

)
Θ1,i(λ1)

]
, for N/2 < i ≤ N.
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Since the assumption (3.27) yields m1h1/ε < 2, using the inequality (3.63) and Lemma 3.9, we have

L
N,∆t
1,ε Ψ1,i(λ1) ≥ |TN,∆t

xi,ũn+1/2 |, for 1 ≤ i ≤ N − 1.

Thus, by applying Lemma 3.5 to Ψ1,i(λ1) ±
(
Ũ
n+1/2
i,j − ũn+1/2(xi, yj)

)
, for xi ∈ G

N
x , and utilizing (3.64),

m1h1/ε < 2, we have

∣∣Ũn+1/2
i,j − ũn+1/2(xi, yj)

∣∣ ≤ C[(ε+H1)H1 +
(

1 +
λ1h1

ε

)
Θ1,N/2(λ1)

]
,

≤ C
[
(ε+N−1)N−1 +N−λ1,η1,0

]
, for 0 ≤ i ≤ N/2.

(3.70)

Part-II: For sufficiently large C, we consider the following discrete function:

Υ1,i(λ1) = C
[
(N−2 +N−λ1η1,0)

(
1 + xi

)
+ h2

1ε
−2Θ1,i(λ1)

]
, for N/2 ≤ i ≤ N.

Then, it implies that Υ1,N/2(λ1) ≥
∣∣Ũn+1/2

N/2,j − ũn+1/2(xN/2, yj)
∣∣, Υ1,N (λ1) ≥

∣∣Ũn+1/2
N,j − ũn+1/2(xN , yj)

∣∣,
L
N,∆t
1,ε Υ1,i(λ1) ≥ |TN,∆t

xi,ũn+1/2 |, for N/2 + 1 ≤ i ≤ N − 1,

and applying Lemma 3.5 to Υ1,i(λ1) ±
(
Ũ
n+1/2
i,j − ũn+1/2(xi, yj)

)
, for xi ∈ [1 − η1, 1] × G

N
x , we obtain

that

∣∣Ũn+1/2
i,j − ũn+1/2(xi, yj)

∣∣ ≤ C(η2
1,0N

−2 ln2N +N−λ1η1,0

)
, for N/2 + 1 ≤ i ≤ N. (3.71)

Therefore, by combining (3.69),(3.70) and (3.71), we obtain the following estimate at (n+ 1
2)th time level.

Lemma 3.10. Let yj ∈ G
N
y . If λ1 < m1/2, the local error associated with the discrete problem (3.65) at

(n+ 1/2)th time level satisfies the following estimate:

∣∣Ũn+1/2
i,j − ũn+1/2(xi, yj)

∣∣ ≤


C
(

(N−1 + χ1,ε)N
−1 +N−λ1η1,0

)
, for xi ∈ [0, 1− η1] ∩ GNx ,

C
(
η2

1,0N
−2 ln2N +N−λ1η1,0

)
, for xi ∈ (1− η1, 1] ∩ GNx ,

(3.72)

where

χ1,ε =

 ε, when ε ≤ ‖v1‖N−1,

0, when ε > ‖v1‖N−1.

Next, we proceeds to estimate the local error
∣∣Ũn+1

i,j − ũn+1(xi, yj)
∣∣ . Here, for the discrete problem (3.65), the
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local truncation error at the second half is defined as

T
N,∆t
yj ,ũn+1 = L

N,∆t
2,ε [Ũn+1

i,j − ũn+1(xi, yj)]

=



Ũ
n+1/2
i,j − ũn+1/2(xi, yj) + ∆t

(
Ln+1

2,ε ũn+1(xi, yj)− Ln+1
2,N,mcdũn+1(xi, yj)

)
,

for 1 ≤ j ≤ N/2, when ε > ‖v2‖N−1,

1
2

(
Ũ
n+1/2
i,j − ũn+1/2(xi, yj)

)
+ 1

2

(
Ũ
n+1/2
i,j−1 − ũn+1/2(xi, yj−1)

)
+

∆t
(
Ln+1

2,ε ũn+1(xi, yj−1/2)− Ln+1
2,N,mupũn+1(xi, yj)

)
, for 1 ≤ j ≤ N/2, when ε ≤ ‖v2‖N−1,

Ũ
n+1/2
i,j − ũn+1/2(xi, yj) + ∆t

(
Ln+1

2,ε ũn+1(xi, yj)− Ln+1
2,N,mcdũn+1(xi, yj)

)
, for N/2 < j < N.

(3.73)

From (3.72) and (3.73), we get the following bounds of the local truncation error for the (n + 1)th time level.

For 1 ≤ j < N/2 and when ε > ‖v2‖N−1,

∣∣∣TN,∆tyj ,ũn+1

∣∣∣ ≤


C((N−1 + χ1,ε)N
−1 +N−λ1η1,0) + C∆t

[
H2

2 + ε−1 exp(−m2(1− yj)/ε)
]
,

for 1 ≤ i ≤ N/2,

C(η2
1,0N

−2 ln2N +N−λ1η1,0) + C∆t
[
H2

2 + ε−1 exp(−m2(1− yj)/ε)
]
,

for N/2 < i < N,

for j = N/2 and when ε > ‖v2‖N−1,

∣∣∣TN,∆tyj ,ũn+1

∣∣∣ ≤


C((N−1 + χ1,ε)N
−1 +N−λ1η1,0) + C∆t

[
(ε+H2)H2 + ε−1 exp(−m2(1− yj+1)/ε)

]
,

for 1 ≤ i ≤ N/2,

C(η2
1,0N

−2 ln2N +N−λ1η1,0) + C∆t
[
(ε+H2)H2 + ε−1 exp(−m2(1− yj+1)/ε)

]
,

for N/2 < i < N,

for 1 ≤ j < N/2 and when ε ≤ ‖v2‖N−1,

|TN,∆t
yj ,ũn+1 | ≤

C((N−1 + χ1,ε)N
−1 +N−λ1η1,0) + C∆t

[
(ε+H2)H2 +H−1

2 exp(−m2(1− yj+1)/ε)
]
,

for 1 ≤ i ≤ N/2,

C(η2
1,0N

−2 ln2N +N−λ1η1,0) + C∆t
[
(ε+H2)H2 +H−1

2 exp(−m2(1− yj+1)/ε)
]
,

for N/2 < i < N,
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for j = N/2 and when ε ≤ ‖v2‖N−1,

|TN,∆t
yj ,ũn+1 | ≤

C((N−1 + χ1,ε)N
−1 +N−λ1η1,0) + C∆t

[
(ε+H2)H2 + ε−1 exp(−m2(1− yj+1)/ε)

]
,

for 1 ≤ i ≤ N/2,

C(η2
1,0N

−2 ln2N +N−λ1η1,0) + C∆t
[
(ε+H2)H2 + ε−1 exp(−m2(1− yj+1)/ε)

]
,

for N/2 < i < N,

and finally, for N/2 < j < N ,

|TN,∆t
yj ,ũn+1 | ≤

C((N−1 + χ1,ε)N
−1 +N−λ1η1,0) + C∆t

[
h2

2 + h2
2ε
−3 exp(−m2(1− yj)/ε)

]
,

for 1 ≤ i ≤ N/2,

C(η2
1,0N

−2 ln2N +N−λ1η1,0) + C∆t
[
h2

2 + h2
2ε
−3 exp(−m2(1− yj)/ε)

]
,

for N/2 < i < N.

In the following, we consider two parts: xi ∈ [0, 1− η1] ∩ GNx and xi ∈ (1− η1, 1] ∩ GNx .

Part-I: Here, we consider two subparts.

(a) When ε > ‖v2‖N−1, for sufficiently large C, we consider the following discrete function

Φ2,j(λ2) = C
[
((N−1 + χ1,ε)N

−1 +N−λ1η1,0)
(

1 + yj

)
+H2

2ϕ2,j + Θ2,j(λ2)
]
, for 0 ≤ j ≤ N,

where

ϕ2,j =


yj

1− η2
, for 0 ≤ j ≤ N/2,

1, for N/2 ≤ j ≤ N.

Then, from Lemma 3.9, and the inequality (3.63), we get

L
N,∆t
2,ε Φ2,j(λ2) ≥ |TN,∆t

yj ,ũn+1 |, for 1 ≤ j ≤ N − 1.

Thus, by applying Lemma 3.5 to Φ2,j(λ2) ±
(
Ũn+1
i,j − ũn+1(xi, yj)

)
, for yj ∈ G

N
y , and using the inequality

(3.63), we get

∣∣Ũn+1
i,j − ũn+1(xi, yj)

∣∣ ≤ C[(N−1 + χ1,ε)N
−1 +N−2 +N−λ1η1,0 +N−λ2η2,0

]
, for 0 ≤ j ≤ N/2.
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When ε ≤ ‖v2‖N−1, for sufficiently large C, we consider the following discrete function

Ψ2,j(λ2) =



C
[
((N−1 + χ1,ε)N

−1 +N−λ1η1,0)(1 + yj)+

(ε+H2)H2

(
1 + yj

)
+ Θ2,j+1(λ2)

]
, for 0 ≤ j ≤ N/2,

C
[
((N−1 + χ1,ε)N

−1 +N−λ1η1,0)(1 + yj)+

(ε+H2)H2

(
1 + yj

)
+
(

1 + λ2h2
ε

)
Θ2,j(λ2)

]
, for N/2 ≤ j ≤ N.

Then, from Lemma 3.5, and the inequality (3.63), we get

L
N,∆t
2,ε Ψ2,j(λ2) ≥ |TN,∆t

yj ,ũn+1 |, for 1 ≤ j ≤ N − 1.

Thus, by applying Lemma 3.5 to Ψ2,j(γ)±
(
Ũn+1
i,j − ũn+1(xi, yj)

)
, for yj ∈ G

N
y , and using (3.64), m2h2/ε < 2,

we get∣∣Ũn+1
i,j − ũn+1(xi, yj)

∣∣ ≤ C[(N−1 + χ1,ε)N
−1 + εH2 +H2

2 +N−λ1η1,0 + Θ2,N/2(λ2)
]
,

≤ C
(

(N−1 + χ1,ε)N
−1 + (ε+N−1)N−1 +N−λ1η1,0 +N−λ2η2,0

)
, for 0 ≤ j ≤ N/2.

(b) For sufficiently large C, we consider the following discrete function

Υ2,j(λ2) = C
[
((N−1 + χ1,ε)N

−1 +N−λ1η1,0 +N−λ1η2,0)
(

1 + yj

)
+ h2

2ε
−2Θ2,j(λ2)

]
, N/2 ≤ j ≤ N,

and by applying Lemma 3.5 to Υ2,j(γ)±
(
Ũn+1
i,j − ũn+1(xi, yj)

)
, over [1− η2, 1]

⋂
G
N
y , we have

∣∣Ũn+1
i,j − ũn+1(xi, yj)

∣∣ ≤ Υ2,j(λ2),

≤ C
[
((N−1 + χ1,ε)N

−1 + η2
2,0N

−2 ln2N +N−λ1η1,0 +N−λ2η2,0)
]
, N/2 + 1 ≤ j ≤ N.

Part-II: As like the previous part, one can suitably choose Φ2,j(λ2), for 0 ≤ j ≤ N, and when ε > ‖v2‖N−1,

Ψ2,j(λ2), for 0 ≤ j ≤ N, and when ε ≤ ‖v2‖N−1, Υ2,j(λ2), for N/2 ≤ j ≤ N , and arguing similar way as

in the previous case, one can obtain the desired result. Therefore, from the above derivations, we deduce the

following estimate at (n+ 1)th time level.

Lemma 3.11. If λl < ml/2, l = 1, 2, the local error associated with the discrete problem (3.65) at (n + 1)th
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time level satisfies the following estimate:

∣∣Ũn+1
i,j − ũn+1(xi, yj)

∣∣ ≤



C
(

(N−1 + χ1,ε)N
−1 + (N−1 + χ2,ε)N

−1 +N−λ1η1,0 +N−λ2η2,0

)
,

for (xi, yj) ∈
(

[0, 1− η1] ∩ GNx
)
×
(

[0, 1− η2] ∩ GNy
)
,

C
(

(N−1 + χ1,ε)N
−1 + η2

2,0N
−2 ln2N +N−λ1η1,0 +N−λ2η2,0

)
,

for (xi, yj) ∈
(

[0, 1− η1] ∩ GNx
)
×
(

(1− η2, 1] ∩ GNy
)
,

C
(

(N−1 + χ2,ε)N
−1 + η2

1,0N
−2 ln2N +N−λ1η1,0 +N−λ2η2,0

)
,

for (xi, yj) ∈
(

(1− η1, 1] ∩ GNx
)
×
(

[0, 1− η2] ∩ GNy
)
,

C
(

(η2
1,0 + η2

2,0)N−2 ln2N +N−λ1η1,0 +N−λ2η2,0

)
,

for (xi, yj) ∈
(

(1− η1, 1] ∩ GNx
)
×
(

(1− η2, 1] ∩ GNy
)
,

where

χ1,ε =

 ε, when ε ≤ ‖v1‖N−1

0, when ε > ‖v1‖N−1,
and χ2,ε =

 ε, when ε ≤ ‖v2‖N−1

0, when ε > ‖v2‖N−1.

Corollary 3.1. Lemma 3.11 implies that for fixed ηl,0 ≥ 2/λl, l = 1, 2, and for some constant C

∣∣Ũn+1
i,j − ũn+1(xi, yj)

∣∣ ≤


C(N−1 + χ1,ε)N
−1 + C(N−1 + χ2,ε)N

−1,

for (xi, yj) ∈
(

[0, 1− η1]× [0, 1− η2]
)
∩ GN ,

CN−2 ln2N, otherwise.

(3.74)

3.4.2.2 Uniform convergence of the fully discrete scheme
We define En+1(xi, yj) = [Un+1

i,j − u(xi, yj , tn+1)], for (xi, yj) ∈ G
N , as the global error related to the fully

discrete scheme (3.22) at the time level tn+1. Now, to show the ε-uniform convergence of the fully discrete

scheme (3.22), we rewrite the global error in the following form:

En+1(xi, yj) = ẽn+1(xi, yj) + Ẽn+1(xi, yj) + [Un+1
i,j − Ũ

n+1
i,j ]. (3.75)

Here, ẽn+1(xi, yj) = [ũn+1(xi, yj)−u(xi, yj , tn+1)] and Ẽn+1(xi, yj) = [Ũn+1
i,j − ũn+1(xi, yj)], respectively,

denote the local error related to the time semidiscrete scheme and the spatial discretization of the auxiliary

problem (3.14) at the time level tn+1. The term [Un+1
i,j − Ũ

n+1
i,j ] can be written as the solution of the following

systems:  L
N,∆t
1,ε L

N,∆t
2,ε Rn+1(xi, yj) = Uni,j − u(xi, yj , tn) +O(∆t)2, (xi, yj) ∈ GN ,

Rn+1(xi, yj) = 0, (xi, yj) ∈ ∂GN ,
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where Rn+1(xi, yj) = [Un+1
i,j − Ũ

n+1
i,j ], and by employing the discrete maximum principle in Lemma 3.5, we

obtain that ∥∥∥{Rn+1(xi, yj)
}
i,j

∥∥∥ ≤ ∥∥∥{En(xi, yj)
}
i,j

∥∥∥+ C(∆t)2. (3.76)

Afterwards, from (3.75) and (3.76), we obtain that∥∥∥{En+1(xi, yj)
}
i,j

∥∥∥ ≤ ∥∥∥{ẽn+1(xi, yj)
}
i,j

∥∥∥+
∥∥∥{Ẽn+1(xi, yj)

}
i,j

∥∥∥+
∥∥∥{En(xi, yj)

}
i,j

∥∥∥+ C(∆t)2,

for (xi, yj) ∈ G
N
.

(3.77)

Now, by invoking the estimate obtained in Lemma 3.4 and the estimate (3.74) in (3.77), with the assumption

that N−δ ≤ C∆t, 0 < δ < 1, we obtain the following estimate of the global error.

Theorem 3.2 (Global error). Assume that the conditions given in (3.27) hold for N ≥ N0. Then, if λl <

ml/2, ηl,0 ≥ 2/λl, l = 1, 2, the global error associated with the fully discrete scheme (3.22) at time level tn+1,

satisfies the following estimate:

∥∥∥{Un+1
i,j

}
i,j
−
{

u(xi, yj , tn+1)
}
i,j

∥∥∥ ≤


C
(
N−2+δ + χ1,εN

−1+δ + χ2,εN
−1+δ + ∆t

)
,

for (xi, yj) ∈
(

[0, 1− η1]× [0, 1− η2]
)
∩ GN ,

C
(
N−2+δ ln2N + ∆t

)
, for otherwise,

(3.78)

where N and ∆t are such that N−δ ≤ C∆t with 0 < δ < 1.

Remark 3.2. The error estimate (3.78) implies that the global error takes the form

Un+1
i,j − u(xi, yj , tn+1) =


O(N−2+δ) +O(∆t), for (xi, yj) ∈

(
[0, 1− η1]× [0, 1− η2]

)
∩ GN ,

O(N−2+δ ln2N) +O(∆t), for otherwise,
(3.79)

not only for ε ≤ ‖vl‖N−1 but also for ε > ‖vl‖N−1, l = 1, 2. Note that the temporal accuracy in (3.79) holds

under the alternative boundary data given in (3.13).

3.5 Error analysis for temporal Richardson extrapolation

In this section, we analyze the Richardson extrapolation in the time variable in order to improve the order of

uniform convergence in the temporal direction established in Theorem 3.1 so that we can produce higher-order

accurate numerical solution at low computational cost. On the domain [0, T ], we construct a fine mesh, denoted

by Λ∆t/2 =
{
t̃n
}2M

n=0
, by bisecting each mesh interval of Λ∆t. So, t̃n+1 − t̃n = T/2M = ∆t/2 is the step-

size. Let UN,∆t(xi, yj , tn+1) and UN,∆t/2(xi, yj , t̃n+1) be the respective solutions of the fully discrete problem
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(3.22) on the mesh G
N × Λ∆t and G

N × Λ∆t/2. Then, from (3.79), on G
N × Λ∆t we have

(
2UN,∆t/2(xi, yj , tn+1)− UN,∆t(xi, yj , tn+1)

)
− u(xi, yj , tn+1) = o(∆t) +O(N−2+δ),

for (xi, yj) ∈
(

[0, 1− η1]× [0, 1− η2]
)
∩ GN ,(

2UN,∆t/2(xi, yj , tn+1)− UN,∆t(xi, yj , tn+1)
)
− u(xi, yj , tn+1) = o(∆t) +O(N−2+δ ln2N),

for otherwise.
(3.80)

Remark 3.3. We set UN,∆textp (xi, yj , tn+1) =
(

2UN,∆t/2(xi, yj , tn+1) − UN,∆t(xi, yj , tn+1)
)

as the extrapola-

tion formula so that the time accuracy can be improved from O(∆t) to O(∆tk), k > 1. To determine the exact

value of k, we analyze the global error related to temporal extrapolation of the solution to the time semidis-

crete problem 3.11. However, it is clear from (3.80) that the spatial accuracy remains unchanged due to the

Richardson extrapolation only in time variable.

Now, let u∆t(x, y, tn+1) and u∆t/2(x, y, t̃n+1) be the respective solutions of the time-semidiscrete prob-

lem (3.11) on the mesh G × ∧∆t and G × ∧∆t/2, such that u∆t(xi, yj , tn+1) ≈ UN,∆t(xi, yj , tn+1) and

u∆t/2(xi, yj , t̃n+1) ≈ UN,∆t/2(xi, yj , t̃n+1), (xi, yj) ∈ G
N . Utilizing the global error in Theorem 3.1, one

can show that when ∆t → 0, the following relation holds for the global error of the time semidiscrete scheme

(3.11):

u∆t(x, y, tn+1) = u(x, y, tn+1) + ∆tΨ(x, y, tn+1) + R(x, y, tn+1), (3.81)

where Ψ is a certain smooth function defined on G × Λ∆t and independent of ∆t ; R is the remainder term

defined on G× ∧∆t. We begin by assuming that the expansion (3.81) is valid. We substitute u∆t(x, y, tn+1) in

(3.11) and obtain that

u(x, y, 0) + ∆tΨ(x, y, 0) + R(x, y, 0) = q0(x, y), (x, y) ∈ G,(
I + ∆tLn+1

1,ε

)[(
I + ∆tLn+1

2,ε

)(
u(x, y, tn+1) + ∆tΨ(x, y, tn+1) + R(x, y, tn+1)

)
−∆tg2(x, y, tn+1)

]
=

u(x, y, tn) + ∆tΨ(x, y, tn) + R(x, y, tn) + ∆tg1(x, y, tn+1), (x, y) ∈ G,

u(x, y, tn+1) + ∆tΨ(x, y, tn+1) + R(x, y, tn+1) = s(x, y, tn+1), (x, y) ∈ ∂G× Λ∆t,

n = 0, 1, . . . ,M − 1.

(3.82)

By following the approach in [104, 60] to the problem (3.82), we get the function Ψ(x, y, t) is the solution of

the following IBVP:

( ∂
∂t

+ Lε

)
Ψ(x, y, t) =

1

2

∂2u(x, y, t)

∂t2
+ L1,εg2(x, y, t)− L1,εL2,εu(x, y, t), (x, y, t) ∈ D,

Ψ(x, y, 0) = 0, (x, y) ∈ G,

Ψ(x, y, t) = 0, in ∂G× (0, T ].

(3.83)

Since
1

2

∂2u(x, y, t)

∂t2
+L1,εg2(x, y, t)−L1,εL2,εu(x, y, t) is ε-uniformly bounded, one can derive that ‖Ψ(x, y, t)‖D ≤
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C. To establish the bounds of the derivatives up to second order in time in Lemma 3.12, we require Ψ(x, y, t) ∈
C4+γ(D).

Lemma 3.12. The function Ψ(x, y, t) solution of (3.83) satisfies the bounds

∣∣∣∂kΨ(x, y, t)

∂tk

∣∣∣ ≤ C, k = 0, 1, 2.

Proof. The proof of this lemma is obtained by using the argument given in [20].

Lemma 3.13. The remainder term R(x, y, t) given in (3.81), satisfies the bound

∣∣R(x, y, tn)
∣∣ ≤ C(∆t)2, 0 ≤ n ≤M. (3.84)

Proof. From the equation (3.82), we get(
I + ∆tLn+1

1,ε

)(
I + ∆tLn+1

2,ε

)
u(x, y, tn+1) + ∆t

(
I + ∆tLn+1

1,ε

)(
I + ∆tLn+1

2,ε

)
Ψ(x, y, tn+1)+(

I + ∆tLn+1
1,ε

)(
I + ∆tLn+1

2,ε

)
R(x, y, tn+1) =

u(x, y, tn) + ∆tΨ(x, y, tn) + R(x, y, tn) + ∆tg1(x, y, tn+1).

Further simplification yields that

u(x, y, tn+1) + ∆tΨ(x, y, tn+1) + ∆tLn+1
ε u(x, y, tn+1) + (∆t)2Ln+1

ε Ψ(x, y, tn+1)+(
I + ∆tLn+1

1,ε

)(
I + ∆tLn+1

2,ε

)
R(x, y, tn+1) = u(x, y, tn) + ∆tΨ(x, y, tn) + R(x, y, tn)+

∆tg(x, y, tn+1) + (∆t)2Ln+1
1,ε g2(x, y, tn+1)− (∆t)2Ln+1

1,ε Ln+1
2,ε u(x, y, tn+1)−

(∆t)3Ln+1
1,ε Ln+1

2,ε Ψ(x, y, tn+1).

(3.85)

Using the equation (3.83) and the Taylor-series expansion of the functions u and Ψ with respect to time variable

t in (3.85), the remainder term in (3.81) is the solution of the following IBVP:
R(x, y, 0) = 0, (x, y) ∈ G,(
I + ∆tLn+1

2,ε

)(
I + ∆tLn+1

1,ε

)
R(x, y, tn+1) = R(x, y, tn) +O(∆t)3, (x, y) ∈ G,

R(x, y, tn+1) = 0, (x, y, tn+1) ∈ ∂G× Λ∆t.

(3.86)

Finally, using the above relation recursively and by invoking the stability in Lemma 3.3, we obtain the desired

bound of the remainder term.

Theorem 3.3. Let u∆t(x, y, tn+1) and u∆t/2(x, y, t̃n+1) be the respective solutions of the time-semidiscrete

problem (3.11) on the mesh G × ∧∆t and G × ∧∆t/2; and let u(x, y, tn+1) be the exact solution of the IBVP

(3.1)-(3.2) on the mesh G× ∧∆t. Then the error due to the temporal extrapolation defined by

u∆t
extp(x, y, tn+1) =

(
2u∆t/2(x, y, tn+1)− u∆t(x, y, tn+1)

)
, (x, y, tn+1) ∈ G× ∧∆t,
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satisfies that ∣∣u∆t
extp(x, y, tn+1)− u(x, y, tn+1)

∣∣ ≤ C(∆t)2, (x, y, tn+1) ∈ G× ∧∆t.

Proof. From (3.81) and (3.84), we have

u(x, y, tn+1) = u∆t(x, y, tn+1)−∆tΨ(x, y, tn+1) +O(∆t)2, (x, y, tn+1) ∈ G
N × Λ∆t.

Similarly, we have

u(x, y, t̃n+1) = u∆t/2(x, y, t̃n+1)− (∆t/2)Ψ(x, y, t̃n+1) +O(∆t)2, (x, y, t̃n+1) ∈ G
N × Λ∆t/2.

Now, using the above two expressions, we obtain the desired result.

3.6 Numerical experiments

We provide numerical results obtained with the algorithm given here to solve effectively several problems

of type (3.1)-(3.2) in this section. We used the same decomposition for the reaction term in all of the test

examples: b1(x, y, t) = b2(x, y, t) = b(x, y, t)/2. In this case, the right-hand side is decomposed in the form

g(x, y, t) = g1(x, y, t) + g2(x, y, t), where g2(x, y, t) = g(x, 0, t) + y(g(x, 1, t) − g(x, 0, t)), g1(x, y, t) =

g(x, y, t) − g2(x, y, t). For all the test examples, we choose η0 = 4.2 to define the transition parameters of

meshes GNx and G
N
y respectively, and implement the Thomas algorithm to solve the tridiagonal linear systems

involved in our methods. The numerical results are also compared with the implicit upwind method [22].

3.6.1 Test examples
Example 3.1. Consider the following parabolic IBVP:

∂u
∂t
− ε∆u + (1 + x(1− x))

∂u
∂x

+ (1 + y(1− y))
∂u
∂y

= g(x, y, t), in G× (0, 1],

u(x, y, 0) = q0(x, y), in G,

u(x, y, t) = s(x, y, t), in ∂G× (0, T ],

(3.87)

where g , q0, s are obtained from the exact solution which is given by

u(x, y, t) = exp(−t)
[(1− exp(−(1− x)/ε)

1− exp(−1/ε)
− cos(

πx

2
)
)(1− exp(−(1− y)/ε)

1− exp(−1/ε)
− cos(

πy

2
)
)
− xy

]
.

In Fig 3.2, we draw surface plot of numerical solution for Example 3.1 and it shows that the solution

generates boundary layers closer to the outflow boundaries x = 1 and y = 1. Global errors are displayed to

demonstrate the uniform convergence of the method. For each ε, we calculate the maximum point-wise errors

eN,∆tε corresponding to the proposed numerical method before and after extrapolation, respectively by

max
0≤i≤N

max
0≤j≤N

max
0≤n≤M

∣∣UN,∆t(xi, yj , tn)− u(xi, yj , tn)
∣∣,

and

max
0≤i≤N

max
0≤j≤N

max
0≤n≤M

∣∣UN,∆textp (xj , yj , tn)− u(xi, yj , tn)
∣∣,
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(a) for ε = 2−6

(b) for ε = 2−14

Figure 3.2: Graphs of numerical solution for Example 3.1 N = 64, M = 32 at t = 1.
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and the corresponding orders of convergence are calculated by rN,∆tε = log2

(
eN,∆tε

e
2N,∆t/2
ε

)
.Here,UN,∆t(xi, yj , tn)

and UN,∆textp (xi, yj , tn), respectively denote the numerical solutions of the proposed method (3.22) obtained at

(xi, yj , tn) ∈ D
N,∆t. Further, for each N and ∆t, we calculate the ε-uniform maximum point-wise error and

the corresponding ε-uniform order of convergence, respectively by

eN,∆t = max
ε
eN,∆tε and rN,∆t = log2

(
eN,∆t

e2N,∆t/2

)
.

We also compute the local errors in time to illustrate the numerical behavior of the method. The local errors at

the mesh points are computed by

eN,∆tloc = max
0≤i≤M

max
0≤j≤M

max
0≤n≤M

|ŨN,∆t(xi, yj , tn)− u(xi, yj , tn)|,

where ŨN,∆t(xi, yj , tn) is solution of the discrete problem (3.65)-(3.67) and the corresponding local order of

convergence computed by

rN,∆tloc =
log(eN,∆tloc /e

N,∆t/2
loc )

ln 2
.

Note that the corresponding orders of consistency are given by rN,∆tloc − 1.

Example 3.2. Consider the following parabolic IBVP:

∂u
∂t
− ε∆u +

∂u
∂x

+
∂u
∂y

+ (1 + t2xy)u = g(x, y, t), in G× (0, 1],

u(x, y, 0) = 0, in G,

u(x, y, t) = (e−t − 1)(1 + x)y, (x, y, t) ∈ ∂G× (0, 1],

(3.88)

where g(x, y, t) = [1 + rt2xy][Φ(x)Φ(y) − (1 + x)y] + rm2[Φ(x) + Φ(y)] − r(1 + x + y) and Φ(z) =

m1 +m2z + exp(−(1− z)/ε), m1 = − exp(−1/ε), m2 = −1−m1 and r = 1− e−t.

In Fig 3.3, we draw surface plot of numerical solution for Example 3.2 and it shows that the solution

generates boundary layers closer to the outflow boundaries x = 1 and y = 1. As we are not acquainted with

the exact solution of Example 3.2, we calculate the maximum point-wise errors êN,∆tε corresponding to the

proposed numerical method before and after extrapolation, respectively by

max
0≤i≤N

max
0≤j≤N

max
0≤n≤M

∣∣UN,∆t(xi, yj , tn)− Û2N,∆t/2(xi, yj , tn)
∣∣,

and

max
0≤i≤N

max
0≤j≤N

max
0≤n≤M

∣∣UN,∆textp (xi, yj , tn)− Û2N,∆t/2
extp (xi, yj , tn)

∣∣,
and the corresponding orders of convergence are calculated by r̂N,∆tε = log2

(
êN,∆tε

ê
2N,∆t/2
ε

)
. Here,

Û2N,∆t/2(xi, yj , tn) and Û2N,∆t/2
extp (xi, yj , tn), respectively denote the numerical solution and the extrapolated
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(a) for ε = 2−6

(b) for ε = 2−14

Figure 3.3: Graphs of numerical solution for Example 3.2 N = 64, M = 32 at t = 1.
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numerical solution obtained at (xi, yj , tn) ∈ D̂2N,∆t/2 = Ĝ2N × Λ∆t/2, where ∆t/2 = T/2M , and Ĝ2N is a

piecewise-uniform Shishkin mesh with 2N mesh-intervals in both the x- and y-directions and having the same

transition parameter ηl, l = 1, 2, as that of GN such that the (ith, jth) point of GN becomes (2ith, 2jth) point of

Ĝ2N , for i, j = 0, 1, . . . N . Finally, for each N and ∆t, we compute the quantities êN,∆t and r̂N,∆t analogously

to eN,∆t and rN,∆t.

Furthermore, we compute the local errors for the second example in the same way that we did for the

first example. Because we do not know the exact solution, to approximate ŨN,∆t(xi, yj , tn) we use one step

of the fully discrete scheme given in (3.22) and we replace the numerical solution UN,∆t(xi, yj , tn−1) by the

numerical solution obtained on the finest mesh, which is a sufficiently good approximation to u(xi, yj , tn−1).

Finally, the local errors are computed by

êN,∆tloc = max
0≤i≤M

max
0≤j≤M

max
0≤n≤M

|ŨN,∆t(xi, yj , tn)− u2048,1024(xi, yj , tn)|,

where ŨN,∆t(xi, yj , tn) is solution of the discrete problem (3.65)-(3.67) and the corresponding local order of

convergence computed by

r̂N,∆tloc =
log(êN,∆tloc /ê

N,∆t/2
loc )

log 2
.

Note that the corresponding orders of consistency are given by r̂N,∆tloc − 1.

3.6.2 Numerical results and observations
We choose all the values of ε from Sε = {20, 2−2, . . . , 2−20}, for computation of ε-uniform errors. For different

values of ε,N and ∆t, the computed ε-uniform errors and order of convergence are displayed in Tables 3.1 and

3.2 for both the choices of boundary conditions (3.12) and (3.13), without using the temporal Richardson

extrapolation, respectively for Examples 3.1 and 3.2. This shows the monotonically decreasing behavior of the

ε-uniform errors with increasing N , and it represents the ε-uniform convergence of the proposed method (3.22)

for both the choice of boundary conditions. For the sake of clarity, the computed ε-uniform errors in Tables

3.1 and 3.2 are depicted in Figs 3.6 and 3.7, respectively for Examples 3.1 and 3.2. Further, Tables 3.1 and 3.2

show that the ε-uniform maximum point-wise errors of the proposed method (3.22) with alternative boundary

conditions (3.13) are smaller than the ε-uniform maximum point-wise errors of proposed method (3.22) with

natural boundary conditions (3.12) and moreover, we notice that proposed method (3.22) gives better result

in comparison with classical upwind scheme [22]. To complement this observation, surface plots of the error

corresponding to the Examples 3.1 and 3.2 computed at t = 1 are also depicted in Figs 3.4 and 3.5 forN = 256

and ∆t = 1
160 with natural and alternative boundary conditions, respectively. In the Tables 3.3 and 3.4, we

present the numerical local errors and local order of convergence corresponding to the two choices of the

boundary data. To reduce the influence of the local spatial error, we take sufficiently large the discretization

parameter N = 2048. It is observed that when the alternative boundary data is chosen, the local errors are

significantly reduced; and the numerical order of consistency (i.e., (rN,∆tloc −1) for Example 3.1 and (r̂N,∆tloc −1)

for Example 3.2) is one, whereas for the classical evaluation the numerical order of consistency is near to zero.

This observation reveals that the option (3.13) for evaluation of the boundary data is evidently better than the

conventional one as claimed in Remark 3.1. For clear illustration of the influence of the alternative the boundary

data (3.13) over the classical the boundary data (3.12), the computed maximum point-wise local errors in Tables
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(a) (b)

(c) (d)

Figure 3.4: Graphs of error |UN,∆t − u| corresponding to Example 3.1 for ε = 2−6 using (a) natural b.c (b)
alternative b.c and for ε = 2−14 using (c) natural b.c (d) alternative b.c at t = 1
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(a) (b)

(c) (d)

Figure 3.5: Graphs of error |UN,∆t − U2N,∆t/2| corresponding to Example 3.2 for ε = 2−6 using (a) natural
b.c (b) alternative b.c and for ε = 2−14 using (c) natural b.c (d) alternative b.c at t = 1
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3.3 and 3.4 are depicted in Figs 3.8 and 3.9, respectively for Examples 3.1 and 3.2.

Next, in order to visualize the effect of the temporal Richardson extrapolation, we choose a suitably largeN

to reduce the influence of the spatial error. In Tables 3.7 and 3.8, we display the numerical results for Example

3.1, after the temporal extrapolation of the proposed method (3.22). This shows that the improvement in the

temporal order of convergence after employing the Richardson extrapolation in the time variable, as claimed

in Theorem 3.3. Tables 3.7 and 3.8 show that the temporal errors of proposed method (3.22) after temporal

extrapolation with alternative boundary conditions (3.13) are smaller than the temporal errors of proposed

scheme (3.22) with natural boundary conditions (3.12). The above numerical experiment indicates that by using

the temporal Richardson extrapolation, one can check the spatial accuracy by choosing ∆t = 1/N . Following

this, in Tables 3.9 and 3.10, we compare the region-wise spatial accuracy of the proposed method given in

(3.22) with the classical implicit upwind scheme, for Examples 3.1 and 3.2, respectively . These computational

results match very well with the spatial error established in Theorem 3.2; and also clearly reflects the robustness

of the proposed method (3.22) in comparison with the implicit upwind method in terms of order of accuracy,

irrespective of the smaller and the larger values of ε.

3.7 Conclusion

In this chapter, we provide parameter-uniform convergence analysis for higher-order numerical approximation

of a class of two-dimensional singularly perturbed parabolic convection-diffusion problems of the form (3.1)-

(3.2) with non-homogeneous boundary data by proposing a new FSFMM followed the temporal Richardson

extrapolation. The ε-uniform error estimate of the newly proposed method is carried out by invoking a two-

stage discretization technique, which discretizes first in time and later in space.

(i) At first, we prove that the order reduction in time associated with the classical evaluation of the time-

dependent boundary conditions can be eliminated by choosing appropriate evaluation of the boundary data.

(ii) Next, we prove that the corresponding fully discrete scheme is ε-uniformly convergent in the discrete

supremum norm; and show that the spatial accuracy is at least two in the outer region and is almost two in the

boundary layer region, regardless of the larger and smaller values of ε.

(iii) Further, we derive the ε-uniform error estimate associated with temporal Richardson extrapolation for

improving the temporal order of convergence.

As a result, the resulting numerical solution is proved to be second-order uniformly convergent in both

the spatial and temporal variables. Finally, we perform several numerical experiments to confirm that those

theoretical outcomes. Further, we demonstrate that the newly developed FSFMM is robust in comparison with

the implicit upwind method [22].

This is the first attempt in the literature to achieve cost-effective high-order parameter-uniform numerical

solution for two-dimensional singularly perturbed linear parabolic convection-diffusion problems with non-

homogeneous boundary data. This approach plays vital role to pursue convergence analysis for higher-order

numerical approximation of two-dimensional singularly perturbed nonlinear problem as discussed in Chapter

5.
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Table 3.1: Comparison of ε-uniform errors and order of convergence for Example 3.1 computed using ∆t =
1.6/N without temporal extrapolation

ε ∈ Sε Number of mesh intervals N / time step size ∆t

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

upwind scheme with alternative boundary conditions [22]

eN,∆t 1.1142e-01 7.1687e-02 4.3516e-02 2.5390e-02 1.4404e-02

rN,∆t 0.63617 0.72018 0.77729 0.81779

proposed method (3.22) with natural boundary conditions (3.12)

eN,∆t 3.7271e-02 1.8094e-02 1.0503e-02 5.5237e-03 2.9347e-03

rN,∆t 1.0425 0.78475 0.92704 0.91240

proposed method (3.22) with alternative boundary conditions (3.13)

eN,∆t 3.7016e-02 1.4197e-02 5.3925e-03 2.1507e-03 9.0979e-04

rN,∆t 1.3825 1.3966 1.3261 1.2412
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Figure 3.6: Loglog plot for comparison of the ε-uniform errors eN,∆t for Example 3.1
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Table 3.2: Comparison of ε-uniform errors and order of convergence for Example 3.2 computed using ∆t =
1.6/N without temporal extrapolation

ε ∈ Sε Number of mesh intervals N / time step size ∆t

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

upwind scheme with alternative boundary conditions [22]

êN,∆t 5.8496e-02 3.9579e-02 2.5215e-02 1.5255e-02 8.8471e-03

r̂N,∆t 0.56363 0.65042 0.72501 0.78601

proposed method (3.22) with natural boundary conditions (3.12)

êN,∆t 3.3637e-02 2.2012e-02 1.2872e-02 7.0903e-03 3.8038e-03

r̂N,∆t 0.61179 0.77404 0.86031 0.89842

proposed method (3.22) with alternative boundary conditions (3.13)

êN,∆t 2.4898e-02 1.2804e-02 6.4916e-03 3.2684e-03 1.6399e-03

r̂N,∆t 0.95946 0.97990 0.98999 0.99500
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Figure 3.7: Loglog plot for comparison of the ε-uniform errors êN,∆t for Example 3.2.
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Table 3.3: Maximum point-wise local errors eN,∆tloc and order of convergence rN,∆tloc for Example 3.1 with
natural boundary conditions (3.12)

ε Number of mesh intervals N = 2048

M=16 M=32 M=64 M=128

2−3 4.1048e-02 2.3271e-02 1.2582e-02 6.6195e-03

0.81880 0.88714 0.92659

2−6 5.0417e-02 2.7105e-02 1.4029e-02 7.1115e-03

0.89534 0.95016 0.98019

2−14 5.3945e-02 2.8395e-02 1.4217e-02 6.7896e-03

0.92585 0.99802 0.10662

2−20 5.3981e-02 2.8411e-02 1.4221e-02 6.7863e-03

0.92602 0.99839 1.0674

Table 3.4: Maximum point-wise local errors eN,∆tloc and order of convergence rN,∆tloc for Example 3.1 with
alternative boundary conditions (3.13)

ε Number of mesh intervals N = 2048

M=16 M=32 M=64 M=128

2−3 2.7823e-03 9.3463e-04 2.8070e-04 7.8404e-05

1.5738 1.7354 1.8400

2−6 4.8208e-03 1.5150e-03 4.4089e-04 1.2514e-04

1.6699 1.7809 1.8168

2−14 5.7823e-03 1.6911e-03 4.5544e-04 1.2987e-04

1.7737 1.8926 1.8102

2−20 5.7966e-03 1.6947e-03 4.5600e-04 1.2990e-04

1.7742 1.8939 1.8117
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(a) ε = 2−6
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(b) ε = 2−20

Figure 3.8: Loglog plot for comparison of the local temporal errors without extrapolation using the proposed
scheme (3.22) for Example 3.1
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Table 3.5: Maximum point-wise local errors êN,∆tloc and order of convergence r̂N,∆tloc for Example 3.2 with
natural boundary conditions(3.12)

ε Number of mesh intervals N = 512

M=16 M=32 M=64 M=128

2−3 4.1048e-02 2.3271e-02 1.2582e-02 6.6195e-03

0.89873 0.95555 0.98838

2−6 5.0262e-02 2.6959e-02 1.3901e-02 7.0068e-03

0.92587 0.99806 1.0663

2−14 5.3944e-02 2.8394e-02 1.4216e-02 6.7888e-03

0.92601 0.99839 1.0674

2−20 5.3981e-02 2.8411e-02 1.4221e-02 6.7863e-03

0.81880 0.88714 0.92659

Table 3.6: Maximum point-wise local errors êN,∆tloc and order of convergence r̂N,∆tloc for Example 3.2 with
alternative boundary conditions (3.13)

ε Number of mesh intervals N = 512

M=16 M=32 M=64 M=128

2−3 2.7796e-03 9.3539e-04 2.8154e-04 7.8802e-05

1.5713 1.7322 1.8370

2−6 4.6890e-03 1.4747e-03 4.2654e-04 1.1848e-04

1.6689 1.7897 1.8481

2−14 5.6131e-03 1.6448e-03 4.4289e-04 1.1524e-04

1.7709 1.8929 1.9423

2−20 5.6273e-03 1.6485e-03 4.4375e-04 1.1532e-04

1.7713 1.8933 1.9441
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Figure 3.9: Loglog plot for comparison of the local temporal errors without extrapolation using the proposed
scheme (3.22) for Example 3.2
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Table 3.7: Comparison of temporal accuracy with natural and alternative boundary conditions after temporal
Richardson extrapolation for Example 3.1

ε Number of mesh intervals N = 4096

M=8 M=16 M=32 M=64

with natural boundary conditions (3.12)

2−6 3.7679e-03 1.4993e-03 8.0354e-04 4.6111e-04

1.3295 0.89988 0.80125

2−20 4.0595e-03 1.3386e-03 5.6366e-04 2.2708e-04

1.6006 1.2478 1.3116

with alternative boundary conditions (3.13)

2−6 1.4013e-03 4.1762e-04 1.1922e-04 3.2995e-05

1.7465 1.8086 1.8533

2−20 1.8114e-03 5.6383e-04 1.6833e-04 4.7957e-05

1.6838 1.7440 1.8115

Table 3.8: Comparison of temporal accuracy with natural and alternative boundary conditions after temporal
Richardson extrapolation for Example 3.2

ε Number of mesh intervals N = 2048

M=8 M=16 M=32 M=64

with natural boundary conditions (3.12)

2−6 1.9871e-02 6.7257e-03 2.9966e-03 1.6246e-03

1.5629 0.11664 0.88323

2−20 1.9935e-02 6.5946e-03 3.1439e-03 1.5293e-03

1.5960 1.0688 1.0397

with alternative boundary conditions (3.13)

2−6 3.8994e-03 1.0196e-03 2.6615e-04 6.8500e-05

1.9352 1.9378 1.9581

2−20 4.4127e-03 1.1497e-03 3.0420e-04 7.9030e-05

1.9403 1.9182 1.9445

109



Table 3.9: Comparison (region wise) of maximum point-wise errors and order of convergence for Example
3.1, with alternative boundary data and using temporal Richardson extrapolation with ∆t = 1

N .

Outer Right boundary layer Top boundary layer Corner layer
region region region region

[0, 1− η1]× (1− η1, 1]× [0, 1− η1]× (1− η1, 1]×
[0, 1− η2] [0, 1− η2] (1− η2, 1] (1− η2, 1]

N proposed scheme

ε = 2−4

128 2.2443e-06 4.5694e-05 4.8835e-05 1.9999e-04

1.9875 1.9997 2.0000 1.9997

256 5.6596e-07 1.1426e-05 1.2209e-05 5.0010e-05

1.9936 2.0004 1.9990 2.0004

ε = 2−6

128 7.2420e-06 5.8724e-04 5.9304e-04 1.5524e-03

2.4714 1.8242 1.8265 1.6194

256 1.3058e-06 1.6583e-04 1.6721e-04 5.0528e-04

2.4543 1.8715 1.8726 1.6644

ε = 2−14

128 2.0939e-05 1.1412e-03 1.1414e-03 1.6144e-03

1.8757 1.6272 1.6272 1.6140

256 5.7058e-06 3.6943e-04 3.6948e-04 5.2741e-04

1.8650 1.6571 1.6570 1.6622

N implicit upwind scheme [22]

ε = 2−4

128 3.8131e-04 1.3172e-03 1.3151e-03 7.3201e-03

1.0078 0.95803 0.95706 0.95556

256 1.8963e-04 6.7802e-04 6.7741e-04 3.7746e-03

1.0041 0.97850 0.97788 0.97729

ε = 2−6

128 1.0196e-03 8.4117e-03 8.4084e-03 2.3877e-02

1.3462 0.91080 0.91057 0.71482

256 4.0103e-04 4.4741e-03 4.4731e-03 1.4548e-02

1.3703 0.98075 0.98059 0.77735

ε = 2−14

128 2.9420e-03 1.7299e-02 1.7300e-02 2.5364e-02

1.0425 0.71644 0.71650 0.71766

256 1.4283e-03 1.0528e-02 1.0528e-02 1.5423e-02

1.0236 0.76587 0.76588 0.77642
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Table 3.10: Comparison (region wise) of maximum point-wise errors and order of convergence for Example
3.2, with alternative boundary data and using temporal Richardson extrapolation with ∆t = 1

N .

Outer Right boundary layer Top boundary layer Corner layer
region region region region

[0, 1− η1]× (1− η1, 1]× [0, 1− η1]× (1− η1, 1]×
[0, 1− η2] [0, 1− η2] (1− η2, 1] (1− η2, 1]

N proposed scheme

ε = 2−4

128 7.6843e-06 7.7947e-05 7.4252e-05 1.9508e-04

1.9832 2.0024 2.0033 2.0018

256 3.1.9436e-06 1.9455e-05 1.8520e-05 4.8711e-05

1.9915 2.0007 2.0004 2.0012

ε = 2−6

128 1.3183e-05 9.3152e-04 9.2664e-04 1.8468e-03

2.0691 1.7295 1.7289 1.6178

256 3.1417e-06 2.8091e-04 2.7955e-04 6.0177e-04

2.0859 1.7714 1.7710 1.6617

ε = 2−14

128 2.2066e-05 1.4778e-03 1.4778e-03 2.0878e-03

1.9745 1.6302 1.6302 1.6170

256 5.6146e-06 4.7740e-04 4.7739e-04 6.8067e-04

1.9821 1.6578 1.6578 1.6632

N implicit upwind scheme [22]

ε = 2−4

128 3.0207e-05 2.4924e-03 2.4964e-03 6.1400e-03

1.2841 0.94564 0.94690 0.94401

256 1.2404e-05 1.2940e-03 1.2950e-03 3.1915e-03

1.1670 0.97309 0.97366 0.97067

ε = 2−6

128 1.2733e-05 9.6326e-03 9.6372e-03 1.9279e-02

2.0469 0.79539 0.79570 0.70014

256 3.0816e-06 5.5502e-03 5.5516e-03 1.1866e-02

2.0727 0.87188 0.87207 0.76242

ε = 2−14

128 1.9245e-05 1.5331e-02 1.5332e-02 2.1915e-02

1.9542 0.69155 0.69161 0.70649

256 4.9665e-06 9.4926e-03 9.4928e-03 1.3430e-02

1.9705 0.76550 0.76552 0.76347
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Chapter 4

Convergence Analysis of Higher-Order Parameter Uni-
form Numerical Methods for Singularly Perturbed 1D
Semilinear Parabolic PDEs with Smooth Data

This chapter deals with a class of singularly perturbed semilinear parabolic convection-diffusion initial-boundary-

value problems exhibiting a boundary layer. This type of model problem often appears in modeling various

physical phenomena, particularly in mathematical biology, and thus requires effective numerical techniques

for analyzing computationally. For this purpose, we approximate the model problem by developing two new

efficient numerical methods followed by the extrapolation technique. The first one is the fully-implicit fitted

mesh method which utilizes the implicit-Euler method for the temporal discretization, and the other one is

the implicit-explicit (IMEX) fitted mesh method which utilizes the IMEX-Euler method for the temporal dis-

cretization. The spatial discretization for both numerical methods is based on a new finite difference scheme. To

accomplish this, the spatial domain is discretized by an appropriate layer-adapted mesh and the time domain by

an equidistant mesh. At first, we analyze stability and study the asymptotic behavior of the analytical solution

of the nonlinear governing problem. Then, we perform stability analysis and establish the parameter-uniform

convergence of both the newly proposed methods in the discrete supremum norm. Thereafter, we analyze

the Richardson extrapolation solely for the time variable to improve the order of uniform convergence in the

temporal direction; and, consequently, achieve globally (with respect to both space and time) second-order ac-

curate numerical solutions. Hereby, we indeed provide a complete convergence analysis towards higher-order

numerical approximations for the considered nonlinear problem on a nonuniform grid. The theoretical out-

comes are finally supported by the extensive numerical experiments, which also include a comparison of the

proposed numerical methods along with the fully-implicit upwind method in terms of the order of accuracy and

the computational cost.

112



4.1 Introduction

We consider the following class of semilinear singularly perturbed parabolic initial-boundary-value problems

(IBVPs) on the domain D = Ω× (0, T ] = (0, 1)× (0, T ]:
Tεy(x, t) ≡

∂y(x, t)

∂t
+ Lx,εy(x, t) + b

(
x, t, y(x, t)

)
= g(x, t), (x, t) ∈ D,

y(x, 0) = q0(x), x ∈ Ω = [0, 1],

y(0, t) = sl(t), y(1, t) = sr(t), t ∈ (0, T ],

(4.1)

where

Lx,εy(x, t) = −ε
∂2y(x, t)

∂x2
+ a(x)

∂y(x, t)

∂x
,

ε is a small parameter such that 0 < ε ≤ 1. We assume that the convection coefficient a(x) is sufficiently

smooth on Ω, and satisfies the condition

a(x) ≥ m > 0, on Ω. (4.2)

Further, it is assumed that the nonlinear term b
(
x, t, y

)
is sufficiently smooth on D × R, and satisfies the

condition
∂b
(
x, t, y

)
∂y

≥ β > 0, (x, t, y
)
∈ D× R. (4.3)

Moreover, the data sl, sr, q0, and the source term g(x, t) are supposed to be sufficiently smooth and satisfy the

following compatibility conditions at the corner points (0, 0) and (1, 0):

q0(0) = sl(0), q0(1) = sr(0), (4.4)


dsl(0)

dt
= g(0, 0) + ε

d2q0(0)

dx2
− a(0)

dq0(0)

dx
− b
(
0, 0, q0(0)

)
,

dsr(0)

dt
= g(1, 0) + ε

d2q0(1)

dx2
− a(1)

dq0(1)

dx
− b
(
1, 0, q0(1)

)
,

(4.5)

and
d2sl(0)

dt2
=
∂g(0, 0)

∂t
−
∂b
(
0, 0, q0(0)

)
∂t

−
(
Lx,ε +

∂b(x, t, q0)

∂y

)(
g − Lx,εq0 − b

(
x, t, q0

))
(0, 0),

d2sr(0)

dt2
=
∂g(1, 0)

∂t
−
∂b
(
1, 0, q0(1)

)
∂t

−
(
Lx,ε +

∂b(x, t, q0)

∂y

)(
g − Lx,εq0 − b

(
x, t, q0

))
(1, 0).

(4.6)

The above assumptions guarantee that the nonlinear IBVP (4.1)-(4.3) has a unique solution y(x, t) ∈ C4+γ(D),

which follows from [Chapter 7, §4] of the book [41] by Friedman. Here, the solution , y(x, t) generally pos-

sesses a boundary layer of width O(ε) at x = 1 (see [12]). The layout of the rest of this chapter is given as

follows. In Section 4.2, a comparison principle as well as some a-priori bounds of the analytical solution and

its derivatives are stated and proven. Apart from this, the bounds of the decomposition of the solution (into
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the smooth and the layer components) and their derivatives are also derived. In Section 4.3, we construct an

appropriate piecewise-uniform Shishkin mesh adapted to the boundary layer. Then, the fully-implicit FMM and

the IMEX-FMM are formulated respectively, in (4.29) and (4.30). We establish ε-uniform convergence of the

proposed IMEX-FMM in Section 4.4; and that of the proposed fully-implicit FMM in Section 4.5. Further, we

discuss convergence analysis related to the temporal Richardson extrapolation to the nonlinear discrete prob-

lem (4.71), in Section 4.6. Finally, numerical experiments are carried out in Section 4.7, to demonstrate the

accuracy and the efficiency of the proposed FMMs. The conclusions of this chapter is provided in Section 4.8.

4.2 Properties of the analytical solution

Lemma 4.1 (Comparison Principle). Let the functions v, w ∈ C0(D) ∩ C2(D) be such that v ≤ w on ∂D and

Tεv ≤ Tεw in D, then it implies that v ≤ w on D.

Proof: Here, we use method of contradiction. Firstly, we suppose that there exists (x?, t?) ∈ D such that

v(x?, t?) > w(x?, t?). Since, v − w ∈ C0(D), without loss of generality, we assume that v − w takes positive

maximum at (x?, t?). Now, in conformity with the hypothesis of the comparison principle, v − w ≤ 0 on

∂D =⇒ (x?, t?) /∈ ∂D. Therefore, under the above assumption, we have

(
Tεv − Tεw

)
(x?, t?)

=
∂(v − w)(x?, t?)

∂t
+ Lx,ε(v − w)(x?, t?) + b

(
x?, t?, v(x?, t?)

)
− b
(
x?, t?, w(x?, t?)),

≥
[ ∫ 1

0

b
(
x?, t?, w + ξ(v − w)

)
∂y

dξ
]
(v − w)(x?, t?). (4.7)

Thus, from (4.7) and the assumption (4.3), we have Tεv(x?, t?) > Tεw(x?, t?) and this contradicts that

Tεv(x, t) ≤ Tεw(x, t) for all (x, t) ∈ D. Hence, the proof is over.

The following result follows from Lemma 4.1.

Corollary 4.1. Let the function Φ ∈ C0(D) ∩ C2(D). For any given functions v, w ∈ C0(D), the differential

operator T̃ε,(v,w) given by

T̃ε,(v,w)Φ =
∂Φ

∂t
+ Lx,εΦ +

[ ∫ 1

0

∂b
(
x, t, w + ξ(v − w))

∂y
dξ
]
Φ,

satisfies the maximum principle, i.e., if Φ ≤ 0 on ∂D and T̃ε,(v,w)Φ ≤ 0 in D, then it implies that Φ ≤ 0 on D.

The following lemma provides ε-uniform stability and uniqueness of the analytical solution of the nonlinear

IBVP (4.1)-(4.3).

Lemma 4.2 (Stability). Let the functions v, w ∈ C0(D) ∩ C2(D). Then, we have

‖v − w‖D ≤ ‖v − w‖∂D +
1

β
‖Tεv − Tεw‖D. (4.8)
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Proof. Consider the functions

Φ±(x, t) = −‖v − w‖∂D −
1

β
‖Tεv − Tεw‖D ± (v − w)(x, t), (x, t) ∈ D.

Note that Φ±(x, t) ≤ 0, (x, t) ∈ ∂D, and

∥∥T̃ε,(v,w)

(
v − w

)∥∥ ≤ [ ∫ 1

0

∂b
(
x, t, w + ξ(v − w))

∂y
dξ
]( 1

β
‖Tεv − Tεw‖

)
⇒ T̃ε,(v,w)Φ

±(x, t) ≤ 0.

Then, Corollary 4.1 implies that Φ±(x, t) ≤ 0 for all (x, t) ∈ D, from which the desired result follows

immediately.

Next, for the purpose of deriving the bounds on the derivatives of y(x, t), we extend the approach given in

[23] to the considered model problem.

Theorem 4.1. The solution y(x, t) of the nonlinear IBVP (4.1)-(4.3) and its derivatives satisfy that

∣∣∣∂j+ky(x, t)

∂xj∂tk

∣∣∣ ≤ C(1 + ε−j exp
(
− m(1− x)/ε

))
, (x, t) ∈ D, (4.9)

∀ j, k ∈ N ∪ {0}, satisfying 0 ≤ j + 2k ≤ 4.

Proof: The above bounds are obtained by considering following cases.

Case 1: Let j = 0 and k = 0. Choose v = y and w = 0. Then, Lemma 4.2 implies that

∣∣y(x, t)
∣∣ ≤ C, (x, t) ∈ D. (4.10)

Remark 4.1. The a-priori bound (independent of ε) obtained in (4.10) and the sufficient smoothness assumption

on the nonlinear term ‘ b ’yields the following ε-uniform boundedness property:

∣∣∣∂j+k+mb
(
x, t, y

)
∂xj∂tk∂ym

∣∣∣
y=y(x,t)

∣∣∣ ≤ C, (x, t) ∈ D, (4.11)

∀ j, k,m ∈ N∪ {0}, satisfying 0 ≤ j + 2k+ 2m ≤ `; and this property is being frequently used as pointed out

below.

Case 2: Let j = 0 and k = 1, 2. Differentiating (4.1) with respect to t, we consider that ω(x, t) =
∂y(x,t)
∂t

satisfies the following problem:

∂ω

∂t
+ Lx,εω +

∂b
(
x, t, y

)
∂y

ω = F1(x, t), (x, t) ∈ D,

ω(x, 0) = g(x, 0)− Lx,εq0(x)− b
(
x, 0, q0(x)

)
, x ∈ Ω,

ω(0, t) =
dsl(t)

dt
, ω(1, t) =

dsr(t)

dt
, t ∈ (0, T ],

(4.12)

where F1(x, t) =
∂g(x, t)

∂t
−
∂b
(
x, t, y

)
∂t

is bounded (ε-uniformly) on D because of the smoothness assumption

on g ; and the term
∂b
(
x,t,y
)

∂t being bounded (ε-uniformly) follows from the property (4.11). Here, the compati-
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bility conditions in (4.5) ensure that ω ∈ C0(D). Afterwards, introducing the differential operator T̃ε,(y,y) given

by T̃ε,(y,y)ω =
∂ω

∂t
+ Lx,εω +

∂b
(
x, t, y

)
∂y

ω, one can obtain from Corollary 4.1 that

|ω(x, t)| =
∣∣∣∂y(x, t)

∂t

∣∣∣ ≤ C, (x, t) ∈ D.

Next, we obtain the bound on ∂2y
∂t2

. Differentiating (4.12) with respect to t, we consider that ω1(x, t) =
∂ω(x, t)

∂t
satisfies the following problem:

∂ω1

∂t
+ Lx,εω1 +

∂b
(
x, t, y

)
∂y

ω1 = F2(x, t), (x, t) ∈ D,

ω1(x, 0) =
∂g(x, 0)

∂t
− Lx,εω(x, 0)−

∂b
(
x, 0, q0(x))

∂y
ω(x, 0)−

∂b
(
x, t, q0(x)

)
∂t

, x ∈ Ω,

ω1(0, t) =
d2sl(t)

dt2
, ω1(1, t) =

d2sr(t)

dt2
, t ∈ (0, T ],

(4.13)

where F2(x, t) =
∂2g
∂t2
−
∂2b
(
x, t, y

)
∂t2

−2
∂2b
(
x, t, y

)
∂t∂y

∂y
∂t
−
∂2b
(
x, t, y

)
∂y2

(∂y
∂t

)2
. The property (4.11) guarantees

that the terms
∂2b
(
x, t, y

)
∂t2

,
∂2b
(
x,t,y
)

∂t∂y ,
∂2b
(
x,t,y
)

∂y2 are bounded (ε-uniformly). Then, the smoothness assump-

tion on g and the bound on
∂y
∂t

implies that F2(x, t) is bounded (ε-uniformly) on D. Here, the compatibility

condition in (4.6) ensure that ω1 ∈ C0(D). Thereafter, similarly one can get

|ω1(x, t)| =
∣∣∣∂2y(x, t)

∂t2

∣∣∣ ≤ C, (x, t) ∈ D.

Case 3. Let j = 1 and k = 0, 1. We rearrange the terms in (4.1) to consider the following form:
Lx,εy +

(∫ 1

0

∂b
(
x, t, ξy)

∂y
dξ
)

y = F3(x, t), (x, t) ∈ D,

y(0, 1) = sl(t), y(1, t) = sr(t), t ∈ (0, T ],

(4.14)

where F3(x, t) = g(x, t) −
∂y
∂t
− b
(
x, t, 0). It is obvious that b(x, t, 0) is bounded (ε-uniformly). Then, the

smoothness assumption on g together with the bound on
∂y
∂t

implies that F3(x, t) is bounded (ε-uniformly) on

D. Now, fixing t ∈ [0, T ] and using the argument of Kellogg and Tsan [61] on the line segment {(x, t), x ∈
[0, 1]} for (4.14), we have∣∣∣∂y(x, t)

∂x

∣∣∣ ≤ C(1 + ε−1 exp
(
− m(1− x)/ε

))
, (x, t) ∈ D.
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Again, rearranging the terms in (4.12), we consider the following form:
Lx,εω +

∂b
(
x, t, y

)
∂y

ω = F4(x, t), (x, t) ∈ D,

ω(0, t) =
dsl(t)

dt
, ω(1, t) =

dsr(t)

dt
, t ∈ (0, T ],

(4.15)

where F4(x, t) =
∂g
∂t
− ∂ω

∂t
−
∂b
(
x, t, y

)
∂t

. From the previous argument we know that
∂b
(
x,t,y
)

∂t is bounded

(ε-uniformly) on D. Then, the smoothness assumption on g together with the bound on ∂ω
∂t implies that F4(x, t)

is bounded (ε-uniformly) on D. Afterwards, applying the methodology of Kellogg and Tsan [61] for (4.15), we

have ∣∣∣∂ω(x, t)

∂x

∣∣∣ =
∣∣∣∂2y(x, t)

∂t∂x

∣∣∣ ≤ C(1 + ε−1 exp
(
− m(1− x)/ε

))
, (x, t) ∈ D.

Case 4. Let j = 2 and k = 0. Differentiating (4.1) with respect to x and rearranging the terms, we consider

that ω1(x, t) =
∂y(x,t)
∂x satisfies the following problem: Lx,εω1 +

∂b(x, t, y
)

∂y
ω1 = F5(x, t), (x, t) ∈ D,

ω1(0, t) = C1, ω1(1, t) = C2ε
−1, t ∈ (0, T ],

(4.16)

where F5(x, t) =
∂g(x, t)

∂x
− ∂ω1

∂t
− da

dx

∂y
∂x
−
∂b
(
x, t, y

)
∂x

. Using similar arguments for g and b(x, t, y) as

mentioned previously; and applying the bounds on
∂y
∂x

and
∂ω1

∂t
=
∂ω

∂x
, we have

|F5(x, t)| ≤ C
(

1 + ε−1 exp
(
− m(1− x)/ε

))
, (x, t) ∈ D.

Thereafter, applying the similar technique in [61] for (4.16), we have

∣∣∣∂ω1(x, t)

∂x

∣∣∣ =
∣∣∣∂2y(x, t)

∂x2

∣∣∣ ≤ C(1 + ε−2 exp
(
− m(1− x)/ε

))
, (x, t) ∈ D.

Finally, by adopting the approach mentioned above, one can obtain the required bounds on the spatial derivatives

of y(x, t) for j = 3, 4.

4.2.1 Decomposition of the analytical solution
Consider the decomposition of the solution y = p + q into the smooth component p and the layer component q .

Here, the smooth component p is decomposed in the following form

p = p0 + εp1 + ε2p2 + ε3p3, in D, (4.17)

where the functions p0, p1, p2 and p3, receptively, satisfy the following problems:
∂p0

∂t
+ a(x)

∂p0

∂x
+ b
(
x, t, p0) = g , in D,

p0(x, 0) = q0(x), x ∈ Ω, p0(0, t) = p(0, t), t ∈ (0, T ],

(4.18)
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
∂p1

∂t
+ a(x)

∂p1

∂x
+

1

ε

[
b
(
x, t, p0 + εp1)− b

(
x, t, p0)] =

∂2p0

∂x2
, in D,

p1(x, 0) = 0, x ∈ Ω, p1(0, t) = 0, t ∈ (0, T ],

(4.19)


∂p2

∂t
+ a(x)

∂p2

∂x
+

1

ε2

[
b
(
x, t, p0 + εp1 + ε2p2)− b

(
x, t, p0 + εp1)] =

∂2p1

∂x2
, in D,

p2(x, 0) = 0, x ∈ Ω, p2(0, t) = 0, t ∈ (0, T ],

(4.20)

and 
∂p3

∂t
+ Lx,εp3 +

1

ε3

[
b
(
x, t, p)− b

(
x, t, p0 + εp1 + ε2p2)

]
=
∂2p2

∂x2
, in D,

p3(x, 0) = 0, x ∈ Ω, p3(0, t) = 0, p3(1, t) = 0, t ∈ (0, T ].

(4.21)

Thus, the smooth component p satisfies that
Tεp = g , in D,

p(x, 0) = q0(x), x ∈ Ω,

p(0, t) = sl(t), p(1, t) = p0(1, t) + εp1(1, t) + ε2p2(1, t), t ∈ (0, T ].

(4.22)

Theorem 4.2. The smooth component p and its derivatives satisfy that

∣∣∣∂j+kp(x, t)

∂xj∂tk

∣∣∣ ≤ C(1 + ε3−j
)
, (x, t) ∈ D, (4.23)

∀ j, k ∈ N ∪ {0}, satisfying 0 ≤ j + 2k ≤ 4.

Proof: We obtain the strong bounds on the smooth component p and its derivatives, by deriving the correspond-

ing bounds separately for the functions pi, i = 0, 1, 2, 3.

The function p0 is the solution of the IVP (4.18), which is independent of ε. Henceforth, assuming suffi-

cient smoothness on the data associated with the IVP (4.18) and imposing necessary compatibility conditions at

(0, 0), which can be obtained by extending the result of Bobisud [4] for the existence of higher order derivatives

of p0, one can obtain that

∣∣∣∂j+kp0(x, t)

∂xj∂tk

∣∣∣ ≤ C, (x, t) ∈ D, for 0 ≤ j + 2k ≤ 4. (4.24)

Again, the IVPs (4.19) and (4.20), respectively, can be rewritten in the following forms:
∂p1

∂t
+ a(x)

∂p1

∂x
+

∫ 1

0

∂b
(
x, t, p0 + ξεp1

)
∂y

dξp1 =
∂2p0

∂x2
, in D,

p1(x, 0) = 0, x ∈ Ω, p1(0, t) = 0, t ∈ (0, T ],

and 
∂p2

∂t
+ a(x)

∂p2

∂x
+

∫ 1

0

∂b
(
x, t, p0 + εp1 + ξε2p2

)
∂y

dξp2 =
∂2p1

∂x2
, in D,

p2(x, 0) = 0, x ∈ Ω, p2(0, t) = 0, t ∈ (0, T ].
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Henceforth, applying the above arguments for the functions pi, i = 1, 2, one can get

∣∣∣∂j+kpi(x, t)
∂xj∂tk

∣∣∣ ≤ C, (x, t) ∈ D, for 0 ≤ j + 2k ≤ 4. (4.25)

Furthermore, the IBVP (4.21) can be rewritten in the following form:
∂p3

∂t
+ Lx,εp3 +

∫ 1

0

∂b
(
x, t, p0 + εp1 + ε2p2 + ξε3p3

)
∂y

dξp3 =
∂2p2

∂x2
, in D,

p3(x, 0) = 0, x ∈ Ω, p3(0, t) = 0, p3(1, t) = 0, t ∈ (0, T ],

which is similar to the IBVP (4.1), and henceforth, applying the result (4.9) analogously to the function p3, one

can have∣∣∣∂j+kp3(x, t)

∂xj∂tk

∣∣∣ ≤ C(1 + ε−j exp
(
− m(1− x)/ε

))
, (x, t) ∈ D, for 0 ≤ j + 2k ≤ 4. (4.26)

Finally, the desired result (4.23) is obtained by invoking the bounds (4.24)-(4.26) to the decomposition (4.17).

We now define the layer component q as the solution of the following nonlinear IBVP:
∂q
∂t

+ Lx,εq + b
(
x, t, p + q)− b

(
x, t, p) = 0, in D,

q(x, 0) = 0, x ∈ Ω,

q(0, t) = 0, q(1, t) = y(1, t)− p(1, t), t ∈ (0, T ].

(4.27)

Theorem 4.3. The layer component q and its derivatives satisfy that

∣∣∣∂j+kq(x, t)

∂xj∂tk

∣∣∣ ≤ C(ε−j exp
(
− m(1− x)/ε

))
, (x, t) ∈ D, (4.28)

∀ j, k ∈ N ∪ {0}, satisfying 0 ≤ j + 2k ≤ 4.

Proof: The IBVP (4.27) can be rewritten in the following form:

∂q
∂t

+ Lx,εq +
[ ∫ 1

0

∂b
(
x, t, p + ξ(y − p)

)
∂y

dξ
]

q = 0, in D,

q(x, 0) = 0, x ∈ Ω,

q(0, t) = 0, q(1, t) = y(1, t)− p(1, t), t ∈ (0, T ].

Here, we introduce a differential operator T̃ε,(y,p) such that

T̃ε,(y,p)q =
∂q
∂t

+ Lx,εq +
[ ∫ 1

0

∂b
(
x, t, p + ξ(y − p)

)
∂y

dξ
]

q .
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Now, we choose the functions

Φ±(x, t) = −C exp
(
− m(1− x)/ε

)
± q(x, t), (x, t) ∈ D,

for sufficiently large C. Note that Φ±(x, t) ≤ 0, (x, t) ∈ ∂D, and

T̃ε,(y,p)Φ
±(x, t) ≤ −C exp

(
− m(1− x)/ε

)[−m2

ε
+
a(x)m

ε
+

∫ 1

0

∂b
(
x, t, q + ξ(y − p)

)
∂y

dξ
]
,

≤ 0, (x, t) ∈ D.

Since the Corollary 4.1 shows that T̃ε,(y,p) satisfies the maximum principle, we have

Φ±(x, t) ≤ 0 =⇒ |q(x, t)| ≤ C exp
(
− m(1− x)/ε

)
, (x, t) ∈ D.

The bounds on the derivatives of q are derived from the argument presented in [99], and thus the proof is

complete.

4.3 Formulation of the discrete problems

On the domain D, we construct a mesh D
N,∆t

= Ω
N × Λ∆t, where Ω

N is the piecewise-uniform Shishkin

mesh on the spatial domain Ω and Λ∆t is the equidistant mesh on the temporal domain [0, T ]. The detailed

description is given in [Chapter 2, Section 2.3.1].

Now, for a given mesh function Ψn
j = Ψ(xj , tn) defined on D

N,∆t, we denote Ψn
j− 1

2

=
Ψn
j + Ψn

j−1

2
, aj− 1

2
=

aj + aj−1

2
, gn

j− 1
2

=
gnj + gnj−1

2
.

4.3.1 The fully-implicit FMM
Here, we discretize the nonlinear IBVP (4.1)-(4.3) by utilizing the implicit-Euler method with respect to the

temporal variable. The implicit-Euler method treats both the linear and the nonlinear parts of the governing

differential equation implicitly. Further, we propose a new hybrid finite difference scheme for the spatial dis-

cretization. The new hybrid scheme combines the midpoint upwind scheme in the outer region (0, 1 − η] and

a modified central difference scheme in the boundary layer region (1 − η, 1), whenever ε ≤ ‖a‖N−1; and

selects the modified central difference scheme whenever ε > ‖a‖N−1. Then, the fully discrete scheme takes
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the following form on D
N,∆t:

Y 0
j = q0(xj), 0 ≤ j ≤ N,

D−t Y
n+1
j + LNmcdY

n+1
j + b

(
xj , tn+1, Y

n+1
j

)
= gn+1

j ,

for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

D−t Y
n+1
j− 1

2

+ LNmupY n+1
j + b

(
xj− 1

2
, tn+1, Y

n+1
j− 1

2

)
= gn+1

j− 1
2

,

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

D−t Y
n+1
j + LNmcdY

n+1
j + b

(
xj , tn+1, Y

n+1
j

)
= gn+1

j ,

for N/2 < j ≤ N − 1,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), for n = 0, . . . ,M − 1.

(4.29)

Here, LNmupY n+1
j = −εδ2

xY
n+1
j + aj− 1

2
D−x Y

n+1
j , and LNmcdY

n+1
j = −εδ2

xY
n+1
j + ajD

∗
xY

n+1
j .

4.3.2 The implicit-explicit FMM
Here, we discretize the nonlinear IBVP (4.1)-(4.3) by utilizing the IMEX-Euler method with respect to the

temporal variable. The IMEX method treats the linear part of the governing differential equation implicitly

and the nonlinear part explicitly. Further, we consider the framework of the new hybrid scheme for the spatial

discretization. Then, the fully discrete scheme takes the following form on D
N,∆t:

y0
j = q0(xj), 0 ≤ j ≤ N,

Y n+1
j + ∆tLNmcdY

n+1
j + ∆tb

(
xj , tn, Y

n
j ) = Y n

j + ∆tgn+1
j ,

for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

Y n+1
j− 1

2

+ ∆tLNmupY n+1
j + ∆tb

(
xj− 1

2
, tn, Y

n
j− 1

2

) = Y n
j− 1

2

+ ∆tgn+1
j− 1

2

,

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

Y n+1
j + ∆tLNmcdY

n+1
j + ∆tb

(
xj , tn, Y

n
j ) = Y n

j + ∆tgn+1
j ,

for N/2 < j ≤ N − 1,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), for n = 0, . . . ,M − 1.

(4.30)

Remark 4.2. One can see that the fully-implicit FMM (4.29) results in a nonlinear-system (4.71), which requires

to solve at each time step by employing an iterative method. To avoid this computational cost, we introduce

the IMEX-FMM (4.30), which results in a linearized sytem (4.31); and thus produces cost effective numerical

solution (see comparison of computational time in Table 4.11). Further, one can observe that the linearization

in case of the IMEX scheme does not cause reduction in the order of uniform convergence (with respect to both

space and time) achieved in case of the nonlinear scheme. To illustrate this, a detailed convergence analysis is

presented for both the FMMs in the subsequent sections (Section 4.4 and Section 4.5).
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4.4 Convergence analysis for the IMEX-FMM

For the convergence analysis, the fully discrete scheme (4.30) is written in the following form:

Y 0
j = q0(xj), 0 ≤ j ≤ N,
LN,∆tε Y n+1

j ≡ ν−j Y
n+1
j−1 + νcjY

n+1
j + ν+

j Y
n+1
j+1 = Fn+1

j ,

for 1 ≤ j ≤ N − 1,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), for n = 0, . . . ,M − 1,

(4.31)

where the right hand side vector Fn+1
j is given by

Fn+1
j =



1

2

(
Y n
j−1 + ∆t gn+1

j−1

)
+

1

2

(
Y n
j + ∆t gn+1

j

)
−∆tb

(
xj− 1

2
, tn, Y

n
j− 1

2

)
,

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

Y n
j + ∆t gn+1

j −∆tb
(
xj , tn, Y

n
j

)
, for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

Y n
j + ∆t gn+1

j −∆tb
(
xj , tn, Y

n
j

)
, for N/2 < j ≤ N − 1.

(4.32)

Here, the coefficients ν−j , ν
c
j , ν

+
j are given by

ν−j = ∆t ν−mcd,j , νcj = ∆t νcmcd,j + 1, ν+
j = ∆t ν+

mcd,j ,

for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

ν−j = ∆t ν−mup,j + 1
2 , νcj = ∆t νcmup,j + 1

2 , ν+
j = ∆t ν+

mup,j ,

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

ν−j = ∆t ν−mcd,j , νcj = ∆t νcmcd,j + 1, ν+
j = ∆t ν+

mcd,j ,

for N/2 < j ≤ N − 1,

(4.33)

where
ν−mup,j = − 2ε

ĥjhj
−
aj− 1

2

hj
, νcmup,j =

2ε

hjhj+1
+
aj− 1

2

hj
, ν+

mup,j = − 2ε

ĥjhj+1

, and

ν−mcd,j = −
2
(
ε− ajhj

2

)
ĥjhj

− aj
hj
, νcmcd,j =

2
(
ε− ajhj

2

)
hjhj+1

+
aj
hj
, ν+

mcd,j = −
2
(
ε− ajhj

2

)
ĥjhj+1

.

(4.34)

Next, we follow the two-stage discretization method in (4.30)-(4.32). The error analysis via two-stage dis-

cretization method involves error estimate due to the time semidiscretization and afterwards, that due to the

spatial discretization.
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4.4.1 Error estimate for the time semidiscretization
Let yn(x) denotes the semidiscrete approximation to the exact solution y(x, t) of (4.1) at the time level tn =

n∆t. Then, the semidiscrete scheme, generated by temporal discretization of the nonlinear IBVP (4.1) using

the IMEX-Euler method, takes the following form:
y0(x) = q0(x), x ∈ Ω,(
I + ∆tLx,ε

)
yn+1(x) + ∆tb

(
x, tn, yn(x)

)
= yn(x) + ∆tg(x, tn+1), x ∈ Ω,

yn+1(0) = sl(tn+1), yn+1(1) = sr(tn+1).

(4.35)

One can prove in the classical way that the operator
(
I + ∆tLx,ε

)
satisfies the maximum principle as stated in

the following lemma.

Lemma 4.3 (Maximum principle). Let the function ψ ∈ C0(Ω) ∩ C2(Ω). If ψ satisfies ψ(0) ≤ 0, ψ(1) ≤ 0

and
(
I + ∆tLx,ε

)
ψ(x) ≤ 0 for all x ∈ Ω, then it implies that ψ(x) ≤ 0 for all x ∈ Ω.

Lemma 4.4. Let the function V ∈ C0(Ω) ∩ C2(Ω). Then we have

∥∥V∥∥ ≤ ∥∥V∥∥
∂Ω

+
∥∥(I + ∆tLx,ε)V

∥∥
Ω
.

Proof: Consider the following functions

ψ±(x) = −‖V‖∂Ω −
∥∥(I + ∆tLx,ε)V

∥∥
Ω
± V(x), x ∈ Ω.

Note that ψ±(0) ≤ 0, ψ±(1) ≤ 0, and

(I + ∆tLx,ε)ψ±(x) ≤ −(I + ∆tLx,ε)
∥∥(I + ∆tLx,ε)V

∥∥± (I + ∆tLx,ε)V(x) ≤ 0, x ∈ Ω.

Then, the desired result is obtained by applying Lemma 4.3.

Lemma 4.3 guarantees that the scheme (4.35) has a unique solution yn(x) at each time step tn. Further,

using Lemma 4.3 below it is shown that the solution yn(x) becomes ε-uniformly bounded.

Lemma 4.5. The solution yn(x) of the semidiscrete problem (4.35) at the time level tn satisfies that

∣∣yn(x)
∣∣ ≤ C, x ∈ Ω. (4.36)

Proof: Due to the continuity of q0(x) on Ω. It is clear that

|y0(x)| ≤ C, x ∈ Ω,

and hence, |b
(
x, t, y0(x)

)
| ≤ C, x ∈ Ω. Then, applying Lemma 4.4, we obtain from (4.35) that

|y1(x)| ≤ C, x ∈ Ω,
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and hence, |b
(
x, t, y1(x)

)
| ≤ C, x ∈ Ω. Thereafter, arguing previously, we obtain that

|y2(x)| ≤ C, x ∈ Ω. (4.37)

Thus, one can proceed in the same way to obtain the desired result.

Now, let us define ẽn+1(x) = y(x, tn+1)− ỹn+1(x), as the local error associated with the time semidiscrete

scheme (4.35) at the time level tn+1, where ỹn+1(x) is defined as the solution of the following auxiliary BVP:
(
I + ∆tLx,ε

)
ỹn+1(x) + ∆tb

(
x, tn, y(x, tn)

)
= y(x, tn) + ∆tg(x, tn+1), x ∈ Ω,

ỹn+1(0) = sl(tn+1), ỹn+1(1) = sr(tn+1).
(4.38)

Lemma 4.6 (Local error). The local error ẽn+1(x) satisfies the following estimate at the time level tn+1:

∥∥ẽn+1
∥∥ ≤ C(∆t)2. (4.39)

Proof: Using Taylor’s theorem on y(x, t) with respect to the temporal variable, we get

y(x, tn) = (I + ∆tLx,ε)y(x, tn+1) + ∆tb
(
x, tn+1, y(x, tn+1)

)
−∆tg(x, tn+1) +

(∆t)2

2

∂2y(x, s)

∂t2
,

where tn < s < tn+1. Again, from (4.38), we have

y(x, tn) =
(
I + ∆tLx,ε

)
ỹn+1(x) + ∆tb

(
x, tn, y(x, tn)

)
−∆tg(x, tn+1).

Therefore,

(
I + ∆tLx,ε

)
ẽn+1(x) + ∆t

[
b
(
x, tn+1, y(x, tn+1

)
− b
(
x, tn, y(x, tn)

)]
= O(∆t)2, (4.40)

where we apply the bound on ∂2y
∂t2

from Theorem 4.1. Further, one can deduce that

b
(
x, tn+1, y(x, tn+1)

)
− b
(
x, tn, y(x, tn)

)
= ∆t

[∂b(x, s, y(x, s))

∂t
+
∂b(x, s, y(x, s))

∂y
∂y(x, s)

∂t

]
, tn < s < tn+1,

= O(∆t), (4.41)

where the bound on ∂y
∂t from Theorem 4.1 and the property (4.11) are utilized. Now, combining (4.40) and

(4.41), we obtain that 
(
I + ∆tLx,ε

)
ẽn+1(x) = O(∆t)2, x ∈ Ω,

ẽn+1(0) = 0 = ẽn+1(1).

Henceforth, applying Lemma 4.4 on ẽn+1, we get the desire result estimate.

Next, we define en+1(x) = y(x, tn+1)− yn+1(x), as the global error associated with the time semidiscrete
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scheme (4.35) at the time level tn+1.

Theorem 4.4 (Global error). The global error en+1(x) satisfies the following estimate the time level tn+1:

sup
(n+1)∆t≤T

∥∥en+1
∥∥ ≤ C∆t. (4.42)

Proof: The global error can be written as

en+1(x) = ẽn+1(x) + dn+1(x), (4.43)

where the term dn+1(x) satisfies that
(
I + ∆tLx,ε

)
dn+1(x) + ∆t

[
b
(
x, tn, y(x, tn)

)
− b
(
x, tn, yn(x)

)]
= en(x), x ∈ Ω,

dn+1(0) = 0 = dn+1(1).
(4.44)

Further, one can deduce that

b
(
x, tn, y(x, tn)

)
− b
(
x, tn, yn(x)

)
=
[ ∫ 1

0

∂b
(
x, tn, yn + ξ(y(tn)− yn)

)
∂y

dξ
]
en(x). (4.45)

Now, since the solutions yn and y(tn) are bounded ε-uniformly, the smoothness assumption of b(x, t, y) implies

that there exists a constant M0(> 0)(independent of ε) such that

M0 = sup
{∣∣∣∂b(x, t, y

)
∂y

∣∣∣, (x, t) ∈ D, |y | ≤ C0

}
,

where C0 = max
{
‖yn‖, ‖y(tn)‖, for n = 0, 1, . . .M

}
. Then, combining (4.43), (4.44), (4.45); and

applying Lemma 4.4 on dn+1(x), we have

∥∥en+1
∥∥ ≤ ∥∥ẽn+1

∥∥+ (1 + M0∆t)
∥∥en∥∥.

Finally, the desired estimate follows from the above recurrence relation and by utilizing Lemma 4.6 and the

inequality (1 + M0∆t)n ≤ exp(n∆tM0) ≤ exp(TM0).

4.4.1.1 Properties of the semidiscrete solution
The following lemma shows that although the problem (4.38) seems to be a double parameter (ε,∆t) singularly

perturbed problem at first sight, nevertheless the spatial derivatives of the solution ỹn+1(x) indeed maintain the

same asymptotic behavior as that of the solution y(x, t) of the model problem with respect to the parameter ε

only. To establish the following result we adopt the approach of [23]. For the proof, apart from the requirement

of ε-uniform boundedness of the reaction term ‘ b ’and smoothness criterion on the given data, we also need

certain compatibility conditions at (0, tn) and (1, tn) as mentioned in (4.50) and (4.53).

Lemma 4.7. The solution ỹn+1(x) of the auxiliary BVP (4.38) and its derivatives satisfy that

∣∣∣dj ỹn+1(x)

dxj

∣∣∣ ≤ C(1 + ε−j exp
(
− m(1− x)/ε

))
, x ∈ Ω, for 0 ≤ j ≤ 4. (4.46)
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Proof: The above bounds are obtained by considering following cases.

Case 1. Let j = 0. From the property (4.11), we have |b
(
x, tn, y(x, tn)

)
| ≤ C, x ∈ Ω. Then, using the

continuity of g on Ω and Lemma 4.4 in the scheme(4.38), we have

|ỹn+1(x)| ≤ C, x ∈ Ω.

Case 2. Let j = 1. We consider the function ζ(x) =
ỹn+1(x)−y(x,tn)

∆t as the solution of the following BVP:
(I + ∆tLx,ε)ζ(x) = H1(x), x ∈ Ω,

ζ(0) =
dsl(tn)

dt
+ C1∆t, ζ(1) =

dsr(tn)

dt
+ C2∆t,

(4.47)

where H1(x) = −Lx,εy(x, tn) + g(x, tn+1) − b
(
x, tn, y(x, tn)

)
is bounded (ε-uniformly) on Ω; and hence,

using Lemma 4.4 for (4.47), we obtain that |ζ(x)| ≤ C. We now rewrite (4.47) to get the following BVP: Lx,εỹn+1(x) = H2(x), x ∈ Ω,

ỹn+1(0) = sl(t), ỹn+1(1) = sr(t),
(4.48)

where H2(x) = −ζ(x) + g(x, tn+1) − b
(
x, tn, y(x, tn)

)
is bounded (ε-uniformly) on Ω; and hence, using the

argument of Kellogg and Tsan [61] for (4.48), we have the required bound (4.46) for j = 1.

Case 3. Let j = 2. We consider the function ζ1(x) = Lx,εζ(x) as the solution of the following BVP:

(I + ∆tLx,ε)ζ1(x) = H3(x), x ∈ Ω,

ζ1(0) =
1

∆t

[
− dsl(tn)

dt
+ C1∆t+ g(0, tn+1)− Lx,εy(0, tn)− b

(
0, tn, y(0, tn)

)]
,

ζ1(1) =
1

∆t

[
− dsr(tn)

dt
+ C2∆t+ g(1, tn+1)− Lx,εy(1, tn)− b

(
1, tn, y(1, tn)

)]
,

(4.49)

where H3(x) = −L2
x,εy(x, tn) + Lx,εg(x, tn+1)− Lx,εb

(
x, tn, y(x, tn)

)
is bounded (ε-uniformly) on Ω due to

the smoothness assumption on g , the property (4.11) and Theorem 4.1. Further, from ∂y
∂t ∈ C0(Ω), we obtain

the following compatibility conditions:
dsl(tn)

dt
= g(0, tn)− Lx,εy(0, tn)− b

(
0, tn, y(0, tn)

)
,

dsr(tn)

dt
= g(1, tn)− Lx,εy(1, tn)− b

(
1, tn, y(1, tn)

)
,

(4.50)

which yields that

ζ1(0) =
dg(0, tn)

dt
+ C1, and ζ1(1) =

dg(1, tn)

dt
+ C2.

Therefore, the boundary conditions are (ε,∆t)- uniformly bounded. Thus, applying Lemma 4.4 for (4.49), we

obtain that |ζ1(x)| ≤ C, x ∈ Ω. Afterwards, one can deduce that∣∣∣dζ(x)

dx

∣∣∣ ≤ C(1 + ε−1 exp
(
− m(1− x)/ε

))
, x ∈ Ω,

126



by invoking Lemma 4.4 to the following BVP:
Lx,εζ(x) = ζ1(x), x ∈ Ω,

ζ(0) =
dsl(tn)

dt
+ C1∆t, ζ(1) =

dsr(tn)

dt
+ C2∆t.

Now, differentiating (4.48) with respect to x, we consider that ζ(x) =
dỹn+1

dx satisfies the following problem: Lx,εζ(x) = H4(x), x ∈ Ω,

ζ(0) = C1, ζ(1) = C2ε
−1,

(4.51)

where H4(x) = −dζ(x)

dx
+
dg(x, tn+1)

dx
−da(x)

dx

dỹn+1(x)

dx
−
(∂b(x, tn, y(x, tn)

)
∂x

+
∂b
(
x, tn, y(x, tn)

)
∂y

∂y(x, tn)

∂x

)
.

Then, the bound on
dζ

dx
, the smoothness assumption on g , the property (4.11) and Theorem 4.1 imply that

|H4(x)| ≤ C
(

1 + ε−1 exp
(
− m(1− x)/ε

))
, x ∈ Ω.

Hence, using the argument of Kellogg and Tsan [61] for (4.51), we have the required bound (4.46) for j = 2.

Case 4. Let j = 3, 4. Here, we derive the result (4.46) for j = 3, likewise Case 3 and the similar procedure

can be followed for j = 4. Firstly, we consider the function ζ2(x) = L2
x,εζ(x) as the solution of the following

BVP:
(I + ∆tLx,ε)ζ2(x) = H5(x), x ∈ Ω,

ζ2(x) = 1
∆tLx,ε

[
g(x, tn+1)− g(x, tn)

]
+

1
∆t2

[
ζ(x) + Lx,εy(x, tn)− g(x, tn+1) + b

(
x, tn, y(x, tn)

)
+ ∆tLx,ε

∂y(x ,tn )
∂t

]
, for x = 0, 1,

(4.52)

where following the similar arguments as in Case 3, one can show that H5(x) = −L3
x,εy(x, tn)+L2

x,εg(x, tn+1)−
L2
x,εb
(
x, tn, y(x, tn)

)
is bounded (ε-uniformly) on Ω. Further, the boundary conditions are (ε,∆t)- uniformly

bounded, since ζ2(0) and ζ2(1) can be rewritten in the following form:

ζ2(0) = (Lx,εgt)(0, s)−
1

2
(Lx,εytt)(0, s), and ζ2(1) = (Lx,εgt)(1, s)−

1

2
(Lx,εytt)(1, s),

where tn < s < tn+1, which follows from the compatibility conditions ζ(0) + ∆t(Lx,εyt)(0, tn) + Lx,εy(0, tn)− g(0, tn+1) + b
(
0, tn, y(0, tn)

)
= −∆t2

2 (Lx,εytt)(0, s),

ζ(1) + ∆t(Lx,εyt)(1, tn) + Lx,εy(1, tn)− g(1, tn+1) + b
(
0, tn, y(1, tn)

)
= −∆t2

2 (Lx,εytt)(1, s),
(4.53)

obtained from (4.49). Therefore, applying Lemma 4.4 for (4.52), we obtain that |ζ2(x)| ≤ C, x ∈ Ω. Now,
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similar arguments can be applied for the following BVP:
Lx,εζ1(x) = ζ2(x), x ∈ Ω,

ζ1(0) =
dsl(tn)

dt
+ C1∆t, ζ1(1) =

dsr(tn)

dt
+ C2∆t,

to prove that ∣∣∣d2ζ(x)

dx2

∣∣∣ ≤ C(1 + ε−2 exp
(
− m(1− x)/ε

))
, x ∈ Ω.

Now, differentiating (4.51) with respect to x, we consider that ζ1(x) =
d2 ỹn+1

dx2 satisfies the following problem: Lx,εζ1(x) = H6(x), x ∈ Ω,

ζ1(0) = C1, ζ1(1) = C2ε
−2,

(4.54)

where

H6(x) = −d
2ζ(x)

dx2
+
d2g(x, tn+1)

dx2
− 2

da(x)

dx

d2ỹn+1(x)

dx2
− d2a(x)

dx2

dỹn+1

dx
−

[ ∂2b

∂x2
+

∂2b

∂x∂y
∂y
∂x

+
( ∂2b

∂y∂x
+
∂2b

∂y2

∂y
∂x

)∂y
∂x

+
∂b

∂y
∂2y

∂x2

]
.

Since, |H6(x)| ≤ C
(

1 + ε−2 exp
(
− m(1− x)/ε

))
, x ∈ Ω, using the same argument as in Case 3, one can

derive the required bound (4.46) for j = 3.

Further, we need decomposition of the exact solution ỹn+1(x) of the BVP (4.38) in order to establish bound

of the truncation error in the subsequent section.

Lemma 4.8. The solution ỹn+1(x) can be decomposed in the form

ỹn+1(x) = p̃n+1(x) + γq̃n+1(x),

where 
q̃n+1(x) = exp

(
−a(1)(1− x)

ε

)
, γ =

ε

a(1)

dỹn+1(1)

dx
,

and
∣∣∣dj p̃n+1(x)

dxl

∣∣∣ ≤ C(1 + ε−j+1 exp
(
− m(1− x)/ε

))
, x ∈ Ω, for 0 ≤ j ≤ 4.

Proof. Let p̃n+1(x) = ỹn+1(x)− γq̃n+1(x). Then, we have

Lx,εp̃n+1(x) = R1(x), x ∈ Ω, (4.55)

where R1(x) = H2(x) + γ
(
a(1)− a(x)

)dq̃n+1(x)
dx ; and differentiating (4.55) with respect to x, it yields that

Lx,ε
dp̃n+1(x)

dx
= R2(x), x ∈ Ω, (4.56)

where R2(x) = H4(x)− da(x)
dx

dq̃n+1(x)
dx − γda(x)

dx
dq̃n+1(x)

dx + γ(a(1)− a(x))
d2 q̃n+1(x)

dx2 . Now, one can show that
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R1(x) bounded (ε-uniformly) on Ω and

|R2(x)| ≤ C
(

1 + ε−1 exp
(
− m(1− x)/ε

))
, x ∈ Ω.

Also, it holds that

|p̃n+1(0)| ≤ C, |p̃n+1(1)| ≤ C,
∣∣∣dp̃n+1(0)

dx

∣∣∣ ≤ C, dp̃n+1(1)

dx
= 0.

Therefore, using the argument of [61] for (4.55) and (4.56), it follows that

∣∣∣dj p̃n+1(x)

dxj

∣∣∣ ≤ C(1 + ε−j+1 exp
(
− m(1− x)/ε

))
, x ∈ Ω, j = 1, 2. (4.57)

Finally, by adopting the approach as mentioned above, one can obtain the required bounds on the spatial deriva-

tives of p̃n+1(x) for j = 3, 4.

4.4.2 Error estimate for the spatial discretization
Here, we analyze the following discrete problem, which is obtained by discretizing (4.38) with respect to the

spatial variable using the proposed hybrid scheme:
LN,∆tε Ỹ n+1

j ≡ ν−j Ỹ
n+1
j−1 + νcj Ỹ

n+1
j + ν+

j Ỹ
n+1
j+1 = F̃n+1

j ,

for 1 ≤ j ≤ N − 1,

Ỹ n+1
0 = sl(tn+1), Ỹ n+1

N = sr(tn+1),

(4.58)

where the coefficients ν−j , ν
+
j , ν

c
j are described in (4.31)-(4.33) and F̃n+1

j is given by

F̃n+1
j =



1
2(y(xj−1, tn) + ∆t gn+1

j−1 ) + 1
2(y(xj , tn) + ∆tgn+1

j )−∆tb
(
xj− 1

2
, tn, y(xj− 1

2
, tn)

)
,

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

y(xj , tn) + ∆t gn+1
j −∆tb

(
xj , tn, y(xj , tn)

)
,

for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

y(xj , tn) + ∆t gn+1
j −∆tb

(
xj , tn, y(xj , tn)

)
, for N/2 < j ≤ N − 1.

(4.59)

The following lemma shows that the difference operator LN,∆tε satisfies the discrete maximum principle.

Lemma 4.9 (Discrete Maximum Principle). Assume that the following conditions hold for N ≥ N0:

N/lnN > η0

∥∥a∥∥, (4.60)

and mN ≥ 1

∆t
. (4.61)

For fixed n, suppose that the mesh functionψn+1
j = ψn+1(xj) defined on Ω

N satisfies thatψn+1
0 ≤ 0, ψn+1

N ≤

129



0, and LN,∆tε ψn+1
j ≤ 0, for 1 ≤ j ≤ N − 1. Then, we have ψn+1

j ≤ 0, for all j.

Proof. See [Chapter 2, Lemma 7 2.7] for the proof.

Next, we derive the local truncation error TN,∆t
j,̃yn+1 = LN,∆tε [ỹn+1

j − Ỹ n+1
j ] for the scheme (4.58)-(4.59). Let

1 ≤ j ≤ N/2. Then, we have for ε > ‖a‖N−1,

T
N,∆t
j,̃yn+1 = ν−j ỹn+1

j−1 + νcj ỹn+1
j + ν+

j ỹn+1
j+1 −∆t

[
g(xj , tn+1)− b

(
xj , tn, y(xj , tn)

)]
− y(xj , tn), (4.62)

and for ε ≤ ‖a‖N−1,

T
N,∆t
j,̃yn+1 = ν−j ỹn+1

j−1 + νcj ỹn+1
j + ν+

j ỹn+1
j+1 −∆t

[g(xj , tn+1) + g(xj−1, tn+1)

2

]
−∆t

[b(xj , tn, y(xj , tn)
)

+ b
(
xj−1, tn, y(xj−1, tn)

)
2

]
−

y(xj , tn) + y(xj−1, tn)

2
+O(∆th2

j ).

(4.63)

Next, for N/2 < j ≤ N − 1,

T
N,∆t
j,̃yn+1 = ν−j ỹn+1

j−1 + νcj ỹn+1
j + ν+

j ỹn+1
j+1 −∆t

[
g(xj , tn+1)− b

(
xj , tn, y(xj , tn)

)]
− y(xj , tn). (4.64)

Then, the truncation error can be written in the following form

T
N,∆t
j,̃yn+1 =


∆tTNj,̃yn+1 , for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

∆tTNj,̃yn+1 +O(∆th2
j ), for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

∆tTNj,̃yn+1 , for N/2 < j ≤ N − 1,

where

TNj,̃yn+1 =


LNmcdỹn+1

j − (Lx,εỹn+1)(xj), for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

LNmupỹn+1
j − (Lx,εỹn+1)j− 1

2
, for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

LNmcdỹn+1
j − (Lx,εỹn+1)(xj), for N/2 < j ≤ N − 1.

We now provide a brief outline of the proof for the error estimate stated in Theorem 4.5. At first, using the

decomposition of ỹn+1 in Lemma 4.8, we decompose TNj,̃yn+1 , as

TNj,̃yn+1 = TNj,̃pn+1 + γTNj,̃qn+1 , (4.65)

where TNj,̃pn+1 and TN
j,̃qn+1 denote the truncation errors corresponding to p̃n+1(x) and q̃n+1(x), respectively.

Then, utilizing (4.65), (4.65) and Lemma 4.8, we obtain the bounds of TN,∆t
j,̃yn+1 (see [Chapter 2, Lemma 2.10]).

Further, we require the following important result for the error analysis.
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Lemma 4.10. Consider the mesh function

Sj(θ) =


N∏

k=j+1

(
1 +

θhk
ε

)−1
, for 0 ≤ j ≤ N − 1,

1, for j = N,

where θ is a positive constant such that θ < m/2. Then, under the hypothesis (4.60)-(4.60) of Lemma 4.9, we

have

LN,∆tε Sj(θ) ≥



C∆t

ε
Sj(θ), for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

C∆t

H
Sj(θ), for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

C∆t

ε
Sj(θ), for N/2 < j ≤ N − 1.

Proof: From (4.31)-(4.34), we obtain that

LN,∆tε Sj(θ) =



∆tLNmcdSj(θ) + Sj(θ),

for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1

∆tLNmupSj(θ) +
1

2

(
1 +

ε

ε+ θhj

)
Sj(θ),

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

∆tLNmcdSj(θ) + Sj(θ), for N/2 < j ≤ N − 1.

(4.66)

The rest of the proof follows from [Chapter 2, Lemma 2.12].

Afterwards, by making use of Lemma 4.9 together with the bounds of TN,∆t
j,̃yn+1 and Lemma 4.10, one can

derive the following result.

Theorem 4.5 (Spatial error). Let θ < m/2 and η0 ≥ 2/θ. Then, under the conditions (4.60) and (4.61), the

following error estimate holds related to the discrete problem (4.58):

∣∣∣ỹn+1(xj)− Ỹ n+1
j

∣∣∣ ≤
 CN−2, for 1 ≤ j ≤ N/2,

CN−2 ln2N, for N/2 < j ≤ N − 1.
(4.67)

4.4.3 Convergence result for the IMEX-FMM
Theorem 4.6 (Global error). Let y(x, t) be the exact solution of the problem (4.1)-(4.3), and Y n+1

j be the

discrete solution of the fully discrete scheme (4.30), at time level tn+1. If θ < m
2 and η0 ≥ 2

θ , under the

assumptions (4.60) and (4.61), the following error estimate holds:

∥∥∥{y(xj , tn+1)
}
j
−
{
Y n+1
j

}
j

∥∥∥ ≤


C
(
N−2+δ + ∆t

)
, for 1 ≤ j ≤ N/2,

C
(
N−2+δ ln2N + ∆t

)
, for N/2 < j ≤ N − 1,

(4.68)

where N and ∆t are such that N−δ ≤ C∆t with 0 < δ < 1.
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Proof. The global error can be written as

En+1(xj) = ẽn+1(xj) + Ẽn+1(xj) +Rn+1
j , (4.69)

where ẽn+1(xj) = [y(xj , tn+1)− ỹn+1(xj)], Ẽn+1(xj) = [ỹn+1(xj)− Ỹ n+1
j ], and the term Rn+1

j satisfies that

 LN,∆tε Rn+1
j = −∆t

[
b
(
xj , tn, y(xj , tn))− b

(
xj , tn, Y

n
j

)]
+ y(xj , tn)− Y n

j , 1 ≤ j ≤ N − 1.

Rn+1
0 = Rn+1

N = 0.

Next, applying discrete maximum principle for the operator LN,∆tε , one can deduce that∥∥∥{Rn+1
j

}
j

∥∥∥ ≤ (1 + M1∆t
)∥∥∥{y(xj , tn)

}
j
−
{
Y n
j

}
j

∥∥∥, for 0 ≤ j ≤ N, (4.70)

where M1 is a constant(>0)(independent of ε) such that

M1 = sup
{∣∣∣∂b(x, t, y

)
∂y

∣∣∣, (x, t) ∈ D, |y | ≤ C1

}
,

and C1 = max
{
‖Y n‖, ‖y(tn)‖, for n = 0, 1, . . .M

}
. Thereafter, using (4.69) and (4.70) together with

Lemma 4.6, Theorem 4.5, and the assumption N−δ ≤ C∆t with 0 < δ < 1, we obtain that

∥∥∥{En+1(xj)
}
j

∥∥∥ ≤


C∆t
(

∆t+N−2+δ
)

+
(

1 + M1∆t
)∥∥∥{En(xj)

}
j

∥∥∥, for 1 < j ≤ N/2,

C∆t
(

∆t+N−2+δ ln2N
)

+
(

1 + M1∆t
)∥∥∥{En(xj)

}
j

∥∥∥, for N/2 < j < N.

Hence, we establish the estimate in (4.68) by using (1 + M1∆t)n ≤ exp(M1T ).

Remark 4.3. In this section, we carry out the error analysis by invoking the two-stage discretization technique

keeping in mind the extension of the proposed method for solving multi-dimensional nonlinear parabolic PDEs.

One can further note that the theoretical restriction N−δ ≤ C∆t with 0 < δ < 1 in Theorem 4.6 is no longer

appear in the numerical results of the proposed IMEX method; and can be eliminated by estimating the error

separately for the smooth component and the layer component as like the error analysis in the next section.

4.5 Convergence analysis for the fully-implicit FMM

For the convergence analysis, we rewrite the fully discrete scheme (4.31) in the following form:
y0
j = q0(xj), 0 ≤ j ≤ N, TN,∆tε Y n+1

j = Gn+1
j , for 1 ≤ j ≤ N − 1,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), for n = 0, 1, . . . ,M − 1,

(4.71)
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where the nonliner discrete operator TN,∆tε is given by

TN,∆tε Y n+1
j =



D−t Y
n+1
j + LNmcdY

n+1
j + b

(
xj , tn+1, Y

n+1
j

)
,

for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

D−t Y
n+1
j− 1

2

+ LNmupY n+1
j + b

(
xj− 1

2
, tn+1, Y

n+1
j− 1

2

)
,

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

D−t Y
n+1
j + LNmcdY

n+1
j + b

(
xj , tn+1, Y

n+1
j

)
, for N/2 < j ≤ N − 1,

and the right-hand side vector Gn+1 is given by

Gn+1
j =


gn+1
j− 1

2

, for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

gn+1
j , for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

gn+1
j , for N/2 < j ≤ N − 1.

For the sake of convenience, we set gn+1
j−1/2 = g(xj−1/2, tn+1) and aj−1/2 = a(xj−1/2), in the rest of the

chapter.

Lemma 4.11 (Discrete Comparison Principle). Assume that the following cinditions hold for N ≥ N0:

N/lnN > η0

∥∥a∥∥, (4.72)

and mN ≥
(∥∥∥∂b∂y

∥∥∥+ 1
∆t

)
. (4.73)

Suppose that two mesh functions V and W defined on D
N,∆t

satisfies that V ≤W on ∂DN,∆t and TN,∆tε V ≤
TN,∆tε W in DN,∆t. Then, we have V ≤W on D

N,∆t
.

Proof: Let ωnj ≤ 0, for all j and n. Then, inconformity with the hypothesis of the discrete comparison principle,

we assume that V 0
j −W 0

j = ω0
j for 0 ≤ j ≤ N and consider the following system: TN,∆tε V n+1

j − TN,∆tε Wn+1
j = ωn+1

j , for 1 ≤ j ≤ N − 1,

V n+1
0 −Wn+1

0 = ωn+1
0 , V n+1

N −Wn+1
N = ωn+1

N , for n = 0, 1, . . . ,M − 1.
(4.74)
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Now, let Unj = V n
j −Wn

j for all n. Then, we have

TN,∆tε V n+1
j − TN,∆tε Wn+1

j =

D−t U
n+1
j + LNmcdU

n+1
j +

[ ∫ 1

0

∂b
(
xj , tn+1,W

n+1
j + ξ

(
V n+1
j −Wn+1

j

))
dξ

∂y

]
Un+1
j ,

for 1 ≤ j ≤ N/2 and when ε > ‖a‖N−1,

D−t U
n+1
j− 1

2

+ LNmupUn+1
j +

[ ∫ 1

0

∂b
(
xj− 1

2
, tn+1,W

n+1
j− 1

2

+ ξ
(
V n+1
j− 1

2

−Wn+1
j− 1

2

))
dξ

∂y

]
Un+1
j− 1

2

,

for 1 ≤ j ≤ N/2 and when ε ≤ ‖a‖N−1,

D−t U
n+1
j + LNmcdU

n+1
j +

[ ∫ 1

0

∂b
(
xj , tn+1,W

n+1
j + ξ

(
V n+1
j −Wn+1

j

))
dξ

∂y

]
Un+1
j ,

forN/2 < j ≤ N.

(4.75)

For simplifying the proof, we setUn =
(
Un0 , U

n
1 , . . . , U

n
N

)
and ωn =

(
ωn0 , ω

n
1 , . . . , ω

n
N

)
, for n = 0, 1, . . . ,M .

Here, by employing equation (4.75), we can rewrite equation (4.74) in the following form:

AUn+1 − BUn = ωn+1, for n = 0, 1, . . . ,M − 1.

Here, the matrix A is given by Aj,j = 1, for j = 0, N , and

Aj,j−1 = ν̃−mcd,j , Aj,j = ν̃cmcd,j +
1

∆t
, Aj,j+1 = ν̃+

mcd,j

for 1 ≤ j ≤ N/2 and when ε > ‖a‖N−1,

Aj,j−1 = ν̃−mup,j +
1

2∆t
, Aj,j = ν̃cmup,j +

1

2∆t
, Aj,j+1 = ν̃+

mup,j

for 1 ≤ j ≤ N/2 and when ε ≤ ‖a‖N−1,

Aj,j−1 = ν̃−mcd,j , Aj,j = ν̃cmcd,j +
1

∆t
, Aj,j+1 = ν̃+

mcd,j forN/2 < j < N,

where 

ν̃−mup,j = ν−mup,j +
1

2

[ ∫ 1

0

∂b
(
xj− 1

2
, tn+1,W

n+1
j− 1

2

+ ξ
(
V n+1
j− 1

2

−Wn+1
j− 1

2

))
dξ

∂y

]
,

ν̃cmup,j = νcmup,j +
1

2

[ ∫ 1

0

∂b
(
xj− 1

2
, tn+1,W

n+1
j− 1

2

+ ξ
(
V n+1
j− 1

2

−Wn+1
j− 1

2

))
dξ

∂y

]
,

ν̃+
mup,j = ν+

mup,j ,

and 

ν̃−mcd,j = ν−mcd,j ,

ν̃cmcd,j = νcmcd,j +
[ ∫ 1

0

∂b
(
xj , tn+1,W

n+1
j + ξ

(
V n+1
j −Wn+1

j

))
dξ

∂y

]
,

ν̃+
mcd,j = ν+

mcd,j .
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One can show that, under the conditions (4.72) and (4.73), the matrix A is an M-matrix (see the proof in Lemma

2.7 of Chapter 2) and it is straightforward that the matrix B ≥ 0. Therefore, the proof follows from [99, Lemma

3.12].

Remark 4.4. From the discrete comparison principle, one can obtain the existence and uniqueness of the solu-

tion to the discrete problem (4.71)(see the Hadamard’s Theorem 5.3.10 in [91]).

Corollary 4.2. Let Ψ be any mesh function defined on D
N,∆t

. Then, for any given mesh functions V and W

defined on D
N,∆t

, the difference operator T̃N,∆tε,(V,W ) given by

T̃N,∆tε,(V,W )Ψ
n+1
j =



D−t Ψn+1
j + LNmcdΨ

n+1
j +

[ ∫ 1
0

∂b
(
xj ,tn+1,W

n+1
j +ξ

(
V n+1
j −Wn+1

j

))
dξ

∂y

]
Ψn+1
j ,

for 1 ≤ j ≤ N/2 and when ε > ‖a‖N−1,

D−t Ψn+1
j− 1

2

+ LNmupΨn+1
j +

[ ∫ 1
0

∂b
(
x
j− 1

2
,tn+1,W

n+1

j− 1
2

+ξ
(
V n+1

j− 1
2

−Wn+1

j− 1
2

))
dξ

∂y

]
Ψn+1
j− 1

2

,

for 1 ≤ j ≤ N/2 and when ε ≤ ‖a‖N−1,

D−t Ψn+1
j + LNmcdΨ

n+1
j +

[ ∫ 1
0

∂b
(
xj ,tn+1,W

n+1
j +ξ

(
V n+1
j −Wn+1

j

))
dξ

∂y

]
Ψn+1
j ,

forN/2 < j ≤ N,

satisfies the discrete maximum principle, i.e., if Ψ ≤ 0, on ∂DN,∆t and T̃N,∆tε,(V,W )Ψ ≤ 0, in DN,∆t, then it

implies that Ψ ≤ 0, on D
N,∆t

.

Lemma 4.12 (Stability). Let V and W be two mesh function defined on D
N,∆t

. Then, under the conditions

(4.72) and (4.73), we have

‖V −W‖
D

N,∆t ≤ ‖V −W‖∂DN,∆t +
1

β
‖TN,∆tε − TN,∆tε W‖

D
N,∆t . (4.76)

Proof. Consider the mesh functions

Ψ±(xj , tn) = −‖V −W‖∂DN,∆t −
1

β
‖TN,∆tε V − TN,∆tε W‖ ±

(
V −W

)
(xj , tn), (xj , tn) ∈ D

N,∆t
.

Note that Ψ±(xj , tn) ≤ 0, on ∂DN,∆t, and T̃N,∆tε,(V,W )Ψ
±(xj , tn+1) ≤ 0, in DN,∆t. Then, Corollary 4.2 implies

that Ψ±(xj , tn) ≤ 0, for all (xj , tn) ∈ D
N,∆t. Hence, the proof is over.

Before we proceed for the error analysis, we provide the following imporatnt result which is used in the

subsequent section.

Lemma 4.13. Consider the mesh function

Sj(θ) =


N∏

k=j+1

(
1 +

θhk
ε

)−1
, for 0 ≤ j ≤ N − 1,

1, for j = N,
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where θ is a positive constant such that θ < m/2. Then, under the hypothesis (4.72)-(4.73) of Lemma 4.11, we

have

T̃N,∆tε,(V,W )Sj(θ) ≥



C

ε
Sj(θ), for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

C

H
Sj(θ), for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

C

ε
Sj(θ), for N/2 < j ≤ N − 1.

(4.77)

4.5.1 Decomposition of the discrete solution and error estimates
We decompose the numerical solution Y n+1

j into the smooth component Pn+1
j and the layer component Qn+1

j

such that Y n+1
j = Pn+1

j +Qn+1
j . Here, Pn+1

j satisfies the following discrete problem:
P 0
j = p(xj , 0), 0 ≤ j ≤ N,

TN,∆tε Pn+1
j = Gn+1

j , 1 ≤ j ≤ N − 1,

Pn+1
0 = p(0, tn+1), Pn+1

N = p(1, tn+1).

(4.78)

Lemma 4.14. Let the assumptions (4.72) and (4.73) of Lemma 4.11 hold. Then, the error related to the smooth

component satisfies the following estimate:∣∣∣Pn+1
j − p(xj , tn+1)

∣∣∣ ≤ C(N−2 + ∆t
)
, for 1 ≤ j ≤ N − 1. (4.79)

Proof. For 1 ≤ j ≤ N/2 and when ε ≤ ‖a‖N−1, we have

D−t P
n+1
j− 1

2

+ LNmupPn+1
j + b

(
xj− 1

2
, tn+1, P

n+1
j− 1

2

)
− b
(
xj− 1

2
, tn+1, p(xj− 1

2
, tn+1)

)
=
∂p(xj− 1

2
, tn+1)

∂t
+ Lx,εp(xj− 1

2
, tn+1).

Utilizing the derivative bound of p from Theorem 4.2 and the following relation

b
(
xj−1/2, tn+1, p(xj−1/2, tn+1)

)
= b
(
xj−1/2, tn+1,

p(xj , tn+1) + p(xj−1, tn+1)

2

)
+O(h2

j ),

the above equation can be rewritten in the following form:

D−t

(
Pn+1
j− 1

2

−
p(xj , tn+1) + p(xj−1, tn+1)

2

)
+ LNmup

(
Pn+1
j − p(xj , tn+1)

)
+
[ ∫ 1

0

∂b
(
xj− 1

2
, tn+1, P

∗,n+1

j− 1
2

(ξ)
)

∂y
dξ
](
Pn+1
j− 1

2

−
p(xj , tn+1) + p(xj−1, tn+1)

2

)
=
( ∂
∂t
−D−t

)
p(xj− 1

2
, tn+1)− ε

(∂2p(xj− 1
2
, tn+1)

∂x2
− δ2

xp(xj , tn+1)
)

+ a(xj− 1
2
)
(∂p(xj− 1

2
, tn+1)

∂x
−D−x p(xj , tn+1)

)
+O(h2

j ),

(4.80)
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where P ∗,n+1

j− 1
2

(ξ) = pn+1
j−1/2 + ξ

(
Pn+1
j− 1

2

− pn+1
j−1/2

)
. On the other hand, for 1 ≤ j ≤ N/2 and when ε > ‖a‖N−1,

and for N/2 < j ≤ N − 1, we have

[
D−t + LNmcd +

∫ 1

0

∂b
(
xj , tn+1, P

∗,n+1
j (ξ)

)
∂y

dξ
](
Pn+1
j − p(xj , tn+1)

)
=
( ∂
∂t
−D−t

)
p(xj , tn+1)− ε

( ∂2

∂x2
− δ2

x

)
p(xj , tn+1) + aj

( ∂
∂x
−D∗x

)
p(xj , tn+1),

(4.81)

where P ∗,n+1
j (ξ) = p(xj , tn+1) + ξ

(
Pn+1
j − p(xj , tn+1)

)
. Now, for any mesh function Ψ we introduce a

discrete operator LN,∆tε,P ∗ given by

LN,∆tε,P ∗ Ψ = T̃N,∆tε,(P,p)Ψ.

Afterwards, we derive bounds of the truncation errors from (4.80) and (4.81) by using the derivative bounds of

p(x, t) given in Theorem 4.2. For 1 ≤ j < N/2, to the case ε > ‖a‖N−1, we obtain that

∣∣LN,∆tε,P ∗ (Pn+1
j − p(xj , tn+1))

∣∣ ≤ Cεhj ∫ xj+1

xj−1

∣∣∣∂4p
∂s4

∣∣∣ds+ Chj

∫ xj+1

xj−1

∣∣∣∂3p
∂s3

∣∣∣ds+ ∆t
∥∥∥∂2p
∂t2

∥∥∥,
≤ C

[
N−2 + ∆t

]
,

(4.82)

and for j = N/2, , to the case ε > ‖a‖N−1,

∣∣LN,∆tε,P ∗ (Pn+1
j − p(xj , tn+1))

∣∣ ≤ Cε∫ xj+1

xj−1

∣∣∣∂3p
∂s3

∣∣∣ds+ Chj

∫ xj+1

xj−1

∣∣∣∂3p
∂s3

∣∣∣ds+ ∆t
∥∥∥∂2p
∂t2

∥∥∥,
≤ C

[
(ε+N−1)N−1 + ∆t

]
.

(4.83)

Next, for 1 ≤ j ≤ N/2, to the case ε ≤ ‖a‖N−1, we deduce that

∣∣LN,∆tε,P ∗
(
Pn+1
j − p(xj , tn+1)

)∣∣ ≤ Cε∫ xj+1

xj−1

∣∣∣∂3p
∂s3

∣∣∣ds+ Chj

∫ xj+1

xj−1

∣∣∣∂3p
∂s3

∣∣∣ds+ ∆t
∥∥∥∂2p
∂t2

∥∥∥+ Ch2
j ,

≤ C
[
N−2 + ∆t

]
.

(4.84)

Finally, for N/2 < j < N ,

∣∣LN,∆tε,P ∗ (Pn+1
j − p(xj , tn+1))

∣∣ ≤ Cεhj ∫ xj+1

xj−1

∣∣∣∂4p
∂s4

∣∣∣ds+ Chj

∫ xj+1

xj−1

∣∣∣∂3p
∂s3

∣∣∣ds+ ∆t
∥∥∥∂2p
∂t2

∥∥∥,
≤ C

[
N−2 + ∆t

]
.

(4.85)

Consider the discrete functions in the domain 0 ≤ j ≤ N , for the case ε > ‖a‖N−1,

Ψ±(xj , tn+1) = −C
(
N−2 + ∆t

)
xj − CN−2ϕj ±

(
Pn+1
j − p(xj , tn+1)

)
,
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where

ϕj =


xj

1− η
, for 0 ≤ j ≤ N/2,

1, for N/2 ≤ j ≤ N,

and apply Corollary 4.2 for the operator LN,∆tε,P ∗ together with the truncation error bounds in (4.82), (4.83) and

(4.85) to obtain that

∣∣Pn+1
j − p(xj , tn+1)

∣∣ ≤ C(N−2 + ∆t
)
, for 1 ≤ j ≤ N − 1.

In the same way, we choose the discrete functions in the domain 0 ≤ j ≤ N , for the case ε ≤ ‖a‖N−1,

Ψ±(xj , tn+1) = −C
(
N−2 + ∆t

)
xj ±

(
Pn+1
j − p(xj , tn+1)

)
,

and apply Corollary 4.2 for the operator LN,∆tε,P ∗ together with the truncation error bounds in (4.84) and (4.85),

to obtain that ∣∣Pn+1
j − p(xj , tn+1)

∣∣ ≤ C(N−2 + ∆t
)
, for 1 ≤ j ≤ N − 1.

Hence, the proof is over.

In the next lemma, we deduce the error estimate corresponding to the layer component Qn+1
j which is the

solution of the following discrete problem:

Q0
j = 0, 0 ≤ j ≤ N,

D−t Q
n+1
j + LNmcdQ

n+1
j + b

(
xj , tn+1, Y

n+1
j

)
− b
(
xj , tn+1, P

n+1
j ) = 0,

for 1 ≤ j ≤ N/2, and when ε > ‖a‖N−1,

D−t Q
n+1
j− 1

2

+ LNmupQn+1
j + b

(
xj− 1

2
, tn+1, Y

n+1
j− 1

2

)
− b
(
xj− 1

2
, tn+1, P

n+1
j− 1

2

)
= 0,

for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

D−t Q
n+1
j + LNmcdQ

n+1
j + b

(
xj , tn+1, Y

n+1
j

)
− b
(
xj , tn+1, P

n+1
j ) = 0,

for N/2 < j ≤ N − 1,

Qn+1
0 = q(0, tn+1), Qn+1

N = q(1, tn+1).

(4.86)

Lemma 4.15. Let the assumptions (4.72) and (4.73) of Lemma 4.11 hold. Then, if θ < m/2 and η0 ≥ 2/θ, the

error related to the layer component satisfies the following estimate:

∣∣∣Qn+1
j − q(xj , tn+1)

∣∣∣ ≤
 CN−2, for 1 ≤ j ≤ N/2,

C
(
N−2 ln2N + ∆t

)
, for N/2 < j ≤ N − 1.

(4.87)

Proof. Here, for any mesh function Ψ, we introduce a discrete operator LN,∆tε,Q∗ defined by

LN,∆tε,Q∗ Ψ = T̃N,∆tε,(Y,P )Ψ,
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where Q∗,n+1
j (ξ) = Pn+1

j + ξ
(
Y n+1
j − Pn+1

j

)
. Then, we rewrite the discrete problem (4.86) in the following

form: 
Q0
j = 0, 0 ≤ j ≤ N,

LN,∆tε,Q∗ Q
n+1
j = 0, for 1 ≤ j ≤ N − 1,

Qn+1
0 = q(0, tn+1), Qn+1

N = q(1, tn+1).

By (4.27) and Theorem 4.3, we have Qn+1
0 = 0 and |Qn+1

N | = |q(1, tn+1)| ≤ C. We choose the discrete

functions for 0 ≤ j ≤ N,
Ψ±(xj , tn+1) = −CSj(θ)±Qn+1

j ,

for sufficiently large C. By Corollary 4.2 for the operator LN,∆tε,Q∗ and invoking Lemma 4.13, we obtain that

|Qn+1
j | ≤ CSj(θ). (4.88)

Now, for θ < m/2, combining (4.88) and Theorem 4.3, we get

|Qn+1
j − q(xj , tn+1)| ≤ |Qn+1

j |+ |q(xj , tn+1)| ≤ CSj(θ). (4.89)

Again, for η0 ≥ 2
θ , it follows from [109, Lemma 3.1] that

Sj(θ) ≤ CN−4(1−j/N), for N/2 ≤ j < N, (4.90)

and henec, in particular for 1 ≤ j ≤ N/2, (4.89) and (4.90) together imply that

|Qn+1
j − q(xj , tn+1)| ≤ CN−2. (4.91)

Next, we estimate |Qn+1
j − q(xj , tn+1)| on the fine part of the mesh by using consistency and barrier function

argument on the interval [1−η, 1], since we have |Qn+1
N/2−q(xN/2, tn+1)| ≤ CN−2 and |Qn+1

N −q(xN , tn+1)| =
0. From (4.27) and (4.86), we derive that for N/2 < j < N,

D−t Q
n+1
j + LNmcdQ

n+1
j + b

(
xj , tn+1, Y

n+1
j

)
− b
(
xj , tn+1, y(xj , tn+1)

)
=

∂q(xj , tn+1)

∂t
+ Lx,εq(xj , tn+1) + b

(
xj , tn+1, P

n+1
j

)
− b
(
xj , tn+1, p(xj , tn+1)

)
.

From the above equation, we have

[
D−t + LNmcd +

∫ 1

0

∂b
(
xj , tn+1, Y

∗,n+1
j (ξ)

)
∂y

dξ
](
Qn+1
j − q(xj , tn+1)

)
=
( ∂
∂t
−D−t

)
q(xj , tn+1) +

(
Lx,ε − LNmcd

)
q(xj , tn+1) +

[ ∫ 1

0

∂b
(
xj , tn+1, P

∗,n+1
j (ξ)

)
∂y

dξ

−
∫ 1

0

∂b
(
xj , tn+1, Y

∗,n+1
j (ξ)

)
∂y

dξ
](
Pn+1
j − p(xj , tn+1)

)
,

(4.92)
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where Y ∗,n+1
j (ξ) = y(xj , tn+1) + ξ

(
Y n+1
j − y(xj , tn+1)

)
. Now, for any mesh function Ψ, we introduce a

discrete operator LN,∆tε,Y ∗ given by

LN,∆tε,Y ∗ Ψ = T̃N,∆tε,(Y,y)Ψ,

where Y ∗,n+1
j (ξ) = y(xj , tn+1)+ξ

(
Y n+1
j −y(xj , tn+1)

)
. Now, using derivative bound of q(x, t) from Theorem

4.3, and Lemma 4.14, we obtain from (4.92) that for N/2 < j < N ,

∣∣LN,∆tε,Y ∗ (Qn+1
j − q(xj , tn+1))

∣∣ ≤ Cεhj

∫ xj+1

xj−1

∣∣∣∂4q
∂s4

∣∣∣ds+ Chj

∫ xj+1

xj−1

∣∣∣∂3q
∂s3

∣∣∣ds
+∆t

∥∥∥∂2q
∂t2

∥∥∥+ C
(
N−2 + ∆t

)
≤ CN−2 ln2Nε−1 exp(−m(1− xj)/ε) + C

(
N−2 + ∆t

)
. (4.93)

We choose the discrete functions for N/2 ≤ j ≤ N,

Ψ±(xj , tn+1) = −C
(
N−2 + ∆t

)
xj − C

(
N−2 ln2N

)
Sj(θ)±

(
Qn+1
j − q(xj , tn+1)

)
.

Lemma 4.13 implies that LN,∆tε,Y ∗ Sj(θ) ≥
C

ε
Sj(θ), for N/2 < j < N, and hence, use of (4.93) for θ < m/2

yields that

LN,∆tε,Y ∗ Ψ±(xj , tn+1) ≤ 0.

Now, apply Corollary 4.2 for the operator LN,∆tε,Y ∗ to get Ψ±(xj , tn+1) ≤ 0, for all N/2 ≤ j ≤ N. Hence, the

proof is over.

4.5.2 Convergence result for the fully-implicit FMM
We decompose the error in the numerical solution can also be decomposed as

Y n+1
j − y(xj , tn+1) = Pn+1

j − p(xj , tn+1) +Qn+1
j − q(xj , tn+1), (xj , tn+1) ∈ D

N,∆t
. (4.94)

Hence, the required ε-uniform error estimate given in the following Theorem.

Theorem 4.7 (Global error). Let y be the solution of the nonlinear problem (4.1)-(4.3) and Y n+1
j be the solution

of the discrete problem (4.71). Then, the following ε-uniform error estimate holds:

∥∥∥{Y n+1
j

}
j
−
{

y(xj , tn+1)
}
j

∥∥∥ ≤
 C

(
N−2 + ∆t

)
, for 0 ≤ j ≤ N/2,

C
(
N−2 ln2N + ∆t

)
, for N/2 < j ≤ N,

Proof. This immediately follows from Lemmas 4.14 and 4.15 .

4.6 The temporal Richardson extrapolation

In this section, we analyze the Richardson extrapolation in the time variable in order to improve the order of

uniform convergence in the temporal direction established in Theorem 4.7 so that we can produce higher-order

accurate numerical solution at low computational cost.

On the domain [0, T ], we construct a fine mesh, denoted by Λ∆t/2 =
{
t̃n
}2M

n=0
, by bisecting each mesh
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interval of Λ∆t. So, t̃n+1 − t̃n = T/2M = ∆t/2 is the step-size. Let Y N,∆t(xj , tn+1) and Y N,∆t/2(xj , t̃n+1)

be the respective solutions of the fully discrete problem (4.29) on the mesh Ω
N ×Λ∆t and Ω

N ×Λ∆t/2. Then,

from Theorem 4.7, we have

(
2Y N,∆t/2(xj , tn+1)− Y N,∆t(xj , tn+1)

)
− y(xj , tn+1) = o(∆t) +O(N−2),

for 0 ≤ j ≤ N/2, tn+1 ∈ Λ∆t,(
2Y N,∆t/2(xj , tn+1)− Y N,∆t(xj , tn+1)

)
− y(xj , tn+1) = o(∆t) +O(N−2 ln2N),

for N/2 < j ≤ N, tn+1 ∈ Λ∆t.

(4.95)

Remark 4.5. We set Y N,∆t
extp (xj , tn+1) =

(
2Y N,∆t/2(xj , tn+1)−Y N,∆t(xj , tn+1)

)
as the temporal Richardson

extrapolation formula so that the time accuracy can be improved from O(∆t) to O(∆t2).

Likewise (4.94), we now consider the decomposition of (2Y N,∆t/2 − Y N,∆t) so that

Y N,∆t
extp (xj , tn+1)− y(xj , tn+1) = PN,∆textp (xj , tn+1)− p(xj , tn+1)︸ ︷︷ ︸+QN,∆textp (xj , tn+1)− q(xj , tn+1)︸ ︷︷ ︸ . (4.96)

4.6.1 Error for the smooth part after extrapolation
We show that when ∆t→ 0 and N →∞, the following error relation holds:

PN,∆t(xj , tn+1)− p(xj , tn+1) = ∆tφp(xj , tn+1) + Rp(xj , tn+1), (xj , tn+1) ∈ Ω
N × Λ∆t, (4.97)

where φp is a certain smooth function defined on Ω
N × Λ∆t, and is independent of ∆t,N ; Rp(xj , tn+1) is

the remainder term defined on Ω
N × Λ∆t. We begin by assuming that the expansion in (4.97) is valid. By

following the approach in [60], we define φp is the smooth component of the function φ, which is the solution

of the following IBVP:

∂φ(x, t)

∂t
+ Lx,εφ(x, t) +

∂

∂y
b
(
x, t, p(x, t)

)
φ =

1

2

∂2p(x, t)

∂t2
, in D,

φ(x, 0) = 0, on Ω,

φ(0, t) = φ(1, t) = 0, t ∈ (0, T ].

(4.98)

Since, Theorem 4.2 implies that
∥∥∥∂2p
∂t2

∥∥∥
D
≤ C, one can derive that ‖φ‖D ≤ C. To establish the bounds of the

derivatives up to fourth-order in space and second order in time in Lemma 4.16, we require φ ∈ C4+γ(D). This

is guaranteed by the assumption that g =
1

2

∂2p
∂t2

must satisfies the compatibility conditions mentioned in (4.5),

(4.6), at the corner points (0, 0) and (1, 0).

Lemma 4.16. The derivatives of the solution φ(x, t) of the IBVP (4.98) satisfy the bounds

∣∣∣∂j+kφ(x, t)

∂xj∂tk

∣∣∣
D
≤ Cε−j , ∀ j, k ∈ N ∪ {0}, and for 0 ≤ j + 2k ≤ 4.
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Proof: By changing the independent variable x to the new variable x̃ =
1− x
ε

and letting φ̃(x̃, t) = φ(x, t)

with similar definitions of ã, ∂b̃∂y and p̃; the IBVP (4.98) is transformed to the following form:

 −
∂2φ̃

∂x̃2
− ã∂φ̃

∂x̃
+ ε

∂

∂y
b̃
(
x̃, t, p̃(x̃, t)

)
φ̃− ε∂φ̃

∂t
=
ε

2

∂2p̃
∂t2

, in D̃,

φ̃(x̃, t) = 0, on ∂D̃,

where D̃ = (0, 1
ε )× (0, T ] and ∂D̃ = D̃\D̃. The rest of the proof follows from [Chapter 2, Lemma 2.17].

Lemma 4.17. The functions φp and its derivatives, satisfy that

∣∣∣∂j+kφp(x, t)

∂xj∂tk

∣∣∣
D
≤ C

(
1 + ε3−j

)
, ∀ j, k ∈ N ∪ {0}, and for 0 ≤ j + 2k ≤ 4.

Proof. The proof was obtained by using Lemma 4.16 and the approach described in [75, Theorem 4].

Now, we substitute PN,∆t(xj , tn+1) in (4.78) and applying the Taylor-series expansion of the functions p

and φp , invoking Theorem 4.2, Lemma 4.17, and finally, after utilizing the Taylor-expansion for the function b,

it provides for ε > ‖a‖N−1 that



p(xj , 0) + ∆tφp(xj , 0) + Rp(xj , 0) = p(xj , 0), 0 ≤ j ≤ N,

pt(xj , tn+1)− εpxx(xj , tn+1) + a(xj)px(xj , tn+1) + b
(
xj , tn+1, p(xj , tn+1)

)
+

∆t
[
φp,t(xj , tn+1)− εφp,xx(xj , tn+1) + a(xj)φp,x(xj , tn+1)+

∂b
(
xj ,tn+1,p(xj ,tn+1)

)
∂y φp(xj , tn+1)− 1

2 ptt(xj , tn+1)
]

+D−t Rp(xj , tn+1) + LNmcdRp(xj , tn+1)+

+
∂b
(
xj ,tn+1,α

n+1
p,j

)
∂y Rp(xj , tn+1) +O(N−2) +O(∆t)2 = g(xj , tn+1), for 1 ≤ j < N/2, and N/2 < j < N,

pt(xj , tn+1)− εpxx(xj , tn+1) + a(xj)px(xj , tn+1) + b
(
xj , tn+1, p(xj , tn+1)

)
+

∆t
[
φp,t(xj , tn+1)− εφp,xx(xj , tn+1) + a(xj)φp,x(xj , tn+1)+

∂b
(
xj ,tn+1,p(xj ,tn+1)

)
∂y φp(xj , tn+1)− 1

2 ptt(xj , tn+1)
]

+D−t Rp(xj , tn+1) + LNmcdRp(xj , tn+1)+

∂b
(
xj ,tn+1,α

n+1
p,j )

)
∂y Rp(xj , tn+1) +O

(
(ε+N−1)N−1

)
+O(∆t)2 = g(xj , tn+1), for j = N/2,

p(0, tn+1) + ∆tφp(0, tn+1) + Rp(0, tn+1) = p(0, tn+1), tn+1 ∈ Λ∆t,

p(1, tn+1) + ∆tφp(1, tn+1) + Rp(1, tn+1) = p(1, tn+1), tn+1 ∈ Λ∆t.
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Next, we consider the case ε ≤ ‖a‖N−1, and obtain that

p(xj , 0) + ∆tφp(xj , 0) + Rp(xj , 0) = p(xj , 0), 0 ≤ j ≤ N,

pt(xj−1/2, tn+1)− εpxx(xj−1/2, tn+1) + a(xj− 1
2
)px(xj−1/2, tn+1) + b

(
xj−1/2, tn+1, p(xj−1/2, tn+1)

)
+∆t

[
φp,t(xj−1/2, tn+1)− εφp,xx(xj−1/2, tn+1) + a(xj− 1

2
)φp,x(xj−1/2, tn+1)+

∂b
(
xj−1/2,tn+1,p(xj−1/2,tn+1)

)
∂y φp(xj−1/2, tn+1)− 1

2 ptt(xj−1/2, tn+1)
]

+D−t
Rp(xj ,tn+1)+Rp(xj−1,tn+1)

2 + LNmupRp(xj , tn+1) +
∂b
(
xj−1/2,tn+1,α

n+1

p,j− 1
2

)
∂y

Rp(xj ,tn+1)+Rp(xj−1,tn+1)

2

+O(∆t)2 +O(N−2) = g(xj− 1
2
, tn+1), for 1 ≤ j ≤ N/2,

pt(xj , tn+1)− εpxx(xj , tn+1) + a(xj)px(xj , tn+1) + b
(
xj , tn+1, p(xj , tn+1)

)
+∆t

[
φp,t(xj , tn+1)− εφp,xx(xj , tn+1) + a(xj)φp,x(xj , tn+1)+

∂b
(
xj ,tn+1,p(xj ,tn+1)

)
∂y φp(xj , tn+1)− 1

2 ptt(xj , tn+1)
]

+D−t Rp(xj , tn+1) + LNmcdRp(xj , tn+1)

+
∂b
(
xj ,tn+1,α

n+1
p,j

)
∂y Rp(xj , tn+1) +O(∆t)2 +O(N−2) = g(xj , tn+1), for N/2 < j < N,

p(0, tn+1) + ∆tφp(0, tn+1) + Rp(0, tn+1) = p(0, tn+1), tn+1 ∈ Λ∆t,

p(1, tn+1) + ∆tφp(1, tn+1) + Rp(1, tn+1) = p(1, tn+1), tn+1 ∈ Λ∆t.

From the above expressions, we obtain the remainder term Rp(xj , tn+1) is the solution of the following discrete

problem:

D−t Rp(xj , tn+1) + LN,∆tmcd Rp(xj , tn+1) +
∂b
(
xj , tn+1, α

n+1
p,j

)
∂y

Rp(xj , tn+1) =

O((∆t)2) +O(N−2), for 1 ≤ j < N/2, and when ε > ‖a‖N−1,

D−t Rp(xj , tn+1) + LN,∆tmcd Rp(xj , tn+1) +
∂b
(
xj , tn+1, α

n+1
p,j

)
∂y

Rp(xj , tn+1) =

O((∆t)2) +O((ε+N−1)N−1), for j = N/2, and when ε > ‖a‖N−1,

D−t
Rp(xj , tn+1) + Rp(xj−1, tn+1)

2
+ LN,∆tmup Rp(xj , tn+1) +

∂b
(
xj− 1

2
, tn+1, α

n+1
p,j− 1

2

)
∂y

Rp(xj , tn+1) + Rp(xj−1, tn+1)

2
= O(∆t)2 +O(N−2), for 1 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

D−t Rp(xj , tn+1) + LN,∆tmcd Rp(xj , tn+1) +
∂b
(
xj , tn+1, α

n+1
p,j

)
∂y

Rp(xj , tn+1) =

O((∆t)2) +O(N−2), for N/2 < j ≤ N − 1,

Rp(xj , 0) = 0, for 0 ≤ j ≤ N,

Rp(0, tn+1) = 0, Rp(1, tn+1) = −∆tφp(1, t), for tn+1 ∈ Λ∆t,
(4.99)
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where αn+1
p,j belong to some finite interval [−C,C] due to stability bound of the functions PN,∆t, p and φp . To

prove the uniform convergence of the temporal Richardson extrapolation method, we need to derive bound of

the remainder term Rp(x, t) on Ω
N × Λ∆t.

Lemma 4.18. The remainder term Rp , given in (4.99), satisfies that

∣∣Rp(xj , tn+1)
∣∣ ≤ C(N−2 + (∆t)2

)
, for 0 ≤ j ≤ N.

Proof Now, for any mesh function Ψ, we introduce a discrete operator LN,∆tε,αp defined by

LN,∆tε,αp
Ψ = T̃N,∆tε,(αp ,αp)Ψ.

Now, the equation (4.99) implies that

∣∣LN,∆tε,αp
Rp(xj , tn+1)

∣∣ ≤


C
(
N−2 + ∆t2

)
, for 0 ≤ j < N/2, and when ε ≥ ‖a‖N−1,

C
(
(ε+N−1)N−1 + ∆t2

)
, for j = N/2, when ε ≥ ‖a‖N−1,

C
(
N−2 + ∆t2

)
, for 0 ≤ j ≤ N/2, and when ε ≤ ‖a‖N−1,

C
(
N−2 + ∆t2

)
, for N/2 < j ≤ N.

Then, by using the discrete maximum principle (Corollary 4.2) for the operator LN,∆tε,αp to the suitable barrier

functions, we get the desired result.

Therefore, from (4.97) and Lemma 4.18, we obtain that

PN,∆t(xj , tn+1)− p(xj , tn+1) = ∆tφp(xj , tn+1) +O(∆t2) +O(N−2),

for 0 ≤ j ≤ N, tn+1 ∈ Λ∆t.

Similarly, we have

PN,∆t/2(xj , t̃n+1) = p(xj , t̃n+1) + ∆t/2φp(xj , t̃n+1) +O(∆t2) +O(N−2),

for 0 ≤ j ≤ N, t̃n+1 ∈ Λ∆t/2.

Finally, we obtain that

∣∣PN,∆textp (xj , tn+1)− p(xj , tn+1)
∣∣ ≤ C(N−2 + (∆t)2

)
, for 0 ≤ j ≤ N. (4.100)

4.6.2 Error for the layer part after extrapolation
From the Lemma 4.15, for the region 0 ≤ j ≤ N/2, tn+1 ∈ Λ∆t, we have

∣∣(QN,∆tj − q(xj , tn+1)
)∣∣ ≤ CN−2.

Similarly
∣∣(QN,∆t/2j − q(xj , tn+1)

)∣∣ ≤ CN−2. Hence, we obtain that

∣∣QN,∆textp (xj , tn+1)− q(xj , tn+1)
∣∣ ≤ CN−2, 0 ≤ j ≤ N/2. (4.101)
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To analyze the effect of extrapolation in time variable on (1 − η, 1) × Λ∆t, we show that when ∆t → 0 and

N →∞ the following error relation hold:

QN,∆t(xj , tn+1)− q(xj , tn+1) = ∆tφq (xj , tn+1) + Rq (xj , tn+1),

for N/2 < j ≤ N, tn+1 ∈ Λ∆t,
(4.102)

where φq is a certain smooth function defined on Ω
N × Λ∆t, and is independent of ∆t,N and Rq (xj , tn+1) is

remainder term defined on Ω
N ×Λ∆t. We begin by assuming that the expansion (4.102) is valid. We define φq

is the solution of the following IBVP:

∂φq

∂t
− ε

∂2φq

∂x2
+ a(x)

∂φq

∂x
+
∂b
(
x, t, y

)
∂y

φq =
1

2

∂2q
∂t2
−
∂b
(
x, t, y

)
∂y

φp +
∂b
(
x, t, p

)
∂y

φp,

in (1− η, 1)× (0, T ],

φq (x, 0) = 0, in [1− η, 1],

φq (1− η, t) = 0, φq (1, t) = 0, t ∈ (0, T ].

(4.103)

Since, Theorem 4.3 implies that
∥∥∥∂2q
∂t2

∥∥∥
D
≤ C, Lemma 4.17 gives ‖φp‖ ≤ C and the equation (4.11) implies

that
∥∥ ∂b
∂y

∥∥ ≤ C, one can derive that ‖φq‖ ≤ C.

Lemma 4.19. The functions φq and its derivatives, satisfy that

∣∣∣∂j+kφq (x, t)

∂xj∂tk

∣∣∣ ≤ C(ε−j exp
(
− m(1− x)/ε

))
, in [1− η, 1]× (0, T ],

∀ j, k ∈ N ∪ {0}, and for 0 ≤ j + 2k ≤ 4.

Proof. The proof is obtained by the approach described in [86, Theorem 4.8].

Now, we substitute QN,∆t(xj , tn+1) into (4.86) and we applying the Taylor-series expansion of the func-

tions q and φq , invoking Theorem 4.3, Lemma 4.19, and finally, after utilizing the Taylor-expansion for the

function b, it gives

q(xj , 0) + ∆tφq (xj , 0) + Rq (xj , 0) = q(xj , 0), N/2 ≤ j ≤ N,

qt(xj , tn+1) + Lx,εq(xj , tn+1) + b
(
xj , tn+1, y(xj , tn+1)

)
− b
(
xj , tn+1, p(xj , tn+1)

)
+

O(∆t)2 +O(N−2) +O(N−2 ln2Nε−1 exp(−m(1− xj)/ε)) + ∆t
[
φq ,t(xj , tn+1)+

Lx,εφq (xj , tn+1) +
∂b
(
xj , tn+1, y(xj , tn+1)

)
∂y

φq (xj , tn+1)− 1

2

∂2q(xj , tn+1)

∂t2
+

∂b
(
xj , tn+1, y(xj , tn+1)

)
∂y

φp(xj , tn+1)−
∂b
(
xj , tn+1, p(xj , tn+1)

)
∂y

φp(xj , tn+1)
]
+

D−t Rq (xj , tn+1) + LNmcdRq (xj , tn+1) +
∂b
(
xj ,tn+1,α

n+1
q,j

)
∂y Rq (xj , tn+1) = 0, N/2 < j < N,

q(1− η, tn+1) + ∆tφq (1− η, tn+1) + Rq (1− η, tn+1) = q(1− η, tn+1), tn+1 ∈ Λ∆t,

q(1, tn+1) + ∆tφq (1, tn+1) + Rq (1, tn+1) = q(1, tn+1), tn+1 ∈ Λ∆t.

(4.104)
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The equations (4.27) and (4.103) together implies that the remainder term Rq (xj , tn+1) is the solution of the

following discrete problem:

D−t Rq (xj , tn+1) + LNmcdRq (xj , tn+1) +
∂b
(
xj ,tn+1,α

n+1
q,j

)
∂y Rq (xj , tn+1) =

O(N−2 + ∆t2) +O(N−2 ln2Nε−1 exp(−m(1− xj)/ε)), in [1− η, 1]× (0, T ],

Rq (xj , 0) = 0, in [1− η, 1],

Rq (1− η, tn+1) = 0, Rq (1, tn+1) = 0, tn+1 ∈ [0, T ],

(4.105)

where αn+1
q ,j ∈ [−C,C], for some constant C.

Lemma 4.20. The remainder term Rq , given in (4.105), satisfies that

∣∣Rq , j(xj , tn+1)
∣∣ ≤ C(N−2 ln2N + (∆t)2

)
, for N/2 < j ≤ N.

Proof. Now, for any mesh function Ψ, we introduce a discrete operator LN,∆tε,αq defined by

LN,∆tε,αq
Ψ = T̃N,∆tε,(αq ,αq )Ψ.

From the equation (4.105), we get∣∣LN,∆tε,αq
Rq (xj , tn+1)

∣∣ ≤ O(N−2 + ∆t2) +O(N−2 ln2Nε−1 exp(−m(1− xj)/ε)),

for N/2 < j < N.

Then, by using the discrete maximum principle (Corollary 4.2) for the operator LN,∆tε,αq to the suitable barrier

functions, we get the desired result for N/2 < j ≤ N .

From the equation (4.102) and Lemma 4.20, we obtain that

QN,∆t(xj , tn+1) = q(xj , tn+1) + ∆tφq (xj , tn+1) +O(N−2 ln2N) +O(∆t2),

for N/2 < j ≤ N, tn+1 ∈ Λ∆t.

Similarly, we have

QN,∆t/2(xj , t̃n+1) = q(xj , t̃n+1) + ∆t/2φq (xj , t̃n+1) +O(N−2 ln2N) +O(∆t2),

for N/2 < j ≤ N, t̃n+1 ∈ Λ∆t/2.

Finally, we obtain that ∣∣QN,∆textp (xj , tn+1)− q(xj , tn+1)
∣∣ ≤ C(N−2 ln2N + ∆t2

)
,

for N/2 < j ≤ N, tn+1 ∈ Λ∆t.
(4.106)
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4.6.3 Convergence result after extrapolation
Now, the equations (4.96), (4.100), (4.101) and (4.106) yields the following ε-uniform error bounds after using

the temporal Richardson extrapolation .

Theorem 4.8 (Global error ). Let y be the solution of the nonlinear problem (4.1)-(4.3) and Y N,∆t
extp be the so-

lution of the discretized problem (4.71) after using the temporal Richardson extrapolation. Then, the following

ε-uniform error estimate holds:

∣∣Y N,∆t
extp (xj , tn+1)− y(xj , tn+1)

∣∣ ≤
 C

(
N−2 + (∆t)2

)
, for 0 ≤ j ≤ N/2, tn+1 ∈ Λ∆t,

C
(
N−2 ln2N + (∆t)2

)
, for N/2 < j ≤ N, tn+1 ∈ Λ∆t.

4.7 Numerical experiments

In this section, we present the numerical results before and after applying the extrapolation technique for two

test problems of the form (4.1)-(4.3), utilizing the proposed FMMs in (4.29) and (4.30). For all the test ex-

amples, we choose η0 = 2.2 and implement the Thomas algorithm to solve the tridiagonal linear systems

involved in our methods. The numerical results are also compared with the fully-implicit upwind FMM, which

is mentioned below as well.

4.7.1 The fully-implicit upwind FMM
In this section, we approximate the problem (4.1)-(4.3) by a fully implicit numerical method that combines an

implicit Euler method to discretize in the temporal direction and a classical upwind scheme to discretize in the

spatial direction. Then, the fully-implicit method takes the following form on D
N,∆t:

Y 0
j = q0(xj), 0 ≤ j ≤ N,

D−t Y
n+1
j + LNupY n+1

j + b
(
xj , tn+1, Y

n+1
j

)
= gn+1

j , for 1 ≤ j ≤ N − 1,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), for n = 0, . . . ,M − 1,

(4.107)

where

LNupY n+1
j = −εδ2

xY
n+1
j + ajD

−
x Y

n+1
j .

The existence and stability of the solution Y n+1
j of the nonlinear discrete problem (4.107) can be obtained in

the same way as in Section 4.5. Furthermore, following the error analysis given in Section 4.5, one can prove

ε-uniform error estimate for the FMM (4.107).

Theorem 4.9 (Global Error). Let y be the solution of the problem (4.1)-(4.3) and Y n+1
j be the solution of the

discretized problem (4.107). Then, the following ε-uniform error estimate holds:

∥∥∥{Y n+1
j

}
j
−
{

y(xj , tn+1)
}
j

∥∥∥ ≤
 C

(
N−1 + ∆t

)
, for 0 ≤ j ≤ N/2,

C
(
N−1 lnN + ∆t

)
, for N/2 < j ≤ N.
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4.7.2 Test Examples
Example 4.1. Consider the following parabolic nonlinear IBVP:

∂y
∂t
− ε

∂2y
∂x2

+ (1 + x− x2)
∂y
∂x

+ (1 + xt)y exp(y2) = g(x, t), (x, t) ∈ (0, 1)× (0, 1],

y(x, 0) = q0(x), x ∈ [0, 1],

y(0, t) = 0, y(1, t) = 0, t ∈ (0, 1],

where the exact solution y(x, t) is given by

y(x, t) = exp(−t)((1− exp(−(1− x)/ε))/(1− exp(−1/ε))− cos(π/2x)).

and accordingly, we choose the initial data q0(x) and source function g(x, t). In Fig 4.1, we draw surface plot

and contour plot of numerical solution for Example 4.1 and it shows that the solution generates boundary layer

closer to x = 1. Here, for each ε, we calculate the maximum point-wise errors eN,∆tε corresponding to the

proposed numerical methods before and after extrapolation, respectively by

max
0≤j≤N

max
0≤n≤M

∣∣Y N,∆t(xj , tn)− y(xj , tn)
∣∣,

and

max
0≤j≤N

max
0≤n≤M

∣∣Y N,∆t
extp (xj , tn)− y(xj , tn)

∣∣,
and the corresponding orders of convergence are calculated by rN,∆tε = log2

(
eN,∆tε

e
2N,∆t/2
ε

)
.Here, Y N,∆t(xj , tn)

and Y N,∆t
extp (xj , tn), respectively denote the numerical solution obtained at (xj , tn+1) ∈ D

N,∆t. Further, for

each N and ∆t, we calculate the ε-uniform maximum point-wise error and the corresponding ε-uniform order

of convergence, respectively by

eN,∆t = max
ε
eN,∆tε and rN,∆t = log2

(
eN,∆t

e2N,∆t/2

)
.

Example 4.2. Consider the following parabolic nonlinear IBVP:

∂y
∂t
− ε

∂2y
∂x2

+ (2− x2t2)
∂y
∂x

+ exp(−t) exp(2y)− y sin(y) = 2 + 10t2 exp(−t)x(1− x),

(x, t) ∈ (0, 1)× (0, 1],

y(x, 0) = 0, x ∈ [0, 1],

y(0, t) = 1− exp(−t), y(1, t) = t, t ∈ (0, 1],

In Fig 4.2, we draw surface plot and contour plot of numerical solution for Example 4.2 and it shows that the

numerical solution generates boundary layer closer to x = 1. As we are not acquainted with the exact solution

of Example 4.2, we calculate the maximum point-wise errors êN,∆tε corresponding to the proposed numerical
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Figure 4.1: Plots of Example 4.1 for ε = 2−20, N = 128.
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(a) Surface plot
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(b) Contour plot

Figure 4.2: Plots of Example 4.2 for ε = 2−20, N = 128.
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method before and after extrapolation, respectively by

max
0≤j≤N

max
0≤n≤M

∣∣Y N,∆t(xj , tn)− Ŷ 2N,∆t/2(xj , tn)
∣∣,

and

max
0≤j≤N

max
0≤n≤M

∣∣Y N,∆t
extp (xj , tn)− Ŷ 2N,∆t/2

extp (xj , tn)
∣∣,

and the corresponding orders of convergence are calculated by r̂N,∆tε = log2

(
êN,∆tε

ê
2N,∆t/2
ε

)
.Here, Ŷ 2N,∆t/2(xj , tn)

and Ŷ 2N,∆t/2
extp (xj , tn), respectively denote the numerical solution and the extrapolated numerical solution ob-

tained at (xj , tn) ∈ D̂2N,∆t/2 = Ω̂2N×Λ∆t/2, where ∆t/2 = T/2M and Ω̂2N is a piecewise-uniform Shishkin

mesh with 2N mesh-intervals and having the same transition parameter η as that of Ω
N such that the jth point

of Ω
N becomes 2jth point of Ω̂2N , for j = 0, 1, . . . N . Finally, for each N and ∆t, we compute the quantities

êN,∆t and r̂N,∆t analogously to eN,∆t and rN,∆t. To compute the numerical solution of the FMMs in (4.29)

and (4.107) for Examples 4.1 and 4.2, a nonlinear system needs to be solved at each time step. For that, we use

the Newton’s method with the following stopping criterion

max
0≤j≤N

max
0≤n≤M

∣∣Y N,∆t
k+1 (xj , tn+1)− Y N,∆t

k (xj , tn+1)
∣∣ < 10−5, (4.108)

where Y N,∆t
k (xj , tn) is the approximation of Y N,∆t(xj , tn) given by the kth iteration of the Newton’s method.

Here, we have chosen Y N,∆t
0 (xj , tn) = 0 as an initial guess for all the values of ε.

4.7.3 Numerical results and observations
We choose all the values of ε from S = {20, 2−2, . . . , 2−20}, for computation of ε-uniform errors. For different

values of ε,N and ∆t, the computed ε-uniform errors and order of convergence are displayed in Tables 4.1 and

4.2, without using the temporal Richardson extrapolation, respectively for Examples 4.1 and 4.2. This shows the

monotonically decreasing behavior of the ε-uniform errors with increasing N , and it definitely represents the

ε-uniform convergence of the FMMs given in (4.29), (4.30) and (4.107). For the sake of clarity, the computed

ε-uniform errors in Tables 4.1 and 4.2 are depicted in Figs 4.3 and 4.4, respectively for Examples 4.1 and 4.2.

At the same time, these computational results clearly illustrate the influence of the temporal error over the

global error. The computed order of convergence shown in Tables 4.1 and 4.2, does not truely reflect the spatial

order of convergence of the proposed FMMs in (4.29) and (4.30), because of the dominance of the temporal

error over the spatial error according to Theorems 4.4 and 4.7.

Next, in order to visualize the effect of the temporal Richardson extrapolation, we choose a suitably large

N to reduce the influence of the spatial error. In Tables 4.3 and 4.4, we display the numerical results for Exam-

ple 4.1, before and after the temporal extrapolation of the proposed FMMs in (4.29) and (4.30), respectively.

Similar computational results are also displayed in Tables 4.5 and 4.6 for Example 4.2. For the sake of clarity,

the computed maximum point-wise errors in Tables 4.3-4.6 are depicted in Figs 4.5 and 4.6, respectively for

Examples 4.1 and 4.2. This shows that the improvement in the temporal order of convergence after employing

the Richardson extrapolation in the time variable, as claimed in Theorem 4.8.

The above numerical experiment indicates that by using the temporal Richardson extrapolation, one can
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check the spatial accuracy by choosing ∆t = 1/N . Following this, in Tables 4.7 and 4.8, we compare the

region-wise spatial accuracy of the FMMs given in (4.29), (4.30) and (4.107), for Example 4.1. Similar compu-

tational results are also displayed in Tables 4.9 and 4.10 for Example 4.2. For the sake of clarity, the computed

maximum point-wise errors for ε = 2−6, 2−20 in Tables 4.7- 4.10 are graphically presented in Figs 4.7 and

4.8, respectively for Examples 4.1 and 4.2. These computational results match very well with the spatial error

established in Theorems 4.5 , 4.7 and 4.9; and also clearly reflects the robustness of the fully-implicit FMM

(4.29) and the IMEX FMM (4.30) in comparison with the upwind FMM (4.107) in terms of order of accuracy,

irrespective of the smaller and the larger values of ε.

Finally, to demonstrate computational efficiency, we compare the computational time of the proposed

FMMs in (4.29) and (4.30) using the Thomas algorithm in Table 4.11 for Examples 4.1 and 4.2. From these

results, we see that the IMEX-FMM (4.30) takes comparatively less computation time than the fully-implicit

FMM (4.29), irrespective of the parameter ε.

4.8 Conclusion

In this chapter, we provide a complete convergence analysis for higher-order numerical approximation of a

class of singularly perturbed nonlinear parabolic IBVPs of the form (4.1)-(4.3), by proposing two new FMMs

followed the temporal Richardson extrapolation. Apart from studying the asymptotic properties of the analytical

solution of the governing nonlinear problem, the entire convergence analysis is splitted into three major parts.

(i) In the first part, ε-uniform error estimate of the newly proposed IMEX-FMM (4.30) is carried out by

invoking two-stage discretization technique, which discretizes first in time and later in space. This technique

is useful for extending the proposed IMEX method for multi-dimensional nonlinear parabolic problems. We

prove that the corresponding fully discrete scheme is ε-uniformly convergent in the discrete supremum norm;

and show that the spatial accuracy is at least two in the outer region and is almost two in the boundary layer

region, regardless of the larger and smaller values of ε.

(ii) In the second part, we carry out ε-uniform error estimate of the newly proposed fully-implicit FMM

(4.29) by analyzing the error separately for the smooth component and the layer component, which finally

contribute to the global error associated with the fully discrete scheme. We prove that the associated fully

discrete scheme is ε-uniformly convergent in the discrete supremum norm; and also achieves the similar order

of accuracy as that of the present IMEX-FMM.

(iii) In the third part, we focus on the ε-uniform error estimate related to the temporal Richardson extrapo-

lation for enhancing the temporal order of convergence.

The error estimates in (i) and (ii), justify that although the IMEX method leads to a linearized system at

each time step, but it does not cause reduction in the order of convergence with respect to both space and

time, corresponding to the present fully-implicit method that indeed leads to a nonlinear-system at each time

step. Finally, the error estimate in (iii) shows that the resulting numerical solution is second-order uniformly

convergent with respect to both the spatial and the temporal variables. Finally, we perform the several numerical

experiments to confirm that those theoretical outcomes match very well with the numerical results. Further, we

demonstrate that the newly developed FMMs are robust in comparison with the upwind FMM (4.107) with

regard to the order of accuracy; and the proposed IMEX-FMM is a cost-effective numerical scheme than the

proposed fully-implicit FMM.
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In a nutshell, the work of this chapter can be considered as a stepping stone to develop and analyze the

robust numerical methods for one-dimensional singularly perturbed nonlinear parabolic convection-diffusion

problems; and moreover for two-dimensional problems as well. The further investigation of the proposed

algorithms for two-dimensional nonlinear parabolic problem is carried out in Chapter 5 as a continuation of the

present work.
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Table 4.1: Comparison of ε-uniform maximum point-wise errors for Example 4.1 .

ε ∈ Sε Number of mesh intervals N / time step size ∆t ( ∆t = 0.8/N )
64 / 1

80 128/ 1
160 256/ 1

320 512/ 1
640 1024/ 1

1280

IMEX-FMM (4.30)
eN,∆t 9.9649e-04 4.7367e-04 2.3146e-04 1.1453e-04 5.6993e-05
rN,∆t 1.0730 1.0331 1.0150 1.0069

fully-implicit FMM (4.29)
eN,∆t 1.2458e-03 5.0386e-04 1.9860e-04 8.4765e-05 3.7479e-05
rN,∆t 1.3060 1.3431 1.2283 1.1774

upwind FMM (4.107)
eN,∆t 1.3954e-02 8.7427e-03 5.2698e-03 3.0723e-03 1.7505e-03
rN,∆t 0.67450 0.73032 0.77843 0.81158

Table 4.2: Comparison of ε-uniform maximum point-wise errors for Example 4.2 .

ε ∈ Sε Number of mesh intervals N / time step size ∆t ( ∆t = 0.8/N )
64 / 1

80 128/ 1
160 256/ 1

320 512/ 1
640 1024/ 1

1280

IMEX-FMM (4.30)
êN,∆t 7.3370e-04 3.9862e-04 1.6843e-04 8.6622e-05 4.0807e-05
r̂N,∆t 0.88017 1.2429 0.95935 1.0859

fully-implicit FMM (4.29)
êN,∆t 3.9859e-04 2.0286e-04 7.3029e-05 3.6852e-05 1.6888e-05
r̂N,∆t 0.97440 1.4740 0.98673 1.1257

upwind FMM (4.107)
êN,∆t 3.4854e-03 1.7738e-03 8.9403e-04 4.4872e-04 2.2477e-04
r̂N,∆t 0.97453 0.98842 0.99452 0.99735
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Figure 4.3: Loglog plot for comparison of the ε-uniform errors for Example 4.1.
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Figure 4.4: Loglog plot for comparison of the ε-uniform errors for Example 4.1.
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Table 4.3: Comparison of the temporal accuracy for Example 4.1 computed using the IMEX-FMM (4.30)

Number of space intervals N = 8192

ε ∆t = 1
8 ∆t = 1

16 ∆t = 1
32 ∆t = 1

64 ∆t = 1
128

without temporal extrapolation

2−8 8.8104e-03 4.3045e-03 2.1270e-03 1.0571e-03 5.2694e-04

1.0334 1.0170 1.0087 1.0044

with temporal extrapolation

2.0146e-04 5.0561e-05 1.2731e-05 3.2515e-06 9.1795e-07

1.9944 1.9897 1.9692 1.8246

without temporal extrapolation

2−20 9.5233e-03 4.6517e-03 2.2982e-03 1.1421e-03 5.6930e-04

1.0337 1.0173 1.0088 1.0044

with temporal extrapolation

2.1986e-04 5.5347e-05 1.3936e-05 3.5177e-06 9.5905e-07

1.9900 1.9897 1.9861 1.8750

Table 4.4: Comparison of the temporal accuracy for Example 4.1 computed using the fully-implicit FMM
(4.29)

Number of space intervals N = 8192

ε ∆t = 1
8 ∆t = 1

16 ∆t = 1
32 ∆t = 1

64 ∆t = 1
128

without temporal extrapolation

2−8 5.5218e-03 2.7254e-03 1.3500e-03 6.7128e-04 3.3465e-04

1.0187 1.0135 1.0080 1.0043

with temporal extrapolation

7.6162e-05 2.5687e-05 7.5004e-06 2.0003e-06 5.0636e-07

1.5680 1.7760 1.9067 1.9820

without temporal extrapolation

2−20 5.7745e-03 2.8511e-03 1.4124e-03 7.0223e-04 3.5004e-04

1.0182 1.0134 1.0081 1.0044

with temporal extrapolation

7.8881e-05 2.6711e-05 7.9001e-06 2.1374e-06 5.5066e-07

1.5622 1.7575 1.8860 1.9566
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(b) ε = 2−20

Figure 4.5: Loglog plot for comparison of the temporal order of convergence for Example 4.1
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Table 4.5: Comparison of the temporal accuracy for Example 4.2 computed using the IMEX-FMM (4.30)

Number of space intervals N = 8192

ε ∆t = 1
8 ∆t = 1

16 ∆t = 1
32 ∆t = 1

64 ∆t = 1
128

without temporal extrapolation

2−8 5.7624e-03 3.0397e-03 1.5591e-03 7.8930e-04 3.9708e-04

0.92275 0.96321 0.98205 0.99114

with temporal extrapolation

3.1742e-04 7.8648e-05 1.9562e-05 4.8727e-06 1.2108e-06

2.0129 2.0074 2.0053 2.0088

without temporal extrapolation

2−20 5.8165e-03 3.0682e-03 1.5737e-03 7.9670e-04 4.0081e-04

0.92279 0.96322 0.98204 0.99112

with temporal extrapolation

3.2026e-04 7.9374e-05 1.9754e-05 4.9303e-06 1.2347e-06

2.0125 2.0065 2.0024 1.9976

Table 4.6: Comparison of the temporal accuracy for Example 4.2 using the fully-implicit FMM (4.29)

Number of space intervals N = 8192

ε ∆t = 1
8 ∆t = 1

16 ∆t = 1
32 ∆t = 1

64 ∆t = 1
128

without temporal extrapolation

2−8 2.3672e-03 1.2260e-03 6.3430e-04 3.2141e-04 1.6169e-04

0.94915 0.95078 0.98076 0.99118

with temporal extrapolation

2.1813e-04 4.3563e-05 8.6666e-06 2.0023e-06 4.8800e-07

2.3240 2.3296 2.1138 2.0367

without temporal extrapolation

2−20 2.3801e-03 1.2541e-03 6.5187e-04 3.3090e-04 1.6660e-04

0.92440 0.94398 0.97820 0.98995

with temporal extrapolation

2.4413e-04 4.9651e-05 9.9248e-06 2.3130e-06 5.6376e-07

2.2978 2.3227 2.1013 2.0366
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Figure 4.6: Loglog plot for comparison of the temporal order of convergence for Example 4.2
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Table 4.7: Comparison of the spatial accuracy in the outer region, i.e., [0, 1− η] for Example 4.1

maximum errors in [0, 1 − η]

N IMEX-FMM (4.30) fully-implicit FMM (4.29) upwind FMM (4.107)

ε = 2−4

128 3.5572e-06 3.3779e-06 1.4327e-03

1.9993 1.9996 0.99511

256 8.8973e-07 8.4474e-07 7.1876e-04

1.9998 1.9999 0.99767

512 2.2246e-07 2.1119e-07 3.5996e-04

2.0000 2.0000 0.99886

1024 5.5616e-08 5.2798e-08 1.8012e-04

ε = 2−6

128 1.7688e-05 1.6955e-05 3.0035e-03

2.2251 2.2286 1.0326

256 3.7833e-06 3.6175e-06 1.4682e-03

2.1625 2.1630 1.0389

512 8.4509e-07 8.0776e-07 7.1454e-04

2.1527 2.1527 1.0444

1024 1.9005e-07 1.8166e-07 3.4645e-04

ε = 2−14

128 1.7633e-05 1.9047e-05 3.6522e-03

2.1323 2.1207 0.99515

256 4.0220e-06 4.3794e-06 1.8323e-03

2.0829 2.0758 0.99791

512 9.4936e-07 1.0388e-06 9.1746e-04

2.0112 2.0103 0.99902

1024 2.3550e-07 2.5785e-07 4.5904e-04

ε = 2−20

128 1.7490e-05 1.8907e-05 3.6547e-03

2.1528 2.1394 0.99502

256 3.9331e-06 4.2915e-06 1.8337e-03

2.1286 2.1173 0.99778

512 8.9940e-07 9.8911e-07 9.1825e-04

2.1076 2.0976 0.99890

1024 2.0869e-07 2.3111e-07 4.5948e-04
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Table 4.8: Comparison of the spatial accuracy in the layer region, i.e., (η, 1] for Example 4.1

maximum errors in (η, 1]

N IMEX-FMM (4.30) fully-implicit FMM (4.29) upwind FMM (4.107)

ε = 2−4

128 1.7779e-04 1.7733e-04 6.3143e-03

2.0020 2.0020 0.96077

256 4.4388e-05 4.4270e-05 3.2442e-03

2.0002 2.0002 0.97982

512 1.1095e-05 1.1066e-05 1.6449e-03

2.0001 2.0001 0.98976

1024 2.7737e-06 2.7664e-06 8.2833e-04

ε = 2−6

128 3.2023e-04 3.1947e-04 8.6126e-03

1.6345 1.6337 0.72370

256 1.0314e-04 1.0296e-04 5.2153e-03

1.6686 1.6682 0.77548

512 3.2443e-05 3.2394e-05 3.0467e-03

1.7015 1.7010 0.81049

1024 9.9753e-06 9.9635e-06 1.7372e-03

ε = 2−14

128 3.0337e-04 3.0248e-04 8.7022e-03

1.6019 1.6008 0.72936

256 9.9943e-05 9.9723e-05 5.2489e-03

1.6515 1.6508 0.77765

512 3.1814e-05 3.1758e-05 3.0618e-03

1.6906 1.6901 0.81107

1024 9.8559e-06 9.8418e-06 1.7451e-03

ε = 2−20

128 3.0348e-04 3.0258e-04 8.7033e-03

1.6016 1.6005 0.72939

256 1.0000e-04 9.9782e-05 5.2494e-03

1.6508 1.6502 0.77766

512 3.1846e-05 3.1791e-05 3.0621e-03

1.6895 1.6891 0.81107

1024 9.8731e-06 9.8591e-06 1.7453e-03
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(b) ε = 2−20.

Figure 4.7: Loglog plot for comparison of the spatial order of convergence for Example 4.1
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Table 4.9: Comparison of the spatial accuracy in the outer region, i.e., [0, 1− η] for Example 4.2

maximum errors in [0, 1 − η]

N IMEX-FMM (4.30) fully-implicit FMM (4.29) upwind FMM (4.107)

ε = 2−4

128 7.9584e-06 8.8874e-06 2.6618e-04

1.9997 1.9999 0.99695

256 1.9900e-067 2.2220e-06 1.3337e-04

1.9999 1.9999 0.99850

512 4.9755e-07 5.5553e-07 6.6756e-05

1.9999 2.0000 0.99926

1024 1.2439e-07 1.3889e-07 3.3395e-05

ε = 2−6

128 9.4962e-05 9.3866e-05 1.0854e-03

3.9220 3.8477 1.0876

256 6.2648e-06 6.5198e-06 5.1072e-04

2.0889 2.0856 1.1049

512 1.4726e-06 1.5361e-06 2.3745e-04

2.0919 2.0882 1.1166

1024 3.4544e-07 3.6124e-07 1.0950e-04

ε = 2−14

128 2.0950e-05 1.9587e-05 1.7701e-03

1.9894 1.9881 0.98880

256 5.2761e-06 4.9373e-06 8.9195e-04

1.9784 1.9767 0.99488

512 1.3389e-06 1.2544e-06 4.4756e-04

1.9573 1.9542 0.99768

1024 3.4479e-07 3.2372e-07 2.2414e-04

ε = 2−20

128 2.0821e-05 1.9458e-05 1.7738e-03

2.0001 1.9997 0.98842

256 5.2050e-06 4.8656e-06 8.9403e-04

1.9997 1.9997 0.99452

512 1.3015e-06 1.2167e-06 4.4872e-04

1.9993 1.9992 0.99735

1024 3.2552e-07 3.0433e-07 2.2477e-04
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Table 4.10: Comparison of the spatial accuracy in the layer region, i.e., (η, 1] for Example 4.2

maximum errors in (η, 1]

N IMEX-FMM (4.30) fully-implicit FMM (4.29) upwind FMM (4.107)

ε = 2−4

128 4.5383e-05 4.5749e-05 6.3875e-04

2.0037 2.0040 0.91539

256 1.1317e-05 1.1405e-05 3.3867e-04

2.0009 2.0010 0.95708

512 2.8276e-06 2.8493e-06 1.7445e-04

2.0002 2.0003 0.97782

1024 7.0680e-07 7.1219e-07 8.8575e-05

ε = 2−6

128 9.2843e-05 9.3066e-05 1.0792e-03

2.1975 2.1973 0.99260

256 2.0241e-05 2.0293e-05 5.4235e-04

1.6277 1.6286 0.70089

512 6.5500e-06 6.5629e-06 3.3365e-04

1.6738 1.6744 0.76230

1024 2.0529e-06 2.0561e-06 1.9671e-04

ε = 2−14

128 5.6115e-05 5.6004e-05 1.7698e-03

1.5996 1.5990 0.98861

256 1.8517e-05 1.8487e-05 8.9191e-04

1.6469 1.6465 0.99484

512 5.9128e-06 5.9051e-06 4.4755e-04

1.6838 1.6835 0.99767

1024 1.8404e-06 1.8384e-06 2.2414e-04

ε = 2−20

128 5.5953e-05 5.5838e-05 1.7735e-03

1.6005 1.6000 0.98824

256 1.8451e-05 1.8420e-05 8.9401e-04

1.6488 1.6484 0.99450

512 5.8841e-06 5.8761e-06 4.4871e-04

1.6871 1.6868 0.99734

1024 1.8273e-06 1.8253e-06 2.2477e-04
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(b) ε = 2−20.

Figure 4.8: Loglog plot for comparison of the spatial order of convergence for Example 4.2
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Table 4.11: Comparison of computational time (in seconds), taking ∆t = 1
N .

N 64 128 256 512 1024

for Example 4.1
ε = 2−14

IMEX-FMM (4.30) 0.031944 0.134318 0.561493 1.668808 5.190696
fully-implicit FMM (4.29) 0.130007 0.636498 2.492893 9.787806 33.590889

ε = 2−20

IMEX-FMM (4.30) 0.033153 0.136713 2.718047 1.636886 5.151719
fully-implicit FMM (4.29) 0.142311 0.647636 3.165477 14.589820 41.411865

for Example 4.2
ε = 2−14

IMEX-FMM (4.30) 0.159617 0.672547 2.138652 8.102781 23.756256
fully-implicit FMM (4.29) 1.061960 4.167360 13.470426 41.194917 174.114664

ε = 2−20

IMEX-FMM (4.30) 0.158384 0.668101 2.063758 8.793906 24.746797
fully-implicit FMM (4.29) 1.221180 5.930538 18.249831 54.942602 186.518022
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Chapter 5

Higher-order Efficient Numerical Methods for Singu-
larly Perturbed 2D Semilinear Parabolic PDEs with Non-
homogeneous Boundary Data: ε-Uniform Convergence
and Order Reduction Analysis

This chapter aims to provide a complete convergence analysis toward cost-effective higher-order numerical

approximations for a class of two-dimensional singularly perturbed semilinear parabolic convection-diffusion

problems with non-homogeneous boundary data. For this purpose, we developed two novel computational

methods followed by the extrapolation technique to approximate the model problem. The first one is the

implicit-explicit (IMEX) fractional-step method, which utilizes the fractional IMEX-Euler method for temporal

discretization. The other is the fully-implicit fractional-step method, which uses the fractional-step implicit-

Euler method for temporal discretization. The spatial discretization for both numerical methods is based on a

new finite difference scheme. An appropriate non-uniform rectangular mesh is used to discretize the spatial do-

main, and an equidistant mesh is used to discretize the time domain. We begin our analysis by investigating the

stability and asymptotic behavior of the analytical solution to the nonlinear governing problem. The error anal-

ysis is performed in two steps, first in time and then in space, for both the newly proposed methods. In addition

to this, we proposed an appropriate choice of the boundary data to avoid the order reduction phenomena caused

by the classical evaluation of the time-dependent boundary conditions. After that, we apply the Richardson

extrapolation solely to the time variable to increase the order of uniform convergence in the temporal direction.

As a result, we obtain second-order accurate numerical solutions globally (in both space and time). Finally,

we carry out extensive numerical experiments to validate the theoretical findings. Moreover, the numerical

results of the proposed methods are compared with the fractional-step implicit upwind finite difference scheme

to examine the robustness of the newly developed methods.
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5.1 Introduction

Here, we consider the following class of singularly perturbed 2D semilinear parabolic convection-diffusion

IBVPs posed on the domain D = G× (0, T ] = (0, 1)2 × (0, T ]; G = [0, 1]2:
Tεu(x, y, t) =

∂u(x, y, t)

∂t
+ Lεu(x, y, t) + b

(
x, y, t, u(x, y, t)

)
= g(x, y, t), in D,

u(x, y, 0) = q0(x, y), in G,

u(x, y, t) = s(x, y, t), in ∂G× (0, T ],

(5.1)

where  Lεu = −ε∆u + ~v(x, y, t) · ~∇u,

~v(x, y, t) =
(
v1(x, y, t), v2(x, y, t)

)
,

and ε is a small parameter such that ε ∈ (0, 1]. The convection coefficient ~v(x, y, t) is considered to be

sufficiently smooth on D with

v1(x, y, t) ≥ m1 > 0, v2(x, y, t) ≥ m2 > 0, on D. (5.2)

In addition, it is assumed that the nonlinear term b
(
x, y, t, u

)
is sufficiently smooth on D × R and satisfies the

condition
∂b(x, y, t, u)

∂u
≥ β > 0, (x, y, t, u) ∈ D× R. (5.3)

The solution of the IBVP (5.1)-(5.3) has exponential layers when ε � 1 at the outflow boundaries x = 1 and

y = 1 (see [5]). We set Lε = L1,ε + L2,ε, where the differential operators L1,ε, L2,ε are defined by
L1,εu = −ε∂

2u
∂x2

+ v1(x, y, t)
∂u
∂x
,

L2,εu = −ε∂
2u
∂y2

+ v2(x, y, t)
∂u
∂y
,

with g = g1 + g2. We further assume that the initial and boundary data of the problem are sufficiently smooth

functions and also assume that necessary compatibility conditions hold among them in order to u(x, y, t) ∈
C4+γ(D), which has continuous derivatives up to fourth-order in space and second-order in time. The existence

of the solution u(x, y, t) of the nonlinear IBVP (5.1)-(5.3) follows from [Chapter 7, §4] of the book [41] by

Friedman.
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The compatibility conditions are given below:

s(x, y, 0) = q0(x, y), on ∂G,

∂s(x, y, 0)

∂t
= −Lε(0)q0(x, y)− b

(
x, y, 0, q0(x, y)

)
+ g(x, y, 0), on ∂G

∂2s(x, y, 0)

∂t2
= −Lεg(x, y, 0) + L2

ε(0)q0(x, y) +
∂g(x, y, 0)

∂t
−
∂b
(
x, y, 0, q0(x, y)

)
∂t

−

∂b
(
x, y, 0, q0(x, y)

)
∂u

g(x, y, 0) +
∂b
(
x, y, 0, q0(x, y)

)
∂u

b
(
x, y, 0, q0(x, y)

)
+

∂b
(
x, y, 0, q0(x, y)

)
∂u

Lε(0)q0(x, y), on ∂G,

∂s(x, y, t)

∂t
= −Lεs(x, y, t)− b

(
x, y, t, s(x, y, t)

)
+ g(x, y, t),

(x, y) ∈ {0, 1} × {0, 1} × (0, T ].

(5.4)

The rest of this chapter is organized as follows. Section 5.2 presents comparison principle as well as some

a-priori bounds of the analytical solution and its derivatives. The implicit-explicit fractional-step FMM is

formulated and analyzed in Section 5.3. The fully implicit fractional-step FMM is formulated and analyzed in

Section 5.4. In Section 5.5, we discuss convergence analysis for the temporal Richardson extrapolation to the

nonlinear discrete problem (5.102). Finally, numerical experiments are performed in Section 5.6 to demonstrate

the accuracy and efficiency of the proposed FMMs. The conclusion of this chapter is provided in 5.7.

5.2 Properties of the analytical solution

Lemma 5.1 (Comparison Principle). Let the functions v, w ∈ C0(D) ∩ C2(D) be such that v ≤ w, on ∂D and

Tεv ≤ Tεw ,in D, then it implies that v ≤ w, on D.

Proof. Here, we use method of contradiction. Firstly, we suppose that there exists (x?, y?, t?) ∈ D such

that v(x?, y?, t?) > w(x?, y?, t?). Since, v − w ∈ C0(D), without loss of generality, we assume that v − w
takes positive maximum at (x?, y?, t?). Now, in conformity with the hypothesis of the comparison principle,

v − w ≤ 0 on ∂D =⇒ (x?, y?, t?) /∈ ∂D. Therefore, under the above assumption and applying mean value

theorem, we have

(
Tεv − Tεw

)
(x?, y?, t?)

=
∂(v − w)(x?, y?, t?)

∂t
+ Lx,ε(v − w)(x?, y?, t?) + b

(
x?, y?, t?, v(x?, y?, t?)

)
−b
(
x?, y?, t?, w(x?, y?, t?)),

≥
[ ∫ 1

0

b
(
x?, y?, t?, w(x?, y?, t?) + ξ(v − w)(x?, y?, t?)

)
∂y

dξ
]
(v − w)(x?, y?, t?). (5.5)

Thus, from (5.5) and the assumption (5.3), we have Tεv(x?, y?, t?) > Tεw(x?, y?, t?) and this contradicts that

Tεv(x, y, t) ≤ Tεw(x, y, t) for all (x, y, t) ∈ D. Hence, the proof is over.

The following result follows from Lemma 5.1.
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Corollary 5.1. Let the function Φ ∈ C0(D)∩C2(D). For any given functions v, w ∈ C0(D), the linear differential

operator T̃ε,(v,w) defined by

T̃ε,(v,w)Φ =
∂Φ

∂t
+ Lx,εΦ +

(∫ 1

0

∂b
(
x, y, t, w(x, , y, t) + ξ(v − w)(x, y, t))

∂u
dξ
)

Φ,

satisfies the maximum principle, i.e., if Φ ≤ 0, on ∂D and T̃ε,(v,w)Φ ≤ 0, in D, then it implies that Φ ≤ 0, on D.

Corollary 5.1 is used to deduce the following ε-uniform stability result.

Lemma 5.2 (Stability). Let the functions v, w ∈ C0(D) ∩ C2(D), then it satisfies

‖v − w‖D ≤ ‖v − w‖∂D +
1

β
‖Tεv − Tεw‖D. (5.6)

Proof. Consider the functions

Φ±(x, y, t) = −‖v − w‖∂D −
1

β
‖Tεv − Tεw‖D ± (v − w)(x, y, t), (x, y, t) ∈ D.

Note that Φ±(x, y, t) ≤ 0, (x, y, t) ∈ ∂D, and

∥∥T̃ε,(v,w)

(
v − w

)∥∥ ≤ [ ∫ 1

0

∂b
(
x, y, t, w + ξ(v − w))

∂u
dξ
]( 1

β
‖Tεv − Tεw‖

)
⇒ T̃ε,(v,w)Φ

± ≤ 0.

Then, Corollary 5.1 implies that Φ±(x, y, t) ≤ 0, for all (x, y, t) ∈ D, from which the desired result follows

immediately.

By selecting v = u and w = 0, Lemma 5.2 implies that

∣∣u(x, y, t)
∣∣ ≤ C0, (x, y, t) ∈ D. (5.7)

Remark 5.1. Note that using the a-priori bound (5.7) (independent of ε) and the smootheness assumption on

the nonlinear term ‘ b ’one can obtain the following ε-uniform boundedness property:∣∣∣∣∂j+k+mb
(
x, y, t, u

)
∂xj1∂yj2∂tk∂um

∣∣∣∣
u=u(x,y,t)

∣∣∣∣ ≤ C, (x, y, t) ∈ D, (5.8)

∀ j, k,m ∈ N ∪ {0}, satisfying j = j1 + j2, 0 ≤ j + 2k + 2m ≤ N ; and we use this property later in this

chapter.

Next, we derive the bounds on the derivatives of u(x, y, t) with respect to space variables x, y and time

variable t by extending the approach given in [24]. The solution u(x, y, t) of the nonlinear IBVP (5.1)-(5.3) can

be decomposed as

u(x, y, t) = s(x, y, t) + z(x, y, t), (x, t, t) ∈ D,

where s(x, y, t) is the smooth component and z is the singular component. Again, the component z(x, y, t)
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which can be decomposed in the form

z(x, y, t) = z1(x, y, t) + z2(x, y, t) + z11(x, y, t), (x, t, t) ∈ D,

where z1, z2 are the exponential layers near the sides x = 1 and y = 1 of G, respectively and z11 is the corner

layer near the point (1, 1). The smooth component s(x, y, t) is the restriction of s∗(x, y, t) to D, where s∗(x, y, t)

is the solution of the following nonlinear problem:
∂s?

∂t
+ L?εs? + b?

(
x, y, t, s?

)
= g?(x, y, t), in D? = G? × (0, T ],

s?(x, y, 0) = q?0(x, y), in G
?
,

s?(x, y, t) = s?(x, y, t), in ∂G? × (0, T ],

(5.9)

where L?ε = −ε∆ +~v?(x, y, t) · ~∇, G? is a smooth extension of G, and ~v?, b?, g?, q?0, s
? are smooth extension

of ~v, b, g , q0, s to their respective domains. Hence, the singular component z satisfies that
∂z
∂t

+ Lεz + b
(
x, y, t, u

)
− b
(
x, y, t, s

)
= 0, in D,

z(x, y, 0) = 0, in G,

z(x, y, t) = u(x, y, t)− s(x, y, t), in ∂G× (0, T ].

(5.10)

By applying mean value theorem, the nonlinear IBVPs (5.9) and (5.10) can be reduced to the following respec-

tive linear problems:

∂s?

∂t
+ L?εs? +

(∫ 1

0

∂b?
(
x, y, t, ξs?

)
∂u

dξ
)

s? = g?(x, y, t)− b?
(
x, y, t, 0

)
, in D?,

s?(x, y, 0) = q?0(x, y), in G
?
,

s?(x, y, t) = s?(x, y, t), in ∂G? × (0, T ],

(5.11)

and 

∂z
∂t

+ Lεz +
(∫ 1

0

∂b
(
x, y, t, s + ξ(u − s)

)
∂u

dξ
)

z = 0, in D,

z(x, y, 0) = 0, in G,

z(x, y, t) = u(x, y, t)− s(x, y, t), in ∂G× (0, T ].

(5.12)

Now, following the approach given in [24], one can show that the components of u(x, y, t) satisfies the following

bounds: ∣∣∣∣∂j+ks(x, y, t)

∂xj1∂yj2∂tk

∣∣∣∣ ≤ C, (5.13)

∣∣∣∣∂j+kz1(x, y, t)

∂xj1∂yj2∂tk

∣∣∣∣ ≤ Cε−j1 exp

(
− m1(1− x)

ε

)
, (5.14)
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∣∣∣∣∂j+kz2(x, y, t)

∂xj1∂yj2∂tk

∣∣∣∣ ≤ Cε−j2 exp

(
− m2(1− y)

ε

)
, (5.15)

∣∣∣∣∂j+kz11(x, y, t)

∂xj1∂yj2∂tk

∣∣∣∣ ≤ Cε−j min
{

exp

(
− m1(1− x)

ε

)
, exp

(
− m2(1− y)

ε

)}
, (5.16)

where ∀ j1, j2, k ∈ N ∪ {0}, j = j1 + j2, 0 ≤ j + 2k ≤ 4 and (x, y, t) ∈ D.

Lemma 5.3. The derivatives of the solution u(x, y, t) of the nonlinear IBVP (5.1)-(5.3) satisfy the following

bounds: ∣∣∣∂ku(x, y, t)

∂tk

∣∣∣ ≤ C, (5.17)

∣∣∣∂j1u(x, y, t)

∂xj1

∣∣∣ ≤ Cε−j1 exp
(
− m1(1− x)

ε

)
, (5.18)

∣∣∣∂j2u(x, y, t)

∂yj2

∣∣∣ ≤ Cε−j2 exp
(
− m2(1− y)

ε

)
, (5.19)

where j = j1 + j2, 0 ≤ j + 2k ≤ 4 and (x, y, t) ∈ D.

5.3 The discrete problem-I

The purpose of this section is to introduce and analyze the implicit-explicit fractional-step FMM for discretiza-

tion of the nonlinear IBVP (5.1)-(5.3). At first, we estimate the error for the time semidiscretization and later,

for the fully discrete problem. We write b
(
x, y, t, u

)
= b1

(
x, y, t, u

)
+ b2

(
x, y, t, u

)
, where b1 and b2 also

satisfy similar smoothness assumption as like the reaction term b.

5.3.1 Time semidiscretization: fractional-steps implicit-explicit scheme
Here, we consider the fractional-step IMEX-Euler method to discretize the nonlinear IBVP (5.1)-(5.3) with

respect to the temporal variable. The fractional-step IMEX-method can be written as two half scheme and in

each half, the method treats the linear part of the governing differential equation implicitly and the nonlinear
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part explicitly. Let un(x, y) ≈ u(x, y, tn). Then, the semidiscrete problem takes the following form:

(i) (initial condition)

u0(x, y) = q0(x, y), (x, y) ∈ G,

(ii) (first half)
(I + ∆tLn+1

1,ε )un+1/2(x, y) + ∆tb1
(
x, y, tn, un(x, y)

)
= un(x, y) + ∆tg1(x, y, tn+1),

(x, y) ∈ G,

un+1/2(x, y) = sn+1/2(x, y), (x, y) ∈ {0, 1} × [0, 1],

(iii) (second half)
(I + ∆tLn+1

2,ε )un+1(x, y) + ∆tb2
(
x, y, tn, un(x, y)

)
= un+1/2(x, y) + ∆tg2(x, y, tn+1),

(x, y) ∈ G,

un+1(x, y) = sn+1(x, y), (x, y) ∈ [0, 1]× {0, 1},

(5.20)

for n = 0, . . . ,M − 1, where the operators Ln+1
1,ε and Ln+1

2,ε are defined by
Ln+1

1,ε ≡ −ε
∂2

∂x2
+ v1(x, y, tn+1)

∂

∂x
,

Ln+1
2,ε ≡ −ε

∂2

∂y2
+ v2(x, y, tn+1)

∂

∂y
.

The classical choice of boundary conditions is given by sn+1/2(x, y) = s(x, y, tn+1), (x, y) ∈ {0, 1} × [0, 1],

sn+1(x, y) = s(x, y, tn+1), (x, y) ∈ [0, 1]× {0, 1}.
(5.21)

In most cases, this option causes a sharp increase in the global error which finally become O(1). To avoid this

order reduction, we propose an alternative choice of boundary data which is given by
sn+1/2(x, y) = (I + ∆tLn+1

2,ε )s(x, y, tn+1) + ∆tb2
(
x, y, tn, un(x, y)

)
−∆tg2(x, y, tn+1),

(x, y) ∈ {0, 1} × [0, 1],

sn+1(x, y) = s(x, y, tn+1), (x, y) ∈ [0, 1]× {0, 1}.

(5.22)

One can show that the operators (I + ∆tLn+1
1,ε ) and (I + ∆tLn+1

2,ε ) satisfy the following maximum principle.

Lemma 5.4 (Maximum principle). Let the function ψ ∈ C0(G) ∩ C2(G) be such that ψ(x, y) ≤ 0, on ∂G and

(I + ∆tLn+1
k,ε )ψ(x, y) ≤ 0, k = 1, 2, for all (x, y) ∈ G. Then, it implies that ψ(x, y) ≤ 0, for all (x, y) ∈ G.

Proof. See [Chapter 3, Lemma 3.2] for the proof.
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Lemma 5.5 (Stability). Let the function V ∈ C0(G) ∩ C2(G). Then, we have

∥∥V∥∥
G
≤
∥∥V∥∥

∂G
+
∥∥(I + ∆tLn+1

k,ε )V
∥∥
G
,

where k = 1, 2.

Proof. Consider the following functions

Ψ±(x, y) = −‖V‖∂G − ‖
(
I + ∆tLn+1

k,ε

)
V‖G ± V(x, y), (x, y) ∈ G,

where k = 1, 2. It is obvious that Ψ±(x, y) ≤ on ∂G and

(I + ∆tLn+1
k,ε )Ψ±(x, y) ≤ −‖

(
I + ∆tLn+1

k,ε

)
V‖G ±

(
I + ∆tLn+1

k,ε

)
V ≤ 0,

by applying Lemma 5.4, we obtain the desired result.

Lemma 5.5 guarantees that the scheme (5.20) has a unique solution un(x, y) at each time level tn. Further,

using Lemma 5.5 below it is shown that the solution un(x, y) becomes ε-uniformly bounded.

Lemma 5.6. The solution un(x, y) of the semidiscte problem (5.20) at the time level tn satisfies that

∣∣un(x, y)
∣∣ ≤ C0, in G. (5.23)

Proof. It is clear that

|u0(x, y)| ≤ C0, in G,

due to the continuity of q0(x) on G, and hence, implies that |b
(
x, y, t, u0(x, y)

)
| ≤ C0, in G. Then, applying

Lemma 5.5, we obtain from (5.20) that

|u1(x, y)| ≤ C0, in G,

and hence, implies that |b
(
x, y, t, u1(x, y)

)
| ≤ C0, in G. Thereafter, arguing previously, we obtain that

|u2(x, y)| ≤ C0, in G. (5.24)

Thus, one can proceed in the same way to obtain the desired result.
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5.3.1.1 Error analysis
Let us denote ẽn+1 as the local truncation error of scheme (5.20) at the time level tn+1 i.e., ẽ

n+1(x, y) =

ũn+1(x, y)− u(x, y, tn+1), where ũn+1 is the solution of the following auxiliary problem:

(i) u0(x, y) = q0(x, y), (x, y) ∈ G,

(ii)


(I + ∆tLn+1

1,ε )ũn+1/2(x, y) + ∆tb1
(
x, y, tn, u(x, y, tn)

)
= u(x, y, tn) + ∆tg1(x, y, tn+1),

(x, y) ∈ G,

ũn+1/2(x, y) = sn+1/2(x, y), (x, y) ∈ {0, 1} × [0, 1],

(iii)


(I + ∆tLn+1

2,ε )ũn+1(x, y) + ∆tb2
(
x, y, tn, u(x, y, tn)

)
= ũn+1/2(x, y) + ∆tg2(x, y, tn+1),

(x, y) ∈ G,

ũn+1(x, y) = sn+1(x, y), (x, y) ∈ [0, 1]× {0, 1},

(5.25)

for n = 0, . . . ,M − 1.

Lemma 5.7 (Local error). Under the alternative boundary data sn+1/2 and sn+1 are given in (5.22), the local

error at the time level tn+1 satisfies that

‖ẽn+1‖G ≤ C(∆t)2.

Proof. From (5.25), we easily deduce that

(I + ∆tLn+1
1,ε )

(
(I + ∆tLn+1

2,ε )ûn+1(x, y) + ∆tb2
(
x, y, tn, u(x, y, tn)

)
−∆tg2(x, y, tn+1)

)
+ ∆tb1

(
x, y, tn, u(x, y, tn)

)
= u(x, y, tn) + ∆tg1(x, y, tn+1).

Further, we obtain that

(I + ∆tLn+1
1,ε )(I + ∆tLn+1

2,ε )ũn+1(x, y) + ∆tb
(
x, y, tn, u(x, y, tn)

)
(5.26)

= u(x, y, tn) + ∆tg(x, y, tn+1) +O(∆t)2.

We expand Taylor’s series expansion of the function u(x, y, tn) with respect to time to have

u(x, y, tn) = u(x, y, tn+1)−∆t
∂u(x, y, tn+1)

∂t
+O(∆t)2, (5.27)

and by using equation (5.1), we can write

(I + ∆tLn+1
1,ε )(I + ∆tLn+1

2,ε )u(x, y, tn+1) + ∆tb
(
x, y, tn+1, u(x, y, tn+1)

)
(5.28)

= u(x, y, tn) + ∆tg(x, y, tn+1) +O(∆t)2.
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Subtracting equation (5.26) and (5.28), we get

(I + ∆tLn+1
1,ε )(I + ∆tLn+1

2,ε )ẽn+1(x, y) + ∆t
[
b
(
x, y, tn+1, u(x, y, tn+1)

)
− b
(
x, y, tn, u(x, y, tn)

)]
= O(∆t)2,

where we apply the bound ∂2u
∂t2

from Lemma 5.3. Further, one can deduce that

b
(
x, y, tn+1, u(x, y, tn+1)

)
− b
(
x, y, tn, u(x, y, tn)

)
(5.29)

= ∆t
[∂b(x, y, s, u(x, y, s))

∂t
+
∂b(x, y, s, u(x, y, s))

∂u
∂u(x, y, s)

∂t

]
, tn < s < tn+1,

= O(∆t), (5.30)

where the bound on ∂u
∂t from Lemma 5.3 and the property (5.8) are utilized. Now, by using alternative boundary

data given in (5.22), the local error can be written as the solution of a following problem (I + ∆tLn+1
1,ε )ẽn+1/2(x, y) = O(∆t)2, (x, y) ∈ G,

ẽn+1/2(0, y) = 0, ẽn+1/2(1, y) = 0, y ∈ [0, 1],
(5.31)

 (I + ∆tLn+1
2,ε )ẽn+1(x, y) = ẽn+1/2(x, y), (x, y) ∈ G,

ẽn+1(x, 0) = 0, ẽn+1(x, 1) = 0, x ∈ [0, 1].
(5.32)

From (5.31) and (5.32), and using the stability property of Lemma 5.5, we get desired bound of the local error.

Let us introduce the global error of the time semidiscrete scheme (5.20) at the time level tn+1 i.e., en+1(x, y) =

u(x, y, tn+1) − un+1(x, y). The following result shows that the fractional-step implicit-explicit Euler method

converges uniformly with first-order accurate in time.

Theorem 5.1 (Global error). Under the alternative boundary data of sn+1/2 and sn+1 are given in (5.22), the

global error en+1(x, y) satisfies that

sup
(n+1)∆t≤T

∥∥en+1
∥∥
G
≤ C∆t.

Proof. We rewrite the global error as

en+1(x, y) = ẽn+1(x, y) + dn+1(x, y), (5.33)

where the term dn+1(x, y) = ũn+1(x, y)− un+1(x, y) can be deduced from the following problems:
(I + ∆tLn+1

1,ε )dn+1/2(x, y) + ∆t
[
b1(x, y, tn, u(x, y, tn))− b1

(
x, y, tn, un(x, y)

)]
= en(x, y), in G,

dn+1/2(0, y) = 0, dn+1/2(1, y) = 0, in [0, 1],

(5.34)
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and 
(I + ∆tLn+1

2,ε )dn+1(x, y) + ∆t
[
b2(x, y, tn, u(x, y, tn))− b2

(
x, y, tn, un(x, y)

)]
= dn+1/2(x, y), in G,

dn+1(x, 0) = 0, dn+1(x, 1) = 0, in [0, 1].

(5.35)

Since, the solution un(x, y) and u(x, y, tn) are bounded ε-uniformly, the smoothness assumption of bk(x, y, t, u)

implies that there exist a constant K0(> 0) (independent of ε) such that

K0 = sup
{∣∣∣∣∂bk

(
x, y, t, u

)
∂u

∣∣∣∣, (x, y, t) ∈ D, |u| ≤ C0, k = 1, 2
}
,

where C0 = max

{
‖un‖, ‖u(tn)‖, for n = 0, 1, . . .M

}
. Therefore, one can deduce that for k = 1, 2,

∣∣bk(x, y, tn, u(x, y, tn))− bk(x, y, tn, un(x, y))
∣∣ ≤ K0|en(x, y)|, (x, y) ∈ G. (5.36)

Now, we apply Lemma 5.5 to the equations (5.34) and (5.35), and utilizing (5.33) and (5.36), we get

∥∥en+1
∥∥ ≤ ∥∥ẽn+1

∥∥+ (1 + 2K0∆t)
∥∥en∥∥.

Finally, the desired result follows from the above recurrence relation and by utilizing Lemma 5.7 and the

inequality (1 + 2K0∆t)n ≤ exp(2n∆tK0) ≤ exp(2TK0).

5.3.2 The fully discrete scheme
On the domain D, we construct a mesh D

N,∆t
= G

N × Λ∆t, where G
N is the rectangular piecewise-uniform

Shishkin mesh on the spatial domain G and Λ∆t is the equidistant mesh on the temporal domain [0, T ]. The

detailed description is given in [Chapter 3, Section 3.4]. For a given function Ψn
i,j = Ψ(xi, yj , tn), defined

on the mesh D
N,∆t

= G
N × Λ∆t, we define Ψn

i− 1
2
,j

=
Ψn

i,j+Ψn
i−1,j

2 , Ψn
i,j− 1

2

=
Ψn

i,j+Ψn
i,j−1

2 . Let us denote

GNx = G
N
x ∩ (0, 1) and GNy = G

N
y ∩ (0, 1). In order to constitute the fully discrete scheme for the nonlinear

problem (5.1)-(5.3), we consider the framework of the new hybrid finite difference scheme given in Chapter 3
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for the spatial discretization of (5.20) on the mesh D
N,∆t, the fully discrete scheme takes the following form:

(i) U0
i,j = q0(xi, yj), for (xi, yj) ∈ G

N
,

(ii)



U
n+1/2
i,j + ∆tLn+1

1,ε,mcdU
n+1/2
i,j + ∆tb1

(
xi, yj , tn, U

n
i,j

)
= Uni,j + ∆tg1(xi, yj , tn+1),

for 1 ≤ i ≤ N/2, yj ∈ GNy and when ε > ‖v1‖N−1,

U
n+1/2

i− 1
2
,j

+ ∆tLn+1
1,ε,mupU

n+1/2
i,j + ∆tb1

(
xi− 1

2
, yj , tn, U

n
i− 1

2
,j

)
= Un

i− 1
2
,j

+ ∆tgn+1
1,i− 1

2
,j
,

for 1 ≤ i ≤ N/2, yj ∈ GNy and when ε ≤ ‖v1‖N−1,

U
n+1/2
i,j + ∆tLn+1

1,ε,mcdU
n+1/2
i,j + ∆tb1

(
xi, yj , tn, U

n
i,j

)
= Uni,j + ∆tg1(xi, yj , tn+1),

for N/2 < i ≤ N − 1, yj ∈ GNy

U
n+1/2
i,j = sn+1/2(xi, yj), i = 0, N, yj ∈ G

N
y ,

(iii)



Un+1
i,j + ∆tLn+1

2,ε,mcdU
n+1
i,j + ∆tb2

(
xi, yj , tn, U

n
i,j

)
= U

n+1/2
i,j + ∆tg2(xi, yj , tn+1),

for 1 ≤ j ≤ N/2, xi ∈ GNx and when ε > ‖v2‖N−1,

Un+1
i,j− 1

2

+ ∆tLn+1
2,ε,mupU

n+1
i,j + ∆tb2

(
xi, yj− 1

2
, tn, U

n
i,j− 1

2

)
= U

n+1/2

i,j− 1
2

+ ∆tgn+1
2,i,j− 1

2

,

for 1 ≤ j ≤ N/2, xi ∈ GNx and when ε ≤ ‖v2‖N−1,

Un+1
i,j + ∆tLn+1

2,ε,mcdU
n+1
i,j + ∆tb2

(
xi, yj , tn, U

n
i,j

)
= U

n+1/2
i,j + ∆tg2(xi, yj , tn+1),

for N/2 < j ≤ N − 1, xi ∈ GNx

Un+1
i,j = sn+1(xi, yj), j = 0, N, xi ∈ G

N
x ,

(5.37)

where sn+1/2, sn+1 are defined in (5.22) and Ln+1
1,N,mcd,L

n+1
1,N,mup,L

n+1
2,N,mcd,L

n+1
2,N,mup are given by



Ln+1
1,N,mcdU

n+1/2
i,j = −εδ2

xU
n+1/2
i,j + vn+1

1 (xi, yj , tn+1)D∗xU
n+1/2
i,j ,

Ln+1
1,N,mupU

n+1/2
i,j = −εδ2

xU
n+1/2
i,j + vn+1

1,i− 1
2
,j
D−x U

n+1/2
i,j ,

Ln+1
2,N,mcdU

n+1
i,j = −εδ2

yU
n+1
i,j + vn+1

2 (xi, yj , tn+1)D∗yU
n+1
i,j ,

Ln+1
2,N,mupU

n+1
i,j = −εδ2

yU
n+1
i,j + vn+1

2,i,j− 1
2

D−y U
n+1
i,j .

(5.38)
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Let ρxi =

(
ε− v1hxi

2

)
and ρyj =

(
ε−

v2hyj
2

)
. After rearranging the term in (5.37), the fully discrete scheme

is written as follows:

U0
i,j = q0(xi, yj), for (xi, yj) ∈ G

N
,

LN,∆t1,ε U
n+1/2
i,j ≡ µ−xiU

n+1/2
i−1,j + µcxiU

n+1/2
i,j + µ+

xiU
n+1/2
i+1,j = F∆t

1 (xi, yj),

for 1 ≤ i ≤ N − 1, yj ∈ GNy ,

U
n+1/2
i,j = sn+1/2(xi, yj), i = 0, N, yj ∈ G

N
y ,

LN,∆t2,ε Un+1
i,j ≡ µ−yjU

n+1
i,j−1 + µcyjU

n+1
i,j + µ+

yjU
n+1
i,j+1 = F∆t

2 (xi, yj),

for 1 ≤ j ≤ N − 1, xi ∈ GNx

Un+1
i,j = sn+1(xi, yj), j = 0, N, xi ∈ G

N
x ,

for n = 0, . . . ,M − 1,

(5.39)

where the right hand side vector F∆t
1 (xi, yj),F∆t

2 (xi, yj) in (5.39) are given by

F∆t
1 (xi, yj) =



1
2(Uni−1,j + ∆t g1(xi−1, yj , tn+1)) + 1

2(Uni,j + ∆t g1(xi, yj , tn+1))−

∆tb1
(
xi− 1

2
, yj , tn, U

n
i− 1

2
,j

)
, for 1 ≤ i ≤ N/2, and when ε ≤ ‖v1‖N−1, yj ∈ GNy ,

Uni,j + ∆t g1(xi, yj , tn+1)−∆tb1
(
xi, yj , tn, U

n
i,j

)
,

for 1 ≤ i ≤ N/2, and when ε > ‖v1‖N−1, yj ∈ GNy ,

Uni,j + ∆t g1(xi, yj , tn+1)−∆tb1
(
xi, yj , tn, U

n
i,j

)
, for N/2 < i ≤ N − 1, yj ∈ GNy ,

(5.40)

and

F∆t
2 (xi, yj) =



1
2(U

n+1/2
i,j−1 + ∆t g2(xi, yj−1, tn+1)) + 1

2(U
n+1/2
i,j + ∆t g2(xi, yj , tn+1))−

∆tb2
(
xi, yj− 1

2
, tn, U

n
i,j− 1

2

)
, for 1 ≤ j ≤ N/2, and when ε ≤ ‖v2‖N−1, xi ∈ GNx ,

U
n+1/2
i,j + ∆t g2(xi, yj , tn+1)−∆tb2

(
xi, yj , tn, U

n
i,j

)
,

for 1 ≤ j ≤ N/2, and when ε > ‖v2‖N−1, xi ∈ GNx ,

U
n+1/2
i,j + ∆t g2(xi, yj , tn+1)−∆tb2

(
xi, yj , tn, U

n
i,j

)
, for N/2 < j ≤ N − 1, xi ∈ GNx .

(5.41)
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Here, the coefficients µ−zk , µ
c
zk
, µ+

zk
for zk = xk/yk, k = i or j and l = 1, 2 are given by

µ−zk = ∆t µ−mcd,zk , µczk = ∆t µcmcd,zk + 1, µ+
zk

= ∆t µ+
mcd,zk

,

for 1 ≤ k ≤ N/2, and when ε > ‖vl‖N−1,

µ−zk = ∆t µ−mup,zk + 1
2 , µczk = ∆t µcmup,zk + 1

2 , µ+
zk

= ∆t µ+
mup,zk

,

for 1 ≤ k ≤ N/2, and when ε ≤ ‖vl‖N−1,

µ−zk = ∆t µ−mcd,zk , µcz = ∆t µcmcd,zk + 1, µ+
zk

= ∆t µ+
mcd,zk

,

for N/2 < k ≤ N − 1,

(5.42)

where 

µ−mup,zk = − 2ε

h̃zkhzk
−
vn+1

1,i− 1
2
,j

hzk
,

µcmup,zk =
2ε

hzkhzk+1

+
vn+1

1,i− 1
2
,j

hzk
,

µ+
mup,zk

= − 2ε

h̃zkhzk+1

,

and



µ−mcd,zk = − 2ρzk

h̃zkhzk
−
vn+1

1,i,j

hzk
,

µcmcd,zk =
2ρzk

hzkhzk+1

+
vn+1

1,i,j

hzk
,

µ+
mcd,zk

= − 2ρzk

h̃zkhzk+1

,

It is shown that the difference operatorsLN,∆t1,ε ,LN,∆t2,ε defined in (5.39) satisfies the following discrete maximum

principle.

Lemma 5.8 (Discrete maximum principle). Suppose that the following conditions hold for N ≥ N0 :

N

lnN
> ηk,0‖vk‖ and mkN ≥

1

∆t
, k = 1, 2, (5.43)

where N0 is a positive integer. If any mesh function Zi,j = Z(xi, yj) defined on G
N satisfies that Zi,j ≤ 0, on

∂GN and LN,∆tk,ε Zi,j ≤ 0, k = 1, 2, for (xi, yj) ∈ GN , then it implies that Zi,j ≤ 0, for all i, j.

Proof. See [Chapter 3, Lemma 3.5] for the proof.

5.3.2.1 Error analysis
In the beginning, we study the asymptotic behavior of the analytical solution of the semidiscrete problem (5.25)

and its derivatives. This will be used later to derive the bounds of the truncation errors TN,∆t
xi,ũn+1/2 and T

N,∆t
yj ,ũn+1 .

From Lemma 5.5, it is clear that ‖ũn+1/2‖ ≤ C and ‖ũn+1‖ ≤ C, since u(x, y, tn), b1, b2, g1, g2, sn+1/2 and

sn+1 are ε-uniformly bounded. At first, we deduce a priori bounds for ũn+1/2(x, y) and its derivatives in the x-

direction and also for ũn+1(x, y) and its derivatives in the y-direction. For the proof of Lemma 5.9, apart from

the requirement of ε-uniform boundedness and smoothness criterion on the given data, we also need certain

compatibility conditions at (0, tn) and (1, tn) as mentioned in (5.53). Note that the corresponding derivation

take care of the presence of the non-homogeneous boundary data sn+1/2, sn+1.

Lemma 5.9. The solutions ũn+1/2(x, y) and ũn+1(x, y) of the time semidiscrete scheme (5.25) and their deriva-
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tives satisfy that ∣∣∣∣∂j ũn+1/2(x, y)

∂xj

∣∣∣∣ ≤ C(1 + ε−j exp(−m1(1− x)/ε)
)
, j = 0, 1, 2, 3, 4, (5.44)

and ∣∣∣∣∂j ũn+1(x, y)

∂yj

∣∣∣∣ ≤ C(1 + ε−j exp(−m2(1− y)/ε)
)
, j = 0, 1, 2, 3, 4, (5.45)

for all (x, y) ∈ G.

Proof. We split up the proof into two parts. In the first part, we derive the result (5.44) for ũn+1/2(x, y) and the

second part, the result (5.45) is established for ũn+1(x, y).

Part-I: Consider the auxiliary BVP:

(I + ∆tLn+1
1,ε )ζ(x, y) = −Ln+1

1,ε u(x, y, tn)− b1
(
x, y, tn, u(x, y, tn)

)
+ g1(x, y, tn+1) ≡ H1(x, y), (5.46)

where

ζ(x, y) =
ũn+1/2(x, y)− u(x, y, tn)

∆t
,

with boundary conditions:

ζ(0, y) =
ũn+1/2(0, y)− u(0, y, tn)

∆t
, (5.47)

=
(I + ∆tLn+1

2,ε )s(0, y, tn+1) + ∆tb2
(
x, y, tn, s(0, y, tn)

)
−∆tg2(0, y, tn+1)− s(0, y, tn)

∆t
,

= Ln+1
2,ε s(0, y, tn+1) + b2

(
0, y, tn, s(0, y, tn)

)
− g2(0, y, tn+1) +

∂s(0, y, tn)

∂t
+O(∆t),

ζ(1, y) = Ln+1
2,ε s(1, y, tn+1) + b2

(
1, y, tn, s(1, y, tn)

)
− g2(1, y, tn+1) +

∂s(1, y, tn)

∂t
+O(∆t). (5.48)

Therefore, the boundary value problem (5.46)-(5.48) reduces to the following form:
(I + ∆tLn+1

1,ε )ζ(x, y) = H1(x, y),

ζ(0, y) = Ln+1
2,ε s(0, y, tn+1) + b2

(
0, y, tn, s(0, y, tn)

)
− g2(0, y, tn+1) +

∂s(0, y, tn)

∂t
+O(∆t),

ζ(1, y) = Ln+1
2,ε s(1, y, tn+1) + b2

(
1, y, tn, s(0, y, tn)

)
− g2(1, y, tn+1) +

∂s(1, y, tn)

∂t
+O(∆t).

(5.49)

We see boundary conditions of problem (5.49) are (ε,∆t)-uniformly bounded. Let |Ln+1
1,ε u(x, y, tn)| ≤ C, then

|H1(x, y)| ≤ C. Hence, applying Lemma 5.5 , we obtain that |ζ(x, y)| ≤ C. Next, we have the BVP:
Ln+1

1,ε ũn+1/2(x, y) = −ζ(x, y)− b1
(
x, y, tn, u(x, y, tn)

)
+ g1(x, y, tn+1),

ũn+1/2(0, y) = (I + ∆tLn+1
2 )s(0, y, tn+1) + b2

(
0, y, tn, s(0, y, tn)

)
−∆tg2(0, y, tn+1),

ũn+1/2(1, y) = (I + ∆tLn+1
2 )s(1, y, tn+1) + b2

(
1, y, tn, s(0, y, tn)

)
−∆tg2(1, y, tn+1).

(5.50)
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Using the argument of Kellogg and Tsan technique [61], one can obtain that∣∣∣∣∂ũn+1/2(x, y)

∂x

∣∣∣∣ ≤ C[1 + ε−1 exp(−m1(1− x)/ε)

]
, (x, y) ∈ G. (5.51)

Let ζ1(x, y) = Ln+1
1,ε ζ(x, y), which satisfies that

(I + ∆tLn+1
1,ε )ζ1(x, y) =

−(Ln+1
1,ε )2u(x, y, tn)− Ln+1

1,ε b1
(
x, y, tn, u(x, y, tn)

)
+ Ln+1

1,ε g1(x, y, tn+1) ≡ H2(x, y),

ζ1(0, y) =
1

∆t

[
− ζ(0, y) + g1(0, y, tn+1)− b1

(
0, y, tn, s(0, y, tn)

)
− Ln+1

1,ε s(0, y, tn)
]
,

ζ1(1, y) =
1

∆t

[
− ζ(1, y) + g1(1, y, tn+1)− b1

(
1, y, tn, s(1, y, tn)

)
− Ln+1

1,ε s(1, y, tn)
]
.

(5.52)

Let |(Ln+1
1,ε )2u(x, y, tn)| ≤ C, then |H2(x, y)| ≤ C, by invoking smoothness property (5.8). Now, from the

compatibility conditions (5.4), one can obtain that

∂s(0, y, tn)

∂t
= −Lnε s(0, y, tn)− b

(
x, y, tn, u(0, y, tn)

)
+ g(0, y, tn),

∂s(1, y, tn)

∂t
= −Lnε s(1, y, tn)− b

(
x, y, tn, u(0, y, tn)

)
+ g(1, y, tn).

(5.53)

Now, by using the boundary conditions of the problem (5.49), the equation (5.52) and (5.53), we get
(I + ∆tLn+1

1,ε )ζ1(x, y) = H2(x, y),

ζ1(0, y) =
∂g(0, y, tn)

∂t
− Ln+1

2,ε

∂s(0, y, tn)

∂t
+ C1,

ζ1(1, y) =
∂g(1, y, tn)

∂t
− Ln+1

2,ε

∂s(1, y, tn)

∂t
+ C2.

(5.54)

We see that H2(x, y) = −(Ln+1
1,ε )2u(x, y, tn)− Ln+1

1,ε b1
(
x, y, tn, u(x, y, tn)

)
+ Ln+1

1,ε g1(x, y, tn+1) is bounded

(ε-uniformly) by invoking smoothness property (5.8) and boundary conditions are (ε,∆t)-uniformly bounded.

Hence, applying Lemma 5.5 , we obtain that |ζ1(x, y)| ≤ C. Afterwards, one can deduce that∣∣∣∣∂ζ(x, y)

∂x

∣∣∣∣ ≤ C[1 + ε−1 exp(−m1(1− x)/ε)

]
, (x, y) ∈ G, (5.55)

by invoking Kellogg and Tsan technique [61] to the following BVP:
Ln+1

1,ε ζ(x, y) = ζ1(x, y),

ζ(0, y) = Ln+1
2,ε s(0, y, tn+1)− g2(0, y, tn+1) +

ds(0, y, tn)

dt
+O(∆t),

ζ(1, y) = Ln+1
2,ε s(1, y, tn+1)− g2(1, y, tn+1) +

ds(1, y, tn)

dt
+O(∆t).

(5.56)
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Now, differentiate (5.50) with respect to x, we consider that ζ(x, y) = ∂ũn+1/2

∂x satisfies the following problem Ln+1
1,ε ζ(x, y) = H3(x, y), (x, y) ∈ G,

ζ(0, y) = C1, ζ(1, y) = C2ε
−1,

(5.57)

where H3(x, y) = −∂ζ(x, y)

∂x
+
∂g1(x, y, tn+1)

∂x
− ∂v1(x, y, tn+1)

∂x

∂ũn+1/2

∂x
−
(∂b1(x, y, tn, u(x, y, tn)

)
∂x

+

∂b1
(
x, y, tn, u(x, y, tn)

)
∂u

∂u
∂x

)
and we obtain that

∣∣H3(x, y)
∣∣ ≤ C[1 + ε−1 exp(−m1(1− x)/ε)

]
, (x, y) ∈ G.

Again, using the argument of Kellogg and Tsan technique [61] for (5.57), we get∣∣∣∣∂ζ(x, y)

∂x

∣∣∣∣ =

∣∣∣∣∂2ũn+1/2(x, y)

∂x2

∣∣∣∣ ≤ C[1 + ε−2 exp(−m1(1− x)/ε)

]
, (x, y) ∈ G.

Similar way, we obtained the bound (5.44) for j = 3, 4. We now derive the bound of ũn+1/2(x, y) with respect

to y by differentiating the auxiliary BVP (5.25) at the first half with respect to y, and we get

(I + ∆tLn+1
1,ε )

∂ũn+1/2(x, y)

∂y
=
∂u(x, y, tn)

∂y
+ ∆t

∂g1(x, y, tn+1)

∂y
− ∂v1(x, y, tn+1)

∂y

∂ũn+1/2(x, y)

∂x
−(∂b1(x, y, tn, u(x, y, tn)

)
∂y

+
∂b1
(
x, y, tn, u(x, y, tn)

)
∂u

∂u
∂y

)
,

∂ũn+1/2(0, y)

∂y
= (I + ∆tLn+1

2 )
∂s(0, y, tn+1)

∂y
+ ∆t

∂v2(0, y, tn+1)

∂y

∂s(0, y, tn+1)

∂y
+

∆t
(b2(0, y, tn, s(0, y, tn)

)
∂y

+
b2
(
0, y, tn, s(0, y, tn)

)
∂u

∂s(0, y, tn)

∂y

)
−∆t

∂g2(0, y, tn+1)

∂y
,

∂ũn+1/2(1, y)

∂y
= (I + ∆tLn+1

2 )
∂s(1, y, tn+1)

∂y
+ ∆t

∂v2(1, y, tn+1)

∂y

∂s(1, y, tn+1)

∂y
+

∆t
(b2(1, y, tn, s(1, y, tn)

)
∂y

+
b2
(
1, y, tn, s(1, y, tn)

)
∂u

∂s(1, y, tn)

∂y

)
−∆t

∂g2(1, y, tn+1)

∂y
.

(5.58)

The following bounds are proven by using the bounds of ∂
j ũn+1/2(x,y)

∂xj
for j = 0, 1, 2, 3, 4 :∣∣∣∣∣∂j ũn+1/2

∂yj
(x, y)

∣∣∣∣∣ ≤ C
[
1 + ε−j exp(−m2(1− y)/ε)

]
, (x, y) ∈ G, for j = 0, 1, 2, 3, 4. (5.59)

Part-II: Here, we prove bounds (5.45) for ũn+1(x, y). We suppose that, based on prior technical criterion,

‖Ln+1
2,ε ũn+1/2(x, y)‖G ≤ C, ‖(Ln+1

2,ε )2ũn+1/2(x, y)‖G ≤ C, ‖(Ln+1
2,ε )3ũn+1/2(x, y)‖G ≤ C.
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Define the following auxiliary BVP:
(I + ∆tLn+1

2,ε )Λ(x, y) + b2
(
x, y, tn, u(x, y, tn)

)
= −Ln+1

2,ε ũn+1/2(x, y) + g2(x, y, tn+1) ≡ F1(x, y),

Λ(x, 0) = −Ln+1
2,ε s(x, 0, tn+1)− b2

(
x, 0, tn, s(x, 0, tn)

)
+ g2(x, 0, tn+1),

Λ(x, 1) = −Ln+1
2,ε s(x, 1, tn+1)− b2

(
x, 1, tn, s(x, 1, tn)

)
+ g2(x, 1, tn+1).

(5.60)

where Λ(x, y) =
ũn+1(x, y)− ũn+1/2(x, y)

∆t
. We see that boundary conditions are (ε,∆t)-uniformly bounded

and |F1(x, y)| ≤ C. Hence, applying Lemma 5.5, we obtain that |Λ(x, y)| ≤ C. we have Ln+1
2,ε ũn+1(x, y) = −Λ(x, y)− b2

(
x, y, tn, u(x, y, tn)

)
+ g2(x, y, tn+1),

ũn+1(x, 0) = s(x, 0, tn+1), ũn+1(x, 1) = s(x, 1, tn+1).
(5.61)

Using the argument of Kellogg and Tsan technique [61], one can obtain that∣∣∣∣∂ũn+1(x, y)

∂y

∣∣∣∣ ≤ C[1 + ε−1 exp(−m2(1− y)/ε)

]
(x, y) ∈ G. (5.62)

We introduce the function Λ1(x, y) = Ln+1
2,ε Λ(x, y), which is a solution of

(I + ∆tLn+1
2,ε )Λ1(x, y) = −(Ln+1

2,ε )2ũn+1/2(x, y)−

Ln+1
2,ε b2

(
x, y, tn, u(x, y, tn)

)
+ Ln+1

2,ε g2(x, y, tn+1) ≡ F2(x, y),

Λ1(x, 0) = −Ln+1
2,ε L

n+1
2,ε s(x, 0, tn+1)− Ln+1

2,ε b2
(
x, 0, tn, s(x, 0, tn)

)
+ Ln+1

2,ε g2(x, 0, tn+1),

Λ1(x, 1) = −Ln+1
2,ε L

n+1
2,ε s(x, 1, tn+1)− Ln+1

2,ε b2
(
x, 1, tn, s(x, 1, tn)

)
+ Ln+1

2,ε g2(x, 1, tn+1).

(5.63)

We see that F2(x, y) = −(Ln+1
2,ε )2ũn+1/2(x, y)−Ln+1

2,ε b2
(
x, y, tn, u(x, y, tn)

)
+Ln+1

2,ε g2(x, y, tn+1) is bounded

(ε-uniformly) and boundary conditions are (ε,∆t)-uniformly bounded. Hence, applying Lemma 5.5 , we obtain

that |Λ1(x, y)| ≤ C. Afterwards, one can deduce that∣∣∣∣∂Λ(x, y)

∂y

∣∣∣∣ ≤ C[1 + ε−1 exp(−m2(1− y)/ε)

]
, (x, y) ∈ G, (5.64)

by invoking Kellogg and Tsan technique [61] to the following BVPs:
Ln+1

2,ε Λ(x, y) = Λ1(x, y),

Λ(x, 0) = −Ln+1
2,ε s(x, 0, tn+1)− b2

(
x, 0, tn, s(x, 0, tn)

)
+ g2(x, 0, tn+1),

Λ(x, 1) = −Ln+1
2,ε s(x, 1, tn+1)− b2

(
x, 1, tn, s(x, 1, tn)

)
+ g2(x, 1, tn+1).

(5.65)

For second order derivative bound of ũn+1(x, y), we differentiate (5.61) with respect y, to get Ln+1
2,ε Λ(x, y) = F3(x, y),

Λ(x, 0) = C1, Λ(x, 1) = C2ε
−1,

(5.66)
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where

F3(x, y) = −∂Λ(x, y)

∂y
+
∂g2(x, y, tn+1)

∂y
− ∂v2(x, y, tn+1)

∂y

∂ũn+1(x, y)

∂y
−(∂b2(x, y, tn, u(x, y, tn)

)
∂y

+
∂b2
(
x, y, tn, u(x, y, tn)

)
∂u

∂u
∂y

)
,

and Λ(x, y) =
∂ũn+1(x, y)

∂y
. We obtain that |F3(x, y)| ≤ C

[
1 + ε−1 exp(−m2(1 − y)/ε)

]
, (x, y) ∈ G.

Applying the methodology of Kellogg and Tsan to (5.66), we deduce that∣∣∣∣∂Λ(x, y)

∂y

∣∣∣∣ =

∣∣∣∣∂2ũn+1(x, y)

∂y2

∣∣∣∣ ≤ C[1 + ε−2 exp(−m2(1− y)/ε)

]
, (x, y) ∈ G. (5.67)

Similar way, we obtained the bound (5.45) for j = 3, 4.

Lemma 5.10. The exact solutions ũn+1/2(x, y) and ũn+1(x, y) of time semidiscrete scheme (5.25) can be

decomposed as  ũn+1/2(x, y) = p̃n+1/2(x, y) + γ1q̃n+1/2(x, y),

ũn+1(x, y) = p̃n+1(x, y) + γ2q̃n+1(x, y),

where y ∈ (0, 1) the components of ũn+1/2(x, y satisfy
q̃n+1(x, y) = exp(−v1(1, y, tn+1)(1− x)/ε), γ1 =

ε

v1(1, y, tn+1)

∂ũn+1

∂x
(1, y),∣∣∣∣∂j p̃n+1/2

∂xj

∣∣∣∣ ≤ C(1 + ε−j+1 exp
(
− m1(1− x)

ε

))
, j = 0, 1, 2, 3, 4,

and for x ∈ (0, 1) the components of ũn+1(x, y) satisfy
q̃n+1(x, y) = exp(−v2(x, 1, tn+1)(1− y)/ε), γ2 =

ε

v2(x, 1, tn+1)

∂ũn+1

∂y
(x, 1),∣∣∣∣∂j p̃n+1

∂yj

∣∣∣∣ ≤ C(1 + ε−j+1 exp
(
− m2(1− y)

ε

))
, j = 0, 1, 2, 3, 4.

Proof. Let p̃n+1/2(x, y) = ũn+1/2(x, y)− γ1q̃n+1/2(x, y). Then, we have

Ln+1
1,ε p̃n+1/2(x, y) = R1(x, y), in G, (5.68)

where R1(x, y) = −ζ(x, y)− b1
(
x, y, tn, u(x, y, tn)

)
+ g1(x, y, tn+1) + γ1

(
v1(1, y, tn+1)−

v1(x, y, tn+1)
)∂q̃n+1/2(x,y)

∂x ; and differentiating (5.68) with respect to x, it yields that

Ln+1
1,ε

∂p̃n+1/2(x, y)

∂x
= R2(x, y), in G, (5.69)

where R2(x, y) = H3(x, y)− ∂v1(x, y, tn+1)

∂x

∂q̃n+1/2(x, y)

∂x
− γ1

∂v1(x, y, tn+1)

∂x

∂q̃n+1/2(x, y)

∂x
+

γ1

(
v1(1, y, tn+1) − v1(x, y, tn+1)

)∂2q̃n+1/2(x, y)

∂x2
. Now one can show that R1(x, y) bounded ε-uniformly on
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G and ∣∣R2(x, y)
∣∣ ≤ C(1 + ε−1 exp(−m1(1− x)/ε)

)
, in G.

Also, it holds that for y ∈ [0, 1]

|p̃n+1/2(0, y)| ≤ C, |p̃n+1/2(1, y)| ≤ C,
∣∣∣∂p̃n+1/2(0, y)

∂x

∣∣∣ ≤ C, ∂p̃n+1/2(1, y)

∂x
= 0.

Therefore, using the argument of [61] for (5.68) and (5.69), it follows that∣∣∣∣∂j p̃n+1/2

∂xj

∣∣∣∣ ≤ C(1 + ε−j+1 exp
(
− m1(1− x)

ε

))
, j =, 1, 2. (5.70)

Finally, by adopting the approach as mentioned above, one can obtain the required bound on the spatial deriva-

tive of p̃n+1/2(x, y) for j = 3, 4. We have derived derivative bound of component ũn+1(x, y) by using the

above approach described at (n+ 1/2)th level.

In order to estimate the spatial error related to the fully discrete scheme (5.37), we consider the spatial dis-

cretization of the auxiliary problem (5.25) using the new finite difference scheme as described in Section 5.3.2.

Hence, we obtain the following discrete problem:

Ũ0
i,j = q0(xi, yj), for (xi, yj) ∈ G

N
,

LN,∆t1,ε Ũ
n+1/2
i,j ≡ µ−xiŨ

n+1/2
i−1,j + µcxiŨ

n+1/2
i,j + µ+

xiŨ
n+1/2
i+1,j = F̃∆t

1 (xi, yj),

for 1 ≤ i ≤ N − 1, yj ∈ GNy ,

Ũ
n+1/2
i,j = sn+1/2(xi, yj), i = 0, N, yj ∈ G

N
y ,

LN,∆t2,ε Ũn+1
i,j ≡ µ−yj Ũ

n+1
i,j−1 + µcyj Ũ

n+1
i,j + µ+

yj Ũ
n+1
i,j+1 = F̃∆t

2 (xi, yj),

for 1 ≤ i, j ≤ N − 1,

Ũn+1
i,j = sn+1(xi, yj), j = 0, N, xi ∈ G

N
x ,

for n = 0, . . . ,M − 1,

(5.71)

where the coefficients µ−xi , µ
c
xi , µ

+
xi , µ

−
yj , µ

c
yj , µ

+
yj are described in (5.42) and F̃∆t

1 (xi, yj), F̃∆t
2 (xi, yj) are re-

spectively given by

F̃∆t
1 (xi, yj) =



1
2(u(xi−1, yj , tn) + ∆tg1(xi−1, yj , tn+1)) + 1

2(u(xi, yj , tn) + ∆t g1(xi, yj , tn+1))−

∆tb1
(
xi− 1

2
, yj , tn, u(xi− 1

2
, yj , tn)

)
, for 1 ≤ i ≤ N/2, and when ε ≤ ‖v1‖N−1,

u(xi, yj , tn) + ∆t g1(xi, yj , tn+1)−∆tb1
(
xi, yj , tn, u(xi, yj , tn)

)
,

for 1 ≤ i ≤ N/2, and when ε > ‖v1‖N−1,

u(xi, yj , tn) + ∆t g1(xi, yj , tn+1)−∆tb1
(
xi, yj , tn, u(xi, yj , tn)

)
,

for N/2 < i ≤ N − 1,
(5.72)
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and

F̃∆t
2 (xi, yj) =



1
2(Ũ

n+1/2
i,j−1 + ∆t g2(xi, yj−1, tn+1)) + 1

2(Ũ
n+1/2
i,j + ∆t g2(xi, yj , tn+1))−

∆tb2
(
xi, yj− 1

2
, tn, u(xi, yj− 1

2
)
)
, for 1 ≤ j ≤ N/2, and when ε ≤ ‖v2‖N−1,

Ũ
n+1/2
i,j + ∆t g2(xi, yj , tn+1)−∆tb2

(
xi, yj , tn, u(xi, yj , tn)

)
,

for 1 ≤ j ≤ N/2, and when ε > ‖v2‖N−1,

Ũ
n+1/2
i,j + ∆t g2(xi, yj , tn+1)−∆tb2

(
xi, yj , tn, u(xi, yj , tn)

)
,

for N/2 < j ≤ N − 1.

(5.73)

The local truncation error at the first half for the numerical scheme (5.71)-(5.73) is defined as

T
N,∆t

xi,ũn+1/2 = LN,∆t1,ε [Ũ
n+1/2
i,j − ũn+1/2(xi, yj)],

=



µ−xiŨ
n+1/2
i−1,j + µcxiŨ

n+1/2
i,j + µ+

xiŨ
n+1/2
i+1,j −∆t

[
g1(xi, yj , tn+1)− b1

(
xi, yj , tn, u(xi, yj , tn)

)]
−u(xi, yj , tn), for 1 ≤ i ≤ N/2, and when ε > ‖v1‖N−1,

µ−xiŨ
n+1/2
i−1,j + µcxiŨ

n+1/2
i,j + µ+

xiŨ
n+1/2
i+1,j −∆t

[g1(xi, yj , tn+1) + g1(xi−1, yj , tn+1)

2

]
+

∆t
[b1(xi, yj , tn, u(xi, yj , tn)

)
+ b1

(
xi−1, yj , tn, u(xi−1, yj , tn)

)
2

]
− u(xi, yj , tn) + u(xi−1, yj , tn)

2
+O(∆th2

xi), for 1 ≤ i ≤ N/2, when ε ≤ ‖v1‖N−1,

µ−xiŨ
n+1/2
i−1,j + µcxiŨ

n+1/2
i,j + µ+

xiŨ
n+1/2
i+1,j −∆t

[
g1(xi, yj , tn+1)− b1

(
xi, yj , tn, u(xi, yj , tn)

)]
−u(xi, yj , tn), for N/2 < i ≤ N − 1,

=



∆t
[
Ln+1

1,N,mcdũn+1/2(xi, yj)− (Ln+1
1,ε ũn+1/2)(xi, yj)

]
,

for 1 ≤ i ≤ N/2, and when ε > ‖v1‖N−1, yj ∈ GNy ,

∆t
[
Ln+1

1,N,mupũn+1/2(xi, yj)− (Ln+1
1,ε ũn+1/2)i− 1

2
,j

]
+O(∆th2

xi),

for 1 ≤ i ≤ N/2, and when ε ≤ ‖v1‖N−1, yj ∈ GNy ,

∆t
[
Ln+1

1,N,mcdũn+1/2(xi, yj)− (Ln+1
1,ε ũn+1/2)(xi, yj)

]
, for N/2 < i ≤ N − 1, yj ∈ GNy .

(5.74)

Further, we state the following important results for the error analysis.

Lemma 5.11. Consider the following mesh functions Θl,k(λl) with l = 1, 2
Θ1,k(λ1) =

N∏
j=k+1

(
1 +

λ1hxk
ε

)−1
, for 0 ≤ k ≤ N − 1, Θ1,N (λ1) = 1,

Θ2,k(λ2) =

N∏
j=k+1

(
1 +

λ2hyk
ε

)−1
, for 0 ≤ k ≤ N − 1, Θ2,N (λ2) = 1,
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where λl is a positive constant, such that λl < ml/2, l = 1, 2. Then, under the hypothesis (5.43) of Lemma 5.8,

it follows that for l = 1, 2,

LN,∆tl,ε Θl,k(λl) ≥



C∆t

ε
Θ2,k(λl), for 1 ≤ k ≤ N/2, and when ε > ‖vl‖N−1,

C∆t

Hl
Θl,k(λl), for 1 ≤ k ≤ N/2, and when ε ≤ ‖vl‖N−1,

C∆t

ε
Θl,k(λl), for N/2 < k ≤ N − 1.

Proof. The arguments given in [Chapter 2, Lemma 2.12] can be used to prove this lemma.

At first, we derive the bounds of TN,∆t
xi,ũn+1/2 (see Chapter 3) by using Lemma 5.10 in (5.74). Then, following

the approach given in [Chapter 3, Lemma 3.10] and invoking Lemma 5.11 and the discrete maximum principle

in Lemma 5.8, we deduce the following result.

Lemma 5.12. Let yj ∈ G
N
y . If λ1 < m1/2, the local error associated with the discrete problem (5.71)-(5.73) at

(n+ 1/2)th time level satisfies the following estimate:

∣∣Ũn+1/2
i,j − ũn+1/2(xi, yj)

∣∣ ≤


C
(

(N−1 + χ1,ε)N
−1 +N−λ1η1,0

)
, for xi ∈ [0, 1− η1] ∩ GNx ,

C
(
η2

1,0N
−2 ln2N +N−λ1η1,0

)
, for xi ∈ (1− η1, 1] ∩ GNx ,

(5.75)

where

χ1,ε =

 ε, when ε ≤ ‖v1‖N−1,

0, when ε > ‖v1‖N−1.

Now, we proceed to estimate the local truncation error
∣∣∣Ũn+1

i,j − ũn+1(xi, yj)
∣∣∣ obtained in the y-direction.

Here, for the numerical scheme (5.71)-(5.73), the bound of the local truncation error TN,∆t
yj ,ũn+1 = LN,∆t2,ε

[
Ũn+1
i,j −

ũn+1(xi, yj)
]

can be obtain by invoking Lemmas 5.10, 5.11 and 5.12. Further, following that arguments given

in [Chapter 3, Lemma 3.11] and finally we get the following result by invoking Lemma 5.11 and the discrete

maximum principle in Lemma 5.8.

Theorem 5.2. Let ηl,0 ≥ 2/λl, l = 1, 2. If λl < ml/2, the local error associated with the discrete problem

(5.71)-(5.73) at (n+ 1)th time level satisfies the following estimate:

∣∣Ũn+1
i,j − ũn+1(xi, yj)

∣∣ ≤


C(N−1 + χ1,ε)N
−1 + C(N−1 + χ2,ε)N

−1,

for (xi, yj) ∈
(

[0, 1− η1]× [0, 1− η2]
)
∩ GN ,

CN−2 ln2N, otherwise,

(5.76)

where

χ1,ε =

 ε, when ε ≤ ‖v1‖N−1

0, when ε > ‖v1‖N−1,
and χ2,ε =

 ε, when ε ≤ ‖v2‖N−1,

0, when ε > ‖v2‖N−1.
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5.3.2.2 Uniform convergence of the proposed IMEX fractional step-method
We define En+1(xi, yj) = [Un+1

i,j − u(xi, yj , tn+1)], for (xi, yj) ∈ G
N , as the global error related to the fully

discrete scheme (5.37) at the time level tn+1. Now, to show the ε-uniform convergence of the fully discrete

scheme (5.37), we rewrite the global error in the following form:

En+1(xi, yj) = ẽn+1(xi, yj) + Ẽn+1(xi, yj) + [Un+1
i,j − Ũ

n+1
i,j ]. (5.77)

Here, ẽn+1(xi, yj) = [ũn+1(xi, yj)−u(xi, yj , tn+1)] and Ẽn+1(xi, yj) = [Ũn+1
i,j − ũn+1(xi, yj)], respectively,

denote the local error related to the time semidiscrete scheme and the spatial discretization of the auxiliary

problem (5.25) at the time level tn+1. The term [Un+1
i,j − Ũ

n+1
i,j ] can be written as the solution of the following

systems: 
LN,∆t1,ε LN,∆t2,ε Rn+1(xi, yj) = −∆t

[
b
(
xi, yj , tn, U

n
i,j

)
− b
(
xi, yj , tn, u(xi, yj , tn)

)]
+

Uni,j − u(xi, yj , tn) +O(∆t)2, (xi, yj) ∈ GN ,

Rn+1(xi, yj) = 0, ∂GN ,

where Rn+1(xi, yj) = [Un+1
i,j − Ũ

n+1
i,j ], and by employing the discrete maximum principle in Lemma 5.8, we

obtain that ∥∥∥{Rn+1(xi, yj)
}
i,j

∥∥∥ ≤ (1 + K1∆t
)∥∥∥{En(xi, yj)

}
i,j

∥∥∥+ C(∆t)2. (5.78)

where K1 is a constant(>0)(independent of ε) such that

K1 = sup

{∣∣∣∣∂b
(
x, y, t, u

)
∂u

∣∣∣∣, (x, y, t) ∈ D, |u| ≤ C1

}
,

and C1 = max

{
‖Un‖, ‖u(tn)‖, for n = 0, 1, . . .M

}
. Afterwards, from (5.77) and (5.78), we get

∥∥∥{En+1(xi, yj)
}
i,j

∥∥∥ ≤ ∥∥∥{ẽn+1(xi, yj)
}
i,j

∥∥∥+
∥∥∥{Ẽn+1(xi, yj)

}
i,j

∥∥∥+

(
1 + K1∆t

)∥∥∥{En(xi, yj)
}
i,j

∥∥∥+ C(∆t)2, (xi, yj) ∈ G
N
.

(5.79)

Now, using the estimates derived in Lemma 5.7 and Theorem 5.2 in (5.79), with the assumption that N−δ ≤
C∆t, 0 < δ < 1, and by using (1 +K1∆t)n ≤ exp(K1T ), we obtain the following estimate of the global error.

Theorem 5.3 (Global error). Assume that the conditions given in (5.43) hold for N ≥ N0. Then, if λl <

ml/2, ηl,0 ≥ 2/λl, l = 1, 2, the global error associated with the fully discrete scheme (5.37) at time level tn+1,

satisfies the following estimate:

∥∥∥{Un+1
i,j

}
i,j
−
{

u(xi, yj , tn+1)
}
i,j

∥∥∥ ≤


C
(
N−2+δ + χ1,εN

−1+δ + χ2,εN
−1+δ + ∆t

)
,

for (xi, yj) ∈
(

[0, 1− η1]× [0, 1− η2]
)
∩ GN ,

C
(
N−2+δ ln2N + ∆t

)
, for otherwise,

(5.80)

189



where N and ∆t are such that N−δ ≤ C∆t with 0 < δ < 1.

Remark 5.2. Note that the temporal accuracy in the result (5.80) holds under the alternative boundary data given

in 5.22. In order to confirm that both the proposed IMEX-FSFMM (a linearized scheme) and the proposed

fully-implicit FSFMM (a nonlinear scheme) achieve the same order of accuracy as obtained in Theorem 5.3,

we provide a detailed convergence analysis for the fractional fully-implicit method in the next section.

5.4 The discrete problem-II

This section introduces and analyses the fully-implicit fractional-step FMM for discretizing the nonlinear IBVP

(5.1)-(5.3). First, we estimate the error for the time semidiscretization problem, and then we estimate the error

for the fully discrete problem.

5.4.1 Time semidiscretization: fractional fully-implicit scheme
The fractional-step implicit-Euler method is used here to discretize the nonlinear IBVP (5.1)-(5.3) with respect

to the temporal variable. The fractional-step implicit-Euler method can be written as two-half scheme, and in

the first half, the method treats the linear part of the governing differential equation implicitly, and in the second

half, the method treats both the linear and the nonlinear parts of the governing differential equation implicitly.

Let un(x, y) ≈ u(x, y, tn). Then, the semidiscrete problem takes the following form:

(i) (initial condition)

u0(x, y) = q0(x, y), (x, y) ∈ G,

(ii) (first half) T∆t
1,εun+1(x, y) = un(x, y) + ∆tg1(x, y, tn+1), (x, y) ∈ G,

un+1/2(x, y) = sn+1/2(x, y), (x, y) ∈ {0, 1} × [0, 1],

(iii) (second half) T∆t
2,εun+1(x, y) = un+1/2(x, y) + ∆tg2(x, y, tn+1), (x, y) ∈ G,

un+1(x, y) = sn+1(x, y), (x, y) ∈ {0, 1} × [0, 1],

(5.81)

where  T∆t
1,εun+1x, y = (I + ∆tLn+1

1,ε )un+1/2(x, y),

T∆t
2,εun+1(x, y) = (I + ∆tLn+1

2,ε )un+1(x, y) + ∆tb
(
x, y, tn+1, un+1(x, y)

)
.

The natural choice of the boundary data is given by sn+1/2(x, y) = s(x, y, tn+1), (x, y) ∈ {0, 1} × [0, 1],

sn+1(x, y) = s(x, y, tn+1), (x, y) ∈ [0, 1]× {0, 1}.
(5.82)
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To avoid the order reduction in time due to (5.82), we propose an alternative choice of boundary conditions

which is given by
sn+1/2(x, y) = (I + ∆tLn+1

2,ε )s(x, y, tn+1) + ∆tb
(
x, y, tn+1, s(x, y, tn+1)

)
−

∆tg2(x, y, tn+1), (x, y) ∈ {0, 1} × [0, 1],

sn+1(x, y) = s(x, y, tn+1), (x, y) ∈ [0, 1]× {0, 1}.

(5.83)

One can show that the operator T∆t
1,ε satisfy the following maximum principle.

Lemma 5.13 (Maximum principle). Let the function Φ ∈ C0(G) ∩ C2(G) be such that Φ(x, y) ≤ 0 on ∂G and

T∆t
1,εΦ(x, y) ≤ 0, in G. Then, it implies that Φ(x, y) ≤ 0 for all (x, y) ∈ G.

Lemma 5.14 (Stability). Let the functions vn+1/2, wn+1/2 ∈ C0(G) ∩ C2(G). Then, we have

‖vn+1/2 − wn+1/2‖G ≤ ‖vn+1/2 − wn+1/2‖∂G + ‖T∆t
1,εv

n+1/2 − T∆t
1,εw

n+1/2‖G. (5.84)

Proof. Consider the functions

Φ±,n+1/2(x, y) = −‖vn+1/2−wn+1/2‖∂G−‖T∆t
1,εv

n+1/2−T∆t
1,εw

n+1/2‖G±(vn+1−wn+1)(x, y), (x, y) ∈ G.

Since, T∆t
1,εv

n+1/2 − T∆t
1,εw

n+1/2 = T∆t
1,ε(v

n+1/2 − wn+1/2), by applying Lemma 5.13, we obtain the desired

result.

Lemma 5.14 ensure that the scheme (5.81) produces a unique solution at the first half.

Lemma 5.15 (Comparison principle). Let the functions vn+1, wn+1 ∈ C0(G)∩C2(G) be such that vn+1(x, y) ≤
wn+1(x, y) on ∂G and T∆t

2,εv
n+1(x, y) ≤ T∆t

2,εw
n+1(x, y) in G, then it implies that vn+1(x, y) ≤ wn+1(x, y) in

G.

Proof: Here, we use method of contradiction. Let us fix x ∈ [0, 1]. Firstly, we suppose that there exists

(x, y?) ∈ G such that vn+1(x, y?) > wn+1(x, y?). Since, vn+1 −wn+1 ∈ C0(G), without loss of generality, we

assume that vn+1 − wn+1 takes positive maximum at (x, y?). Now, in conformity with the hypothesis of the

comparison principle, vn+1 − wn+1 ≤ 0 on ∂G =⇒ (x, y?) /∈ ∂G. Therefore, under the above assumption and

applying mean value theorem, we have

(
T∆t

2,εv
n+1 − T∆t

2,εw
n+1
)
(x, y?)

=
(
I + ∆tLn+1

2,ε

)
(vn+1 − wn+1)(x, y?) + ∆tb

(
x, y?, tn+1, v

n+1(x, y?)
)

−∆tb
(
x, y?, tn+1, w

n+1(x, y?)), (5.85)

≥
[ ∫ 1

0

b
(
x, y?, tn+1, (w

n+1 + ξ(vn+1 − wn+1))(x, y?)
)

∂u
dξ
]
(vn+1 − wn+1)(x, y?).

Thus, from (5.85) and the assumption (5.3), we have T∆t
2,εv

n+1(x, y?) > T∆t
2,εw

n+1(x, y?) and this contradicts

that T∆t
2,εv

n+1(x, y) ≤ Tn+1
2,ε w

n+1(x, y) for all (x, y) ∈ G. Hence, the proof is over.
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Corollary 5.2. Let the function Φn+1 ∈ C0(G) ∩ C2(G). For any given functions vn+1, wn+1 ∈ C0(G), the

linear differential operator T̃∆t
2,ε,(v,w) defined by

T̃∆t
2,ε,(v,w)Φ

n+1 = (5.86)(
I + ∆tLn+1

2,ε

)
Φn+1 + ∆t

(∫ 1

0

∂b
(
x, y, tn+1, w

n+1 + ξ(vn+1 − wn+1)
)

∂u
dξ
)

Φn+1,

satisfies the maximum principle, i.e., if Φn+1(x, y) ≤ 0 on ∂G and T̃∆t
2,ε,(v,w)Φ

n+1(x, y) ≤ 0 in G, then it implies

that Φn+1 ≤ 0, for all (x, y) ∈ G.

Corollary 5.2 is used to deduce the following ε-uniform stability result.

Lemma 5.16 (Stability). Let the functions vn+1, wn+1 ∈ C0(G) ∩ C2(G). Then, we have

‖vn+1 − wn+1‖G ≤ ‖vn+1 − wn+1‖∂G +
1

1 + ∆tβ
‖T∆t

2,εv
n+1 − T∆t

2,εw
n+1‖G. (5.87)

Proof. Consider the functions

Φ±,n+1(x, y) = −‖vn+1 − wn+1‖∂G −
1

1 + ∆tβ
‖T∆t

2,εv − T∆t
2,εw‖G ± (vn+1 − wn+1)(x, y), (x, y) ∈ G.

Note that Φ±,n+1(x, y) ≤ 0, (x, y) ∈ ∂G, and

∥∥T̃∆t
2,ε,(v,w)

(
vn+1 − wn+1

)∥∥ ≤ (5.88)[
I + ∆t

∫ 1

0

∂b
(
x, y, tn+1, w

n+1 + ξ(vn+1 − wn+1)
)

∂u
dξ
]( 1

1 + ∆tβ
‖T∆t

2,εv
n+1 − T∆t

2,εw
n+1‖

)
⇒ T̃2,ε,(v,w)Φ

±,n+1(x, t) ≤ 0.

Then, Corollary 5.2 implies that Φ±,n+1(x, y) ≤ 0 for all (x, y) ∈ G, from which the desired result follows

immediately.

Lemma 5.16 ensure that the scheme (5.81) produces a unique solution at the second half.

Lemma 5.17. The solution un(x, y) of the semidiscrete problem (5.81) at the time level tn satisfies that

∣∣un(x, y)
∣∣ ≤ C0, in G. (5.89)
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5.4.1.1 Error analysis
Let us denote ẽn+1 the local truncation error of scheme (5.81) at the time tn+1, i.e., ẽ

n+1(x, y) = ũn+1(x, y)−
u(x, y, tn+1), where ũn+1(x, y) is the solution of the following auxiliary problem:

(i) ũ0(x, y) = q0(x, y), in G,

(ii)

 T∆t
1,εũn+1/2(x, y) = u(x, y, tn) + ∆tg1(x, t, tn+1), in G,

ũn+1/2(x, y) = sn+1/2(x, y), in {0, 1} × [0, 1],

(iii)

 T∆t
2,εũn+1(x, y) = ũn+1/2(x, y) + ∆tg2(x, y, tn+1), in G,

ũn+1(x, y) = sn+1(x, y), in {0, 1} × [0, 1].

(5.90)

Lemma 5.18 (Local error). Under the alternative boundary data sn+1/2 and sn+1 given in (5.83), the local

error ẽn+1 at the time level tn+1 satisfies that

‖ẽn+1‖G ≤ C(∆t)2.

Proof. From (5.90), we easily deduce that

T∆t
1,ε

(
T∆t

2,εũn+1(x, y)−∆tg2(x, y, tn+1)
)

= u(x, y, tn) + ∆tg1(x, y, tn+1), in G.

Further, we obtain that

T∆t
1,εT∆t

2,εũn+1(x, y) = u(x, y, tn) + ∆tg(x, y, tn+1) +O(∆t)2, in G. (5.91)

We expand Taylor’s series expansion of the function u(x, y, tn) in the time variable to get

u(x, y, tn) = u(x, y, tn+1)−∆t
∂u(x, y, tn+1)

∂t
+O(∆t)2,

and by using equation (5.1), one can write

(I + ∆tLn+1
1,ε )(I + ∆tLn+1

2,ε )u(x, y, tn+1) + ∆tb
(
x, y, tn+1, u(x, y, tn+1)

)
=

(∆t)2Ln+1
1,ε L

n+1
2,ε u(x, y, tn+1) + u(x, y, tn) + ∆tg(x, y, tn+1) +O(∆t)2.

(5.92)

Subtracting equation (5.91) and (5.92), we obtain that

(I + ∆tLn+1
1,ε )(I + ∆tLn+1

2,ε )ẽn+1(x, y) + ∆t
[
b
(
x, y, tn+1, ũn+1(x, y)

)
− b
(
x, y, tn+1, u(x, y, tn+1)

)]
+ (∆t)2Ln+1

1,ε

[
b
(
x, y, tn+1, ũn+1(x, y)

)
+ g2(x, y, tn+1) + Ln+1

2,ε ũn+1(x, y)
]

= O(∆t)2.
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Further, we have

(I + ∆tLn+1
1,ε )(I + ∆tLn+1

2,ε )ẽn+1(x, y) + ∆t
[
b
(
x, y, tn+1, ũn+1(x, y)

)
− b
(
x, y, tn+1, u(x, y, tn+1)

)]
+ (∆t)2Ln+1

1,ε

[
b
(
x, y, tn+1, ũn+1(x, y)

)
− b
(
x, y, tn+1, u(x, y, tn+1)

)]
= O(∆t)2.

(5.93)

Again, one can deduce that

b
(
x, y, tn+1, ũn+1

)
− b
(
x, y, tn+1, u(tn+1)

)
=

[ ∫ 1

0

∂b
(
x, y, tn+1, u(tn+1) + ξ(ũn+1 − u(tn+1))

)
∂u

dξ

]
ẽn+1(x, y). (5.94)

The equations (5.93) and (5.94) together imply that

(I + ∆tLn+1
1,ε )(I + ∆tLn+1

2,ε )ẽn+1(x, y) + ∆t(I + ∆tLn+1
1,ε )[ ∫ 1

0

∂b
(
x, y, tn+1, u(x, y, tn+1) + ξ(ũn+1(x, y)− u(x, y, tn+1))

)
∂u

dξ

]
ẽn+1(x, y) (5.95)

= O(∆t)2.

Now, by using the alternative boundary conditions (5.83), and the equation (5.95), the local error ẽn+1 can be

written as the solution of the following problems: T∆t
1,εẽ

n+1/2(x, y) = O(∆t)2, in G,

ẽn+1/2(0, y) = 0, ẽn+1/2(1, y) = 0, in [0, 1],
(5.96)

and  T̃∆t
2,ε,(ũn+1,u(tn+1))ẽ

n+1(x, y) = ẽn+1/2(x, y), in G,

ẽn+1(x, 0) = 0, ẽn+1(x, 1) = 0, in [0, 1].
(5.97)

We use Lemma 5.14 to the equation (5.96) to obtain ‖ẽn+1/2(x, y)‖G = O(∆t)2. Further, by applying Lemma

5.16 to the equation (5.97), we get desired bound of the local error.

Let us introduce the global error of the scheme (5.81) at time tn+1 as usual, i.e., en+1(x, y) = un+1(x, y)−
u(x, y, tn+1). The following result shows that the fractional-step implicit-Euler method converges uniformly

with first-order accurate in time.

Theorem 5.4 (Global error). Under the alternative boundary data of sn+1/2 and sn+1 given in (5.83), the

global error en+1(x, y) satisfies that

sup
(n+1)∆t≤T

∥∥en+1
∥∥
G
≤ C∆t.
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Proof. We rewrite the global error as

en+1(x, y) = ẽn+1(x, y) + dn+1(x, y), (5.98)

where the term dn+1(x, y) = un+1(x, y)− ũn+1(x, y) can be deduced from the following problems: T∆t
1,εd

n+1/2(x, y) = en(x, y), in G

dn+1/2(0, y) = 0, dn+1/2(1, y) = 0, in [0, 1],
(5.99)

and  T̃∆t
2,ε,(un+1,ũn+1)d

n+1(x, y) = dn+1/2(x, y), in G,

dn+1(x, 0) = 0, dn+1(x, 1) = 0, in [0, 1],
(5.100)

which utilizes the the following expression:

b
(
x, y, tn+1, un+1(x, y)

)
− b(x, y, tn+1, ũn+1(x, y)) = (5.101)[ ∫ 1

0

∂b
(
x, y, tn+1, ũn+1(x, y) + ξ(un+1(x, y)− ũn+1(x, y))

)
∂u

dξ

]
dn+1(x, y).

Firstly, we apply Lemma 5.14 to the equation 5.99 and Lemma 5.16 to the equation 5.100; and utilizing (5.98),

we get

∥∥en+1
∥∥
G
≤
∥∥ẽn+1

∥∥
G

+
∥∥en∥∥

G
.

Finally, the desired estimate follows from the above recurrence relation and utilizing Lemma 5.18.

5.4.2 The fully discrete scheme
We consider the framework of the new hybrid FMM for the spatial discretization of the time semidiscrete

problem (5.90). Then, the fully discrete scheme takes the following form on D
N,∆t:

(i) U0
i,j = q0(xi, yj), for i, j = 0, 1, . . . , N,

(ii)

 TN,∆t1,ε U
n+1/2
i,j = G∆t

1 (xi, yj), 1 ≤ i ≤ N − 1, yj ∈ GNy ,

U
n+1/2
i,j = sn+1/2(xi, yj), i = 0, N, yj ∈ G

N
y ,

(iii)

 TN,∆t2,ε Un+1
i,j = G∆t

2 (xi, yj), 1 ≤ j ≤ N − 1, xi ∈ GNx ,

Un+1
i,j = sn+1(xi, yj), j = 0, N, xi ∈ G

N
x ,

(5.102)
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where the discrete operators TN,∆t1,ε and TN,∆t2,ε are given by

TN,∆t1,ε U
n+1/2
i,j =



(
I + ∆tLn+1

1,N,mcd

)
U
n+1/2
i,j ,

for 1 ≤ i ≤ N/2, yj ∈ GNy and when ε > ‖v1‖N−1,

U
n+1/2
i−1/2,j + ∆tLn+1

1,N,mupU
n+1/2
i,j ,

for 1 ≤ i ≤ N/2, yj ∈ GNy and when ε ≤ ‖v1‖N−1,(
I + ∆tLn+1

1,N,mcd

)
U
n+1/2
i,j , for N/2 < i ≤ N − 1, yj ∈ GNy ,

and

TN,∆t2,ε Un+1
i,j =



(
I + ∆tLn+1

2,N,mcd

)
Un+1
i,j + ∆tb

(
xi, yj , tn+1, U

n+1
i,j

)
,

for 1 ≤ j ≤ N/2, xi ∈ GNx and when ε > ‖v2‖N−1,

Un+1
i,j−1/2 + ∆tLn+1

2,N,mupU
n+1
i,j + ∆tb

(
xi, yj−1/2, tn+1, U

n+1
i,j−1/2

)
,

for 1 ≤ j ≤ N/2, xi ∈ GNx and when ε ≤ ‖v2‖N−1,(
I + ∆tLn+1

2,N,mcd

)
Un+1
i,j + ∆tb

(
xi, yj , tn+1, U

n+1
i,j

)
,

for N/2 < j ≤ N − 1, xi ∈ GNx ,

and the right-side vectors G∆t
1 (xi, yj) and G∆t

2 (xi, yj) are given by

G∆t
1 (xi, yj) =



Uni,j + ∆tg1(xi, yj , tn+1),

for 1 ≤ i ≤ N/2, yj ∈ GNy and when ε > ‖v1‖N−1,

Uni−1/2,j + ∆tgn+1
1,i− 1

2
,j
,

for 1 ≤ i ≤ N/2, yj ∈ GNy and when ε ≤ ‖v1‖N−1,

Uni,j + ∆tg1(xi, yj , tn+1), for N/2 < i ≤ N − 1, yj ∈ GNy ,

and

G∆t
2 (xi, yj) =



U
n+1/2
i,j + ∆tg2(xi, yj , tn+1),

for 1 ≤ j ≤ N/2, xi ∈ GNx and when ε > ‖v2‖N−1,

U
n+1/2
i,j−1/2 + ∆tgn+1

2,i,j− 1
2

,

for 1 ≤ j ≤ N/2, xi ∈ GNx and when ε ≤ ‖v2‖N−1,

U
n+1/2
i,j + ∆tg2(xi, yj , tn+1), for N/2 < j ≤ N − 1, xi ∈ GNx ,

and sn+1/2(x, y), sn+1(x, y) are defined in (5.83), the operators Ln+1
1,N,mcd,L

n+1
1,N,mup,L

n+1
2,N,mcd,L

n+1
2,N,mup are

given in (5.38).

Lemma 5.19 (Discrete comparison principle). Suppose that there exists a positive integer N0 such that the
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following conditions hold for N ≥ N0:

N

lnN
> η1,0

∥∥v1

∥∥, m1N ≥
1

∆t
, (5.103)

and
N

lnN
> η2,0

∥∥v2

∥∥, m2N ≥
(∥∥∥∂b
∂u

∥∥∥+
1

∆t

)
. (5.104)

If two arbitrary mesh function V and W defined on D
N,∆t satisfies that V ≤ W on ∂DN,∆t and TN,∆tk,ε V ≤

TN,∆tk,ε W in DN,∆t, where k = 1, 2, then it implies that V ≤W on D
N,∆t.

Proof. The linear discrete operator TN,∆t1,ε satisfies the discrete comparison principle, and the proof is obtained

by [Chapter 3, Lemma 3.5].

Now, we prove the discrete comparison principle for the nonlinear discrete operator TN,∆t2,ε . In conformity with

the hypothesis of the discrete comparison principle, without loss of generality we consider Vi,j = Vj for any

fixed i; and consider the following system{
TN,∆t2,ε Vj − TN,∆t2,ε Wj = ωj , 1 ≤ j ≤ N − 1,

V0 −W0 = ω0, VN −WN = ωN ,
(5.105)

where ωj ≤ 0, for 0 ≤ j ≤ N . Now, let Zj = Vj −Wj and we have

TN,∆t2,ε Vj − TN,∆t2,ε Wj =

Zj + ∆tLn+1
2,N,mcdZj + ∆t

[∫ 1

0

∂b
(
xi, yj , tn+1,Wj + ξ(Vj −Wj)

)
∂u

dξ

]
Zj ,

1 ≤ j ≤ N/2 and when ε > ‖v2‖N−1,

Zj− 1
2

+ ∆tLn+1
2,N,mupZj + ∆t

[∫ 1

0

∂b
(
xi, yj− 1

2
, tn+1,Wj− 1

2
+ ξ(Vj− 1

2
−Wj− 1

2
)
)

∂u
dξ

]
Zj− 1

2
,

1 ≤ j ≤ N/2 and when ε ≤ ‖v2‖N−1,

Zj + ∆tLn+1
2,N,mcdZj + ∆t

[∫ 1

0

∂b
(
xi, yj , tn+1,Wj + ξ(Vj −Wj)

)
∂u

dξ

]
Zj , N/2 < j < N.

(5.106)

By using the equation (5.106), we can rewrite the equation (5.105) in the following form:

AZ = ω. (5.107)

Here, the matrix A is given by Aj,j = 1, for j = 0, N , and

Aj,j−1 = ∆tµ̃−mcd,yj , Aj,j = ∆tµ̃cmcd,yj + 1, Aj,j+1 = ∆tµ̃+
mcd,yj

,

1 ≤ j ≤ N/2 and when ε > ‖v2‖N−1,

Aj,j−1 = ∆tµ̃−mup,yj + 1
2 , Aj,j = ∆tµ̃cmup,yj + 1

2 , Aj,j+1 = ∆tµ̃+
mup,yj ,

1 ≤ j ≤ N/2 and when ε ≤ ‖v2‖N−1,

Aj,j−1 = ∆tµ̃−mcd,yj , Aj,j = ∆tµ̃cmcd,yj + 1, Aj,j+1 = ∆tµ̃+
mcd,yj

, N/2 < j < N,
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where 
µ̃−mcd,yj = µ−mcd,yj ,

µ̃cmcd,yj = µcmcd,yj +

[∫ 1

0

∂b
(
xi, yj , tn+1,Wj + ξ(Vj −Wj)

)
∂u

dξ

]
,

µ̃+
mcd,yj

= µ+
mcd,yj

,

and 
µ̃−mup,yj = µ−mup,yj +

1

2

[∫ 1

0

∂b
(
xi, yj− 1

2
, tn+1,Wj− 1

2
+ ξ(Vj− 1

2
−Wj− 1

2
)
)

∂u
dξ

]
,

µ̃cmup,yj = µcmup,yj +
1

2

[∫ 1

0

∂b
(
xi, yj− 1

2
, tn+1,Wj− 1

2
+ ξ(Vj− 1

2
−Wj− 1

2
)
)

∂u
dξ

]
,

µ̃+
mcd,yj

= µ+
mup,yj .

One can show that, under the conditions (5.103) and (5.104), the matrix A is an M-matrix (see the proof in

[Chapter 3, Lemma 3.5 ]).

Remark 5.3. From the discrete comparison principle, one can obtain the existence and uniqueness of the solu-

tion to the discrete problem (5.102)(see the Hadamard’s Theorem 5.3.10 in [91]).

Corollary 5.3. Let Ψ be any mesh function defined on D
N,∆t. Then, for any given mesh functions V and W

defined on D
N,∆t, the difference operators T̃N,∆t1,ε,(V,W ) defined by

T̃N,∆t1,ε,(V,W )Ψi,j = TN,∆t1,ε Ψi,j , for 1 ≤ i, j ≤ N − 1, (5.108)

and

T̃N,∆t
2,ε,(V,W )Ψi,j =

(
I + ∆tLn+1

2,N,mcd

)
Ψi,j + ∆t

[ ∫ 1

0

∂b
(
xi, yj , tn+1,Wi,j + ξ

(
Vi,j −Wi,j

))
∂u

dξ
]
Ψi,j ,

for 1 ≤ j ≤ N/2, 1 ≤ i ≤ N, and when ε > ‖v2‖N−1,

(
I + ∆tLn+1

2,N,mcd

)
Ψi,j−1/2 + ∆t

[ ∫ 1

0

∂b
(
xi, yj−1/2, tn+1,Wi,j−1/2 + ξ

(
Vi,j−1/2 −Wi,j−1/2

))
∂u

dξ
]
Ψn+1

i,j−1/2,

for 1 ≤ j ≤ N/2, 1 ≤ i ≤ N, and when ε ≤ ‖v2‖N−1,

(
I + ∆tLn+1

2,N,mcd

)
Ψi,j + ∆t

[ ∫ 1

0

∂b
(
xi, yj , tn+1,Wi,j + ξ

(
Vi,j −Wi,j

))
∂u

dξ
]
Ψi,j ,

forN/2 < j ≤ N − 1, 1 ≤ i ≤ N,
(5.109)

satisfies the discrete maximum principle, i.e., if Ψ ≤ 0 on ∂DN,∆t and T̃N,∆tk,ε,(V,W )Ψi,j ≤ 0, for k = 1, 2, in

DN,∆t, then it implies that Ψi,j ≤ 0 on D
N,∆t.

Lemma 5.20 (Stability). If two arbitrary mesh functions V andW defined on GN . Then, under the assumptions

198



(5.103) and (5.104), we have

‖V −W‖
D
N,∆t ≤ ‖V −W‖

∂D
N,∆t + ‖TN,∆t1,ε V − TN,∆t1,ε W‖

D
N,∆t ,

and ‖V −W‖
D
N,∆t ≤ ‖V −W‖

∂D
N,∆t +

1

1 + ∆tβ
‖TN,∆t2,ε V − TN,∆t2,ε W‖

D
N,∆t .

(5.110)

Proof. First, we consider the mesh functions for k = 1,

Ψ±1 (xi, yj) = −‖V −W‖∂DN,∆t − ‖TN,∆t1,ε V − TN,∆t1,ε W‖
D
N,∆t ±

(
V −W

)
(xi, yj), in D

N,∆t
.

Note that Ψ±1 (xi, yj) ≤ 0 on ∂DN,∆t, and T̃N,∆t1,ε,(V,W )Ψ
±
1 (xi, yj) ≤ 0, in DN,∆t. Then, Corollary 5.3 implies that

Ψ±1 (xi, yj) ≤ 0 on D
N,∆t. Now, we consider the mesh function for k = 2,

Ψ±2 (xi, yj) = −‖V −W‖∂DN,∆t −
1

1 + ∆tβ
‖TN,∆t2,ε V − TN,∆t2,ε W‖

D
N,∆t ±

(
V −W

)
(xi, yj), in D

N,∆t
.

Here also, Ψ±2 (xi, yj) ≤ 0 on ∂DN,∆t, and T̃N,∆t2,ε,(V,W )Ψ
±
2 (xi, yj) ≤ 0, in DN,∆t. Then, Corollary 5.3 implies

that Ψ±2 (xi, yj) ≤ 0 on D
N,∆t. Hence, the proof is over.

5.4.2.1 Error analysis
At first, we investigate the asymptotic behavior of the analytical solution of the semidiscrete problem (5.90)

and its derivatives. This will be used later to derive the truncation error bounds. It is clear from Lemma 5.14

and 5.16 that ‖ũn+1/2‖ ≤ C and ‖ũn+1‖ ≤ C, because u(x, y, tn), g1, g2, s
n+1/2 and sn+1 are ε-uniformly

bounded. We begin by deducing a-priori bounds for ũn+1/2(x, y) and its derivatives in the x-direction, as well as

ũn+1(x, y) and its derivatives in the y-direction. For the proof of Lemma 5.21, apart from the requirement of ε-

uniform boundedness and smoothness criterion on the given data, we also need certain compatibility conditions

at (0, tn) and (1, tn) as mentioned in (5.120). It should be noted that the corresponding derivation consider the

take care of non-homogeneous boundary data sn+1/2, sn+1.

Lemma 5.21. The solutions ũn+1/2(x, y) and ũn+1(x, y) of the time semidiscrete scheme (5.90) and their

derivatives satisfy that∣∣∣∣∂j ũn+1/2(x, y)

∂xj

∣∣∣∣ ≤ C(1 + ε−j exp(−m1(1− x)/ε)
)
, j = 0, 1, 2, 3, 4, (5.111)

and ∣∣∣∣∂j ũn+1(x, y)

∂yj

∣∣∣∣ ≤ C(1 + ε−j exp(−m2(1− y)/ε)
)
, j = 0, 1, 2, 3, 4, (5.112)

for all (x, y) ∈ G.

Proof. We split up the proof into two parts. In the first part, we derive the result (5.111) for ũn+1/2(x, y) and

in the second part, the result (5.112) is established for ũn+1(x, y).

Part-I: Consider the auxiliary BVP:

(I + ∆tLn+1
1,ε )ζ(x, y) = −Ln+1

1,ε u(x, y, tn) + g1(x, y, tn+1) ≡ H1(x, y), (5.113)
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where

ζ(x, y) =
ũn+1/2(x, y)− u(x, y, tn)

∆t
,

with boundary conditions:

ζ(0, y) =
ũn+1/2(0, y)− u(0, y, tn)

∆t
, (5.114)

=

(
I + ∆tLn+1

2,ε

)
u(0, y, tn+1)−∆tb

(
0, y, tn+1, u(0, y, tn+1)

)
−∆tg2(0, y, tn+1)− u(0, y, tn)

∆t
,

=

(
I + ∆tLn+1

2,ε

)
s(0, y, tn+1)−∆tb

(
0, y, tn+1, s(0, y, tn+1)

)
−∆tg2(0, y, tn+1)− s(0, y, tn)

∆t
,

= Ln+1
2,ε s(0, y, tn+1) + b

(
0, y, tn+1, s(0, y, tn+1)

)
− g2(0, y, tn+1) +

∂s(0, y, tn+1)

∂t
+O(∆t),

ζ(1, y) = Ln+1
2,ε s(1, y, tn+1)+b

(
1, y, tn+1, s(1, y, tn+1)

)
−g2(1, y, tn+1)+

∂s(1, y, tn+1)

∂t
+O(∆t). (5.115)

Therefore, the BVP (5.113)-(5.115) reduces to the following form:

(I + ∆tLn+1
1,ε )ζ(x, y) = H1(x, y),

ζ(0, y) = Ln+1
2,ε s(0, y, tn+1) + b

(
0, y, tn+1, s(0, y, tn+1)

)
− g2(0, y, tn+1)+

∂s(0, y, tn+1)

∂t
+O(∆t),

ζ(1, y) = Ln+1
2,ε s(1, y, tn+1) + b

(
1, y, tn+1, s(1, y, tn+1)

)
− g2(1, y, tn+1)+

∂s(1, y, tn+1)

∂t
+O(∆t).

(5.116)

We see that boundary conditions of the problem (5.116) are (ε,∆t)-uniformly bounded. Let |Ln+1
1,ε u(x, y, tn)| ≤

C, then |H1(x, y)| ≤ C. Hence, applying Lemma 5.14 , we obtain that |ζ(x, y)| ≤ C. Next, we write the BVP:


Ln+1

1,ε ũn+1/2(x, y) = −ζ(x, y) + g1(x, y, tn+1),

ũn+1/2(0, y) = (I + ∆tLn+1
2 )s(0, y, tn+1) + b

(
0, y, tn+1, s(0, y, tn+1)

)
−∆tg2(0, y, tn+1),

ũn+1/2(1, y) = (I + ∆tLn+1
2 )s(1, y, tn+1) + b

(
1, y, tn+1, s(0, y, tn+1)

)
−∆tg2(1, y, tn+1).

(5.117)

Using the argument of Kellogg and Tsan technique [61], one can obtain that∣∣∣∣∂ũn+1/2(x, y)

∂x

∣∣∣∣ ≤ C[1 + ε−1 exp(−m1(1− x)/ε)

]
, (x, y) ∈ G. (5.118)
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Let ζ1(x, y) = Ln+1
1,ε ζ(x, y), which satisfies that

(I + ∆tLn+1
1,ε )ζ1(x, y) = −(Ln+1

1,ε )2u(x, y, tn) + Ln+1
1,ε g1(x, y, tn+1) ≡ H2(x, y), in G,

ζ1(0, y) =
1

∆t

[
− ζ(0, y) + g1(0, y, tn+1)− Ln+1

1,ε u(0, y, tn)
]
,

ζ1(1, y) =
1

∆t

[
− ζ(1, y) + g1(1, y, tn+1)− Ln+1

1,ε u(1, y, tn)
]
.

(5.119)

Let |(Ln+1
1,ε )2u(x, y, tn)| ≤ C, then |H2(x, y)| ≤ C. Now, from the compatibility conditions (5.4), one can

obtain that
∂s(0, y, tn)

∂t
= −Lnε s(0, y, tn)− b

(
x, y, tn, u(x, y, tn)

)
+ g(0, y, tn),

∂s(1, y, tn)

∂t
= −Lnε s(1, y, tn)− b

(
x, y, tn, u(x, y, tn)

)
+ g(1, y, tn).

(5.120)

Now, by using the boundary conditions of the problem (5.116), fromthe equations (5.119) and (5.120), we get
(I + ∆tLn+1

1,ε )ζ1(x, y) = H2(x, y),

ζ1(0, y) = Ln+1
2,ε

∂s(0, y, tn+1)

∂t
+ C1,

ζ1(1, y) = Ln+1
2,ε

∂s(1, y, tn+1)

∂t
+ C2.

(5.121)

We see that H2(x, y) = −(Ln+1
1,ε )2u(x, y, tn) + Ln+1

1,ε g1(x, y, tn+1) is bounded (ε-uniformly) and boundary

conditions are (ε,∆t)-uniformly bounded. Hence, applying Lemma 5.14 , we obtain that |ζ1(x, y)| ≤ C.

Afterwards, one can deduce that∣∣∣∣∂ζ(x, y)

∂x

∣∣∣∣ ≤ C[1 + ε−1 exp(−m1(1− x)/ε)

]
, (x, y) ∈ G, (5.122)

by invoking Kellogg and Tsan technique [61] to the following BVP:

Ln+1
1,ε ζ(x, y) = ζ1(x, y),

ζ(0, y) = Ln+1
2,ε s(0, y, tn+1) + b

(
0, y, tn+1, s(0, y, tn+1)

)
− g2(0, y, tn+1)+

∂s(0, y, tn+1)

∂t
+O(∆t),

ζ(1, y) = Ln+1
2,ε s(1, y, tn+1) + b

(
1, y, tn+1, s(1, y, tn+1)

)
− g2(1, y, tn+1)+

∂s(1, y, tn+1)

∂t
+O(∆t).

(5.123)

Now, differentiate (5.117) with respect to x, we consider that ζ(x, y) =
∂ũn+1/2

∂x
satisfies the following problem Ln+1

1,ε ζ(x, y) = H3(x, y),

ζ(0, y) = C1, ζ(1, y) = C2ε
−1,

(5.124)
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where H3(x, y) = −∂ζ(x, y)

∂x
+
∂g1(x, y, tn+1)

∂x
− ∂v1(x, y, tn+1)

∂x

∂ũn+1/2

∂x
and we obtain that

∣∣H3(x, y)
∣∣ ≤ C[1 + ε−1 exp(−m1(1− x)/ε)

]
, (x, y) ∈ G.

Again, using the argument of Kellogg and Tsan technique [61] for (5.124), we get∣∣∣∣∂ζ(x, y)

∂x

∣∣∣∣ =

∣∣∣∣∂2ũn+1/2(x, y)

∂x2

∣∣∣∣ ≤ C[1 + ε−2 exp(−m1(1− x)/ε)

]
, (x, y) ∈ G.

Similar way, we obtained the bound (5.111) for j = 3, 4.

We now derive the bound of ũn+1/2(x, y) with respect to y by differentiating the auxiliary BVP (5.90) at

the first half with respect to y, and we get

(I + ∆tLn+1
1,ε )

∂ũn+1/2(x, y)

∂y
=

∂u(x, y, tn)

∂y
+ ∆t

∂g1(x, y, tn+1)

∂y
− ∂v1(x, y, tn+1)

∂y

∂ũn+1/2(x, y)

∂x
,

∂ũn+1/2(0, y)

∂y
= (I + ∆tLn+1

2 )
∂s(0, y, tn+1)

∂y
+ ∆t

∂v2(0, y, tn+1)

∂y

∂s(0, y, tn+1)

∂y
+

∆t
(
b
(

0,y,tn+1,s(0,y,tn+1)
)

∂y +
b
(

0,y,tn+1,s(0,y,tn+1)
)

∂u
∂s(0,y,tn+1)

∂y

)
−∆t

∂g2(0,y,tn+1)
∂y ,

∂ũn+1/2(1, y)

∂y
= (I + ∆tLn+1

2 )
∂s(1, y, tn+1)

∂y
+ ∆t

∂v2(1, y, tn+1)

∂y

∂s(1, y, tn+1)

∂y
+

∆t
(b(1, y, tn+1, s(1, y, tn+1)

)
∂y

+
b
(
1, y, tn+1, s(1, y, tn+1)

)
∂u

∂s(1, y, tn+1)

∂y

)
−∆t

∂g2(1, y, tn+1)

∂y
.

(5.125)

The following bounds are proven by using the bounds of
∂j ũn+1/2(x, y)

∂xj
for j = 0, 1, 2, 3, 4,

∣∣∣∣∣∂j ũn+1/2

∂yj
(x, y)

∣∣∣∣∣ ≤ C
[
1 + ε−j exp(−m2(1− y)/ε)

]
, (x, y) ∈ G, for j = 0, 1, 2, 3, 4. (5.126)

Part-II: Here, we prove bounds (5.112) for ũn+1(x, y). We suppose that, based on prior technical criterion,

‖Ln+1
2,ε ũn+1/2(x, y)‖G ≤ C, ‖(Ln+1

2,ε )2ũn+1/2(x, y)‖G ≤ C, ‖(Ln+1
2,ε )3ũn+1/2(x, y)‖G ≤ C.

We have
(I + ∆tLn+1

2,ε )ũn+1(x, y) + ∆t
[ ∫ 1

0

∂b
(
x, y, tn+1, ξũn+1(x, y)

)
∂u

dξ
]

ũn+1(x, y) =

ũn+1/2(x, y) + ∆t
[
g2(x, y, tn+1)− b(x, y, tn+1, 0)

]
,

ũn+1(x, 0) = s(x, 0, tn+1), ũn+1(x, 1) = s(x, 1, tn+1).

(5.127)
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Further, we define the operator

L̃n+1
2,ε = Ln+1

2,ε +
[ ∫ 1

0

∂b
(
x, y, tn+1, ξũn+1(x, y)

)
∂u

dξ
]
,

and define the following auxiliary BVP:
(I + ∆tL̃n+1

2,ε )Λ(x, y) = −L̃n+1
2,ε ũn+1/2(x, y) + g2(x, y, tn+1)− b

(
x, y, tn+1, 0

)
≡ F1(x, y),

Λ(x, 0) = −Ln+1
2,ε s(x, 0, tn+1)− b

(
x, 0, tn+1, s(x, 0, tn+1)

)
+ g2(x, 0, tn+1),

Λ(x, 1) = −Ln+1
2,ε s(x, 1, tn+1)− b

(
x, 1, tn+1, s(x, 1, tn+1)

)
+ g2(x, 1, tn+1),

(5.128)

where Λ(x, y) =
ũn+1(x, y)− ũn+1/2(x, y)

∆t
. We see that boundary conditions are (ε,∆t)-uniformly bounded

and |F1(x, y)| ≤ C. Hence, applying Lemma 5.16, we obtain that |Λ(x, y)| ≤ C. Next, we have L̃n+1
2,ε ũn+1(x, y) = −Λ(x, y)− b

(
x, y, tn, 0

)
+ g2(x, y, tn+1),

ũn+1(x, 0) = s(x, 0, tn+1), ũn+1(x, 1) = s(x, 1, tn+1).
(5.129)

Using the argument of Kellogg and Tsan technique [61], one can obtain that∣∣∣∣∂ũn+1(x, y)

∂y

∣∣∣∣ ≤ C[1 + ε−1 exp(−m2(1− y)/ε)

]
in G. (5.130)

We introduce the function Λ1(x, y) = L̃n+1
2,ε Λ(x, y), which is a solution of

(I + ∆tL̃n+1
2,ε )Λ1(x, y) =

−(L̃n+1
2,ε )2ũn+1/2(x, y)− L̃n+1

2,ε b
(
x, y, tn+1, 0

)
+ L̃n+1

2,ε g2(x, y, tn+1) ≡ F2(x, y),

Λ1(x, 0) = −L̃n+1
2,ε L̃

n+1
2,ε s(x, 0, tn+1)− L̃n+1

2,ε b
(
x, 0, tn+1, 0

)
+ L̃n+1

2,ε g2(x, 0, tn+1),

Λ1(x, 1) = −L̃n+1
2,ε L̃

n+1
2,ε s(x, 1, tn+1)− L̃n+1

2,ε b
(
x, 1, tn+1, 0

)
+ L̃n+1

2,ε g2(x, 1, tn+1).

(5.131)

We see that F2(x, y) = −(L̃n+1
2,ε )2ũn+1/2(x, y) − L̃n+1

2,ε b
(
x, y, tn+1, 0

)
+ L̃n+1

2,ε g2(x, y, tn+1) is bounded (ε-

uniformly) and boundary conditions are (ε,∆t)-uniformly bounded. Hence, applying Lemma 5.16 , we obtain

that |Λ1(x, y)| ≤ C. Afterwards, one can deduce that∣∣∣∣∂Λ(x, y)

∂y

∣∣∣∣ ≤ C[1 + ε−1 exp(−m2(1− y)/ε)

]
, (x, y) ∈ G, (5.132)

by invoking Kellogg and Tsan technique [61] to the following BVP:
L̃n+1

2,ε Λ(x, y) = Λ1(x, y),

Λ(x, 0) = −Ln+1
2,ε s(x, 0, tn+1)− b

(
x, 0, tn+1, s(x, 0, tn+1)

)
+ g2(x, 0, tn+1),

Λ(x, 1) = −Ln+1
2,ε s(x, 1, tn+1)− b

(
x, 1, tn+1, s(x, 1, tn+1)

)
+ g2(x, 1, tn+1).

(5.133)
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For second order derivative bound of ũn+1(x, y), we differentiate (5.90) with respect y, Ln+1
2,ε Λ(x, y) = F3(x, y),

Λ(x, 0) = C1, Λ(x, 1) = C2ε
−1,

(5.134)

where

F3(x, y) = −∂Λ(x, y)

∂y
+
∂g2(x, y, tn+1)

∂y
− ∂v2(x, y, tn+1)

∂y

∂ũn+1(x, y)

∂y
−(∂b(x, y, tn+1, ũn+1(x, y)

)
∂y

+
∂b
(
x, y, tn+1, ũn+1(x, y)

)
∂u

∂ũn+1(x, y)

∂y

)
,

and Λ(x, y) =
∂ũn+1(x, y)

∂y
. We obtain that |F3(x, y)| ≤ C

[
1 + ε−1 exp(−m2(1 − y)/ε)

]
, (x, y) ∈ G.

Applying the same methodology of Kellogg and Tsan to (5.134) we deduce that∣∣∣∣∂Λ(x, y)

∂y

∣∣∣∣ =

∣∣∣∣∂2ũn+1(x, y)

∂y2

∣∣∣∣ ≤ C[1 + ε−2 exp(−m2(1− y)/ε)

]
, (x, y) ∈ G. (5.135)

Similar way, we obtained the bound (5.112) for j = 3, 4.

We need stronger bound on the derivatives of ũn+1/2(x, y) and ũn+1(x, y) for the semidiscrete problem

(5.90) to establish the ε-uniform error estimate at (n+ 1/2)th and (n+ 1)th time levels. These are obtained by

decomposing the solution ũn+1/2(x, y) into smooth and layer components, as given below:

ũn+1/2(x, y) = s̃n+1/2(x, y) + z̃n+1/2(x, y), in G, (5.136)

where s̃n+1/2(x, y) can be decomposed in the form:

s̃n+1/2(x, y) = s̃n+1/2
0 (x, y) + ε̃sn+1/2

1 (x, y) + ε2s̃n+1/2
2 (x, y) + ε3s̃n+1/2

3 (x, y), in G.

Here, s̃n+1/2
0 , s̃n+1/2

1 , s̃n+1/2
2 and s̃n+1/2

3 are defined to be solutions of suitable partial differential equations

so that the smooth component s̃n+1/2 and the layer component z̃n+1/2 respectively satisfy the following linear

IBVPs: 

s̃0(x, y) = q0(x, y), in G,

T∆t
1,εs̃n+1/2(x, y) = s(x, y, tn) + ∆tg1(x, y, tn+1), in G,

s̃n+1/2(0, y) = ũn+1/2(0, y), in [0, 1],

s̃n+1/2(1, y) = s̃n+1/2
0 (1, y) + ε̃sn+1/2

1 (1, y) + ε2s̃n+1/2
2 (1, y), in [0, 1],

(5.137)

and 
z̃0(x, y) = 0, in G,

T∆t
1,εz̃n+1/2(x, y) = z(x, y, tn), in G,

z̃n+1/2(0, y) = 0, z̃n+1/2(1, y) = ũn+1/2(1, y)− s̃n+1/2(1, y), in [0, 1].

(5.138)

The following Lemma can be proved by using Lemma 5.21

Lemma 5.22. The solution s̃n+1/2 and z̃n+1/2 of the respective problems (5.137) and (5.138), and their deriva-
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tives satisfy the bounds ∣∣∣∂j s̃n+1/2(x, y)

∂xj

∣∣∣ ≤ C(1 + ε3−j
)
,

∣∣∣∂j z̃n+1/2(x, y)

∂xj

∣∣∣ ≤ C(ε−j exp
(
− m1(1− x)

ε

))
,

(5.139)

for j = 0, 1, 2, 3, 4.

Note that the similar bounds for
∂j s̃n+1/2

∂yj
and

∂j z̃n+1/2

∂yj
can be obtained as given in (5.139), which will be

used to prove Lemma 5.23.

In the same way, we decompose the solution ũn+1(x, y) into smooth and layer components, as given below:

ũn+1(x, y) = s̃n+1(x, y) + z̃n+1(x, y), (x, y) ∈ G, (5.140)

where s̃n+1(x, y) can be written in the form:

s̃n+1(x, y) = s̃n+1
0 (x, y) + ε̃sn+1

1 (x, y) + ε2s̃n+1
2 (x, y) + ε3s̃n+1

3 (x, y), in G.

Here, s̃n+1
0 , s̃n+1

1 , s̃n+1
2 and s̃n+1

3 are solutions of some partial differential equations so that the smooth com-

ponent s̃n+1(x, y) and the layer component z̃n+1(x, y) satisfy the following nonlinear IBVPs:
T∆t

2,εs̃n+1(x, y) = s̃n+1/2(x, y) + ∆tg2(x, y, tn+1), in G,

s̃n+1(x, 0) = ũn+1(x, 0), in [0, 1],

s̃n+1(x, 1) = s̃n+1
0 (x, 1) + ε̃sn+1

1 (x, 1) + ε2s̃n+1
2 (x, 1), in [0, 1],

(5.141)

and
(
I + ∆tLn+1

2,ε

)
z̃n+1(x, y) + ∆t

[
b
(
x, y, tn+1, ũn+1

)
− b
(
x, y, tn+1, s̃n+1

)]
= z̃n+1/2(x, y), in G,

z̃n+1(x, 0) = 0, z̃n+1(x, 1) = ũn+1(x, 1)− s̃n+1(x, 1), in [0, 1].
(5.142)

Lemma 5.23. The solution s̃n+1 and z̃n+1 of problems (5.141) and (5.142), and their derivatives satisfy the

bounds ∣∣∣∂j s̃n+1(x, y)

∂yj

∣∣∣ ≤ C(1 + ε3−j
)
, in G,

∣∣∣∂j z̃n+1(x, y)

∂yj

∣∣∣ ≤ C(ε−j exp
(
− m2(1− y)

ε

))
, in G,

(5.143)

for j = 0, 1, 2, 3, 4.

Proof. The proof can be obtained by using Lemma 5.21, and the approach described in [Chapter 4, Section

4.2.1].

Here, we analyze the following discrete problem, which is obtained by discretizing the semidiscrete problem
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(5.90) with respect to the spatial variable using the new finite difference scheme:

TN,∆t1,ε Ũ
n+1/2
i,j = G∆t

1,u(xi, yj), 1 ≤ i, j ≤ N − 1,

Ũ
n+1/2
i,j = sn+1/2(xi, yj), i = 0, N, yj ∈ G

N
y ,

TN,∆t2,ε Ũn+1
i,j = G∆t

2,Ũ
(xi, yj), 1 ≤ i, j ≤ N − 1,

Ũn+1
i,j = sn+1(xi, yj), j = 0, N, xi ∈ G

N
x , 0 ≤ n ≤M − 1,

(5.144)

where the discrete operators TN,∆t1,ε and TN,∆t2,ε are given by

TN,∆t1,ε Ũ
n+1/2
i,j =



(
I + ∆tLn+1

1,N,mcd

)
Ũ
n+1/2
i,j ,

for 1 ≤ i ≤ N/2, yj ∈ GNy , and when ε > ‖v1‖N−1,

Ũ
n+1/2
i−1/2,j + ∆tLn+1

1,N,mupŨ
n+1/2
i,j ,

for 1 ≤ i ≤ N/2, yj ∈ GNy , and when ε ≤ ‖v1‖N−1,(
I + ∆tLn+1

1,N,mcd

)
Ũ
n+1/2
i,j , forN/2 < i ≤ N − 1, yj ∈ GNy ,

and

TN,∆t2,ε Ũn+1
i,j =



(
I + ∆tLn+1

2,N,mcd

)
Ũn+1
i,j + ∆tb

(
xi, yj , tn+1, Ũ

n+1
i,j

)
,

for 1 ≤ j ≤ N/2, xi ∈ GNx , and when ε > ‖v2‖N−1,

Ũn+1
i,j−1/2 + ∆tLn+1

2,N,mupŨ
n+1
i,j + ∆tb

(
xi, yj−1/2, tn+1Ũ

n+1
i,j−1/2

)
,

for 1 ≤ j ≤ N/2, xi ∈ GNx , and when ε ≤ ‖v2‖N−1,(
I + ∆tLn+1

2,N,mcd

)
Ũn+1
i,j ,+∆tb

(
xi, yj , tn+1, Ũ

n+1
i,j

)
,

forN/2 < j ≤ N − 1, xi ∈ GNx ,

and right-side vectors G∆t
1,u(xi, yj) and G∆t

2,Ũ
(xi, yj) are given by

G∆t
1,u(xi, yj) =



u(xi, yj , tn) + ∆tg1(xi, yj , tn+1),

for 1 ≤ i ≤ N/2, yj ∈ GNy , and when ε > ‖v1‖N−1,

u(xi, yj , tn) + u(xi−1, yj , tn)

2
+ ∆tgn+1

1,i− 1
2
,j
,

for 1 ≤ i ≤ N/2, yj ∈ GNy , and when ε ≤ ‖v1‖N−1,

u(xi, yj , tn) + ∆tg1(xi, yj , tn+1), forN/2 < i ≤ N − 1, yj ∈ GNy ,
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and

G∆t
2,Ũ

(xi, yj) =



Ũ
n+1/2
i,j + ∆tg2(xi, yj , tn+1),

for 1 ≤ j ≤ N/2, xi ∈ GNx , and when ε > ‖v2‖N−1,

Ũ
n+1/2
i,j−1/2 + ∆tgn+1

2,i,j− 1
2

,

for 1 ≤ j ≤ N/2, xi ∈ GNx , and when ε ≤ ‖v2‖N−1,

Ũ
n+1/2
i,j + ∆tg2(xi, yj , tn+1), for 1 ≤ j ≤ N/2, xi ∈ G

N
x .

Here, we set

gn+1
1,i− 1

2
,j

= g1(xi− 1
2
, yj , tn+1), vn+1

1,i− 1
2
,j

= v1(xi− 1
2
, yj , tn+1),

and

gn+1
2,i,j− 1

2

= g2(xi, yj− 1
2
, tn+1), vn+1

2,i,j− 1
2

= v2(xi, yj− 1
2
, tn+1),

As like the continuous solution, we consider decomposition of the numerical solution into the smooth compo-

nent and layer component, i.e., we decompose Ũn+1/2
i,j and Ũn+1

i,j as

Ũ
n+1/2
i,j = S̃

n+1/2
i,j + Z̃

n+1/2
i,j , Ũn+1

i,j = S̃n+1
i,j + Z̃n+1

i,j , in GN ,

where the discrete functions S̃n+1/2, Z̃n+1/2, S̃n+1 and Z̃n+1 are respectively the solutions of the following

problems: 

TN,∆t1,ε S̃
n+1/2
i,j = G∆t

1,s (xi, yj), 1 ≤ i, j ≤ N − 1,

S̃
n+1/2
0,j = s̃n+1/2(0, yj , tn+1), S̃

n+1/2
N,j = s̃n+1/2(1, yj , tn+1), yj ∈ G

N
y ,

TN,∆t1,ε Z̃
n+1/2
i,j = z(xi, yj , tn), 1 ≤ i, j ≤ N − 1,

Z̃
n+1/2
0,j = z̃n+1/2(0, yj , tn+1), Z̃

n+1/2
N,j = z̃n+1/2(1, yj , tn+1), yj ∈ G

N
y ,

(5.145)

and 

TN,∆t2,ε S̃n+1
i,j = G∆t

2,S̃
(xi, yj), 1 ≤ i, j ≤ N − 1,

S̃n+1
i,0 = s̃n+1(xi, 0, tn+1), S̃n+1

i,N = s̃n+1(xi, 1, tn+1), xi ∈ G
N
x ,

TN,∆t2,ε Ũn+1
i,j − T

N,∆t
2,ε S̃n+1

i,j = Z̃
n+1/2
i,j , 1 ≤ i, j ≤ N − 1,

Z̃n+1
i,0 = z̃n+1(xi, 0, tn+1), Z̃n+1

i,N = z̃n+1(xi, 1, tn+1), xi ∈ G
N
x .

(5.146)

At first, we proceed to estimate the local error |Ũn+1/2
i,j − ũn+1/2(xi, yj)|.

Lemma 5.24. Let yj ∈ G
N
y . Then, the local error associated to the smooth component at (n+ 1/2)th time level

satisfies the following estimate:

∣∣S̃n+1/2
i,j − s̃n+1/2(xi, yj)

∣∣ ≤ CN−2, for xi ∈ G
N
x . (5.147)

Proof. From problems (5.137) and (5.145), we derive bound of the local truncation error τN,∆t
1,̃sn+1/2(xi, yj) =

TN,∆t1,ε

[
S̃
n+1/2
i,j − s̃n+1/2(xi, yj)

]
by using the derivative bound of s̃n+1/2 and Lemma 5.22. For 1 ≤ i < N/2

207



and when ε > ‖v1‖N−1, the local truncation error is given by

τ
N,∆t

1,̃sn+1/2(xi, yj) = ∆t
[
Ln+1

1,ε − L
n+1
1,N,mcd

]̃
sn+1/2(xi, yj).

∴
∣∣∣τN,∆t

1,̃sn+1/2(xi, yj)
∣∣∣ ≤ ∆t

[
Cεhxi

∫ xi+1

xi−1

∣∣∣∣∂4s̃n+1/2

∂ξ4

∣∣∣∣dξ + Chxi

∫ xi+1

xi−1

∣∣∣∣∂3s̃n+1/2

∂ξ3

∣∣∣∣dξ],
≤ C∆tN−2.

(5.148)

Next, for i = N/2 and when ε > ‖v1‖N−1, we deduce that∣∣∣τN,∆t
1,̃sn+1/2(xi, yj)

∣∣∣ ≤ ∆t
[
Ln+1

1,ε − L
n+1
1,N,mcd

]̃
sn+1/2(xi, yj),

≤ C∆t
(
ε+N−1

)
N−1.

(5.149)

Now, for 1 ≤ i ≤ N/2 and when ε ≤ ‖v1‖N−1, the truncation error is given by

τ
N,∆t

1,̃sn+1/2(xi, yj) = ∆t
[(
Ln+1

1,ε s̃n+1/2
)
i− 1

2
,j
− Ln+1

1,N,mups̃n+1/2(xi, yj)
]
.

∴
∣∣∣τN,∆t

1,̃sn+1/2(xi, yj)
∣∣∣ ≤ ∆t

[
Cε

∫ xi+1

xi−1

∣∣∣∣∂3s̃n+1/2

∂ξ3

∣∣∣∣dξ + Chxi

∫ xi+1

xi−1

∣∣∣∣∂3s̃n+1/2

∂ξ3

∣∣∣∣dξ],
≤ C∆tN−2.

(5.150)

Finally, for N/2 < i < N ,

∣∣∣τN,∆t
1,̃sn+1/2(xi, yj)

∣∣∣ ≤ ∆t

[
Cεhxi

∫ xi+1

xi−1

∣∣∣∣∂4s̃n+1/2

∂ξ4

∣∣∣∣dξ + Chxi

∫ xi+1

xi−1

∣∣∣∣∂3s̃n+1/2

∂ξ3

∣∣∣∣dξ],
≤ C∆tN−2.

(5.151)

Consider the following discrete functions in the domain 0 ≤ i ≤ N , for the case ε > ‖v1‖N−1:

Ψ±(xi, yj) = −CN−2xi − CN−2ϕ1,i ±
(
S̃
n+1/2
i,j − s̃n+1/2(xi, yj)

)
,

where

ϕ1,i =


xi

1− η1
, for 0 ≤ i ≤ N/2,

1, for N/2 ≤ i ≤ N,

and apply Corollary 5.3 for the operator T̃N,∆t1,ε,(V,W ) together with the local truncation bounds in (5.148), (5.149)

and (5.151), we obtain that

∣∣S̃n+1/2
i,j − s̃n+1/2(xi, yj)

∣∣ ≤ CN−2, for 0 ≤ i ≤ N. (5.152)

In the same way, we choose the following discrete functions in the domain 0 ≤ i ≤ N , for the case ε ≤
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‖v1‖N−1:

Ψ±(xi, yj) = −CN−2xi ±
(
S̃
n+1/2
i,j − s̃n+1/2(xi, yj)

)
,

and apply Corollary 5.3 for the operator T̃N,∆t1,ε,(V,W ) together with the local truncation bounds in (5.150) and

(5.151), to obtain that ∣∣S̃n+1/2
i,j − s̃n+1/2(xi, yj)

∣∣ ≤ CN−2, for 0 ≤ i ≤ N. (5.153)

Hence, the proof is over.

Lemma 5.25. Let λl is a positive constant such that λl < ml/2, l = 1, 2. Then, under the hypothesis (5.103)

and (5.104) of Lemma 5.19, it follows that for l = 1, 2,

T̃N,∆tl,ε,(V,W )Θl,k(λl) ≥



C∆t

ε
Θ2,k(λl), for 1 ≤ k ≤ N/2, and when ε > ‖vl‖N−1,

C∆t

Hl
Θl,k(λl), for 1 ≤ k ≤ N/2, and when ε ≤ ‖vl‖N−1,

C∆t

ε
Θl,k(λl), for N/2 < k ≤ N − 1.

Proof. The approach described in [Chapter 2, Lemma 2.12] was used to prove this lemma.

In the next lemma, we deduce the error estimate corresponding to the layer component Z̃n+1/2
i,j .

Lemma 5.26. Let yj ∈ G
N
y . If λ1 < m1/2 and η1,0 ≥ 2/λ1, the local error associated to the layer component

at (n+ 1/2)th time level satisfies the following estimate:

∣∣Z̃n+1/2
i,j − z̃n+1/2(xi, yj)

∣∣ ≤
 CN−2, for xi ∈ [0, 1− η1] ∩ GNx ,

CN−2 ln2N, for xi ∈ (1− η1, 1] ∩ GNx .
(5.154)

Proof. From the equation (5.138) and Lemma 5.22, we have Z̃n+1/2
0,j = 0 and |Z̃n+1/2

N,j | = |z̃n+1/2(1, yj)| ≤ C.

We choose the discrete functions for 0 ≤ i ≤ N ,

Ψ±(xi, yj) = −CΘ1,i(λ1)± Z̃n+1/2
i,j , (5.155)

for sufficiently large C. By Corollary 5.3 for the operator T̃N,∆t1,ε,(V,W ) and invoking Lemma 5.25, we obtain that

∣∣Z̃n+1/2
i,j

∣∣ ≤ CΘ1,i(λ1). (5.156)

Now, for λ1 < m1/2, combining (5.156) and Lemma 5.22, we get

∣∣Z̃n+1/2
i,j − z̃n+1/2(xi, yj)

∣∣ ≤ ∣∣Z̃n+1/2
i,j

∣∣+
∣∣z̃n+1/2(xi, yj)

∣∣ ≤ CΘ1,i(λ1). (5.157)

Again, for η1,0 ≥ 2
λ1

, it follows from [Chapter 3, Lemma 3.8] that

Θ1,N/2(λ1) ≤ CN−2, (5.158)
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and hence, in particular for 1 ≤ i ≤ N/2, the equations (5.157) and (5.158) together imply that

∣∣Z̃n+1/2
i,j − z̃n+1/2(xi, yj)

∣∣ ≤ CN−2. (5.159)

Next, we estimate
∣∣Z̃n+1/2

i,j − z̃n+1/2(xi, yj)
∣∣ on the fine part of the mesh by using consistency and barrier

function argument on the interval [1 − η1, 1] × [0, 1]. Here, we have
∣∣Z̃n+1/2

N/2,j − z̃n+1/2(xN/2, yj)
∣∣ ≤ CN−2

and
∣∣Z̃n+1/2

N,j − z̃n+1/2(xN , yj)
∣∣ = 0. From (5.138) and (5.145), we obtain the local truncation error by using

the derivative bound of z̃n+1/2 and the Lemma 5.22. For N/2 < i < N, we have

τ
N,∆t

1,z̃n+1/2(xi, yj) = ∆t
[
Ln+1

1,ε − L
n+1
1,N,mcd

]
z̃n+1/2(xi, yj),

∴
∣∣∣τN,∆t

1,z̃n+1/2(xi, yj)
∣∣∣ ≤ ∆t

[
Cεhxi

∫ xi+1

xi−1

∣∣∣∣∂4z̃n+1/2

∂ξ4

∣∣∣∣dξ + Chxi

∫ xi+1

xi−1

∣∣∣∣∂3z̃n+1/2

∂ξ3

∣∣∣∣dξ],
≤ C∆tN−2 ln2Nε−1 exp(−m1(1− xi)/ε).

(5.160)

We choose the discrete functions for N/2 ≤ i ≤ N,

Ψ±(xi, yj) = −C(N−2 ln2N)Θ1,i(λ1)±
(
Z̃
n+1/2
i,j − z̃n+1/2(xi, yj)

)
,

Lemma 5.25 implies that T̃N,∆t1,ε,(V,W )Θ1,i(λ1) ≥ C∆t
ε Θ1,i(λ1), forN/2 < i ≤ N−1, and hence, use of (5.160)

for λ1 < m1/2 yields that

T̃N,∆t1,ε,(V,W )Ψ
±(xi, yj) ≤ 0.

Now, apply Corollary 5.3 for the operator T̃N,∆t1,ε,(V,W ) to get Ψ±(xi, yj) ≤ 0, for all N/2 ≤ i ≤ N . Hence, the

proof is over.

We decompose the error at (n+ 1/2)th level in the following form:

Ũ
n+1/2
i,j − ũn+1/2(xi, yj) = S̃

n+1/2
i,j − s̃n+1/2(xi, yj) + Z̃

n+1/2
i,j − z̃n+1/2(xi, yj), 0 ≤ i, j ≤ N.

Hence, the required ε-uniform error estimate at (n+ 1/2)th level are given in the following Lemma.

Lemma 5.27. Let yj ∈ G
N
y . If λ1 < m1/2, the local error associated with the discrete problem (5.144) at

(n+ 1/2)th time level satisfies the following estimate:

∣∣Ũn+1/2
i,j − ũn+1/2(xi, yj)

∣∣ ≤
 CN−2, for xi ∈ [0, 1− η1] ∩ GNx ,

CN−2 ln2N, for xi ∈ (1− η1, 1] ∩ GNx .
(5.161)

Next, we proceed to estimate the local error
∣∣Ũn+1

i,j − ũn+1(xi, yj)
∣∣.

Lemma 5.28. Let xi ∈ G
N
x . Then, the local error associated to the smooth component at (n + 1)th time level

satisfies the following estimate:

∣∣S̃n+1
i,j − s̃n+1(xi, yj)

∣∣ ≤ CN−2, for yj ∈ G
N
y . (5.162)
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Proof. For 1 ≤ j < N and when ε > ‖v2‖N−1, from the problems (5.141) and (5.146), we obtain that(
I + ∆tLn+1

2,mcd,N

)
S̃n+1
i,j + ∆t

[
b
(
xi, yj , tn+1, S̃

n+1
i,j

)
− b
(
xi, yj , tn+1, s̃n+1(xi, yj)

)]
= S̃

n+1/2
i,j − s̃n+1/2(xi, yj) +

(
I + ∆tLn+1

2,ε

)̃
sn+1(xi, yj).

The above equation can be rewritten in the following form:

(
I + ∆tLn+1

2,mcd,N

)(
S̃n+1
i,j − s̃n+1(xi, yj)

)
+ ∆t

[ ∫ 1

0

∂b
(
xi, yj , tn+1, S̃

∗,n+1
i,j (ξ)

)
∂u

dξ
](
S̃n+1
i,j − s̃n+1(xi, yj)

)
= S̃

n+1/2
i,j − s̃n+1/2(xi, yj) + ∆t

[
− ε
( ∂2

∂y2
− δ2

y

)
s̃n+1(xi, yj) + v2(xi, yj , tn+1)

( ∂
∂y
−D∗

y

)
s̃n+1(xi, yj)

]
,

(5.163)

where S̃∗,n+1
i,j (ξ) = s̃n+1(xi, yj) + ξ

(
S̃n+1
i,j − s̃n+1(xi, yj)

)
. Now, for any mesh function Ψ we introduce a

discrete operator LN,∆t
ε,S̃∗ given by

LN,∆t
2,ε,S̃∗Ψ = T̃N,∆t

2,ε,(S̃,̃s)
Ψ.

Afterwards, we derive bounds of the local truncation error τN,∆t
2,̃sn+1(xi, yj) = LN,∆t

2,ε,S̃∗

[
S̃n+1
i,j − s̃n+1(xi, yj)

]
from (5.163) by using the derivative bounds of s̃n+1 given in Lemma 5.23. For 1 ≤ j < N/2, to the case

ε > ‖v2‖N−1, we obtain that∣∣τN,∆t
2,̃sn+1(xi, yj)

∣∣ ≤ ∣∣(S̃n+1/2
i,j − s̃n+1/2(xi, yj)

)∣∣+
∆t

[
Cεhyj

∫ yj+1

yj−1

∣∣∣∣∂4s̃n+1

∂ξ4

∣∣∣∣dξ + Chyj

∫ yj+1

yj−1

∣∣∣∣∂3s̃n+1

∂ξ3

∣∣∣∣dξ],
≤ CN−2 + C∆tN−2,

(5.164)

and for j = N/2, to the case ε > ‖v2‖N−1,∣∣τN,∆t
2,̃sn+1(xi, yj)

∣∣ ≤ ∣∣(S̃n+1/2
i,j − s̃n+1/2(xi, yj)

)∣∣+
∆t

[
Cε

∫ yj+1

yj−1

∣∣∣∣∂3s̃n+1

∂ξ3

∣∣∣∣dξ + Chyj

∫ yj+1

yj−1

∣∣∣∣∂3s̃n+1

∂ξ3

∣∣∣∣dξ],
≤ CN−2 + C∆t(ε+N−1)N−1.

(5.165)

Now, for the region 1 ≤ j ≤ N/2, when ε ≤ ‖v2‖N−1, we deduce that

S̃n+1
i,j− 1

2

+ ∆tLn+1
2,mup,N S̃

n+1
i,j + ∆t

[
b
(
xi, yj− 1

2
, tn+1, S̃

n+1
i,j− 1

2

)
− b
(
xi, yj− 1

2
, tn+1, s̃n+1(xi, yj− 1

2
)
)]

= S̃
n+1/2

i,j− 1
2

− s̃n+1/2(xi, yj− 1
2
) + s̃n+1(xi, yj− 1

2
) + ∆tLn+1

2,ε s̃n+1(xi, yj− 1
2
).

(5.166)
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We rewrite the above equation as follows:(
S̃n+1
i,j− 1

2

− s̃n+1(xi, yj−1) + s̃n+1(xi, yj)

2

)
+ ∆tLn+1

2,mup,N

(
S̃n+1
i,j − s̃n+1(xi, yj)

)
+

∆t
[ ∫ 1

0

∂b
(
xi, yj− 1

2
, tn+1, S̃

∗,n+1

i,j− 1
2

(ξ)
)

∂u
dξ
](
S̃n+1
i,j− 1

2

− s̃n+1(xi, yj−1) + s̃n+1(xi, yj)

2

)
= S̃

n+1/2

i,j− 1
2

− s̃n+1/2(xi, yj− 1
2
) + ∆t

[(
Ln+1

2,ε s̃n+1
)
i,j− 1

2

− Ln+1
2,mup,N s̃n+1(xi, yj)

]
+O(hyj )

2,

(5.167)

where S̃∗,n+1

i,j− 1
2

(ξ) =
s̃n+1(xi, yj−1) + s̃n+1(xi, yj)

2
+ξ
(
S̃n+1
i,j− 1

2

− s̃n+1(xi, yj−1) + s̃n+1(xi, yj)

2

)
. Afterwards,

from (5.167) and by using the derivative bounds of s̃n+1 given in Lemma 5.23, we obtain that∣∣τN,∆t
2,̃sn+1(xi, yj)

∣∣ ≤ ∣∣(S̃n+1/2
i,j−1/2 − s̃n+1/2(xi, yj−1/2)

)∣∣+
∆t

[
Cε

∫ yj+1

yj−1

∣∣∣∣∂3s̃n+1

∂ξ3

∣∣∣∣dξ + Chyj

∫ yj+1

yj−1

∣∣∣∣∂3s̃n+1

∂ξ3

∣∣∣∣dξ],
≤ CN−2 + C∆tN−2.

(5.168)

Finally, for N/2 < j < N ,∣∣τN,∆t
2,̃sn+1(xi, yj)

∣∣ ≤ ∣∣(S̃n+1/2
i,j − s̃n+1/2(xi, yj)

)∣∣+
∆t

[
Cεhyj

∫ yj+1

yj−1

∣∣∣∣∂4s̃n+1

∂ξ4

∣∣∣∣dξ + Chyj

∫ yj+1

yj−1

∣∣∣∣∂3s̃n+1

∂ξ3

∣∣∣∣dξ],
≤ CN−2 + C∆tN−2.

(5.169)

Consider the following discrete functions in the domain 0 ≤ j ≤ N , for the case ε > ‖v2‖N−1:

Ψ±(xi, yj) = −CN−2yj − CN−2ϕ2,j ±
(
S̃n+1
i,j − s̃n+1(xi, yj)

)
,

where

ϕ2,j =


yj

1− η2
, for 0 ≤ j ≤ N/2,

1, for N/2 ≤ j ≤ N,

and apply Corollary 5.3 for the operator LN,∆t
2,ε,S̃∗ together with the local truncation bound in (5.164), (5.165)

and (5.169), to obtain that

∣∣S̃n+1
i,j − s̃n+1(xi, yj)

∣∣ ≤ CN−2, for 0 ≤ j ≤ N. (5.170)

In the same way, we choose the following discrete functions in the domain 0 ≤ j ≤ N , for the case ε ≤
‖v2‖N−1:

Ψ±(xi, yj) = −CN−2yj ±
(
S̃n+1
i,j − s̃n+1(xi, yj)

)
,
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and apply Corollary 5.3 for the operator LN,∆t
2,ε,S̃∗ together with the local truncation bound in (5.168) and (5.169),

to obtain that ∣∣S̃n+1
i,j − s̃n+1(xi, yj)

∣∣ ≤ CN−2, for 0 ≤ j ≤ N. (5.171)

Hence, the proof is over.

Lemma 5.29. Let xi ∈ G
N
x . If λl < ml/2 and ηl,0 ≥ 2/λl, l = 1, 2, the local error associated to the layer

component at (n+ 1)th time level satisfies the following estimate:

∣∣Z̃n+1
i,j − z̃n+1(xi, yj)

∣∣ ≤
 CN−2, for yj ∈ [0, 1− η2] ∩ GNy ,

CN−2 ln2N, for yj ∈ (1− η2, 1] ∩ GNy .
(5.172)

Proof. Here, for any mesh function Ψ, we introduce a linear discrete operator LN,∆t
2,ε,Z̃∗ defined by

LN,∆t
2,ε,Z̃∗Ψ = T̃N,∆t

2,ε,(Ũ ,S̃)
Ψ,

where Z̃∗,n+1
j (ξ) = S̃n+1

i,j + ξ
(
Ũn+1
i,j − S̃

n+1
i,j

)
. Then, we rewrite the discrete problem (5.146) in the following

form:  LN,∆t
2,ε,Z̃∗Z̃

n+1
i,j = Z̃

n+1/2
i,j , for 1 ≤ i, j ≤ N − 1,

Z̃n+1
i,0 = z̃n+1(xi, y0), Z̃n+1

i,N = z̃n+1(xi, yN ).

From the equation (5.142) and Lemma 5.23, we have Z̃n+1
0,j = 0 and |Z̃n+1

N,j | = |z̃n+1(1, yj)| ≤ C. We choose

the discrete functions for 0 ≤ j ≤ N ,

Ψ±(xi, yj) = −CΘ2,j(λ2)± Z̃n+1
i,j , (5.173)

for sufficiently large C. By Corollary 5.3 for the operator LN,∆t
2,ε,Z̃∗ and invoking Lemma 5.25, we obtain that

∣∣Z̃n+1
i,j

∣∣ ≤ CΘ2,j(λ2). (5.174)

Now, for λ2 < m2/2, combining (5.174) and Lemma 5.23, we get

∣∣Z̃n+1
i,j − z̃n+1(xi, yj)

∣∣ ≤ ∣∣Z̃n+1
i,j

∣∣+
∣∣z̃n+1(xi, yj)

∣∣ ≤ CΘ2,j(λ2). (5.175)

Again, for η2,0 ≥ 2
λ2

, it follows from [Chapter 3, Lemma 3.8] and the equation (5.175) for 1 ≤ j ≤ N/2,

∣∣Z̃n+1
i,j − z̃n+1(xi, yj)

∣∣ ≤ CN−2. (5.176)

Next, we estimate
∣∣Z̃n+1

i,j − z̃n+1(xi, yj)
∣∣ on the fine part of the mesh by using consistency and barrier function

argument on the interval [0, 1]× [1−η2, 1]. Here, we have
∣∣Z̃n+1

i,N/2− z̃n+1(xi, yN/2)
∣∣ ≤ CN−2 and

∣∣Z̃n+1/2
i,N −

z̃n+1/2(xi, yN )
∣∣ = 0. From (5.142) and (5.146), we obtain local truncation error by using the derivative bound
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of z̃n+1, from the Lemma 5.23. For N/2 < j < N , we have(
I + ∆tLn+1

2,mcd,N

)
Z̃n+1
i,j + ∆t

[
b
(
xi, yj , tn+1, Ũ

n+1
i,j

)
− b
(
xi, yj , tn+1, ũn+1(xi, yj)

)]
= Z̃

n+1/2
i,j − z̃n+1/2(xi, yj) +

(
I + ∆tLn+1

2,ε

)
z̃n+1(xi, yj)+

∆t
[
b
(
xi, yj , tn+1, S̃

n+1
i,j

)
− b
(
xi, yj , tn+1, s̃n+1(xi, yj)

)]
.

(5.177)

From the above equation, we have

(
I + ∆tLn+1

2,mcd,N

)(
Z̃n+1
i,j − z̃n+1(xi, yj)

)
+ ∆t

[ ∫ 1

0

∂b
(
xi, yj , tn+1, Ũ

∗,n+1
i,j (ξ)

)
∂u

dξ
](
Z̃n+1
i,j − z̃n+1(xi, yj)

)
= Z̃

n+1/2
i,j − z̃n+1/2(xi, yj) + ∆t

[
− ε
( ∂2

∂y2
− δ2

y

)
z̃n+1(xi, yj) + v2(xi, yj , tn+1)

( ∂
∂y
−D∗

y

)
z̃n+1(xi, yj)

]
+

∆t
[ ∫ 1

0

∂b
(
xi, yj , tn+1, S̃

∗,n+1
i,j (ξ)

)
∂u

dξ −
∫ 1

0

∂b
(
xi, yj , tn+1, Ũ

∗,n+1
i,j (ξ)

)
∂u

dξ
](
S̃n+1
i,j − s̃n+1(xi, yj)

)
,

(5.178)

where S̃∗,n+1
i,j (ξ) = s̃n+1(xi, yj) + ξ

(
S̃n+1
i,j − s̃n+1(xi, yj)

)
and Ũ∗,n+1

i,j (ξ) = ũn+1(xi, yj) + ξ
(
Ũn+1
i,j −

ũn+1(xi, yj)
)
. Now, for any mesh function Ψ, we introduce a discrete operator LN,∆t

2,ε,Ũ∗ given by

LN,∆t
2,ε,Ũ∗Ψ = T̃N,∆t

2,ε,(Ũ ,ũ)
Ψ.

Now, using derivative bound of z̃n+1(x, y) from Lemma 5.23, and Lemma 5.28, we obtain from (5.178) that

for N/2 < j < N ,∣∣LN,∆t
2,ε,Ũ∗

(
Z̃n+1
i,j − z̃n+1(xi, yj)

)∣∣ ≤ ∣∣(Z̃n+1/2
i,j − z̃n+1/2(xi, yj)

)∣∣+
∆t

[
Cεhyj

∫ yj+1

yj−1

∣∣∣∣∂4z̃n+1

∂ξ4

∣∣∣∣dξ + Chyj

∫ yj+1

yj−1

∣∣∣∣∂3z̃n+1

∂ξ3

∣∣∣∣dξ]+ C∆t|
(
S̃n+1
i,j − s̃n+1(xi, yj)

)
|,

≤ CN−2 ln2N + C∆tN−2 ln2Nε−1 exp(−m2(1− yj)/ε) + C∆tN−2.

(5.179)

We choose the discrete functions for N/2 ≤ j ≤ N,

Ψ±(xi, yj) = −C(N−2 ln2N)yj − C
(
N−2 ln2N

)
Θ2,j(λ2)±

(
Z̃n+1
i,j − z̃n+1(xi, yj)

)
.

Lemma 5.25 implies that LN,∆t
2,ε,Ũ∗Θ2,j(λ2) ≥ C∆t

ε Θ2,j(λ2), for N/2 < j ≤ N − 1, and hence, use of (5.179)

for λ2 < m2/2 yields that

LN,∆t
2,ε,Ũ∗Ψ±(xi, yj) ≤ 0.

Now, apply Corollary 5.3 for the operator LN,∆t
2,ε,Ũ∗ to get Ψ±(xi, yj) ≤ 0, for all N/2 ≤ j ≤ N . Hence, the

proof is over.

We decompose the error at (n+ 1)th level in the following form:

Ũn+1
i,j − ũn+1(xi, yj) = S̃n+1

i,j − s̃n+1(xi, yj) + Z̃n+1
i,j − z̃n+1(xi, yj), 0 ≤ i, j ≤ N.
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Hence, the required ε-uniform error estimate at (n+ 1)th level are given in the following Lemma.

Lemma 5.30. If λl < ml/2 and ηl,0 ≥ 2/λl, l = 1, 2, the error associated with the discrete problem (5.144) at

(n+ 1)th time level satisfies the following estimate:

∣∣Ũn+1
i,j − ũn+1(xi, yj)

∣∣ ≤
 CN−2, for (xi, yj) ∈

(
[0, 1− η1]× [0, 1− η2]

)
∩ GN ,

CN−2 ln2N, otherwise.
(5.180)

5.4.2.2 Uniform convergence of the proposed fractional-step method
We define En+1(xi, yj) = [Un+1

i,j − u(xi, yj , tn+1)], for (xi, yj) ∈ G
N , as the global error related to the fully

discrete scheme (5.102) at the time level tn+1. Now, to show the ε-uniform convergence of the fully discrete

scheme (5.102), we rewrite the global error in the following form:

En+1(xi, yj) = ẽn+1(xi, yj) + Ẽn+1(xi, yj) + [Un+1
i,j − Ũ

n+1
i,j ]. (5.181)

Here, ẽn+1(xi, yj) = [ũn+1(xi, yj)−u(xi, yj , tn+1)] and Ẽn+1(xi, yj) = [Ũn+1
i,j − ũn+1(xi, yj)], respectively,

denote the local error related to the time semidiscretization of the IBVP (5.1)-(5.3) and the spatial discretization

of the auxiliary BVP (5.90) at time level tn+1. We see that, the term [Un+1
i,j −Ũ

n+1
i,j ] can be written as the solution

of the following systems:
LN,∆t1,ε LN,∆t2,ε Rn+1(xi, yj) + ∆t

[ ∫ 1

0

∂b
(
xi, yj , tn+1, Ũ

n+1
i,j + ξ(Un+1

i,j − Ũ
n+1
i,j )

)
∂u

dξ
]
Rn+1(xi, yj) =

Uni,j − u(xi, yj , tn) +O(∆t)2, in GN ,

Rn+1(xi, yj) = 0, ∂GN ,

where Rn+1(xi, yj) = [Un+1
i,j − Ũ

n+1
i,j ], and by employing the discrete maximum principle in Lemma 5.20, we

obtain that ∥∥∥{Rn+1(xi, yj)
}
i,j

∥∥∥ ≤ ∥∥∥{En(xi, yj)
}
i,j

∥∥∥+ C(∆t)2. (5.182)

Afterwards, from (5.181) and (5.182), we obtain that∥∥∥{En+1(xi, yj)
}
i,j

∥∥∥ ≤ ∥∥∥{ẽn+1(xi, yj)
}
i,j

∥∥∥+
∥∥∥{Ẽn+1(xi, yj)

}
i,j

∥∥∥+
∥∥∥{En(xi, yj)

}
i,j

∥∥∥+ C(∆t)2,

for (xi, yj) ∈ G
N
.

(5.183)

Now, by invoking the estimate obtained in Lemma 5.18 and the estimate 5.180 in (5.183), with the assumption

that N−δ ≤ C∆t, 0 < δ < 1, we obtain the following estimate of the global error.

Theorem 5.5 (Global error). Assume that the conditions given in (5.103) and (5.104) hold for N ≥ N0. Then,

if λl < ml/2, ηl,0 ≥ 2/λl, l = 1, 2, the global error associated with the fully discrete scheme (5.102) at time
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level tn+1, satisfies the following estimate:

∥∥∥{Un+1
i,j

}
i,j
−
{

u(xi, yj , tn+1)
}
i,j

∥∥∥ ≤


C
(
N−2+δ + ∆t

)
,

for (xi, yj) ∈
(

[0, 1− η1]× [0, 1− η2]
)
∩ GN ,

C
(
N−2+δ ln2N + ∆t

)
, for otherwise,

(5.184)

where N and ∆t are such that N−δ ≤ C∆t with 0 < δ < 1.

Remark 5.4. Note the temporal accuracy in Theorem 5.4 holds under the alternative boundary data given in

(5.83).

5.5 The temporal Richardson extrapolation

In this section, we analyze the Richardson extrapolation in the time variable in order to improve the order of

uniform convergence in the temporal direction established in Theorem 5.5 so that we can produce higher-order

accurate numerical solution at low computational cost. On the domain [0, T ], we construct a fine mesh, denoted

by Λ∆t/2 =
{
t̃n
}2M

n=0
, by bisecting each mesh interval of Λ∆t. So, t̃n+1− t̃n = T/2M = ∆t/2 is the step-size

Λ∆t/2. To serve this purpose, we follow the approach given in [Chapter 3, Section 3.5].

Let u∆t(x, y, tn+1) and u∆t/2(x, y, t̃n+1) be the respective solutions of the time-semidiscrete problem

(5.81) on the mesh G×∧∆t and G×∧∆t/2 such that u∆t(xi, yj , tn+1) ≈ UN,∆t(xi, yj , tn+1) and u∆t/2(xi, yj , t̃n+1) ≈
UN,∆t/2(xi, yj , t̃n+1), (xi, yj) ∈ G

N . Utilizing global error Theorem 5.4, one can show that when ∆t → 0,

the global error of time semidiscrete scheme (5.81) hold the relation

u∆t(x, y, tn+1) = u(x, y, tn+1) + ∆tΨ(x, y, tn+1) + R(x, y, tn+1), (5.185)

where Ψ is a certain smooth function defined on G × Λ∆t and independent of ∆t ; R is the remainder term

defined on G × Λ∆t. We begin by assuming that the expansion (5.185) is valid. We substitute u∆t(x, y, tn+1)

in (5.81) and obtain that

u(x, y, 0) + ∆tΨ(x, y, 0) + R(x, y, 0) = q0(x, y), (x, y) ∈ G,(
I + ∆tLn+1

1,ε

)[(
I + ∆tLn+1

2,ε

)(
u(x, y, tn+1) + ∆tΨ(x, y, tn+1) + R(x, y, tn+1)

)
+

∆tb
(
x, y, tn+1, u(x, y, tn+1) + ∆tΨ(x, y, tn+1) + R(x, y, tn+1)

)
−∆tg2(x, y, tn+1)

]
=

u(x, y, tn) + ∆tΨ(x, y, tn) + R(x, y, tn) + ∆tg1(x, y, tn+1), (x, y, tn+1) ∈ G× Λ∆t,

u(x, y, tn+1) + ∆tΨ(x, y, tn+1) + R(x, y, tn+1) = s(x, y, tn+1), (x, y) ∈ ∂G× Λ∆t,

n = 0, 1, . . . ,M − 1.

(5.186)

By following the approach in [60] to the problem (5.186), we get the function Ψ(x, y, t) is the solution of the
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following IBVP: 

( ∂
∂t

+ Lε +
∂b
(
x, y, t, u(x, y, t)

)
∂u

)
Ψ(x, y, t) =

1

2

∂2u(x, y, t)

∂t2
+

L1,ε

(
g2(x, y, t)− b

(
x, y, t, u(x, y, t)

))
− L1,εL2,εu(x, y, t),

Ψ(x, y, 0) = 0, (x, y) ∈ G

Ψ(x, y, t) = 0, in ∂G× (0, T ].

(5.187)

Since
1

2

∂2u(x, y, t)

∂t2
+L1,ε

(
g2(x, y, t)−b

(
x, y, t, u(x, y, t)

))
−L1,εL2,εu(x, y, t) is ε-uniformly bounded, one

can derive that ‖Ψ(x, y, t)‖D ≤ C. To establish the bounds of the derivatives up to second order in time in

Lemma 5.31, we require Ψ(x, y, t) ∈ C4+γ(D).

Lemma 5.31. The function Ψ(x, y, t) solution of (5.187) satisfies the bounds

∣∣∣∂kΨ(x, y, t)

∂tk

∣∣∣ ≤ C, k = 0, 1, 2.

Proof. The proof of this lemma is obtained by using the argument given in [20].

Lemma 5.32. The remainder term R(x, y, t) given in (5.185), satisfies the bound

∣∣R(x, y, tn)
∣∣ ≤ C(∆t)2, 0 ≤ n ≤M. (5.188)

Proof. Using the equation (5.187) and the Taylor-series expansion of the functions u and Ψ with respect to time

variable t in (5.186), the remainder term in (5.185) is the solution of the following IBVP:

R(x, y, 0) = 0, (x, y) ∈ G,(
I + ∆tLn+1

2,ε

)[(
I + ∆tLn+1

1,ε

)
R(x, y, tn+1) + ∆t

∂b
(
x, y, tn+1,η

∆t(x, y)
)

∂u
R(x, y, tn+1)

]
=

R(x, y, tn) +O(∆t)3, (x, y) ∈ G,

R(x, y, tn+1) = 0, (x, y) ∈ ∂G, n = 0, . . . ,M − 1,

(5.189)

where η∆t belong to some finite interval [−C,C]. Finally, using the above relation recursively and by invoking

the stability in Lemmas 5.14 and 5.16, we obtain the desired bound of the remainder term.

Theorem 5.6. Let u∆t(x, y, tn+1) and u∆t/2(x, y, t̃n+1) be the respective solutions of the time-semidiscrete

problem (5.81) on the mesh G × ∧∆t and G × ∧∆t/2; and let u(x, y, tn+1) be the exact solution of the IBVP

(5.1)-(5.3) on the mesh G× [0, T ]. Then the error due to the temporal extrapolation defined by

u∆t
extp(x, y, tn+1) =

(
2u∆t/2(x, y, tn+1)− u∆t(x, y, tn+1)

)
, (x, y, tn+1) ∈ G× ∧∆t,

satisfies that ∣∣u∆t
extp(x, y, tn+1)− u(x, y, tn+1)

∣∣ ≤ C(∆t)2, (x, y, tn+1) ∈ G× ∧∆t.
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Proof. From the equation (5.185) and Lemma 5.32, we obtain that

u(x, y, tn+1) = u∆t(x, y, tn+1)−∆tΨ(x, y, tn+1) +O(∆t)2, (x, y, tn+1) ∈ G
N × Λ∆t.

Similarly, we have

u(x, y, t̃n+1) = u∆t/2(x, y, t̃n+1)− (∆t/2)Ψ(x, y, t̃n+1) +O(∆t)2, (x, y, t̃n+1) ∈ G
N × Λ∆t/2.

Now, using the above two expressions, we obtain the desired result.

5.6 Numerical experiments

In this section, we present the numerical results before and after applying the extrapolation technique for the test

problem of the form (5.1)-(5.3), utilizing the proposed FMMs in (5.37) and (5.102). For all the test examples,

we choose η0 = 2.2 and implement the Thomas algorithm to solve the tridiagonal linear systems involved in our

methods. The numerical results are also compared with the fully-implicit upwind FMM, which is mentioned

below as well. In this case, we decompose the right-hand side in the form g(x, y, t) = g1(x, y, t) + g2(x, y, t),

where g2(x, y, t) = g(x, 0, t) + y(g(x, 1, t)− g(x, 0, t)), g1(x, y, t) = g(x, y, t)− g2(x, y, t).

5.6.1 The fully-implicit upwind FSFMM
Then, the fully discrete scheme takes the following form on D

N,∆t:

(i) U0
i,j = q0(xi, yj), for i, j = 0, 1, . . . , N,

(ii)

 U
n+1/2
i,j + ∆tLn+1

1,ε,upU
n+1/2
i,j = Uni,j + ∆tg1(xi, yj , tn+1), for 1 ≤ i ≤ N, yj ∈ GNy ,

U
n+1/2
i,j = sn+1/2(xi, yj), i = 0, N, yj ∈ G

N
y ,

(iii)


Un+1
i,j + ∆tLn+1

2,ε,upU
n+1
i,j + ∆tb

(
xi, yj , tn+1, U

n+1
i,j

)
= U

n+1/2
i,j + ∆tg2(xi, yj , tn+1),

for 1 ≤ j ≤ N − 1, xi ∈ GNx

Un+1
i,j = sn+1(xi, yj), j = 0, N, xi ∈ G

N
x ,

(5.190)

where sn+1/2(xi, yj), s
n+1(x, y) are defined in (5.83) and Ln+1

1,N,up, L
n+1
2,N,up are given by Ln+1

1,N,upU
n+1/2
i,j = −εδ2

xU
n+1/2
i,j + v1(xi, yj , tn+1)D−x U

n+1/2
i,j ,

Ln+1
2,N,upU

n+1
i,j = −εδ2

yU
n+1
i,j + v2(xi, yj , tn+1)D−y U

n+1
i,j .

The existence and stability of the solution Un+1
i,j of the nonlinear discrete problem (5.190) can be obtained in

the same way as in Section 5.3.2. Furthermore, following the error analysis given in Section 5.3.2, one can

prove ε-uniform error estimate for the FMM (5.190).

Theorem 5.7 (Global error). Let u(x, y, t) be the exact solution of the IVBP (5.1)-(5.3) andUn+1
i,j be the discrete

solution of the fully discrete scheme (5.190), at time level tn+1. Then, if λl <
ml
2 , ηl,0 ≥ 2

λl
, l = 1, 2, the error
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associated with the fully discrete scheme (5.190) at time level tn+1 satisfies the following estimate:

∥∥∥{Un+1
i,j

}
i,j
−
{

u(xi, yj , tn+1)
}
i,j

∥∥∥ ≤


C
(
N−1+δ + ∆t

)
, for 0 ≤ i, j ≤ N/2,

C
(
N−1+δ lnN + ∆t

)
, for otherwise,

where N and ∆t are such that N−δ ≤ C∆t with 0 < δ < 1.

5.6.2 Test example
Example 5.1. Consider the following parabolic IBVP:

∂u
∂t
− ε∆u + (1 + x(1− x))

∂u
∂x

+ (1 + y(1− y))
∂u
∂y

+
u − 4

5− u
= g(x, y, t), in D,

u(x, y, t) = q0(x, y), in G,

u(x, y, t) = s(x, y, t), in ∂G× (0, T ],

(5.191)

where g , q0, s are obtained from the exact solution which is given by

u(x, y, t) = exp(−t)
[(1− exp(−(1− x)/ε)

1− exp(−1/ε)

)(1− exp(−(1− y)/ε)

1− exp(−1/ε)

)
− xy

]
.

In the same way as we computed the results in Chapter 3, we determine the maximum nodal error and the

related order of convergence for each ε.

To compute the numerical solution of the FMMs in (5.102) and (5.190) for Example 5.1, a nonlinear system

needs to be solved at each time step. For that, we use the Newton’s iterative method as we define in Chapter 4.

5.6.3 Numerical results and observations
We choose all the values of ε from Sε = {20, 2−2, . . . , 2−20}, for computation of ε-uniform errors. For

different values of ε,N and ∆t, the computed ε-uniform errors and order of convergence are displayed in

Tables 5.1 and 5.2 for both choices of boundary conditions (5.21), (5.22), (5.82) and (5.83) without using the

temporal Richardson extrapolation for Examples 5.1. This shows the monotonically decreasing behavior of

the ε-uniform errors with increasing N , and it represents the ε-uniform convergence of the FSFMMs given in

(5.37) and (5.102). For the sake of clarity, the computed ε-uniform errors in Tables 5.1 and 5.2 are depicted in

Figs 5.1 and 5.2, for Examples 5.1. At the same time, these computational results clearly illustrate the influence

of the temporal error over the global error. The computed order of convergence shown in Tables 5.1 and 5.2,

does not truly reflect the spatial order of convergence of the proposed FMMs in (5.37) and (5.102), because of

the dominance of the temporal error over the spatial error according to Theorems 5.3 and 5.5. Tables 5.1 and 5.2

show that the ε-uniform maximum point-wise errors of proposed schemes (5.37) and (5.102) with alternative

boundary conditions (5.22) and (5.83) are smaller than the ε-uniform maximum point-wise errors of proposed

schemes (5.37) and (5.102) with natural boundary conditions (5.21) and (5.82). To the best of our knowledge,

no such technique has been used in the any context of uniform convergence analysis of singularly perturbed of

this type.

In the Tables 5.3, 5.4, 5.5 and 5.6, we show these numerical local errors eN,∆tloc and corresponding order

of convergence rN,∆tloc for the two choices of the boundary data. To reduce the influence of the local spatial
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error, we take sufficiently large the discretization parameter N = 2048. It is worth noting that when the non-

natural alternative boundary conditions are chosen, the local errors are significantly reduced; also, the order of

consistency is one, whereas for classical evaluation it’s zero. The option (5.22) for IMEX-FSFMM (5.37) and

(5.83) for fully-implicit FSFMM (5.102) is evidently better than the conventional one.

Next, in order to visualize the effect of the temporal Richardson extrapolation, we choose a suitably largeN

to reduce the influence of the spatial error. In Tables 5.8 and 5.9, we display the numerical results for Example

5.1, after the temporal extrapolation of the proposed schemes (5.37) and (5.102). This shows that the improve-

ment in the temporal order of convergence after employing the Richardson extrapolation in the time variable,

as claimed in Theorem 5.6. Tables 5.8 and 5.9 show that the temporal errors of proposed schemes (5.37) and

(5.102) after temporal extrapolation with alternative boundary conditions (5.22) and (5.83) are smaller than the

temporal errors of proposed schems (5.37)and (5.102) with natural boundary conditions (5.21) and (5.82).

The above numerical experiment indicates that by using the temporal Richardson extrapolation, one can

check the spatial accuracy by choosing ∆t = 1/N . Following this, in Tables 5.7 , we compare the region-wise

spatial accuracy of the FSFMMs given in (5.37), (5.102) and (5.190), for Example 5.1. These computational

results match very well with the spatial error established in Theorems 5.3 , 5.5 and 5.7; and also clearly reflects

the robustness of the fully-implicit FSFMM (5.102) and the IMEX-FSFMM (5.37) in comparison with the

upwind FSFMM (5.190) in terms of order of accuracy, irrespective of the smaller and the larger values of ε.

This is the first comprehensive analysis of this type for two-dimensional semilinear parabolic convectional-

diffusion-reaction problems discretized using high-order fitted mesh methods.

5.7 Conclusion

In this chapter, we provide a complete convergence analysis for the higher-order numerical approximation of

a class of two-dimensional singularly perturbed nonlinear parabolic convection-diffusion problems (5.1)-(5.3)

with non-homogeneous boundary data by proposing two new FMMs followed the temporal Richardson extrap-

olation. Apart from studying the asymptotic properties of the analytical solution of the nonlinear governing

problem, the entire convergence analysis is split into three major parts.

(i) In the first part, ε-uniform error estimate of the newly proposed fractional step IMEX-FMM (5.37) is

carried out by invoking two-stage discretization technique, which discretizes first in time and later in space.

We also proved that the order reduction in time associated with the classical evaluation of time-dependent

boundary conditions could be eliminated by choosing appropriate boundary data. Further, we prove that the

corresponding fully discrete scheme is ε-uniformly convergent in the discrete supremum norm; and show that

the spatial accuracy is at least two in the outer region and is almost two in the boundary layer region, regardless

of the larger and smaller values of ε.

(ii) In the second part, we carry out ε-uniform error estimate of the newly proposed fractional-step fully-

implicit FMM (5.102) by invoking the two-stage discretization technique. Here also, We proved that the order

reduction in time associated with the classical evaluation of time-dependent boundary conditions could be

eliminated by choosing appropriate boundary data. Finally, we prove that the associated fully discrete scheme

is ε-uniformly convergent in the discrete supremum norm; and also achieves a similar order of accuracy as that

of the present fractional IMEX-FMM.

(iii) The third part focuses on the ε-uniform error estimate associated with temporal Richardson extrapola-
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tion for improving the temporal order of convergence.

The error estimates in (i) and (ii) demonstrate that, while the proposed fractional IMEX method produces

a linearized system at each time step, it does not cause a reduction in the order of convergence in both space

and time, corresponding to the present proposed fractional fully-implicit method, which produces a nonlinear

system at each time step. Finally, the error estimate in (iii) demonstrates that the resulting numerical solution

is second-order uniformly convergent in both the spatial and temporal variables. Finally, we perform several

numerical experiments to confirm that those theoretical outcomes. Further, we demonstrate that the newly

developed fractional FMMs are robust in comparison with the upwind fractional-step FMM (5.190).

This is the first detailed convergence analysis for two-dimensional singularly perturbed nonlinear parabolic

convection-diffusion problems with non-homogeneous boundary data. Our unique technical approach opens

the door for more difficult nonlinear model problems to be solved numerically.

221



Table 5.1: Comparison of ε-uniform errors and order of convergence for Example 5.1 using the IMEX-FSFMM
(5.37) computed with ∆t = 1.6/N without using Richardson extrapolation in time

ε ∈ Sε Number of mesh intervals N / time step size ∆t

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

with natural boundary conditions (5.21)

eN,∆t 1.8074e-02 1.0394e-02 5.4734e-03 2.9316e-03 1.4884e-03

rN,∆t 0.79821 0.92521 0.90077 0.97791

with alternative boundary conditions (5.22)

eN,∆t 6.4681e-03 3.0900e-03 1.5096e-03 7.5303e-04 3.7816e-04

rN,∆t 1.0657 1.0334 1.0034 0.99369
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Figure 5.1: Loglog plot for comparison of the ε-uniform errors for Example 5.1.
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Table 5.2: Comparison of ε-uniform errors and order of convergence for Example 5.1 using the fully-implicit
FSFMM (5.102) computed with ∆t = 1.6/N without using Richardson extrapolation in time

ε ∈ Sε Number of mesh intervals N / time step size ∆t

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

with natural boundary conditions (5.82)

eN,∆t 3.1016e-02 1.8073e-02 1.0394e-02 5.4733e-03 2.9315e-03

rN,∆t 0.77919 0.79814 0.92519 0.90076

with alternative boundary conditions (5.83)

eN,∆t 1.3511e-02 6.4469e-03 3.0773e-03 1.5026e-03 7.4932e-04

rN,∆t 1.0675 1.0670 1.0341 1.0038
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rr
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Figure 5.2: Loglog plot for comparison of the ε-uniform errors for Example 5.1.
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Table 5.3: Maximum point-wise local errors eN,∆tloc and order of convergence rN,∆tloc for Example 5.1 using the
IMEX-FSFMM (5.37) for natural boundary conditions (5.21) and without using Richardson extrapolation in
time

ε Number of mesh intervals N = 2048

M=16 M=32 M=64 M=128

2−3 4.1048e-02 2.3271e-02 1.2582e-02 6.6195e-03

0.89873 0.95555 0.98838

2−6 5.0262e-02 2.6959e-02 1.3901e-02 7.0068e-03

0.92587 0.99806 1.0663

2−14 5.3944e-02 2.8394e-02 1.4216e-02 6.7888e-03

0.92601 0.99839 1.0674

2−20 5.3981e-02 2.8411e-02 1.4221e-02 6.7863e-03

0.81880 0.88714 0.92659

Table 5.4: Maximum point-wise local errors eN,∆tloc and order of convergence rN,∆tloc for Example 5.1 using the
IMEX-FSFMM (5.37) for alternative boundary conditions (5.22) and without using Richardson extrapolation
in time

ε Number of mesh intervals N = 2048

M=16 M=32 M=64 M=128

2−3 2.7796e-03 9.3539e-04 2.8154e-04 7.8802e-05

1.5713 1.7322 1.8370

2−6 4.6890e-03 1.4747e-03 4.2654e-04 1.1848e-04

1.6689 1.7897 1.8481

2−14 5.6131e-03 1.6448e-03 4.4289e-04 1.1524e-04

1.7709 1.8929 1.9423

2−20 5.6273e-03 1.6485e-03 4.4375e-04 1.1532e-04

1.7713 1.8933 1.9441
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Table 5.5: Maximum point-wise local errors eN,∆tloc and order of convergence rN,∆tloc for Example 5.1 using the
fully-implicit FSFMM (5.102) for natural boundary conditions (5.82) and without using Richardson extrapola-
tion in time

ε Number of mesh intervals N = 2048

M=16 M=32 M=64 M=128

2−3 4.0964e-02 2.3245e-02 1.2575e-02 6.6175e-03

0.81743 0.88637 0.92618

2−6 5.0149e-02 2.6927e-02 1.3893e-02 7.0046e-03

0.89719 0.95471 0.98795

2−14 5.3821e-02 2.8360e-02 1.4207e-02 6.7867e-03

0.92430 0.99722 1.0659

2−20 5.3858e-02 2.8377e-02 1.4213e-02 6.7842e-03

0.92445 0.99754 1.0669

Table 5.6: Maximum point-wise local errors eN,∆tloc and order of convergence rN,∆tloc for Example 5.1 using
the fully-implicit FSFMM (5.102) for alternative boundary conditions (5.83) and without using Richardson
extrapolation in time

ε Number of mesh intervals N = 2048

M=16 M=32 M=64 M=128

2−3 2.7307e-03 9.2104e-04 2.7747e-04 7.7675e-05
1.5679 1.7309 1.8368

2−6 4.6636e-03 1.4684e-03 4.2484e-04 1.1799e-04
1.6672 1.7893 1.8483

2−14 5.5968e-03 1.6423e-03 4.4254e-04 1.1518e-04
1.7689 1.8918 1.9419

2−20 5.6110e-03 1.6460e-03 4.4340e-04 1.1526e-04
1.7693 1.8923 1.9437
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Table 5.7: Comparison (region-wise) of maximum point-wise errors and order of convergence for Example
5.1, with alternative boundary conditions (5.22) and (5.83)

with using outer right boundary layer top boundary layer corner layer
temporal region region region region

Richardson [0, 1 − η1]× (1 − η1, 1]× [0, 1 − η1]× (1 − η1, 1]×
extrapolation [0, 1 − η2] [0, 1 − η2] (1 − η2, 1] (1 − η2, 1]

N ε = 2−4

IMEX-FSFMM (5.37) 2.1639e-06 4.5559e-05 4.8590e-05 1.9927e-04
1.9877 1.9996 2.0000 1.9996

128 fully-implicit FSFMM (5.102) 2.1768e-06 4.5555e-05 4.8617e-05 1.9925e-04
1.9878 1.9996 2.0000 1.9996

upwind-FSFMM (5.190) 3.7900e-04 1.3175e-03 1.3155e-03 7.3076e-03
1.0077 0.95807 0.95713 0.95560

IMEX-FSFMM (5.37) 5.4560e-07 1.1393e-05 1.2147e-05 4.9830e-05
1.9937 2.0004 1.9989 2.0004

256 fully-implicit FSFMM (5.102) 5.4882e-07 1.1392e-05 1.2154e-05 4.9827e-05
1.9938 2.0004 1.9989 2.0004

upwind-FSFMM (5.190) 1.8850e-04 6.7818e-04 6.7758e-04 3.7680e-03
1.0040 0.97852 0.97792 0.97731

N ε = 2−6

IMEX-FSFMM (5.37) 2.2276e-05 2.4411e-04 2.4846e-04 4.3807e-04
2.3258 1.7252 1.7257 1.6338

128 fully-implicit FSFMM (5.102) 2.2259e-05 2.4410e-04 2.4845e-04 4.3804e-04
2.3259 1.7252 1.7257 1.6338

upwind-FSFMM (5.190) 1.8732e-03 6.2279e-03 6.2256e-03 1.2558e-02
1.1349 0.79954 0.79939 0.73913

IMEX-FSFMM (5.37) 4.4432e-06 7.3834e-05 7.5120e-05 1.4116e-04
2.2517 1.7557 1.7579 1.6719

256 fully-implicit FSFMM (5.102) 4.4396e-06 7.3831e-05 7.5117e-05 1.4116e-04
2.2517 1.7556 1.7578 1.671

upwind-FSFMM (5.190) 8.5296e-04 3.5781e-03 3.5772e-03 7.5236e-03
1.1364 0.85619 0.85602 0.78626

N ε = 2−14

IMEX-FSFMM (5.37) 3.9181e-05 2.8937e-04 2.8944e-04 4.2160e-04
2.1338 1.5798 1.5774 1.5914

128 fully-implicit FSFMM (5.102) 3.9258e-05 2.8934e-04 2.8939e-04 4.2156e-04
2.1332 1.5798 1.5773 1.5914

upwind-FSFMM (5.190) 2.8500e-03 8.8276e-03 8.8282e-03 1.3352e-02
1.0254 0.72372 0.72378 0.74025

IMEX-FSFMM (5.37) 8.9276e-06 9.6800e-05 9.6989e-05 1.3990e-04
2.0921 1.6384 1.6385 1.6476

256 fully-implicit FSFMM (5.102) 8.9489e-06 9.6791e-05 9.6976e-05 1.3989e-04
2.0916 1.6384 1.6385 1.6476

upwind-FSFMM (5.190) 1.4002e-03 5.3454e-03 5.3455e-03 7.9931e-03
1.0167 0.77768 0.77769 0.78829
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Table 5.8: Comparison of temporal accuracy for IMEX-FSFMM (5.37) with natural and alternative boundary
conditions after Richardson extrapolation for the time variable for Example 5.1

ε Number of mesh intervals N = 2048

M=8 M=16 M=32 M=64

with natural boundary conditions (5.21)

2−6 1.5480e-02 6.6605e-03 3.0018e-03 1.4596e-03

1.2167 1.1498 1.0403

2−20 1.8973e-02 8.7934e-03 4.0294e-03 1.7386e-03

1.1094 1.1258 1.2126

with alternative boundary conditions (5.22)

2−6 2.5541e-03 7.6350e-04 2.1178e-04 5.8604e-05

1.7421 1.8501 1.8535

2−20 3.4663e-03 1.0264e-03 2.8563e-04 8.0274e-05

1.7558 1.8453 1.8312

Table 5.9: Comparison of temporal accuracy for fully-implicit FSFMM (5.102) with natural and alternative
boundary conditions after Richardson extrapolation for the time variable for Example 5.1

ε Number of mesh intervals N = 2048

M=8 M=16 M=32 M=64

with natural boundary conditions (5.82)

2−6 1.5621e-02 6.7079e-03 3.0153e-03 1.4632e-03

1.2195 1.1536 1.0432

2−20 1.9101e-02 8.8347e-03 4.0413e-03 1.7414e-03

1.1124 1.1284 1.2145

with alternative boundary conditions (5.83)

2−6 2.5608e-03 7.6667e-04 2.1268e-04 5.8840e-05

1.7399 1.8499 1.8538

2−20 3.4790e-03 1.0300e-03 2.8696e-04 8.0428e-05

1.7560 1.8438 1.8351
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Chapter 6

Convergence Analysis of New Efficient Numerical Meth-
ods for Singularly Perturbed Linear Parabolic PDEs
with Nonsmooth Data

This chapter addresses efficient numerical methods for solving two different classes of singularly perturbed

parabolic PDEs with nonsmooth data. At first, we deal with a class of singularly perturbed parabolic convection-

diffusion IBVPs possessing strong interior layers. Aiming to get a better numerical approximation to the solu-

tions to this class of problems, we devise a new hybrid finite difference scheme on a layer-resolving piecewise-

uniform Shishkin mesh in the spatial direction, and the time derivative is discretized by the backward-Euler

method in the temporal direction. We discuss the stability of the proposed method and establish the parameter-

uniform error estimate in the discrete supremum norm. Numerical results are also displayed to support the

theoretical findings and compared with the existing hybrid scheme to show the improvement in terms of spatial

order of convergence. Furthermore, we carry out numerical experiments for the semi-linear parabolic IBVPs.

Next, we consider a class of singularly perturbed parabolic convection-diffusion IBVPs exhibiting both

boundary and weak interior layers. To solve this class of problems with better accuracy, we discretize the

time derivative by the backward-Euler method; and a new finite difference scheme is proposed for the spatial

discretization. To accomplish this purpose, we construct a modified layer-adapted mesh, a modification of the

standard Shishkin mesh adapted to both boundary and weak interior layers. Utilizing the modified layer-adapted

mesh, we overcome the difficulty in proving the inverse monotonicity of the finite difference operator on the

standard Shishkin mesh; and we establish the parameter-uniform error estimate in the discrete supremum norm.

Numerical results are presented to validate the theoretical findings and are compared with the implicit upwind

finite difference scheme. Furthermore, we extend numerical experiments to the semi-linear parabolic IBVPs.

6.1 Introduction

In the beginning, for describing the model problem, we introduce the following notations:{
D− = Ω− × (0, T ] = (0, d)× (0, T ], D+ = Ω+ × (0, T ] = (d, 1)× (0, T ], 0 < d < 1,

D = Ω× (0, T ] = (0, 1)× (0, T ], D = Ω× [0, T ] = [0, 1]× (0, T ].
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Here, we consider the following class of singularly perturbed parabolic IBVPs:

(
Lx,ε −

∂

∂t

)
y(x, t) = g(x, t), (x, t) ∈ D− ∪D+,

y(x, 0) = q0(x), x ∈ Ω,

y(0, t) = sl(t), y(1, t) = sr(t), t ∈ (0, T ],

(6.1)

where

Lx,εy = ε
∂2y
∂x2

+ a(x)
∂y
∂x
− b(x, t)y ,

together with the following interface conditions:

[y ](d, t) = 0,
[∂y
∂x

]
(d, t) = 0, t ∈ (0, T ]. (6.2)

Here, ε is a small parameter such that ε ∈ (0, 1]; and we assume that the convection coefficient a(x), the reaction

term b(x, t), and the source term g(x, t) are sufficiently smooth on Ω− ∪ Ω+, D and D− ∪ D+, respectively;

such that  |[a](d)| ≤ C, |[g ](d, t)| ≤ C,

b(x, t) ≥ β ≥ 0, on D.
(6.3)

We consider two cases for the convection coefficient:

Case I : −m∗1 < a(x) < −m1 < 0, x < d, m∗2 > a(x) > m2 > 0, x > d, (6.4)

Case II : a(x) ≥ m0 > 0, Ω
− ∪ Ω+

. (6.5)

The boundary and the initial data, i.e., i.e., sl, sr and q0 are also assumed to be sufficiently smooth. Here,

[g ](d, t) = g(d+, t) − g(d−, t), where g(d±, t) = limx→d±0 g(x, t). In Case I, the solution of the IBVP

(6.1)-(6.3) generally possess strong interior layers of width O(ε) in the vicinity of the point x = d (see [89]);

and in Case II, the solution of the IBVP (6.1)-(6.3) with (6.5) generally possess a boundary layer at the left

boundary x = 0 and a weak interior layer in the right side of the point x = d of width O(ε) (see [33]). Firstly,

we analyze the model problem (6.1)-(6.3) along with (6.4) in Section 6.2-6.7; and afterwards, we consider

the model problem (6.1)-(6.3) along with (6.5) in Section 6.8-6.11. The conclusion of this chapter is given in

Section 6.12.

Efficient Numerical Method for Model problem-I
This type of model problem with the alternative sign pattern of the convection-coefficient can viewed as the

linearized version of the time-dependent viscous Burgers’ equation exhibiting shock layer (see [88]).

The content of this part is given here: In Section 6.2, we discuss properties of the analytical solution which

includes the stability of the analytical solution as well as the asymptotic behavior of the smooth and the layer

components. Section 6.3 introduces the suitable mesh for discretizing the domain D and provides description

of the newly proposed numerical method. Further, the stability of the proposed method is also discussed here.
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In Section 6.4, we present several technical lemmas to be used in the convergence analysis. Afterwards, we

decompose the discrete solution in Section 6.5 and establish the main convergence result in connection with the

ε-uniform error estimate of the proposed method. Further, Section 6.6 introduces the Newton’s linearization

technique for solving the semi-linear singularly perturbed parabolic IBVPs having discontinuous convection

coefficient. Finally in Section 6.7, we display the numerical results for couple of test examples to confirm the

theoretical findings; and we also compare the computational time and the accuracy of the present method with

the existing hybrid scheme [83].

6.2 The analytical solution of model problem-I

In this section, we present the results associated with the stability bound of the analytical solution of the IBVP

(6.1)-(6.3) with (6.4) as well as the bounds of the derivatives of the smooth and the layer components. It will

be required for analyzing the numerical approximation of the IBVP (6.1)-(6.3) with (6.4). In addition to the

smoothness assumption imposed on a, b and g , we assume that the data associated with the boundary and the

initial conditions, i.e., q0, sl and sr are sufficiently smooth functions and satisfy the compatibility conditions

at the corner points (0, 0) and (1, 0), as listed below:

q0(0) = sl(0), q0(1) = sr(0),
−dsl(0)

dt
= g(0, 0)− εd

2q0(0)

dx2
− a(0)

dq0(0)

dx
+ b(0, 0)q0(0),

−dsr(0)

dt
= g(1, 0)− εd

2q0(1)

dx2
− a(1)

dq0(1)

dx
+ b(1, 0)q0(1),

and 
d2sl(0)

dt2
= Lx,ε

(
Lx,εq0 − g

)
(0, 0)− q0(0)

∂b(0, 0)

∂t
−
∂g(0, 0)

∂t
,

d2sr(1)

dt2
= Lx,ε

(
Lx,εq0 − g

)
(1, 0)− q0(1)

∂b(1, 0)

∂t
−
∂g(1, 0)

∂t
.

We also assume the necessary compatibility conditions at the point (d, 0). Then, under these hypothesis the

IBVP (6.1)-(6.3) with (6.4) possesses a unique solution y ∈ C1+γ(D)∩ C4+γ(D− ∪D+) (see [65, Chapter 3]).

6.2.1 Stability

At first, we show that the maximum principle holds for the differential operator Lε ≡
(
Lx,ε −

∂

∂t

)
in the

following Lemma. For clarity of the presentation, the outline of the proof of Lemma 6.1 is given below. Let

∂D = D \D.

Lemma 6.1. If a function φ ∈ C0(D) ∩ C2(D− ∪ D+) satisfies that φ ≤ 0, on ∂D,
[∂φ
∂x

]
(d, t) ≥ 0, for

t > 0; and Lεφ ≥ 0, in D− ∪D+, then φ ≤ 0, on D.

Proof: Let the function f defined on D be such that

φ(x, t) = exp(−m|x− d|/2ε)f(x, t),

where m = min{m1, m2}. We assume that f attains its maximum value at (s, τ) in D and f(s, τ) > 0. From the
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hypothesis of the maximum principle, either (s, τ) ∈ D− ∪D+ or (s, τ) = (d, τ). Therefore, if (s, τ) ∈ D−,

then we have

Lεφ(s, τ)

= exp(−m1(d− s)/2ε)
(
ε
∂2f

∂x2
+ (a(s) + m1)

∂f

∂x
+
(m1

2ε

(m1
2

+ a(s)
)
− b(s, τ)

)
f − ∂f

∂t

)
(s, τ)

< 0,

and if (s, τ) ∈ D+, we have

Lεφ(s, τ)

= exp(−m2(s− d)/2ε)
(
ε
∂2f

∂x2
+ (a(s)− m2)

∂f

∂x
+
(m2

2ε

(m2
2
− a(s)

)
− b(s, τ)

)
f − ∂f

∂t

)
(s, τ)

< 0,

which contradicts the hypothesis that Lεφ(x, t) ≥ 0, (x, t) ∈ D− ∪D+. Next, if (s, τ) = (d, τ),
[∂φ
∂x

]
(d, τ) =[ ∂f

∂x

]
(d, τ) −

(
(m1 + m2)/2ε

)
f(d, τ), and since, we assume that f has a maximum at (d, τ), it implies that[∂φ

∂x

]
(d, τ) ≤ 0, which also leads to a contradiction. Hence, the proof is complete.

Now, consequently using Lemma 6.1, one can deduce the following stability result.

Lemma 6.2. The following bound holds for the solution y(x, t) of the IBVP (6.1)−(6.3) with (6.4):

‖y(x, t)‖D ≤ ‖y‖∂D +
1

γ
‖g‖D ,

where γ = min{m1/d, m2/(1− d)}.

Proof: See [89] for the proof.

6.2.2 Decomposition of the analytical solution
The solution y is now decomposed into the smooth component v and the layer component z such that y = v +z.

Here, the smooth component y satisfies that

Lεv = g , in D− ∪D+,

v(x, 0) = q0(x), x ∈ Ω,

v(0, t) = sl(t), v(1, t) = sr(t),

v(d−, t) = ψ1(t), v(d+, t) = ψ2(t), t ∈ (0, T ],

(6.6)
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where for the suitable choices of the functions ψ1(t), ψ2(t), one can refer to the proof of [83, Theorem 3.4].

Now, the interior layer component z is defined as follows :

Lεz = 0, inD+ ∪D−,

z(x, 0) = 0, x ∈ Ω,

z(0, t) = 0, z(1, t) = 0,

[z](d, t) = −[v ](d, t),
[∂z
∂x

]
(d, t) = −

[∂v
∂x

]
(d, t), t ∈ (0, T ].

(6.7)

Without loss of generality, suppose that y ≡ 0 on ∂D and afterwards, we follow the approach given in [83,

Theorem 3.4] to derive the bounds of the derivative of v and z in Theorem 6.1.

Theorem 6.1. ∀ j, k ∈ N ∪ {0} satisfying 0 ≤ j ≤ 3 and 0 ≤ j + 2k ≤ 4, the smooth component v given in

(6.6) satisfies the bounds

∥∥∥ ∂j+kv
∂xj∂tk

∥∥∥
D−∪D+

≤ C,
∥∥∥∂4v
∂x4

∥∥∥
D−∪D+

≤ Cε−1,

and the layer component z given in (6.7) satisfies the bounds

∣∣∣∂j+kz(x, t)

∂xj∂tk

∣∣∣ ≤


C
(
ε−j exp(−m1(d− x)/ε)

)
, (x, t) ∈ D−,

C
(
ε−j exp(−m2(x− d)/ε)

)
, (x, t) ∈ D+,

and ∣∣∣∂4z(x, t)

∂x4

∣∣∣ ≤


C
(
ε−4 exp(−m1(d− x)/ε)

)
, (x, t) ∈ D−,

C
(
ε−4 exp(−m2(x− d)/ε)

)
, (x, t) ∈ D+.

6.3 The discrete solution of model problem-I

In this section, we introduce the suitable mesh to discretize the domain D and provide the description of

the proposed numerical method for discretizing the IBVP (6.1)-(6.3) with (6.4). Further, the stability of the

proposed method is discussed.

6.3.1 Discretization of the domain

Let us choose N(≥ 8) as an even positive integer. Now, on the domain D, we construct a mesh D
N,∆t

=

Ω
N × ∧∆t. Here, ∧∆t :=

{
tn
}M
n=0

, denotes the equidistant mesh with uniform step-size ∆t = T/M and with

M mesh-intervals in the temporal direction; whereas ΩN denotes the piecewise-uniform Shishkin mesh defined

on the spatial domain Ω as depicted in Fig 6.1. Ω
N is constructed by partitioning Ω into four sub-intervals as

Ω = [0, d− η1]∪ [d− η1, d]∪ [d, d+ η2]∪ [d+ η2, 1], where the transition parameters η1 and η2 are given by

η1 = min
{d

2
,η0ε lnN

}
, η2 = min

{1− d

2
,η0ε lnN

}
,

where η0 = 2/θ and θ is a positive constant to be chosen suitably later on.
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0 d− η1 d d + η2 1
N
4

N
4

N
4

N
4

Figure 6.1: Shishkin mesh in spatial direction

Now, we place the equidistant mesh with N/4 mesh-intervals in each sub-interval such that ΩN = {xj}Nj=0,

where

xj =



4(d− η1)j

N
, for 0 ≤ j ≤ N/4,

(d− η1) +
(
j − N

4

)4η1

N
, for N/4 < j ≤ N/2,

d +
(
j − N

2

)4η2

N
, for N/2 < j ≤ 3N/4,

(d + η2) +
(
j − 3N

4

)4(1− d− η2)

N
, for 3N/4 < j ≤ N.

Further, the mesh widths in the spatial direction are denoted by hj = xj − xj−1, 1 ≤ j ≤ N, with ĥj =

hj + hj+1, 1 ≤ j ≤ N − 1, and from the definition of xj’s, it follows that

hj =



Hl =
4(d− η1)

N
, for 1 ≤ j ≤ N

4 ,

hl =
4η1

N
, for N4 < j ≤ N

2 ,

hr =
4η2

N
, for N2 < j ≤ 3N

4 ,

Hr =
4(1− d− η2)

N
, for 3N

4 < j ≤ N.

6.3.2 Proposed numerical method

Let Ψn
j = Ψ(xj , tn) be the mesh function defined on D

N,∆t. We define

Ψn
j± 1

2

=
Ψ(xj , tn) + Ψ(xj±1, tn)

2
, aj± 1

2
=
aj + aj±1

2
, bn

j± 1
2

=
bnj + bnj±1

2
, gn

j± 1
2

=
gnj + gnj±1

2
.

In the following, we describe the proposed numerical method for discretizing the IBVP (6.1)−(6.3) with (6.4).

We use the backward-Euler method to approximate the time derivative; and for the spatial discretization, we

propose a new hybrid finite difference scheme which is comprised of a modified central difference scheme

whenever ε > 2‖a‖N−1; and a combination of the midpoint upwind scheme in the outer regions (0, d − η],

[d + η2, 1) and the modified central difference scheme in the interior layer regions (d − η1, d), (d, d + η2),

whenever ε ≤ 2‖a‖N−1. Further, we use the second order one-sided difference approximation at the point

of discontinuity. Thus, we solve the IBVP (6.1)-(6.3) with (6.4) numerically using the fully discrete finite
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difference scheme, which takes the following form on D
N,∆t:

Y 0
j = q0(xj), for 0 ≤ j ≤ N,

L
N,∆t
mcd Y

n+1
j = gn+1

j , for 1 ≤ j ≤ N/4 and 3N/4 ≤ j ≤ N − 1,

and when ε > 2||a||N−1,

LN,∆t,(−)
mup Y n+1

j = gn+1
j−1/2, for 1 ≤ j ≤ N/4,

and when ε ≤ 2||a||N−1,

LN,∆t,(+)
mup Y n+1

j = gn+1
j+1/2, for 3N/4 ≤ j ≤ N − 1,

and when ε ≤ 2||a||N−1,

L
N,∆t
mcd Y

n+1
j = gn+1

j , for N/4 < j < N/2,

and N/2 < j ≤ 3N/4− 1,

DF
x Y

n+1
j −DB

x Y
n+1
j = 0, for j = N/2,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), n = 0, 1, . . . ,M − 1,

(6.8)

where 
L
N,∆t,(−)
mup Y n+1

j = εδ2
xY

n+1
j + aj−1/2D

−
x Y

n+1
j − bn+1

j−1/2Y
n+1
j−1/2 −D

−
t Y

n+1
j−1/2,

L
N,∆t
mcd Y

n+1
j = εδ2

xY
n+1
j + ajD

∗
xY

n+1
j − bn+1

j Y n+1
j −D−t Y

n+1
j ,

L
N,∆t,(+)
mup Y n+1

j = εδ2
xY

n+1
j + aj+1/2D

+
x Y

n+1
j − bn+1

j+1/2Y
n+1
j+1/2 −D

−
t Y

n+1
j+1/2,

(6.9)

and 
DF
x Y

n+1
j =

[
− Y n+1

N/2+2 + 4Y n+1
N/2+1 − 3Y n+1

N/2

]
/2hr,

DB
x Y

n+1
j =

[
Y n+1
N/2−2 − 4Y n+1

N/2−1 + 3Y n+1
N/2

]
/2hl.

(6.10)

Next, the difference scheme in (6.8) is rewritten into the following form:
Y 0
j = q0(xj), for 0 ≤ j ≤ N, LN,∆tε Y n+1

j = Gn+1
j , for 1 ≤ j ≤ N − 1,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), n = 0, 1, . . . ,M − 1,

(6.11)
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where the difference operator LN,∆tε is given by

LN,∆tε Y n+1
j =



[
µ−j Y

n+1
j−1 + µcjY

n+1
j + µ+

j Y
n+1
j+1

]
+
[
λ−j Y

n
j−1 + λcjY

n
j + λ+

j Y
n
j+1

]
,

for 1 ≤ j < N/2 and N/2 < j ≤ N − 1,[
ν−,2j Y n+1

j−2 + ν−,1j Y n+1
j−1 + νcjY

n+1
j + ν+,1

j Y n+1
j+1 + ν+,2

j Y n+1
j+2

]
,

for j = N/2,

(6.12)

and the term Gn+1
j is given by

Gn+1
j =



gn+1
j , for 1 ≤ j ≤ N/4 and 3N/4 ≤ j ≤ N − 1, and when ε > 2||a||N−1,

gn+1
j−1/2, for 1 ≤ j ≤ N/4, and when ε ≤ 2||a||N−1,

gn+1
j+1/2, for 3N/4 ≤ j ≤ N − 1, and when ε ≤ 2||a||N−1,

gn+1
j , for N/4 < j < N/2 and N/2 < j < 3N/4,

0, for j = N/2.

(6.13)

We denote that

pj = ε+ ajhj/2, for 1 ≤ j < N/2, and qj = ε− ajhj+1/2, for N/2 < j ≤ N − 1.

When ε > 2||a||N−1, the coefficients in (6.12), respectively, for 1 ≤ j < N/2 and N/2 < j ≤ N − 1 are

given by 

µ−j =
2pj

hj ĥj
− aj
hj
,

µcj =
−2pj
hjhj+1

+
aj
hj
− bn+1

j − 1

∆t
,

µ+
j =

2pj

hj+1ĥj
,

λ−j = 0, λcj =
1

∆t
, λ+

j = 0,

and



µ−j =
2qj

hj ĥj
,

µcj =
−2qj
hjhj+1

− aj
hj+1

− bn+1
j − 1

∆t
,

µ+
j =

2qj

hj+1ĥj
+

aj
hj+1

,

λ−j = 0, λcj =
1

∆t
, λ+

j = 0.
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Next, when ε ≤ 2||a||N−1, the coefficients in (6.12), respectively for 1 ≤ j ≤ N/4 and N/4 < j < N/2 are

given by

µ−j =
2ε

hj ĥj
−
aj−1/2

hj
−
bn+1
j−1/2

2
− 1

2∆t
,

µcj =
−2ε

hjhj+1
+
aj−1/2

hj
−
bn+1
j−1/2

2
− 1

2∆t
,

µ+
j =

2ε

hj+1ĥj
,

λ−j =
1

2∆t
, λcj =

1

2∆t
, λ+

j = 0,

and



µ−j =
2pj

hj ĥj
− aj
hj
,

µcj =
−2pj
hjhj+1

+
aj
hj
− bn+1

j − 1

∆t
,

µ+
j =

2pj

hj+1ĥj
,

λ−j = 0, λcj =
1

∆t
, λ+

j = 0,

and for N/2 < j < 3N/4 and 3N/4 ≤ j ≤ N − 1 are respectively given by



µ−j =
2qj

hj ĥj
,

µcj =
−2qj
hjhj+1

− aj
hj+1

− bn+1
j − 1

∆t
,

µ+
j =

2qj

hj+1ĥj
+

aj
hj+1

,

λ−j = 0, λcj =
1

∆t
, λ+

j = 0,

and



µ−j =
2ε

hj ĥj
,

µcj =
−2ε

hjhj+1
−
aj+1/2

hj+1
−
bn+1
j+1/2

2
− 1

2∆t
,

µ+
j =

2ε

hj+1ĥj
+
aj+1/2

hj+1
−
bn+1
j+1/2

2
− 1

2∆t
,

λ−j = 0, λcj =
1

2∆t
, λ+

j =
1

2∆t
.

Finally, for j = N/2, the coefficient in (6.12) are given by

ν−,2N/2 =
−1

2hl
, ν−,1N/2 =

2

hl
, νcN/2 =

−3

2

( 1

hl
+

1

hr

)
, ν+,1

N/2 =
2

hr
, ν+,2

N/2 =
−1

2hr
.

6.3.3 Stability
Here, the stability of the fully discrete scheme (6.11)-(6.13) is discussed. We consider non-uniform mesh in the

analysis and assume that η1 = η2 = η = η0ε lnN . Then, hl = hr = h, say. It is obvious that the discrete

maximum principle does not hold for the difference operator defined in (6.12). We overcome this difficulty by

replacing Y n+1
N/2−2 and Y n+1

N/2+2 in the equation corresponding to the point xN/2 = d given by (6.11), with the

following expressions
Y n+1
N/2−2 =

1

µ−N/2−1

[
gn+1
N/2−1 − µ

c
N/2−1Y

n+1
N/2−1 − µ

+
N/2−1Y

n+1
N/2 −

1

∆t
UnN/2−1

]
,

Y n+1
N/2+2 =

1

µ+
N/2+1

[
gn+1
N/2+1 − µ

c
N/2+1Y

n+1
N/2+1 − µ

−
N/2+1Y

n+1
N/2+1 −

1

∆t
UnN/2+1

]
.

(6.14)
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Thus, we modify the system of equations in (6.11) to the following tri-diagonal form:
Y 0
j = q0(xj), for 0 ≤ j ≤ N, LN,∆thyb Y n+1

j = G̃n+1
j , for 1 ≤ j ≤ N,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), n = 0, 1, . . . ,M − 1.

(6.15)

Here, the difference operator LN,∆thyb and the term G̃n+1
j are respectively given by

LN,∆thyb Y n+1
j =



[
µ−j Y

n+1
j−1 + µcjY

n+1
j + µ+

j Y
n+1
j+1

]
+
[
λ−j Y

n
j−1 + λcjY

n
j + λ+

j Y
n
j+1

]
,

for j = N/2,

L
N,∆t
ε Y n+1

j , for j 6= N/2,

(6.16)

and

G̃n+1
j =


h/2

pj−1 − aj−1h
gn+1
j−1 +

h/2

qj+1 + aj+1h
gn+1
j+1 , for j = N/2,

Gn+1
j , for j 6= N/2,

(6.17)

where 

µ−N/2 =
1

2h

[
4−

2pN/2−1 − aN/2−1h+ bn+1
N/2−1h

2 + h2

∆t

pN/2−1 − aN/2−1h

]
,

µcN/2 =
1

2h

[
− 6 +

pN/2−1

pN/2−1 − aN/2−1h
+

qN/2+1

qN/2+1 + aN/2+1h

]
,

µ+
N/2 =

1

2h

[
4−

2qN/2+1 + aN/2+1h+ bn+1
N/2+1h

2 + h2

∆t

qN/2+1 + aN/2+1h

]
,

λ−N/2 =
h/2

(pN/2−1 − aN/2−1h)∆t
, λcN/2 = 0, λ+

N/2 =
h/2

(qN/2+1 + aN/2+1h)∆t
.

(6.18)

Next, we prove that the difference operator LN,∆thyb given in (6.16) satifies the discrete maximum principle in the

following lemma.

Let DN,∆t = D ∩D
N,∆t and ∂DN,∆t = D

N,∆t \DN,∆t. Let m∗ = max{m1∗, m2∗}.

Lemma 6.3. Suppose that the following conditions hold for N ≥ N0:

2η0m
∗ ≤ N/lnN and (6.19)

mN

2
≥
(
||b||+ 1

∆t

)
, (6.20)

whereN0 is some positive integer. Then, if a mesh functionψ defined on D
N,∆t

satisfies thatψ ≤ 0 on ∂DN,∆t

and LN,∆thyb ψ ≥ 0 in DN,∆t, then ψ ≤ 0 on D
N,∆t

.

Proof: In this proof, we use [[99], Lemma 3.12] and for clarity of the presentation, we discuss the proof in
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detailed below. Let ωnj ≤ 0, for all j and n. Then, following the hypothesis of the discrete maximum principle,

we consider the mesh function ψ such that

ψ0
j = ω0

j , for 0 ≤ j ≤ N, (6.21)

and satisfies the following system for n = 0, 1, . . . ,M , −LN,∆thyb ψ
n+1
j = ωn+1

j , for 1 ≤ j ≤ N − 1,

ψn+1
0 = ωn+1

0 , ψn+1
N = ωn+1

N .
(6.22)

For simplifying the proof, we set ψn =
(
ψn0 , . . . ,ψ

n
N

)
and ωn =

(
ωn0 , . . . , ω

n
N

)
, for n = 0, 1, . . .M, so that

(6.22) can be rewritten as

Aψn+1 − Bψn = ωn+1, n = 0, 1, . . . ,M − 1, (6.23)

where the matrices A and B are respectively given by{
Aj,j = 1, for j = 0, N,

Aj,j−1 = −µ−j , Aj,j = −µcj , Aj,j+1 = −µ+
j , for 1 ≤ j ≤ N − 1,

(6.24)

and {
Bj,j = 0, for j = 0, N,

Bj,j−1 = λ−j , Bj,j = λcj , Bj,j+1 = λ+
j , for 1 ≤ j ≤ N − 1.

(6.25)

Now, the following two cases are considered to show that A is an M-matrix.

Case 1. Let ε > 2||a||N−1. Then, we have
pj ≥

(
ε− ‖a‖hj/2

)
> 0, for 1 ≤ j < N/2,

qj ≥
(
ε− ‖a‖hj+1/2

)
> 0, for N/2 < j ≤ N − 1.

Hence, for 1 ≤ j < N/2 and N/2 < j ≤ N − 1, it follows from (6.24) that Aj,j−1 < 0, Aj,j > 0, Aj,j+1 < 0,

and |Aj,j+1|+ |Aj,j−1| ≤ |Aj,j |.
(6.26)
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Now, let j = N/2. Under the assumption (6.20) and using h ≤ 4N−1, we have

AN/2,N/2−1 =
1

2h

[−2pN/2−1 + 3aN/2−1h+ bn+1
N/2−1h

2 + h2

∆t

pN/2−1 − aN/2−1h

]
,

≤ 1

2h

[−2pN/2−1 + 3aN/2−1h+ (||b||+ 1
∆t)h

2

pN/2−1 − aN/2−1h

]
,

≤ − 1

2h

[2pN/2−1 +
(
3m1N/4− (||b||+ 1

∆t)
)
h2

pN/2−1 − aN/2−1h

]
,

and

AN/2,N/2+1 =
1

2h

[−2qN/2+1 − 3aN/2+1h+ bn+1
N/2+1h

2 + h2

∆t

qN/2+1 + aN/2+1h

]
,

≤ 1

2h

[−2qN/2+1 − 3aN/2+1h+ (||b||+ 1
∆t)h

2

qN/2+1 + aN/2+1h

]
,

≤ − 1

2h

[2qN/2+1 +
(
3m2N/4− (||b||+ 1

∆t)
)
h2

qN/2+1 + aN/2+1h

]
.

Also, it clear that AN/2,N/2−1 < 0, AN/2,N/2+1 < 0 and

AN/2,N/2 =
1

2h

[2pN/2−1 − 3aN/2−1h

pN/2−1 − aN/2−1h
+

2qN/2+1 + 3aN/2+1h

qN/2+1 + aN/2+1h

]
> 0,

and hence,

|AN/2,N/2+1|+ |AN/2,N/2−1| ≤ |AN/2,N/2|.

Case 2. Let ε ≤ 2||a||N−1. Under the assumption (6.19), we obtain that
pj ≥

(
m∗ + aj

)
h/2 > 0, for N/4 < j < N/2,

qj ≥
(
m∗ − aj

)
h/2 > 0, for N/2 < j < 3N/4.

Likewise the previous case, (6.26) follows from (6.24) for N/4 < j < 3N/4. Next, we directly obtain from

(6.24) that Aj,j+1 < 0, Aj,j > 0, for 1 ≤ j ≤ N/4, and Aj,j−1 < 0, Aj,j > 0, for 3N/4 ≤ j ≤ N − 1.

Now, under the assumption (6.20) and using the inequalities Hl ≤ 4N−1, Hr ≤ 4N−1, we obtain from

(6.24) for 1 ≤ j ≤ N/4 that

Aj,j−1 ≤ −
2ε

hj ĥj
+
aj−1/2

hj
+

1

2

(
||b||+ 1

∆t

)
,

≤ −
[ 2ε

hj ĥj
+

1

2

(m1N
2
−
(
||b||+ 1

∆t

))]
,

< 0,
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and for 3N/4 ≤ j ≤ N − 1,

Aj,j+1 =
−2ε

hj+1ĥj
−
aj+1/2

hj+1
+
bn+1
j+1/2

2
+

1

2∆t
,

≤ −
[ 2ε

hj+1ĥj
+

1

2

(m2N
2
−
(
||b||+ 1

∆t

))]
,

< 0.

Further, it straightforward to obtain that |Aj,j+1| + |Aj,j−1| ≤ |Aj,j |, for 1 ≤ j ≤ N/4 and 3N/4 ≤ j ≤
N−1, Thus, in both the cases it is proved that A is an M-matrix and it is easy to see that A is also an irreducible.

Hence, A−1 ≥ 0.

Afterwards, in order to show that ψn ≤ 0 for each n, we use induction on n. Firstly, it follows from (6.21)

and (6.22) that ψ0 ≤ 0. Now, we assume that ψn ≤ 0, for each n ∈ {0, 1, . . . ,M}. Since, A−1 ≥ 0 and from

(6.25) we have B ≥ 0, by applying the induction hypothesis, it follows from (6.23) that ψn+1 ≤ 0, and this

complete the proof.

Now, consequently using Lemma 6.3, we establish the following stability result

Lemma 6.4. Under the conditions given in (6.19) and (6.20), the solution Y of (6.15)-(6.18) satisfies the

following bound

‖Y ‖
D

N,∆t ≤ ‖Y ‖∂DN,∆t +
1

γ
‖G̃‖

D
N,∆t ,

where γ = min {m1/d, m2/(1− d)}.

Proof: We consider the mesh function

ψ
±,n
j = −‖Y ‖∂DN,∆t ± Y n

j −


xj
γd
‖G̃‖

D
N,∆t , for 0 ≤ j ≤ N/2,

1− xj
γ(1− d)

‖G̃‖
D

N,∆t , for N/2 ≤ j ≤ N.

Then, it clearly shows that ψ±,nj ≤ 0 on ∂DN,∆t. Now, when ε > 2‖a‖N−1, for 1 ≤ j < N/2, we obtain that

LN,∆thyb ψ
±,n+1
j = ±LN,∆thyb Y ±,n+1

j − aj
γd
‖G̃‖

D
N,∆t + bn+1

j

( xj
γd
‖G̃‖

D
N,∆t + ‖Y ‖∂DN,∆t

)
≥ 0,

and when ε ≤ 2‖a‖N−1, we have

LN,∆thyb ψ
±,n+1
j =



±LN,∆thyb Y ±,n+1
j − aj

γd
‖G̃‖

D
N,∆t + bn+1

j

( xj
γd
‖G̃‖

D
N,∆t + ‖Y ‖∂DN,∆t

)
,

for 1 ≤ j ≤ N/4,

±LN,∆thyb Y ±,n+1
j −

aj−1/2

γd
‖G̃‖

D
N,∆t + bn+1

j−1/2

(xj−1/2

γd
‖G̃‖

D
N,∆t + ‖Y ‖∂DN,∆t

)
,

for N/4 < j < N/2,

≥ 0.
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Similarly, one can show that LN,∆thyb ψ
±,n+1
j ≥ 0, for N/2 < j ≤ N −1. Next, at the point xN/2 = d, we have

LN,∆thyb ψ
±,n+1
N/2

=
h/2

(pN/2−1 − aN/2−1h)
LN,∆thyb ψ

±,n+1
N/2−1 +

h/2

(qN/2+1 + aN/2+1h)
LN,∆thyb ψ

±,n+1
N/2+1 + (DF

x −DB
x )ψ±,n+1

N/2 ,

≥ (DF
x −DB

x )ψ±,n+1
N/2 ≥ 0.

Therefore, by applying Lemma 6.3, we obtain the required stability bound.

6.4 Auxiliary results

On Ω
N

= {xj}N0 , let us introduce two mesh functions
Sj(θ) =

j∏
k=1

(
1 +

θhk
ε

)
, for 1 ≤ j ≤ N/2,

Rj(θ) =
N∏

k=j+1

(
1 +

θhk
ε

)
, for N/2 ≤ j ≤ N − 1.

We set S0(θ) = 1 and RN (θ) = 1, where θ is a positive constant.

Lemma 6.5. The mesh functions Sj(θ) and Rj(θ) satisfy the following bounds:
exp(−θ(d− xj)/ε) ≤

Sj(θ)

SN/2(θ)
, for 1 ≤ j < N/2,

exp(−θ(xj − d)/ε) ≤ Rj(θ)

RN/2(θ)
, for N/2 < j ≤ N − 1.

Proof: See [83, Lemma 5.10] for the proof.

Lemma 6.6. Let θ = m/2. Then, for some constant C, Sj(θ) and Rj(θ) satisfy the following bounds:
Sj(θ)

SN/2(θ)
≤ CN−4

(
1− 2j/N

)
, for N/4 ≤ j < N/2,

Rj(θ)

RN/2(θ)
≤ CN−4

(
2j/N − 1

)
, for N/2 < j ≤ 3N/4.

Proof: See [83, Lemma 5.7] for the proof.

Lemma 6.7. Let θ = m/2. Then, there exist some constant C such that
−LN,∆thyb Sj(θ) ≥

C

ε+ θh
Sj(θ), for N/4 < j < N/2,

−LN,∆thyb Rj(θ) ≥
C

ε+ θh
Rj(θ), for N/2 < j < 3N/4.

Proof: Sj−1(θ) =
( ε

ε+ θhj

)
Sj(θ), for j < N/2 and Rj+1(θ) =

( ε

ε+ θhj

)
Rj(θ), for j > N/2. Then, a
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straightforward calculation yields that for N/4 < j < N/2,

−LN,∆thyb Sj(θ) ≥ −
θ

h

(
Sj(θ)− Sj−1(θ)

)
− aj

θ

2ε

(
Sj(θ) + Sj−1(θ)

)
+ bn+1

j Sj(θ),

≥ θ

ε
Sj−1(θ)

(
− aj − θ

)
− aj

θ2h

2ε2
Sj−1(θ),

and for N/2 < j < 3N/4,

−LN,∆thyb Rj(θ) ≥
θ

h

(
Rj+1(θ)− Rj(θ)

)
+ aj

θ

ε

(
Rj+1(θ) + Rj(θ)

)
+ bn+1

j Rj(θ),

≥ θ

ε
Rj+1(θ)

(
aj − θ

)
+ aj

θ2h

2ε2
Rj+1(θ).

Now, using aj < −m1 ≤ −2θ and aj > m2 ≥ 2θ, respectively for N/4 < j < N/2 and N/2 < j < 3N/4, we

obtain the desired result.

Next, we introduce two mesh functions Ψl and Ψr, respectively on Ω
N ⋂

[0, d] and Ω
N ⋂

[d, 1], such that

they are solutions of the following discrete problems: εδ2
xΨl,j − θD−x Ψl,j = 0, for 1 ≤ j < N/2,

Ψl,0 = 0, Ψl,N/2 = 1,
(6.27)

and  εδ2
xΨr,j + θD+

x Ψr,j = 0, for N/2 < j ≤ N − 1,

Ψr,N/2 = 1, Ψr,N = 0,
(6.28)

Lemma 6.8. Let θ = m/2. Then, the mesh functions Ψl and Ψr, respectively satisfy the following properties: Ψl,j ≥ 0, and D−x Ψl,j ≥ 0, for 1 ≤ j ≤ N/2,

and Ψl,N/4 ≤ CN−2, for some constant C.
(6.29)

and  Ψr,j ≥ 0, and D+
x Ψr,j ≤ 0, for N/2 ≤ j ≤ N − 1,

and Ψr,3N/4 ≤ CN−2, for some constant C.
(6.30)

Proof. Here, we provide the outline of the proof with suitable modifications of the approach introduced in [32].

The solution Ψl of the discrete problem (6.27) can be expressed in the following form:

Ψl,j =

 Ψl,N/4rj , for 0 ≤ j ≤ N/4,

1 +
(
Ψl,N/4 − 1

)
sj , for N/4 ≤ j ≤ N/2,

(6.31)
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where rj =
σj − 1

σN/4 − 1
, σ = 1 +

θHl

ε
; sj =

1− ρj−N/2

1− ρ−N/4
, ρ = 1 +

θh

ε
; and Ψl,N/4 satisfies that

εδ2
xΨl,N/4 − θD−x Ψl,N/4 = 0. (6.32)

From (6.31) and (6.32), we get

Ψl,N/4 =
D+
x `N/4[

D+
x `N/4 − (1/2)(ρ+ σ)D+

x rN/4
] . (6.33)

and

D−x Ψl,j =


Ψl,N/4

θσj−1

ε
(
σN/4 − 1

) , for 1 ≤ j ≤ N/4,

(
1−Ψl,N/4

) θρj−N/2−1

ε
(
ρN/4 − 1

) , for N/4 < j ≤ N/2.
(6.34)

Now, by using the inequality ln(1 + ξ) > ξ(1− ξ/2), for 0 < ξ < 1, and setting ξ = 8N−1 lnN , we obtain

that

ρ−N/4 =
(

1 + ξ
)−N/4

≤ CN−2. (6.35)

Hence, the desired results for Ψl follows from (6.33), (6.34) and (6.35); and the results for Ψr can be obtained

analogously.

6.5 Error analysis

In this section, we obtain the ε-uniform error estimate via decomposition of the discrete solution.

6.5.1 Decompostion of the discrete solution
Here, the discrete solution Y is decomposed as

Y n+1
j =


V n+1
l,j + Zn+1

l,j , for 0 ≤ j < N/2,

V n+1
l,j + Zn+1

l,j = V n+1
r,j + Zn+1

r,j , for j = N/2,

V n+1
r,j + Zn+1

r,j , for N/2 < j ≤ N,
(6.36)

where the mesh functions Vl and Vr are considered as the smooth components for approximating v respectively

to the left and the right side of the point xN/2 = d, and they satisfy the following discrete problems:
V 0
l,j = v(xj , 0), for 0 ≤ j ≤ N/2, LN,∆thyb V n+1

l,j = G̃n+1
j , for 1 ≤ j < N/2,

V n+1
l,0 = v(0, tn+1), V n+1

l,N/2 = v(d−, tn+1), n = 0, 1, . . . ,M − 1,

(6.37)
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and 
V 0
r,j = v(xj , 0), for N/2 ≤ j ≤ N, LN,∆thyb V n+1

r,j = G̃n+1
j , for N/2 < j ≤ N − 1,

V n+1
r,N/2 = v(d+, tn+1), V n+1

r,N = v(1, tn+1), n = 0, 1, . . . ,M − 1.

(6.38)

On the other hand, we consider the mesh functions Zl and Zr as the layer components for approximating z

respectively to the either side of the point xN/2 = d, and they must satisfy the following discrete problems:

Z0
l,j = 0, for 0 ≤ j ≤ N/2, Z0

r,j = 0, for N/2 ≤ j ≤ N,

LN,∆thyb Zn+1
l,j = 0, for 1 ≤ j < N/2,

LN,∆thyb Zn+1
r,j = 0, for N/2 < j ≤ N − 1,

Zn+1
l,0 = 0, Zn+1

r,N = 0,

DF
x V n+1

r,N/2 +DF
x Zn+1

r,N/2 = DB
x V n+1

l,N/2 +DB
x Zn+1

l,N/2, n = 0, 1, . . . ,M − 1.

(6.39)

In the subsequent sections, we estimate the error
(
Y n+1
j − y(xj , tn+1)

)
in the outer regions (i.e., for 1 ≤ j ≤

N/4 and 3N/4 ≤ j ≤ N − 1) and in the interior layer regions (i.e., for N/4 < j < N/2 and N/2 < j <

3N/4) separately in order to establish the main convergence result.

6.5.2 Error in the outer regions
At first, we deduce the error estimates corresponding to the smooth components in the following lemma.

Lemma 6.9. Under the conditions given in (6.19)-(6.20), the errors corresponding to the smooth components

satisfy the following estimates:

∣∣V n+1
l,j − v(xj , tn+1)

∣∣ ≤


C
(
N−1(N−1 + χε) + ∆t

)
xj , for 1 ≤ j ≤ N/4,

C
(
N−2 + ∆t

)
xj , for N/4 < j < N/2,

and

∣∣V n+1
r,j − v(xj , tn+1)

∣∣ ≤


C
(
N−1(N−1 + χε) + ∆t

)
(1− xj), for 3N/4 ≤ j ≤ N − 1,

C
(
N−2 + ∆t

)
(1− xj), for N/2 < j < 3N/4,

where

χε =

{
ε, when ε ≤ 2‖a‖N−1,

0, when ε > 2‖a‖N−1.

Proof: In the proof the following two cases are considered.

244



Case 1. Let ε > 2||a||N−1. For 1 ≤ j < N/2 , the truncation error is defined as

LN,∆thyb

(
V n+1
l,j − v(xj , tn+1)

)
=
(
Lε − LN,∆thyb

)
v(xj , tn+1),

=
(
ε
( ∂2

∂x2
− δ2

x

)
+ aj

( ∂
∂x
−D∗x

)
−
( ∂
∂t
−D−t

))
v(xj , tn+1).

Now, the truncation error satisfies the following bound

∣∣∣LN,∆thyb

(
V n+1
l,j − v(xj , tn+1)

)∣∣∣ ≤


C
[
εĥj

∥∥∥∂3v
∂x3

∥∥∥+ hjhj+1

∥∥∥∂3v
∂x3

∥∥∥+ ∆t
∥∥∥∂2v
∂t2

∥∥∥], for j = N/4,

C
[
εh2

j

∥∥∥∂4v
∂x4

∥∥∥+ h2
j

∥∥∥∂3y
∂x3

∥∥∥+ ∆t
∥∥∥∂2v
∂t2

∥∥∥], otherwise.

Then, using hj ≤ CN−1 and Theorem 6.1, we obtain the following estimate

∣∣∣LN,∆thyb

(
V n+1
l,j − v(xj , tn+1)

)∣∣∣ ≤


C
(
N−1(N−1 + ε) + ∆t

)
, for j = N/4,

C
(
N−2 + ∆t

)
, otherwise.

Afterward, we choose the discrete function

Φn
l,j = −CN−2ϕl(xj)− C

(
N−2 + ∆t

)
xj , for 0 ≤ j ≤ N/2,

where

ϕl(xj) =


xj

d− η
, for 0 ≤ j < N/4,

1, for N/4 ≤ j ≤ N/2,

and employing Lemma 6.3 to Φn+1
l,j ±

(
V n+1
l,j − v(xj , tn+1)

)
, over DN,∆t⋂(

[0, d]× [0, T ]
)

, we obtain that

∣∣V n+1
l,j − v(xj , tn+1)

∣∣ ≤ −Φn+1
l,j ≤ C

(
N−2 + ∆t

)
xj , for 1 ≤ j < N/2.

Next, for N/2 < j ≤ N − 1, we choose the following discrete function

Φn
r,j = −CN−2ϕr(xj)− C

(
N−2 + ∆t

)
(1− xj), for N/2 ≤ j ≤ N,

where

ϕr(xj) =


1, for N/2 ≤ j ≤ 3N/4,

1− xj
1− (d + η)

, for 3N/4 < j ≤ N,

and arguing similarly for
(

V n+1
r,j − v(xj , tn+1)

)
, over DN,∆t⋂(

[d, 1] × [0, T ]
)

, one can deduce the desired

result for N/2 < j ≤ N − 1.

Case 2. Let ε ≤ 2‖a‖N−1. For 1 ≤ j < N/2 and N/2 < j ≤ N − 1, the truncation errors are respectively
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given by

LN,∆thyb

(
V n+1
l,j − v(xj , tn+1)

)
=


(

(Lεv)j−1/2 − LN,∆tε v(xj , tn+1)
)
, for 1 ≤ j ≤ N/4,(

Lε − LN,∆tε

)
v(xj , tn+1), for N/4 < j < N/2,

and

LN,∆thyb

(
V n+1
r,j − v(xj , tn+1)

)
=


(
Lε − LN,∆tε

)
v(xj , tn+1), for N/2 < j < 3N/4,(

(Lεv)j+1/2 − L
N,∆t
ε v(xj , tn+1)

)
, for 3N/4 ≤ j ≤ N − 1.

Now, for 1 ≤ j < N/2, the truncation error satisfies the following bound

∣∣∣LN,∆thyb

(
V n+1
l,j − v(xj , tn+1)

)∣∣∣ ≤



C
[
εĥj

∥∥∥∂3v
∂x3

∥∥∥+ h2
j

(∥∥∥∂3v
∂x3

∥∥∥+
∥∥∥∂2v
∂x2

∥∥∥+
∥∥∥∂v
∂x

∥∥∥)+ ∆t
∥∥∥∂2v
∂t2

∥∥∥],
for 1 ≤ j ≤ N/4,

C
[
hj

(
εĥj

∥∥∥∂4v
∂x4

∥∥∥+
∥∥∥∂3v
∂x3

∥∥∥)+ ∆t
∥∥∥∂2v
∂t2

∥∥∥],
for N/4 < j < N/2,

and using hj ≤ CN−1 and Theorem 6.1, we obtain that

∣∣∣LN,∆thyb

(
V n+1
l,j − v(xj , tn+1)

)∣∣∣ ≤


C
(
N−2 +N−1ε+ ∆t

)
, for 1 ≤ j ≤ N/4,

C
(
N−2 + ∆t

)
, for N/4 < j < N/2.

Afterwards, by choosing the discrete function

Φn
l,j =


−C
(
N−2 +N−1ε+ ∆t

)
xj , for 0 ≤ j ≤ N/4,

−C
(
N−2 + ∆t

)
xj , for N/4 < j ≤ N/2,

and employing Lemma 6.3 to Φn+1
l,j ±

(
V n+1
l,j − v(xj , tn+1)

)
, over D

N,∆t⋂(
[0, d] × [0, T ]

)
, yields the

following estimate

∣∣V n+1
l,j − v(xj , tn+1)

∣∣ ≤ −Φn+1
l,j ≤


C
(
N−2 +N−1ε+ ∆t

)
xj , for 1 ≤ j ≤ N/4,

C
(
N−2 + ∆t

)
xj , for N/4 < j < N/2.
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Similarly, by considering the discrete function

Φn
r,j =


−C
(
N−2 + ∆t

)
(1− xj), for N/2 < j < 3N/4,

−C
(
N−2 +N−1ε+ ∆t

)
(1− xj), for 3N/4 ≤ j ≤ N,

and employing Lemma 6.3 to Φn+1
r,j ±

(
V n+1
r,j − v(xj , tn+1)

)
, over DN,∆t⋂(

[d, 1] × [0, T ]
)

, we obtain the

desired result for N/2 < j ≤ N − 1.

Now, we deduce the error estimates corresponding to the layer components in the following lemma.

Lemma 6.10. Let θ = m/2. Under the conditions given in (6.19) and (6.20), the errors corresponding to the

layer components satisfy the following estimates:
∣∣Zn+1
l,j − z(xj , tn+1)

∣∣ ≤ CN−2, for 1 ≤ j ≤ N/4,∣∣Zn+1
r,j − z(xj , tn+1)

∣∣ ≤ CN−2, for 3N/4 ≤ j ≤ N − 1.

Proof: At first, we obtain the error estimate associated with Zl, for 1 ≤ j ≤ N/4. For this purpose, we consider

the mesh function Ψl defined in (6.27). Now, when ε > 2‖a‖N−1, for 1 ≤ j < N/2, we obtain that

LN,∆thyb Ψl,j = εδ2
xΨl,j + ajD

∗
xΨl,j − bn+1

j Ψl,j −D−t Ψl,j ,

= (θ + aj)D
−
x Ψl,j + aj(D

∗
x −D−x )Ψl,j − bn+1

j Ψl,j ,

= (θ + aj)D
−
x Ψl,j +

ajhj
2

δ2
xΨl,j − bn+1

j Ψl,j ,

≤ 0,

and when ε ≤ 2‖a‖N−1, we have

LN,∆thyb Ψl,j =

 εδ2
xΨl,j + aj−1/2D

−
x Ψl,j − bn+1

j−1/2Ψl,j −D−t Ψl,j−1/2, for 1 ≤ j ≤ N/4,

εδ2
xΨl,j + ajD

∗
xΨl,j − bn+1

j Ψl,j −D−t Ψl,j , for N/4 < j < N/2,

=


(θ + aj−1/2)D−x Ψl,j − bn+1

j−1/2Ψl,j −D−t Ψl,j−1/2, for 1 ≤ j ≤ N/4,

(θ + aj)D
−
x Ψl,j +

ajhj
2

δ2
xΨl,j − bn+1

j Ψl,j , for N/4 < j < N/2,

≤ 0.

Therefore, by employing Lemma 6.3 to−
∣∣Zn+1
l,N/2

∣∣Ψl,j±Zn+1
l,j , over DN,∆t⋂(

[0, d]×[0, T ]
)

and using Lemma

6.8, we obtain that

∣∣Zn+1
l,j

∣∣ ≤ ∣∣Zn+1
l,N/2

∣∣Ψl,j ≤ CΨl,N/4 ≤ CN−2, for 1 ≤ j ≤ N/4.
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Thus, using Theorem 6.1, for 1 ≤ j ≤ N/4, we have

∣∣Zn+1
l,j − z(xj , tn+1)

∣∣ ≤ ∣∣Zn+1
l,j

∣∣+
∣∣z(xj , tn+1)

∣∣ ≤ (CN−2 + C exp(−θη/ε)
)
≤ CN−2.

On the other hand, by considering the mesh function Ψr defined in (6.28) and following the similar argument

as given above for (Zr − z), over DN,∆t⋂(
[d, 1]× [0, T ]

)
, we obtain that

∣∣Zn+1
r,j − z(xj , tn+1)

∣∣ ≤ CN−2, for 3N/4 ≤ j ≤ N − 1.

Hence, the proof is complete.

Now, by considering the following decomposition

(
Y n
j − y(xj , tn)

)
=


(

V n
l,j − v(xj , tn)

)
+
(

Znl,j − z(xj , tn)
)
, for 1 ≤ j ≤ N/4,(

V n
r,j − v(xj , tn)

)
+
(

Znr,j − z(xj , tn)
)
, for 3N/4 ≤ j ≤ N − 1.

and using Lemma 6.9 and 6.10, we obtain the bound of
∣∣Y n+1
j − y(xj , tn+1)

∣∣ in the outer regions, as given in

the following lemma.

Lemma 6.11. Let θ = m/2. Under the conditions given in (6.19) and (6.20), the error corresponding to the

fully discrete scheme (6.15)-(6.18) satisfies the following estimate:

∣∣Y n+1
j − y(xj , tn+1)

∣∣ ≤ C(N−1(N−1 + χε) + ∆t
)
, for 1 ≤ j ≤ N/4 and 3N/4 ≤ j ≤ N − 1.

Corollary 6.1. It is clear from Lemma 6.11 that one can obtain the following estimate:

∣∣Y n+1
j − y(xj , tn+1)

∣∣ ≤ C(N−2 + ∆t
)
, for 1 ≤ j ≤ N/4 and 3N/4 ≤ j ≤ N − 1, (6.40)

when ε > 2‖a‖N−1 and (6.40) also holds if we choose ε ≤ 2‖a‖N−1.

6.5.3 Error in the interior layer region
Here, the error

∣∣Y n+1
j − y(xj , tn+1)

∣∣ is estimated for the interior layer region. At first, we derive bounds for the

truncation errors. For N/4 < j < N/2 and N/2 < j < 3N/4, the truncation error takes the following form

LN,∆thyb

(
Y n+1
j − y(xj , tn+1)

)
=
(
Lε − LN,∆thyb

)
y(xj , tn+1),

=
(
ε
( ∂2

∂x2
− δ2

x

)
+ aj

( ∂
∂x
−D∗x

)
−
( ∂
∂t
−D−t

))
y(xj , tn+1).

Here, we use the Taylor’s theorem with the remainder term in the integral form to derive the bound for the

truncation error and hence, for N/4 < j < N/2, the truncation error satisfies the following bound

∣∣∣LN,∆thyb

(
Y n+1
j − y(xj , tn+1)

)∣∣∣ ≤ [Ch∫ xj+1

xj−1

(
ε
∣∣∣∂4y(s, tn+1)

∂s4

∣∣∣+
∣∣∣∂3y(s, tn+1)

∂s3

∣∣∣)ds]+ C∆t
∥∥∥∂2y
∂t2

∥∥∥.
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Now, using Theorem 6.1, for N/4 < j < N/2, we obtain the following estimate∣∣∣LN,∆thyb

(
Y n+1
j − y(xj , tn+1)

)∣∣∣ ≤ C[(h2 + hε−2 exp(−m1(d− xj)/ε) sinh(m1h/ε)
)

+ ∆t
]
,

≤ C
[(
h2 + h2ε−3 exp(−m1(d− xj)/ε)

)
+ ∆t

]
, (6.41)

since, sinh(m1h/ε) ≤ C(m1h/ε), for m1h/ε ≤ 2, which follows from the assumption (6.19). Approaching in

the similar way as discussed above, for N/2 < j < 3N/4, we have∣∣∣LN,∆thyb

(
Y n+1
j − y(xj , tn+1)

)∣∣∣ ≤ C[(h2 + h2ε−3 exp(−m2(xj − d)/ε)
)

+ ∆t
]
. (6.42)

At the point xN/2 = d, we get the following form of the truncation error:

LN,∆thyb

(
Y n+1
N/2 − y(xN/2,tn+1

)
)

=
h/2

(pN/2−1 − aN/2−1h)
LN,∆thyb

(
Y n+1
N/2−1 − y(xN/2−1,tn+1

)
)

+
h/2

(qN/2+1 + aN/2+1h)
LN,∆thyb

(
Y n+1
N/2+1 − y(xN/2+1,tn+1

)
)

+
[[∂u
∂x

]
(xN/2, tn+1)−

(
DF
x −DB

x

)
y(xN/2, tn+1)

]
,

Then, using (6.41), (6.42) and the interface condition in (6.2), we obtain the following estimate∣∣∣LN,∆thyb

(
Y n+1
N/2 − y(xN/2,tn+1

)
)∣∣∣ ≤ C(h2ε−3 + ∆t

)
. (6.43)

Further, from Corollary 6.1, we have

∣∣Y n+1
j − y(xj , tn+1)

∣∣ ≤ C(N−2 + ∆t
)
, for j = N/4 and j = 3N/4. (6.44)

Afterwards, with sufficiently large C, we consider the discrete function

Υn
j =


−C
(

1 +
[
xj − (d− η)

])(
N−2 + ∆t

)
− Ch2ε−2

( Sj(θ)

SN/2(θ)

)
, for N/4 ≤ j ≤ N/2,

−C
(

1 +
[
(d + η)− xj

])(
N−2 + ∆t

)
− Ch2ε−2

( Rj(θ)

RN/2(θ)

)
, for N/2 < j ≤ 3N/4.

Now, using the condition θ = m/2 and applying Lemmas 6.5 and 6.7, we have

LN,∆thyb Υn+1
j ≥



C(−aj)
(
N−2 + ∆t

)
+ C

h2ε−2

(ε+ θh)
exp(−m1(d− xj)/ε),

for N/4 < j < N/2,

C(aj)
(
N−2 + ∆t

)
+ C

h2ε−2

(ε+ θh)
exp(−m2(xj − d)/ε),

for N/2 < j < 3N/4,
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and hence, employing the inequality hε−1 ≤ 2/m∗ implied by the assumption (6.19), we obtain that

LN,∆thyb Υn+1
j ≥



C(m1)
(
N−2 + ∆t

)
+ Ch2ε−3 exp(−m1(d− xj)/ε),

for N/4 < j < N/2,

C(m2)
(
N−2 + ∆t

)
+ Ch2ε−3 exp(−m2(xj − d)/ε),

for N/2 < j < 3N/4.

(6.45)

Next, for the point xN/2 = d, the condition θ = m/2 and the inequality hε−1 ≤ 2/m∗ are used together with

(6.45) to obtain

LN,∆thyb Υn+1
N/2

=
h/2

(pN/2−1 − aN/2−1h)
LN,∆thyb Υn+1

N/2−1 +
h/2

(qN/2+1 + aN/2+1h)
LN,∆thyb Υn+1

N/2+1 +
(
DF
x −DB

x

)
Υn+1
N/2 ,

≥
(
DF
x −DB

x

)
Υn+1
N/2 ,

≥ 2C
[(
N−2 + ∆t

)
+

h2ε−2

(ε+ θh)

]
,

≥ 2C
[(
N−2 + ∆t

)
+ h2ε−3

]
. (6.46)

Therefore, it follows from (6.44)-(6.46) that one can apply Lemma 6.3 to Υn+1
j ±

(
Y n+1
j − y(xj , tn+1)

)
, over

D
N,∆t⋂(

[d−η, d+η]× [0, T ]
)

; and finally, we use Lemma 6.6 and h = 4η0εN
−1 lnN to obtain the desired

estimate in the following lemma.

Lemma 6.12. Let θ = m/2. Under the conditions given in (6.19) and (6.20), the error corresponding to the

fully discrete scheme (6.15)-(6.18) satisfies the following estimate:

∣∣Y n+1
j − y(xj , tn+1)

∣∣ ≤ C(N−2 ln2N + ∆t
)
, for N/4 < j < 3N/4. (6.47)

6.5.4 The main convergence result

Theorem 6.2. Let θ = m/2. Under the conditions given in (6.19) and (6.20), the error corresponding to the

fully discrete scheme (6.15)-(6.18) satisfies the following estimate:

∣∣Y n+1
j − y(xj , tn+1)

∣∣ ≤


C
(
N−2 + ∆t

)
, for 1 ≤ j ≤ N/4 and 3N/4 ≤ j ≤ N − 1,

C
(
N−2 ln2N + ∆t

)
, for N/4 < j < 3N/4.

(6.48)

Proof: The estimate in (6.48) is derived using (6.40) and (6.47).

Remark 6.1. It is to be mentioned that the existing hybrid scheme proposed in [83] satisfies the error estimate

(6.48), provided the parameter ε satisfies the condition ε < CN−1 and is also demonstrated through the

numerical experiments in Section 6.7. Further, the numerical results presented in Section 6.7 reveal that for

the larger values of the parameter ε, in particular when ε � N−1, the existing hybrid scheme is at worst
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O(N−1) accurate in space both outside as well as inside the interior layers; and this is in strong contrast with

the numerical results produced by the newly proposed method.

6.6 Semilinear singularly perturbed parabolic problem

In this section, we consider the following class of semi-linear singularly perturbed parabolic IBVPs having

discontinuous convection coefficient:

ε
∂2y
∂x2

+ a(x)
∂y
∂x
−
∂y
∂t

= g(x, t, y), (x, t) ∈ D− ∪D+,

y(x, 0) = q0(x), x ∈ Ω,

y(0, t) = sl(t), y(1, t) = sr(t),

[y ](d, t) = 0,
[∂y
∂x

]
(d, t) = 0, t ∈ (0, T ],

(6.49)

where ε is a small parameter such that ε ∈ (0, 1]; a(x) and g(x, t, y) are supposed to be sufficiently smooth

functions in their respective domains; and they satisfy the conditions given in (6.3), with the assumption that

k1 ≤
∂g(x, t, y)

∂y
≤ k2, for (x, t, y) ∈ (D− ∪D+)× R; k1,k2 > 0.

Then, the existence and the uniqueness of the solution of the IBVP (6.49) can be asserted under the sufficient

smoothness and the suitable compatibility conditions imposed on the data q0, sl and sr. For further details, one

can refer the book [65] and the article [97].

We now apply the Newton’s linearization technique to the semi-linear parabolic IBVP (6.49). This process

generates the sequence {yk}∞k=0, in which the starting solution y0 satisfies the initial and boundary conditions

of the IBVP (6.49). For all k ≥ 0, yk+1 is defined as the solution of the following linear parabolic IBVP:

ε
∂2yk+1

∂x2
+ a(x)

∂yk+1

∂x
− bk(x, t)yk+1 −

∂yk+1

∂t
= Gk(x, t), (x, t) ∈ D− ∪D+,

yk+1(x, 0) = q0(x), x ∈ Ω,

yk+1(0, t) = sl(t), yk+1(1, t) = sr(t),

[yk+1](d, t) = 0,
[∂yk+1

∂x

]
(d, t) = 0, t ∈ (0, T ],

(6.50)

where  bk(x, t) =
∂g
∂y

(x, t, yk),

Gk(x, t) = g(x, t, yk)− bk(x, t)yk.

Afterwards, for each iteration k, we solve the IBVP (6.50) numerically and use the following condition as the

stopping criterion for the convergence of the numerical solution

max
0≤j≤N,n=M

∣∣Y k+1(xj , tn)− Y k(xj , tn)
∣∣ ≤ TOL, (6.51)
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where TOL is the prescribed error constant to be chosen later and Y k(xj , tn) denote the numerical solution

obtained at the kth iteration at the mesh point (xj , tn) ∈ D
N,∆t. In this regard, one can refer the book [29].

The numerical results corresponding to the semi-linear parabolic IBVP (6.49) are presented in the subsequent

section.

6.7 Numerical experiments

In this section, for verifying the theoretical result as well as the efficiency of the newly proposed numerical

method, we perform the numerical experiments for the following test examples and also compare the numerical

results of the proposed method with the existing hybrid scheme proposed in [83]. In all the test examples, we

consider the interface conditions as stated in (6.2) for d = 0.5. In all the experiments, we choose the constant

η0 = 2.2.

6.7.1 Test examples
Example 6.1. Consider the following parabolic IBVP:

ε
∂2y
∂x2

+ a(x)
∂y
∂x
− x(1− x)y −

∂y
∂t

= g(x, t), (x, t) ∈
[
(0, 0.5) ∪ (0.5, 1)

]
× (0, 1],

y(x, 0) = q0(x), x ∈ [0, 1],

y(0, t) = 0, y(1, t) = 0, t ∈ (0, 1],

with

a(x) =

 −(1 + x(0.5− x)), x ∈ (0, 0.5),

(1 + x(x− 0.5)), x ∈ (0.5, 1).

Here, the exact solution y(x, t) is given by

y(x, t) =


exp(−t)

(1− exp(−(0.5− x)/ε)

1− exp(−0.5/ε)
− cos(πx)

)
, (x, t) ∈ (0, 0.5)× (0, 1],

exp(−t)
(−1 + exp(−(x− 0.5)/ε)

1− exp(−0.5/ε)
− cos(πx)

)
, (x, t) ∈ [0.5, 1)× (0, 1],

and accordingly, the initial data q0(x) and the term g(x, t) are chosen.

For each ε, the maximum point-wise error and the corresponding order of convergence are respectively

computed by

eN,∆tε = max
0≤j≤N,n=M

∣∣y(xj , tn)− Y N,∆t(xj , tn)
∣∣,

and

rN,∆tε = log2

(
eN,∆tε

e
2N,∆t/2
ε

)
,

where y(xj , tn) and Y N,∆t(xj , tn), respectively denote the exact and the numerical solution computed on

D
N,∆t. Further, for each N and ∆t, the ε-uniform maximum point-wise error and the corresponding ε-uniform
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order of convergence are respectively computed by

eN,∆t = max
ε
eN,∆tε and rN,∆t = log2

(
eN,∆t

e2N,∆t/2

)
.

Example 6.2. Consider the following parabolic IBVP:
ε
∂2y
∂x2

+ a(x)
∂y
∂x
− x(1− x)y −

∂y
∂t

= g(x, t), (x, t) ∈
[
(0, 0.5) ∪ (0.5, 1)

]
× (0, 1],

y(x, 0) = 0, x ∈ [0, 1],

y(0, t) = t2, y(1, t) = 0, t ∈ (0, 1],

with

a(x) =

 −(1 + x(1− x)), x ∈ (0, 0.5),

(1 + x(1− x)), x ∈ (0.5, 1),

and

g(x, t) =

 2(1 + x2)t2, (x, t) ∈ (0, 0.5)× (0, 1],

3(1 + x2)t2, (x, t) ∈ (0.5, 1)× (0, 1].

Since, the exact solution of Example 6.2 is not known, the following technique is used in order to demon-

strate the accuracy and the ε-uniform convergence of the proposed method. We denote Ŷ 2N,∆t/2 as the numer-

ical solution computed on the fine mesh D̂2N,∆t/2 = Ω̂2N × ∧∆t/2, with ∆t/2 = T/2M . Here, Ω̂N denotes a

piecewise-uniform Shishkin mesh as like ΩN with the transition parameters η̂1, η̂2 given by

η̂1 = min
{
d

2
,η0ε ln

(
N

2

)}
, η̂2 = min

{
1− d

2
,η0ε ln

(
N

2

)}
,

such that the jth point of ΩN matches with the 2jth point of Ω̂2N , for j = 0, 1, . . . N . For each ε, the maximum

point-wise error and the corresponding order of convergence are respectively computed by

êN,∆tε = max
0≤j≤N,n=M

∣∣UN,∆t(xj , tn)− Û2N,∆t/2(xj , tn)
∣∣,

and

r̂N,∆tε = log2

(
êN,∆tε

ê
2N,∆t/2
ε

)
.

Further, for each N and ∆t, the quantities êN,∆t and r̂N,∆t are defined analogously to eN,∆t and rN,∆t based

on the error êN,∆tε as in the previous example.
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Example 6.3. Consider the following semi-linear parabolic IBVP:
ε
∂2y
∂x2

+ a(x)
∂y
∂x

+ exp(y)−
∂y
∂t

= g(x, t), (x, t) ∈ [(0, 0.5) ∪ (0.5, 1)]× (0, 1],

y(x, 0) = q0(x), x ∈ [0, 1],

y(0, t) = 0, y(1, t) = 0, t ∈ [0, 1],

where a(x) and the exact solution y(x, t) are the same as we define previously in Example 6.1 and accordingly,

the initial data q0 and the term g(x, t) are chosen.

Here, we use the linearization technique described previously in Section 6.6 for Example 6.3 and for each

iteration k, we compute the numerical solution of the resulting linear IBVP of the form (6.50):

ε
∂2yk+1

∂x2
+ a(x)

∂yk+1

∂x
+ exp(yk)yk+1 −

∂yk+1

∂x
= g(x, t)− exp(yk)(1− yk),

(x, t) ∈
[
(0, 0.5) ∪ (0.5, 1)

]
× (0, 1],

yk+1(x, 0) = q0(x), x ∈ [0, 1],

yk+1(0, t) = 0, yk+1(1, t) = 0, t ∈ [0, 1],

until the stopping criterion (6.51) is fulfilled with TOL = 10−10.

As we know the exact solution of Example 6.3, for each ε, the maximum point-wise error eN,∆tε and the

corresponding order of convergence rN,∆tε for Example 6.3 are computed by following the definitions given in

Example 6.1; and the quantities eN,∆t and rN,∆t are defined analogously, for each N and ∆t.

6.7.2 Numerical results and observations
From Fig 6.2, one can observe the presence of interior layers closest to the point of discontinuity x = 0.5 in

the respective numerical solutions of Examples 6.1, 6.2 and 6.3. Moreover, from the surface plots displayed in

Figs ??, 6.4 and 6.5, one can completely visualize the numerical solutions. The above figures are drawn using

the newly proposed method by choosing ∆t = 0.8/N .

For various values of ε,N and ∆t, we display the maximum point-wise errors and the ε-uniform errors together

with the corresponding order of convergence produced by the proposed method in Tables 6.1,6.2 and 6.3,

respectively for Examples 6.1, 6.2 and 6.3, taking ∆t = 1.6/N and choosing Sε = {20, 2−2, . . . , 2−20} as the

set of values of the parameter ε.

From Tables 6.1-6.3, we observe that the ε-uniform errors are decreasing monotonically as N increases and it

ensures that the proposed method is ε-uniformly convergent. However, the order of convergence displayed in

Tables 6.1-6.3 does not truly represent the spatial order of convergence of the proposed method. It is because

of the dominance of the temporal error over the spatial error according to the estimate of Theorem 6.2 and as

a result, we notice that with the reduction (or increment) of the time step ∆t, the rate of convergence of the

ε-uniform errors is increasing (or decreasing) and it is straightway visible from Fig 6.6.

Next, for verifying the spatial order of convergence of the present method, we compute the maximum point-wise

errors together with the corresponding order of convergence for the different regions of Ω by choosing ∆t =

1/N2. Those computational results are presented in Tables 6.4, 6.5 and 6.6, respectively for Examples 6.1, 6.2
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and 6.3, and also compared with the existing hybrid scheme by choosing the same discretization parameter ∆t.

Tables 6.4- 6.6 provide a clear evidence that irrespective of the smaller as well the larger values of the parameter

ε, the proposed method is at least second-order spatially accurate in the outer regions and almost second-order

spatially accurate (up to the logarithmic factor) in the interior layer regions; and it very well supports the

theoretical result established in Theorem 6.2. On the other hand, from Tables 6.4- 6.6, we observe that when

ε = 2−6 the spatial error due to the existing hybrid scheme isO(N−1) in the outer regions and isO(N−2 ln2N)

in the interior layer regions. Apart from this, we notice that when ε = 2−4 the existing method is O(N−1)

accurate in space, whereas the present method is O(N−2) accurate in space, both outside as well as inside

the interior layers. It is to be noted that the mesh Ω
N becomes the equidistant mesh whenever ε = 2−4. The

above observations show that the newly proposed method yields comparatively higher-order accurate numerical

results than the existing hybrid scheme whenever ε � N−1 ( e.g., ε = 2−4, 2−6). As a compliment of

this observation, for ε = 2−4, 2−6, the maximum point-wise errors displayed in Tables 6.4, 6.5 and 6.6 are

graphically represented in Figs 6.7, 6.8 and 6.9, respectively. Nevertheless, it is observed that both the methods

converge with the same order of accuracy inside and outside the interior layers whenever ε � N−1 (e.g.,

ε = 2−14).

Finally, to show that the present method performs more efficiently than the existing hybrid scheme, we compare

the computational time of both the methods in Tables 6.7, 6.8 and 6.9, respectively for Examples 6.1, 6.2 and

6.3. More specifically, for the larger values of ε (e.g., ε = 2−4, 2−6), we notice that the present method takes

comparatively less computational time than the existing method as N increases; although for the smaller values

of ε (e.g., ε = 2−20) both the methods take approximately same computational time.

255



0 0.2 0.4 0.6 0.8 1
x

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

U

(a)Example 6.1.

0 0.2 0.4 0.6 0.8
x

-1.5

-1

-0.5

0

0.5

1

U

(b) Example 6.2.

0 0.2 0.4 0.6 0.8 1x
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

U

(c) Example 6.3.

Figure 6.2: Numerical solutions computed at t = 1 for N = 128
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(a) for ε = 2−6, N = 128 (b) for ε = 2−20, N = 128

Figure 6.3: Surface plots of the numerical solutions of Example 6.1

(a) for ε = 2−6, N = 128 (b) for ε = 2−20, N = 128

Figure 6.4: Surface plots of the numerical solutions of Example 6.2

(a) for ε = 2−6, N = 128 (b) for ε = 2−20, N = 128

Figure 6.5: Surface plots of the numerical solutions of Example 6.3
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Table 6.1: ε-uniform maximum point-wise errors and order of convergence for Example 6.1

ε ∈ Sε Number of mesh-intervals N / time step-size ∆t ( ∆t = 1.6/N )

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

eN,∆t 4.2584e-03 1.5292e-03 5.6558e-04 2.0435e-04 8.0317e-05

rN,∆t 1.4775 1.4350 1.4687 1.3473

ε ∈ Sε Number of mesh-intervals N / time step-size ∆t ( ∆t = 0.8/N )

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

eN,∆t 3.9224e-03 1.3828e-03 5.0114e-04 1.7059e-04 6.0758e-05

rN,∆t 1.5042 1.4643 1.5547 1.4893

Table 6.2: ε-uniform maximum point-wise errors and order of convergence for Example 6.2

ε ∈ Sε Number of mesh-intervals N / time step-size ∆t ( ∆t = 1.6/N )

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

êN,∆t 1.0616e-02 4.4259e-03 1.7923e-03 8.3973e-04 3.6933e-04

r̂N,∆t 1.2622 1.3042 1.0938 1.1850

ε ∈ Sε Number of mesh-intervals N / time step-size ∆t ( ∆t = 0.8/N )

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

êN,∆t 8.2544e-03 3.3693e-03 1.2124e-03 5.3692e-04 2.0824e-04

r̂N,∆t 1.2927 1.4746 1.1751 1.3664

Table 6.3: ε-uniform maximum point-wise errors and order of convergence for Example 6.3

ε ∈ Sε Number of mesh-intervals N / time step-size ∆t ( ∆t = 1.6/N )

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

eN,∆t 4.3011e-03 1.5764e-03 6.2794e-04 2.3139e-04 9.2303e-05

rN,∆t 1.4480 1.3280 1.4403 1.3259

ε ∈ Sε Number of mesh-intervals N / time step-size ∆t ( ∆t = 0.8/N )

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

eN,∆t 3.9284e-03 1.3933e-03 5.3807e-04 1.8526e-04 6.6182e-05

rN,∆t 1.4955 1.3726 1.5383 1.4850
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Figure 6.6: Loglog plot of ε−uniform maximum point-wise errors computed with ∆t = 0.8/N and 1.6/N
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Table 6.4: Comparison (regionwise) of maximum point-wise errors and order of convergence for Example
6.1, taking ∆t = 1

N2 .

N proposed method existing method

left outer interior layer right outer left outer interior layer right outer
region region region region region region

[0, d− η1] (d− η1, d + η2) [d + η2, 1] [0, d− η1] (d− η1, d + η2) [d + η2, 1]

ε = 2−4 ≈ 10−1

128 5.2842e-05 2.1747e-04 4.8370e-05 6.4002e-04 6.3767e-04 5.3445e-04

1.9999 1.9996 1.9997 0.97855 0.97322 0.99680

256 1.3211e-05 5.4383e-05 1.2095e-05 3.2481e-04 3.2481e-04 2.6782e-04

2.0000 2.0005 1.9999 0.98971 0.98499 0.99876

512 3.3029e-06 1.3591e-05 3.0239e-06 1.6356e-04 1.6410e-04 1.3402e-04

2.0000 2.0001 2.0000 0.99496 0.98903 0.99947

1024 8.2573e-07 3.3975e-06 7.5600e-07 8.2069e-05 8.2677e-05 6.7037e-05

ε = 2−6 ≈ 10−2

128 1.6355e-04 1.1960e-03 1.7158e-04 1.6355e-04 1.1960e-03 1.7158e-04

4.4763 1.4790 4.5836 1.3531 1.6430 1.5147

256 7.3477e-06 4.2904e-04 7.1560e-06 6.4021e-05 3.8295e-04 6.0046e-05

2.4563 1.6697 2.4588 1.3536 1.6858 1.4576

512 1.3388e-06 1.3486e-04 1.3017e-06 2.5053e-05 1.1903e-04 2.1863e-05

2.4882 1.6993 2.4915 1.3745 1.7294 1.4421

1024 2.3861e-07 4.1527e-05 2.3145e-07 9.6625e-06 3.5898e-05 8.0463e-06

ε = 2−14 ≈ 10−4

128 7.1015e-05 1.2417e-03 1.6415e-04 7.1015e-05 1.2417e-03 1.6415e-04

1.9993 1.6182 2.0014 1.9993 1.6182 2.0014

256 1.7762e-05 4.0449e-04 4.0998e-05 1.7762e-05 4.0449e-04 4.0998e-05

1.9558 1.6598 1.9839 1.9558 1.6598 1.9839

512 4.5785e-06 1.2801e-04 1.0364e-05 4.5785e-06 1.2801e-04 1.0364e-05

1.8815 1.6962 1.9524 1.8815 1.6962 1.9524

1024 1.2426e-06 3.9504e-05 2.6779e-06 1.2426e-06 3.9504e-05 2.6779e-06

ε = 2−20 ≈ 10−6

128 6.9611e-05 1.2426e-03 1.6322e-04 6.9611e-05 1.2426e-03 1.6322e-04

2.0365 1.6174 2.0153 2.0365 1.6174 2.0153

256 1.6967e-05 4.0497e-04 4.0374e-05 1.6967e-05 4.0497e-04 4.0374e-05

2.0301 1.6586 2.0126 2.0301 1.6586 2.0126

512 4.1542e-06 1.2828e-04 1.0006e-05 4.1542e-06 1.2828e-04 1.0006e-05

2.0224 1.6941 2.0093 2.0224 1.6941 2.0093

1024 1.0226e-06 3.9643e-05 2.4853e-06 1.0226e-06 3.9643e-05 2.4853e-06
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Figure 6.7: Loglog plot for comparison of the spatial order of convergence for Example 6.1
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Table 6.5: Comparison (regionwise) of maximum point-wise errors and order of convergence for Example 6.2,
taking ∆t = 1

N2 .

N proposed method existing method

left outer interior layer right outer left outer interior layer right outer
region region region region region region

[0, d− η1] (d− η1, d + η2) [d + η2, 1] [0, d− η1] (d− η1, d + η2) [d + η2, 1]

ε = 2−4 ≈ 10−1

128 3.6741e-05 3.4463e-04 3.7954e-05 2.7689e-04 5.4828e-04 5.4502e-04

1.9956 1.9482 1.9988 0.98082 1.0614 1.0176

256 9.2131e-06 8.9303e-05 9.4967e-06 1.4030e-04 2.6271e-04 2.6922e-04

1.9978 1.9690 1.9993 0.99060 1.0087 1.0083

512 2.3068e-06 2.2811e-05 2.3753e-06 7.0609e-05 1.3057e-04 1.3384e-04

1.9989 1.9836 1.9996 0.99530 1.0042 1.0041

1024 5.7714e-07 5.7679e-06 5.9400e-07 3.5420e-05 6.5095e-05 6.6730e-05

ε = 2−6 ≈ 10−2

128 3.2120e-04 2.3229e-03 8.5687e-04 1.5323e-04 2.0015e-03 4.1927e-04

4.6043 1.9117 4.8579 1.2016 1.5733 1.2134

256 1.3205e-05 6.1737e-04 2.9550e-05 6.6626e-05 6.7257e-04 1.8080e-04

2.2595 1.6654 2.2705 1.1888 1.5793 1.1881

512 2.7577e-06 1.9463e-04 6.1242e-06 2.9227e-05 2.2507e-04 7.9352e-05

2.2826 1.6951 2.3017 1.1959 1.5804 1.1875

1024 5.6679e-07 6.0108e-05 1.2421e-06 1.2757e-05 7.5262e-05 3.4840e-05

ε = 2−14 ≈ 10−4

128 4.8928e-05 1.9899e-03 1.4797e-04 4.8928e-05 1.9899e-03 1.4797e-04

1.9671 1.6382 1.9752 1.9671 1.6382 1.9752

256 1.2514e-05 6.3924e-04 3.7633e-05 1.2514e-05 6.3924e-04 3.7633e-05

1.9387 1.6821 1.9499 1.9387 1.6821 1.9499

512 3.2644e-06 1.9920e-04 9.7406e-06 3.2644e-06 1.9920e-04 9.7406e-06

1.8843 1.7046 1.9042 1.8843 1.7046 1.9042

1024 8.8425e-07 6.1113e-05 2.6024e-06 8.8425e-07 6.1113e-05 2.6024e-06

ε = 2−20 ≈ 10−6

128 4.8074e-05 1.9887e-03 1.4592e-04 4.8074e-05 1.9887e-03 1.4592e-04

1.9978 1.6392 2.0003 1.9978 1.6392 2.0003

256 1.2036e-05 6.3844e-04 3.6473e-05 1.2036e-05 6.3844e-04 3.6473e-05

1.9990 1.6838 1.9992 1.9989 1.6838 1.9992

512 3.0113e-06 1.9872e-04 9.1231e-06 3.0113e-06 1.9872e-04 9.1231e-06

1.9980 1.7073 1.9983 1.9980 1.7073 1.9983

1024 7.5384e-07 6.0854e-05 2.2835e-06 7.5385e-07 6.0854e-05 2.2835e-06
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Figure 6.8: Loglog plot for comparison of the spatial order of convergence for Example 6.2
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Table 6.6: Comparison (region wise) of maximum point-wise errors and order of convergence for Example
6.3, taking ∆t = 1

N2 .

N proposed method existing method

left outer interior layer right outer left outer interior layer right outer
region region region region region region

[0, d− η1] (d− η1, d + η2) [d + η2, 1] [0, d− η1] (d− η1, d + η2) [d + η2, 1]

ε = 2−4 ≈ 10−1

128 6.8810e-05 2.6375e-04 5.6555e-05 8.0664e-04 8.3314e-04 6.1630e-04

1.9999 2.0019 1.9997 0.97580 0.92164 0.99566

256 1.7204e-05 6.5853e-05 1.4142e-05 4.1014e-04 4.3982e-04 3.0908e-04

2.0000 2.0000 1.9999 0.98848 0.95270 0.99828

512 4.3009e-06 1.6463e-05 3.5357e-06 2.0672e-04 2.2724e-04 1.5472e-04

2.0000 2.0001 2.0000 0.99438 0.97453 0.99925

1024 1.0752e-06 4.1154e-06 8.8394e-07 1.0376e-04 1.1564e-04 7.7402e-05

ε = 2−6 ≈ 10−2

128 2.0601e-04 1.1826e-03 1.9930e-04 2.0601e-04 1.1826e-03 1.9930e-04

4.5644 1.3920 4.6310 1.3993 1.6325 1.5404

256 8.7068e-06 4.5061e-04 8.0435e-06 7.8101e-05 3.8143e-04 6.8517e-05

2.4779 1.6721 2.4726 1.3877 1.6913 1.4787

512 1.5629e-06 1.4140e-04 1.4491e-06 2.9848e-05 1.1811e-04 2.4584e-05

2.5088 1.7011 2.5054 1.4017 1.7347 1.4599

1024 2.7460e-07 4.3489e-05 2.5521e-07 1.1297e-05 3.5486e-05 8.9370e-06

ε = 2−14 ≈ 10−4

128 1.1722e-04 1.2118e-03 2.0673e-04 1.1722e-04 1.2118e-03 2.0673e-04

1.9937 1.6093 1.9994 1.9937 1.6093 1.9994

256 2.9434e-05 3.9716e-04 5.1704e-05 2.9434e-05 3.9716e-04 5.1704e-05

1.9589 1.6549 1.9831 1.9589 1.6549 1.9831

512 7.5713e-06 1.2612e-04 1.3078e-05 7.5713e-06 1.2612e-04 1.3078e-05

1.8991 1.6930 1.9538 1.8991 1.6930 1.9538

1024 2.0299e-06 3.9007e-05 3.3761e-06 2.0299e-06 3.9007e-05 3.3761e-06

ε = 2−20 ≈ 10−6

128 1.1545e-04 1.2128e-03 2.0567e-04 1.1545e-04 1.2128e-03 2.0567e-04

2.0233 1.6083 2.0125 2.0233 1.6083 2.0125

256 2.8400e-05 3.9778e-04 5.0976e-05 2.8400e-05 3.9778e-04 5.0976e-05

2.0182 1.6532 2.0100 2.0182 1.6532 2.0100

512 7.0109e-06 1.2647e-04 1.2656e-05 7.0109e-06 1.2647e-04 1.2656e-05

2.0129 1.6902 2.0073 2.0129 1.6902 2.0073

1024 1.7371e-06 3.9191e-05 3.1480e-06 1.7371e-06 3.9191e-05 3.1480e-06
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Figure 6.9: Loglog plot for comparison of the spatial order of convergence for Example 6.3
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Table 6.7: Comparison of computational time (in seconds) for Example 6.1, taking ∆t = 1
N2 .

ε = 2−4 ≈ 10−1

N 128 256 512 1024
proposed method 1.4793 31.4178 410.0085 6546.2610
existing method 2.4221 39.0740 454.6845 6982.3169

ε = 2−6 ≈ 10−2

N 128 256 512 1024
proposed method 2.4758 31.5279 410.1390 6544.0744
existing method 2.3914 39.3110 454.9408 6998.2790

ε = 2−20 ≈ 10−6

N 128 256 512 1024
proposed method 2.4726 39.5603 459.8931 7020.4788
existing method 2.3305 38.7301 452.1004 6947.0626

Table 6.8: Comparison of computational time (in seconds) for Example 6.2, taking ∆t = 1
N2 .

ε = 2−4 ≈ 10−1

N 128 256 512 1024
proposed method 15.4459 219.7051 3477.7996 54903.7533
existing method 18.6910 241.3062 3699.1750 56417.5973

ε = 2−6 ≈ 10−2

N 128 256 512 1024
proposed method 16.5324 221.4601 3481.3048 54854.0630
existing method 19.2644 246.1654 3734.7835 56694.4203

ε = 2−20 ≈ 10−6

N 128 256 512 1024
proposed method 20.0139 248.0453 3728.9498 56949.5886
existing method 19.2974 247.4739 3723.3609 56597.2608

Table 6.9: Comparison of computational time (in seconds) for Example 6.3, taking ∆t = 1
N2 .

ε = 2−4 ≈ 10−1

N 128 256 512 1024
proposed method 4.6762 94.7763 1221.8305 19466.2941
existing method 6.4231 110.0671 1314.4793 20379.2004

ε = 2−6 ≈ 10−2

N 128 256 512 1024
proposed method 6.7264 93.4455 1225.2659 19284.9816
existing method 6.3972 108.9556 1314.8121 20329.9364

ε = 2−20 ≈ 10−6

N 128 256 512 1024
proposed method 6.6576 111.1485 1332.6940 20366.3504
existing method 6.4316 108.9218 1311.2975 20343.9922
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Efficient Numerical Method for Model problem-II
This type of model problems appear in the semiconductor device modeling (see, e.g., [73]). The content of

this part are given here: In Section 6.8, we discuss properties of the analytical solution which includes the

stability of the analytical solution as well as the asymptotic behavior of the smooth and layer components.

Section 6.9 introduces the suitable mesh for discretizing the domain D and provides description of the newly

proposed numerical method. Further, the stability of the proposed method is also discussed here. The ε-uniform

convergence result of the proposed method has been established in 6.10. Finally, numerical experiments are

carried out in Section 6.11. Here, we also compare the numerical results of the present method with the implicit

upwind finite difference scheme.

6.8 The analytical solution of model-II

This section addresses the stability of the analytical solution of the IBVP (6.1)-(6.3) with (6.5) together with

the bounds of the derivatives of the smooth and layer component. These properties are important for the

convergence analysis of the numerical approximation of the IBVP (6.1)-(6.3) with (6.5). we assume that the

data associated with the boundary and the initial conditions, i.e., q0, sl and sr are sufficiently piecewise smooth

functions and satisfy the following compatibility conditions at the corner points (0, 0) and (1, 0):

q0(0) = sl(0), q0(1) = sr(0), (6.52)


−dsl(0)

dt
= g(0, 0)− εd

2q0(0)

dx2
− a(0)

dq0(0)

dx
+ b(0, 0)q0(0),

−dsr(0)

dt
= g(1, 0)− εd

2q0(1)

dx2
− a(1)

dq0(1)

dx
+ b(1, 0)q0(1),

(6.53)

and 
d2sl(0)

dt2
= Lx,ε

(
Lx,εq0 − g

)
(0, 0)− q0(0)

∂b(0, 0)

∂t
−
∂g(0, 0)

∂t
,

d2sr(1)

dt2
= Lx,ε

(
Lx,εs0 − g

)
(1, 0)− q0(1)

∂b(1, 0)

∂t
−
∂g(1, 0)

∂t
.

(6.54)

We also assume the necessary compatibility conditions at the point (d, 0). Then, under these hypothesis the

IBVP (6.1)-(6.3) with (6.5) possesses a unique solution y ∈ C1+γ(D) ∩ C4+γ(D− ∪ D+). At first, we prove

the maximum principle for the differential operator Lε ≡ Lx,ε − ∂
∂t in the following lemma. The outline of the

proof of Lemma 6.13 is given below for clarity of presentation. Let ∂D = D \D.

Lemma 6.13 (Maximum principle). Suppose that a function ψ ∈ C0(D)∩C2(D−∪D+) satisfies that ψ(x, t) ≤

0, (x, t) ∈ ∂D,
[∂ψ
∂x

]
(d, t) ≥ 0, t > 0; and Lεψ(x, t) ≥ 0, for all (x, t) ∈ D− ∪ D+, then ψ(x, t) ≤

0, for all (x, t) ∈ D.

Proof. Let us introduce a function w on D satisfying

ψ(x, t) = exp(−m1(x− d)/2ε)w(x, t), x < d,
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and

ψ(x, t) = exp(−m2(x− d)/2ε)w(x, t), x ≥ d.

We select m1 < m2. We assume that the maximum value of w is achieved at (q, t) in D and w(q, t) > 0. If

(q, t) ∈ D− ∪D+, then

Lεψ(q, t) = exp(−m1(q − d)/2ε)

[
ε
(∂2w(q, t)

∂x2
− m1

ε

∂w(q, t)

∂x
+

m2
1

4ε2
w(q, t)

)
+ a(x)

(∂w(q, t)

∂x
− m1

2ε
w(q, t)

)
− b(x, t)w(q, t)− ∂w(q, t)

∂t

]
< 0,

which is a contradiction. The only possibility is (q, t) = (d, t). Note that

[∂ψ(d, t)

∂x

]
=
[∂w
∂x

]
(d, t) + [(m1 − m2)/2ε]w(d, t).

Since
∂w(d+, t)

∂x
< 0,

∂w(d−, t)

∂x
> 0,

[∂w
∂x

]
(d, t) ≤ 0 and m1 < m2. Therefore,

[∂ψ(d, t)

∂x

]
< 0, which is

also a contradiction. Hence, the proof is complete.

Now from Lemma 6.13, the following stability result can be deduced.

Lemma 6.14. The solution y(x, t) of the IBVP (6.1)-(6.3) with (6.5) satisfies that

‖y‖D ≤ ‖y‖∞ +
1

m0
‖g‖D. (6.55)

Proof. Consider the two functions Ψ±(x, t) = −‖y‖∞− (1−x)
m0
‖g‖±y(x, t). Clearly, Ψ±(0, t) ≤ 0, Ψ±(1, t) ≤

0, Ψ±(x, 0) ≤ 0 and for each (x, t) ∈ D− ∪D+

LεΨ±(x, t) ≥ a(x)

m0
‖g‖ ± g(x, t) ≥ 0.

It is also clear that [∂Ψ±(d,t)
∂x ] ≥ 0. It follows from the maximum principle that Ψ±(x, t) ≤ 0 for all (x, t) ∈ D

which yields the desired bound of y .

The solution y is now decomposed into the smooth component v and the layer component z such that

y = v +z. To define v and z, we extended the approach given in [33]. Here, we define the smooth component v

as v(x, t) = v0(x, t) + εv1(x, t) + ε2v2(x, t) + ε3v3(x, t), where v0, v1, v2, v3 ∈ C0(D) satisfies the following

problems:  a(x)∂v0
∂x − b(x, t)v0 − ∂v0

∂t = g(x, t), (x, t) ∈ D− ∪D+,

v0(x, 0) = q0(x), x ∈ Ω, v0(1, t) = y(1, t),
(6.56)

 a(x)∂vl
∂x − b(x, t)vl − ∂vl

∂t = −∂2vl−1

∂x2 , (x, t) ∈ D− ∪D+,

vl(x, 0) = 0, x ∈ Ω, vl(1, t) = 0, l = 1, 2,
(6.57)
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and 
Lεv3(x, t) = −∂2v2

∂x2 , (x, t) ∈ D− ∪D+,

v3(x, 0) = 0, Ω,

v3(0, t) = 0, v3(d, t) = 0, v3(1, t) = 0, t ∈ (0, T ].

(6.58)

Thus, the smooth component v satisfies that

Lεv(x, t) = g(x, t), (x, t) ∈ D− ∪D+,

v(x, 0) = y(x, 0),

v(0, t) = v0(0, t) + εv1(0, t) + ε2v2(0, t),

v(d, t) = v0(d, t) + εv1(d, t) + ε2v2(d, t), v(1, t) = y(1, t), t ∈ (0, T ].

(6.59)

We note that

|[v ](d, t)|,

∣∣∣∣∣
[
∂v
∂x

]
(d, t)

∣∣∣∣∣,
∣∣∣∣∣
[
∂2v
∂x2

]
(d, t)

∣∣∣∣∣,
∣∣∣∣∣
[
∂3v
∂x3

]
(d, t)

∣∣∣∣∣ ≤ C. (6.60)

Theorem 6.3. ∀ j, k ∈ N ∪ {0} satisfying 0 ≤ j ≤ 3 and 0 ≤ j + 2k ≤ 4, the smooth component v defined in

(6.59) satisfies the following bounds∣∣∣∣ ∂j+kv
∂xj∂tk

∣∣∣∣
D−∪D+

≤ C,
∣∣∣∣∂4v
∂x4

∣∣∣∣
D−∪D+

≤ Cε−1, (6.61)

Proof. We derive the bounds (6.61) for the smooth component v in the sub-region D
− and D

+ separately.

At first, we consider the analysis on the sub-region D
+. We extend the domain D+ to the domain De+ =

Ωe+ × (0, T ] = (−1, 1)× (0, T ] such that De+
= Ω

e+ × (0, T ] = [−1, 1]× [0, T ] ⊃ D
+.

The function v(x, t), (x, t) ∈ D
+ is the restrictions to D

+ of the function ve(x, t), (x, t) ∈ D
e+
, i.e.,

v(x, t) = ve(x, t), (x, t) ∈ D
+, such that

ve(x, t) = ve0(x, t) + εve1(x, t) + ε2ve2(x, t) + ε3ve3(x, t),

where the functions ve0 , ve1 , ve2 , ve3 are respective solutions of the following problems: ae(x)
∂ve

0
∂x − b

e(x, t)ve0 −
∂ve

0
∂t = ge(x, t), (x, t) ∈ De+,

ve0(x, 0) = qe0(x), x ∈ Ω
e+
, ve0(1, t) = sr(t), t ∈ (0, T ],

(6.62)

 ae(x)
∂ve

l
∂x − b

e(x, t)vel −
∂ve

l
∂t = −∂2vl−1

∂x2 , (x, t) ∈ De+,

vel (x, 0) = 0, x ∈ Ω
e+
, vel (1, t) = 0, l = 1, 2, t ∈ (0, T ],

(6.63)

and 
Leεve3(x, t) = −∂2ve

2
∂x2 , (x, t) ∈ De+,

ve3(x, 0) = 0 x ∈ Ω
e+
,

ve3(−1, t) = 0, ve3(d, t) = 0, ve3(1, t) = 0, t ∈ (0, T ].

(6.64)
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where

Leεve3(x, t) = ε
∂2ve3(x, t)

∂x2
+ ae(x)

∂ve3(x, t)

∂x
− be(x, t)ve3(x, t)− ∂ve3(x, t)

∂t
.

The functions ae(x), x ∈ Ω
e+; be(x, t), (x, t) ∈ D

e+; g(x, t), (x, t) ∈ D
e+; qe0, x ∈ Ω

e+ are defined

respectively. Then, using the arguments of [83], one can obtain that the smooth component v(x, t), (x, t) ∈ D
+

satisfies the following bound:∣∣∣∣∂j+kv(x, t)

∂xj∂tk

∣∣∣∣ ≤ C(1 + ε3−j), for 0 ≤ j + 2k ≤ 4. (6.65)

In the same way, we obtain the bound for the smooth component v(x, t), (x, t) ∈ D
−.

Next, we define the layer component z of the solution y in the following way: Find z ∈ C0(D) such that

Lεz = 0, (x, t) ∈ D− ∪D+,

z(x, 0) = 0, x ∈ Ω,

z(0, t) = y(0, t)− v(0, t), z(1, t) = 0,[∂z
∂x

]
(d, t) = −

[∂v
∂x

]
(d, t), t ∈ (0, T ].

(6.66)

We can further decompose z as

z(x, t) = z1(x, t) + z2(x, t),

where z1 ∈ C2+γ(D) is the boundary layer function satisfying
Lεz1 = 0, (x, t) ∈ D−,

z1(x, 0) = 0, x ∈ Ω
−

z1(0, t) = y(0, t)− v(0, t), z1(d, t) = 0, t ∈ (0, T ],

(6.67)

with z1(x, t) = 0, (x, t) ∈ D
+, and z2 ∈ Cγ(D) is the interior layer function satisfying

Lεz2 = 0, (x, t) ∈ D− ∪D+,

z2(x, 0) = 0, x ∈ Ω,

z2(0, t) = 0, z2(1, t) = 0,[∂z2

∂x

]
(d, t) = −

[∂v
∂x

]
(d, t), t ∈ (0, T ].

(6.68)

Theorem 6.4. ∀ j, k ∈ N ∪ {0} satisfying 0 ≤ j ≤ 3 and 0 ≤ j + 2k ≤ 4, the boundary layer component z1

and the interior layer component z2 define in (6.67) and (6.68) respectively satisfy the following bounds:
∣∣∣∣∂j+kz1

∂xj∂tk

∣∣∣∣ ≤ C(ε−j exp(−m0x/ε)

)
, (x, t) ∈ D

−
,∣∣∣∣∂4z1

∂x4

∣∣∣∣ ≤ C(ε−4 exp(−m0x/ε)

)
, (x, t) ∈ D

−
,

(6.69)
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and 

|z2(x, t)| ≤ Cε, (x, t) ∈ D
− ∪D

+
,∣∣∣∣∂j+kz2

∂xj∂tk

∣∣∣∣ ≤ C(ε1−k exp(−m0x/ε)

)
, (x, t) ∈ D

−
,∣∣∣∣∂4z2

∂x4

∣∣∣∣ ≤ C(ε−3 exp(−m0x/ε)

)
, (x, t) ∈ D

−
,∣∣∣∣∂j+kz2

∂xj∂tk

∣∣∣∣ ≤ C(ε1−k exp(−m0(x− d)/ε)

)
, (x, t) ∈ D

+
,∣∣∣∣∂4z2

∂x4

∣∣∣∣ ≤ C(ε−3 exp(−m0(x− d)/ε)

)
, (x, t) ∈ D

+
.

(6.70)

Proof. The bounds (6.69) for the component z1 and its derivatives follows from the arguments of [90, Lemmas

2.6 and 2.7].

To find the bound for z2 in (6.70), we use the barrier functions Φ(x, t) = −Ψ(x, t)± z2(x, t), where

Ψ(x, t) =


Cε

m0
e−m0x/ε, (x, t) ∈ D

−
,

Cε

m0
e−m0(x−d)/ε, (x, t) ∈ D

+
.

(6.71)

Note that Φ(x, 0) = −Ψ(x, 0) ≤ 0, Φ(0, t) = −Ψ(0, t) ≤ 0 and Φ(1, t) = −Ψ(1, t) ≤ 0. Next, we have

LεΦ(x, t) ≥


C exp(−m0x/ε)

[
− m0 + a(x) + bε

m0

]
≥ 0, (x, t) ∈ D

−
,

C exp(−m0(x− d)/ε)

[
− m0 + a(x) +

bε

m0

]
≥ 0, (x, t) ∈ D

+
,

(6.72)

and
[
∂Φ
∂x

]
(d, t) =

[
∂Ψ
∂x

]
(d, t) ±

[∂z2

∂x

]
(d, t) ≥ 0. We use Lemma 6.13 for obtaining the required bound of

z2. As in [90, Lemma 2.7], the desired bounds on the derivatives of z2(x, t) in (6.70) can be obtained over the

domain D
− and D

+ separately.

6.9 The discrete solution and stability analysis of the model problem-II

In this section, we introduce the modified layer adapted mesh to discretize the domain D and provide the

description of the proposed numerical method for discretizing the IBVP (6.1)−(6.3) with (6.5). The stability of

the proposed method is also discussed here.

6.9.1 Modified layer-adapted mesh
We choose N(≥ 8) as even positive integer. Now, to discretize the domain D = Ω× [0, T], we construct a mesh

D
N,M

= Ω
N × ΛM , where Ω

N
= {xj}Nj=0, denotes the modified layer-adapted mesh on the spatial domain Ω

and ΛM denotes the equidistant mesh on the temporal domain [0, T ]. To construct ΩN , we divide Ω into five

sub-interval as

Ω = [0,η1] ∪ [η1, d− p∗] ∪ [d− p∗, d] ∪ [d, d + η2] ∪ [d + η2, 1]. (6.73)

where

η1 = min
{
d

2
,η0ε lnN

}
, η2 = min

{
1− d

2
,η0ε lnN

}
,
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and p∗ = 8η2

N , η0 is a positive constant; and we place equidistant mesh on each sub-interval as depicted in Fig

6.10.

0 η1 d− p∗ d d + η2 1
N
4

N
4 − 2 2 N

4
N
4

Figure 6.10: Modified layer-adapted mesh in the spatial direction

We denote the step size in the temporal diretion by ∆t = tn − tn−1 = T/M, 1 ≤ n ≤ M and the mesh

width in the spatial direction by hj = xj − xj−1, 1 ≤ j ≤ N, with ĥj = hj + hj+1, 1 ≤ j ≤ N − 1. We

further denote hj as follows:

hj =



h1 =
4η1

N
, for 1 ≤ j ≤ N/4,

H1 =
4(d− p∗ − η1)

N
, for N/4 + 1 ≤ j ≤ N/2− 2,

h2 =
4η2

N
, for N/2 + 1 ≤ j ≤ 3N/4,

H2 = 4(1−d−η2)
N , for 3N/4 + 1 ≤ j ≤ N.

Remark 6.2. It shown in [Appendix A] that the discrete maximum principle for the proposed finite difference

operator can not be proved on the standard Shishkin mesh as depicted in Fig 6.11, by converting the system

(6.77) into a new system (6.86). To overcome this difficulty, we construct the modified layer adapted mesh.

0 η1 d d + η2 1
N
4

N
4

N
4

N
4

Figure 6.11: Standard Shishkin mesh in the spatial direction

6.9.2 Proposed numerical method
In order to constitute the numerical method for approximation of the IBVP (6.1)-(6.3) with (6.5), we utilize

the implicit midpoint operator LN,Mmup , and the implicit modified central difference operator LN,Mmcd which are

respectively defined as L
N,M
mcd Y

n+1
j = εD+

xD
−
x Y

n+1
j + ajD

∗
xY

n+1
j − bn+1

j Y n+1
j −D−t Y

n+1
j ,

L
N,M
mup Y

n+1
j = εD+

xD
−
x Y

n+1
j + aj+1/2D

+
x Y

n+1
j − bn+1

j+1/2Y
n+1
j+1/2 −D

−
t Y

n+1
j+1/2,

(6.74)
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and at the point of discontinuity, we utilize the following one-sided second-order difference operators DF
x Y

n+1
N/2 = (−Y n+1

N/2+2 + 4Y n+1
N/2+1 − 3Y n+1

N/2 )/2hj+1,

DB
x Y

n+1
N/2 = (Y n+1

N/2−2 − 4Y n+1
N/2−1 + 3Y n+1

N/2 )/2hj−1.
(6.75)

The proposed numerical method is now described in the following form on the mesh DN,M :

Y 0
j = q0(xj), for 0 ≤ j ≤ N,

L
N,M
mcd Y

n+1
j = gn+1

j , for 1 ≤ j ≤ N/4− 1 and N/2 + 1 ≤ j ≤ 3N/4− 1,

L
N,M
mcd Y

n+1
j = gn+1

j , for N/4 ≤ j ≤ N/2− 1 and 3N/4 ≤ j ≤ N − 1,

and when ε > 2||a||N−1,

L
N,M
mup Y

n+1
j = gn+1

j+1/2, for N/4 ≤ j ≤ N/2− 1,

and when ε ≤ 2||a||N−1,

L
N,M
mup Y

n+1
j = gn+1

j+1/2, for 3N/4 ≤ j ≤ N − 1,

and when ε ≤ 2||a||N−1,

DF
x Y

n+1
j −DB

x Y
n+1
j = 0, for j = N/2,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), for n = 0, . . . ,M − 1.

(6.76)

Now, we rewrite (6.76) in the following form:
Y 0
j = q0(xj), for 0 ≤ j ≤ N, L

N,M
ε Y n+1

j = F n+1
j , for 1 ≤ j ≤ N − 1,

Y n+1
0 = sl(tn+1), Y n+1

j = sr(tn+1), for n = 0, . . . ,M − 1,

(6.77)

where the difference operator LN,Mε is defined as

LN,Mε Y n+1
j =



[
µ−j Y

n+1
j−1 + µcjY

n+1
j + µ+

j Y
n+1
j+1

]
+
[
λ−j Y

n
j−1 + λcjY

n
j + λ+

j Y
n
j+1

]
,

for 1 ≤ j ≤ N/2− 1 and N/2 + 1 ≤ j ≤ N − 1,[
ν−,2j Y n+1

j−2 + ν−,1j Y n+1
j−1 + νcjY

n+1
j + ν+,1

j Y n+1
j+1 + ν+,2

j Y n+1
j+2

]
,

for j = N/2,

(6.78)
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and the term F n+1
j as

F n+1
j ≡



gn+1
j , for 1 ≤ j ≤ N/4− 1 and N/2 + 1 ≤ j ≤ 3N/4− 1,

gn+1
j+1/2, for N/4 ≤ j ≤ N/2− 1, and when ε ≤ 2||a||N−1,

gn+1
j+1/2, for 3N/4 ≤ j ≤ N − 1, and when ε ≤ 2||a||N−1,

gn+1
j , for N/4 ≤ j ≤ N/2− 1 and 3N/4 ≤ j ≤ N − 1, and when ε > 2||a||N−1,

0, for j = N/2.

(6.79)

Let us denote pj = ε− 1
2ajhj+1, for 1 ≤ j ≤ N/2− 1 and N/2 + 1 ≤ j ≤ N − 1. When ε > 2‖a‖N−1,

for 1 ≤ j ≤ N/2− 1 and N/2 + 1 ≤ j ≤ N − 1, the coefficients in (6.78) are given by

µ−j =
2pj
hj ĥj

,

µcj =
−2pj
hjhj+1

− aj
hj+1

− bn+1
j − 1

∆t
,

µ+
j =

2pj
hj+1ĥj

+
aj
hj+1

,

λ−j = 0, λcj =
1

∆t
, λ+

j = 0.

(6.80)

Next, when ε ≤ 2||a||N−1, for N/4 ≤ j ≤ N/2 − 1 and 3N/4 ≤ j ≤ N − 1, the coefficients in (6.78) are

given by 

µ−j =
2ε

hj ĥj
,

µcj =
−2ε

hjhj+1
−
aj+1/2

hj+1
−
bn+1
j+1/2

2
− 1

2∆t
,

µ+
j =

2ε

hj+1ĥj
+
aj+1/2

hj+1
−
bn+1
j+1/2

2
− 1

2∆t
,

λ−j = 0, λcj =
1

2∆t
, λ+

j =
1

2∆t
,

(6.81)

and for 1 ≤ j ≤ N/4− 1 and N/2 + 1 ≤ j ≤ 3N/4− 1,

µ−j =
2pj
hj ĥj

,

µcj =
−2pj
hjhj+1

− aj
hj+1

− bn+1
j − 1

∆t
,

µ+
j =

2pj
hj+1ĥi

+
aj
hj+1

,

λ−j = 0, λcj =
1

∆t
, λ+

j = 0.

(6.82)
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Finally, the coefficients in (6.78) for j = N/2, are given by

ν−,2N/2 =
−1

2hj−1
, ν−,1N/2 =

2

hj−1
,

νcN/2 =
−3

2

( 1

hj−1
+

1

hj+1

)
,

ν+,1
N/2 =

2

hj+1
, ν+,2

N/2 =
−1

2hj+1
.

(6.83)

6.9.3 Inverse monotonocity of the proposed numerical method
It is easy to check that the difference operator defined in (6.78) does not satisfy the discrete maximum principle.

We overcome this difficulty by replacing Y n+1
N/2−2 and Y n+1

N/2+2 in (6.78) corresponding to xN/2 = d with the

following expressions:
Y n+1
N/2+2 =

1

µ+
N/2+1

[
gn+1
N/2+1 − µ

c
N/2+1Y

n+1
N/2+1 − µ

−
N/2+1Y

n+1
N/2 −

1

∆t
Y n
N/2+1

]
,

Y n+1
N/2−2 =

1

µ−N/2−1

[
gn+1
N/2−1 − µ

c
N/2−1Y

n+1
N/2−1 − µ

+
N/2−1Y

n+1
N/2 −

1

∆t
Y n
N/2−1

]
.

(6.84)

when ε > 2‖a‖N−1, and
Y n+1
N/2+2 =

1

µ+
N/2+1

[
gn+1
N/2+1 − µ

c
N/2+1Y

n+1
N/2+1 − µ

−
N/2+1Y

n+1
N/2 −

1

∆t
Y n
N/2+1

]
,

Y n+1
N/2−2 =

1

µ−N/2−1

[
gn+1
(N/2−1)+1/2 − µ

c
N/2−1Y

n+1
N/2−1 − µ

+
N/2−1Y

n+1
N/2 −

1

∆t
Y n

(N/2−1)+1/2

]
.

(6.85)

when ε ≤ 2‖a‖N−1. We thus convert the system of equations in (6.77) to the following form:
Y 0
j = q0(xj), for 0 ≤ j ≤ N,

LN,MH Y n+1
j = Fn+1

j , for 1 ≤ j ≤ N − 1,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), for n = 0, 1, . . . ,M − 1.

(6.86)

Here, the difference operator LN,MH is defined as

LN,MH Y n+1
j =



[
µ̂−j Y

n+1
j−1 + µ̂cjY

n+1
j + µ̂+

j Y
n+1
j+1

]
+
[
λ̂−j Y

n
j−1 + λ̂cjY

n
j + λ̂+

j Y
n
j+1

]
,

for j = N/2,

L
N,M
ε Y n+1

j , for j 6= N/2,

(6.87)
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where 

µ̂−N/2 =
1

2h2

µcN/2−1

µ−N/2−1

+
2

h2
,

µ̂cN/2 =
1

2h2

µ−N/2+1

µ+
N/2+1

−
(

3

2h2
+

3

2h2

)
+

1

2h2

µ+
N/2−1

µ−N/2−1

,

µ̂+
N/2 =

1

2h2

µcN/2+1

µ+
N/2+1

+
2

h2
,

λ̂−N/2 =
1

2h2∆tµ−N/2−1

,

λ̂cN/2 = 0,

λ̂+
N/2 =

1

2h2∆tµ+
N/2+1

.

(6.88)

when ε > 2‖a‖N−1 and

µ̂−N/2 =
1

2h2

µcN/2−1

µ−N/2−1

+
2

h2
,

µ̂cN/2 =
1

2h2

µ−N/2+1

µ+
N/2+1

−
(

3

2h2
+

3

2h2

)
+

1

2h2

µ+
N/2−1

µ−N/2−1

,

µ̂+
N/2 =

1

2h2

µcN/2+1

µ+
N/2+1

+
2

h2
,

λ̂−N/2 =
1

4h2∆tµ−N/2−1

,

λ̂cN/2 =
1

4h2∆tµ−N/2−1

,

λ̂+
N/2 =

1

2h2∆tµ+
N/2+1

.

(6.89)

When ε ≤ 2‖a‖N−1; and the right-hand side term Fn+1
j is defined as

Fn+1
j =



gn+1
N/2+1

2h2µ
+
N/2+1

+
gn+1
N/2−1

2h2µ
−
N/2−1

, for j = N/2 and when ε > 2‖a‖N−1,

gn+1
N/2+1

2h2µ
+
N/2+1

+
gn+1
(N/2−1)+1/2

2h2µ
−
N/2−1

, for j = N/2 and when ε ≤ 2‖a‖N−1,

F n+1
j , for j 6= N/2.

(6.90)

Let DN,M = D ∩ D
N,M and ∂DN,M = D

N,M \ DN,M . The difference operator LN,MH defined by (6.87)

satisfies the following discrete maximum principle.

Lemma 6.15 (Discrete maximum principle). Assume that there exists a positive integer N0 such that for N ≥
N0 the following conditions hold:

N

lnN
> 6η0‖a‖∞ and (6.91)
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(‖b‖∞ +
1

∆t
) ≤ m0N

4
. (6.92)

Then, if any mesh function Ψ satisfies that Ψ ≤ 0 on ∂DN,M and LN,MH Ψ ≥ 0 in DN,M , then it implies that

Ψ ≤ 0 at each point of D
N,M

.

Proof. According to the hypothesis of the discrete maximum principle, we assume that the mesh function Ψ

satisfies the following:

Ψ0
j = ρ0

j , for 0 ≤ j ≤ N, (6.93)

and  −L
N,M
H Ψn+1

j = ρn+1
j , for 1 ≤ j ≤ N − 1,

Ψn+1
0 = ρn+1

0 , Ψn+1
N = ρn+1

N , for n = 0, 1, . . . ,M − 1,
(6.94)

where ρnj ≤ 0, for all j and n. Now, we set

−LN,MH Ψn+1
j =

[
A(j, j − 1)Ψn+1

j−1 + A(j, j)Ψn+1
j + A(j, j + 1)Ψn+1

j+1

]
−[

B(j, j − 1)Ψn
j−1 + B(j, j)Ψn

j + B(j, j)Ψn
j+1

]
,

(6.95)

for 1 ≤ j ≤ N − 1, together with

A(j, j) = 1, for j = 0, N and B(j, j) = 1, for j = 0, N.

Therefore, (6.94) can be rewritten as

AΨn+1 − BΨn+1 = ρn+1, for n = 0, 1, . . . ,M − 1, (6.96)

where A := A(j, j), B := B(j, j) and Ψn = (Ψn
0 , . . . ,Ψ

n
N ), ρn = (ρn0 , . . . , ρ

n
N ), for n ∈ {0, 1, . . . ,M}. It

is obvious that the matrix B ≥ 0, and below we prove that the matrix A is an M-matrix. Then, according to

[Lemma 3.12, Part II] given in the book of Roos et al. [99], the desired result follows from (6.96). Now, to

prove that the M-matrix criterion of A, we consider the following two cases.

Case 1. Let ε > 2‖a‖N−1. For 1 ≤ j ≤ N/4 − 1, N/2 + 1 ≤ j ≤ 3N/4 − 1 and j = N/2 − 1, N/2 − 2,

we have

pj = ε− ajhj+1/2 ≥ ε−
‖a‖h1

2
. (6.97)

Again, for N/4 ≤ j ≤ N/2− 3,

pj = ε− ajhj+1/2 ≥ ε−
‖a‖H1

2
. (6.98)

and for 3N/4 ≤ j ≤ N − 1,

pj = ε− ajhj+1/2 ≥ ε−
‖a‖H2

2
. (6.99)

Since, h1, H1, H2 ≤ 4N−1; (6.24), (6.98) and (6.40) imply that for 1 ≤ j ≤ N/2−1 andN/2+1 ≤ j ≤ N−1,

pj ≥ ε − 2‖a‖N−1 > 0. Now, for 1 ≤ j ≤ N/2 − 1 and N/2 + 1 ≤ j ≤ N − 1, it is straightforward from
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(6.80) that A(j, j) = −µcj > 0, A(j, j − 1) = −µ−j < 0, A(j, j + 1) = −µ+
j < 0 and hence,

|A(j, j)| − |A(j, j + 1)| − |A(j, j − 1)|

=
2pj

hjhj+1
+

aj
hj+1

+ bn+1
j +

1

∆t
−

2pj
hj ĥj

−
2pj

hj+1ĥj
− aj
hj+1

,

= bn+1
j +

1

∆t
> 0.

(6.100)

Next, we consider j = N/2. Here, using (6.92) and h2 ≤ 4N−1, we obtain from (6.88) that

A(N/2, N/2 + 1) = −µ̂+
N/2

=
1

2h2

[
− 4 +

2pN/2+1 + aN/2+1h2 + bn+1
N/2+1h

2
2 +

h2
2

∆t

pN/2+1 + aN/2+1h2

]
,

≤ 1

2h2

[
−2pN/2+1 − 3aN/2+1h2 + h2

2(bn+1
N/2+1 + 1

∆t)

pN/2+1 + aN/2+1h2

]
,

≤ 1

2h2

[
−2pN/2+1 − 3m0h2 + h2

2
m0N

4

pN/2+1 + aN/2+1h2

]
,

≤ 1

2h2

[
−2pN/2+1 − 3m0h2 + m0h2

pN/2+1 + aN/2+1h2

]
≤ 0.

(6.101)

Again, using (6.92) and h2 ≤ 4N−1, from (6.88) we have

A(N/2, N/2) = −µ̂cN/2

= − 1

2h2

[ pN/2+1

pN/2+1 + aN/2+1h2

]
+

3

h2
− 1

2h2

[(pN/2−1 + aN/2−1h2

pN/2−1

)]
,

=
1

2h2

[
2pN/2−1 − aN/2+1h2

pN/2−1

]
+

1

2h2

[(
2pN/2+1 + 3aN/2+1h2

pN/2+1 + aN/2+1h2

)]
,

≥ 1

h2pN/2−1

[
ε− ‖a‖h2

]
,

(6.102)
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and
A(N/2, N/2− 1) = −µ̂−N/2,

=
1

2h2

[
− 4 +

2pN/2−1 + aN/2−1h2 + bn+1
N/2−1h

2
2 +

h2
2

∆t

pN/2−1

]
,

=
1

2h2

[−2pN/2−1 + aN/2−1h2 + h2
2(bn+1

N/2−1 + 1
∆t)

pN/2−1

]
,

=
1

2h2

[−2ε+ 3aN/2−1h2 − m0h2 + h2
2
m0N

4

pN/2−1

]
,

≤ 1

h2pN/2−1

[
− ε+

3

2
‖a‖h2

]
,

(6.103)

since h2 = 4η2

N = 4η0ε lnN
N , using the condition (6.91), we have A(N/2, N/2) > 0 and A(N/2, N/2− 1) < 0.

Further, we have

|A(N/2, N/2)| − |A(N/2, N/2 + 1)| − |A(N/2, N/2− 1)| > 0. (6.104)

Case 2. Let ε ≤ 2‖a‖N−1. For 1 ≤ j ≤ N/4− 1, under the condition (6.91), we obtain that

Pj = ε− ajh1

2
,

≥ h1

2

(
3‖a‖ − aj

)
> 0.

and similarly for N/2 + 1 ≤ j ≤ 3N/4− 1, we have Pj = ε− ajhj+1

2 = ε− ajh2

2 > 0. Likewise the previous

case one can obtain from (6.82) that{
A(j, j) = −µcj > 0, A(j, j − 1) = −µ−j < 0, A(j, j + 1) = µ+

j < 0,

and |A(j, j)| − |A(j, j + 1)| − |A(j, j − 1)| > 0.

Now, for N/4 ≤ j ≤ N/2− 1 and 3N/4 ≤ j ≤ N − 1, it is straightforward from (6.81) that

A(j, j) = −µcj > 0, A(j, j − 1) = −µ−j < 0.

Under the assumption (6.92) and using inequalities h2, H1, H2 ≤ 4N−1, we obtain from (6.81) that

A(j, j + 1) = −µ+
j = − 2ε

hj+1ĥj
−
aj+1/2

hj+1
+
bn+1
j+1/2

2
+

1

2∆t
,

≤ −
aj+1/2

hj+1
+
bn+1
j+1/2

2
+

1

2∆t
,

=
1

2

[
− m0N

2
+ ‖b‖+

1

∆t

]
< 0.
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Further, we have

|A(j, j)| − |A(j, j + 1)| − |A(j, j − 1)|

=
2ε

hjhj+1
+
aj+1/2

hj+1
+
bn+1
j+1/2

2
+

1

2∆t
− 2ε

hj+1ĥj
−
aj+1/2

hj+1
+
bn+1
j+1/2

2
+

1

2∆t
− 2ε

hj ĥj
,

= bn+1
j+1/2 +

1

∆t
> 0.

(6.105)

Next, we consider j = N/2. Likewise the previous case, from (6.89) we have

A(N/2, N/2 + 1) = −µ̂+
N/2 ≤

1

2h2

[
−2pN/2+1 − 3m0h2 + m0h2

pN/2+1 + aN/2+1h2

]
< 0.

Again, using the condition (6.92) and h2 ≤ 4N−1, from (6.89) we have

A(N/2,N/2−1) = −µ̂−N/2

=
1

2h2

[
− 4 +

2ε+ a(N/2−1)+ 1
2
h2 +

h2
2

2 (bn+1
(N/2−1)+ 1

2

+ 1
∆t)

ε

]
,

=
1

2h2

[
−2ε+ a(N/2−1)+ 1

2
h2 + h2

2
m0N

8

ε

]
,

≤ 1

2h2

[
−2ε+ ‖a‖h2 + m0h2

2

ε

]
,

≤ 1

εh2

[
− ε+

3

4
‖a‖h2

]
,

(6.106)

and
A(N/2, N/2) = −µ̂cN/2

= − 1

2h2

[ pN/2+1

(pN/2+1 + aN/2+1h2)

]
+

3

h2

+
h2

2ε

( 1

2∆t
+
bn+1
(N/2−1)+1/2

2
−
a(N/2−1)+1/2

h2
− ε

h2
2

)
,

≥ 1

2h2

[
2pN/2+1 + 3a(N/2−1)+1/2

(pN/2+1 + aN/2+1h2)

]
+

1

h2
+
aN/2+1h2

2ε
,

>
1

h2ε

[
ε− ‖a‖h2

2

]
,

(6.107)

since h2 =
4η2

N
=

4η0ε lnN

N
, using the condition (6.91), we have A(N/2, N/2) > 0 and A(N/2, N/2−1) <
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0. Further, we have

|A(N/2, N/2)| − |A(N/2, N/2 + 1)| − |A(N/2, N/2− 1)| > 0. (6.108)

Hence, the matrix A is an M-matrix.

By using the discrete maximum principle with a suitable barrier function, we can obtain the following

stability result.

Lemma 6.16. Assume that the conditions (6.91) and (6.92) hold. Then, the solution Y of the discrete problem

(6.86)-(6.90) satisfies that

‖Y ‖
D

N,M ≤ ‖Y ‖∂DN,M +
1

m0
‖F‖

D
N,M .

Proof. We introduce the mesh functions

Ψ±(xj , tn+1) = −‖Y ‖∂DN,M −
(1− xj)

m0
‖F‖

D
N,M ± Y n+1

j . (6.109)

Note that Ψ±(0, tn+1), Ψ±(1, tn+1) ≤ 0 and Ψ±(xj , 0) ≤ 0. When ε > 2‖a‖N−1 for 1 ≤ j ≤ N/2 −
1, N/2 + 1 ≤ j ≤ N − 1,

LN,MH Ψ±(xj , tn+1) = εD+
xD
−
x

(
− ‖Y ‖∂DN,M −

(1− xj)
m0

‖F‖
)

+ a(xj)D
∗
x

(
− ‖Y ‖∂DN,M −

(1− xj)
m0

‖F‖
)

− bn+1
j

(
− ‖Y ‖∂DN,M −

(1− xj)
m0

‖F‖
)

−D−t
(
− ‖Y ‖∂DN,M −

(1− xj)
m0

‖F‖
)
± LN,MH Y n+1

j ,

≥ aj
m0
‖F‖ ± LN,MH Y n+1

j ≥ ‖F‖ ± Fn+1
j ≥ 0.

Next, when ε ≤ 2‖a‖N−1, N/4 ≤ j ≤ N/2− 1, 3N/4 ≤ j ≤ N − 1,

LN,MH Ψ±(xj , tn+1) = εD+
xD
−
x

(
− ‖Y ‖∂DN,M −

(1− xj)
m0

‖F‖
)

+ aj+1/2D
∗
x

(
− ‖Y ‖∂DN,M −

(1− xj)
m0

‖F‖
)

− bn+1
j+1/2

(
− ‖Y ‖∂DN,M −

(1− xj+1/2)

m0
‖F‖

)
−D−t

(
− ‖Y ‖∂DN,M −

(1− xj+1/2)

m0
‖F‖

)
± LN,MH Y n+1

j ,

≥
aj+1/2

m0
‖F‖ ± LN,MH Y n+1

j ≥ ‖F‖ ± Fn+1
j+1/2 ≥ 0.

Similarly, for j = N/2, we have

LN,MH Ψ±(xN/2, tn+1) ≥ DF
x Ψ±(xN/2, tn+1)−DB

x Ψ±(xN/2, tn+1) ≥ 0. (6.110)
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Lemma 6.15 implies that Ψ±(xj , tn+1) ≤ 0 for all 0 ≤ j ≤ N, which yields the desired bound on Y .

6.10 Error analysis

Now, we decompose numerical solution Y = V + Z where V , Z are smooth and layer component of Y ,

respectively. Define the function V to be the solution of
LN,MH V n+1

j = Fn+1
j , for all (xj , tn) ∈ DN,M \ (d, tn+1),

V 0
j = v(xj , 0), V n+1

0 = v(0, tn+1),

V n+1
N/2 = v(d, tn+1), V n+1

N = v(1, tn+1), for n = 0, 1, . . . ,M − 1.

(6.111)

In the following lemma, we obtain the error bounds associated with the smooth component.

Lemma 6.17. Under the assumption (6.91) and (6.92) of Lemma 6.15, the errors associated with smooth

component satisfy the following estimates:

∣∣∣V n+1
j − v(xj , tn+1)

∣∣∣ ≤
 C(N−2 + ∆t)tn+1(d− xj), for xj ≤ d,

C(N−2 + ∆t)tn+1(1− xj), for xj ≥ d.
(6.112)

Proof. In this proof we consider following two cases.

Case 1. When ε > 2‖a‖N−1. For 1 ≤ j ≤ N/2− 1., we define the truncation error as

LN,MH (V n+1
j − v(xj , tn+1)) = (Lε − LN,MH )v(xj , tn+1),

=
(
ε
( ∂2

∂x2
− δ2

x

)
+ aj

( ∂
∂x
−D∗x

)
−
( ∂
∂t
−D−t

))
v(xj , tn+1).

Then, the truncation error satisfies the satisfies that

∣∣∣LN,MH (V n+1
j − v(xj , tn+1))

∣∣∣ ≤


C
[
εĥj

∥∥∥∂3v
∂x3

∥∥∥+ hjhj+1

∥∥∥∂3v
∂x3

∥∥∥+ ∆t
∥∥∥∂2v
∂t2

∥∥∥], for j = N/4,

C
[
εh2

j

∥∥∥∂4v
∂x4

∥∥∥+ h2
j

∥∥∥∂3v
∂x3

∥∥∥+ ∆t
∥∥∥∂2v
∂t2

∥∥∥], otherwise.

(6.113)

Now, using hj ≤ CN−1 and the bounds on the derivative of v from equation (6.61), we obtain the that

∣∣∣LN,MH (V n+1
j − v(xj , tn+1))

∣∣∣ ≤


C
[
εN−1 +N−2 + ∆t

]
, for j = N/4,

C
[
N−2 + ∆t

]
, otherwise.

We choose the barrier function

Φn+1
j = C(N−2 + ∆t)tn+1γ(xj) + C(N−2 + ∆t)tn+1(d− xj),
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where

γ(xj) =

 1, for 0 ≤ xj ≤ η1,

d−xj
d−η1

, for η1 ≤ xj ≤ d.

Here, we have

D+
x γ(xj) =

 0, 0 ≤ j < N/4,

−1
d−η1

, N/4 ≤ j < N/2,
and D−x γ(xj) =

 0, 0 < j ≤ N/4,
−1

d−η1
, N/4 < j ≤ N/2,

D∗xγ(xj) =


0, 0 ≤ j < N/4,

−h1N

4d(d− η1)
, j = N/4.

−1
(d−η1) , N/4 < j < N/2,

and δ2
xγ(xj) =


0, 0 ≤ j < N/4,

−2N

4d(d− η1)
, j = N/4.

0, N/4 < j < N/2.

Now, using the above expressions, one can get

LN,MH Φn+1
j = εδ2

xΦn+1
j + ajD

∗
xΦn+1

j − bn+1
j Φn+1

j −D−t Φn+1
j ,

≤ εδ2
xΦn+1

j + ajD
∗
xΦn+1

j ,

= εδ2
x(C(N−2 + ∆t)tn+1γ(xj) + C(N−2 + ∆t)tn+1(d− xj))

+ ajD
∗
x(C(N−2 + ∆t)tn+1γ(xj) + C(N−2 + ∆t)tn+1(d− xj)),

= εC(N−2 + ∆t)tn+1δ
2
xγ(xj) + C(N−2 + ∆t)tn+1δ

2
x(d− xj)

+ ajC(N−2 + ∆t)tn+1D
∗
xγ(xj) + ajC(N−2 + ∆t)tn+1D

∗
x(d− xj).

(6.114)

The equation (6.114) implies that

LN,MH Φn+1
j ≤


−C(N−2 + ∆t), for 0 < j < N/4,

−C(εN−1 +N−2 + ∆t), for j = N/4,

−C(N−2 + ∆t), for N/4 < j < N/2.

Therefore, we have

|LN,MH (V n+1
j − v(xj , tn+1))| ≤ −LN,MH Φn+1

j ,

and applying Lemma 6.15 to −Φn+1
j ± (V n+1

j − v(xj , tn+1)), over DN,M ∩D
− yields that

|(V n+1
j − v(xj , tn+1))| ≤ Φn+1

j

≤ C(N−2 + ∆t)tn+1(d− xj), for xj ≤ d.
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Now, for N/2 + 1 ≤ j ≤ N − 1, the truncation error satisfies that

|LN,MH (V n+1
j − v(xj , tn+1))| ≤


C
[
εĥj

∥∥∥∂3v
∂x3

∥∥∥+ hjhj+1

∥∥∥∂3v
∂x3

∥∥∥+ ∆t
∥∥∥∂2v
∂t2

∥∥∥], for j = 3N/4,

C
[
εh2

j

∥∥∥∂4v
∂x4

∥∥∥+ h2
j

∥∥∥∂3v
∂x3

∥∥∥+ ∆t
∥∥∥∂2v
∂t2

∥∥∥], otherwise.

(6.115)

Now, using hj ≤ CN−1 and the bounds on the derivative of v , we obtain that

LN,MH (V n+1
j − v(xj , tn+1)) ≤


C
[
εN−1 +N−2 + ∆t

]
, for j = 3N/4,

C
[
N−2 + ∆t

]
, otherwise.

We consider the following barrier function for N/2 + 1 ≤ j ≤ N − 1,

Φn+1
j = C(N−2 + ∆t)tn+1γ(xj) + C(N−2 + ∆t)tn+1(1− xj),

where

γ(xj) =

 1, for d ≤ xj ≤ d + η2,

1−xj
1−d−η2

, for d + η2 ≤ xj ≤ 1.

Here, we have

D+
x γ(xj) =

 0, N/2 ≤ j < 3N/4,

−1
1−d−η2

, 3N/4 ≤ j < N − 1,
D−x γ(xj) =

 0, N/2 < j ≤ 3N/4,

−1
1−d−η2

, 3N/4 < j ≤ N − 1,

D∗xγ(xj) =


0, N/2 ≤ j < 3N/4,

−h2N

4(1− d)(1− d− η2)
, j = 3N/4.

−1
(1−d−η2) , N/4 < j < N/2,

and δ2
xγ(xj) =


0, N/2 ≤ j < 3N/4,

−2N

4(1− d)(1− d− η2)
, j = 3N/4.

0, 3N/4 < j < N.

Now, using the above expressions, we get

LN,MH Φn+1
j ≤


−C(N−2 + ∆t), for N/2 < j < 3N/4,

−C(εN−1 +N−2 + ∆t), for j = 3N/4,

−C(N−2 + ∆t), for 3N/4 < j < N.

Therefore, we have

|LN,MH (V n+1
j − v(xj , tn+1))| ≤ −LN,MH Φn+1

j ,

and applying Lemma 6.15 to −Φn+1
j ± (V n+1

j − v(xj , tn+1)), over the region D
N,M ∩D

+ yields that

|(V n+1
j − v(xj , tn+1))| ≤ Φn+1

j

≤ C(N−2 + ∆t)tn+1(1− xj), for xj ≥ d.
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Case 2. When ε ≤ 2‖a‖N−1. For N/4 ≤ j ≤ N/2− 1 and 3N/4 ≤ j ≤ N − 1, we obtain that∣∣∣LN,MH (V n+1
j − v(xj , tn+1))

∣∣∣ =
∣∣∣((Lεv)j+1/2 − L

N,M
H v(xj , tn+1))

∣∣∣,
≤
[
Cεĥj

∥∥∥∂v3

∂x3

∥∥∥+ Ch2
j+1

∥∥∥∂3v
∂x3

∥∥∥+ C∆t
∥∥∥∂2v
∂t2

∥∥∥],
≤ C(N−2 + ∆t).

For 1 ≤ j < N/4 and N/2 < j ≤ 3N/4, from (6.113) and (6.115), we get∣∣∣LN,MH (V n+1
j − v(xj , tn+1))

∣∣∣ ≤ C(N−2 + ∆t), for 1 ≤ j < N/4, N/2 < j < 3N/4.

Now, applying Lemma 6.15 separately to the discrete functions C(N−2 + ∆t)tn+1(d − xj) ± (V n+1
j −

v(xj , tn+1)), over DN,M ∩D− and to the discrete functionsC(N−2 +∆t)tn+1(1−xj)±(V n+1
j −v(xj , tn+1))

over DN,M ∩D
+, we obtain the desired estimate in (6.112).

Next, we define the function Z to be the solution of
LN,MH Zn+1

j = 0, for (xj , tn+1) ∈ DN,M \ (d, tn+1),

Z0
j = z(xj , 0), Zn+1

0 = z(0, tn+1),

Zn+1
N = z(1, tn+1), [DZ(d, tn+1)] = −[DV (d, tn+1)].

(6.116)

We define the jump in the discrete derivative of the mesh function Z at the point (d, tn+1) by

[DΨ(d, tn+1)] = DF
x Ψ(d, tn+1)−DB

x Ψ(d, tn+1).

Similarly to the continuous case we can further decompose Z as

Z = Z1 + Z2

where Z1 (the discrete analogue of the boundary function z1) is defined as the solution of
LN,MH Zn+1

1,j = 0, in DN,M ∩D−,

Z0
1,j = z1(xj , 0), 0 ≤ j < N/2,

Zn+1
1,0 = z1(0, tn+1), Zn+1

1,N/2 = 0, for n = 0, 1, . . . ,M − 1,

(6.117)

with Zn+1
1,j = 0, in D

N,M ∩ D
+, and Z2 (the discrete analogue of the interior layer function z2) is defined as
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the solution of
LN,MH Zn+1

2,j = 0, in DN,M \ (d, tn+1),

Z0
2,j = 0, Zn+1

2,0 = 0, Zn+1
2,N = 0,

[DZ2(d, tn+1)] = −[DV (d, tn+1)]− [DZ1(d, tn+1)], for n = 0, 1, . . . ,M − 1.

(6.118)

Lemma 6.18. Under the assumptions (6.91) and (6.92) of Lemma 6.15, the errors associated with the boundary

layer component satisfy the following estimates:

∣∣∣Zn+1
1,j − z1(xj , tn+1)

∣∣∣ ≤
 C(N−2 ln2N + ∆t)tn+1(d + xj), for 1 ≤ j < N/4,

CN−2tn+1, for N/4 ≤ j ≤ N/2− 1.
(6.119)

Proof. The proof follows from [118, lemma 10] for the regionN/4 ≤ j ≤ N/2−1. Next, we obtain an estimate

(6.119) for the boundary layer region 1 ≤ j < N/4 by using the truncation error approach and constructing

suitable barrier functions.

Lemma 6.19. Under the assumptions (6.91) and (6.92) of Lemma 6.15, the errors associated with interior

layer component satisfy the following estimate:∣∣∣Zn+1
2,j − z2(xj , tn+1)

∣∣∣ ≤ CN−2, for 3N/4 ≤ j ≤ N − 1, (6.120)

and ∣∣∣Zn+1
2,j − z2(xj , tn+1)

∣∣∣ ≤ C(N−2 ln2N + ∆t), for 1 ≤ j ≤ 3N/4− 1. (6.121)

Proof. The proof of the estimate in (6.120) for the region 3N/4 ≤ j ≤ N − 1, follows from [118, Lemma 10].

Next, we proceed to derive the estimate in (6.121). When ε > 2‖a‖N−1 and N/4 ≤ j ≤ N/2 − 1, the

truncation error satisfies that

∣∣LN,MH (Zn+1
2,j − z2(xj , tn+1))

∣∣ ≤


C
[
ε
∥∥∥∂2z2

∂x2

∥∥∥+ hj+1

∥∥∥∂2z2

∂x2

∥∥∥+ ∆t
∥∥∥∂2z2

∂t2

∥∥∥], for j = N/4,

C
[
εhj+1

∥∥∥∂3z2

∂x3

∥∥∥+ hj+1

∥∥∥∂2z2

∂x2

∥∥∥+ ∆t
∥∥∥∂2z2

∂t2

∥∥∥], otherwise,

Further, from the derivatives bounds on z2 in Theorem 6.4, we obtain that

|LN,MH (Zn+1
2,j − z2(xj , tn+1))| ≤


C
(

exp(−m0xj/ε) + hj+1ε
−1 exp(−m0xj/ε) + ∆t

)
,

for j = N/4,

C
(
hj+1ε

−1 exp(−m0xj/ε) + ∆t
)
, otherwise.

The relation ε > 2||a||N−1 implies that hj+1

ε ≤ 2
‖a‖ . We have the transition parameter η1 = η0ε lnN and let

η0 = 2
m0

, so one can get exp(−m0xj/ε) ≤ N−2, N/4 ≤ j ≤ N/2− 1. After that, we have

∣∣LN,MH (Zn+1
2,j − z2(xj , tn+1))

∣∣ ≤ C(N−2 + ∆t), for N/4 ≤ j ≤ N/2− 1. (6.122)
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When ε ≤ 2||a||N−1, for N/4 ≤ j ≤ N/2− 1, we have

|LN,MH (Zn+1
2,j − z2(xj , tn+1))| = ((Lεz2)j+1/2 − L

N,M
H z2(xj , tn+1)),

≤
[
Cε
∥∥∥∂2z2

∂x2

∥∥∥+ C
∥∥∥∂z2

∂x

∥∥∥+ C∆t
∥∥∥∂2z2

∂t2

∥∥∥].
Further, from the derivatives bounds on z2 in Theorem 6.4, we obtain that

|LN,MH (Zn+1
2,j − z2(xj , tn+1))| ≤ C

(
exp(−m0xj/ε) + ∆t

)
, N/4 ≤ j ≤ N/2− 1. (6.123)

The inequalities exp(−m0xj/ε) ≤ N−2, for N/4 ≤ j ≤ N/2− 1, imply that

|LN,MH (Zn+1
2,j − z2(xj , tn+1))| ≤ C(N−2 + ∆t), for N/4 ≤ j ≤ N/2− 1. (6.124)

Finally, for 1 ≤ j < N/4 and N/2 < j < 3N/4, we have

|LN,MH (Zn+1
2,j − z2(xj , tn+1))| ≤ C

[
εh2

j

∥∥∥∂4z2

∂x4

∥∥∥+ h2
j

∥∥∥∂3z2

∂x3

∥∥∥+ ∆t
∥∥∥∂2z2

∂t2

∥∥∥],
≤ C(N−2 ln2N + ∆t).

(6.125)

Now, we derive truncation error at the point of discontinuity. From the proposed scheme (6.76), we have

[
D(Y n+1

N/2 − y(d, tn+1))
]

= −
[
Dy(d, tn+1)

]
,

The preceding equation, as well as the equations (6.111) and (6.117), imply that[
D(Zn+1

2,N/2 − z2(d, tn+1))
]

= −
[
Dy(d, tn+1)

]
−
[
D(Zn+1

1,N/2 − z1(d, tn+1))
]
−
[
D(V n+1

N/2 − v(d, tn+1))
]
,

= −
[
Dy(d, tn+1)

]
+
[
Dz1(d, tn+1)

]
+
[
Dv(d, tn+1)

]
.

Here, we get∣∣[D(Zn+1
2,N/2 − z2(d, tn+1))

]∣∣
≤
∣∣DF

x y(d, tn+1)− yx(d, tn+1)
∣∣+
∣∣DB

x y(d, tn+1)− yx(d, tn+1)
∣∣+
∣∣DB

x z1(d, tn+1)− z1,x(d, tn+1)
∣∣

+
∣∣DF

x v(d, tn+1)− vx(d, tn+1)
∣∣+
∣∣DB

x v(d, tn+1)− vx(d, tn+1)
∣∣,

≤ Ch2
2

∣∣∣∂3y
∂x3

∣∣∣+ Ch2
2

∣∣∣∂3z1

∂x3

∣∣∣+ Ch2
2

∣∣∣∂3v
∂x3

∣∣∣.
From the previous expression and by using the Theorem 6.3 and 6.4, we get

∣∣[D(Zn+1
2,N/2 − z2(d, tn+1))

]∣∣ ≤ Ch2
2ε
−2 + Ch2

2 + Ch2
2 ≤ CN−2 ln2N. (6.126)

Now, for sufficiently large C, we consider the following discrete functions

Φ±(xj , tn+1) = −C(N−2 ln2N + ∆t)(1− xj)± (Zn+1
2,j − z2(xj , tn+1)), 0 ≤ j ≤ 3N/4.
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From (6.122), (6.124) and (6.125) we have for j 6= N/2, 1 ≤ j ≤ 3N/4− 1,

LN,MH Φ±(xj , tn+1) = LN,MH (−C(N−2 ln2N + ∆t)(1− xj))± LN,MH (Zn+1
2,j − z2(xj , tn+1)),

≥ 0.

From (6.126), we have for j = N/2,

LN,MH Φ±(xj , tn+1) ≥ DF
x Φ±(xj , tn+1)−DB

x Φ±(xj , tn+1) ≥ 0.

Now, applying Lemma 6.15 for the region 0 ≤ j ≤ 3N/4, we obtain the desired estimate in (6.121).

6.10.1 Main convergence result
The error associated with the numerical solution can be decomposed as

Y n+1
j − y(xj , tn+1) =


V n+1
j − v(xj , tn+1) + Zn+1

1,j − z1(xj , tn+1) + Zn+1
2,j − z2(xj , tn+1), 0 ≤ j < N/2,

V n+1
j − v(xN/2, tn+1) + Zn+1

1,j − z1(xN/2, tn+1) + Zn+1
2 − z2(xN/2, tn+1), j = N/2,

V n+1
j − v(xj , tn+1) + Zn+1

2,j − z2(xj , tn+1), N/2 < j ≤ N.

Theorem 6.5 (Global error). Under the assumptions (6.91) and (6.92) of Lemma 6.15, the error corresponding

to the discrete problem (6.86)-(6.90) satisfies the following estimates:

|Y n+1
j − y(xj , tn+1)| ≤

 C(N−2 ln2N + ∆t), 1 ≤ j < 3N/4,

C(N−2 + ∆t), 3N/4 ≤ j ≤ N − 1.

Proof. The Proof follows from Lemma 6.17, 6.18 and 6.19.

6.11 Numerical experiments

In this section, in order to verify the theoretical result as well as the efficiency of the proposed numerical method,

we carryout numerical experiments on the following test examples and also compare the numerical results of

the proposed method with the classical implicit upwind scheme (6.127)-(6.128). In all of the evaluations, we

select the constant η0 = 2.2 and d = 1/2.

6.11.1 The classical implicit upwind scheme
We introduce the classical implicit upwind scheme for the problem (6.1)-(6.3) with (6.5), which takes the

following form:

Y 0
j = q0(xj), for j = 0, . . . N,
L
N,M
up Y n+1

j = gn+1
j , for j = 1, . . . , , N/2− 1, and j = N/2 + 1, . . . N − 1,

D+
x Y

n+1
j −D−x Y n+1

j = 0, for j = N/2,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), for n = 0, . . . ,M − 1,

(6.127)
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where the difference operator LN,Mup is defined as

LN,Mup Y n+1
j = εD+

xD
−
x Y

n+1
j + ajD

+
x Y

n+1
j − bn+1

j Y n+1
j −D−t Y

n+1
j , (6.128)

and for j = N/2,

D+
x Y

n+1
j = (Y n+1

j+1 − Y
n+1
j )/hj+1, D−x Y

n+1
j = (Y n+1

j − Y n+1
j−1 )/hj . (6.129)

6.11.2 Test examples
Example 6.4. Consider the parabolic IBVP of the form (6.1)-(6.3) with (6.5), where a(x) = 1, b(x, t) = 0,

g(x, t) =

 −9, for (x, t) ∈ (0, 1/2)× (0, 1],

9(x− 1)2, for (x, t) ∈ (1/2, 1)× (0, 1].

Here, the exact solution is given by

y(x, t) =



exp(−t)
(
− 9(x+ εe

−x
ε + C1ε(1− e

−x
ε )) + 9ε− 1

)
, (x, t) ∈ (0, d)× (0, 1],

exp(−t)
(
− 9
(
εe

−1
2ε +

1

2
− ε
)
− C1ε

(
e

−1
2ε − 1

)
+
(45ε

4
+ 9ε2 + 18ε3

)
e−(x− 1

2 )/ε

− 45ε
4 − 9ε2 − 18ε3 − 9εe

−x
ε + 9εe

−1
2ε + 3

[
(x− 1)3 + 1

8

]
− 9ε

[
(x− 1)2 − 1

4

]
+

18ε2(x− 1
2 )− 1− C3ε(e

−x
ε − e−1

2ε )

)
, (x, t) ∈ [d, 1)× (0, 1],

with C3 = C1 = 41
8 + 18ε3 + 9εe

−1
ε − 45ε/4+9ε2+18ε3

ε(1−e−
1
ε )

e
−1
2ε , and accordingly, the data q0(x), sl(t) and sr(t)

are chosen.

Since, the exact solution is known, for each ε, we compute maximum point-wise errors by

eN,Mε = max
0≤j≤N

max
0≤n≤M

∣∣Y N,M (xj , tn)− y(xj , tn)
∣∣,

and the corresponding order of convergence by rN,Mε = log2

(
eN,Mε

e2N,2M
ε

)
, where y(xj , tn) and Y N,M (xj , tn),

respectively denote the exact and the numerical solution computed on D
N,M . Further, for each N and M ,

we calculate the ε-uniform maximum point-wise errors by eN,M = max
ε
eN,Mε and the corresponding order of

convergence by rN,M = log2

(
eN,M

e2N,2M

)
.

Example 6.5. Consider the parabolic IBVP of the form (6.8)-(6.3) with (6.5), where b(x, t) = 1− xt,

a(x) =

 1 + x(1− x), x ∈ [0, d],

1.5 + x(1− x), x ∈ [d, 1],
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and

g(x, t) =

 2(1 + x2)t2, (x, t) ∈ [0, d)× (0, 1],

−3(1− x2)t2, (x, t) ∈ [d, 1]× (0, 1].

Here, we set q0(x) = 0, x ∈ [0, 1] and sl(t) = 2
3 t

3, sr(t) = 0, t ∈ [0, 1].

Since the exact solution of Example 6.5 is not known, the following technique is used to illustrate the accuracy

and ε-uniform convergence of the proposed method. We denote Ŷ 2N,2M as the numerical solution computed on

the fine mesh D̂2N,2M with 2N mesh-intervals in the spatial direction and 2M mesh-intervals in the temporal

direction, such that the transition parameters η1, η2 and the point p∗ remain unaltered after doubling the mesh-

intervals. For each ε, we compute the maximum point-wise errors by

êN,Mε = max
0≤j≤N, 0≤n≤M

∣∣Y N,M (xj , tn)− Ŷ 2N,2M (xj , tn)
∣∣,

and the corresponding order of convergence by r̂N,Mε = log2

(
êN,Mε

ê2N,2M
ε

)
. Further, for each N and M , the

quantities êN,M and r̂N,M are defined analogously to eN,M and rN,M .

Example 6.6. Consider the following semi-linear parabolic IBVP:
ε
∂2y
∂x2

+
∂y
∂x
− exp(y)− ∂y

∂t
= g(x, t), (x, t) ∈ [(0, d) ∪ (d, 1)]× (0, 1],

y(x, 0) = q0(x), x ∈ [0, 1],

y(0, t) = sl(t), y(1, t) = sr(t), t ∈ [0, 1],

where the exact solution y(x, t) are the same as we define previously in Example 6.4 and accordingly, the data

q0(x), sl(t) , sr(t) and the term g(x, t) are chosen.

To compute the numerical solution of the proposed methods in (6.77) and (6.127) for Example 6.6, a

nonlinear system needs to be solved at each time step. For that, we use the Newton’s iterative method as we

define in Chapter 4.

6.11.3 Numerical findings and observations
The numerical solutions of Examples 6.4, 6.5 and 6.6, consist of boundary layer at x = 0 and an interior layer

right side of point of discontinuity at x = 1/2. This can be observe from Fig 6.12. In addition, from the surface

plots displayed in Figs 6.13, one can fully visualize the numerical solutions.

For different values of ε,N and ∆t, the ε-uniform errors are shown in tables 6.10, 6.12, and 6.14 , respec-

tively for Examples 6.4, 6.5 and 6.6, with ∆t = 1.6/N . In comparison, to view the effect of a temporal error,

we show the ε-uniform error along with the respective order of convergence determined using the proposed

method in Tables 6.10, 6.12 and 6.14, respectively for Examples 6.4, 6.5 and 6.6, with ∆t = 0.8/N and choos-

ing Sε = {20, 2−2, . . . , 2−20} as the set of values of the parameter ε. In order to highlight the robustness of

the proposed method, we provide the computational results of the classical implicit upwind scheme in Tables

6.11, 6.13 and 6.15, respectively for Examples 6.4, 6.5 and 6.6. This represents the ε-uniform convergence of
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the proposed method as well as the classical implicit upwind scheme. In support of this observation, the calcu-

lated ε-uniform errors in Tables 6.10-6.15 are depicted in Figs 6.14, 6.15 and 6.14; and this clearly illustrates

robustness of the proposed method in comparison with classical upwind scheme.

The order of convergence shown in Tables 6.10-6.15, however, does not really reflect the spatial order of

convergence of the method proposed. According to the estimation of Theorem 6.5, it is because of the influence

of the temporal error over the spatial error.

We take ∆t = 1/N2 for verifying the spatial order of convergence of the present method. We compare

region-wise errors and the order of convergence the proposed method with the implicit upwind scheme in

Tables 6.16-6.21. It confirms that the proposed method is almost second-order accurate in space, whereas the

implicit upwind scheme is almost first-order accurate in space.
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Figure 6.12: Numerical solutions obtain using the proposed method at t = 1 for N = 128
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(a)Example 6.4.

(b) Example 6.5.

(c) Example 6.6

Figure 6.13: Surface plot of the numerical solutions obtained using the proposed method
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Table 6.10: ε-uniform maximum point-wise errors and order of convergence for Example 6.4 .

ε ∈ Sε Number of mesh intervals N / time step size ∆t ( ∆t = 1.6/N )

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

eN,M 5.1873e-02 1.7613e-02 6.0240e-03 2.1204e-03 8.0021e-04

rN,M 1.5583 1.5479 1.5064 1.4058

ε ∈ Sε Number of mesh intervals N / time step size ∆t( ∆t = 0.8/N )

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

eN,M 5.1971e-02 1.7588e-02 5.7087e-03 1.8428e-03 6.1854e-04

rN,M 1.5631 1.6234 1.6313 1.5750

Table 6.11: ε-uniform maximum point-wise errors and order of convergence for Example 6.4 computed with
∆t = 0.8/N using classical upwind scheme.

ε ∈ Sε Number of mesh-intervals N / time step-size ∆t

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

eN,M 4.3475e-01 2.7500e-01 1.6551e-01 9.6480e-02 5.4719e-02

rN,M 0.66075 0.73250 0.77865 0.881819
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Figure 6.14: Loglog plot for comparison of ε-uniform maximum point-wise errors of Example 6.4
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Table 6.12: ε-uniform maximum point-wise errors and order of convergence for Example 6.5 .

ε ∈ Sε Number of mesh intervals N / time step size ∆t ( ∆t = 1.6/N )

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

eN,M 8.8576e-03 3.0491e-03 9.5133e-04 3.1235e-04 1.1098e-04

rN,M 1.5385 1.6804 1.6068 1.4929

ε ∈ Sε Number of mesh intervals N / time step size ∆t( ∆t = 0.8/N )

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

eN,M 9.0961e-03 3.1439e-03 9.9233e-04 3.2219e-04 9.9738e-05

rN,M 1.5327 1.6637 1.6229 1.6917

Table 6.13: ε-uniform maximum point-wise errors and order of convergence for Example 6.5 computed with
∆t = 0.8/N using classical upwind scheme.

ε ∈ Sε Number of mesh-intervals N / time step-size ∆t

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

eN,M 4.8664e-02 3.0798e-02 1.8744e-02 1.0924e-02 6.1905e-03

rN,M 0.66000 0.71644 0.77897 0.81931
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Figure 6.15: Loglog plot for comparison of ε-uniform maximum point-wise errors of Example 6.5
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Table 6.14: ε-uniform maximum point-wise errors and order of convergence for Example 6.6 .

ε ∈ Sε Number of mesh intervals N / time step size ∆t ( ∆t = 1.6/N )

64 / 1
40 128/ 1

80 256/ 1
160 512/ 1

320 1024/ 1
640

eN,M 5.6779e-02 1.8501e-02 5.9339e-03 1.8830e-03 5.8876e-04

rN,M 1.6178 1.6405 1.6560 1.6772

ε ∈ Sε Number of mesh intervals N / time step size ∆t( ∆t = 0.8/N )

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

eN,M 5.7096e-02 1.8476e-02 5.8949e-03 1.8562e-03 5.7408e-04

rN,M 1.6277 1.6481 1.6672 1.6930

Table 6.15: ε-uniform maximum point-wise errors and order of convergence for Example 6.6 computed with
∆t = 0.8/N using classical upwind scheme.

ε ∈ Sε Number of mesh-intervals N / time step-size ∆t

64 / 1
80 128/ 1

160 256/ 1
320 512/ 1

640 1024/ 1
1280

eN,M 1.6542e-01 1.0325e-01 6.1866e-02 3.5957e-02 2.0346e-02

rN,M 0.68002 0.73887 0.78286 0.82153
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Figure 6.16: Loglog plot for comparison of ε-uniform maximum point-wise errors of Example 6.6
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Table 6.16: Comparison of spatial errors for Example 6.4 computed in the region i.e., in [0, d + η], using
∆t = 1/N2.

N proposed method implicit upwind scheme

error order of convergence error order of convergence

ε = 2−4 ≈ 10−1

128 2.1775e-03 1.9579 3.5197e-02 0.99215
256 5.6049e-04 1.9770 1.7695e-02 0.99623
512 1.4237e-04 1.9881 8.8704e-03 0.99816

ε = 2−6 ≈ 10−2

128 8.0639e-03 1.5396 8.8974e-02 0.73215
256 2.7738e-03 1.6437 5.3563e-02 0.78425
512 8.8771e-04 1.6843 3.1101e-02 0.81937

ε = 2−14 ≈ 10−4

128 6.3986e-03 1.6206 1.0803e-01 0.74148
256 2.0809e-03 1.6593 6.4617e-02 0.79174
512 6.5880e-04 1.6943 3.7326e-02 0.82847

ε = 2−20 ≈ 10−6

128 6.3931e-03 1.6204 1.0812e-01 0.74140
256 2.0793e-03 1.6590 6.4673e-02 0.79180
512 6.5842e-04 1.6940 3.7356e-02 0.82852

Table 6.17: Comparison of spatial errors for Example 6.4 computed in the region i.e., in (d + η, 1], using
∆t = 1/N2.

N proposed method implicit upwind scheme

errors order of convergence errors order of convergence

ε = 2−4 ≈ 10−1

128 1.3643e-05 1.8497 5.9151e-04 1.3371
256 3.7854e-06 1.9264 2.3414e-04 1.2036
512 9.9585e-07 1.9635 1.0166e-04 1.1136

ε = 2−6 ≈ 10−2

128 2.2784e-04 4.5876 2.5592e-03 1.3102
256 9.4758e-06 2.3633 1.0321e-03 1.3284
512 1.8416e-06 2.3944 4.1097e-04 1.3483

ε = 2−14 ≈ 10−4

128 8.9602e-05 1.9684 7.9095e-03 1.0167
256 2.2897e-05 1.9379 3.9091e-03 1.0088
512 5.9759e-06 1.8826 1.9427e-03 1.0048

ε = 2−20 ≈ 10−6

128 8.8009e-05 1.9995 7.9406e-03 1.0159
256 2.2009e-05 1.9990 3.9267e-03 1.0079
512 5.5063e-06 1.9999 1.9526e-03 1.0040
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Table 6.18: Comparison of spatial errors for Example 6.5 computed in the region i.e., in [0, d + η], using
∆t = 1/N2.

N proposed method implicit upwind scheme

error order of convergence error order of convergence

ε = 2−4 ≈ 10−1

128 7.6853e-04 1.8379 9.3857e-03 0.94027
256 2.1499e-04 1.9129 4.8912e-03 0.96866
512 5.7093e-05 1.9547 2.4993e-03 0.98444

ε = 2−6 ≈ 10−2

128 3.1262e-03 1.6660 2.6755e-02 0.70905
256 9.8514e-04 1.6465 1.6366e-02 0.76724
512 3.1467e-04 1.6844 9.6159e-03 0.81193

ε = 2−14 ≈ 10−4

128 2.9237e-03 1.6390 3.0797e-02 0.71652
256 9.3878e-04 1.6686 1.8742e-02 0.77903
512 2.9531e-04 1.6992 1.0922e-02 0.81937

ε = 2−20 ≈ 10−6

128 2.9233e-03 1.6392 3.0821e-02 0.71667
256 9.3851e-04 1.6687 1.8754e-02 0.77909
512 2.9519e-04 1.6995 1.0929e-02 0.81938

Table 6.19: Comparison of spatial errors for Example 6.5 computed in the region i.e., in (d + η, 1], using
∆t = 1/N2.

N proposed method implicit upwind scheme

errors order of convergence errors order of convergence

ε = 2−4 ≈ 10−1

128 1.3229e-05 2.0076 6.3594e-04 0.97485
256 3.2898e-06 2.0044 3.2356e-04 0.98771
512 8.1996e-07 2.0023 1.6316e-04 0.99393

ε = 2−6 ≈ 10−2

128 1.2775e-04 4.3162 1.2609e-03 1.1011
256 6.4128e-06 2.2778 5.8777e-04 1.1237
512 1.3224e-06 2.3079 2.6973e-04 1.1474

ε = 2−14 ≈ 10−4

128 2.4925e-05 1.9791 2.0794e-03 0.97766
256 6.3224e-06 1.9582 1.0559e-03 0.98881
512 1.6270e-06 1.9200 5.3207e-04 0.99457

ε = 2−20 ≈ 10−6

128 2.4650e-05 1.9997 2.0828e-03 0.97736
256 6.1636e-06 1.9993 1.0579e-03 0.98849
512 1.5416e-06 1.9986 5.3317e-04 0.99429
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Table 6.20: Comparison of spatial errors for Example 6.6 computed in the region i.e., in [0, d + η], using
∆t = 1/N2.

N proposed method implicit upwind scheme

error order of convergence error order of convergence

ε = 2−4 ≈ 10−1

128 1.2432e-03 1.9740 3.0100e-02 0.95494
256 3.1644e-04 1.9864 1.5527e-02 0.97906
512 7.9862e-05 1.9928 7.8772e-03 0.98914

ε = 2−6 ≈ 10−2

128 6.8041e-03 1.6140 9.4060e-02 0.73351
256 2.2229e-03 1.6548 5.6571e-02 0.78255
512 7.0598e-04 1.6912 3.2887e-02 0.81998

ε = 2−14 ≈ 10−4

128 6.6977e-03 1.6397 1.0321e-01 0.73892
256 2.1494e-03 1.6696 6.1840e-02 0.78283
512 6.7565e-04 1.7004 3.5943e-02 0.82151

ε = 2−20 ≈ 10−6

128 6.6982e-03 1.6398 1.0325e-01 0.73887
256 2.1495e-03 1.6696 6.1866e-02 0.78286
512 6.7568e-04 1.7003 3.5957e-02 0.821536

Table 6.21: Comparison of errors for Example 6.6 computed in the region i.e., in (d+η, 1], using ∆t = 1/N2.

N proposed method implicit upwind scheme

errors order of convergence errors order of convergence

ε = 2−4 ≈ 10−1

128 7.8026e-06 1.8230 3.3433e-04 0.98417
256 2.2052e-06 1.9143 1.6901e-04 0.93772
512 5.8504e-07 1.9577 8.8234e-05 0.96944

ε = 2−6 ≈ 10−2

128 1.8747e-04 4.5573 2.1999e-03 1.2921
256 7.9627e-06 2.3460 8.9836e-04 1.3129
512 1.5661e-06 2.3773 3.6160e-04 1.3338

ε = 2−14 ≈ 10−4

128 6.8055e-05 1.9673 6.6577e-03 1.0102
256 1.7403e-05 1.9361 3.3054e-03 1.0055
512 4.5480e-06 1.8794 1.6464e-03 1.0031

ε = 2−20 ≈ 10−6

128 6.6789e-05 1.9995 6.6838e-03 1.0094
256 1.6703e-05 1.9989 3.3202e-03 1.0047
512 4.1787e-06 1.9979 1.6547e-03 1.0024
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6.12 Conclusion

Analyzing theoretical and numerical aspects of FMMs for finding efficient numerical solutions to singularly

perturbed problems with nonsmooth data has received significant attention in recent years. In connection with

this, it is to be noted that not much work is available in the literature dealing with higher-order accurate FMMs.

In this chapter, we consider two different classes of model problems with nonsmooth data. The model problem-

I contains the singularly perturbed PDEs with nonsmooth data of case-I, exhibiting strong interior layers, and

the model problem-II contains the singularly perturbed PDEs with the nonsmooth data of case-II, exhibiting

both boundary and weak interior layers. Higher-order spatially accurate FMMs are devised and analyzed to

achieve better numerical approximations of those types of problems than the existing FMMs. In this regard, the

following observations are made, and theoretical challenges are resolved.

For singularly perturbed interface problems, proving ε-uniform stability of the fully discrete solution is a

challenging task and the central part of the convergence analysis of the numerical method. Here, we transform

the system of equations corresponding to the finite difference operator into a new system of equations which

enables us to establish the discrete maximum principle and, consequently, to deduce the stability result of the

proposed finite difference methods. However, to accomplish this purpose, we utilize a suitable layer-resolving

Shishkin mesh in the case of the model problem-I and a modified layer-adapted mesh in the case of the model

problem-II. In fact, it is shown that it is difficult to establish the monotonicity of the newly developed FMM for

model problem-II on the standard layer-resolving Shishkin mesh. It is important to note that by introducing the

modified layer-adapted mesh, and we overcome this theoretical challenge.

In both cases, the newly proposed methods are proven to be ε-uniformly convergent in the discrete supre-

mum norm; and almost second-order accurate in space, not only for ε � N−1, but also for ε � N−1. These

theoretical findings are verified by the numerous numerical experiments and are observed while solving the

semi-linear singularly perturbed parabolic IBVPs by using Newton’s linearization technique. In addition to the

above, the numerical experiments reveal that the newly proposed methods exhibit notable improvement over

the existing numerical methods in terms of the spatial order of convergence; hence, one can conclude that the

current numerical algorithms devised for both the model problems are robust in comparison with the existing

methods.
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Chapter 7

Parameter-Uniform Higher-Order Time-Accurate Nu-
merical Method for Singularly Perturbed Semilinear
Parabolic PDEs with Nonsmooth Data

Developing a parameter-robust higher-order accurate numerical approximation of singularly perturbed nonlin-

ear PDEs with nonsmooth data is a desirable and challenging task to better understand the complex phenomena.

In this chapter, a class of singularly perturbed semilinear parabolic convection-diffusion problems with discon-

tinuous data is dealt with. The considered nonlinear problem is approximated by utilizing the Crank-Nicolson

method for the temporal discretization on an equidistant mesh and the standard finite difference scheme for the

spatial discretization on a suitable layer-resolving Shishkin mesh. The existence and stability of the solution

are discussed for both the continuous and discrete problems. The numerical approximation is proved to be

uniformly convergent and high-order time accurate in the discrete supremum norm. The theoretical error esti-

mates are finally verified by numerical experiments, which also include a comparison of the proposed numerical

method with the implicit upwind method in terms of order of accuracy.

7.1 Introduction

We consider the following class of singularly perturbed semilinear parabolic convection-diffusion IBVPs with

discontinuous data:
Lx,εy(x, t)−

∂y(x, t)

∂t
− b
(
x, t, y(x, t)

)
= g(x, t), (x, t) ∈ D− ∪D+,

y(x, 0) = q0(x), x ∈ Ω,

y(0, t) = sl(t), y(1, t) = sr(t), t ∈ (0, T ],

(7.1)

where

Lx,εy = ε
∂2y
∂x2

+ a(x)
∂y
∂x
,

and together with the interface conditions

[y ](d, t) = 0,
[∂y
∂x

]
(d, t) = 0, t ∈ (0, T ]. (7.2)
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Here, ε is a small parameter such that ε ∈ (0, 1]. It is assumed that the convection coefficient a(x) is smooth

on Ω
− and Ω

+, and the source term g(x, t) is smooth enough on D
− and D

+ such that a(x) ≥ m > 0, on Ω− ∪ Ω+,∣∣[a](d)
∣∣ ≤ C, ∣∣[g ](d, t)

∣∣ ≤ C. (7.3)

Further, it is assumed that the nonlinear term b
(
x, t, y

)
is sufficiently smooth on D × R, and satisfies the

condition
∂b
(
x, t, y

)
∂y

≥ β > 0, (x, t, y
)
∈ D× R. (7.4)

The solution y(x, t) of the nonlinear IBVP (7.1)-(7.4), generally, possesses an interior layer arises to the right

side of x = d, in addition to the boundary layer at x = 0 as ε→ 0. Since g is discontinuous at (d, t), the solution

y /∈ C2(D), but the first derivative of the solution exists in the space variable x and is continuous. In the model

problem, apart from imposing the smoothness criterion on a, b and g , the boundary and the initial data, i.e.,

sl, sr and q0 are assumed to be sufficiently smooth. Besides this, the following compatibility conditions are

imposed at the corner points (0, 0) and (1, 0):

q0(0) = sl(0), q0(1) = sr(0), (7.5)

and 
dsl(0)

dt
= −g(0, 0) + ε

d2q0(0)

dx2
+ a(0)

dq0(0)

dx
− b
(
0, 0, q0(0)

)
,

dsr(0)

dt
= −g(1, 0) + ε

d2q0(1)

dx2
+ a(1)

dq0(1)

dx
− b
(
1, 0, q0(1)

)
.

(7.6)

Further, in order to derive the bounds of the derivatives up to third-order in space and third-order in time,
we require the solution y(x, t) ∈ C1+γ(D) ∩ C4+γ(D− ∪ D+), which is ensured by the assumption of the
compatibility conditions in (7.5)-(7.6) together with the following compatibility conditions at the corner points
(0, 0) and (1, 0):

d2sl(0)

dt2
= −

∂g(0, 0)

∂t
−
∂b
(
0, 0, q0(0)

)
∂t

+
(
Lx,ε −

∂b(x, t, q0)

∂y

)(
− g + Lx,εq0 − b

(
x, t, q0

))
(0, 0),

d2sr(0)

dt2
= −

∂g(1, 0)

∂t
−
∂b
(
1, 0, q0(1)

)
∂t

+
(
Lx,ε −

∂b(x, t, q0)

∂y

)(
− g + Lx,εq0 − b

(
x, t, q0

))
(1, 0).

(7.7)

The above compatibility conditions are derived from [Chapter 5, §6] of the book [65] by Ladyzenskaja et al.

The compatibility conditions at the transition point (d, 0) follows similarly. We set Tεy(x, t) = Lx,εy(x, t) −
∂y(x, t)

∂t
− b
(
x, t, y(x, t)

)
.

The layout of the rest of this chapter is given as follows. In Section 7.2, a comparison principle as well as some

a-priori bounds of the analytical solution and its derivatives are presented via decomposition of the solution

(into the smooth and the layer components) and their derivatives are also derived. In Section 7.3, we construct

the fully-implicit FMM given in (7.29) and establish ε-uniform convergence of the proposed method (7.29).

Error analysis of the proposed method is provided in Section 7.4. Finally, numerical experiments are carried

out in Section 7.5, to demonstrate the accuracy and the efficiency of the proposed FMM, which also include

302



comparison of the proposed numerical method along with the fully-implicit upwind method. The conclusion of

this chapter is provided in Section 7.6.

7.2 The analytical solution of continuous problem

To discuss about existence of the solution y(x, t) of the nonlinear IBVP (7.1)-(7.4), we use the method of upper

and lower solutions.

Definition 7.1. A function u ∈ C0(D) ∩ C2(D− ∪D+) is called a lower solution of the IBVP (7.1)-(7.4) if

u(x, 0) ≤ y(x, 0), x ∈ Ω,

Lx,εu(x, t)− ∂u(x,t)
∂t − b

(
x, t, u(x, t)

)
≥ g(x, t), (x, t) ∈ D− ∪D+,

∂u(d+,t)
∂x ≥ ∂u(d−,t)

∂x ,

u(0, t) ≤ y(0, t), u(1, t) ≤ y(1, t), t ∈ (0, T ].

(7.8)

Similarly, v ∈ C0(D) ∩ C2(D− ∪D+) is called an upper solution of the IBVP (7.1)-(7.4) if

v(x, 0) ≥ y(x, 0), x ∈ Ω,

Lx,εv(x, t)− ∂v(x,t)
∂t − b

(
x, t, v(x, t)

)
≤ g(x, t), (x, t) ∈ D− ∪D+,

∂v(d+,t)
∂x ≤ ∂v(d−,t)

∂x ,

v(0, t) ≥ y(0, t), v(1, t) ≥ y(1, t), t ∈ (0, T ].

(7.9)

Lemma 7.1 ([92]). Let there exist two functions u, v ∈ C0(D) ∩ C2(D− ∪D+) such that v(x, t) ≥ u(x, t),

∀ (x, t) ∈ D, which are lower and upper solutions for the IBVP (7.1)-(7.4), respectively. Then there exist a

solution y of the IBVP (7.1)-(7.4) such that

u(x, t) ≤ y(x, t) ≤ v(x, t), ∀ (x, t) ∈ D.

Hence, to prove existence of the analytical solution, we need to construct a lower and an upper solutions.

Theorem 7.1. Assume that function b satisfies (7.4). Then, the nonlinear IBVP (7.1)-(7.4) has a solution y(x, t)

in D satisfying

‖y‖D ≤
K

β
,

where K = max(x,t)∈D
{
|g(x, t) + b(x, t, 0)|,β‖y‖∂D

}
.

Proof. Define (x, t) ∈ D, let u(x, t) = −K/β and v(x, t) = K/β. Then u(x, 0) ≤ y(x, 0) ≤ v(x, 0) and

u(x, t) ≤ y(x, t) ≤ v(x, t) on ∂D. We obtain

Lx,ε(−K/β)− ∂(−K/β)

∂t
− b
(
x, t, (−K/β)

)
+ b(x, t, 0) ≥ K ≥ g(x, t) + b(x, t, 0), (x, t) ∈ D− ∪D+,
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and similarly we obtain

Lx,ε(K/β)− ∂(K/β)

∂t
− b
(
x, t, (K/β)

)
+ b(x, t, 0) ≤ −K ≤ g(x, t) + b(x, t, 0), (x, t) ∈ D− ∪D+,

further, we have at the point of discontinuity (d, t) :[ ∂
∂x

(−K/β)
]
(d, t) = 0,

[ ∂
∂x

(K/β)
]
(d, t) = 0.

Hence, u and v are lower and upper solution with u(x, t) ≤ v(x, t), ∀ (x, t) ∈ D. By the previous theorem

there exist a solution to the IBVP (7.1)-(7.4) and

u(x, t) ≤ y(x, t) ≤ v(x, t), ∀ (x, t) ∈ D.

Lemma 7.2 (Comparison Principle). Let the functions v, w ∈ C0(D) ∩ C2(D− ∪ D+) be such that v ≤ w on

∂D,
[∂v
∂t

]
(d, t) ≥

[∂w
∂t

]
(d, t) and Tεv ≥ Tεw in D− ∪D+. Then, it implies that v ≤ w on D.

Proof: Here, we use method of contradiction. Firstly, we suppose that there exists (x?, t?) in D such that

v(x?, t?) > w(x?, t?). Since, v−w ∈ C0(D), without loss of generality, we assume that v−w takes it positive

maximum at (x?, t?). Now, in conformity with the hypothesis of the comparison principle, v − w ≤ 0 on

∂D =⇒ (x?, t?) /∈ ∂D. Therefore, we derive

(
Tεv − Tεw

)
(x?, t?) =

∂(v − w)(x?, t?)

∂t
+ Lx,ε(v − w)(x?, t?)− b

(
x?, t?, v

)
+ b
(
x?, t?, w),

≤ −
(∫ 1

0

b
(
x?, t?, w + ξ(v − w))

∂y
dξ
)

(v − w)(x?, t?).

(7.10)

Thus, from the assumption (7.4), we have Tεv(x?, t?) < Tεw(x?, t?) and this contradicts the hypothesis that

Tεv(x, t) ≥ Tεw(x, t), for all (x, t) ∈ D− ∪ D+. Next, the only remaining possibility is that (x?, t?) =

(d, t?). Since, at the point (d, t?) the function v − w takes its maximum value, then ∂(v−w)(d−,t?)
∂x ≥ 0 and

∂(v−w)(d+,t?)
∂x ≤ 0, which implies that

[∂(v−w)
∂x

]
(d, t?) ≥ 0. This completes the proof.

The following result follows from Theorem 7.2.

Corollary 7.1. Let the function Φ ∈ C0(D) ∩ C2(D− ∪ D+). For any given functions v, w ∈ C0(D), the

differential operator T̃ε,(v,w) defined by

T̃ε,(v,w)Φ = Lx,εΦ−
(∫ 1

0

∂b
(
x, t, w(x, t) + ξ(v − w)(x, t))

∂y
dξ
)

Φ− ∂Φ

∂t
,

satisfies the maximum principle, i.e., if Φ ≤ 0 on ∂D, [∂Φ
∂x ](d, t) ≥ 0 and T̃ε,(v,w)Φ ≥ 0 in D− ∪D+, then it

implies that Φ ≤ 0 on D.

Corollary 7.1 is used to deduce the following ε-uniform stability result.
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Lemma 7.3 (Stability). Let the functions v, w ∈ C0(D) ∩ C2(D− ∪D+), then it satisfies

‖v − w‖D ≤ ‖v − w‖∂D +
1

β
‖Tεv − Tεw‖D−∪D+ . (7.11)

Proof. Consider the following functions

Φ±(x, t) = −‖v − w‖∂D −
1

β
‖Tεv − Tεw‖D ± (v − w)(x, t), in D.

Note that Φ±(x, t) ≤ 0, (x, t) ∈ ∂D, and

T̃ε,(v,w)Φ
±(x, t) ≥

(∫ 1

0

∂b
(
x, t, w + ξ(v − w))

∂y
dξ
)( 1

β
‖Tεv − Tεw‖D

)
±
(
Tεv − Tεw

)
(x, t),

≥ 0,

and
[
∂Φ±

∂x

]
(d, t) = ±

[∂(v−w)
∂x

]
(d, t) ≥ 0. The maximum principle in Corollary 7.1 implies that Φ±(x, t) ≤ 0

for all (x, t) ∈ D, from which the result follows immediately.

We now consider the decomposition of the solution y = p + q into the smooth component p and the layer

component q . Here, the smooth component p is decomposed in the following form

p = p0 + εp1 + ε2p2, in D, (7.12)

where the functions p0, p1 and p2, receptively, satisfy the following problems: a(x)
∂p0

∂x
− b
(
x, t, p0)−

∂p0

∂t
= g , in D− ∪D+,

p0(x, 0) = q0(x), x ∈ Ω, p0(1, t) = p(1, t), t ∈ (0, T ],

(7.13)

 a(x)
∂p1

∂x
− 1

ε

[
b
(
x, t, p0 + εp1)− b

(
x, t, p0)

]
−
∂p1

∂t
= −

∂2p0

∂x2
, in D− ∪D+,

p1(x, 0) = 0, x ∈ Ω, p1(1, t) = 0, t ∈ (0, T ],

(7.14)

and  Lx,εp2 −
1

ε2

[
b
(
x, t, p)− b

(
x, t, p0 + εp1)

]
−
∂p2

∂t
= −

∂2p1

∂x2
, in D− ∪D+,

p2(x, 0) = 0, x ∈ Ω, p2(0, t) = 0, p2(1, t) = 0, p2(d, t) = 0, t ∈ (0, T ].

(7.15)

Thus, the smooth component p satisfies that

Tεp = g , in D− ∪D+,

p(x, 0) = q0(x), x ∈ Ω,

p(0, t) = p0(0, t) + εp1(0, t), t ∈ (0, T ],

p(d, t) = p0(d, t) + εp1(d, t), p(1, t) = sr(t), t ∈ (0, T ].

(7.16)
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Theorem 7.2. The smooth component p and its derivatives satisfy that

∣∣∣∂l+kp(x, t)

∂xl∂tk

∣∣∣ ≤ C(1 + ε2−l
)
, (x, t) ∈ D

− ∪D
+
, (7.17)

∀ l, k ∈ N ∪ {0}, satisfying 0 ≤ l + k ≤ 3.

Proof: We obtain the bounds (7.17) for the smooth component p, by deriving the corresponding bounds for the

functions pi, i = 0, 1, 2. At first, we consider the sub-region D
+ and we define the functions pi(x, t), (x, t) ∈

D
+ as the restriction to D

+ of the function pei (x, t), (x, t) ∈ D
e+
, i.e., pi(x, t) = pei (x, t), (x, t) ∈ D

+. Here,

we choose the extended domain De+ = Ωe+× (0, T ], where Ωe+ = (−1, 1) such that De+
= [−1, 1]× [0, T ] ⊃

D
+. Here, we consider ae, be, ge, qe0 as the smooth extension of the functions a, b, g , q0 on their respective

extended domains.

The function pe0 is the solution of the following problem: ae(x)
∂pe0
∂x − b

e
(
x, t, pe0(x, t)

)
− ∂pe0

∂t = ge(x, t), (x, t) ∈ De+,

pe0(x, 0) = q∗0(x), x ∈ Ω
e+

= [−1, 1], pe0(1, t) = sr(t), t ∈ (0, T ].
(7.18)

The function pe0 is independent of ε. Henceforth, assuming sufficient smoothness on the data associated with

the IVP (7.18) and imposing necessary compatibility conditions at (−1, 0), which can be obtained by extending

the result of Bobisud [4] for the existence of higher order derivatives of pe0, one can obtain that

∣∣∣∂l+kpe0(x, t)

∂xl∂tk

∣∣∣ ≤ C, (x, t) ∈ D
e+
, for 0 ≤ l + k ≤ 3. (7.19)

Again, the IVP (7.14) can be rewritten in the following form: ae(x)
∂pe1
∂x
−
∫ 1

0

∂be
(
x, t, pe0 + ξεpe1

)
∂y

dξpe1 −
∂pe1
∂t

= −
∂2pe0
∂x2

, in De+,

pe1(x, 0) = 0, x ∈ Ω
e+
, pe1(1, t) = 0, t ∈ (0, T ].

(7.20)

Henceforth, applying the above arguments to (7.20), one can get

∣∣∣∂l+kpe1(x, t)

∂xl∂tk

∣∣∣ ≤ C, (x, t) ∈ D
e+
, for 0 ≤ l + k ≤ 3. (7.21)

Further, the IBVP (7.15) can be rewritten in the following form: Lex,εpe2 −
[ ∫ 1

0

∂be
(
x, t, pe0 + εpe1 + ε2ξpe2)

∂y

]
−
∂pe2
∂t

= −
∂2pe1
∂x2

, in De+,

pe2(x, 0) = 0, x ∈ Ω
e+
, pe2(−1, t) = 0, pe2(1, t) = 0, t ∈ (0, T ],

(7.22)

where Lex,ε ≡ ε
∂2

∂x2
+ ae(x)

∂

∂x
. The IBVP (7.22) is similar to the linearized form of the IBVP (4.1) and
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henceforth, applying the approach of [Chapter 4, Theorem 4.1] analogously to the function pe2, one can have

∣∣∣∂j+kpe2(x, t)

∂xj∂tk

∣∣∣ ≤ Cε−l, (x, t) ∈ D
e+
, for 0 ≤ l + k ≤ 3.

Next, the desired result (7.17) is obtained on the domain D
e+ by invoking the bounds on pei , i = 0, 1, 2 to the

decomposition pe = pe0 + εpe1 + ε2pe2. In the same way, the desired result (7.17) is obtained on the domain D
e−.

We now define the layer component q as the solution of the following nonlinear IBVP:

Lx,εq(x, t)−
[
b
(
x, t, y(x, t))− b

(
x, t, p(x, t))

]
−
∂q(x, t)

∂t
= 0, in D− ∪D+,

q(x, 0) = 0, x ∈ Ω,

q(0, t) = y(0, t)− p(0, t), q(1, t) = 0, t ∈ (0, T ],[ ∂q
∂x

]
(d, t) = −

[ ∂p
∂x

]
(d, t), t ∈ (0, T ].

(7.23)

We can further decompose q as

q = q1 + q2,

where q1 ∈ C2+γ(D) is the boundary layer function satisfying q1(x, t) = 0, (x, t) ∈ D
+ and

Lx,εq1(x, t)−
[
b
(
x, t, p(x, t) + q1(x, t))− b

(
x, t, p(x, t))

]
−
∂q1(x, t)

∂t
= 0, in D−,

q1(x, 0) = 0, x ∈ Ω
−
,

q1(0, t) = y(0, t)− p(0, t), q1(d, t) = 0, t ∈ (0, T ],

(7.24)

and hence q2 ∈ C0(D) is the interior layer function satisfying

Lx,εq2(x, t)−
[
b
(
x, t, y(x, t))− b

(
x, t, p(x, t) + q1(x, t)

)]
−
∂q2(x, t)

∂t
= 0, in D−,

Lx,εq2(x, t)−
[
b
(
x, t, p(x, t) + q2(x, t))− b

(
x, t, p(x, t)

)]
−
∂q2(x, t)

∂t
= 0, in D+,

q2(x, 0) = 0, x ∈ Ω,

q2(0, t) = 0, q2(1, t) = 0, t ∈ (0, T ],[∂q2

∂x

]
(d, t) = −

[∂p
∂x

]
(d, t), t ∈ (0, T ].

(7.25)

Theorem 7.3. ∀ l, k ∈ N ∪ {0} satisfying 0 ≤ l + k ≤ 3, the boundary layer component q1 defined in (7.24)
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and the interior layer component q2 defined in (7.25), respectively satisfy the following bounds:

∣∣∣ ∂l+kq1

∂xl∂tk

∣∣∣ ≤ C(ε−l exp
(
− mx

ε

))
, (x, t) ∈ D

−
,∣∣∣ ∂l+kq2

∂xl∂tk

∣∣∣ ≤ C(ε1−l exp
(
− mx

ε

))
, (x, t) ∈ D

−
,∣∣∣ ∂l+kq2

∂xl∂tk

∣∣∣ ≤ C(ε1−l exp
(
− m(x− d)

ε

))
, (x, t) ∈ D

+
.

(7.26)

Proof: The IBVP (7.24) can be rewritten in the following form:
Lx,εq1 −

[ ∫ 1

0

∂b
(
x, t, p + ξ((p + q1)− p)

)
∂y

dξ
]

q1 −
∂q1

∂t
= 0, (x, t) ∈ D−,

q1(x, 0) = 0, x ∈ Ω
−
,

q1(0, t) = y(0, t)− p(0, t), q1(d, t) = 0, t ∈ (0, T ].

(7.27)

Here, we introduce a differential operator T̃ε,(p+q1,p) such that

T̃ε,(p+q1,p)q1 = Lx,εq1 −
[ ∫ 1

0

∂b
(
x, t, p + ξq1

)
∂y

dξ
]

q1 −
∂q1

∂t
.

Now, we choose the functions

Ψ±(x, t) = −C exp(−mx/ε)± q1(x, t), (x, t) ∈ D
−
,

for sufficiently large C. Note that

Ψ±(x, t) ≤ 0, (x, t) ∈ ∂D−,

and

T̃ε,(p+q1,p)Ψ
±(x, t) ≥ 0, (x, t) ∈ D−.

Since T̃ε,(p+q1,p) satisfies the maximum principle, we have

Ψ±(x, t) ≤ 0 =⇒
∣∣q1(x, t)

∣∣ ≤ C exp
(
− mx

ε

)
, (x, t) ∈ D

−
.

The bounds on the derivatives of q1 are derived from the argument presented in [99, Chapter 2]. Next, we write
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the IBVP (7.25), in the following form

Lx,εq2 −
[ ∫ 1

0

∂b
(
x, t, p + q1 + ξ(y − (p + q1))

)
∂y

dξ
]

q2 −
∂q2

∂t
= 0, (x, t) ∈ D−,

Lx,εq2 −
[ ∫ 1

0

∂b
(
x, t, p + ξq2)

)
∂y

dξ
]

q2 −
∂q2

∂t
= 0, (x, t) ∈ D+,

q2(x, 0) = 0, x ∈ Ω,

q2(0, t) = 0, q2(1, t) = 0, t ∈ (0, T ],[∂q2

∂x

]
(0, t) = −

[∂p
∂x

]
(d, t), t ∈ (0, T ].

(7.28)

The bounds on q2 and its derivatives can be derived from the arguments presented in [Chapter 6, Theorem 6.4],

and thus the proof is complete.

7.3 The discrete solution of continuous problem

The goal of this section is to introduce the layer-adapted mesh and to provide description of the numerical

method investigated in this chapter.

Here, we choose N(≥ 8) as an even positive integer. Now, to discretize the domain D = Ω × [0, T ], we

construct a rectangular mesh D
N,∆t

= Ω
N × Λ∆t, where Λ∆t denotes the equidistant mesh on the temporal

domain [0, T ] such that Λ∆t = {tn = n∆t, n = 0, . . . ,M, ∆t = T/M} , whereas Ω
N

= {xj}Nj=0 denotes

the piecewise-uniform Shishkin mesh on the spatial domain Ω as depicted in Fig 7.1. The Shishkin mesh is

condensed near x = 0 and in the vicinity of the right side of x = d. To construct ΩN , Ω is divided into four

sub-intervals as

Ω = [0,η1] ∪ [η1, d] ∪ [d, d + η2] ∪ [d + η2, 1],

where η1 = min

{
d

2
,η0ε lnN

}
, η2 = min

{
1− d

2
,η0ε lnN

}
, η0 is a positive constant,

and in each sub-interval an equidistant mesh with N/4 mesh intervals are placed. Let hj = xj − xj−1, j =

1, . . . , N,with ĥj = hj + hj+1, j = 1, . . . , N − 1.

0 η1 d d + η2 1
N
4

N
4

N
4

N
4

Figure 7.1: Standard Shishkin mesh in the spatial direction

We further denote the mesh width hj as follows: hj = h1 =
4η1

N
, for j = 1, . . . , N/4; hj = H1 =

4(d− η1)

N
,
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for j = N/4 + 1, . . . , N/2; hj = h2 =
4η2

N
, for j = N/2 + 1, . . . , 3N/4; and hj = H2 =

4(1− d− η2)

N
,

for j = 3N/4 + 1, . . . , N .

Here, we proposed to approximate the nonlinear IBVP (7.1)-(7.4) by utilizing the Crank-Nicolson method

to discretize in time and the standard upwind finite difference scheme to discretize in space. The nonlinear

finite difference scheme takes the following form:

Y 0
j = q0(xj), 0 ≤ j ≤ N,

LNx,ε
Y n+1
j + Y n

j

2
− b
(
xj , tn+1/2,

Y n+1
j + Y n

j

2

)
−D−t Y

n+1
j =

g(xj , tn+1) + g(xj , tn)

2
,

for j 6= N/2, 1 ≤ j ≤ N − 1,

D−x Y
n+1
j −D+

x Y
n+1
j = 0, for j = N/2,

Y n+1
0 = y(0, tn+1), Y n+1

N = y(1, tn+1), for n = 0, 1, . . . ,M − 1,

(7.29)

where LNx,ε
Y n+1
j + Y n

j

2
=
(
εD+

xD
−
x + a(xj)D

+
x

)Y n+1
j + Y n

j

2
. To discuss the stability of the proposed non-

linear scheme (7.29), we rewrite the nonlinear scheme (7.29) in the following form:
Y 0
j = q0(xj), 0 ≤ j ≤ N,

TN,∆tε Y n+1
j = Gn+1

j , (xj , tn) ∈ DN,∆t,

Y n+1
0 = y(0, tn+1), Y n+1

N = y(1, tn+1), for n = 0, 1, . . . ,M − 1,

(7.30)

where

TN,∆tε Y n+1
j =


LNx,ε

Y n+1
j + Y n

j

2
− b
(
xj , tn+1/2,

Y n+1
j + Y n

j

2

)
−D−t Y

n+1
j ,

for j 6= N/2, 1 ≤ j ≤ N − 1,

D−x Y
n+1
j −D+

x Y
n+1
j , for j = N/2,

and the right-side vector Gn+1 is given by

Gn+1
j =


g(xj , tn+1) + g(xj , tn)

2
, for j 6= N/2, 1 ≤ j ≤ N − 1,

0, for j = N/2.

Lemma 7.4 (Discrete comparison principle). Assume that the following condition holds:

2

∆t
≥
[ 2ε

hjhj+1
+
a(xj)

hj+1
+

∫ 1

0

∂b
(
xj , tn+1/2, Z

∗,n+1/2
j (ξ)

)
∂y

dξ
]
. (7.31)

Then, if two arbitrary mesh functions V and W defined on D
N,∆t

satisfy that V ≤ W on ∂DN,∆t, and

TN,∆tε V ≥ TN,∆tε W in DN,∆t, it implies that V ≤W on D
N,∆t

.

Proof: Let ωnj ≤ 0, for all j and n. Then, inconformity with the hypothesis of the discrete comparison principle,
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we assume that V 0
j −W 0

j = ω0
j for 0 ≤ j ≤ N and consider the following system −

[
TN,∆tε V n+1

j − TN,∆tε Wn+1
j

]
= ωn+1

j , for 1 ≤ j ≤ N − 1,

V n+1
0 −Wn+1

0 = ωn+1
0 , V n+1

N −Wn+1
N = ωn+1

N , for n = 0, 1, . . . ,M − 1.
(7.32)

Now, let Znj = V n
j −Wn

j for all n. Then, we have

TN,∆tε V n+1
j − TN,∆tε Wn+1

j

=


LNx,ε

Zn+1
j + Znj

2
−
[ ∫ 1

0

∂b
(
xj , tn+1/2, Z

∗,n+1/2
j (ξ)

)
∂y

dξ
]Zn+1

j + Znj
2

−D−t Z
n+1
j ,

for j 6= N/2, 1 ≤ j ≤ N − 1,

D−x Z
n+1
j −D+

x Z
n+1
j , for j = N/2,

(7.33)

whereZ∗,n+1/2
j (ξ) =

Wn+1
j +Wn

j

2
+ξ
(Zn+1

j + Znj
2

)
. For simplifying the proof, we setZn =

(
Zn0 , Z

n
1 , . . . , Z

n
N

)
and ωn =

(
ωn0 , ω

n
1 , . . . , ω

n
N

)
, for n = 0, 1, . . . ,M . Here, we can rewrite equation (7.32) in the following form:

AZn+1 − BZn = ωn+1, for n = 0, 1, . . . ,M − 1. (7.34)

Here, the matrix A is given by Aj,j = 1, for j = 0, N , and

Aj,j−1 = −1

2

2ε

hj(hj + hj−1)
, for; j 6= N/2, 1 ≤ j ≤ N − 1,

Aj,j =
1

2

[
+

2ε

hjhj+1
+
a(xj)

hj+1
+

∫ 1

0

∂b
(
xj , tn+1/2, Z

∗,n+1/2
j (ξ)

)
∂y

dξ
]

+
1

∆t
,

for j 6= N/2, 1 ≤ j ≤ N − 1,

Aj,j+1 =
−1

2

[ 2ε

hj+1(hj + hj+1)
+
a(xj)

hj+1

]
, for j 6= N/2, 1 ≤ j ≤ N − 1,

Aj,j−1 = − 1

hj
, Aj,j =

1

hj
+

1

hj+1
, Aj,j+1 = − 1

hj+1
, for; j = N/2,

and the matrix B is given by

Bj,j−1 =
1

2

2ε

hj(hj + hj−1)
, for j 6= N/2, 1 ≤ j ≤ N − 1,

Bj,j =
1

2

[
− 2ε

hjhj+1
− a(xj)

hj+1
−
∫ 1

0

∂b
(
xj , tn+1/2, Z

∗,n+1/2
j (ξ)

)
∂y

dξ
]

+
1

∆t
,

for j 6= N/2, 1 ≤ j ≤ N − 1,

Bj,j+1 =
1

2

[ 2ε

hj+1(hj + hj+1)
+
a(xj)

hj+1

]
, and j 6= N/2, 1 ≤ j ≤ N − 1,

Bj,j−1 = 0, Bj,j = 0, Bj,j+1 = 0, for j = N/2.
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One can show that, the matrix A is an M-matrix and it is straightforward that the matrix B ≥ 0 under the

assumption (7.31). Therefore, the desire result follows from [99, Lemma 3.12].

As a consequence of Lemma 7.4, we get

Corollary 7.2. Let Ψn+1 be any mesh function defined on D
N,∆t

. Then, for any given mesh functions V and

W defined on D
N,∆t

such that Z = V −W , the difference operator T̃N,∆tε,(V,W ) defined by

T̃N,∆t
ε,(V,W )Ψ

n+1
j

=


LN
x,ε

Ψn+1
j + Ψn

j

2
−
[ ∫ 1

0

∂b
(
xj , tn+1/2, Z

∗,n+1/2
j (ξ)

)
∂y

dξ
]Ψn+1

j + Ψn
j

2
−D−

t Ψn+1
j ,

for j 6= N/2, 1 ≤ j ≤ N − 1,

D−
x Ψn+1

j −D+
x Ψn+1

j , for j = N/2,

(7.35)

satisfies the discrete maximum principle, i.e., if Ψ ≤ 0 on ∂DN,∆t and T̃N,∆tε,(V,W )Ψ
n+1
j ≥ 0 in DN,∆t, then it

implies that Ψ ≤ 0 on D
N,∆t

.

Lemma 7.5 (Stability). Let V and W be two arbitrary mesh functions defined on D
N,∆t

. Then, under the

condition (7.31), we have

‖V −W‖
D

N,∆t ≤ ‖V −W‖∂DN,∆t +
1

β
‖TN,∆tε − TN,∆tε W‖

D
N,∆t . (7.36)

Proof. We consider the mesh functions

Ψ±(xj , tn+1) = −‖V −W‖∂DN,∆t −
1

β
‖TN,∆tε V − TN,∆tε W‖ ±

(
V −W

)
.

Note that Ψ±(xj , tn+1) ≤ 0, on ∂DN,∆t and we have

T̃N,∆tε,(V,W )Ψ
±(xj , tn+1) ≥ 0, in DN,∆t \ (d, tn+1),

and D+
x Ψ±(xN/2, tn+1) − D−x Ψ±(xN/2, tn+1) = ±

(
D+
x − D−x

)
(V −W )(xN/2, tn+1) ≥ 0. The discrete

maximum principle in Corollary 7.2 implies that Ψ±(xj , tn+1) ≤ 0, for all (xj , tn+1) ∈ D
N,∆t. The result of

which follows immediately.

Remark 7.1. From the discrete comparison principle, one can obtain the existence and uniqueness of the solu-

tion to the discrete problem (7.29)(see the Hadamard’s Theorem 5.3.10 in [91]).

7.4 Error analysis

We decompose the numerical solution Y into Y = P + Q where P and Q are the smooth and layer components

of Y , respectively. The function P is defined to be the solution of
TN,∆tε Pn+1

j = Gn+1
j , in DN,∆t \ (d, t),

P 0
j = p(xj , 0), Pn+1

0 = p(0, tn+1),

Pn+1
N/2 = p(d, tn+1), Pn+1

N = p(1, tn+1), n = 0, 1, . . . ,M − 1.

(7.37)
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In the following lemma, we establish the error estimate associated with the smooth component.

Lemma 7.6. Under the assumption (7.31) of Lemma 7.4, the error associated with smooth component satisfies

the following estimate:

∣∣Pn+1
j − p(xj , tn+1)

∣∣ ≤
 C

(
N−1 + (∆t)2

)
(d− xj), xj ≤ d,

C
(
N−1 + (∆t)2

)
(1− xj), xj ≥ d.

(7.38)

Proof. From the equation (7.9) and (7.37), we have

LNx,ε
Pn+1
j + Pnj

2
− b
(
xj , tn+1/2,

Pn+1
j + Pnj

2

)
−D−t Pn+1

j = Lx,ε
p(xj , tn+1) + p(xj , tn)

2
−

b
(
xj , tn+1/2, p(xj , tn+1/2)

)
−
∂p(xj , tn+1/2)

∂t
, in DN,∆t \ (d, t).

Utilizing the derivative bound of p from Theorem 7.2 and the relation

b
(
xj , tn+1/2, p(xj , tn+1/2)

)
= b
(
xj , tn+1/2,

p(xj , tn) + p(xj , tn+1)

2

)
+O(∆t)2,

the preceding equation can be written as follows:

LNx,ε
(Pn+1

j + Pnj
2

−
p(xj , tn+1) + p(xj , tn)

2

)
−
[ ∫ 1

0

∂b
(
xj , tn+1/2, P ∗,n+1/2

j (ξ)
)

∂y
dξ
]
×

(Pn+1
j + Pnj

2
−

p(xj , tn+1) + p(xj , tn)

2

)
−D−t

(
Pn+1
j − p(xj , tn+1)

)
= ε
( ∂2

∂x2
−D+

xD
−
x

)p(xj , tn+1) + p(xj , tn)

2
+ a(xj)

( ∂
∂x
−D+

x

)p(xj , tn+1) + p(xj , tn)

2

−
(∂p(xj , tn+1/2)

∂t
−D−t p(xj , tn+1)

)
+O(∆t)2,

(7.39)

where P ∗,n+1/2
j (ξ) =

p(xj , tn+1) + p(xj , tn)

2
+ξ
(Pn+1

j + Pnj
2

−
p(xj , tn+1) + p(xj , tn)

2

)
. Now, for any mesh

function Ψ we introduce a discrete operator LN,∆tε,P∗ given by

LN,∆tε,P∗ Ψ = T̃N,∆tε,(P ,p)Ψ.

Afterwards, from (7.39) by using the derivative bounds of p(x, t) given in Theorem 7.2, we obtain bounds of

the truncation errors:

∣∣LN,∆tε,P∗
(

Pn+1
j − p(xj , tn+1

)∣∣ ≤ C[N−1 + (∆t)2
]
, in DN,∆t \ (d, t). (7.40)

Consider the following discrete functions separately: Ψ±(xj , tn+1) = −C
(
N−1 + (∆t)2

)
(d− xj)±

(
Pn+1
j − p(xj , tn+1

)
, in [0, d]× [0, T ],

Ψ±(xj , tn+1) = −C
(
N−1 + (∆t)2

)
(1− xj)±

(
Pn+1
j − p(xj , tn+1

)
, in [d, 1]× [0, T ],

(7.41)
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and apply Corollary 7.2 for the operator LN,∆tε,P∗ together with the truncation error bounds in (7.40) , to obtain

required estimate (7.38).

Now, we define the layer component Q to be the solution of

LN
x,ε

Q n+1
j + Q n

j

2
−
[
b
(
xj , tn+1/2,

Y n+1
j + Y n

j

2

)
− b
(
xj , tn+1/2,

Pn+1
j + Pn

j

2

)]
−D−

t Q n+1
j ,= 0,

in DN,∆t \ (d, tn+1),

Q 0
j = q(xj , 0), Q n+1

0 = q(0, tn+1),

Q n+1
N = q(1, tn+1), [DQ (d, tn+1)] = −[DP (d, tn+1)] n = 0, 1, . . . ,M − 1.

(7.42)

We define the jump in the discrete derivative of the mesh function Z at the point (d, tn+1) by

[DZ(d, tn+1)] = D+
x Z(d, tn+1)−D−x Z(d, tn+1).

Similar to the continuous case, we can further decompose Q as

Q = Q1 + Q2,

where Q1 (the discrete analogue of the boundary layer function q1) is defined as the solution of

LNx,ε
Q n+1

1,j + Q n
1,j

2
−
[
b
(
xj , tn+1/2,

Pn+1
j + Pnj

2
+

Q n+1
1,j + Q n

1,j

2

)
−

b
(
xj , tn+1/2,

Pn+1
j +Pn

j

2

)]
−D−t Q n+1

1,j = 0, in DN,∆t ∩D−,

Q 0
1,j = q1(xj , 0), 0 ≤ j ≤ N/2,

Q n+1
1,0 = q1(0, tn+1), Q n+1

1,N/2 = q1(d, tn+1), n = 0, 1, . . . ,M − 1,

(7.43)

with Q n+1
1,j ≡ 0 on D

N,∆t ∩D+. Here, Q2 (the discrete analogue of the interior layer function Q2) satisfies that



LNx,ε
Q n+1

2,j + Q n
2,j

2
−
[
b
(
xj , tn+1/2,

Y n+1
j + Y n

j

2

)
−

b
(
xj , tn+1/2,

Pn+1
j + Pnj

2
+

Q n+1
1,j + Q n

1,j

2

)]
−D−t Q n+1

2,j ,= 0, in DN,∆t ∩D−,

LNx,ε
Q n+1

2,j + Q n
2,j

2
−
[
b
(
xj , tn+1/2,

Pn+1
j + Pnj

2
+

Q n+1
2,j + Q n

2,j

2

)
−

b
(
xj , tn+1/2,

Pn+1
j + Pnj

2

)]
−D−t Q n+1

2,j ,= 0, in DN,∆t ∩D+,

Q 0
2,j = 0, 0 ≤ j ≤ N,

Q n+1
2,0 = 0, Q n+1

2,N = 0,

[DQ2(d, tn+1)] = −[DP (d, tn+1)]− [DQ1(d, tn+1)] n = 0, 1, . . . ,M − 1.

(7.44)

Lemma 7.7. Under the assumption (7.31) of Lemma 7.4, the error associated with boundary layer component

314



satisfy the following estimate:

∣∣Q n+1
1,j − q1(xj , tn+1)

∣∣ ≤
 C(N−1 lnN + (∆t)2), for 1 ≤ j < N/4,

CN−1, for N/4 ≤ j < N/2.
(7.45)

Proof. We now consider η = ε
α lnN . At first, consider N/4 ≤ j ≤ N/2− 1. From the triangle inequality, we

have ∣∣Q n+1
1,j − q1(xj , tn+1)

∣∣ ≤ |Q n+1
1,j |+ |q1(xj , tn+1)|.

Using Theorem 7.3 for N/4 ≤ j ≤ N/2− 1, we have

|q1(xj , tn+1)| ≤ C exp(−mxj/ε) ≤ C exp(−mη/ε) = CN−1.

Now, for deriving bound for Q n+1
1,j , we introduce the mesh function Φn+1

j , which is the solution of the following

discrete problem:  εD+
xD
−
x Φn+1

j + mD+
x Φn+1

j = 0, for 1 ≤ j ≤ N/2− 1,

Φn+1
0 = 1, Φn+1

N/2 = 0,
(7.46)

where  Φn+1
j ≥ 0 and D+

x Φn+1
j ≤ 0, for 1 ≤ j ≤ N/2− 1,

Φn+1
N/4 ≤ CN

−1, for some C.

Here, for any mesh function Ψ, we introduce a discrete operator LN,∆tε,Q ∗
1

defined by

LN,∆tε,Q ∗
1

Ψ = T̃N,∆tε,(P+Q1,P)Ψ,

where Q ∗,n+1/2
1,j (ξ) =

Pn+1
j + Pnj

2
+ ξ
(Q n+1

1,j + Q n
1,j

2

)
. Then, we rewrite the discrete problem (7.43) in the

following form: 
LN,∆tε,Q ∗

1
Q n+1

1,j = 0, for 1 ≤ j ≤ N/2− 1,

Q 0
1,j = q1(xj , 0), for 1 ≤ j ≤ N/2− 1, Q n+1

1,0 = q1(0, tn+1),

Q n+1
1,N/2 = q1(d, tn+1), n = 0, 1, . . . ,M − 1.

Further, we obtain that

LN,∆tε,Q ∗
1

Φn+1
j ≤ 0, for 1 ≤ j ≤ N/2− 1.

We choose the discrete functions

Ψ±(xj , tn+1) = −|Q n+1
1,0 |Φ

n+1
j ± Q n+1

1,j , for 0 ≤ j ≤ N/2,
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for sufficiently large C. Then, Ψ±(x0, tn+1) ≤ 0, Ψ±(xN/2, tn+1) = 0 and

LN,∆tε,Q ∗
1

Ψ±j ≥ 0, for 1 ≤ j ≤ N/2− 1.

Applying Corollary 7.2 to the operator LN,∆tε,Q ∗
1

, we obtain that

|Q n+1
1,j | ≤ |Q

n+1
1,0 |Φ

n+1
j ≤ |Q n+1

1,0 |Φ
n+1
N/4 ≤ CN

−1, for N/4 ≤ j ≤ N/2− 1.

Therefore, we get ∣∣Q n+1
1,j − q1(xj , tn+1)

∣∣ ≤ CN−1, for N/4 ≤ j ≤ N/2− 1.

Next, consider xj ∈ [0,η]. Here, |Q n+1
1,N/4| ≤ CN

−1. From the equations (7.24) and (7.43), we have

LNx,ε
Q n+1

1,j + Q n
1,j

2
−
[
b
(
xj , tn+1/2,

Pn+1
j + Pnj

2
+

Q n+1
1,j + Q n

1,j

2

)
− b
(
xj , tn+1/2,

Pn+1
j + Pnj

2

)]
−

D−t Q n+1
1,j = Lx,ε

q(xj , tn+1) + q(xj , tn)

2
−
[
b
(
xj , tn+1/2, p(xj , tn+1/2) + q1(xj , tn+1/2)

)
−

b
(
xj , tn+1/2, p(xj , tn+1/2))

]
−
∂q(xj , tn+1/2)

∂t
, in DN,∆t ∩D−.

The preceding equation can be written as follows:

LNx,ε
(Q n+1

1,j + Q n
1,j

2
−

q1(xj , tn+1) + q1(xj , tn)

2

)
−
[ ∫ 1

0

∂b
(
xj , tn+1/2, [P ∗ + Q ∗1 ]

n+1/2
j (ξ)

)
∂y

dξ
]
×

(Q n+1
1,j + Q n

1,j

2
−

q1(xj , tn+1) + q1(xj , tn)

2

)
−D−t (Q n+1

1,j − q1(xj , tn+1)

= ε
( ∂2

∂x2
−D+

xD
−
x

)q1(xj , tn+1) + q1(xj , tn)

2
+ a(xj)

( ∂
∂x
−D+

x

)q1(xj , tn+1) + q1(xj , tn)

2

+
∂q1(xj , tn+1/2)

∂t
−D−t q1(xj , tn+1) +

[ ∫ 1

0

∂b
(
xj , tn+1/2, [P ∗ + Q ∗1 ]

n+1/2
j (ξ)

)
∂y

dξ−

∫ 1

0

∂b
(
xj , tn+1/2, P ∗,n+1/2

j (ξ)
)

∂y
dξ
]
×
(Pn+1

j + Pnj
2

−
p(xj , tn+1) + p(xj , tn)

2

)
+O(∆t)2,

(7.47)

where [P ∗ + Q ∗1 ]
n+1/2
j (ξ) =

pn+1
j + pnj

2
+

qn+1
1,j + qn1,j

2
+ ξ

(Pn+1
j + Pnj

2
+

Q n+1
1,j + Q n

1,j

2
−

pn+1
j + pnj

2
−

qn+1
1,j + qn1,j

2

)
and P ∗,n+1/2

j (ξ) =
pn+1
j + pnj

2
+ ξ
(Pn+1

j + Pnj
2

−
pn+1
j + pnj

2

)
. Now, for any mesh function Ψ

we introduce a discrete operator LN,∆tε,P∗+Q ∗
1

given by

LN,∆tε,P∗+Q ∗
1

Ψ = T̃N,∆tε,(P+Q1,p+q1)Ψ.

Afterwards, from (7.47) by using the derivative bound of q1(x, t) given in Theorem 7.3, we obtain bounds of
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the truncation error for the region 1 ≤ j ≤ N/4− 1,

∣∣LN,∆tε,P∗+Q ∗
1

(
Q n+1

1,j − q1(xj , tn+1

)∣∣ ≤ Cηε−2N−1 exp(−mxj−1/ε) + C
[
N−1 + (∆t)2

]
. (7.48)

We choose the discrete functions for 0 ≤ j ≤ N/4,

Ψ±(xj , tn+1) = −C(N−1 + ∆t2)− C(N−1 + ∆t2)(η− xj)− C
h

ε

(Θj(λ)

Θ0(λ)

)
±
(

Q n+1
1,j − q1(xj , tn+1)

)
where 

Θj(λ) =
N∏

k=j+1

(
1 +

λhk
ε

)
, for 0 ≤ j ≤ N − 1,

ΘN (λ) = 1,

and λ is a positive constant. We have −LN,∆tε,P∗+Q ∗
1

Θj(λ) ≥ C
ε Θj(λ), for 1 ≤ j ≤ N/4, and hence, use of (7.48)

for λ < m/2 yields that

LN,∆tε,P∗+Q ∗
1

Ψ±(xj , tn+1) ≥ 0.

Now, apply Corollary 7.2 for the operator LN,∆tε,P∗+Q ∗
1

to get Ψ±(xj , tn+1) ≤ 0, for all 0 ≤ j ≤ N/4. Hence, we

get

|Q n+1
1,j − q1(xj , tn+1| ≤ C

(
N−1 lnN + (∆t)2

)
, for 0 ≤ j < N/4.

Thus, we obtain the desired result (7.45).

Lemma 7.8. Under the assumption (7.31) of Lemma 7.4, the error associated with interior layer component

satisfy the following estimates:

∣∣Q n+1
2,j − q2(xj , tn+1)

∣∣ ≤ CN−1, for N/4 ≤ j ≤ N/2− 1, and 3N/4 ≤ j ≤ N − 1, (7.49)

and ∣∣Q n+1
2,j − q2(xj , tn+1)

∣∣ ≤ C(N−1 lnN + (∆t)2
)
, for 1 ≤ j ≤ N/4− 1. (7.50)

Proof. Let 3N/4 ≤ j ≤ N − 1. From the triangle inequality, we have

∣∣Q n+1
2,j − q2(xj , tn+1)

∣∣ ≤ |Q n+1
2,j |+ |q2(xj , tn+1)|. (7.51)

Using Theorem 7.3 for 3N/4 ≤ j ≤ N − 1, we have

|q2(xj , tn+1)| ≤ Cε exp(−m(xj−d)/ε) ≤ C exp(−m(d+η)/ε) = CN−1, for 3N/4 ≤ j ≤ N−1. (7.52)

Now, for deriving bound for Q n+1
2,j , we introduce the mesh function Φn+1

j , which is the solution of the following

discrete problem:  εD+
xD
−
x Φn+1

j + mD+
x Φn+1

j = 0, for N/2 < j ≤ N − 1,

Φn+1
N/2 = 1, Φn+1

N = 0,
(7.53)
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where  Φn+1
j ≥ 0 and D+

x Φn+1
j ≤ 0, for N/2 < j ≤ N − 1,

Φn+1
3N/4 ≤ CN

−1, for some C.

Here, for any mesh function Ψ, we introduce a linear discrete operator LN,∆tε,Q ∗
2

defined by

LN,∆tε,Q ∗
2

Ψ = T̃N,∆tε,(P+Q2,P)Ψ,

where Q ∗,n+1/2
2,j (ξ) =

Pn+1
j + Pnj

2
+ ξ
(Q n+1

2,j + Q n
2,j

2

)
. Then, we rewrite the discrete problem (7.44) in the

following form: 
LN,∆tε,Q ∗

2
Q n+1

2,j = 0, for N/2 < j ≤ N − 1,

Q 0
2,j = 0, N/2 ≤ j ≤ N, Q n+1

2,0 = 0, n = 0, 1, . . . ,M − 1,

Q n+1
2,N = 0, [DQ2(d, tn+1)] = −[DP (d, tn+1)]− [DQ1(d, tn+1)].

Further, we obtain that

LN,∆tε,Q ∗
2

Φn+1
j ≤ 0, for N/2 < j ≤ N − 1.

We choose the discrete function for N/2 ≤ j ≤ N ,

Ψ±(xj , tn+1) = −|Q n+1
2,N/2|Φ

n+1
j ± Q n+1

2,j ,

for sufficiently large C. Then Ψ±(xN/2, tn+1) = 0, Ψ±(xN , tn+1) = 0 and

LN,∆tε,Q ∗
2

Ψ±j ≥ 0, for N/2 < j < N.

Applying Corollary 7.2 to the operator LN,∆tε,Q ∗
2

, we obtain that

|Q n+1
2,j | ≤ |Q

n+1
2,N/2|Φ

n+1
j ≤ |Q n+1

2,N/2|Φ
n+1
3N/4 ≤ CN

−1, for 3N/4 ≤ j ≤ N − 1. (7.54)

Therefore, we obtain the desired estimate (7.49) from (7.51), (7.52) and (7.54).

The estimate (7.50) for N/4 ≤ j ≤ N/2 − 1 and 1 ≤ j ≤ N/4 − 1, can be obtained by using the approach

given in Lemma 7.7 and constructing suitable barrier functions for both regions.

The error associated with the numerical solution can be decomposed as

Y n+1
j − y(xj , tn+1) =



Pn+1
j − p(xj , tn+1) + Q n+1

1,j − q1(xj , tn+1) + Q n+1
2,j − q2(xj , tn+1),

0 ≤ j < N/2,

Pn+1
j − p(xj , tn+1) + Q n+1

1,j − q1(xj , tn+1) + Q n+1
2 − q2(xj , tn+1), j = N/2,

Pn+1
j − p(xj , tn+1) + Q n+1

2,j − q2(xj , tn+1), N/2 < j ≤ N.

Theorem 7.4 (Global error). Under the assumption (7.31) of Lemma 7.4, the error associated with the discrete
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problem (7.29) satisfies the following estimates:

∣∣Y n+1
j − y(xj , tn+1)

∣∣ ≤
 C

(
N−1 lnN + (∆t)2

)
, for 1 ≤ j < N/4, and N/2 ≤ j < 3N/4,

C
(
N−1 + (∆t)2

)
, for N/4 ≤ j < N/2, and 3N/4 ≤ j ≤ N − 1.

(7.55)

Proof. At first, we derive the estimate (7.55) for N/2 ≤ j < 3N/4. From Lemmas 7.6, 7.7 and 7.8, we have∣∣Y n+1
N/2−1 − y(xN/2−1, tn+1)

∣∣ ≤ C
(
N−1 + (∆t)2

)
and

∣∣Y n+1
3N/4 − y(x3N/4, tn+1)

∣∣ ≤ C
(
N−1 + (∆t)2

)
. The

truncation error at the point of discontinuity is given by,

∣∣(D+
x −D−x )(Y n+1

N/2 − y(d, tn+1))
∣∣ =

∣∣∣(D−x −D+
x )y(d, tn+1) +

[∂y
∂x

]
(d, tn+1)

∣∣∣
≤
∣∣∣∂y(d+, tn+1)

∂x
−D+

x y(d, tn+1)
∣∣∣+
∣∣∣∂y(d−, tn+1)

∂x
−D−x y(d, tn+1)

∣∣∣,
≤ 1

2
h2

∣∣∣∂2y
∂x2

∣∣∣
[d,d+h2]

+
1

2
H1

∣∣∣∂2y
∂x2

∣∣∣
[d−H1,d]

≤ CN−1 lnN + CN−1 ≤ CN−1 lnN.

Now, for the region N/2 < j < 3N/4, from the equations (7.1) and (7.30), we have

LNx,ε
Y n+1
j + Y n

j

2
− b
(
xj , tn+1/2,

Y n+1
j + Y n

j

2

)
−D−t Y

n+1
j

= Lx,ε
y(xj , tn+1) + y(xj , tn)

2
− b
(
xj , tn+1/2, y(xj , tn+1/2)

)
−
∂y(xj , tn+1/2)

∂t
.

The preceding equation can be written as follows:

LNx,ε
(Y n+1

j + Y n
j

2
−

y(xj , tn+1) + y(xj , tn)

2

)
−
[ ∫ 1

0

∂b
(
xj , tn+1/2, Y

∗,n+1/2
j (ξ)

)
∂y

dξ
]
×

(Y n+1
j + Y n

j

2
−

y(xj , tn+1) + y(xj , tn)

2

)
−D−t

(
Y n+1
j − y(xj , tn+1)

)
= ε
( ∂2

∂x2
−D+

xD
−
x

)y(xj , tn+1) + y(xj , tn)

2
+ a(xj)

( ∂
∂x
−D+

x

)y(xj , tn+1) + y(xj , tn)

2
−(∂y(xj , tn+1/2)

∂t
−D−t y(xj , tn+1)

)
+O(∆t)2, for N/2 < j < 3N/4,

(7.56)

where Y ∗,n+1/2
j (ξ) = y(xj , tn+1/2)+ξ

(
Y
n+1/2
j −y(xj , tn+1/2)

)
. Now, for any mesh function Ψ we introduce

a discrete operator LN,∆tε,Y ∗ given by

LN,∆tε,Y ∗ Ψ = T̃N,∆tε,(Y,y)Ψ.

Afterwards, from (7.56) by using the derivative bounds of y(x, t) obtain from the Theorem 7.2 and 7.3, we

obtain bounds of the truncation errors:

∣∣LN,∆tε,Y ∗
(
Y n+1
j − y(xj , tn+1

)∣∣ ≤ C[N−1 lnN + (∆t)2
]
, for 3N/4 < j < N. (7.57)
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Consider the discrete functions

Ψ±(xj , tn+1) = −C
(
N−1 lnN+(∆t)2

)
(1−xj)±

(
Y n+1
j −y(xj , tn+1

)
, for N/2−1 ≤ j ≤ 3N/4, (7.58)

and apply Corollary 7.2 for the operator LN,∆tε,Y ∗ together with the truncation error bounds in (7.57) , to obtain

that ∣∣Y n+1
j − y(xj , tn+1)

∣∣ ≤ C(N−1 lnN + (∆t)2
)
, for N/2 ≤ j < 3N/4.

Finally, we obtain the required estimate (7.55) for the remaining regions by invoking Lemmas 7.6, 7.7 and 7.8.

7.5 Numerical experiment

In this section, we present the numerical results for one test problems of the form (7.1)-(7.4), utilizing the

proposed FMMs in (7.29). For this test example, we select the constant η0 = 1, d = 1/2 and implement the

Thomas algorithm to solve the tridiagonal linear systems involved in our methods. The numerical results are

also compared with the fully-implicit upwind FMM, which is mentioned below as well.

7.5.1 The fully-implicit upwind FMM
In this section, we approximate the problem (7.1)-(7.4) by a fully implicit numerical method that combines an

implicit Euler method to discretize in the temporal direction and a classical upwind scheme to discretize in the

spatial direction.

Find a mesh function Y such that

Y 0
j = q0(xj), 0 ≤ j ≤ N,

LNx,εY n+1
j − b

(
xj , tn+1, Y

n+1
j

)
−D−t Y

n+1
j = g(xj , tn+1),

Y n+1
0 = y(0, tn+1), Y n+1

N = y(1, tn+1), for n = 0, 1, . . . ,M − 1,

D−x Y
n+1
N/2 −D

+
x Y

n+1
N/2 = 0,

(7.59)

where LNx,εY n+1
j =

(
εD+

xD
−
x + a(xj)D

+
x

)
Y n+1
j . The existence and stability of the solution Y n+1

j of the

nonlinear discrete problem (7.59) can be obtained in the same way as in Section 7.3. Furthermore, following

the error analysis given in Section 7.4, one can prove ε-uniform error estimate for the FMM (7.59).

Theorem 7.5 (Global error). The errors in the numerical solution satisfy the following estimates

∣∣Y n+1
j − y(xj , tn+1)

∣∣ ≤
 C

(
N−1 lnN + ∆t

)
, for 0 ≤ j < N/4, and N/2 ≤ j < 3N/4,

C
(
N−1 + ∆t

)
, for N/4 ≤ j < N/2, and 3N/4 ≤ j ≤ N.

where Y n+1
j is the solution of nonlinear discrete problem(7.59) and y is the solution of the continuous problem

(7.1)-(7.4).
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7.5.2 Test Example
Example 7.1. Consider the following semi-linear parabolic IBVP:

ε
∂2y
∂x2

+ a(x)
∂y
∂x
− y exp(y2)−

∂y
∂t

= g(x, t), (x, t) ∈ [(0, d) ∪ (d, 1)]× (0, 1],

y(x, 0) = 0, x ∈ [0, 1],

y(0, t) = −2

3
t3, y(1, t) = 0, t ∈ [0, 1],

where

a(x) =

 1 + x− x2, x ∈ [0, d],

2− x+ x2, x ∈ [d, 1],
and g(x, t) =

 −2 sin(πx)(1 + x2)t2, (x, t) ∈ [0, d)× (0, 1],

3 cos(πx)(1− x2)t2, (x, t) ∈ [d, 1]× (0, 1].

Because the exact solution for this example is unknown, the computational results are investigated using

the double mesh method. In the same way as we have done in Chapter 4, we determine the maximum nodal

error and the related order of convergence for each ε.

To compute the numerical solution of the FMMs in (7.29) and (7.59) for Example 7.1, a nonlinear system

needs to be solved at each time step. For that, we use the Newton’s iterative method as we define in Chapter 4.

7.5.3 Numerical results and observations
In Fig 7.2, we draw surface plot of numerical solution for Example7.1 and it shows that the numerical solution

generates boundary layer closer to x = 0 and interior layer at the right side of point of discontinuity x = 1/2.

For different values of ε,N and ∆t, the computed ε-uniform errors and order of convergence are displayed in

Tables 7.1 for Example 7.1. This shows the monotonically decreasing behavior of the ε-uniform errors with

increasing N , and it definitely represents the ε-uniform convergence of the FMMs given in (7.29). Next, in

order to visualize the effect of the temporal accuracy, we choose a suitably large N = 2048 to reduce the

influence of the spatial error. In Tables 7.2, we display the numerical results for Example 7.1, of the proposed

FMMs in (7.29) and (7.59), respectively.

7.6 Conclusion

In this chapter, we consider a class of singularly perturbed semilinear parabolic convection-diffusion IBVPs

with a jump discontinuity in the source term and in the convection term. Here, the convection coefficient has

the same sign pattern throughout the domain. Due to the discontinuity in the data of this type, a weak interior

layer and a boundary layer appear in the solution. In this regard, the following results are derived.

At first, the lower and upper solutions approach is used to study the existence of the analytical solution of the

nonlinear problem. The ε-uniform stability result of the analytical is obtained by establishing the comparison

principle for the continuous nonlinear operator; and we derive a-priori bounds of the derivatives of the analytical

solution via decomposition of the solution.

Further, we establish the comparison principle for the nonlinear discrete problem to obtain the ε-uniform

stability result of the discrete solution and provide a decomposition of the discrete solution, which enables us

to prove the ε-uniform convergence of the proposed finite difference approximation in the discrete supremum
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norm. It is proved that the proposed method is second-order accurate in time and almost first-order accurate in

space, irrespective of the parameter-ε.

The above theoretical findings are verified by the numerical experiments and moreover, it is shown that the

current numerical method is robust in comparison with the implicit upwind method. In this context, it is worthy

to the mention that to the best of our knowledge, there are hardly any research work related to the Crank-

Nicolson based numerical approximation of singularly perturbed nonlinear parabolic PDEs with nonsmooth

data arising in the semiconductor device modeling; and in that case, this is first such attempt made in the

literature.
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(a) for ε = 2−6

(b) for ε = 2−20

Figure 7.2: Surface plots of numerical solution for Example 7.1
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Table 7.1: ε-uniform maximum point-wise errors and order of convergence for Example 7.1 computed with
∆t = 1/N using the proposed nonlinear scheme (7.29)

ε Number of mesh-intervals N / time step-size ∆t

32/ 1
32

64 / 1
64

128/ 1
128

256/ 1
256

512/ 1
512

1024/ 1
1024

20 7.7706e-03 3.8090e-03 1.8849e-03 9.3746e-04 4.6748e-04 2.3343e-04

1.0286 1.0149 1.0076 1.0039 1.0019

2−2 9.2773e-03 4.6100e-03 2.2999e-03 1.1488e-03 5.7424e-04 2.8708e-04

1.0089 1.0032 1.0014 1.0004 1.0002

2−4 2.6663e-02 1.6198e-02 8.7194e-03 4.5185e-03 2.3039e-03 1.1632e-03

0.71900 0.89354 0.94839 0.97178 0.98599

2−6 3.7572e-02 2.2843e-02 1.3290e-02 7.5496e-03 4.2191e-03 2.3276e-03

0.71790 0.78138 0.81590 0.83946 0.85812

2−8 4.0466e-02 2.6147e-02 1.5448e-02 8.7225e-03 4.8127e-03 2.6224e-03

0.63008 0.75919 0.82463 0.85791 0.87595

2−10 4.0162e-02 2.6363e-02 1.5806e-02 9.0796e-03 5.0706e-03 2.7724e-03

0.60734 0.73805 0.79976 0.84047 0.87100

2−12 3.9914e-02 2.6201e-02 1.5677e-02 8.9947e-03 5.0459e-03 2.7904e-03

0.60726 0.74101 0.80146 0.83396 0.85465

2−14 3.9837e-02 2.6137e-02 1.5610e-02 8.9259e-03 4.9870e-03 2.7507e-03

0.60801 0.74367 0.80636 0.83983 0.85839

2−16 3.9817e-02 2.6119e-02 1.5590e-02 8.9038e-03 4.9645e-03 2.7298e-03

0.60826 0.74451 0.80813 0.84277 0.86283

2−18 3.9812e-02 2.6115e-02 1.5585e-02 8.8979e-03 4.9582e-03 2.7235e-03

0.60832 0.74474 0.80861 0.84364 0.86435

2−20 3.9811e-02 2.6114e-02 1.5583e-02 8.8964e-03 4.9566e-03 2.7218e-03

0.60834 0.74479 0.80873 0.84386 0.86476

2−22 3.9810e-02 2.6113e-02 1.5583e-02 8.8960e-03 4.9562e-03 2.7214e-03

0.60834 0.74481 0.80876 0.84392 0.86487

2−24 3.9810e-02 2.6113e-02 1.5583e-02 8.8959e-03 4.9561e-03 2.7213e-03

0.60835 0.74481 0.80877 0.84394 0.86489

eN,∆t 4.0466e-02 2.6363e-02 1.5806e-02 9.0796e-03 5.0706e-03 2.7904e-03

rN,∆t 0.61822 0.73805 0.79976 0.84047 0.86168

324



Table 7.2: Comparison of the temporal accuracy for Example 7.1 computed using the FMMs (7.29) and (7.59)

Number of space intervals N = 2048

ε ∆t = 1
16 ∆t = 1

32 ∆t = 1
64 ∆t = 1

128 ∆t = 1
256

implicit-Euler method (7.59)

2−4 2.9909e-03 1.5046e-03 7.5416e-04 3.7748e-04 1.8883e-04

0.99114 0.99647 0.99849 0.99931

Crank-Nicolson scheme (7.29)

2.5545e-05 6.3642e-06 1.5896e-06 3.9731e-07 9.9321e-08

2.0050 2.0013 2.0003 2.0001

implicit-Euler method (7.59)

2−8 4.6306e-03 2.3283e-03 1.1654e-03 5.8278e-04 2.9140e-04

0.99192 0.99848 0.99978 0.99995

Crank-Nicolson scheme (7.29)

3.5889e-05 9.9039e-06 2.4770e-06 6.1946e-07 1.5488e-07

1.8575 1.9994 1.9995 1.9999

implicit-Euler method (7.59)

2−16 4.8395e-03 2.4338e-03 1.2181e-03 6.0911e-04 3.0457e-04

0.99162 0.99866 0.99980 0.99992

Crank-Nicolson scheme (7.29)

4.1919e-05 1.0307e-05 2.6340e-06 6.5945e-07 1.6488e-07

2.0240 1.9683 1.9979 1.9999

implicit-Euler method (7.59)

2−24 4.8405e-03 2.4344e-03 1.2183e-03 6.0924e-04 3.0464e-04

0.99161 0.99866 0.99980 0.99992

Crank-Nicolson scheme (7.29)

4.1974e-05 1.0301e-05 2.6346e-06 6.5964e-07 1.6492e-07

2.0267 1.9671 1.9979 1.9999
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Chapter 8

Conclusions

This chapter is dedicated to a brief review of the outcomes of the research work that contributed to the thesis,

emphasizing their relevance and significance in the context of parameter-robust numerical solutions of singu-

larly perturbed linear and nonlinear parabolic PDEs with smooth and nonsmooth data. It further highlights a

variety of future scopes for possible extensions of the current work.

8.1 Outcomes of the research works

The following is the summary of the research findings made in the thesis, along with some key observations:

• An ε-uniformly convergent robust numerical algorithm is developed and analyzed for a class of singularly

perturbed one-dimensional linear parabolic convection-diffusion IBVPs with time-dependent convection

coefficient and possessing a regular boundary layer. The current numerical algorithm consists of two

parts. The first one is the development of a new hybrid FMM, which produces at least a second-order

accurate numerical solution with respect to the spatial variable both in the outer region (outside the

boundary layer) as well as in the boundary layer region (inside the boundary layer), regardless of the

cases ε � N−1 and ε � N−1. This reflects that there is an improvement in the region-wise accuracy

of the newly developed method in comparison with the existing numerical method. The other one is

the implementation of the Richardson extrapolation technique solely in the temporal direction (called

temporal Richardson extrapolation) for enhancing the temporal accuracy from first-order to second-order.

As a result, the resulting numerical solution is proven to be second-order ε-uniformly convergent not only

in the spatial variable but also in the temporal variable. Moreover, a significant reduction in the compu-

tational time is noticed corresponding to the newly developed FMM along with the temporal Richardson

extrapolation, regardless of the smaller and larger values of ε. The above findings indeed overshadow the

drawbacks of the existing hybrid scheme.

• The idea behind the newly developed algorithm is further extended for the cost-effective higher-order

numerical approximation of two-dimensional singularly perturbed linear parabolic problems with time-

dependent boundary conditions by proposing a new FSFMM and, later, by the extrapolation technique. It

is proved that the corresponding fully discrete scheme is ε-uniformly convergent in the discrete supremum

norm; and the spatial accuracy of the scheme is at least two in the outer region and is almost two in the

boundary layer region, regardless of the larger and smaller values of ε. Afterwards, the method is proven

to be second-order accurate in time by means of the temporal Richardson extrapolation.
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Here, we perform the error analysis for the newly designed fractional-step method in two-steps, which

discretizes first in time and then in space. It is important to note that in [22] the two-step analysis is carried

out in the reverse order which firstly converts the IBVP into the semidiscrete IVP via spatial discretization

and later into the fully-discrete problem via temporal discretization. For the spatial discretization of the

IVP, it utilizes the convergence result of the upwind finite difference scheme proved in [20], because the

pentadiagonal structure of the upwind scheme can be further decomposed into the tridiagonal structure

in the x and y-direction. However, such technique can not be extended to achieve higher-order spatial

accuracy using the newly proposed finite difference scheme because of the design of the scheme; and in

that case the present error analysis plays a significant role for analyzing the spatial accuracy.

It is important to note that the newly developed FSFMM utilizes an alternative evaluation of the boundary

data in order to eliminate the order reduction caused by the natural evaluation of the time-dependent

boundary conditions and thus produces a cost-effective, globally second-order accurate (in both space and

time) numerical solution by solving the tridiagonal linear systems at each half instead of the tridiagonal

block system. Moreover, the current fraction-steps method is shown to be robust in comparison with the

fractional implicit upwind method.

• Further, analyzing parameter-robust numerical approximation of higher-order accuracy for singularly

perturbed parabolic PDEs with nonlinearity is considered to be a desirable task due to the wide range

of real-life applications and the computational challenges in tackling the nonlinearity. In this regard,

a complete convergence analysis is provided for higher-order numerical approximations for a class of

singularly perturbed one-dimensional linear parabolic convection-diffusion IBVPs exhibiting a regular

boundary layer by proposing two novel FMMs (the fully-implicit FMM and the IMEX-FMM) followed

by the extrapolation technique. It is proved that both the newly proposed methods are ε-uniformly con-

vergent in the discrete supremum norm and achieve at least second-order accuracy in the outer region

and almost second-order accuracy in the boundary layer region regardless of the larger and smaller val-

ues of ε. Thereafter, by implementing the extrapolation technique solely for the time variable, we achieve

globally (in both space and time) second-order accurate numerical solutions.

It is worthy of mentioning that our error estimates justify that although the IMEX method leads to a

linearized system at each time step, it does not cause a reduction in the order of convergence correspond-

ing to the present fully-implicit method, which indeed leads to a nonlinear system at each time step.

Moreover, it is shown that the IMEX-FMM produces a more cost-effective numerical solution than the

fully-implicit FMM, and the newly developed FMMs are robust in comparison with the upwind FMM.

• Further investigation is carried out for cost-effective higher-order numerical approximations of two-

dimensional semilinear singularly perturbed parabolic convection-diffusion problems with non-homogeneous

boundary data by developing two new FSFMMs (the fully-implicit FSFMM and the IMEX-FSFMM) and

later, by the extrapolation technique. It is proved that the proposed methods are ε-uniformly convergent

with second-order spatial accuracy in the discrete supremum norm, irrespective of the larger and smaller

values of ε. After implementing the extrapolation technique, the resulting numerical solutions are also

proven to be second-order accurate in time.

Our error analysis reveals that the proposed IMEX-FSFMM (a linearized scheme) is still able to retain the
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same order of accuracy as that of the fully-implicit FSFMM (a nonlinear scheme). In addition, an appro-

priate evaluation of the boundary data is proposed for both cases to avoid the order reduction phenomena

due to the time-dependent boundary conditions. Moreover, both the newly developed fractional-step

methods are robust compared to the fractional implicit upwind method.

• Next, we point out the other research findings in connection with singularly perturbed PDEs with non-

smooth data. In this regard, efficient numerical approximations of two different classes of singularly

perturbed parabolic PDEs with nonsmooth data are proposed and investigated. In both cases, the pro-

posed numerical methods are proven to be ε-uniformly convergent in the discrete supremum norm and

almost second-order accurate in space, not only for ε� N−1, but also for ε� N−1.

However, to establish the ε-stability and ε-uniform error estimates, we utilize a suitable layer-resolving

Shishkin mesh in the case of PDEs having strong interior layers and a modified layer-adapted mesh in

the case of PDEs having both boundary and weak interior layers. Note that by introducing the modified

layer-adapted mesh, we overcome the theoretical challenge of establishing the monotonicity of the newly

developed FMM on the standard layer-resolving Shishkin mesh. Moreover, a significant improvement

in terms of the spatial order of convergence is observed for both the current methods compared to the

existing numerical methods.

• Again, developing a parameter-robust higher-order accurate numerical approximation of singularly per-

turbed nonlinear PDEs with nonsmooth data is a desirable and challenging task for a better understanding

of the complex phenomena. In this regard, a higher-order time accurate FMM is proposed and investi-

gated for a class of singularly perturbed semilinear parabolic convection-diffusion IBVPs exhibiting both

boundary and weak interior layers. Apart from this, we also study the existence and stability of the

solution of the continuous nonlinear problem and that of the discrete nonlinear problem. The numeri-

cal approximation is proven to be uniformly convergent and second-order time accurate in the discrete

supremum norm. Moreover, it is shown that the current numerical method is robust in comparison with

the implicit upwind method.

8.2 Future scopes

There are plenty of opportunities to examine the potential of the higher-order methods analyzed in this thesis to

study the numerical aspects of several complex PDEs. A concise description of the possible future extensions

of the present work is furnished below:

The higher-order robust numerical algorithm proposed in Chapter 2 can be further extended and analyzed

for higher-order numerical approximation of the following class of singularly perturbed quasilinear problems

posed on the domain D = Ω× (0, T ] = (0, 1)× (0, T ]:
∂y(x, t)

∂t
− ε

∂2y(x, t)

∂x2
+ a
(
x, t, y(x, t)

)∂y(x, t)

∂x
+ b
(
x, t, y(x, t)

)
= g(x, t), (x, t) ∈ D,

y(x, 0) = q0(x), in Ω,

y(0, t) = sl(t), y(1, t) = sr(t), t ∈ (0, T ],

(8.1)

where ε is a small parameter such that (0, 1] and the functions a, b, g , q0, sl, sr are sufficiently smooth. It is
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to be noted that the parameter-robust numerical method is analyzed for singularly perturbed quasilinear BVPs

in [70] with smooth data.

A cost-effective parameter-robust FSFMM is proposed in Chapter 3 for solving two-dimensional singularly

perturbed linear parabolic convection-diffusion IBVPs with non-homogeneous Dirichlet type boundary condi-

tions. It would be an interesting and challenging task to extend the similar method with suitable evaluation of

the boundary data other than the natural choice for the following class of singularly perturbed two-dimensional

linear parabolic convection-diffusion problems subject to the non-homogeneous Robin type boundary condi-

tions posed on the domain D = G× (0, T ] = (0, 1)2 × (0, T ] :

( ∂
∂t

+ Lε

)
u(x, y, t) = g(x, y, t), (x, y, t) ∈ D,

u(x, y, 0) = q0(x, y), in G,

α(x, y, t)u(x, y, t) + εµ(x, y, t)
∂u(x, y, t)

∂n
= s(x, y, t), (x, y, t) ∈ ∂G× (0, T ],

(8.2)

where Lεu = −ε∆u + ~v(x, y, t) · ~∇u + b(x, y, t)u, and ~v(x, y, t) =
(
v1(x, y, t), v2(x, y, t)

)
, and ε is a small

parameter such that ε ∈ (0, 1]. The coefficients ~v(x, y, t), b(x, y, t), α(x, y, t), µ(x, y, t) and the source term

g(x, y, t) are considered to be sufficiently smooth with vl(x, y, t) ≥ ml > 0, l = 1, 2; b(x, y, t) ≥ β ≥ 0, (x, y, t) ∈ D,

α(x, y, t) + µ(x, y, t) > 0, α(x, y, t), µ(x, y, t) ≥ 0, (x, y, t) ∈ ∂G× (0, T ].
(8.3)

Recently, parameter-robust numerical methods are investigated in [101, 55] for solving singularly perturbed

one dimensional parabolic PDEs with Robin type boundary conditions.

Next, one can further extend the convergence analysis of both the higher-order fully-implicit method and

the higher-order IMEX method examined in Chapter 4 for one dimensional semilinear parabolic PDEs and

in Chapter 5 for two dimensional semilinear parabolic PDEs to the coupled system of singularly perturbed

semilinear parabolic convection-diffusion problems with non-homogeneous Dirichlet boundary data in one and

two dimensions. Note that Clavero and Jorge in [19], and Rao and Chaturvedi in [95] recently analyze a

parameter-robust numerical scheme for coupled system of singularly perturbed semilinear parabolic reaction-

diffusion problems with non-homogeneous Dirichlet boundary data in one-dimension.

Again, it would be an interesting and challenging task to extend the two novel fractional-step numerical

algorithms proposed in Chapter 4 and the corresponding order reduction analysis for the following class of

singularly perturbed two-dimensional nonlinear parabolic convection-diffusion problems subject to the non-

homogeneous Robin type boundary conditions as shown below:
∂u(x, y, t)

∂t
+ Lεu(x, y, t) + b

(
x, y, t, u(x, y, t)

)
= g(x, y, t), in D,

u(x, y, 0) = q0(x, y), in G,

α(x, y, t)u(x, y, t) + εµ(x, y, t)∂u(x,y,t)
∂n = s(x, y, t), (x, y, t) ∈ ∂G× (0, T ],

(8.4)
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where Lεu = −ε∆u +~v(x, y, t) · ~∇u, and ~v(x, y, t) =
(
v1(x, y, t), v2(x, y, t)

)
, and ε is a small parameter such

that ε ∈ (0, 1]. The coefficients ~v(x, y, t), b
(
x, y, t, u

)
, α(x, y, t), µ(x, y, t) and the source term g(x, y, t) are

considered to be sufficiently smooth satisfying (8.3) and the condition

∂b(x, y, t, u)

∂u
≥ β > 0, (x, y, t, u) ∈ D× R. (8.5)

In Chapter 6, efficient numerical methods are proposed and analyzed so far for solving two different class sin-

gularly perturbed linear parabolic convection-diffusion problems with nonsmooth data in one-dimension. One

can further analyze the similar second-order spatially accurate numerical methods together with the fractional-

step approximation of the time derivative for solving two dimensional singularly perturbed linear parabolic

convection-diffusion problems with nonsmooth data. Recently, Majumdar and Natesan in [71] devise a parameter-

robust numerical scheme for solving singularly perturbed two-dimensional linear parabolic convection-diffusion

problem with nonsmooth data.

Chapter 7 analyzes high-order time-accurate numerical method for singularly perturbed one-dimensional

semilinear parabolic convection diffusion problems with nonsmooth data. One can develop high-order space-

time accurate numerical scheme for singularly perturbed quasilinear parabolic convection diffusion problems

with nonsmooth data. Note that Farrell et al. in [37] develop a parameter-robust finite difference scheme for

one-dimensional singularly perturbed quasilinear convection-diffusion problems with discontinuous data.

Apart from above, we want to mention that the convergence analysis carried out in this thesis is mostly

based on the layer-resolving piecewise-uniform Shishkin meshes. It would be more interesting to establish

those results using the adaptive grid based on the equidistribution principle.
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Appendix A

Monotonocity of the proposed FMM on the standard
Shishkin mesh for singularly perturbed linear parabolic
PDEs exhibiting both boundary and weak interior lay-
ers

Here, we discuss about the monotonocity property of the proposed finite difference operator in [Chapter 6,
Section 6.9.2 ] on the standard Shishkin mesh as depicted in Fig 6.11. Note that on the standard Shishkin mesh
the mesh-width hj is given as follows:

hj =



h1 =
4η1

N
, for 1 ≤ j ≤ N/4,

H1 =
4(d− η1)

N
, for N/4 + 1 ≤ j ≤ N/2,

h2 =
4η2

N
, for N/2 + 1 ≤ j ≤ 3N/4,

H2 =
4(1− d− η2)

N
, for 3N/4 + 1 ≤ j ≤ N.

(A.1)

By following the approach considered in [Chapter 6, Section 6.9.3], we convert the system of equations in
(6.77) into a new system of the following form:

Y 0
j = q0(xj), for 0 ≤ j ≤ N,

LN,M
H Y n+1

j = Fn+1
j , for 1 ≤ j ≤ N − 1,

Y n+1
0 = sl(tn+1), Y n+1

N = sr(tn+1), for n = 0, . . . ,M − 1.

(A.2)

where the difference operator LN,MH and the term Fn+1
j are respectively defined as

LN,M
H Y n+1

j =



[
µ̃−
j Y

n+1
j−1 + µ̃c

jY
n+1
j + µ̃+

j Y
n+1
j+1

]
+
[
λ̃−j Y

n
j−1 + λ̃cjY

n
j + λ̃+

j Y
n
j+1

]
,

for j = N/2,

LN,M
ε Y n+1

j , for j 6= N/2,

(A.3)
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and

Fn+1
j =

 γ̃−j gn+1
j−1 + γ̃cj gn+1

j + γ̃+
j gn+1

j+1 , for j = N/2,

F n+1
j , for j 6= N/2.

(A.4)

Here, one can derive the coefficients µ̃−j , µ̃
c
j , µ̃

+
j ; λ̃−j , λ̃

c
j , λ̃

+
j ; γ̃−j , γ̃

c
j , γ̃

+
j , from the proposed scheme by

considering the mesh-widths given in (A.1). Now, we set

−LN,MH Y n+1
j =

[
Aj,j−1Y

n+1
j−1 +Aj,jY

n+1
j +Aj,j+1Y

n+1
j+1

]
−
[
Bj,j−1Y

n
j−1 +Bj,jY

n
j +Bj,j+1Y

n
j+1

]
,

where for j 6= N/2,  Aj,j = −µcj , Aj,j+1 = −µ+
j , Aj,j−1 = −µ−j ,

Bj,j = λcj , Bj,j+1 = λ+
j , Bj,j−1 = λ−j ,

and for j = N/2, 
Aj,j = −µ̃cj , Aj,j+1 = −µ̃+

j , Aj,j−1 = −µ̃−j ,

Bj,j = λ̃cj , Bj,j+1 = λ̃+
j , Bj,j−1 = λ̃−j .

It is obvious that the matrix B = (Bj,k) ≥ 0. Now, by considering the case ε ≤ 2‖a‖N−1, one can derive that


AN/2,N/2 = −

[ 2ε− aN/2+1h2

2h2(2ε+ aN/2+1h2)
− 3

2h2
− 3

2H1
− H1

2ε

( 1

2∆t
+
b(N/2−1)+ 1

2

2
−
a(N/2−1)+ 1

2

H1
− ε

H2
1

)]
> 0,

AN/2,N/2+1 = − 1

2h2

[
4−

4ε+ 2h2
2(bN/2+1 + 1

∆t )

2ε+ aN/2+1h2

]
≤ 0,

under the assumptions N/lnN > 2η0‖a‖ and
(

1
∆t + ||b||

)
≤ m0N/2. Also, we have

AN/2,N/2−1 = − 1

2H1

[
4−

2ε+ a(N/2−1)+ 1
2
H1 +H2

1 (b(N/2−1)+ 1
2

+ 1
∆t)/2

ε

]
,

=
1

2H1

[
− 4 +

2ε+ a(N/2−1)+ 1
2
H1 +H2

1 (b(N/2−1)+ 1
2

+ 1
∆t)/2

ε

]
,

≤ 1

2H1

[
− 2 +

‖a‖H1

ε
+
H2

1 (‖b‖+ 1
∆t)

2ε

]
.

Now, using H1 ≤ 4N−1 and
(

1
∆t + ||b||

)
≤ m0N/2, we have

AN/2,N/2−1 ≤
1

εH1

[
− ε+ 4‖a‖N−1

]
� 0,

since ε ≤ 2‖a‖N−1 ≤ 4‖a‖N−1 . This shows that the matrix A := (Aj,k) does not satisfy the M-matrix

criterion. As a result of this, one can not apply [Lemma 3.12, Part II] given in the book Roos et al. [99] to prove

that LN,MH satisfies the discrete maximum principle.
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Appendix B

Verification of compatibility conditions: test examples
for 2D liner and semilinear parabolic PDEs

At first, we show that examples of Chapter 3 (for 2D linear parabolic PDE) satisfy the compatibility conditions

as mentioned in the equation (3.3). According to the book [99, Section 2.2], in order to avoid any additional

layer, the boundary and initial data must satisfy the compatibility conditions at the corners.

Example B.1. Consider the following parabolic IBVP:
∂u
∂t
− ε∆u + (1 + x(1− x))

∂u
∂x

+ (1 + y(1− y))
∂u
∂y

= g(x, y, t), in G× (0, 1],

u(x, y, 0) = q0(x, y), in G,

u(x, y, t) = s(x, y, t), in ∂G× (0, T ].

Here, the exact solution is given by

u(x, y, t) = exp(−t)
[(1− exp(−(1− x)/ε)

1− exp(−1/ε)
− cos(

πx

2
)
)(1− exp(−(1− y)/ε)

1− exp(−1/ε)
− cos(

πy

2
)
)
− xy

]
.

It is obvious that

q0(1, 0, 0) = s(1, 0, 0) = 0, q0(0, 0, 0) = s(0, 0, 0) = 0,

q0(1, 1, 0) = s(1, 1, 0) = −1, q0(0, 1, 0) = s(0, 1, 0) = 0.

Since g , q0, and s are obtained from the exact solution, one can easily check that the remaining compatibility

conditions of the equation (3.3) are also satisfied by the Example B.1.

Example B.2. Consider the following parabolic IBVP:

∂u
∂t
− ε∆u +

∂u
∂x

+
∂u
∂y

+ (1 + t2xy)u = g(x, y, t), in G× (0, 1],

u(x, y, 0) = 0, in G,

u(x, y, t) = (e−t − 1)(1 + x)y, (x, y, t) ∈ ∂G× (0, 1],

where g(x, y, t) = [1 + rt2xy][Φ(x)Φ(y) − (1 + x)y] + rm2[Φ(x) + Φ(y)] − r(1 + x + y) and Φ(z) =
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m1 +m2z + exp(−(1− z)/ε), m1 = − exp(−1/ε), m2 = −1−m1 and r = 1− e−t.

Here, we are not acquainted with the exact solution of Example B.2. One can check that

q0(1, 0, 0) = s(1, 0, 0) = 0, q0(0, 0, 0) = s(0, 0, 0) = 0,

q0(1, 1, 0) = s(1, 1, 0) = 0, q0(0, 1, 0) = s(0, 1, 0) = 0.

Next, one can also check that

∂s(x, y, 0)

∂t
= −Lε(0)q0(x, y) + g(x, y, 0), on ∂G, (B.1)

where Lε(0)q0 = ε∆q0 +
∂q0

∂x
+
∂q0

∂y
+ q0. Since q0(x, y) = 0, it implies that Lε(0)q0 = 0, and from the

boundary data, we obtain that
∂s(x, y, t)

∂t
= −e−t(1 + x)y and

∂s(x, y, 0)

∂t
= −(1 + x)y. Next, we have

g(x, y, 0) = [Φ(x)Φ(y)− (1 + x)y].

Since Φ(0) = 0 and Φ(1) = 0, it gives that

∂s(1, 1, 0)

∂t
= g(1, 1, 0) = −2,

∂s(0, 1, 0)

∂t
= g(0, 1, 0) = −1,

∂s(0, 0, 0)

∂t
= g(0, 0, 0) = 0,

∂s(1, 0, 0)

∂t
= g(1, 0, 0) = 0.

Hence, the equation (B.1) is also satisfied. Similarly, the remaining compatibility conditions of the equation

(3.3) are also met.

In the same way, one can show that example of Chapter 5 (for 2D semilinear parabolic PDEs) satisfies the

required compatibility conditions mentioned in the equation (5.4).
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