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Abstract

Information geometry emerged from the geometric study of a statistical model of prob-
ability distributions. A statistical model equipped with a Riemannian metric and a pair
of dual affine connections is called a statistical manifold. Various geometric aspects of
statistical manifolds were studied by many researchers. The main objective of this the-
sis is to explore certain geometric properties of statistical manifolds and the geometry of
estimation.

In Chapter 2, we discuss the geometry of immersions and statistical manifolds. In
Section 2.1, we discuss definitions and basic results related to affine immersions. In Propo-
sition (2.1) detailed proof is given for the result that a simply connected statistical manifold
can be realized in Rn+1 if and only if it is 1-conformally flat. In Section 2.2, we first
discuss about the statistical submanifolds and the fundamental equations associated with
it. Then in Theorem (2.4) we prove a necessary and sufficient condition for the inherited
statistical manifold structures to be dual to each other. Statistical immersion is defined and
in Theorem (2.5) we prove a necessary condition for a statistical manifold to be a statisti-
cal hypersurface. Also, we prove its converse in Theorem (2.6). Then, in Theorem (2.10)
a necessary and sufficient condition for a statistical immersion into a dually flat statisti-
cal manifold of codimension one to be minimal is obtained. Also, in Theorem (2.11) a
necessary condition is obtained for minimal statistical immersion of statistical manifolds
equipped with α-connections. In Section 2.3, centro-affine immersion into Rn+2 and the
fundamental equations of it are discussed first. Also, in Proposition (2.3) and in Proposi-
tion (2.4) a detailed proof of 1-conformal equivalence and (−1)-conformal equivalence of
statistical manifold structures in the case of centroaffine immersions into Rn+2 are given,
respectively. We define centro-affine immersions of codimension two into a dually flat sta-
tistical manifold and in Theorem (2.13) we give a necessary and sufficient condition for the
inherited statistical manifold structures to be dual to each other. In Theorem (2.14) we show
that the inherited statistical manifold structure is conformally-projectively flat in the case
of non-degenerate, centro-affine, equiaffine immersion into a dually flat statistical mani-
fold of codimension two. In Section 2.4, we first discuss the affine fundamental form and
relations between curvature tensors for affine immersions of general codimension. Then,
we define the transversal volume element map for equiaffine statistical immersion of gen-
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eral codimension and certain properties are also proved in Lemma (2.3) and in Proposition
(2.6).

In Chapter 3, we discuss the geometry of submersions and statistical manifolds. In
Section 3.1, definitions of submersion and semi-Riemannian submersion and certain basic
results are given. We summarize the definition and basic results of affine submersions with
horizontal distribution in Section 3.2. Also, discuss the theorem by Abe and Hasegawa on
geodesics comparison for an affine submersion with horizontal distribution. In Section 3.3,
we first introduce the concept of a conformal submersion with horizontal distribution for
Riemannian manifolds, which is a generalization of the affine submersion with horizontal
distribution. Then, in Theorem (3.3) a necessary condition for the existence of such a
map is proved. In Theorem (3.6) a necessary and sufficient condition is obtained for π ◦
σ to be a geodesic of B when σ is a geodesic of M for a conformal submersion with
horizontal distribution. Then, in Proposition (3.5) we prove a necessary and sufficient
condition for the horizontal lift of a geodesic to be geodesic. Also, in corollary (3.3) we
give a necessary condition for the connection on B to be complete when the connection
on M is complete for a conformal submersion with horizontal distribution π : M −→
B. In Section 3.4, we first discuss the affine submersion with horizontal distribution and
statistical manifolds. A statistical structure is obtained on the manifold B induced by the
affine submersion π : M −→ B with the horizontal distribution H(M) = V⊥(M). In
the case of conformal submersion with horizontal distribution in Theorem (3.9) we prove
a necessary and sufficient condition for (M,∇, gm) to become a statistical manifold. Also,
in Proposition (3.7) we prove π : (M,∇) −→ (B,∇∗) is a conformal submersion with
horizontal distribution if and only if π : (M,∇) −→ (B,∇∗

) is a conformal submersion
with horizontal distribution.

Chapter 4 deals with the statistical structures on tangent bundles, harmonic maps be-
tween statistical manifolds and between tangent bundles. In Theorem (4.3) of Section 4.1

we prove a necessary and sufficient condition for TM to become a statistical manifold
with the complete lift connection and the Sasaki lift metric. In Section 4.2, we first give a
detailed description of the harmonic map using tension field. In Theorem (4.4) we prove
a necessary and sufficient condition for the harmonicity of identity map for conformally-
projectively equivalent statistical manifolds. Then, conformal statistical submersion is de-
fined which is a generalization of the statistical submersion and in Theorem (4.5) we prove
that harmonicity and conformality cannot coexist. In Section 4.3, certain properties of the
differential of the tangent map is given first. For statistical manifolds, in Theorem (4.7) we
prove that a smooth map φ : M −→ B is harmonic with respect to ∇ and ∇∗ if and only
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if it is harmonic with respect to the conjugate connections ∇ and ∇∗. Then, in Theorem
(4.8) given a necessary condition for the harmonicity of the tangent map with respect to
the complete lift structure on the tangent bundles. Also, in Proposition (4.8) we prove a
necessary and sufficient condition for the tangent map to be a statistical submersion.

In Chapter 5, estimation of parameters in statistical manifolds, exponential family and
its submanifolds, estimation of parameters in the curved exponential family and Fisher-
Neyman sufficient statistic for parametrized models are discussed. In Section 5.1, short
account of the statistical properties of an estimator is given. In Theorem (5.2) of Section
5.2 we show that if all ∇1-autoparallel proper submanifolds of a ±1-flat statistical manifold
M are exponential then M is an exponential family. Also, in Theorem (5.3) we prove that
if submanifold of a statistical model is an exponential family, then it is a ∇1-autoparallel
submanifold. In the theory of estimation in curved exponential family we give a short ac-
count of Amari’s geometric conditions for the consistency and efficiency of an estimator
in a curved exponential family using ancilliary manifolds. Then discuss the MLE algo-
rithm for estimating parameters in the curved exponential family obtained by Cheng et al.
In Section 5.3 we show that the Fisher-Neyman sufficient statistic is invariant under the
isostatistical immersions of statistical manifolds in Theorem (5.5).
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