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Abstract

Estimating depth from a 2D image is valuable for robotics, navigation, object recognition,
medical diagnosis, and 3D measurements. Mobile platforms often have limitations in size,
weight, and power. Cost-effective monocular depth estimation with a single camera and
low computational requirements are suited for such applications. Most research on depth
recovery lacks work on depth range, dynamic targets, and practical setups. The thesis
investigates various depth recovery methods to understand such gaps.

The analysis of experiments using depth from focus (DOD) found that blur detectors
can estimate sparse depth maps, but the depth estimate is only accurate for close-range
targets due to the shallow depth of field. Additionally, shadows can create false depth and
artifacts not previously reported in the literature. This method is not useful for featureless
surfaces or moving targets.

A coded aperture using two spectral filters (DFCCA) was developed, resulting in a
larger 32-pixel disparity map compared to the 14 pixels reported in the literature. However,
the accuracy was again only high for near-targets. The analysis showed that performance
is sensitive to spectral leakage, signal-to-noise ratio (SNR), and reduced image resolution.
The multi-coded aperture (DMCA) relies on non-overlapping Point Spread Function (PSF)
signatures. Here, the depth estimate was found to be accurate for surfaces with dense
textures but not suitable for moving targets due to the requirement of two images.

Most depth-recovery methods estimate relative depths. A new calibration method has
been developed to recover absolute depth from monocular images. This approach uses a
unique blur target with ground truth. The method is not affected by contrast variations,
magnification artifacts, or spectral sensitivity. The blur ranges up to a radius of 1.2σ, as
demonstrated, but is limited by the inherent camera optic blur.

Modern Deep Neural Networks (DNNs) estimate depth from single images. The key
components are network architecture and network training loss functions. Regression loss
for robust training is less researched. Here, new loss functions based on edge and Structural
Similarity (SSIM) functions were proposed. These improved the log10 error and the δ1
accuracy (85%) emphasizing the training robustness.

Available Deep Learning Networks are computationally intensive for use in mobile
platforms. A low-complexity multi-scale network architecture (NDWTN) is designed.
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NDWTN has wavelets, attention, dense convolution, residual convolution, batch norm, and
efficient activation layers to estimate the full-depth map. This network outperforms previ-
ously known DWT-based and UNET++ models in all six performance metrics and provides
the best RMSE score among present state-of-the-art models. NDWTN trains faster within
17 minutes per epoch and reaches an accuracy of > 92% for 10 epochs. These are suitable
for conservative mobile systems.
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Chapter 1

Introduction

Depth is the dimension to a point away from the observer. Humans can perceive depth and
judge the spatial position in a 3D world, which aids in many biological, social, and logical
activities. Present-day machines also need vision for multiple activities to aid humans
through 3D measurement, automatic inspection, security, medical imaging, navigation,
robotics, meta-verses, virtual reality, and many more. Machines cannot perceive depth and
hence require complex hardware and processing methods to visualize and make precision
decisions. Here, the combined technique of hardware and algorithms provides the Carte-
sian plane representation of points from the 3D scene. Depth estimation is one of the funda-
mental computer vision (CV) tasks that is accomplished through machine learning (ML),
artificial intelligence (AI), deep learning (DL), etc. Back in 1966, CV initiated as “The

Summer Vision Project", http://people.csail.mit.edu/brooks /idocs/AIM-100.pdf to identify
objects. Author [2] identified a method of image defocus to estimate depth. Over the
years, research advances in biological neuroscience guided machine learning and shaped
CV achievements [3]. Advanced neuromorphic-based algorithms enabled artificial intel-
ligence (AI) through learnable neurons and further inspired neural networks by the year
2000. Neural networks are efficient AI algorithms that can classify complex objects like
cars with highly variable attributes and environments and are based on biologically inspired
convolutional layers and pooling layers. Deep learning is based on large neural networks.
Neural networks learn a task through training before deployment. The training involves an
organized dataset of multiple images and ground truth pairs related to the task. The net-
work learns features by optimizing a regression loss function. A gradient descent algorithm
with backpropagation between the image and the ground truth is used for the learning. The
loss function and the dataset are therefore crucial to the accuracy, overall training time,
and generalization of the outcomes.The datasets are large and need multiple iterations to
minimize the training loss to an acceptable level. These algorithms therefore need multi-
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core parallel processors like GPUs with tens of gigabytes of memory and run for a long
duration. These systems are complex, and at present the thrust is towards efficient deep
learning techniques with multi-scale capability and preferably low-complexity systems that
can be implemented on popular mobile platforms with limited resources. textitThe debate
over neural network complexity: Does bigger mean better?, VentureBeat, March 28, 2023,
https://venturebeat.com/author /victordey/. This also puts a focus on efficient low-power
capabilities for depth estimations. Even so, the present depth estimate capability of CV has
unlimited daily applications for 3D measurement, automatic inspection, security, medical
imaging, navigation, robotics, and many more. In a camera, light reflected from a scene is
converted into electrical signals. The camera is an electro-optical system that records the
shapes, colors, and movements of objects in a defined field of view (FOV). This camera
largely mimics the human eye and interacts with CV algorithms aided by natural light or
some arrangement of scene illumination. The camera captures a 2D scene from a real 3D
scene by focusing the light through an arrangement of lenses into multiple aligned rows and
columns of pixels in the image plane. An aperture in front of the image plane controls the
energy passing to the pixels. Each of the spatially arranged pixels captures the contrast and
color of the projected image. The image resolution also defines the accuracy of depth esti-
mations and smaller pixel dimensions are better. The camera requires an optimum setting
of the aperture to collect adequate light and a good focus to obtain a sharp image. These
camera parameters can be fixed, manually adjustable, or automatic. The depth estimation
task then converges to the measurement of the distance, in pixel dimensions, relative to
the camera axes. Different configurations of this camera and algorithm define the process-
ing of captured images for depth extraction. The popular arrangements are through stereo
imaging (multi-views of a scene) or from a monocular (single) image. These are discussed
in subsequent sections.

1.1 Depth estimate from stereo vision

A common method for camera-based depth estimation is based on stereopsis (stereo vi-
sion). Here, a pair of fixed cameras, kept apart at a known distance, capture overlapping
images with two different angles [4]. In Fig.1.1, the projection of a point P at a distance Z
is captured by two overlapping views.

P - Point in real world
PL - Left image corresponding point
PR - Right image corresponding point
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XL - Horizontal pixel distance of PL

XR - Horizontal pixel distance of PR

B - Baseline distance between the center of left and right cameras

f0 - Focal length of the cameras

pix - Physical size of a pixel in camera sensors

d - Distance between point P and camera centers

Figure 1.1: Stereo method and epipolar geometry

Traditional methods use this multi-view geometry to estimate depth, assuming the cameras
are parallel to the point. Then a disparity map can be generated by the difference between
the projected positions (XL, XR in pixels) in the left and right images.

Disparity(Dp) = XL −XR (1.1)

The positions in one image are estimated by matching robust corresponding points in the
other image. This is usually done by searching and similarity matching with a block of
pixels. The camera parameters F0, pix, and the baseline are known, so by triangulation, a
depth map is obtained.

d =
f0B

pixDp

(1.2)

In the real world, the problem is more complex due to physical and practical aspects, such
as:

• The accuracy of stereo methods is limited by the baseline. A large baseline provides
large disparity and accuracy; however, this cannot be made impractically large.
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• Further, the disparity follows a logarithmic relation with distance (d). Faraway ob-
jects fail to provide disparity, as the disparity is very small. Most commercial stereo
cameras offer a depth range of < 10m.

• Each of the similar cameras’ has manufacturing differences that mandate calibration
for precise matching of image scale, translation, and gain. This calls for additional
computing algorithms for image rectification. In practice, the camera may not be
horizontal or parallel. Hence, matching the corresponding points requires searching
the full 2D images instead of a horizontal axis. These add to computing costs.

• Reflective surfaces and non-textured regions degrade the features for robust match-
ing. Also, repeating patterns can confuse the matching algorithm. These reduce the
depth accuracy.

• The other inherent problems are poor dynamic range of cameras and blurred images
of objects beyond focus (see section 2.1.2).

Over the years, significant research advancements have replaced traditional methods with
deep learning-based approaches. These improve stereo accuracy, multi-scale feature maps,
global structure, and the minimization of regression loss [5]. However, these methods are
still limited by the baseline range.

1.2 Depth estimate from single cameras

Alternate options for improved depth range (> 10m) are single active cameras. These
have an inbuilt, strong light source to illuminate the scene with known patterns. The re-
flected surface patterns require depth estimation. The power of the light source is scaled
for a higher range and viewing angle. Presently, such cameras are expensive, bulky, con-
sume more power, and have poor resolution (Texas Instruments Technical White Paper-

SLOA190B). Monocular depth estimation overcomes most of the limitations of stereo cam-
eras and active cameras by using only one passive camera to reduce hardware technique
complexity. These are simple, low-power, have the advantages of contrast robustness, have
no magnification-based issues, and need simple calibration. These have immense potential
applications in 3D reconstruction [6], medical imaging [7], robotics and autonomous driv-
ing [8, 9], augmented reality, and many more. Presently, there are many research papers on
monocular depth estimation. The site https://paperswithcode.com/task/monocular-depth-

estimation gives the recent trends and benchmarks. However, this method lacks reliable
depth cues like parallax as in stereo vision, which poses a challenging and ill-posed prob-
lem. The monocular method suffers from scale ambiguity where the depths estimated are
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relative and need information on the real scale through calibration. The method also suffers
from structural ambiguity, like occlusions and weak texture patterns. Further, any 2D image
can be the projection of many different real-world scenes. Initially, researchers used camera
focus or aperture parameters to capture multiple images and estimate depth from the defo-
cus blur filters [2]. Such methods were not practical, as customized setups were needed to
capture multiple images while other camera parameters remained constant. The depth map
was sparse with such methods. Later, [10] used cues like texture, haze, and global features
and implemented supervised learning to train an MRF model to estimate depth from a sin-
gle image. This called for meticulously crafted computer vision (CV) algorithms to solve
this nonlinear problem. The author [11] applied Convolutional Neural Networks (CNN) to
successfully address the ill-posed problem. They train a model to learn the structure of the
scene, use a second network to refine it using local information, and directly regress the
depth map. Recent advances use deep neural networks with improved datasets for training,
evaluation, and benchmarking. These networks train models with carefully designed loss
functions and relevant datasets of color images and ground truth to regress depth estimates.
These networks use scale-aware losses [12] to overcome scale ambiguity and complement
image features with a set of auxiliary variables to avoid structural ambiguity [13]. The
projection problem is solved through various visual depth cues like perspective, shadows,
relative size, obstruction, position, color, horizon, etc. [14]. Here, the prediction accuracy
depends on network architecture and regression loss functions. Training with a large col-
lection of well-defined and labeled datasets is also crucial for generalization and prediction
quality. Present state-of-the-art methods use resource-intensive and complex networks to
directly regress the depth map.

1.3 Challenges for Mobile Platforms

Recent advancements in semiconductor technology have increased computational power
at a lower cost and are pushing near-real-time depth inferences to mobile platforms and
edge computations. These mobile platforms have resource constraints like size, weight,
and power (SWaP), giving rise to new challenges. Active systems are avoided as they are
costly, bulky and power-hungry. The stereo methods need two cameras and increase the
computation complexity for L-R correspondence matching, contrast normalization, and
magnification adjustments. These increase setup complexity and are also avoided. Single-
camera-based depth estimation is cheap and suited for mobile platforms. However, the
accuracy depends on the optics used and the setup for acquiring images. The methods rely
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on changing the camera parameters and multiple image acquisitions. These are not suit-
able for use with moving targets. Monocular depth estimation methods use a single image
along with deep learning to provide the best solution. However, the computational com-
plexity is high, requires elaborate training datasets and suitable loss functions. Therefore,
mobile platforms demand real-time inferences with efficient software, lightweight-efficient
networks, and good training.

1.4 Motivation and Research Objective

Most research papers focus on novel depth estimation methods with laboratory experiments
or simulations through large computation capabilities. The literature lacks aspects like
depth range, dynamic targets in the actual environment, and practical setups. These gaps
need study with elaborate experiments to identify further scope for improvement. Most
depth estimation methods provide relative depth. A good calibration method is hence the
need of the hour for retrieving absolute depths. Dedicated literature was not found for such
calibration. A study using new calibration targets is proposed to retrieve absolute depth.
Further, it was highlighted that mobile platforms demand accurate estimations with effi-
cient networks. This calls for investigating network systems like regression loss functions
and network architecture for reductions in computation complexity. Again, most of the lit-
erature deals with standard loss functions for depth estimation. A study is conducted with
alternate loss functions to improve the depth map details. Most light networks, like UNet
and MobileNet, are utilized for classification and segmentation, with very few for depth es-
timation. The thesis work also develops an alternative light network for depth estimation.

The thesis has three major contributions in the research domains related to monocular
depth estimation from a single image.

• The thesis aims to develop a framework for absolute depth estimation. This need
arises from the relative depth maps obtained from present monocular depth estima-
tion methods, whereas most applications need absolute depths. Proposed new cali-
bration procedures to bridge this gap.

• Subsequently, extensive work on monocular depth estimation with deep learning is
carried out. The regression loss functions for efficient deep learning are investigated
and analyzed. New efficient multi-loss functions using SSIM and sharpening func-
tions are proposed to improve depth map estimation accuracy.
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• Monocular depth estimating methods are complex and computationally intensive,
which limits their usage on mobile platforms.To tackle this issue, a new lightweight
network architecture is proposed to estimate monocular depth. This network is multi-
scaled, uses wavelets, and uses attention to train faster and improve accuracy. The
performance competed with present-day state-of-the art algorithms.

1.5 Organization of the Thesis

The format of the thesis is:

• Chapter-2 describes the camera and discusses the basic camera model with a thin
lens. A market survey on depth cameras highlights the various methods used and
the technological capabilities. Stereo vision methods are analyzed and compared
with active mono cameras. It is concluded that stereo methods have limitations in
range, while active camera methods are expensive and power-hungry. This leaves
the monocular method as a potential candidate for an efficient and cheap solution for
depth estimation. A literature survey on monocular cameras is complete. Traditional
methods of monocular depth estimation using defocus, aperture, coded aperture, blur
cue, and light field are summarized. Modern AI-based learning methods are also
surveyed. These require large, relevant datasets for training and evaluating a net-
work model. The selection of the database and its usage for the thesis work are
explained. Training a network model involves minimizing the loss function. The
metrics for evaluation are discussed, and popular metrics for performance evaluation
are finalized as RMSE, REL, Log10, and threshold. Further, various applications of
monocular depth are listed. The challenges for the work are summarized.

• Chapter-3 discusses classical methods of depth estimation from defocus by changing
focus. The method relies on the fact that when an object is focused, the corresponding
image pixels have maximum sharpness. The out-of-focus pixels are blurred and are
represented by the point spread function (PSF) with distinct σ values. These are
related to the distance based on the thin-lens equation. The method uses the camera’s
intrinsic and geometric properties to estimate depth. In the experimentation, two
images at different focal points are acquired, and the blur sizes (σ) are related to
the respective focus settings. The images are initially smoothed with a Gaussian
filter before being operated on by a Laplacian filter. The Laplacian of the Gaussian
operation on the images gives the maximum contrast for focused pixels. The two
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smoothed images are compared with the Laplacian average, and the magnitude map
is estimated. The depth map is recovered through the relationship between magnitude
and the thin lens equation. As the depth estimates are relative, a calibration is used to
recover the absolute depth. A worst-case depth error of 4% is observed concerning
ground truth. Though the method is simple, it has limited applications due to its
short depth, still scenes, hardware setup, and aperture diameter. The method cannot
deduce depth from pattern-less zones, which results in sparse depth maps. These
non-recoverable depth zones are an ill-posed problem.

• Chapter-4 presents the work on aperture-based depth estimations. Multiple meth-
ods using shaped aperture masks and colored masks are possible. The color-coded
aperture-based technique is based on two off-axis apertures with different spectral
filters. This results in two spatially displaced images, leading to a disparity map. The
disparity map for a known focal length and aperture diameter is related to the object
distance by the thin lens equation. The work analyzes the critical requirements of
filters, impacts on SNR, and image resolution. As in stereo, large depths are inac-
curate due to inherent out-of-focus blur and reduced disparity. The characteristics
of stereo methods are relevant here too. The range of depth that can be estimated is
limited by the distance between the cameras and the diameter of the aperture. Weak
scene patterns cause errors and are an ill-poised problem, like in DOD. Deep learning
methods can improve on this problem, but the range of improvement is difficult.

The second work with a multi-coded aperture is with synthetic images, as hardware
modification needs professional skills. The work uses two pairs of custom-shaped
apertures, which are usually used for image capture. One pair has asymmetric aper-
ture patterns. Here, the aperture model is convolved with the image to modify the
defocus point spread function (PSF) in the frequency domain. The two pairs of im-
ages so obtained are fed into a generalized Wiener deconvolution algorithm. Each
pair of images provides phase information to reduce the ambiguity of depth in front
of a focused object or behind a focused object. A known image PSF prior recovers
the image with an unknown blur. If the PSF matches the unknown blur, a focused,
sharp image is obtained. Here, the PSF is regressed for all samples of depth to re-
cover an all-focused image. The final values of the depth estimate generate the depth
map. Here, the image prior is assumed to be similar for all images, which is not the
true case. Again, the finite blur of the aperture /lens in the images limits the depth
accuracy. The depth estimates in homogeneous regions lack frequency content and
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are ill-proposed. As two images are required with the same viewpoint and focus, this
limits their use.

• Chapter-5 presents a study on a unique calibration target to provide absolute depth us-
ing real data. In this work, the blur variation in a single image is utilized to estimate a
full-depth map. This efficient method involves Gaussian filtering of the image. Sharp
features are more affected by filters than blurred features. The ratio of this blurred
image to the original gives the magnitude of the gradient change. This magnitude
of ratio represents image blur, which is dependent on object distance. This magni-
tude, therefore, represents the relative depth estimates for an image. An alpha-matte
interpolation method gives a full-depth map. The proposed target is used to recover
absolute depth estimates from the relative depths. The calibration uses two targets.
One is made from multiple ground-truth targets of known depths captured with an
experimental setup. The second is made from multiple synthetic targets with known
PSF scales corresponding to the experimental depths. A ratio of the first and second
derivatives of both targets estimates the depth. These depths of information are re-
lated and hence give the calibration coefficients. The method used has advantages
like immunity to spectral sensitivity, contrast variations, and magnification issues.
Additionally, the target also characterizes the blur range in the image. Verification of
the methods showed a good correlation. This will be useful for calibrating relative
depth using any depth estimation method.

• Chapter-6 includes a study, experiments, performance, and summary of training loss
functions. Most classical depth estimation methods are ill-posed due to weak patterns
and are solved with deep learning. Deep learning involves defining a network, train-
ing the network model, and using a good loss function to directly regress the depth
map through gradient descent. As loss functions define accuracy, efficiency, and
outcome, the work studied various popular loss functions used for training for depth
estimates. The work proposes tailor-made edge loss functions with SSIM with sharp-
ened images, Laplacian loss, Sobel loss, LOG loss, and DOG loss. The combined
loss includes these losses along with L1 losses, reverse Huber losses, and gradient
losses. The evaluation of these proposed losses was done with a ready-made network,
an established transfer learning method, and a popular NYU dataset to identify the
improvements. Analysis is based on the quality of depth maps and on popular stan-
dard quality metrics for easy comparison. The scores achieved fare better with the
available state-of-the-art performances in this domain. The work concludes that edge
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functions improve the estimation of depth maps. Further, derivatives and differentia-
tion are better than smoothing-type loss functions.

• Chapter-7 studies wavelet-based network layers to reduce network complexity. Monoc-
ular depth estimation from a single image is ill-posed and is best solved by an
encoder-decoder type of network. The present survey revealed that most networks are
computationally expensive, and lighter networks are largely unexplored. This work
proposes an alternative light network to reduce the computational complexity of the
present system based on DenseNet, ResNet, etc. Here, wavelet-based layers replace
the down-sampling and up-sampling without any loss of information. The wavelet
coefficient is learned through training. The proposed nested network is NDWTN,
and 13 variants are evaluated. These networks are multi-scale, have dense skip and
attention functions, and have dense convolution blocks to aid learning of local fea-
tures. The study includes optimization of convolution layers, residual convolution
layers, batch normalization layers, activation types, and attention features. All the
networks are trained on a standard NYU dataset and evaluated using standard qual-
ity metrics. All results are analyzed with UNet, UNET++, and DenseNet models.
Ablation studies are completed, and training parameters as well as network architec-
tures are optimized. The proposed network models successfully predict depth from
an image after training from scratch with less than 400 image pairs. The performance
of the proposed models is superior to that of published UNet, DWT-type UNet, and
UNET++ models. The network has the best RMSE metrics among all the present
state-of-the-art models. The proposed networks also trained faster and yielded im-
proved scores. The NDWTN is a good fit for depth estimation on mobile platforms.

• Chapter-8 concludes the work of the thesis. This thesis studies classical monocular
methods of depth estimation using computer vision (CV) algorithms. Experimental
studies were completed with defocus and aperture-based methods. All these methods
provide relative depth maps and were all ill-poised at weak patterns of the scene. A
new method of calibration of relative depth maps has been successfully implemented
to retrieve the absolute depth map. Deep convolutional neural networks (CNN) were
studied to address the ill-posed problem of monocular depth estimation. Here, train-
ing, architecture, algorithm loss functions, and dataset are crucial to the depth esti-
mation quality and accuracy. New loss functions are developed to enhance the edges
and thus improve the details of depth maps. The performance score of the network
with such loss functions was higher. A new light-weight, efficient network using

10



wavelet layers was also developed for faster training, using smaller datasets, and
having low computational complexity. These networks met their goals with dense
layers, attention, and skip paths. The RMSE performance was the best among the
present state-of-the-art models. The research contributions are summarized. The
thesis presents new directions of research for monocular depth estimations.
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Chapter 2

Depth Estimation and Methods-A Survey

2.1 Introduction

Humans have two eyes and depth perception is based on binocular, monocular, and ocu-
lomotor cues [15]. The subconscious depth processing is aided by prior knowledge of the
surroundings and the objects. Thus, humans can also judge depth with just one eye using
depth cues. In machine systems, cameras are used to mimic the eye. A summary of human
depth perception cues and a comparison with cameras are given in Appendix B. Here, com-
puter vision (CV) mimics human sense through stereo imaging or monocular depth cues.
Here, the challenges are deriving accurate depth information with a feasible cost in near
real-time with lower power, lower computation, and cheaper input systems. An additional
challenge for AI learning methods is the need for large datasets to train. Presently, depth
is derived with low-cost RGB cameras using complex CV algorithms like stereo-vision,
aperture variation, focus or defocus variation, defocus variation, etc. An overview of the
camera model used, available depth-sensing cameras and methods, performance metrics,
and applications are discussed below.

2.1.1 Camera

Machines enhance human performance. Machines mimic the human sense and perceive
depth using Computer Vision and cameras. The camera is an optical instrument that cap-
tures mostly 2D images. Some advanced cameras can also capture 3D images. The camera
has evolved from a pinhole camera to an optics-based lens camera. The image recorder,
or photosensitive zone, has also evolved from photosensitive chemical plates, films, ana-
log vacuum tubes, and solid-state CCDs to modern active-pixel digital sensors. The basic
camera consists of a light-sealed box. The light enters the box through a lens system, a
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small controllable hole (aperture) that regulates light input, and a mechanical or electronic
shutter to integrate photons. The lens focuses the light onto the digital sensor to capture
the image. The camera focuses on objects of interest by moving the lens along the optical
axis to sharpen the object’s features. The aperture consists of a ring of overlapping plates
(the aperture ring), which adjusts the light intensity by changing the opening. The digital
sensor has a cluster of photosensitive pixels. The dimension of the pixel defines the spatial
resolving power, contrast resolution, and dynamic range characteristics. Present sensors
have more than 64 megapixels. Color digital sensors use red, green, and blue filters to
capture 2D RGB images. Modern sensors use pixel-size lattice filters arranged in a Bayes
pattern mosaic to mimic human spectral sensitivity. This mosaic is a repeated 2 × 2-pixel
set that has a pair of diagonal green pixels, a red pixel, and a blue pixel. The electronics or
image processor uses a demosaicing algorithm to interpolate the RGB information. Cam-
eras that rely on natural or artificial light to acquire images are passive systems. Active
camera systems have in-built illumination sources and can work in both illuminated and
dark environments. These active systems are complex, power-hungry, and expensive com-
pared to simple passive systems.

2.1.2 Modeling the camera

A basic camera model is a paraxial system with a thin lens governed by lens law. The
model’s extrinsic parameters consist of the location, rotation, and translation in the world,
while the intrinsic parameters are focal length, scale factors, optical center, and skew. Fig.
2.1 shows the optical schematic, where d, df is the distance to the objects from the center of
the lens, which has a focal length of f0 and a stop number of N (optics aperture/ f0). The
object is a cluster of points representing some 2D geometric shape. The lens and image
plane are rigid, so while some object points focus on the image plane, other points from
nearby objects are defocused. The defocused point on the image plane generates a blur or
a circle of confusion (COC) with a diameter c. This c is proportional to the distance d from
the lens as

c =
|d− df |

d

f 2
0

N(df − f0)
(2.1)

Thus, in an image, various focused and defocused points are created, corresponding to
scene object distances. Knowing c, a 2D depth map related to spatial blur variations of an
image, and corresponding object distances can be derived. The dependency of c on object
distance reduces after the hyperfocal distance (Fig. 2.2). The assumptions for this model
are:
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Figure 2.1: Overview of blur estimation approach

Figure 2.2: Variation of blur diameter (COC) with distance (Equation 2.1). It is minimal
at focus.

1. The camera focuses on some object. Features are larger than the blur radius in the
image plane to define edge contrast.

2. Blurred edges originally had sharp features with step edges. These edges are not
recoverable at occlusion, boundaries, or for translucent objects.

3. A single-disc PSF represents the blur in the Fourier domain.

4. In an image, the blur diameter changes spatially.

5. The lens aperture does not over- or under-expose the image, thus conserving its fea-
tures.

6. Objects in the scene are not transparent or as reflective as a mirror.

7. The model is lossless.
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An image consists of many focused and defocused points that correspond to various object
distances in the scene. Hence, the construction of a 2D depth map is possible with the
knowledge of spatial blur diameters in the image.

2.2 Market survey of depth cameras

Passive cameras record images by projecting a real 3D scene within a field of view (FOV)
onto a 2D grid of sensors. This grid includes spatially distributed sensors for color channels,
viz. Red, Green, and Blue (RGB). These color sensors are clubbed into synthetic 3-channel
grids. Each sensor in the channels, called pixel records the contrast (reflected light) of
visible objects within the FOV. The pixel contrast value is digitized into ranges from 0 to
255, such that a random black pixel is (0,0,0) and a white pixel can be (255,255,255) for
the 3 channels. In this projection, the depth information of the scene is lost, resulting in a
2D RGB image. Adding a separate channel with a pixel-wise depth map to the recorded
grid will provide the 3D space coordinates. This 4-channel record is the RGBD image.
A camera usually does not provide depth by itself. An arrangement of the 2D camera,
algorithm, computing, and calibration is used to get the depth information. Algorithms can
estimate depth using one or more RGB images using triangulation. Most single-camera-
based systems have active cameras. These have different methods of using active light to
get depth. Some popular depth cameras available on the market are discussed below:

2.2.1 Stereo vision

This consists of two or more cameras to mimic human binocular vision and exploit the
stereo disparity. The cameras used may be color (RGB) or monochrome (infrared) based.
The depth computing algorithm runs inside the unit. A stereo vision algorithm like [4] is
one method where images from two or more cameras are used to predict depth. Here, the
local correspondences within the images are solved to derive a depth map. Stereo vision
mandates matching of scale, translation, and gain among the cameras in use. Since these
images need sufficient details and texture, good lighting or outdoor imaging is required.
The infrared (IR) types usually have an IR source built-in for indoor imaging. These cam-
eras have a small depth range of 3m with 2% accuracy. Fig. 2.3 shows one such product.
3D information can be estimated from two or more cameras [4] using stereo-vision. Stereo
imaging uses the triangulation principle and epipolar geometry to derive depth. Here, two
side-by-side cameras provide two overlapping views as shown in Fig.1.1. These two im-
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Figure 2.3: RealSense™ D400 series stereo depth camera. The module contains two IR
cameras, an IR source, and an RGB camera.

ages are rectified and the problem of correspondence pixel matching is solved to get the
disparity map. The disparity is proportional to the baseline. A smaller baseline leads to a
smaller disparity among the images. For a fixed baseline, disparity follows a logarithmic
relation with d and close objects create a larger disparity. Fig.2.4 shows the disparity map
for stereo images. The depth map is proportional to the baseline and inversely proportional

(a) Left image (b) Right Image (c) Disparity map

Figure 2.4: Left, right images and the derived disparity image

to disparity (Fig.2.5). The stereo technique has found good applications in mobile phones

Figure 2.5: Relationship between depth and disparity f0, B, pix are fixed for a camera
setup and are kept here as unity for simplicity.

16



using two cameras or with custom sensors with twin pixels. Stereo vision does not provide
real 3D, but 2D images with depth information, i.e., one cannot see images from differ-
ent angles. Also, stereo methods have poor accuracy for distant objects. CNN has been
used to predict depth from stereo image sets. These are trained to predict image alignment
loss, left-right consistency, and the disparity map. In stereo imaging, it is assumed that the
cameras are leveled, the image planes are flat, and they have the same focal length. The
challenges in stereo depth lie in solving correspondence matching, which is affected by
scene texture, occlusion, shadows, surface reflectivity, repetitive patterns, light mirroring,
and transparent surfaces. Other issues are matching image scale and gain, image transla-
tion, precision calibration, and rigid mechanical structure [16].

2.2.2 LiDAR

LiDAR, or Time of flight (TOF), cameras do not mimic human vision and are termed active
cameras as the internal light source is essential for the operation and cannot rely on external
sources. These cameras rely on the echoes of transmitted light from surfaces. The total
time taken by light to reach the target and echo back is the TOF (Fig. 2.6). The distance
is then related to the light travel velocity and the travel time. These cameras are usually
monochrome with high power sources and photon-counting sensors. The depth range and
accuracy are better, and models with a 10m range and 0.001% accuracy are available.

(a) The LiDAR schematic shows the
round-trip delay for echoes. The delay
time is related to depth.

(b) Helios2 TOF depth camera. The
module contains an IR sensor and a
Laser IR source.

Figure 2.6: LiDAR Time Of Flight depth camera.
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2.2.3 Structured light

This is also an active camera and needs an internal light source. In structured light-based
depth sensing, a light pattern (stripes, dots) is projected on the target and imaged by a cam-
era (Fig. 2.7). The distortions of the patterns allow computation of the depths. Structured
light methods achieve high spatial resolutions using a conventional camera, which is a ma-
jor advantage. Microsoft’s Kinect camera was popular for gaming applications. The typical
depth range and accuracy of such cameras are up to 8m and 0.001% respectively.

(a) Imaging with light patterns. The
distortions give depth information.

(b) Orbbec 3D Astra Series depth cam-
era. The module contains an IR sensor
and a patterned IR source.

Figure 2.7: Structured light depth camera.

A comparison between depth sensing technologies is summarized in Table.2.1.

Table 2.1: Comparison between depth sensing technologies
Stereo vision Structured light LiDAR

Principle Disparity of 2D images Projected pattern distortion Travel time of echos
Computation High Medium Low
Cost Low High Medium
Depth Accuracy cm um cm mm cm
Depth Range Limited Scalable Scalable
Light environment Good light Low light Low light
Response Medium Slow Fast
Power Consumption Low Medium High

2.3 Monocular Depth Estimation Methods

In the robotic world, LiDAR and RGBD cameras (like Microsoft Kinect) provide depth
maps. These are active cameras with a light source to illuminate the target and image it.
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Presently, the capability of high-resolution LiDAR cameras is limited to a range of less than
10 m. Hence, dense pixel-wise depth maps from these types of cameras are rare. Further,
the cost and high power of these cameras drive the use of passive, low-power, simple, and
high-resolution cameras in many robotic applications with depth estimation algorithms. A
trend for single image depth estimation (SIDE) methods is on the rise. These methods are
described below.

2.3.1 Depth from Motion

Earlier depth recovery methods used geometry-based methods using multiple images. Struc-
ture from motion (SfM) [17] recovers the structure from four non-coplanar points through
three orthographic projections. Sequential images with different time stamps also provide
depth cues. Here, the depth estimation accuracy is dependent on correspondence, feature
matching, and quality image sequences. SfM suffers from moving objects and from monoc-
ular scale ambiguity in between the frames.

2.3.2 Classical Methods

Early efforts focused on depth rather than automatic focus. The method automatically
focused on a point in the scene using an image quality algorithm and varying lens positions.
The method could provide depth for a single point. Ref. [2] first used the gradient of focus
to estimate absolute depth from two images of a scene captured with different apertures.
This gave depth to the image features. As shown in Fig. 2.2, the distance d is given as

d =
fovf

vf − fo − σN
(2.2)

Here, the authors model vf as the distance between the lens and the image plane and σ

as the spatial constants of the point spread function (PSF) of the blur circles in the image.
Knowing σ, the absolute depth is derived. As the blur changes with the aperture, they take
the ratio of the Laplacian of the images along with linear regression to get σ of both images.
Research on depth from defocus and depth from focus methods analyzes the sharpness or
blur of an object either in the spatial domain or frequency domain. Later, they used multiple
images with camera parameter variations to derive the depth map instead of using a single
image with a known sharp reference image [18]. In most cases, a thin lens model and blur
with a Gaussian PSF are assumed. In a scene, the blur or COC, is dependent on the dis-
tances of the objects, as some get defocused. In the spatial domain, depth was estimated by
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varying the focal length and aperture size ([2, 19, 20, 21, 22]. Ref. [21] used spatial-domain
convolution Transforms to arbitrarily blur the images. Ref. [22] added texture cues to get
full-depth maps instead of sparse-depth maps. Author [19] proposed depth from focus by
convolution of the sharpest image with a sequence of calibrated filters and minimizing the
error with the other image. The filter, which provided the minimum error, gave the depth
using a lookup table. The methods did not suffer from correspondence issues as with stereo
cameras but had limitations like magnification variation (due to focus change) and contrast
variation (due to aperture change). In the frequency domain, the blur is quantified with the
point spread function (PSF). PSF is represented with a 2D Gaussian function g(σ, r), where
r is the radius. The increase in blur due to defocus decreases the high-frequency energy.
This is more prominent in image features with sharp edges. Comparing the edge sharpness
between focused and defocused images relates to the COC, which is again related to the
real object distance. The images are usually preprocessed with a Laplacian operator, and
the ratio of Laplacian magnitudes, contrast ratio, and PSF response is widely used to re-
cover depth. Author [23] varied the defocus of 2-–3 images using either aperture or focal
length. They estimate depth by convolution of the sharp image with a PSF of an appropri-
ate blur filter with a defined σ, to produce the blurred image. The depth is then related to
the calculated value of σ. They improve the previous method by applying a mask based
on the thresholding of the Laplacian values and a rotationally symmetric PSF. The depth
estimation methods have inherent errors due to noise, edge discontinuity, contrast varia-
tions, etc. Researchers implemented various interpolation, approximation, segmentation,
and matting methods to improve the depth map. Here, the accuracy depends on at least one
near the ideal sharp image. This factor is limited by camera quality, camera manufacturing
tolerances, and the accuracy of adjustments. These methods require two or more images of
the same scene.

2.3.3 Coded aperture methods

The camera aperture can be replaced with single or multiple-shaped apertures or optical
phase masks [24, 25]. The aperture can also be changed to multiple color-coded apertures
[26, 27, 28, 29] to provide multiple images on the sensor. The aperture mask hardware is
inserted inside the camera (Fig.2.8). The image convolves with the aperture to introduce
a spatial offset among RGB color channels. The direction and quantity of the offset are a
function of the distance of an object from the plane of focus. Thus, aperture centers sepa-
rated by rc from the optical axis lead to a shift of ∆y or ∆x in the image plane depending
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on object distance d. In terms of pixel size pix the shift is given as:

∆(x, y) =
2rcf0(df − d)

pix(df − f0)d
(2.3)

Figure 2.8: Dual aperture: (a) Schematic of the optical system (b) Inset image shows the
color shift of a ceiling lamp (c) Modified camera with dual color apertures

2.3.4 Blur Cues

The blur present in an image also provides a depth cue [30, 31]. This method is immune
to contrast, magnification, and spectral sensitivity as a single image is used. The first and
second derivatives of the sharp features in an image provide the location and magnitudes for
a relative depth map. In all the above methods, noise, shadow, and discontinuity of edges
lead to errors. These methods work well for near-range objects but become inaccurate for
distant objects due to nonlinear dependencies. Table.2.2 summarizes the accuracy achieved
by the researchers and their methods.

2.3.5 Light field method

The light field is the total of light rays through any position and direction in 3D space
and is defined by [32] using a 5D plenoptic function as L(x, y, z, θ, ϕ) ∈ R5 having two
angles (θ, ϕ) and three coordinates (x, y, z). Authors [33] optimized this function for 4D
representation as L(u, v, s, t) ∈ R4. Here, (u, v) is the first plane and (s, t) is the second
plane (Fig.2.9). A 4D light field camera, also called a plenoptic camera, can simultaneously
record spatial and angular information of light rays with multiple cameras (fly’s eye) or with
a single-shot camera having a microlens array [34, 35] or an optical mask [36] between the
main lens and image sensor. In single-shot cameras, the microlens array or optical mask
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Table 2.2: Methods of depth recovery and reported performances

Method Performance Issues
Stereo Very Accurate Uses triangulation and needs two cameras or two views. Suf-

fers from corresponding and occlusion problems due to different
viewing positions. Complex solutions and higher computational
cost.

Depth from motion Not Available Uses motion cues from multiple images and optical flow. Higher
computational cost.

Depth from shading <10% error Uses only one image, Depth cues from textures, defocus, etc. are
used along with MRF techniques. Requires controlled illumina-
tion, which is difficult in the natural outdoors.

Depth from defocus <2% error One camera can be used to take near and far images. A defocus
cue is used for depth computation. Very sensitive to changes in
image intensity.

Depth from focus <3% error The focus of a single camera is varied and a large number of im-
ages are taken. One main issue is that focus change also changes
magnification, which Requires computational speed.

Depth from aperture <3% error Depth is computed by varying the aperture of a camera. Magni-
fication is constant. However, the contrast varies.

Figure 2.9: Spatial and angular information of light rays in 4D representation

separates a fraction of incident rays originating from objects into bundles or sub-apertures
having the same origin and position but with different angular directions (Fig.2.10). There
are now as many points of view as the number of pixels behind each microlens, leading to
a focal stack of images covering a range of focusing distances. Depth is estimated using
multi-stereo CV methods using pairs of refocused images from the focal stack. Also, the
amount of focusing required for the rays crossing the focal stack can be used to predict
depth. The depth range is defined by the dimensions of the lens array, the mask, and the
sensor array. The Lytro Light Field plenoptic camera was the first commercial camera to
exploit this method.
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Figure 2.10: Plenoptic camera: Simulated multi-view of microlens array.

2.4 Learning-based methods

Machine Learning (ML) is a sub-field of artificial intelligence (AI) that learns from data,
optimizes features, and performs tasks without using explicitly programmed algorithms.
Deep learning (DL) is a sub-field of machine learning and uses complex algorithms to
mimic human brain logic. Such algorithms process unstructured data, extract underlying
patterns, and predict relevant outputs with minimal human intervention. Neural networks
form the algorithms. Depth from monocular cues needs resolving ambiguous solutions
(structure, scale, and projection) due to non-unique predicted depths. Here, many different
3D scenes can be solutions for one 2D image. CV has advanced from classical methods
that relied on multiple images to extract depth to deep learning depth from a single im-
age. Estimating a dense depth map from an RGB image requires predicting metric depth
values at pixel level and involves a deep understanding of the detected features and their
relations in 3D. Monocular methods of recovering depth are challenging as multiple so-
lutions are possible due to a lack of deterministic cues, as in stereo. Here, multiple cues
like perspective, size, obstruction, position, color, and horizon are needed. Machine learn-
ing networks are suited to solve such ill-posed inverse problems after training. A Markov
Random Field (MRF) learning algorithm to capture monocular cues was proposed by [10].
He estimated a depth map from a monocular RGB image with supervised learning and re-
gression loss using multiple filters on small image patches. The first application of neural
networks to monocular images was by [11]. They estimated the global and local struc-
tures with two networks in a sequence to build a depth map using both NYU and KITTI
datasets and supervised training. [37] proposed a fully convolutional network (FCN) ar-
chitecture with residual learning for depth estimation. The network architecture is defined
with custom building blocks like convolution layers, activation layers, pooling functions,
and expansion layers [1, 38, 39]. Researchers have incorporated parameters related to se-
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mantic segmentation, surface normal, and fundamental image decomposition into their loss
functions to improve the robustness of training and learning of 3D relations. The monocu-
lar depth estimation methods evolved from unguided to RGB guidance. Classical methods
of depth estimation for stereo and monocular cues have poor performance for large depths
due to blur. Deep learning learns multiple cues to improve upon this aspect. Ref. [40, 41]
used a deep neural network to estimate a full-depth map from a single out-of-focus image.
Other researchers [42, 43, 44] recover depth information from a single image after learn-
ing the blur cue. Ref. [45] trained algorithm to learn optimal PSFs to estimate kilometer
range depths. Author [46] used multi-scale CNN and Continuous Random Fields (CRF),
while [47] proposed attention-guided networks to improve the estimation accuracy. Trans-
fer learning was implemented by [1] to reduce the training time. The training strategies of
SOTA CNN are classified as supervised or self-supervised [37, 38, 42, 43, 44, 48]. The
supervised training methods [11] require labeled depth images for the network training to
converge. Self-supervision eliminates the need for labeled data and exploits 3D geometry
from stereo monocular videos or image pairs [49, 50] for image reconstruction or derive
camera pose to estimate depth. New research studied attention mechanisms and transform-
ers to preserve depth image details [51]. Authors have exploited innovative photometric
loss [52], symmetry loss [53], and left-right disparity consistency loss [50]. Accurate depth
images have also been reported with photometric stereo using a pair of surface orientation
maps (surface normals) [54, 55, 56, 57] and by fusing photometric stereo with light field
information [58].

2.4.1 Convolutional neural networks (CNNs)

DL has CNN (convolutional neural net) as one of its architectures. CNN consists of Convo-
lution layers, Pooling layers, and activation layers. The Convolution layer uses filter kernels
to extract features. This results in weight sharing, whereas in DL, the inputs are multiplied
with different weights without weight sharing. The kernel learns through backpropaga-
tion. The weights and intended tasks solve a non-convex optimization problem. The error
between the network output and the labeled data (ground truth) is back-propagated to up-
date the trainable kernel weights. The Pooling layer selects the maximum value within a
cluster of features and downsamples the feature map. This results in highlighting important
features for intuitive classification. Additional layers of enlargement and deconvolution up-
sample the downsampled feature map and provide predictions from the classes. Increasing
layers in a network improves accuracy. However, large and dense networks suffer from the
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vanishing gradient problem as the information passes through input and output layers. Re-
peated multiplications in back-propagation reduce the gradients, which update the weights
and biases. The fading away of gradients leading to loss of training is called the vanishing
gradient problem. DenseNets connect every layer directly with each other and reuse the
feature maps by concatenating the input and output feature maps of each layer instead of
summing them. ResNet solves the vanishing gradient problem with skip layers. Image
classification networks like ResNet, VGG, DenseNet, etc. have only an encoder. Semantic
segmentation and depth estimation networks like SegNet, UNET, etc. use encoder-decoder
architectures. The encoder has a sequence of convolutions with increasing filter banks and
downsamples the feature map spatially. The decoder reverses the encoder structure with
transposed convolutions to upsample the spatial resolutions. In an encoder-decoder net-
work, the encoder can be DenseNet, ResNet, etc. as the backbone. Depth estimation tasks
assign each pixel a depth value with an encoder-decoder CNN network architecture. The
encoder extracts significant features from the input image to provide a down-sampled fea-
ture map. The decoder upsamples the compressed feature map to produce pixel-wise depth
predictions from the classes. Pretrained image classification networks form the backbone
of most architectures. [1] uses DenseNet as an encoder, while [37] uses ResNet as an en-
coder for depth map predictions. Networks can also be customized [1, 38, 39]. The training
can be either supervised or unsupervised [37, 38, 42, 43, 44]. This thesis uses convolutional
neural networks with an encoder-decoder architecture. The encoder is based on DenseNet.

2.5 Datasets

Learning to estimate depth needs datasets with images and corresponding ground truth data.
Since the training, evaluation, and testing of the learning network are iterative, large num-
bers of low-correlation images are required to validate the algorithm. Generating datasets is
a tedious task as it is mostly manual. Standard data sets are also available from researchers,
organizations, and universities. These datasets are acquired with cameras with dedicated
setups and manually updated to provide the required annotations and ground truth. Many
synthetic and simulated datasets are also available for training and benchmarking. These
synthetic datasets are more accurate and provide pixel-wise depth. A good number of
databases have been created from information available on the Web. These are listed in
Abnexure-C.
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2.5.1 Selection of Database

The thesis deals with networks for depth estimation. Hence, the development of the dataset
is not considered. Synthetic datasets have higher accuracy but have poor correlation with
real images due to their perfect light, color, and feature quality. Among real camera data,
the most popular is the KITTI dataset [59] for outdoors and the NYU dataset [60] for
indoors, which is used in many of the art papers. Popular datasets provide a comparison of
performance benchmarks, both qualitatively and visually, with researchers working in the
same domain. This work also uses the KITTI and NYU datasets. The KITTI dataset has
semi-synthetic depth maps to match 64 scans of depth cloud points to 512 rows of RGB
images. The dataset gives 86k images for training, 7k images for validation, and 1k test
images. The NYU dataset also has semi-synthetic depth data to remove missing values
due to noise from specular, low-albedo surfaces and shadows. Hence, pixel-level depth
information is not available in both datasets.

2.5.2 Data splitting and augmentation

Most researchers split the dataset for training, validation, and testing, as proposed by [11].
This work also follows the same Monocular depth prediction requires an encoder-decoder
architecture. The training requires pixel-level ground-truth information. Small differences
between synthetic ground truth and real data may create prediction errors. The estimated
depth is relative and needs some scale factor for true depth. The NYU dataset is used in
the experiments to provide a generic comparison. Further, this dataset trained the same
network earlier, so any improvement from the experiments will be an achievement. This
work also follows the same practices in data augmentation to improve the generalization of
outcomes. These included random mirroring and random color channel swapping of RGB
images. Ref. [1] has also provided a separate 50K dataset, derived from the NYU Depth
V2 dataset, after due correction with in-painting and filling in missing values. The study
also uses this dataset for training.

2.6 Performance Analysis

The performance of depth algorithms is judged by improvement w.r.t. reference ground
truth and achieved benchmarks by researchers. Absolute performance is computed w.r.t.
actual measurements. However, in most cases, the work compares the achieved perfor-
mances with those of other algorithms. This is so, as the algorithms aim to improve some
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parameters instead of all possible ones, which is a daunting task. In such cases, there is a
need to quantify the output results for the specific improvements and rank them. The rank-
ing is possible with standard, widely accepted measures. In most algorithms, the absolute
distance is not important, and the estimated depth maps have relative distances. The com-
monly used evaluation metrics used by most researchers are accuracy under a threshold,
root mean square error, log root mean square error, absolute relative distance, and squared
relative distance.

2.6.1 Quantitative Measures

One widely used measure in machine learning is the root mean square error (RMSE). It
is mostly used for evaluating the prediction performance. This measure gives the average
deviation between the predicted values and the actual values. It uses the Euclidean distance
to measure the residual between the predicted value and the true value or reference value
for each data point. The measure computes the mean of the norm of the residuals and then
the square root of the result. RMSE requires true measurements and is hence suitable for
supervised applications. Since RMSE is sensitive to the scale of the data, standardized
data is necessary. Mathematically, the predicted value (Ypred), actual value (Y ), and N data
points are represented as

RMSE =

√
1

N

∑
i∈N

(Yi − Ypredi)
2 (2.4)

The Mean Absolute Relative Error (REL) evaluates the accuracy relative to the actual size
of the measurement, independent of the scale of the true value. This is the mean of the ratio
of the absolute difference error to the predicted value. This is given as

REL =
1

N

∑
i∈N

|Yi − Ypredi |
Ypredi

(2.5)

The RMS log − 10 error is the mean of the absolute residuals of the logarithmic (base
10) predicted value and actual value. The logarithmic error (log10) is

log10 =
1

N

∑
i∈N

|log10(Yi)− log10(Ypredi)| (2.6)

A measure based on canonical distances proposed by [61] is popular. The prediction error
is assumed to be linear; hence, the neighboring depths Yi and Yi+1 have a fixed ratio Yi+1

Yi
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and are independent of the image scale. A point in the image set is classified as positive
if the ground truth depth pixel is close to the scaled image depth pixel (estimated image).
The ratio is near 1 when max(Ypredi

Yi
, Yi

Ypredi
) < δPOS . This pixel is used as a positive for the

corresponding classes and a negative for all other classes. If the values are distant, the ratio
is low, and max(Ypredi

Yi
, Yi

Ypredi
) > δNEG. The linear relationship of scaling to canonical depth

fails and this pixel is used as a negative. Here, training samples are positive if the error
is lower than δPOS=1.25 and negative if the error exceeds δNEG=2.5. The samples having
errors between δPOS and δNEG are ignored. Good performance indicators are high values
of δ below the defined threshold and small values of RMS, log10 and REL. Authors [62]
felt that the present monocular depth prediction benchmark relies on metrics for 2D, which
leads to over-fitting and thereby is less helpful for 3D application performances. They
infer that current metrics disregard the 3D domain to provide depth accuracy in the 2D
plane. Further, some datasets are noisy (dark holes) and add unwanted bias during training
and evaluation. They advocated the addition of 3D structural awareness by assessing the
quality of the 3D geometry. They propose a 3D point Cloud F-score benchmark using the
Dice coefficient. This coefficient is a harmonic combination of recall and precision, where
recall is the proportion of true values in the input data that the algorithm correctly identifies
and precision is the proportion of correct predictions. For a distance threshold t, the recall
is

R(t) =
1

|G|
∑
g∈G

[eg→R < t] (2.7)

Where e is the distance to a reconstructed point r from a ground truth point g and is eg→R =

minr∈R ∥ g − r ∥. The precision is

P (t) =
1

|R|
∑
r∈R

[er→G < t] (2.8)

Where e is the distance to ground truth G from a reconstructed point r ∈ R such that
er→G = ming∈G ∥ r − g ∥. The F-score is then

F (t) = 2.
P (d).R(d)

P (d) +R(d)
(2.9)

They add the Jaccard Index for the 3D reconstruction benchmark to measure the volumetric
quality as 3D Point Cloud Intersection Over Union (IoU), which is calculated with two
input sets of non-voxelized point clouds. This is expressed in terms of recall and precision
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as
IoU(d) =

P (d).R(d)

P (d) +R(d)− P (d).R(d)
(2.10)

Evaluation of the boundaries of the depth map, as proposed by [63] using average Chamfer
distance (CD) in pixels w.r.t. the predicted boundaries and the ground truth boundaries. CD
measures the distance between two point sets in 3D models and evaluates how well these
points match each other. All these distances are averaged to produce a single scalar value.
The chamfer distance between point sets, S and Spred is given as

dCD(S, Spred) =
∑
x∈S

miny∈Spred
∥ x− y ∥22 +

∑
y∈Spred

minx∈S ∥ x− y ∥22 (2.11)

Each point x ∈ S finds its nearest neighbor in Spred and vice versa. Distances from these
pair-wise points are averaged to produce the shape-level distance. The thesis evaluates the
trained models and compares their performances using a common platform that is based on
several prior works [1, 11, 61, 64, 65]. These are

• Linear Root Mean Squared Error(RMS)

• Absolute relative error (REL)

• Logarithmic RMS error (log10)

• Threshold (Yi% s.t. max(Ypredi

Yi
, Yi

Ypredi
) = δ < th for th = 1.25, 1.252, 1.253)

Presently, the trend toward 3D object detection and autonomous driving is with single-
image methods. Improvements in computational capability (GPUs, TPUs, memory), ex-
tensive datasets, and software tools and libraries like Matlab, Python, TensorFlow, Keras,
PyTorch, CV, Numpy, etc. have enriched depth estimation methods through complex, dense
CNN models and faster implementation. Advances like Transfer learning reduce resources
and time by enabling pre-trained models to be trained with smaller datasets.

2.7 Applications

2.7.1 AR / VR and Entertainment:

Depth is essential for Augmented Reality and Virtual Reality tasks to sense a real 3D envi-
ronment and reconstruct a virtual world. Google’s Project Tango derives depth for virtual
3D reconstruction. Depth knowledge is also required for human-machine interactions to
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accurately respond to user movement in games, gesture-based activities, highlight objects
of importance, etc.

2.7.2 Security:

Face identification is a feature that unlocks applications based on the 3D reconstruction of
a user’s face. 2D-based face detection algorithms can be fooled by impersonators, as they
cannot differentiate between a real 3D face and a 2D photo. Algorithms exist to identify a
face and track it through a network of security cameras.

2.7.3 Robotics:

Depth information is required for localization, mapping, navigation, and avoiding collisions
by avoiding obstacles. Advanced driver assistance systems (ADAS) safety, self-driven ve-
hicles, and navigation systems for unmanned vehicles rely on 3D images to maneuver by
gauging the environment from depth. Autonomous mobile robots (AMR) are used for the
delivery of goods, pick and place, farming, law and order, cleaning, maintenance, etc. Big
warehouses use 3D measurement for logistics, transportation, sorting, placing items, and
inventory management. Similarly, environmental perception improves robotic navigation
and machine efficiency. Industrial robots rely on depth to determine the position of objects
and to pick them up.

2.7.4 Artificial Intelligence (AI):

Humans have the capability of dividing the whole picture into the sky, cars, buildings,
and other multiple meaningful parts. In computer vision (CV), this is called semantic
segmentation and is a powerful tool for image analysis. The depth complements the image
analysis. Depth cameras are used in many embedded vision applications for automation.
These have also penetrated non-engineering fields, and the applications are expanding.
These are:

• Segment Registration of 3D Map

• 3D Shape Compression

• 3D Video Conferencing

• Digital reconstruction of Holographic Images
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• Genetic Programming

• Measures with Image Focus

• Iterative Reconstruction

• Modular Stereo Vision

• Stereoscopic Vision

• Watermarking in Stereo Imaging

• Human body tracking or motion tracking for safety, security, etc.

• 3D scanning for medical, engineering, analysis, modeling, etc.

• 3D map reconstruction for 3D print, SLAM, remote visualization, navigation, etc.

• Counting people, features, facial anti-spoofing systems, etc.

• Traffic monitoring

• License plate recognition for safety, law, and order, etc.

• Precision gripping tasks (medical, high-tech industry)

• Remote patient monitoring

• Automated measurement methods

• Automated Optical Inspection system in manufacturing defect screening, etc.

2.8 Challenges

Depth cameras mimic human eyes by identifying shapes, colors, and movements. Stereo
cameras have a low depth range and suffer from correspondence problems wherein points
from the left-right view are matched. These cameras also have false positives, and supple-
mentary cameras like TOF are used to enhance the accuracy. TOF cameras are expensive,
consume more power, and presently have poor resolution. Further, the laser power of these
cameras poses safety issues and is regulated by guidelines. It may be noted that both
cameras perform poorly on glass surfaces or mirrors. This is due to the spectral bands
used for imaging. UV bands can detect glass, but such cameras are rare. Single RGB/IR
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camera-based depth cameras do not exist on the market but can be configured by adding
a computation system to the camera. These cameras can evolve as simple and low-power
depth cameras and have the advantages of contrast robustness, no magnification-based is-
sues, and simple calibration. However, monocular passive cameras need crafted algorithms
to compute depth, which calls for CV methods. In CV, solving the depth problem with a
single image is nonlinear with multiple solutions. The problem is ambiguous, unlike the
well-defined correspondence problem in stereo-vision. Modern machine learning meth-
ods successfully involve Convolutional Neural Networks (CNN) to address this ill-posed
problem. Such networks train models with carefully designed loss functions and relevant
large data sets consisting of color images and ground truth. The trained models estimate
depth from the image with good accuracy. Training is crucial, as the CV algorithms will be
productive if the learning features are well-defined and labeled. The other factors for pre-
diction accuracy are the network architecture and the algorithmic loss functions. Presently,
the computation is complex and resource-intensive. Light-weight innovative networks and
good training can bring these to mobile phone platforms, which is also the present trend.

2.9 Summary

The human brain interprets visual patterns in scenes to recognize depth using physiologi-
cal and psychological cues. Physiological depth cues are binocular and require both eyes
for sensing. These binocular depth cues arise from retinal disparity, wherein some vari-
ation is registered by human eyes for the same scene. Monocular cues are psychological
and can be sensed with one eye. Monocular cues are based on static objects or targets in
motion. Many static cues, like occlusion, parallel lines, size, texture, color, and motion,
aid in human depth estimation. Humans use all the above available cues and their learned
prior knowledge to sense depth. In the machine world, the RGB camera mimics the human
eye. The model of the passive camera is dependent on object depth, focal length, aperture,
and image plane distance. These cameras lose depth information due to a ’circle of confu-
sion’ or blur for out-of-focus objects. Active cameras like TOF and structured light use a
light source to illuminate the target and image it. These cameras suffer from limited depth
range, cost, and higher power. A single camera is commonly available, is cheaper, and
consumes low power. Computer vision (CV) uses these cameras to mimic human senses
through stereo imaging or monocular depth cues. Adding depth information to recorded
2D RGB images gives back 3D RGBD images. Monocular vision-based depth estimation
is challenging due to ’ill-poses’. Many methods of depth recovery are possible, each with
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its advantages and disadvantages. Monocular methods are based on single images and are
best solved with artificial intelligence (AI). CNN and DLN fall under AI. Networks consist
of multiple different layers and blocks to estimate outputs. Training the network model
involves minimizing the loss function through gradient descent, forward, and backward
propagation. Loss functions define accuracy, efficiency, and outcome. Transfer learning
reduces resources by using pre-trained models for a new task. Network training calls for
the optimization of algorithms and learning rates for computational efficiency. Regulariza-
tion methods overcome overfitting, underfitting, and vanishing activations. Many standard
datasets are available. The NYU dataset is the most popular for indoor scenes. However,
depth measurements are sparse and affected by surface quality, reflectivity, etc. In-painting
methods are used to create semi-synthetic datasets. Evaluation of depth accuracy is based
on standard performance metrics consisting of RMS, REL, logarithmic RMS, and thresh-
old. New metrics for 3D cloud points are also discussed.
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Chapter 3

Depth from Defocus

3.1 Introduction

Classical depth from defocus (DOD) uses defocus cues in the image by exploiting the
limited depth of focus in a camera. Researchers have estimated depth with filters that
measure derivatives concerning the aperture size and their ratio, the ratio of the difference
in deblurred images and their sum, the use of orthogonal filters that characterize the relative
defocus by modeling the defocus blur as a heat diffusion process, probabilistic models to
capture monocular cues w.r.t. the relation between different parts of the image, sparse depth
maps from defocus gradients at edge locations and matting, etc. The comparative results
of popular depth estimation methods is summarized in Table 3.1.

The methods used are simpler and, therefore, better suited to limited computational
resources. Here, cameras with shallow depth of focus acquire multiple images [4, 16, 19,
23, 25], and a defocus cue is used for building the depth map. Since the view remains
the same, even with changes in focus or aperture, correspondence and gain issues as with
stereo cameras are avoided. One can calibrate the camera and provide the camera blur or
point spread function (PSF) as a prior, thus using a single image. Depth ambiguity due to
objects placed before or after the focal plane is resolved by setting the focus to either the
near field or the far field. A literature survey reveals that most DOD experiments cover
short distances (indoors), except one where outdoor experiments cover distances up to 81
m. Table. 3.1 compares the popular methods.
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Table 3.1: Comparative results of depth estimation methods

Method Error Features
Depth from defo-
cus

<4% (Blayvas et. al.,J.
Opt. Soc. Am. A, 2007) • Robust to noise, occlusion and correspondence issues.

• Single camera setup captures ≥2 defocused images.
• Magnification is constant. However, the contrast varies.
• Large aperture gives more defocus than small aperture.

The optimal ratio of the apertures is 1.73.
• Remove inherent blur and provide relative depth.
• Very sensitive to changes in image intensity.
• Degrade quality of image.
• Error increases non-linearly with distance.

Depth from focus <3% (Ens, J. E. ,1990,
UBC) • Robust to noise, occlusion and correspondence issues.

• Needs >10 images with varying focus distance.
• Images analyzed for best focus to estimate relative depth.
• High computational cost, gives all-focused image.
• Error increases non-linearly with distance.

Depth from
coded aperture

<2% (Mina M. et. al.,
Ferdowsi University of
Mashhad, Iran)

• Occluding patterns generate specific blurs of varying
scales in spatial domain.

• Deficiency of specific frequencies/phase as reference.
• Blur depend on PSF amplitude and phase.
• Sensitive to noise. Implementation is complex.

Depth from color
coded aperture

<3% (Ivan et. al.,2016,
Society for Imaging Sci-
ence and Technology)

• Multiple colored apertures shift object on image plane.
• This shift is a function of the distance.
• Spectral filters code the shifted images for recovery.
• Brightness constancy of the images need normalization.
• Disparity map decreases with distance.
• Single image, loss of spatial resolution
• Method needs modification of cameras.

Plenoptic <0.6%, (Hahne et al. Int
J Comput Vis) • Uses micro-lens array to project multiple images.

• Analysis of best focus provides the depth.
• Large loss of spatial resolution.

3.2 Aim

Theoretically, the depth estimation for long distances is poor due to the non-linear relation-
ship between COC and distance. Therefore, there is a need to understand the performance
of defocus methods for larger distances under daylight illumination to define problem areas
for improvement.
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Most classical DOD methods need more than 10 blured images to estimate depths
through analysis and search of best focus. Additionally, these methods need a focused
image for reference. The present work adapts a simpler approach which can estimate depth
from only two arbitrary focused images without the need for a reference image. The re-
ported error of 2.25% is also comparable to the alternative methods. The algorithms include
intensity normalization, smoothing and Laplacian estimates which is computationally more
efficient and faster then existing classical methods. The thesis proposes a median filtering
step to denoise the images and a image segmentation step. These improvements allow
estimation of full depth maps instead of sparse depth maps. Additionally, the MATLAB
calibration tool was used to derive and calibrate the camera parameters using checkerboard
images.

3.3 Implementation Method

The adapted method for this work uses two scenes [25], one focused on near objects and
another on far objects, keeping other camera parameters constant. Here, a thin lens, a
lossless paraxial system, and a planar scene are assumed, as shown in Fig. 3.1. The position
of a point on an object is related to the position of its focused image by the lens law, where
f0 is the focal length, df is the distance from the focused object to the lens, and vf is the
distance of the focused image from the lens. When the camera is focused, other objects
at various distances from the focused object are defocused and create blur circles (c) on
the image plane. The depth from the blur circle is recovered by modeling the image as a
third-order polynomial in the spatial domain for a fixed image plane v away from the actual
focused image vf .

Figure 3.1: Schematic of the optical system. Here, fo is the focal length, d, df is the
distance of the lens to the objects, and v, vf is the distance of the lens from the images.

The blur diameter is proportional to the distance between the objects. The radius R of

36



this blur is c/2, which for each defocused point in each image i, corresponding to the object
point, is additionally dependent on the lens aperture diameter D. This is computed as:

R =
Dvf
2

[
1

f0
− 1

d
− 1

vf

]
(3.1)

Here R can be either positive or negative depending on v ≥ vf or v < vf depending on
object distance d. The blur circle is modeled as a Gaussian point spread function (PSF),
where the blur radius R is related to the spread σ of PSF and the object distance as:

σ =
R√
2
=

Dvf

2
√
2

[
1

f0
− 1

d
− 1

vf

]
(3.2)

and for two images 1 and 2 with different focus (f1, f2) settings, give the ratio-metric
relation:

σ1

σ2

=
R1

R2

(3.3)

Defocused image g is related to the focused image I as a convolution of PSF, h:

gi = hi ∗ Ii (3.4)

Fourier transforms G is the multiplication of optical transfer function H with image F .
The S transform used by [25] is defined as:

SH{f(t)}(τ)∆
N∑
k=0

(−1)k

k!
hk

dk

dτ k
f(τ) (3.5)

Where hk is the kth moment of h(x, y). It is used as the basis for the deconvolution
formula.

fc(x, y) = fb(x, y)−
σ2
h

4
∇2fb(x, y) (3.6)

The above basis is used along with the laplacian operator and the standard deviation as the
spread. Here fc is replaced with I and fb with g, giving:

I = g1 −
1

4
σ2
1∇2g1 = g2 −

1

4
σ2
2∇2g2 (3.7)

In practice, the average of neighboring pixels reduces noise.

(σ2
1 − σ2

2)
2 = G2 = 16

∫∫
(g1− g2)2dxdy∫∫
(∇2)2dxdy

(3.8)
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Figure 3.2: Plot of blur (COC) concerning object distance (Equation 3.1). Blur is at its
minimum when a distant object is focused on the image plane (0.75 m).

Finally, the root is found in the integral and the blur circle:

σ2 = ±
√[

G

(R1

R2
)2 − 1

]
(3.9)

The distance u is computed from the relation of σ2 and object distance from equation
3.2. The sign indicates the focus point before or after the image plane. Fig. 3.2 shows
the theoretical plot of object distance versus blur diameter. It is seen that with increasing
distance, the blur diameter decreases and then increases again. As the object distance
reaches beyond a certain range, the blur reaches an upper limit. This distance and the
distance with minimum defocus blur (at focus) define the camera range. As the interest
is only in object depths further away from the focused objects, this ambiguity is avoided
by keeping the objects of interest far away from the camera. In the plot, this distance is
taken to be greater than 0.75 m and is marked by a red dotted line. The intensity levels of
the captured image pattern also define the blur extent, which is presently not considered as
the illumination variation for two outdoor scenes will be alike. In an image, the scaling is
constant in terms of scene distance; hence, the ratio of the blur extents can be recovered by
the blur-depth relation curve.
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3.4 Experiments

The method for this work uses two scenes, one focused on near objects and another on far
objects, keeping other camera parameters constant. The object’s distances are greater than
the focus distance to have one minimum and one maximum for all scales of blur (Fig. 3.2).
The distance is computed from the relation of blur (equation 3.2). This DOD method is
based on edge detection, wherein sharp contrasts provide the lowest blur. The experiments
aim to understand underlying problem areas which are finally summarized.

Camera calibration provides intrinsic and extrinsic parameters. The camera parameters
are required to obtain the depth (equation 3.1). A MATLAB calibration tool was used to
derive the camera parameters and the depth. This tool requires the target camera to capture
checkerboard images at various known distances. To verify the calibration accuracy, the
experiment uses a SONY DSC-HX1 camera, as the camera parameters are known. The
camera has an F-number of 2.8–5.2. The specified focal length ranges from 28 to 560
mm. A checkerboard pattern (≈25 mm square) was used to get a set of 36 images from
700 to 3000 mm. The derived depth from the calibration tool was compared with the
actual distance and tabulated in Table 3.2. The errors computed are due to the blurring

Table 3.2: Comparison of ground truth and computed distance

Sl. No. Actual distance (mm) Calibration tool depth(mm) Error (%)
1 766.2 740 -1.47
2 1021.6 990 -1.13
3 1532.4 1490 -0.79
4 2298.6 2300 12.94
5 3064.8 3575 15.99

of the corners of the checkerboard patterns. The software uses the corner information for
calibration. The acquired images show the ambiguity of several pixels, as shown in Fig.
3.3. The error increases with distance as the blur increases. The error is low for distances
up to 1.5m. This camera has a small aperture, hence the blur is inherently higher.

After verification, a GigE Vision camera (Gev-CB-030GE) is calibrated. The camera
comes with 12mm/F1.4 optics for imaging. The other parameters are not available as the
optics were bought independently. The detector has 565 x 494 x 7.4 µm square pixels. The
focus is set manually. The calibration tool is used with the GigE Vision camera images
to get the camera parameters. The calibrated and actual distances are shown in Table 3.3.
Here, the errors were within 3%. The camera parameters obtained were used in the depth
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Figure 3.3: Zoomed corner points of the checkerboard. The points are erroneously identi-
fied due to image blur

recovery algorithm.

Table 3.3: Computed distance for GigE Camera

Sl. No. Measured distance (mm) Estimated distance(mm) Error (%)
1 3600 3682.072 2.26
2 4800 4920.074 2.44
3 6000 6247.763 3.97
4 7200 7381.662 2.46
5 9600 9878.415 2.82

The depth recovery algorithm is developed with the MATLAB tool. Two images are
obtained for near and far, as shown in Fig. 3.4. These images are denoised with a median
filter. The algorithm computes the laplacian and the integral after blurring the images
(equations 3.7, 3.8). The standard deviation is derived using equation 3.9, and the depth is
obtained using equation 3.2. The sparse depth map is obtained at the feature edges in the
image. The texture sections do not provide depth. To get a full-depth map, segmentation
of alike objects was carried out by attributing the local average depth information to the
segment. The segmentation is based on the mean shift algorithm.

3.5 Results and Analysis

The depth map and the estimated 3D image are shown in Fig. 3.5. The experiment was
repeated for distant targets (Fig. 3.6). The results are shown in Fig. 3.7. The results show
that depth can only be derived from (a) textures in the scene and (b) good scene contrast.
This is expected as the PSF is obtained only at feature edges and is not recoverable in
uniform areas. Low-contrast zones have higher noise and, hence, higher errors. Some scene
features blend smoothly with the background and do not provide good depth estimation.
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Figure 3.4: Far and near-focused images for input

The chimney shadow creates false depth. Since the depth estimation is based on relative
defocus scales (equation 3.3), the method gives false depth for sharp black features on
bright backgrounds. Such artifacts are not reported in any literature. The depth estimation
method uses a ratio-metric relation of two differently focused images. The blur circle is
inversely related to object distance 3.2) and increases rapidly for smaller distances. This
results in good depth estimations for objects near the camera. However, for distant objects,
the blur size increments at a slower rate leading to sub-pixel level changes. Hence the
depth resolution is poor at distant objects. These are only detectable with large changes in
distance. Further, increasing the focus distance v leads to focus at infinity, which hampers
depth recovery. This is so, as both the images are perceived to be at near focus and the
differences among the images are insignificant. On the other side, focusing very near to the
camera increases blur rapidly but reduces object sharpness, which in turn reduces accuracy.
Also, the depth range decreases as the change in blur becomes negligible within a short
distance. In the experiments also, the far objects were blurred to a great extent, and depth
recovery was not successful except at the skyline/ horizon. Here, as the object distance
is inversely related to the F-number of optics (focal length/aperture diameter), this can be
improved to some extent with a larger F-number of optics (> F 1.4). However, this has a
bearing on size, weight, and cost.

3.6 Summary

In this chapter, DOD methods for depth estimation from the image were studied. The aim
was to study the performance over large distances and understand the issues. A summary
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Figure 3.5: (a) Estimated color-coded depth map obtained with defocus. Small depths are
red, while large depths are blue. (b) 3D image

Figure 3.6: Outdoor far and near focused images for input

Figure 3.7: (a) Depth map: near objects are red-coded and far objects are blue; (b) 3D
image: negative distances are away from the camera focus
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of the conclusions is listed below.

1. Identified sensitivity to shadows, which introduce artifacts and errors. The blur cre-
ated also reduces object sharpness, which in turn reduces accuracy. These are not
reported in literature.

2. Low contrast leads to higher errors. DOD will work only during the day, as the
cameras are passive.

3. The inherent blur created by apertures and optics limits far-range accuracy.

4. Depth resolution is poor for distant objects as the differences reach the sub-pixel
range. Only large changes in distance are detectable. Inherent optical blur (MTF)
submerge these finite small changes and limit detection of long depths. This method
needs feature edges to detect blur scales. These features shrink with distance and
eventually merge, creating uniform sections, which makes depth estimation erro-
neous. Further, the parametric value need to be tuned to capture large depths and
hence is not arbitrary as thought. This mandates measurement iterations and large
optics (larger F number).

5. The method provides higher resolution for short distances than for long distances.
This is acceptable for most navigation, as near objects are a priority.

6. The DOD method is based on edge detection. These perform well for scenes with
sharp and ample features. These methods may fail in featureless settings like a calm
sea. Natural earth surfaces have powerful features along with shadows, while in
the sea, waves create features. Depth can be derived in such cases. The featureless
zones introduced an ill-posed problem. This was addressed by researchers using deep
learning. [66].

7. In DOD, moving objects will create errors due to changes in the images, thus limiting
the usage to only static environments. Alternatively, two cameras can be used. Here,
one needs to address the correspondence and detector calibration aspects.

DOD avoids correspondence, scale and contrast issues faced by stereo methods. The
method is strongly dependent on optics and focus positions. These change the mean image
contrast, which increases estimation errors. Depth varies non-linearly with distance as
shown in Figure 3.2. Here, the blur values reduce with distance. The depth resolution is
influenced by the ratio of blur radius (R1, R2) detected from the two images (equation 3.9)
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and large variations of blur are robustly detected. This method needs good feature edges to
detect blur scales. Now, with increasing distance, the features in the scene become smaller
and ultimately merge creating uniform zones which reduce blur values to sub-pixel range
which is difficult to detect. The inherent lens blur further add to this error and limit robust
detection of long distances. Further, this feature edge detection method leads to to only
sparse depth maps. These aspects can be improved through better edge algorithms like
Canny’s method or the use of deep learning. DOD methods advocate shallow depth of
field, which degrades image quality by blurring. These reduce the dynamic range of depth
and lead to poor results for distant targets. Large optics (large F number) can improve
upon these aspects but however compromises weight and size. It is also found during
experiments, that the parametric values (near and far settings) need to be tuned to capture
long depths and is not arbitrary as thought. This mandates iterative measurements for
optimization of the depth of field thus making the real life situation complex. It may be
noted here that for Depth from Defocus methods, moving objects will also create errors
due to changes in the images with time, thus limiting the usage to only static environments.
Depth from Defocus uses passive cameras and hence day light illumination is needed for
outdoor applications. Artificial light consume high power and are generally avoided for
long distances. DOD is useful for depth recovery from static images. If the objects move,
depth recovery will not be possible for the object. The method needs a specialized setup
to take two images at different focuses without any change in the scene environment. This
method, hence, has limited use for predicting the depth of images in the wild. All the above
points limit the usability of Depth from Defocus method for long distances.

Aperture-coded methods have the advantage of using a single image, which is an im-
provement over DOD.
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Chapter 4

Coded Aperture for Depth Estimation

The coded aperture uses patterned, occluding spectral masks between the camera lens and
the sensor. The camera model with such apertures creates specific blur patterns or spectral
patterns in the image plane. A mathematical method of discriminating these patterns w.r.t.
object distance and angle provides the all-in-focus image and related depth or light-field
information. The aperture pattern is designed to maximize discrimination, and many types
of apertures have been identified. The pattern detector usually matches a known PSF or
blur.

4.1 AIM

The study aimed to verify the performance of Coded aperture methods to understand the
scope of further improvements. Theoretically, coded apertures reduce light collection and
behave as multiple small lenses. Hence, some light from an object will be focused by at
least one sub-aperture. This affects the overall signal-to-noise ratio (SNR), or contrast,
and the sharpness or quality of the image. Therefore, there is a need to understand the
performance of this method to define problem areas for improvement. This chapter studies
two methods: (a) spectral coding and (b) spatial coding.

4.2 Color-coded aperture

The color-coded aperture-based technique [24, 26, 27, 28] is based on two or more off-axis
apertures, which, when out of focus, form two or more images displaced spatially. Using
different color filters for each aperture, these images are formed with different viewpoints
in different spectral bands. The color-coded dual aperture system works on redundant
scene information within the bands. Here, as the scheme is based on spatial displacement

45



and spectral correlation, objects with poor spectral correlation show more errors. In such a
case, one may use a green filter instead of a blue one after considering spectral leakage. The
aperture can also be modified to include a third aperture [28] with a green band. The cor-
respondence between the images provides a depth disparity map for the given scene. This
is similar to the depth disparity map for stereo imaging. Fig. 4.1(a) shows the schematic of
this method. The optics with an in-house aperture disc are shown in Fig. 4.1(b).

Figure 4.1: (a) Schematic of the optical system (b) Dual color aperture pair (c) Inset-stereo
image pair from ceiling lamp

4.2.1 Implementation of DFCCA

The depth from a color-coded aperture (DFCCA) is modeled as a thin lens followed by
dual offset apertures and an RGB detector. An object located at df and focused at image
plane v or vf is represented w.r.t. lens focal length f0 as

vf =
f0df

df − f0
(4.1)

However, for a defocused image, the image plane is not at distance vf (Fig. 4.1). This leads
to a blurred circle [28] at the image plane:

2R =
f0D(d− df )

df (d− f0)
(4.2)

where d is the defocused object distance. The image projection on the image plane depends
on the location of the aperture. The aperture centers are separated by 2rc from the optical
axis (cx, cy, 0). The shift of objects [28] ∆y or ∆x in the image plane w.r.t. object distance
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d in terms of detector pixels size pix is related as

△y =
2rcf0(df − d)

pix(df − f0)d
(4.3)

Fig. 4.2(a) shows the plot of blur circle with distance (equation 4.2). The blur increases
to about 3 pixels. This reduces the sharpness of distant object edges. The camera is set to
focus at 0.75m. Fig. 4.2(b) shows the theoretical plot of object distance versus separation.
Initially, with increasing object distance along the z-axis, the separation (∆y or ∆x) of
object projection in the image plane decreases. A further increase in object distance leads
to separation in the opposite direction.

Figure 4.2: Theoretical plot of (a) Defocus with object distance (equation 4.2) (b) object
distance versus separation (equation4.3)

4.2.2 Experiments

The depth range of coded apertures is influenced by the aperture size, spacing, and the
sensor size. Better depth is achieved with a larger center-to-center distance between the
apertures (equation 4.3). The effect is equivalent to a larger stereo baseline and is limited
by sensor dimension and the lens diameter. This leads to a shift in image which is non-
linear. The aperture size influences the image mean contrast and the blur (aperture PSF).
Here smaller apertures are preferred. The aperture of the camera CB-030GE used was 6
mm. A margin of 1.5 mm is taken for assembly margin at the periphery. The balance 3 mm
is used for the two apertures. Small apertures create less blur but are difficult to fabricate.
Further, small aperture reduces the light collection which reduces image contrast calling
for long exposure. An aperture size of 1 mm x 1.5 mm translated to a blur circle of 4.5
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pixels in this work for a distance of 10 km. The center-to-center distance between the two
apertures is then 2 mm. The details of aperture design are given in Table. 4.1.

Table 4.1: Aperture design details.

Design Parameters Values
Aperture Diameter 6mm
Pixel dimension 7.4 µm square pixels
Sensor dimension in pixels 656 (h) x 494 (v)
Margin for assembly 1.5mm
Max blur due to aperture <1 (Optical conjugate) to 5 pixels (10km)
Aperture size 1.5x 1 mm
Number of apertures 2, equally separated from the optical axis
Aperture pitch 2mm
Pixel shift 12.38 pixels at 10km
Color filters Red and Blue

4.2.3 Results and Observations

Imaging with a double aperture was carried out by modifying the Gev-CB-030GE camera
optics. A disc with two rectangular holes was inserted as a dual aperture. Red (R) and blue
(B) filter paper were added to the openings (Fig. 4.1). In this experiment, available red and
blue band filters were chosen to reduce intra-band spectral leakage. The aperture is placed
between the lens and the sensor, in front of the original aperture. The original aperture is
opened maximally.

The signal-to-noise ratio (SNR) in this method is inherently lower as the aperture is
now smaller and the spectral band is narrower. This is compensated with longer exposure
time. Focused images merge and do not have a spatial shift. Hence, defocused images and
not-focused images provide depth. Color-coding the aperture simplifies depth extraction
by digitally separating RGB colors. This color-coded method has lower computational
complexity compared to binary-coded aperture methods, which do not use color coding.

The two spatially shifted images are obtained by digitally separating R, G, and B color
images in MATLAB. Median filtering was used to remove impulse noise. A 5 x 5 block-
based correlation algorithm generates the disparity map. Only a few researchers have pub-
lished measured results for images taken inside the lab as most of them emphasized on new
methods. This work compares the achievements with their results as in Table 4.2 with the
SOTA range of disparity. Ours is for long-range outdoor images which has the highest dis-
parity. The work also adds segmentation for full depth estimate. The mean shift algorithm
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Table 4.2: Disparity range.

Methods Disparity (Pixels)
Paramonov (2016) [27] 13
Lee (2013) [28] 14
Hahne et al. (2018) 8
Thesis (2017) 32

segregates the average depth for the features. Fig. 4.3 shows the histogram of RGB images.
It is observed that the correlation between the B and G bands is better. However, the filters
used are not ideal and have more spectral leakage in these bands. Fig. 4.4 shows the his-
togram of RGB images after the G band is subtracted from R and B images. It is observed
that the intensity variations have reduced. The depth information is then computed through
the stereo disparity algorithm after rectification and segmentation with a mean shift. Fig.

Figure 4.3: RGB image and histogram of RGB bands

Figure 4.4: Histogram of RGB bands of the image after G band subtraction from R and B

4.5(a-b) shows the disparity map and the 3D image, respectively, without green band sub-
traction. Here again, sharp features and high contrast are necessary for better disparity.
A good correlation exists between the bright sky and vegetation, as shown in Fig. 4.5(a).
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Smoother features at a similar distance do not show the same depth. Fig. 4.6(a) shows the
red and blue band images after green band subtraction. The metal chimney structure is less
prominent in the R band and is not fully detected in the depth map. Fig. 4.6(b-c) shows the
disparity and depth map, respectively, with the green band subtracted. Smooth features at
a similar distance show depth errors. This is more prominent on the building edges. The
disparity map yields beneficial results, mostly due to lower spectral leakage. However, due
to the large spectral gap, the correlation is low. This may be improved with a separate green
band or with neighboring narrow spectral bands.

Figure 4.5: (a) Disparity map of B & R band (b) 3D depth map of B & R band

4.2.4 Discussions

In this chapter, DFCCA for depth estimation from images was studied. The main pur-
pose was to understand the issues with such applications concerning the outdoor natural
environment. Since it is a single camera and single image capture-based method, a simple
calibration with known depths gives the ground truth. The experiments, however, skipped
this calibration as the object distances were large and a calibrated distance meter (laser
ranger, etc.) was not available. The theoretical performance is computed and found to be
similar to DOD (compared in Fig. 4.2). DFCCA methods work with small optics. This
is an advantage for mobile applications. The filter bands need to be optimized to cater to
maximum redundancy. The disparity resolution is good for objects near the camera and
degrades fast as the objects move away. Finally, the changes are at the sub-pixel level and
are detectable only with large changes in distance. Accuracy can be improved with a larger
separation between apertures (equation (4.3). However, this will lead to large optics. The
effect is equivalent to a larger stereo baseline. The summaries of the conclusions are listed
below. (1) DFCCA methods are based on edge detection. These perform well for scenes
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Figure 4.6: (a) Images of R and B band after G band subtraction (b) Disparity map of R &
B band after G band subtraction (c) 3D depth map of R & G band

with sharp features. These methods cannot be used in featureless settings like a calm sea.
Natural earth surfaces have powerful features along with shadows, while in the sea, waves
create features. Depth can be derived in such cases.

1. DFCCA is used at the cost of image resolution.

2. DFCCA has the advantage of low computational complexity but inherently has a
lower SNR and needs longer exposure time. This is not a major issue, as sensitive
detectors can improve the system.

3. The choice of filters in the DFCCA method is critical, as redundant information is
needed in both bands. Most natural scenes have energy in the red and green bands.
Tuning filters within these ranges can provide better disparity maps.

4. The aperture shape also impacts depth recovery. [67] proposed aperture codes with
higher discrimination scores.
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4.3 Multi-coded Aperture

An image with a bigger aperture leads to higher defocus for distant objects, and this is
exploited in the multi-coded aperture method (DMCA) to estimate depth. Further, aperture
methods can significantly improve depth estimation by enhancing the relative defocus es-
timations [68]. Researchers used multiple coded apertures [67, 68] to recover all focused
images using Wiener deconvolution. [68] proposed a pair of optimum complementary
coded apertures w.r.t. noise for defocus deblurring and depth recovery without much loss
of high frequencies. He used a robust prior based on natural images, a synthetic depth
map as ground truth, recovered sharp images through modified Wiener deconvolution and
estimated depth using the L2 norm using a range of PSFs. He uses an N×N binary aper-
ture code C, where C ∈ 0, 1(N×N). Optimized apertures have features like (a) minimum
number of apertures, (b) minimum size and distance of apertures, and (c) good decoding
of images corresponding to each aperture with minimum spatial or spectral overlap. In
the Fourier domain, the frequencies are designed to never overlap from each aperture by
selective filtering.

Coded apertures are geometrically altered with occluding patterns to generate defined
blur shapes. These provide zero-crossing frequencies (in power spectral domain) to enable
depth estimation. Single coded apertures have zero crossings which degrade the image
quality due to loss from occluding patterns. Using two different apertures overcomes this
limit. These adequately compensate the losses by complimenting those frequencies lost due
to the other aperture pattern. Since both share the same power spectra, the overall image
quality is retained with wide frequency content. The geometrical shape, size and position
of the aperture pair are tuned to obtain aperture shapes that have orthogonal magnitude
and phase. Here, two off-centered circular Gaussian apertures were optimized by setting
a radius ratio of 1.5. This also improves noise immunity and robustness to weak textured
surfaces.

4.3.1 Implementation Method

The model of defocused image g is the convolution of a sharply focused image i, a blur
function having a PSF of h and noise n. The n in this model is Gaussian white noise with
a zero mean and a standard deviation of σ. The PSF is dependent on the aperture a which
relates to the estimated depth.

g = i⊗ h(a) + n (4.4)
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As the defocus blur is due to the loss of certain frequencies, these are best analyzed in the
Fourier domain.

Gi = Io.Hi + ξi (4.5)

Where, in the image ii, the discrete Fourier transforms (DFT) of io, h, and n are Io, Hi,
and ξi, respectively. The aim is to find a PSF that estimates a focused image Î0 such that it
minimizes the mean square error w.r.t. Io as

Î0 = G.H ′ (4.6)

and the error is
∈= E|I0 − Î0|2 (4.7)

Since the model with the Gaussian function has logarithmic energy, the above problem
requires minimization of

E(d|KdE(d|Hi, σ) = [minIo

∑
i

||Î0.Hd
i −Gi||2 + ||CÎo||2 (4.8)

where Hd
i is the Fourier transform of PSF at depth d of the ith image and ||CÎo||2 is the

regularization term. Solving δE/δÎo = 0 yields the Wiener deconvolution filter.

Î0 =

∑
i Gi.H́d

i∑
i |Hd|2 + |C|2

(4.9)

Where the complex conjugate of H is H́ and |C|2 is the optimal matrix of inverse signal-
to-noise ratios. The unknown Io and noise ξ relate to the estimated distance d. Since ξ is a
random matrix, the expectation of the L2 distance between the ground truth Io and Îo w.r.t.
ξ gives

R(H, Io, C) = Eξ||Îo − Io||2 = Eξ||
ξ.H − Io.|C|2

|H|2 + |C|2
||2 (4.10)

The white noise ξ is represented as N(N(0;σ2)), so

R(H, Io, C) = Eξ||
σ.H́

|H|2 + |C|2
||2 + Eξ||

Io.|C|2

|H|2 + |C|2
||2 (4.11)
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Figure 4.7: Image prior: A

All images have a certain distribution, and an Io sampled from such images will provide a
C that minimizes the expectation of R w.r.t. Io as

|C|2 = σ2/A (4.12)

Finally

Î0 =

∑
i Gi.H́d

i∑
i |Hd|2 + σ2

A

(4.13)

A is the average power spectrum obtained from several natural images. A variety of seven
images were taken, and A was computed. Fig. 4.7 shows the 3D plot of A. The noise
level ξ is determined from the camera, and hence this gives a parameter-free variant of the
Wiener deconvolution algorithm. This generalized Wiener deconvolution algorithm recov-
ers the all-focused image Îo. The depth is estimated from this all-focused image. The Îo is
computed for each sampled depth value d ∈ D, to reconstruct two focused images using
a 2D inverse Fourier transform (IFFT). The residual W d for each pixel is the difference
between the reconstructed images and the observed images, which gives an error of d w.r.t.
the actual depth d∗.

W d =
∑
i=1;2

|IFFT (Îdo ∗Hd
i −Gi)| (4.14)

The minimum of W d(x, y) gives d for the pixel (x, y), which equals the real depth. The
estimated depth map Z is

Z(x, y) = argmind∈DW
d(x, y) (4.15)
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Figure 4.8: Image with dense features

(a) 2D Depth Map (b) 3D view of depth

Figure 4.9: Synthetic depthmap

4.3.2 Experiments

This study experiments with his method to understand the performance of depth estimation.
The method requires modification of the camera aperture, which requires skill. Hence,
the experiments were done with synthesized images and apertures. The ground truth is
generally arrived at by calibrating the camera blur (PSF) with distance. Here, synthetic
data is generated for the study. A synthetically focused image is created, with some zones
having a lot of features and some zones having a smooth texture, as in Fig. 4.8. An artificial
depth map is generated in Matlab. This is a staircase depth map with about 17 levels. Blue
is the nearest. This map is used as ground truth and is shown in Fig. 4.9. Two pairs of
apertures are generated artificially. The first pair consists of circular apertures (Fig. 4.10a).
The second pair is from [68], as in Fig. 4.10b. These pairs operate as filter kernels of
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(a) Circular aperture pair (b) Zhou’s optimized aperture pair

Figure 4.10: Aperture pairs for depth estimation

(a) Defocused images-circular apertures (b) Defocused images-Zhou’s apertures

Figure 4.11: Defocused image pair with different apertures

dimension 33 by 33 pixels. The dimensions are claimed to produce less diffraction due
to the smoother pattern. The proposed optimal ratio of the large to small circular aperture
radius is 1:5. This is maintained in the work.

4.3.3 Results

Using the aperture pairs, the depth map, and the synthetic image, defocused images were
synthesized in the Fourier domain by applying the PSF and aperture kernels. In the spectral
domain, the PSF was scaled as per the depth map. Both PSF and aperture kernel spectra
were multiplied with image spectra. Finally, a noise sigma of 0.003 was added. The images
were converted to the spatial domain by applying IIFT. The defocused image pair with
circular aperture pair is shown in Fig. 4.11a. With different apertures, the contrast has
changed. The defocused image pair based on the [68] aperture pair is shown in Fig. 4.11b.
Here, the contrast is similar in both images. The convolution of these deblurred patches
with different scales of blur kernels, along with the computation of the L2 norm concerning
the input-defocused patch, gives insight into the correct blur kernel. The blur scale for
the least L2 error is the final correct blur size. Both the circular and optimized aperture-
based images show similar recovery. The recovered images after Wiener deconvolution are
shown in Figs. 4.12a and 4.12b. Fitting a 3rd-order polynomial curve with a sequence of
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(a) Circular aperture: original image (L), re-
covered image (R).

(b) Optimized aperture: original image (L),
recovered image (R).

Figure 4.12: All in focus images after deconvolution

(a) Circular aperture-depth map (b) Optimized aperture-depth map

Figure 4.13: Estimated depth map from different aperture pairs

residuals from the above-sampled depth values improves the depth resolution at a location
(x,y). This interpolation gives a continuous depth estimate from the minima of the curve.
These depth maps are shown in Figs. 4.13a and 4.13b.

4.3.4 Observations

It is seen that the depth estimates from images using optimized apertures have fewer errors.
In all images, depth estimation fails at smooth surfaces, which were implemented through
various shapes. The estimation is best in all images where textures are dense. The middle
texture has dense features, and the estimation is with a minimum error. This reveals that
this method is strongly influenced by features. The optimized aperture does perform better
but reduces the light collection, as shown in Fig. 4.11b.

4.4 Summary

Two methods of aperture-based depth maps were studied. The color-coding method was
sensitive to spectral leakage and image-to-image contrast. The filters used for the DFCCA
method are therefore critical for preventing spectral leakage. DFCCA has the advantage
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of low computational complexity but inherently reduces the energy per aperture due to the
spectral band limitation of the filter used and also due to the smaller aperture. This low
SNR can be overcome with a larger lens or with a longer exposure time. Alternatively,
new sensitive detectors can improve the system. DFCCA also reduces the image reso-
lution. Here, larger sensors can offset this disadvantage. DMCA uses specially shaped
fixed aperture pairs used in sequence to capture images, while DFCCA uses a fixed aper-
ture to capture shifted spectral images. The post-processing is slightly more complex than
DFCCA. Moving objects for DMCA using a single camera is a disadvantage, as these will
introduce errors. Using two cameras with different apertures can solve the problem but
will call for correspondence and scale issues. DFCCA is sensitive to the light spectrum and
will perform poorly at sunset or sunrise when the spectral content of light is redder. Both
methods are based on edge detection and perform poorly for featureless scenes like a calm
sea, wall, or road. However, most natural earth surfaces have powerful features. Both re-
quire camera aperture modifications and work only with an external light source. As these
methods are based on the blurring of objects with distances, they provide higher resolution
for short distances than for long distances. The implementation is complex, costly, and
requires skill for both methods. These methods, therefore, have limited use for predicting
the depth of images in the wild.

Blur cues and single images can also predict depth without any modification of the
camera and are not sensitive to the daylight spectrum. This is studied in detail.
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Chapter 5

Calibration and Absolute Depth

5.1 Introduction

Camera calibration is multi-fold and includes geometric calibration, radiometric calibra-
tion, and spatial frequency response. The geometric calibration estimates lens parameters
and the relationship of the 2D/1D image to the corresponding 3D objects. These parame-
ters are more useful in machine vision for measurements and locomotion. The two popular
methods of geometric calibration are based on Tsai’s method [69], which uses complex
precision 3D objects, and Zhang’s method [70], which uses simple planar grids. Zhang
models the camera with lens distortions, which is more suitable for real cameras. The 3-D
world points and their corresponding 2-D image points are obtained from multiple images
and poses of a calibration target. The calibration target has feature points like the corners
of the checker box pattern, which are detected in the images. The two camera parame-
ters of interest are (1) intrinsic parameters like axis skew, principal point, focal length, and
scale factor, and (2) extrinsic parameters like rotation and translation. The lens’s radial and
tangential distortions are also taken into account. The scaled image projected from world
objects is related to:

s

xy
1

 = K
[
R | T

]

Xw

Yw

Zw

1

 (5.1)

Where s is the scale factor, x, y are the image positions (pixels), K represents the intrinsic
parameters and lens distortions, R (rotation) and T (translation) are the extrinsic param-
eters, and the world coordinates are Xw, Yw, Zw. For co-planar grids, Zw = 0. A direct
linear transform (DLT) algorithm is used to solve the above equation using homography
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projection hij parameters using known world coordinates and target size.

s

xy
1

 =

h11h12h13

h21h22h23

h31h32h33


Xw

Yw

1

 (5.2)

The re-position errors obtained are then minimized using the Levenberg-Marquardt opti-
mization method. Many toolboxes are available that implement this method for camera
calibration. Other calibration coefficients deal with camera response. Radiometric calibra-
tion represents pixel-wise measurements of incoming light. The response of pixels usually
varies with neighboring pixels, giving rise to photo-response non-uniformity (PRNU). A
calibrated, uniform light source with different intensities provides each pixel with various
responses. These are curve-fitted (usually linear) to get a pixel-wise coefficient matrix.
This correction avoids noise in features due to variations in surrounding pixel outputs. The
response of the camera to spatial contrast variations (neighboring pixels) is the spatial fre-
quency response (SFR). This response is dictated primarily by the lens and the sensor pixel
size and is related to the image’s sharpness. The SFR is measured by a target with varying
widths of black and white bar pairs (or line pairs). The response to finer and finer line pairs
trails off and finally is not distinguishable. All the above calibration methods used focused
images and a camera model (Fig. 2.1). These parameters are usually calibrated by the man-
ufacturer, and corrections are applied as part of processing inside the camera before image
acquisition. Camera properties also include defocus blur (Fig. 2.2), which is dependent on
aperture diameter and focus. Larger apertures increase this blur and have a shallower depth
of focus. This property is exploited by DOD methods. For Lambertian surfaces, various
non-focused random objects in the camera field of view cause spatially varying blur points
in the image plane. These can reduce overall image sharpness. Mathematically, the blur
is modeled as the convolution of a sharply focused image with a Gaussian filter kernel.
Present calibration methods do not address out-of-focus blur size w.r.t. object distance.
This aspect is important in this work as this spatial blur information forms a 2D depth
map. Further, single image-based depth estimation lacks geometric reference to absolute
distance and so provides only relative depth maps. Since the relationships are non-linear,
camera-centric references need to be worked out. Such calibrations require custom calibra-
tion targets and methods.
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5.2 AIM

A calibration method to retrieve the absolute distance from relative depths is studied. As
most depth estimation methods, like DOD, coded aperture, etc., rely on blur in the image,
the work is predominantly based on blur. This work derives a method of calibration for
blurred image targets. The theoretical blur and the ground truth are utilized to recover the
absolute depth. The coefficients computed once can be used for all images. Here, a relative
depth map from a single image (target) is used as the input for calibration.

5.3 Implementation Method

There are many methods for relative depth estimation. The method from [31] to estimate
relative depth from a single image is adapted for this work. Here, initially, an edge detector
extracts an edge map from the image. The focused object points provide sharp and fine
edges w.r.t. defocused points. The unit step function u(x) at x = 0 represents the focused
edge in the 1D domain as

f(x) = Au(x) +B, (5.3)

Where A represents the edge intensity or amplitude, while the edge offset from the origin
is B. A Gaussian blur filter, when applied to these edges, degrades the sharpness and
introduces a gradient on the step function. In the Fourier domain, this filter has a point
spread function (PSF) with a kernel h(x, σ). The standard deviation σ of PSF changes the
blur scale. The step with the gradient in image g(x) is related to the original step in the
sharp image i(x) as

g(x) = i(x)⊗ h(x, σ) (5.4)

After filtering, the sharp edges undergo higher blurring than the existing blurred edges in
the image. The filter changes the edge gradient, which leads to a gradual change of intensity
(logarithmic) among a bulk of neighboring pixels, creating a slope similar to one side of
the Gaussian curve. Mathematically, in the Fourier domain, this gradient on the x-axis is:

▽G1(x) = ▽(I(x)⊗ h(x, σ0)) = ▽((Au(x) +B)⊗ h(x, σ0)) (5.5)

=
A√

2π(σ2 + σ2
0)
exp(− x2

2(σ2 + σ2
0)
), (5.6)
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Where A is the intensity, σ is the standard deviation of the original edge in the image,
and σ0 is the 0th scale standard deviation of the blurring Gaussian kernel. The equation
is simplified by reducing the dependency of the gradient ▽G on A. The ratio (R) of the
original gradient and the post-filtered gradient gives:

|▽G(x)|
|▽G1(x)|

=

√
σ2 + σ2

0

σ2
exp(−(

x2

2σ2
− x2

2(σ2 + σ2
0)
)) (5.7)

The edge location is obtained with the derivative of dR/dx at x = 0. The R is the maximum
at this location and is

R =
|▽G(0)|
|▽G1(0)|

=

√
σ2 + σ2

0

σ2
(5.8)

The equation is now independent of A and relates R with σ, the edge blurs in the original
image. Rewriting equation 5.8 w.r.t. blur gives

σ =
1√

R2 − 1
σ0. (5.9)

In the same way, if the edges are blurred with two scales of σ (σ1 and σ2), the original blur
is related to these scales as

σ =

√
σ2
1 −R2σ2

2

R2 − 1
(5.10)

Computing the blur for both axes leads to a 2D blur map. The gradient magnitudes ▽Gx

and ▽Gy are computed along the x and y axes from the edge map using 2D isotropic
Gaussian kernels as

||▽G(x, y)|| =
√
▽G2

x + ▽G2
y, (5.11)

The gradient magnitude is a function of blur and is high for sharp edges. The method re-
quires an initial edge map obtained with an edge detector. Though there are many edge
detectors, the Canny edge detector is widely used because it is very robust. σ changes
with c and is related as σ = kc (equation 2.1). Since other camera lens parameter set-
tings like fo, N , and df are known and remain the same for an image, knowing k can
give the depth estimate. If the values are unknown for an image from the wild, this can
be derived using available application software, like the camera calibration application in
Matlab. The value of k should ideally be unity. However, during experimentation, it was
found that this parameter is dependent on physical camera opening shape and size, fabri-
cation imperfections, lens abrasions, and the finite size of sensor pixels, which creates a
small, non-avoidable blurring of the image. These were not accounted for in the thin-lens
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model used. Hence, calibration is necessary to get the coefficients of k, which will reliably
provide the depth information. The depth information so obtained defines a sparse depth
map, which has depth data only at feature edges. To get a full-depth map, some technique
of segmentation based on holistic features using this depth information is required. Author
[20] proposed an alpha-matte method to interpolate a full-depth map. This work deals with
methods of calibration to get the best value of k and information interpolation to get a full-
depth map.

5.4 Calibration

This work proposes new targets to calibrate the values of k and recover absolute depth
using a single image. One target is made of multiple captured ground truth targets obtained
through experiments. The captured data includes a known depth of images. A second
synthetic target contains various patterns blurred by different scales of PSF kernels. To
obtain the gradient magnitude and position of the blur, the first and second derivatives of
both the original and blurred targets are computed. The ratio of the absolute magnitudes
provides depth information. Fig.5.1 summarizes the proposed method. The method used
has advantages like immunity to spectral sensitivity, contrast variations, and magnification
issues. This method using a special target for depth calibration is unique and not found in
related research domains. Further, the work contributes to the research community with a
hybrid method that relates theoretical blur with real blur and absolute depth. The following
sections provide the details of this work.

5.4.1 Choice of PSF

The PSF is a measure of camera and image quality, and a perfect PSF represents a 2D
impulse function. However, imperfections in real-world fabricated systems lead to blurred
edges even for focused images, which leads to a corresponding PSF with finite diameters.
Sharp edges will have PSF with small diameters. Further, the PSF can be a flat-top ‘pill
box’ (Fig. 5.2 a) or a Gaussian type (Fig. 5.2 b). The 2D Gaussian PSF is more popular
as most natural systems resemble Gaussian probability. In this work, both PSFs were used.
Since this work focuses more on the outcome of results, the section descriptions will be
with a ‘pill box’ PSF, while the results will have the outcome of both PSFs. For simplicity,
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Figure 5.1: Proposed method of blur estimation using a special target

(a) Sample pill-box kernel (b) Sample Gaussian kernel

Figure 5.2: PSF kernels
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the pill box PSF in 1D is

hp(x) =
1

2r
[u(x+ r)− u(x− r)] (5.12)

The Gaussian PSF (1D) is

hg(x) =
1√
2πσ

exp[−1

2
(x− x̄)2] (5.13)

Image G is modeled as
Gk(x, y) = i(x, y)⊗ hp(x, y, rk) (5.14)

and
Gk(x, y) = i(x, y)⊗ hg(x, y, σk) (5.15)

5.4.2 Target and Result

A synthetic target with 400x3300 pixels was developed. This target contains blocks of
checkerboard patterns, each blurred with a different known scale of PSF. The scales are
implemented with various PSF radii (r). The work used 10 blocks, and hence the target
provides a range of 10. The size and the scale range are arbitrarily fixed and can be varied.
The target Fig.5.1 is used as the input image, as in Fig.5.3, and the blur (σ) map is derived.
This map, as shown in Fig.5.4, has a range of gradient magnitudes, with dark blue as the
lowest. A scale of 10 was found to be outside the bounds of the blur detector. Therefore, the
range was experimentally tuned before use. The checkerboard pattern images are captured
at different known calibrated depths for ground truth. Here, the camera focus matches the
pattern at the smallest depth and is kept constant for all measurements. The captured images
have higher defocus at larger depths, which increases the blur. These images are cropped
and stitched together to provide a single image with various real blur ranges w.r.t. known
depths (Fig.5.10). These two targets provide synthetic blur and real blur for computation
of k and relate the blurs to known depths.

5.4.3 Experiments

The synthetic blur map shown in Fig. 5.4 has a blur range of 10, with the lowest value
indicated by dark blue. The colors seem to repeat for incremented scales on the map,
indicating that the values are not monotonic. On analysis, it is found that on the scale
of PSF at r = 7 and above, the blur is very high and the pattern edges merge with the
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Figure 5.3: The proposed synthetic target of 400x3300 pixels contains 10 blocks of
400x330 pixels. Each block is a checkerboard pattern blurred incrementally with a PSF
filter having scales from 1 to 10. The figure shows only 2 of the 10 blocks for clarity.

Figure 5.4: The synthetic blur map with a PSF scale of 1 to 10 obtained using equation
5.15. A block with the same PSF creates steps in the map.

Figure 5.5: The edge thickness from higher PSF scales changes the pattern for scales of 4
and above.
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(a) Synthetic blur map with scale range
up to 6 at 0.5 scale step. The pattern
style reverses after a scale of 4.

(b) Plot of a row (200) from the blur
map. It can be seen that the useful scale
range is >1 to 4.

Figure 5.6: Blur range finalization.

(a) Blur map with 10 PSF scales
from 2 to 4.

(b) Plot of synthetic blur and estimated blur af-
ter polynomial fit (row 200, mid value of each
step taken).

Figure 5.7: Results with pill box PSF.
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(a) Blur map, upper limit reached at
σ <4.

(b) PSF scale of 1 to 2.2 is not usable.

Figure 5.8: Range limits with Gaussian PSF.

(a) Plot of 200th row of blur map. (b) Plot of the mid values of each block and
sigma variation and polynomial curve fitting
(row 200).

Figure 5.9: Results with Gaussian PSF.

background. In addition, after r of 4, the blur level makes the black and white pattern
reverse (Fig. 5.5). Fig. 5.6a shows the effect near pixel 2000. This is due to the edges
becoming thicker than the square patterns. This scale hence sets the upper scale limit. A
row plot of Fig. 5.6b indicates that up to r of 2, the slope gradient is slow and will provide
poor depth accuracy. This sets the lower range. Hence, the usable range for r is 2 to 4.
Fig. 5.7a is the blur map for this range with 10 smaller scales (r increments are < 1). Fig.
5.7b is the polynomial curve fit plot obtained from the mid values of each of these blocks
at the 200th row (arbitrarily chosen). The slope is similar to the Gaussian curve. The above
experiments were with pill box PSF. The experiments were repeated with Gaussian PSF,
and it is observed that the results are similar, with a useful range of r from 2 to 4. Figs 5.8
and 5.9 show the results with Gaussian PSF.
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Figure 5.10: Ground truth, checkerboard pattern from multiple distances stitched together.
Blur is higher for large distances.

Figure 5.11: Variation of k with depth

5.4.4 Ground truth

A Canon 400D camera was used to acquire the images. The camera specifications are
in Appendix (Chapter 9). The camera was set manually to 5.6 numerical aperture, focus
at 530mm focus, and images were captured for multiple calibrated known depths. These
images are appropriately cropped and stitched together to form the ground truth (Fig.5.10).
Now, each row gives the range of real blurs corresponding to known depths. This blur is
unique to a camera and the camera settings. To compute k, the relation kc = σ is used from
equation 2.1 (Fig.2.2).

Though , most manufacturers calibrate the optics before shipping, the calibration needs
to be confirmed before any experiment. This was verified and Tables 3.2 and 3.3 show
the experiments carried out to generate the ground truth. Further, calibration was carried
out in the PSF domain, and Fig.5.6 to Fig.5.9 show the experiments completed to generate
the ground truth depth range. It can be seen that the slope can be approximated to be
uniform for a small range. Hence for the same camera, it is found that the curves need
to be calibrated for images taken for different ranges. The ‘k’ values were the calibration
coefficients. Fig.5.11 plots the values of k with depth. The experiments conclude that k is
not a constant. The reasons are many. A theoretical thin lens model is assumed for deriving
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the equations (section 2.1.2). This model follows Gaussian response for images, noise and
defocus. Real cameras have a compound lens instead of a single lens and the collective
focus does not match the theoretical values. Also, the aperture and the optics introduce an
inherent finite blur and measured as the optical modulation transfer function. This defines
the sharpness of the focused image. Further, engineering parameters like reflective index of
the glass material, lens curvature (sphere, aspheric), type and number of lenses define the
optical response. The above are also limited by manufacturing tolerances. The calibration
method here uses a target made from various scales of blur obtained by filtering a synthetic
checker box pattern with Gaussian or pill box filters. Using the calibration method, these
blurs are verified with expected theoretical blurs (Fig.5.7 b and Fig.5.9 b). The polynomial
fit in both cases show a good Gaussian match as R2= 0.998. Thus the theoretical k=1 is
valid.

A real blur scale target is also obtained by imaging checker box patterns at various
depths (Fig.5.10). The ratio (k) of the theoretical and actual blurs showed mismatch which
decreased with distance (Fig.5.11). Ideally these blur scales should match the estimated
blurs of Fig.5.7 b and Fig.5.9 b. However, experiments point that there may be other factors
which prevent the same. Hence, here the calibration is possible with various k coefficients.
This was validated with multiple experiments (Fig.5.14). This is attributed to measurement
errors which used manual setup and manual focus. Here, the best focus is subjective.
Further the blur detector is sensitive to contrast, and variation of illumination during the
experimentation period would also create blur scale errors.

5.5 Verification

A camera with a checkerboard pattern was set up for verification. The checkerboard pattern
was horizontally slanted (about 38 degrees) to produce continuous variable-depth data. A
measuring tape gives the distance from the lens center to the target pattern edges. Triangu-
lation gave the distances from the lens center to the image pixels, as shown in Fig. 5.12.
The camera’s optical axis corresponds to the image center. Hence, the central horizontal
row of the image provides the data for this study. This avoids radial errors on the vertical
axis and at the corners. As in earlier experiments, the mid values of the step pattern (Fig.
5.13) provide the data for plotting along with ground-truth (target) depth. This graph then
represents the measured blur w.r.t. distance. Three captured images (A, B, and C) with
slight variations provided the measurements. Image A had a blur scale (radius) of 1.2 to
1.96. B had a range of 0.48 to 1.5, while C had 0.65 to 1.4. These blurs, along with the k
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Figure 5.12: Three checkerboard pattern images, A, B, and C, taken with various slants to
get continuous depth

Figure 5.13: Depth Map of (a) an image with a slanted pattern and (b) a synthetic target.
The color code brown indicates the nearest depth.

coefficients, give the estimated absolute depth. A comparison with the triangulated depth
data showed an offset for data from A, B, and C. On analysis, it is found that the offset is
due to the following:

(a) Measurements and iterations took many days at different times, and hence, the illu-
mination varied during the experiments. The edge detector is sensitive to contrast
variations.

(b) Manual setup and commercial measurement tapes posed a limit for repeatable depth
accuracy. Further, radial distances from the lens create a semi-spherical object plane,
whereas the 2D target was flat, which introduces errors at the image corners.

(c) The objects were focused manually, which is subjective, and a near focus is the best
possible.

The offsets of images for A, B, and C were subtracted, and Fig.5.14 plots these blurred
data with depth. Images for C and the target pattern used the same setup and were acquired
during the same period. Therefore, the offsets of both match better, even though the blur
range is different. The depth obtained using the k coefficients matched the ground truth
(target) data, thus validating the proposed calibration method.
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Figure 5.14: Graph of distance w.r.t. σ for the 4 verification images.

5.6 Summary

This work proposes a method with a unique blur target and ground truth to recover absolute
depth from monocular images. In the target, different PSFs generate various scales of syn-
thetic blur. This work studies these blurs and their contributions to blur detector range, ob-
ject distance, illuminations, and camera focus. The proposed calibration also uses ground
truth data. This consists of imaging a pattern for various known distances and stitching
the images together. The theoretical blur from the synthetic target and the real blur from
ground truth are related w.r.t. absolute distance to compute coefficients of k. These coef-
ficients can estimate absolute depth from monocular images taken by the same camera. In
the verification process, slanted images were calibrated using this method. A good correla-
tion was obtained with the measured data. Offset correction was required to reduce errors
due to manual setup and manual focusing. A setup with calibrated optical rails, smooth
movements, and automatic measurements will reduce such errors. This method is effective
for a blur radius of 1.2 in the existing setup. Beyond this range, the relation becomes non-
linear, with reduced edge detector performance and higher error in the interpolation of the
depth map. Eventually, the blur increases while the contrast (magnitude) reduces, and at
large distances, features merge with the background. The algorithm, then, cannot reliably
distinguish the depth. As most images have some blur due to distortions in the camera, the
blur range improves when sharpening the images. Sharpening with Laplacian and Sobel
methods also amplifies the image noise, which is a disadvantage. This calls for a learnable
algorithm to detect local features and improve depth-range detection.

The calibration is an add-on application for depth algorithms. Other edge detection
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methods, like Canny’s method, can also improve the sparse depths. The method can be
further improved with deep learning methods that can estimate depth and improve edge
definitions without increasing noise.

73



Chapter 6

Loss Functions for Edge Enhancement

6.1 Introduction

Depth from monocular images uses CNN algorithms with crafted loss functions. The edges
in an image capture the fine local features, which define the contours, structure, and regions
of the image [14]. Strong and different intensities of neighboring pixels define sharp edges
in an image. Blurred edges with reduced intensity dynamic range merge contours into the
background, which leads to loss of feature definitions, poor image quality, and eventually
loss of depth map details [71]. Hence, the accuracy of estimated depth-map resolution
improves with edge enhancement [72] and provides robust feature structure [73]. The
most effective edge detectors that are popular in computer vision applications are gradients.
Additional smoothing and nonlinear filters also reduce noise and fragmented edges, thus
improving structure detection.

6.2 AIM

There are some research reports on enhancing depth map edges that lead to new applica-
tions. Still, the available literature lacks analysis of known edge type loss functions w.r.t.
depth map quality. This work studies and suggests a variety of edge loss functions for
enhancing the details of feature in-depth maps and studying the performance and quality
attainable. These loss functions are used to train a known model to analyze the areas for
improvement. The work also studies the combinations of these loss functions to train the
network together and analyze the performance results.
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6.3 Network architecture

Deep learning networks process large amounts of structured data for classification. These
can work on raw images without any preprocessing and are excellent at identifying underly-
ing patterns. These consist of input layers, hidden layers, and output layers where the data
propagates in a feed-forward manner. These layers contain convolutional functions that
have trainable weights as filter kernels. The weights are updated through back-propagation
based on a loss function. The hidden layer has weights identical to the input image size; the
hidden layers have variable weight sizes depending on backpropagation and the output lay-
ers convert these weights to scores. Usually, a pooling operation and an activation function
reduce the weight for faster convergence. The layers progressively identify more and more
complex patterns through these trainable weights, while the loss function guides by attach-
ing importance to the weights to learn useful features that resemble reference patterns. The
reference pattern is given as the ground truth or label. The loss function is customized
to keep the useful weights. Initially, these trainable weights are randomly valued and act
as seeds for convergence through the minimization of the loss error from the loss func-
tion. This process takes several iterations or epochs, each time improving the weights.
A Softmax function provides the probability distribution for decision thresholding. These
networks are trained using a large number of images and reference data. This large dataset
is fed to the network in batches. When the loss function is at its minimum, convergence
is complete and the weights are final. These weights can now be applied to any image to
get the desired inference. Overall, the process of learning mimics the human brain where
the weights are eqivalent to neurons. Networks are computationally complex and intensive,
and it isn’t easy to understand the learned weights. These require large datasets to train,
which mandates large memory. Small datasets lead to a loss of generalization and overfit-
ting, which degrade accuracy. There are many networks developed, like LeNet-5, ResNet,
VGGNet, DenseNet, AlexNet, GoogleNet, MobileNet, etc., each optimized for various in-
telligent functions. Deep learning elements were discussed in Section 2.4. Most networks
for depth estimation have encoder-decoder architecture and usually resemble a UNet. The
encoder downsamples to extract the feature details, while the decoder upsamples this in-
formation to provide the required output. These networks need training with enormous
image data and corresponding labeled data to be reliable and robust. The training effort
is therefore very intensive. A method of augmented training called transfer learning al-
lows us to reuse an available trained model for a new task. One such SOTA method is [1],
which saves time and computation effort. This network uses a pretrained DenseNet-169 as
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the backbone encoder for its deep network architecture. The DenseNet encodes the RGB
images into feature vectors. The decoder layers consist of serial bilinear upsamplers (2x),
skip-connections, two (3x3) convolution layers, and leaky ReLU (except the last block).
This network does not use the Batch Normalization layer. The estimated depth map reso-
lution is half the input resolution (320×240). Fig. 6.1 shows the architecture.

Figure 6.1: Network architecture [1].

6.3.1 Training a Network

Training a network can be either supervised or unsupervised, depending on the outcome
and requirements. Classification, depth estimation, etc. need supervised training along with
ground truth. Unsupervised training is possible for identifying a similar group of images
using methods like k-means. The training starts with the forward propagation of inputs.
In supervised learning, the hidden layers of the network learn the mapping between inputs
and the corresponding ground truths. The learned model weights and biases predict the
outcome. The error between the ground truth and the predicted output is computed using a
defined loss function. The loss function gradients computed from the trainable parameters
are back-propagated through the network, which evaluates and updates these trainable pa-
rameters through a gradient descent method. The gradient information is processed for the
entire training set. All training samples are propagated forward and backward through the
network to complete an epoch. The trainable parameters are updated after each epoch to
reduce the loss function. The forward and backpropagation during the training of a network
model is iterative and stops when the predicted error is at its minimum.

6.3.1.1 Transfer learning

In transfer learning, a trained model is re-trained for a new task. The method uses the infor-
mation gained through earlier training to improve upon generalizations on a new problem.
This saves computation and time.
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6.4 Loss function

A deep-learning neural network learns to map an input set to a reference set. Since the
weights to map are difficult to estimate due to many unknowns, these are solved as an
optimization problem [74]. Training involves a stochastic gradient descent optimization
algorithm with the weights updated through the backpropagation of the error algorithm.
The function that has to be minimized or maximized is the loss function. The loss function
compares the Predicted Output and the true output to provide a prediction error. If the
compared values are far off, then the loss value is high, and the model is penalized during
training by propagating through the network and updating the weights. Small losses do
not affect the weights. The loss function reduces the various good and bad aspects of
the complex system to a single scalar value, which allows the candidate solutions to be
ranked. The loss function ensures that the model will work in an intended manner while
providing practical flexibility in neural networks. The loss function is also critical for
learning efficiency and prediction accuracy. Hence, the loss function is tuned to enhance
the outcome. The various loss functions used are summarized below:

6.4.0.1 Mean Square Error Loss (MSE)

MSE, or L2 loss is calculated between predicted (Ypred) and actual values (Y ). Large
mistakes are penalized by squaring as:

MSE =
1

N

n∑
i=0

(Yi − Ypredi)
2 (6.1)

6.4.0.2 Mean Squared Logarithmic Error Loss (MLSE)

MSE also penalizes target values that are spread. This is avoided by taking the natural
logarithm of each of the predicted values before MSE computation.

6.4.0.3 Mean Absolute Error Loss (MAE)

Gaussian data distribution may have outliers that are far from the mean value. The popular
MAE loss or L1 loss function has a large constant gradient and is more robust to outliers.

MAE =

∑n
i=1 |Yi − Ypredi |

N
(6.2)
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6.4.0.4 Huber Loss

Huber loss is less sensitive to outliers than MSE, differentiable at 0, and has a threshold δ.
It approaches MSE when δ ∼ 0 and MAE when δ ∼ ∞.

Lδ(y, f(x)) =

 1
2
(y − f(x))2 for|y − f(x)| ≤ δ,

δ|y − f(x)| − 1
2
δ2 otherwise

(6.3)

The hyperparameter δ makes the loss flexible and can adapt to many distributions. A
smooth approximation of Huber Loss is the Pseudo Huber loss.

6.4.0.5 BerHu Loss

This reversed Huber loss is appropriate for normally distributed errors with heavier tails,
where many pixels have small depth values, leading to data imbalance problems. It switches
to give higher weight to pixels with higher residuals as MSE loss and simultaneously al-
lows smaller residuals to have a larger effect on the gradients as MAE loss. It is continuous
and differentiable at the switch point c.

B(x) =


|Ypredi − Yi| |Ypredi − Yi| ≤ c,

((Ypredi − Yi)
2 + c2)/2c |Ypredi − Yi| > c,

c = 0.2maxi(|Ypredi − Yi|), threshold

(6.4)

6.4.0.6 Log-Cosh Loss

It is used for tasks that are smoother than MSE. It works mostly like MSE without being
strongly affected by occasional wild, incorrect predictions. It has all the advantages of
Huber loss and is useful for hessian (second derivative) tasks. However, it works on a fixed
scale.

L(Y, Ypred) =
∑
i=1

log(cosh(Ypredi − Yi)) (6.5)

6.4.0.7 Quantile Loss

Quantile loss predicts an interval instead of only a point for tree-based models. Quantile
loss and quantile regression provide prediction even for residuals with non-constant vari-
ance or a non-normal distribution. It is an extension of MAE and gives different penalties

78



for overestimation and underestimation based on the chosen quantile value.

Ly(Y, Ypred) =
∑

i=Yi<Ypredi

(γ − 1).|Yi − Ypredi |+
∑

i=Yi<Ypredi

(γ).|Yi − Ypredi | (6.6)

The above loss functions are geometric loss types. These loss functions are summarized in
Fig.6.2. Other loss functions are possible. Some are given below.

Figure 6.2: Plot of Loss Functions

6.4.0.8 LSSIM (Structural Similarity Index)

This loss computes the perceptual difference between two similar images. LSSIM is a non-
geometric loss, and the structural loss information comes from spatially close pixels, which
have strong neighboring interdependencies [41] and carry important information about the
structure of the objects in the visual scene. Identical images score the lowest. The loss
function is:

LSSIM = 1− SSIM(Yi, Ypredi) (6.7)

When two images are similar, the SSIM loss is 0. In most applications, the penalization is
reduced by a standard weight of 0.5 on the loss.

6.4.0.9 Photometric loss

Provides the color differences computed on each pixel independently.

79



6.5 Formulation-Multi-Loss Function

The formulation of a loss function for training is an important activity for training a net-
work. In this depth estimation task, the loss function should guide and penalize the model
to converge, minimize loss, sharpen feature edges, and recover depth information similar to
the labeled ground truth. Further, the loss function needs to be optimal and train the model
within a short time by reducing iterations in the recursive methods. Researchers use mul-
tiple loss functions along with additional hyper-parameters (λ) to control the penalization
[1, 41, 65]. The formulation may use multiple standard loss functions, as in the previous
paragraph, or use custom loss functions or a hybrid combination. The loss functions used
in the study are a hybrid combination of standard and custom loss functions. The choice
of loss functions is discussed below. The Mean Absolute Error Loss (MAE) or L1 loss
function is a popular loss that is robust to outlier data. MAE computes the pixel-wise error
as:

Lpix =

∑N
i=1 |Yi − Ypredi |

N
(6.8)

where Yi is a pixel in the ground truth depth map, Ypredi is a pixel in the estimated depth
map, and N is the total number of pixels in the depth map. MAE is linear and provides
equal weight to both lower and higher values, thus resulting in fewer predictions and poor
training. The BerHu Loss [38, 37] overcomes this problem and applies mean square error
(MSE) to ensure pixels with higher residuals get higher weight. Simultaneously, it applies
MAE loss to smaller residuals for a larger effect on the gradients. BerHu uses a threshold c

to provide this trade-off between L1 loss and L2 loss. A threshold of 20% of the maximum
error in a batch is the standard level in most work. The BerHu Loss is:

Lpix =


|Ypredi − Yi| |Ypredi − Yi| ≤ c,

((Ypredi − Yi)
2 + c2)/2c |Ypredi − Yi| > c

c = 0.2maxi(|Ypredi − Yi|)}

(6.9)

Fig.6.3 shows the simulated plots of MAE (L1), MSE (L2), and BerHu loss functions. The
advantages are seen. Loss functions of a depth map are also required to define parameters
for image structure and features. SSIM loss helps in constructing the image structure by
assessing the perceptual difference between two similar images [41]. The structural loss
information comes from close spatial pixels that have strong interdependencies. Construct-
ing a depth map from a sharpened ground truth will lead to more details. Hence, this study
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Figure 6.3: Plots of MAE, MSE, and BerHu functions and characteristics.

uses a new loss, which is an improved SSIM loss, where the ground truth image Yi is re-
placed with an edge-enhanced, sharpened ground truth image Y ′

i as:

LSSIM =
1− SSIM(Y ′

i , Ypredi)

2
(6.10)

A derivative Laplacian filter of second order sharpens the image Yi by highlighting the
inward and outward boundaries of feature edges present in the image. This filtered image
is added to the original image. The Laplacian filter kernel is:

s =

 0 −1 0

−1 5 −1

0 −1 0


The features with high-frequency components of the structure need reconstruction through
the edge loss function. The various edge loss functions studied are Sobel, Gradient, Differ-
ence of Gaussian, Laplacian, and Laplacian of Gaussian. The aim is to improve the details
of the depth map by sharpening the features. In this study, the network model is trained
one at a time with each type of edge loss, which totals a minimum of five training sessions
along with several iterations. The Gradient operator is the simplest edge loss function and
is the maxima of the derivative at the feature edges. The derivative produces a positive peak
followed by a negative peak. Mathematically, the horizontal and vertical intensity gradient
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of an image Y is:

∂Y

∂x
= Y (x+ 1, y)− Y (x− 1, y),

∂Y

∂y
= Y (x, y + 1)− Y (x, y − 1),

Ledges−1 = mean

(∣∣∣∣∂Ypred

∂y
− ∂Y

∂y

∣∣∣∣+ ∣∣∣∣∂Ypred

∂x
− ∂Y

∂x

∣∣∣∣)
(6.11)

The gradient operation produces double edges for lines, which is unwanted. Further, image
noise creates small peaks, which calls for removal by usual thresholding. The Sobel oper-
ator is a good edge detector and uses vertical and horizontal kernels (3x3 each) to provide
the 2D gradient map. The advantage of this operator is its lower sensitivity to noise. The
kernels are:

Sx =

1 0 −1

2 0 −2

1 0 −1

 , Sy =

−1 −2 −1

0 0 0

1 2 1


The x and y kernels are applied separately to an image to get the gradient components in
the required orientations. The absolute gradient magnitudes Lmag, computed from these
components, are:

|Lmag| = |Sx|+ |Sy| (6.12)

The Sobel operator-based edge loss function Ledges is:

Ledges−2 = mean(|Ypred ∗ Sx − Y ∗ Sx|+ |Ypred ∗ Sy − Y ∗ Sy|) (6.13)

The loss is the mean of the magnitudes obtained after taking the difference between the
estimated depth and the ground truth depth gradient magnitudes. The algorithm iteratively
penalizes large differences to obtain minimum errors for all depth values. Sobel operators
have the limitation of providing first-order derivatives in only x and y directions. Further,
a requirement for thresholding exists to reduce the noise. The Laplacian edge detector
provides second-order spatial derivatives to detect rapid changes and zero crossings. This
detector is insensitive to orientations. The Laplacian operates on image Y (x, y) with a
single kernel to provide the L(x, y) coefficients as:

L(x, y) =
∂2Y (x, y)

∂x2
+

∂2Y (x, y)

∂y2
(6.14)
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The Laplacian kernel is:

L =

 0 −1 0

−1 4 −1

0 −1 0


The edge-loss function is then

Ledges−3 = mean(|Ypred ∗ L− Y ∗ L|) (6.15)

Since the operator uses a single kernel, it is computationally faster. However, these second-
order derivative operators are very sensitive to noise and need preprocessing with Gaussian
filters to smooth the noise. The preprocessing stage reduces the noise from all the training
RGB and depth images. The 2D representation of the Gaussian filter is:

Gσ(x, y) =
1√
2πσ2

exp

(
−x2 + y2

2σ2

)
(6.16)

The above preprocessing for the Laplacian edge detector leads to the ’Laplacian of Gaus-
sian’ (LOG) operator loss function. The LOG operator is hence useful for noisy images.
The single equation for the LOG operator is:

LOG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
exp

(
−x2 + y2

2σ2

)
(6.17)

Here, zero crossing defines the edge position. Many filtering kernels are possible, and here
a 3x3 Gaussian kernel is implemented as:

Gausssian =
1

16

1 2 1

2 4 2

1 2 1


The edge loss function then becomes:

Ledges−4 = mean(|Ypred ∗ (Gausssian ∗ L)− Y ∗ (Gausssian ∗ L)|) (6.18)

Most images inherently undergo noise filtering before further processing. If these filtered
images are used, this loss function will have the advantage of computational speed, as with
the Laplacian operation. However, noise filtering reduces high-frequency components or
sharp edges in an image. This may lead to the loss of feature boundaries, thus increas-
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ing errors. Two different Gaussian filtering kernels can act as an edge detector. Here, the
difference of images operated upon by two different smoothing scales (σ) creates a ’Differ-
ence of Gaussian’ (DOG) operation. The zero crossing gives the edge position. The DOG
operator is:

DOG
△
=

1√
2π

(
1

σ1

e−(x2+y2)/2σ2
1 − 1

σ2

e−(x2+y2)/2σ2
2

)
(6.19)

The DOG is useful for noisy images or those with rapidly varying contrast, like shadows.
As with LOG operations, preprocessed images need only one filter operation. Further, since
the DOG operation is derivative-independent, the computation is simple and fast. The first
scale of the 3x3 Gaussian kernel is as given above. The second 5x5 Gaussian kernel, along
with the edge loss function, are:

Gausssian2 =
1

256


1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4


Ledges 5 = mean(|(Ypred ∗Gausssian− Ypred ∗Gausssian2)

−(Y ∗Gausssian− Y ∗Gausssian2)|)
(6.20)

The DOG loss function gives weak edges due to the loss of high-frequency components
from double smoothing. This becomes prominent for already blurred background features
in an image (Fig.2.2). The total loss function is the combination of the loss functions
discussed above. In this work, this comprises pixel-wise loss (MAE or BerHu), edge loss
(one of gradient, Laplacian, Sobel, LOG, DOG), and structural loss (SSIM or modified
SSIM loss) as given below:

Ltotal(Yi, Ypredi) = λLpix(Yi, Ypredi) + LSSIM(Yi, Ypredi)

+ Ledges t(Yi, Ypredi)
(6.21)

Where t is the suffix (1 to 5) for the type of edge loss function as above. Here, the Lpix loss
(L1 or BerHu loss) is penalized more with lower weights compared with structural and edge
loss. The (λ) is taken as 0.1 based on reference [1]. Author [65] reported that the errors
in predicted depth increase proportionally with object distances in the image. Usually, the
compensation requires taking the reciprocal of the depth information in ground truth data
for the predictions. The NYU dataset has a maximum depth of 10 m, so the reciprocal is
10/Yi.
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6.5.1 Optimization

Optimization of the network involves minimization of the loss function during training.
During training, large training sets consume time for gradient computations. Stochastic
gradient descent here can speed up the process by computing gradients over a set of random
samples or batches instead of the entire set. The learning rate hyperparameter also has an
impact on training performance. An optimal training approach needs a large learning rate
initially and, subsequently, a lower learning rate to avoid overshoot and local minimums.
The Adaptive Moment Estimation (ADAM) optimizer adapts the learning rate individually
for each parameter. ADAM is memory- and computationally efficient. This study uses a
learning rate of 1e-4.

6.5.2 Regularization

A network should perform well on training data and non-training data. This generaliza-
tion is verified on a test dataset. A network with few parameters will perform poorly due
to under-fitting. With very large parameters, the network may adapt to training data and
perform poorly on test data due to overfitting. Regularization methods can improve gen-
eralization. In the drop-out regularization method, a random subset of hidden neurons is
temporarily deleted during training. This random subset is defined by a hyperparameter.
This parameter is typically set to 50% probability. This forces the neurons to avoid depen-
dency on each other and makes the training less prone to overfitting. Under-fitting can be
overcome with more data sets. However, for the limited available datasets, data augmenta-
tion is a way out. Here, the existing dataset is modified by random operations like rotation,
flipping, cropping, translation, scaling, contrast changes, the addition of noise, mirroring,
random color channel swapping, etc. These altered images, which are augmented with the
current dataset, are treated as new inputs by the network. Data augmentation is adapted for
the study. Information from homogeneous zones of the scene is difficult. Regularization,
like the L2 norm, is a simple method to overcome depth discontinuities. Other regularizers
are based on edge-preserving methods that give sharper depth maps.

6.6 Ablation Studies

Various studies were conducted to tune the network. The weights for loss functions were
tuned to get the optimal values. The results for model B+S+SSIM’ are tabulated in Table
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6.1. The overall best performance is achieved for λ1, λ2 and λ3 = 1. These weights are
used for our work.

Table 6.1: Performance of weights for B+S+SSIM’ model

λ1 λ2 λ3 δ1 ↑ δ2 ↑ δ3 ↑ REL ↓ RMSE ↓ log10 ↓
0.1 1 1 0.811 0.971 0.994 0.133 0.606 0.06
1 0.1 1 0.842 0.972 0.9941 0.128 0.539 0.054
1 1 0.1 0.848 0.973 0.9939 0.126 0.534 0.054
1 1 1 0.845 0.973 0.9939 0.124 0.524 0.053

The work also studied the performance with two different encoders, viz., DenseNet169
and DenseNet201. Both models were trained for 10 epochs, and the performance is tab-
ulated in Table 6.2. DenseNet201 has 201 layers with 20M parameters, thus being more
accurate.

Table 6.2: Comparison of different encoders

Model δ1 ↑ δ2 ↑ δ3 ↑ REL ↓ RMSE ↓ log10 ↓
DenseNet169 0.8453 0.9732 0.9939 0.1238 0.5242 0.053
DenseNet201 0.8495 0.9736 0.9941 0.1233 0.5264 0.0528

Model ’B+S+SSIM’ was trained with DenseNet 169 and DenseNet 201 encoders.
DenseNet 201 performs better.

6.7 Experiments and Results

The work uses resources from Google CoLaboratory to train the model. A Tesla T4 with a
single GPU is used on the cloud server with CUDA version 11.2. The training was for 20
epochs, as no significant improvements were observed. Each epoch runs for an hour, and
to avoid disconnection, a batch of three epochs was run in one go. Further, the batch size
was kept at 6 to meet the allocated memory limits. The paper [1] uses a batch size of 8
to obtain optimal results. However, the impact of batch sizes up to 16 was low, and hence
performance errors due to batch sizes of 6 can be assumed to be negligible. Later, access
to CoLab Pro was possible. This gave a faster Tesla P100 or V100 with a better GPU and
a higher 100 MB of memory. This allowed a single run of batch sizes of 8 and higher. The
algorithm used an ADAM optimizer for the training and randomly initialized the network
decoder weights. All ground truth and predicted depth values are limited to 0.01 and 1 to
avoid ’divide by zero’ computing errors. The work implements a variety of combined loss
functions for training to study performance. These are in the following format:

1. Sobel + Gradient + MAE (Sobel)
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2. BerHu + SSIM + Gradient (BerHu)

3. SSIM-Sharpened + BerHu (BSSIM’)

4. Laplacian + Gradient + MAE (Laplacian)

5. BerHu + Sobel + SSIM-Sharpened (B+S+SSIM’)

6. BerHu + Sobel + SSIM (B+Sobel)

7. SSIM-Sharpened + Gradient + MAE (SSIM’)

8. SSIM-Sharpened + BerHu + Gradient (SSIM’+B)

9. LOG + Gradient + MAE (LOG)

10. DOG + Gradient + MAE (DOG)

The initial training dataset was the NYU-V2 dataset (4.1 GB) hosted by the Silberman
dataset site. The dataset was further divided into training, validation, and datasets. Since
the prediction error is higher for higher ground-truth depth values, the inverse of the depth
is always taken. To have the same level of ground for comparison, the model of reference
[1] is also retrained. This is labeled as ’Trained’ in Table-6.3. The required kernels are
as given in the ’Loss function’ sub-section. The standard performance metrics (Chapter
2) are used for evaluating the trained models along with the NYU-test sub-dataset. This
allows reliable comparison of this work with other SOTA algorithms. Table-6.3 gives the
results with the proposed loss functions and compares them with the original work. Fig.
6.4 compares the visual quality of estimated depth maps for different loss functions. The
study also compares the visual improvements by taking the difference between actual and
predicted values (Fig. 6.9). Further, the best loss function is chosen to train the model with
a dataset provided by the author [1].

6.8 Results and Observation

The NYU dataset provides diverse, labeled complex indoor images covering big and small
rooms, a variety of textures (furniture, wall corners, door, ladder, rack, roof, etc.), rooms
with different illuminations, large and small features, etc., all at various distances. The
proposed loss functions are verified with these images. The pixel-wise loss functions are
compared, and it is found that BerHu gives better performance, as shown in Table-6.3 and
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Table 6.3: Performance comparison of trained models

Model δ1 ↑ δ2 ↑ δ3 ↑ REL ↓ RMSE ↓ log10 ↓
Sobel 0.8526 0.9709 0.9919 0.1253 0.5585 0.0529
BerHu 0.851 0.972 0.993 0.126 0.552 0.053
BSSIM’ 0.8505 0.9727 0.9932 0.1265 0.5367 0.0533
Laplacian 0.8504 0.9716 0.9926 0.1255 0.5441 0.0531
B+S+SSIM’ 0.8494 0.9727 0.9940 0.1231 0.5234 0.0528
B+Sobel 0.8480 0.9725 0.9937 0.1259 0.5388 0.0534
SSIM’ 0.847 0.9725 0.9929 0.1237 0.5429 0.054
SSIM’+B 0.8448 0.9706 0.9934 0.1275 0.5513 0.0539
LOG 0.8316 0.9669 0.9926 0.135 0.579 0.0565
DOG 0.8034 0.9588 0.9898 0.146 0.6032 0.0617
Baseline [1] 0.846 0.974 0.994 0.123 0.465 0.053

Note: The models are ranked as per δ1, with the largest on top. The best results are in
bold. Overall, the best performance is met by model B+S+SSIM’.

Fig. 6.6. Among all the loss functions studied, it was found that the model trained with
the Sobel edge function provided better visible features with higher false colors (Fig. 6.4).
Sobel has the best accuracy and depth range (distinct in images 3, 6, 7, and 8). Image
7 highlights the higher depth range for Sobel, as the range covers up to the corridor end.
However, non-uniform lighting in the corridor causes depth errors here. The Sobel oper-
ator uses vertical and horizontal kernels to provide first-order derivatives in only x and y
directions. It also has the advantage of lower sensitivity to noise. These properties resulted
in better visible features with higher false colors. The performance is followed by BerHu,
SSIM’, SSIM’+ BerHu, and LOG, while the rest fare poorly. Sobel, however, performs
poorly for near objects, as missing features are seen in Fig. 6.7. The near-depth predic-
tions are better for BerHu, followed by Laplacian, Sobel, and DOG (image 4). BerHu and
DOG provide good mid-range performance by detecting more details, as shown in image
6. Other loss-based training shows a wider range of colors here. SSIM’ + BerHu brings
more edge definitions and better dynamic range (images 2 and 4) compared to BerHu and
SSIM’. However, the performance for near objects is relatively poor. LOG and DOG have
poor depth range (image 9) and Fig. 6.8. Depth detection under poor scene illumination
is poor for all loss functions, and Sobel gave a depth error for the notice board in image
7. Performance metrics show that δ1 values are higher for SSIM’, SSIM’+BerHu, Sobel,
and Laplacian; Sobel gives 85.26% compared to the original paper’s 84.6%. This work
also compares achieved performance with the performance metrics from the original paper
[1]. This is also tabulated in Table-6.3 as the last row. Compared to these values, the thesis
work performance is better in most columns. It may be noted that the authors used a mod-
ified dataset with inpainting. The study additionally uses this dataset to train the best loss
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Figure 6.4: A visual comparison of predicted depths with proposed edge loss functions (a)
SSIM’, (b) BerHu, (c) SSIM’ and BerHu, (d) Sobel, (e) Laplacian, (f) LOG, (g) DOG

functions, BerHu, Sobel, and SSIM’. The results showed good performance for the near
range and poor performance for the mid and far ranges. Hence, the model is trained with
BerHu, Sobel, and SSIM losses. Fig. 6.9 shows the results along with error maps.

Figure 6.5: (a) NYU Dataset original image (b) Ground truth (c) Estimated depth map
from [1]
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Figure 6.6: Predicted depth map with proposed loss functions (a) SSIM sharpened, (b)
BerHu, (c) SSIM sharpened, and BerHu

Figure 6.7: Performance of depth estimation (a) false color ground truth, (b) Laplacian
loss function, (c) Sobel loss function

Figure 6.8: Edge loss functions and predicted depth-map (a) false color ground truth, (b)
LOG, (c) DOG

6.9 Summary

The study proposed new loss functions to improve the feature details of estimated depth
maps. To identify the improvements, the study uses a ready-made network and an estab-
lished transfer learning method. Further, the network is trained with proposed edge loss
functions using the standard NYU dataset and evaluated with popular evaluation metrics.
The tailor-made edge loss functions are SSIM with sharpened image, Laplacian loss, So-
bel loss, LOG loss, and DOG loss, and combinations of these loss functions with L1 loss,
reverse Huber loss and gradient loss. These loss functions are not reported in available
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Figure 6.9: (a) NYU Dataset Original Image (b) Predicted depth map (c) Error map of
ground truth and predicted

research works in this domain. The metric performance parameter δ1 was higher for loss
functions with BerHu, Sobel, Laplacian, SSIM with sharpened depth map and a combina-
tion of SSIM with sharpened depth map plus BerHu. The Sobel edge function gave the best
performance, while SSIM with a sharpened depth map was marginal. The performance of
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LOG and DOG-based edge loss was poor. Apart from Sobel, Canny Edge detectors are
also possible here. The important steps of Canny Edge Detectors are (a) smoothing filter to
reduce noise, (b) deriving the intensity gradients, (c) Non-maximum suppression for single
edges, (d) Double thresholding for strong and weak edges, and (e) Track edge by hysteresis
and suppress non-connected edges. Here, in this study, steps (a) and (b) are used, that is
Gaussian and Sobel filters with thresholding. The steps (c), (d), and (e) can lead to sharper
depth images and may be tried in future studies. This may call for additional running
time and feature weights. However, this edge detection will not perform on homogeneous
surfaces like walls at an angle to the camera. The authors of the original paper used a
custom-improved dataset from the NYU V2 dataset. The study used the original NYU
V2 dataset as-is. The work also compares the achieved performances with their published
report. They use the same dataset and model but use a different loss function. Here, the
performance for Berhu, Sobel, Laplacian, and SSIM with sharpened depth maps is found
to be superior. From this study, it is concluded that the choice of edge functions has a good
impact on the estimation of depth maps. It is also observed that edge functions based on
derivative and differentiation loss functions are better than smoothing-type loss functions.
In this study, the following contributions are made to the research community:

1. Five new edge loss functions developed including SSIM loss function, which gives
sharpened depth map features.

2. A multi-loss function with 4 different operators to improve the depth map

3. Standard performance analysis with a popular dataset and the visual quality of pro-
posed edge-enhancing loss functions

The UNet-like network used for experimentation had a DenseNet backbone, which is com-
plex and computationally intensive. Training needed about 10 epochs, and computation
with the GPU took about 150 seconds per epoch. In most robotic applications, power and
computing resources are constrained. Here, a simpler network will be an advantage, as mo-
bile systems like smartphones do have a resource crunch. Further studies for better edge
operators like Canny’s can also be looked into.
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Chapter 7

Nested Wavelet-Net for Depth Estimation

7.1 Introduction

Estimating depth from a single image is a well-known nonlinear problem with many so-
lutions and therefore ill-poised. Researchers have successfully used convolutional neural
networks (CNN) to solve these depth estimation problems for single images. Such net-
works need training with datasets having diverse images and labeled data (ground truth).
After successful training, the network model can predict depth from live photos. The train-
able network model can develop custom architecture with building blocks like convolution
layers, pooling functions, activation layers, and expansion layers [1, 38, 39]. Further, the
training is either supervised or unsupervised [37, 38, 42, 43, 44]. An image consists of
global and local structures. Global structures provide an overview of the scene with se-
mantic information, textures, sky, horizon, etc. The local structures enhance the details of
these global structures with information like edges, local features, noise, contours, local
regions, etc. [14]. In the frequency domain (Fourier, wavelet, etc.), the global features
show up as low frequencies, while the local features that represent them show up as high-
frequency components. Most local features have these high-frequency edges created by
contrasting intensity gradients among structured neighboring pixels. As discussed earlier,
smoothing functions like averaging degrade the edge gradients and merge the features with
the background. Similarly, the averaging process of pooling or down-sampling layers in
the network reduces these high-frequency components to introduce jagged edges and blur
in images. The object definitions and details are significantly reduced, which causes errors
in estimating depth [71]. Researchers have tried to address this degradation by imple-
menting various methods for edge enhancements [72, 73, 75]. Recently, they have also
used Discrete wavelet transform (DWT) as part of the network architecture. This trans-
form converts the spatial images with contrast variations into frequency domain informa-
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tion and has found wide acceptance in the down-sampling and up-sampling layers of the
network. Since the high-frequency information is preserved throughout the process, arti-
facts are reduced [76, 77, 78, 79]. DWT breaks the image into one separate low-frequency
and three high-frequency components. Learning all these coefficients during training im-
proves the related boundary edges and reduces the noise. Up-sampling this information
with Inverse DWT (IWT) will provide quality outputs without the loss of high frequencies.
Networks for depth estimation use pretrained encoders like ResNet, DenseNet, VGG, etc.,
which are computationally and time-intensive. The simplest fully convolutional network
is UNet [80] with encoder-decoder blocks. Each encoder block has convolution operators,
a down-sampling operation to reduce the size by 2, and an activated output. The decoder
block has an upsampling and convolution operation that expands the size of feature maps
by 2. Skip connections, taken from the corresponding encoder block, are fed to the de-
coder block to enhance the output predictions. These connections preserve boundaries.
Over the years, the research community has made several improvements to the UNet ar-
chitecture. One significant improvement was the addition of soft attention [81], which
allows the network to focus on relevant zones with low computational complexity. This
feature reduces redundant image features and improves prediction accuracy. Another im-
provement was the development of Residual UNet [82], which overcame the problem of
accuracy degradation while improving training ease. MobileNet [83, 84] is another light
network that uses depth-wise separable convolutional layers to reduce computational ef-
fort. Wavelet transform has also been used in a variety of image processing applications,
including depth map prediction [78, 85, 86, 87, 88, 89]. Some researchers have used mul-
tiple wavelets [77], while others have learned wavelet coefficients [79]. A nested UNET++
using dense skip paths and multiple decoder chains was an improvement from [68]. In the
past, these lean networks catered to medical analysis and semantic applications with small
databases, faster learning, good accuracy, and low computation resources [90]. Lately, the
advantages of UNet-like architectures have been exploited for depth estimation [91, 92] for
faster learning and implementation in less computationally intensive systems. The pool-
ing and upsampling processes were subsequently replaced with DWT and IWT layers in a
UNet variant by [93].

7.2 AIM

A survey of research work on monocular depth estimation did not yield much work with
UNet-like light networks, indicating these may be unexplored. This work discusses the
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development of a moderately dense network for studying depth estimations. Looking at
the advantages of DWT, the work looks at developing a custom network architecture using
DWT and IWT. It is expected that this proposed nested DWT network (NDWTN), after
training, will be better than UNet and UNet++. The work also creates variants of this net-
work to understand the optimal and final network elements. The aims here are summarized
as:

1. Explore light networks for depth estimates. Depth inference networks employ en-
coder and decoder architecture. The study also needs to identify the appropriate
network elements.

2. Design of a multi-scale DWT network architecture for monocular depth estimation,

3. Investigate alternate lossless scaling methods like Wavelet,

4. Improve learning of local features with dense skip and attention functions,

5. Higher feature extraction and learning with dense convolution blocks.

The main novelty of our network is the use of multistage encoding and decoding;
attention-based skip paths for information enhancements among the stages; DWT-based
pooling instead of Max pooling to avoid information loss during scaling; UNet-like archi-
tecture to train faster; and Batch normalization and residual convolution layers. These fea-
tures lead to higher training, validation, and evaluation scores. The main advantage comes
from DWT, which preserves high and low frequencies (LH, HL, and HH) with localization
and reduced coefficients. This reduces the size by two, similar to pooling. The DWT trans-
former is invertible and composes all coefficients back to the original image without any
degradation, unlike pooling. All the proposed networks are trained with datasets. Ablation
studies were also completed. Analysis was carried out and the results were compared with
SOTA investigations in this domain.

7.3 Wavelets

Wavelets are various functions from the Wavelet Transform family that exhibit properties
of rapid decay and orthogonality. These have advantages over Fourier functions, where the
data contains discontinuities and sharp spikes, as these functions process data at various
scales. These have large-scale-varying Basis Functions to provide frequency and temporal
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information. A function in a discrete wavelet can be represented by a linear combination
of two basis functions:

f(t) =
∑
k

ckφ(t− k) +
∑
k

∑
j

djkΦ(2
jt− k) (7.1)

The above equation has the first part as a scaling function and the second as a wavelet
function. The j represents scale or frequency, and the k is the position. The simplest
wavelet is Haar, and this mother wavelet is represented in time t as:

Φ(t) =


1 0 ≤ t < 0.5,

−1 0.5 ≤ t < 1,

0 otherwise

(7.2)

The scaling function of Haar is:

φ(t) =

 1 0 ≤ t < 1,

0 otherwise
(7.3)

Another popular wavelet is the Daubechies wavelet, commonly known as db1–db10. The
index refers to the number of coefficients. This wavelet has the maximum vanishing mo-
ment, which is half the coefficients. The db1 is the same as the Haar wavelet. Wavelet
transforms on an image provide spatial frequency information at lower scales and decom-
pose an image into a low-frequency coefficient map (LL) and three high-frequency coeffi-
cient maps (LH, HL, and HH). Further decomposition is possible using the LL map only.
Thus, many scales and multiple coefficients are arrived at, as shown in Fig. 7.1. The size
of the derived coefficients is halved w.r.t. the input for each scale. The DWT transformer is
invertible and, hence, can compose all four frequency coefficients back to the original im-
age without any degradation. This needs an inverse DWT or IWT in the upsampler, which
recovers the image to twice the coefficient resolution as the original. The DWT coefficients
for image Y are:

LL,LH,HL,HH = DWT (Y ) (7.4)

Implemented wavelets have successfully improved accuracy in deep learning and are im-
mune to noise [94]. In a network, the downsampling layer reduces the output size by 2
w.r.t. the input. This makes the DWT a good fit here and replaces the pooling layer. Pool-
ing averages the features to reduce the high-frequency components and scale the input size
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by 2. An additional advantage of the DWT layer is that the coefficients are learned and
estimated with training, eventually ensuring that the high-frequency edges are preserved or
improved. Among the wavelets, Haar and Daubechies are popular. The simplest basis is
the Haar wavelet. The Daubechies wavelet has vanishing moments. This work implements
a DWT scale of 1 to match the pooling size. The study uses both Daubechies (db4) with
four vanishing moments and Haar wavelets as part of the experiments. The DWT imple-
mentation is similar to [95].

Figure 7.1: DWT decomposition and low-resolution coefficient maps. Here, the scale is 2,
however, the downsampling operation requires a scale of 1.

7.4 Deep network architecture

A convolutional neural network (CNN) is a subset of artificial neural networks and comes
from the family of machine learning. The network working principle and training were
discussed in sections 2.4 and 6. CNN has wide range of image processing applications.
These are Deep Learning methods that require less preprocessing compared to other classi-
fication techniques. These networks have neurons that self-optimize through learning and
backpropagation by solving a non-convex optimization problem. An error or loss func-
tion computes the error between the input image and the labeled image (ground truth) for
backpropagation. This error updates the learnable filter weights during back-propagation
(see Fig. 7.2). This predicts statistical information through a series of hidden layers for
multiple classifications. Deep neural networks (DNNs) based on VGG, ResNet, DenseNet,
etc. are complex and computationally expensive. Therefore, this work investigates simpler
networks with low complexity to estimate depth maps systematically with faster training.

The basic elements of a network are the convolutional layer, Pooling layer, and Activa-
tion layer.
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Figure 7.2: CNN- basic elements.

7.4.1 Convolution Layer

The convolutional layer convolved the input (usually an image) with a scanning trainable
filter. The scanning step is defined by the stride. Here, neurons connect to different regions
of the neurons of the previous layer. The region size depends on the filter size. Convolution
results in a feature map that represents the underlying patterns or features. These can be
edges, lines, and structures. The filter weights and biases are learned during training and
define the types of features to detect. These parameters are shared across the image to
detect similar features at various locations.

7.4.2 Pooling Layer

A pooling layer reduces the spatial size of feature maps. This reduces the number of learn-
ing parameters and improves the computational efficiency of the network. In this operation,
A small, non-trainable filter operates over feature maps to provide a summary of neighbor-
ing values. Since only one value is returned for a region, the spatial size of the feature map
is reduced or downsampled. The filter size and the stride control this size reduction. The
max-pooling operation takes the maximum of the values within the filter region to indicate
underlying features. Average pooling returns the average of all values within the filter re-
gion. Information on the exact spatial location of the feature is lost with these operations.

7.4.3 Activation functions

Activation functions are non-linear and make the model under training learn high-order
polynomials between the input and ground truth. It determines the output of the neural
network by mapping the input values. The most common and simple activation function
is the rectified linear unit or ReLU. ReLU is nonlinear for negative values and linear for
positive values. The function, therefore, provides only positive values and reduces the
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vanishing gradient problems. For an input x, ReLU is given as

R(x) = max(0, x) =

 x, if x ⩾ 0

0, if x < 0
(7.5)

Leaky Relu is a variant of ReLU and allows negative values with a small gain to solve the
dying ReLU problem. The Sigmoid function, or Softmax function, has an S-shaped curve
and is used to predict the output as a probability between 0 and 1. This function saturates
for higher values and is suitable for multi-class classification. The function, for an input x,
is

σ(x) =
1

1 + e−x
(7.6)

7.4.4 Regularization

During the training, a covariance shift in layer outputs is expected after the update of train-
able parameters. This leads to vanishing activations. Batch normalization [96] reduces this
shift by normalizing the input to each layer per batch and prevents saturated activations.

7.4.5 Proposed Network Architecture

The proposed development is a moderately dense network architecture, the Nested Discrete
Waveform Transform Net, or NDWTN. The proposed network comprises an encoder and
multi-chain decoders. The encoder provides image compression to extract image features.
This half of the network consists of a series of convolutional and downsampling layers that
gradually reduce the spatial dimension and resolution of the input image. The second half
of the network is a decoder that gradually expands the feature information through a series
of convolutional and upsampling layers. This increases the spatial dimension to the original
dimension while reducing the resolution of the feature dimension to 1. The decoder chains
have four different scales. The encoders and decoders are connected at each level by nested
dense skip paths. These help preserve fine-grained information from the input image and
improve the accuracy of the segmentation results. Downsampling is usually a pooling op-
eration. This is a convolution layer that reduces the size of the input image and the number
of parameters, which improves training speed. The common pooling operations are Max-
pool and Avg-pool. Max-pool layers select the maximum value within 2x2 pixel blocks,
thus reducing the size by 2 in both dimensions of the image. This preserves the prominent
features, and the reduced image is sharper. The AVG-pool layers select the average value
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from 2x2 pixel blocks, again reducing the image size by 2. This smooths the image while
retaining the essence of the features. Apart from these pooling layers, researchers have
also used strided convolution layers to reduce image size and enhance feature information.
The upsampling layers must expand the pooled output to the desired resolution by adding
pixels. One such popular method is bi-linear upsampling. However, as the downsampling
process is lossy, high-frequency information cannot be recovered during the upsampling
process. Skip paths help here to some extent by concatenating information from encoders.
To solve this issue, DWT for downsampling is implemented. This inherently preserves the
high-frequency information after upsampling with IWT. Further, the wavelet coefficients
(LL, LH, HL, and HH) are learned through training. The proposed network architecture
is shown in Fig. 7.3. The encoder has five blocks, like UNet. Each of these downsamples
the input by 2. Fig. 7.4 illustrates one encoder block, which consists of multiple convolu-
tion layers (green color) and a DWT layer for downsampling (red block). The convolution
layers comprise filter kernels that have learnable weights to filter features from the input.
Here, the information energy is compacted through the computation of cross-correlation,
which creates a feature map representing the underlying patterns like edges, lines, struc-
tures, etc. Here, the filter weights and biases that are learned through training define the
features to be classified across the image locations. Convolution layers increase the com-
putation complexity and the feature extraction size. These encoder layers sandwich other
layers like activation and batch normalization. The layer density is also customized for
convolution and batch normalization. Fig. 7.5 shows one customized encoder block. This
work also implements residual-type convolution by replacing the exiting convolution. This
is indicated by the ‘+’ sign in the blue block (Fig. 7.4). These have parallel identity skip
connections from input that add to the convolution output. This provides easy training for
deep networks while improving accuracy. Fig. 7.6 shows one customized encoder with
residual convolution. Except for the first and last encoder, each encoder block feeds the
next encoder, a parallel decoder, and a horizontal skip connector. A decoder block up-
samples the input data and expands the information by 2. This block consists of an IWT
layer for up-sampling (red block) and multiple convolution layers (green color), as shown
in Fig. 7.7. An additional input ‘a’ is taken from the encoder through the skip connec-
tor and concatenated to the up-sampled outputs (blue block). The convolution layers are
the same as those in the encoders and can be replaced with a residual convolution. The
customization includes the density of convolution layers, batch norm layers, and activa-
tion layers (Fig. 7.8). Each decoder block feeds another decoder above it and totals ten in
the four chains. Each decoder chain is on a different scale. The scales are visually rep-
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Figure 7.3: Proposed Network Architecture (NDWTN)

Figure 7.4: Structure of down-sampling block.

resented with pink, green, blue, and yellow colors. The output of each decoder chain is
implemented with convolution layers, possibly a batch normalization layer, and a Sigmoid
activation layer. These outputs independently predict the depth maps (Fig. 7.9). All three
outputs are further added to the fourth chain through skip connections to provide a single
inference and also improve the prediction accuracy. Activation function layers are used
both in encoders and decoders. This layer decides whether a weight should be upgraded
or dropped, thus activating a neuron. The decision uses a threshold along with a bias to
regulate the output of neural networks across several domains, depending on the function
it represents. These introduce non-linearity to make the model learn complex relationships
between inputs and outputs.

f(a) = w1x1 + w2x2 + · · ·+ wnxn + b (7.7)

Some widely used activation functions are:

• Linear: The activation function is directly proportional to the input and follows a
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Figure 7.5: Down-sampling block details: The stack of convolution operators and the
sequence of Batch-Norm and activation layers are customized.

straight line.

• ReLU: This function removes the negative values by rectification action. This avoids
overfitting by not activating all neurons.

• Leaky Relu (LR): LR modifies ReLU and provides a small constant gain to negative
weights instead of making the values zero. This avoids “dying ReLU” and improves
accuracy.

• Parametric Relu: This function is an improvement over LR by giving the choice of
best gain or gradient for the negative region.

• Exponential Linear Unit (ELU): This function is exponential and leads to faster con-
vergence. with higher accuracy.

• Swish: This activation function is computationally more efficient than RelU.

• Sigmoid: This nonlinear S-shaped function maps real input values [−∞,−∞] to
within [0,1].

• Tanh: This non-linear activation function is similar to the Sigmoid function and maps
the input to within [-1,1].

• Softmax: This function provides the probability of target classes and is used for
multi-class classifications.
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Figure 7.6: Residual convolution block. The stack of convolution operators and the se-
quence of Batch–Norm and activation layers are customized.

Figure 7.7: The upsampling block provides IWT and convolution operations. Information
from the skip path ‘a’ is also concatenated.

The choice of activation function depends on the defined task and the input. This study
uses ReLU, LR, and Sigmoid. Nesting of information in the proposed network is possible
with skip connections. The encoder provides the convolution layer output to the skip layer,
which concatenates with the decoder IWT output. Each level of encoder connects with the
same level of decoder from each chain through multiple skip layers. This reduces semantic
gaps between the encoder and decoder by providing high-level information and retaining
structural information. This path can be an attention gate. The attention gate consists of
convolution and activation layers, as shown in Fig. 7.10. It takes two inputs, ‘x’ and ’g’,
which relate to the encoder input and the convolution layer output, respectively. The ‘x’
is operated with a strided convolution to match the feature dimensions of ‘g’. The outputs
are added to induce higher aligned weights and reduce unaligned weights. A ReLU activa-
tion layer filters in the higher weights. A subsequent convolution layer reduces the feature
dimensions to 1. A final Sigmoid activation layer scales the information to [0, 1]. These
attention coefficients are upsampled to match the dimensions of the IWT output in the de-
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Figure 7.8: Up–sampling block details: The stack of convolution operators and the se-
quence of Batch–Norm and activation layers are customized. The convolution stack can be
replaced with a residual block.

Figure 7.9: Output block with Sigmoid activation layer

coder. The attention gate preserves local feature details by adding the high-resolution local
information from the encoder input to the global contextual information in the decoder.
This gate concentrates the high-energy features by focusing on local contrasts and sharp
edges to generate an attention grid and finally enhance the high frequency of local features
in the estimates. Fig. 7.11 shows the proposed model with attention gates. The work uses

Figure 7.10: Skip layer with attention. This layer takes two inputs from encoder blocks
of different scales, ‘g’ from the higher scale or input to the encoder and ‘x’ from the lower
scale or output of the encoder, and feeds the decoder block with attention vectors ‘a’.

two activation functions. The ReLU (Rectified Linear Unit) function is computationally
efficient, allows backpropagation, and boosts all positive values. However, neglecting the
negative values kills neurons with negative bias. The Leaky ReLU (LR) activation has a
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Figure 7.11: Proposed Network with Attention Gates (NADWT)

small positive gain for these negative values to overcome such problems. ELU (Exponential
Linear Units) have advantages over these two functions but are computationally intensive
and, hence, not considered. The work implements both activation functions in the network
and studies the improvements in each case. The Batch Normalization layer is not imple-
mented in the original UNet and UNET++ networks. This layer reduces Covariate shift to
remove bias, improves training time, and reduces overfitting. This layer was proposed to
be before the activation function [96]. However, many researchers reported improvements
with this layer placed after the activation layer. This sequence of layers is also studied
to finalize the model. The layer includes two learnable parameters and two non-learnable
parameters (Mean and Variance Moving Averages). The NDWTN takes small input image
shapes (240,240,3 or 240,320,3). This resizing is sufficient for most low-level applications
and is popular among most researchers to save computation resources. Higher sizes are
possible, with an impact on computation power and time. The NDWTN encoder reduces
the size of the input image to (15, 15, 1024) after processing five blocks. The decoder
blocks then restore the dimension to (240, 240, 1) for the depth map. The network is opti-
mized through performance studies. The study includes the effects of layers, combinations,
and sequences. The study works out 13 variants of NDWTN based on convolution layers,
residual convolution layers, batch normalization layers, activation types, and attention fea-
tures. These architecture variants are designated as:

• NDWT: Basic NDWTN;

• NADWT: NDWTN with attention on skip paths;
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• NRDWT: NDWTN with residual blocks;

• NARDWT: NRDWT with attention on skip paths.

The input for these networks is an RGB image with a resolution of 240 × 320 × 3 pixels
and a corresponding labeled data resolution of 240 × 320 pixels. This ensures that the
estimated depth map resolution is 240 × 320 pixels. The dimensions used are arbitrary.
The trainable parameters of the proposed models are higher than basic UNet and UNET++.
The non-trainable parameters are less than the DenseNet backbone UNet [1]. The com-
putational costs (MACs, FLOPs) are computed after training the basic and DWT-based
network models. These are compared with [1] who have provided a trained model. It can
be seen that DWT-based models increase the number of filter weights. Attention methods
further increase the parameters due to the number of nodes in the path. Higher numbers do
improve the features of depth maps but may also include non-contributing weights. These
can be pruned along with optimizations methods based on network node trimming, efficient
convolutions, and weight trimming in future works. The non-trainable parameters also in-
crease with DWT and attention methods. These are mostly due to batch normalization
layers, which update mean and variance weights. Loss functions use specific filters that
are also non-trainable and add to this parameter. The computation speed in floating opera-
tions per second is higher for NDWT and NADWT compared to DenseNet. This matches
with the short time required for training and testing. Table.7.1 showcases proposed model
benchmarks with other published models.

Table 7.1: Trained Models and parameters.

Total Params Trainable Params Non-trainable Params MACs FLOPs
Models (Millions) (Millions) (Thousand) (G) (G)
UNet 7.7 7.7 5.9 12.1 24.2
UNET++ 13.2 13.2 10.9 38.9 77.8
MobileXNet [84] 24.9 – – 4.9 9.8
NDWT 46.2 46.2 14.6 95.3 190.5
NADWT 53.9 53.9 21.3 111.1 222.1
DenseNet [1] 53.9 53.9 158.4 4.4 8.8
AdaBins [51] 78 – – – –

DWT: UNet with DWT layers, ADWT: UNet with DWT + Attention layers.

7.5 Loss Function

The importance of the loss function was discussed in Section 6.5. This function is critical
and tuned to get satisfactory results along with a faster training duration. It may consist of
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many sub-loss functions. Hyper-parameters control the penalization impact of these sub-
loss functions in the overall convergence algorithm. The model converges through gradient
descent during the training steps. Here, this function helps to minimize the training loss by
estimating depths that are comparable to the ground truth. The proposed comprehensive
loss function contains pixel-wire loss (MAE or BerHu), edge loss (gradient), and structural
loss (SSIM). This loss is:

Ltotal(Yi, Ypredi) = λ1Lpix(Yi, Ypredi) + λ2LSSIM(Yi, Ypredi)

+ λ3Ledges t(Yi, Ypredi)
(7.8)

7.6 Experiments

The study uses T4, P100/V100, a single GPU, and 5GB of GPU memory from Google
CoLaboratory to train the models. The core is a Tesla T4 with a single GPU from the cloud
server with CUDA version 11.2. The training was limited to 10 epochs to compare model-
to-model performances. Further, batch sizes of 4 and 8 for the models met the resource
memory limits. The training hyperparameter for the learning rate was initially 0.0001 and
decayed exponentially as the epochs increased. The study used an ADAM optimizer for
the training and randomly initialized the network weights. All ground truth and predicted
depth values are limited to 0.01 and 1 to avoid divide-by-zero computing errors. The batch
normalization layer can be before or after the activation layer, and this study (ablation)
analyzes the impact of adding this layer and the layer sequence position in the convolution
block. The study also experiments with the number of convolution layers in the convolution
blocks and varies the layers. More layers condense the image energy, increase learnable
parameters, remove redundant or unwanted information (neurons), and hence lead to better
decisions and estimations. However, these layers increase computation complexity, de-
crease image features, and consume training time. An activation layer further filters the
information coming from the convolution layers. These have a non-linear function to re-
move neurons with low values and boost the selected neurons by increasing their weight. A
computationally efficient ReLU (Rectified Linear Unit) is implemented, which removes the
negative input values. This activation layer suffers from a ’dying ReLU’ problem, and so
many researchers have used the Leaky ReLU (LR). LR has a small positive slope to boost
values in the negative zone. Since there is no evidence in the literature of the superiority of
these activation functions, experiments to study their performances have been carried out.
The dataset for training is important for benchmarking. Many usable datasets are available
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(section 2.5). The study uses a common, popular database to enable easy and standard
comparisons. Most researchers use the NYU dataset, and hence this is used. This dataset is
segmented into three subsets for training, validation, and testing. Similarly, standard met-
rics (section 2.6) performed benchmarking. A multi-element-based loss function is used
for training. Empirical experimentation with the hyper-parameters λ1 to λ3 provides opti-
mum weights as λ1 = 0.5, λ2 = 1, and λ3 = 0.1. The loss function is also modified, and
MAE is replaced with Berhu. The impact of functional layers in the model is studied by
developing various models, each with varying layers in the block structures. The analysis
of the layers in the performance is also part of the study, as discussed below.

7.6.1 Network Models

The internal block architecture defines a network model. Since the work proposes a new
network, a study and analysis of the contributions of various layers in a network block
have been completed. These are (a) convolution layers and the density of these layers; (b)
the existence of batch normalization layers; (c) the density of batch normalization layers
in the network; (d) the sequence of this layer with the activation layer; and (e) types of
activation layers (ReLU, LR). Further, the work analyzes the addition of attention and
residual convolution in these variants. These studies called for the development of variants
of the proposed model. The developed model variants have the following combinations:

1. NDWT (3C, 3R, 3Bs)+Bs

2. NADWT (3C, 3LR, 1Bs)

3. NADWT (3C,3LR,1Bs) +Bs

4. NADWT (3C, 3Bs, 3R) +Bs

5. NADWT (3C, 3R, 3Bs) +Bs

6. NRDWT (3C, 3R, 3Bs) +Bs

7. NRDWT (3C, 3Bs, 3R) +Bs

8. NARDWT(3C, 3LR, 3Bs)+Bs

9. NARDWT (3C, 3R, 3Bs) +Bs

10. NARDWT (3C, 3Bs, 3LR) +Bs
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11. NARDWT (3C, 3Bs, 3LR)

12. NARDWT (3C,3LR)

13. NARDWT(4C,4Bs,4LR) +1Bs)

Where: C: Convolution Layer, R: ReLU, LR: Leaky ReLU, Bs: Batch Normalization,
NUMBER: Number of Layers Implemented Among the various models, NDWT is the
base model with dense skip layers and multistage decoders. This model has 5 encoder
blocks (block D in Fig. 7.5) each having one input and two outputs. The outputs connect
to the higher scale of the D block below and the skip layer (Fig. 6.1). DWT layers perform
all the down-sampling operations. The decoder block has two inputs and one output. An
IWT layer is the up sampler and takes input from the skip connection and the previous
decoder (U, as in Fig. 7.8). Here, a concatenate layer adds the information for further
expansion by IWT. The rest of the decoder block is similar to the encoder block. There
are four separate decoder chains, each comprising 10 decoder blocks. The final output is
obtained by combining the outputs of the four decoders through skip connections. The
convolution layers in all encoder and decoder blocks of the residual NRDWT model have
an additional skip path (Fig. 7.6). The NADWT model is a modified NDWT model that
implements an attention layer. This layer takes one input and one output from each encoder
and decoder block to feed attention gates in the skip connectors (Fig. 7.10). The output
feeds the decoder on a higher scale. Adding attention layers to the NRDWT model gives
the NARDWT model. Variations in structural layers in the encoder and decoder blocks of
these models provide the other variants.

7.6.2 Ablation Studies and Results

This section provides detailed ablation studies for 13 different network variations based
on (a) convolution layers and the density of these layers; (b) the existence of batch nor-
malization layers; (c) the density of batch normalization layers in the network; (d) the
sequence of this layer with the activation layer; and (e) types of activation layers. Fur-
ther, the work analyzes the addition of attention and residual convolution in these variants.
The work used NYU datasets from the Silberman dataset site for training the proposed
models. The dataset consisted of training, validation, and test subsets. The NYU dataset
has diverse, labeled, complex indoor images covering various rooms, textures, room ele-
ments at random distances, varying illuminations, etc. The loss functions are verified with
these images. The performance of all 13 models is also compared with that of a UNET++
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model trained with the same database. Fig. 7.12 summarizes the performance of all the
models for a sample test image. The visual quality of estimated depth maps highlights the
improvements of the proposed network w.r.t. the UNET++ model (Fig. 7.12C). The ba-
sic NDWT model (Fig. 7.12(1)) with 3 convolution layers, 3 ReLU layers, and post-batch
normalization provides better feature detailing. The visibility of edges indicates that high-
frequency components are well preserved and propagated by the skip connections. Here,
the depth map shows more features. This result also highlights the performances with var-
ious variations in layers and sequence. Models with attention are NADWT(3C,3LR,1Bs),
NADWT(3C,3LR,1Bs)+Bs, NADWT(3C,3Bs,3R)+Bs, and NADWT(3C,3R,3Bs)+Bs (see
Fig. 7.12(2–5)). These models improved the object boundaries (Fig. 7.12(2)) through
higher weight in these relevant areas. The NRDWT with residual convolution also im-
proves the object details (Fig. 7.12(6,7) left corner objects) but blurs the edges lightly.
Fig. 7.12(8–13) shows the proposed residual model with an attention gate. The combined
LR and batch normalization only improved the depth dynamic range when implemented
at the final stages (Fig. 7.12(3)). The model with this structure gave the best performance.
In residual with attention models, R activation performed better, as in Fig. 7.12(8–13).
Batch normalization layers before the activation layer also provided similar improvement
(Fig. 7.12(4, 6, 7)). However, batch normalization after each activation layer degrades
the dynamic range (Fig. 7.12(5)). This is mainly due to the pruning of the neurons with
low weights by the activation layer. Reducing the batch norm layers at the final output
stage leads to small losses, as seen in the sofa arm details (Fig. 7.12(11)). A model
without any batch norm layer has reduced definitions of features in the estimated image
(Fig. 7.12(12)). Models with higher convolution layers estimated stronger objects for near
ranges (Fig. 7.12(13)). However, the definitions at the end of the room are poor. Reducing
the convolution layer density to 2 layers from 3 layers degraded the performance. Increas-
ing the layers from 3 to 4 in the NDWT model also degraded the performance. Hence, the
optimal number is kept at 3. Figs. 7.13 and 7.14 compare the evaluation loss and accuracy
performance of each model. The loss values should be low, and the accuracy should be
high. Here, for comparison, the study again trains a UNet after replacing downsampling
and upsampling with DWT. The performance of the proposed models is better than that of
this UNet. Training with structural changes required many iterations; however, only the sig-
nificant results were shortlisted. Figs. 7.15–7.18 show the loss and accuracy performances
for training and validation datasets. The jagged lines indicate over-fitness or under-fitness
during training. All the curves are very close, indicating small variations in performance.
Since the accuracy achieved is greater than 0.9 in all cases, this shows the adequacy of
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Figure 7.12: Depth map prediction after training, a visual comparison. A: input image, B:
ground truth, C:UNET++, 1: NDWT (3C, 3R, 3Bs) + Bs, 2: NADWT (3C, 3LR, 1Bs), 3:
NADWT (3C, 3LR, 1Bs) + Bs, 4: NADWT (3C, 3Bs, 3R) + Bs, 5: NADWT (3C, 3R, 3Bs)
+ Bs, 6: NRDWT (3C, 3R, 3Bs) + Bs, 7: NRDWT (3C, 3Bs, 3R) + Bs, 8: NARDWT (3C,
3LR, 3Bs) + Bs, 9: NARDWT (3C, 3R, 3Bs) + Bs, 10: NARDWT (3C, 3Bs, 3LR) + Bs,
11: NARDWT (3C, 3Bs, 3LR), 12: NARDWT (3C, 3LR), 13: NARDWT (4C, 4Bs, 4LR)
+ 1Bs).

the training of the models. The training reaches above this value within 10 epochs, which
is fast. The study also evaluates the NADWT (3C, 3LR, 1Bs) model with Haar wavelet
for DWT and IWT. The performance improvement is not significant compared with db4
wavelets. Model NADWT (3C, 3LR, 1Bs)+Bs performed best with the lowest loss. The
depth image in Fig. 7.12(3) and the evaluation accuracy (Fig. 7.14) support this observa-
tion.
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Figure 7.13: Model loss performance. The best is DWT + Attention, followed by Residual
+ Attention architecture.

Figure 7.14: Model Evaluation Accuracy Performance

7.7 Observations

Attention model NADWT had the best overall loss performance. The base model NDWT
is a close second, followed by the residual model NRDWT, as seen in Figs. 7.13 and 7.14.
Among all the models, the NARDWT needs more training iterations. The NDWT model
gave the best training accuracy and was followed by the NARDWT model. The NARDWT
models tend to saturate faster, as seen from the validation accuracy plots (Fig. 7.18). The
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Figure 7.15: Model Training Loss Performance

Figure 7.16: Model Training Accuracy Performance.

Haar wavelet is a 1st-order Daubechies wavelet (db1) and is discontinuous compared to
db4 which is more localized and smooth. DWT is linear time complexity and is used here
for dimensionality reduction similar to max pooling. Research papers have indicated that
the results of mother wavelets vary depending on applications. Hence, we experimented
with two types of wavelets for our database. In our applications, Haar wavelets performed
slightly better with the third model. Table 7.2 tabulates the results. The performance of
the best model NADWT (3C, 3LR, and 1Bs) is compared with the SOTA depth estimation
methods from various researchers at the time of publication. The results are also compared
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Figure 7.17: Model Validation Loss Performance

Table 7.2: Evaluation with different wavelets.

Models δ1 ↑ δ2 ↑ δ3 ↑ REL↓ RMSE↓ log10↓
Harr 0.34 0.62 0.82 0.39 0.15 0.17
db4 0.33 0.61 0.81 0.39 0.16 0.18

with published DWT-type and UNET++ models for reference. Table 7.3 compares the per-
formance metrics of the models. Table 7.3, Figs. 7.13 and 7.14 show that the proposed
models are superior w.r.t. the DWT and UNET++ models for depth prediction. Here,
the proposed model outperforms these models in all six metric parameters. The reasons
for such improvements are mainly dense convolution structures, the inclusion of the at-
tention function, and regularization with batch normalization layers. Attention improved
the learning of local features, thus providing more details. The batch normalization con-
trols the covariate shift of the learned weights during training. Table 7.3 also tabulates the
performance of a UNet with a DenseNet backbone encoder (DenseNet). This model has
advantages like (1) encoder as a DenseNet, which is pre-trained with millions of images;
(2) additional transfer training with an enhanced dataset of 50k image pairs; and (3) the
model has large trainable parameters. In comparison, the study trains the proposed mod-
els from scratch with less than 400 image pairs. Still, the work achieves a lead in RMSE
metrics for all tabulated SOTA model performances. The complexity of model structures
like convolution density, residual functions, attention features, batch normalization density,
and network blocks affects the training time. During model training, the NARDWT took
approximately 17 minutes per epoch using the NYU dataset and an A100, 40 GB GPU
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Figure 7.18: Model validation accuracy Performance

Table 7.3: Model performances.

Models δ1 ↑ δ2 ↑ δ3 ↑ REL↓ RMSE↓ log10↓ Year
DWT 0.27 0.52 0.73 0.54 1.76 0.21 2023*
ADWT 0.27 0.51 0.70 0.80 1.57 0.23 2023*
UNET++ 0.29 0.55 0.75 0.66 1.69 0.21 2023*
DenseNet[1] 0.85 0.97 0.99 0.12 0.52 0.05 2018
DORN[97] 0.83 0.97 0.99 0.12 0.51 0.05 2018
MobileNet[84] 0.77 0.94 0.98 0.16 0.58 – 2019
MobileXNet[84] 0.79 0.95 0.988 0.15 0.54 – 2021
P3Depth[98] 0.898 0.98 0.996 0.1 0.36 0.04 2022
NewCRFs[99] 0.92 0.99 0.998 0.095 0.33 0.04 2022
ZoeD–M12– N[100] 0.96 0.995 0.999 0.075 0.27 0.03 2023
NADWT(3) 0.33 0.61 0.81 0.39 0.16 0.18 2023

*Trained with NYU dataset.

machine. For a standard T4 GPU, the training time consumed was about 97 minutes per
epoch. Most of the training was completed within 10 epochs. This time was irrespective
of Haar or db4 wavelet implementation. The UNet with DenseNet backbone [1], took
about 150 min per epoch in the same machine, and researchers had trained for more than
20 epochs. This compares the training speed of the proposed models. In this work, UNet is
modified with DWT and attention and trained along with NDWT models using the KITTI
V2 dataset for 30 epochs. The dataset is used as-is without any preprocessing. The visual
results are shown in Fig. 7.19. Here, UNet with DWT gives coarse depth estimates com-
pared to NDWT. However, NDWT has errors, as seen by the discrete color patches in the
image. The study observations are summarized below:
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Figure 7.19: Training with the KITTI V2 dataset. Results show the visual performance of
DWT (UNet with DWT), ADWT (UNet with DWT and attention), and NDWT.

• The proposed models are superior to published UNet, DWT-type UNet, and UNET++
models for all six types of performance metrics (Figs. 7.13 and 7.14). This improve-
ment is due to dense convolution layers.

• NADWT (3C,3LR,1Bs)+Bs has the lowest loss and correlates with the depth image
in Fig. 7.12(3). The model evaluation accuracy performance (Fig. 7.14) also supports
this.

• The proposed light network trains faster (17 min) compared to UNet with a DenseNet
backbone, which took about 150 min per epoch. The average accuracy reaches more
than 92% within 10 epochs.

• The best performance is from the NDWT + Attention (NADWT) network, followed
by the NDWT model, and third, the Residual (NRDWT) model (Figs. 7.13 and 7.14).

• The best training accuracy is from the NDWT model, followed by the NARDWT
model (Figure 7.18). NARDWT models tend to saturate faster.

• Minor improvement is observed with Haar wavelets instead of db4 wavelets (Ta-
ble 7.2).

• Batch normalization improves the depth range and loss. Batch normalization after
the activation layer degrades loss This adds additional computations and trainable
parameters.

• Activation: among activation layers, the LR activation function offered higher per-
formance. Training and validation performance are better with ReLU.
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• Attention: gives higher training, validation, and evaluation scores.

• Residual: gives lower training and validation accuracy, but the evaluation score is
moderately better. Requires more training.

• Convolution: higher convolution layers do not improve performance but visually give
better representation.

• Loss function: replacing MAE loss with BerHu loss did not show improvement.

7.8 Summary

This work shows the use of a simple network for a complex application like depth esti-
mation from single images. The study develops a nested DWT network model to predict
such depth maps. Initially, during training, the proposed network learns the DWT wavelet
coefficients through a combined loss function. The components of this loss function are
MAE, Berhu, SSIM, and gradient functions. The optimization-mandated study of 13 vari-
ants of networks and the experiments demonstrate that all proposed models are superior
to UNet and UNet++. The proposed model has the best RMSE performance among the
SOTA models. Further, the network trains within 17 minutes per epoch to achieve an aver-
age accuracy of >92% within 10 epochs. This training time is faster than other published
models based on dense networks, which is an advantage for the models. This speed im-
provement is due to fewer trainable feature maps compared to other dense networks like
DenseNet, RESNET, etc. The network structure with a Leaky ReLU followed by dense
batch normalization showed improved performance. The optimum density of convolution
layers in the models is three for best performance. This provides the optimal trainable fea-
ture map density for higher performance. The visual results with this optimum density are
also better. As with most models, the model estimations suffer from smooth surfaces and
poor illumination, as inferred from the far end of the scenes. These aspects require more
analysis and study. Improving the accuracy further needs higher trainable parameters and
pruning of non-performing weights in the model. This needs a trade-off study for speed
and performance.
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Chapter 8

Conclusions and Future work

Depth perception enhances the human-machine interface and productivity. Cameras and
CV algorithms are largely used for such vision processing. Low-cost, single-camera-based
systems are suited for mobile platforms due to resource constraints. Such systems elim-
inate elaborate setups and complex algorithms, as in stereo vision. The monocular depth
estimation methods used with such systems leverage simple setups, lower costs, and lower
power. This thesis surveys various literature and studies classical monocular depth estima-
tion methods, as in Chapter 3) and in Chapter 4. Elaborate experiments were conducted
with custom hardware and setups. The analysis of the results revealed that the methods
are not suited for moving objects as multiple still images are required in sequence. It is
also concluded that the depth estimations are ill-poised at weak patterns and that the sparse
depth estimates are relative. These classical methods have good resolutions for near tar-
gets but degrade for distant targets. The focus of the work was therefore shifted to modern
deep-learning methods.

In Chapter 5, a framework for a simple calibration technique to recover absolute depth
from relative depth is developed using a new calibration target. The target addressed the
ground truth data and the expected PSF for various depths. The two multi-scale blur targets
developed related the estimated blur to ground truth through coefficients. The targets were
implemented with various scales of known PSF. The coefficients of relation successfully
recovered an absolute depth map from a relative depth map with good correlation. This
method is immune to contrast variations within the image, magnification artifacts, and
spectral sensitivity. The camera’s optics and the relative depth map limit this depth range.

Researchers have successfully solved the ill-poised problems of monocular depth esti-
mation with deep convolutional neural networks (CNN). This thesis explores various net-
works and concludes that training datasets, regression loss functions, and network archi-
tecture significantly impact the depth estimate quality and accuracy. The work identifies
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standard performance metrics and datasets, which are popular among researchers. This
enabled a comparison of performance results with those of current researchers. The selec-
tion aspects of datasets and the quality metrics were discussed in Chapter 2. Datasets need
to be tuned to the application environment for best depth prediction; however, the present
datasets were chosen for benchmarking.

A network minimizes the loss function during regression using backpropagation. The
loss function is crucial for the training time as well as the estimated quality. Various loss
functions were investigated for estimating depth. The survey inspired the development
of new loss functions capable of enhancing the depth map details. An established deep-
learning model was chosen for the study. This model was re-trained through transfer learn-
ing in this experiment with the new loss functions. The performances of the new loss
functions are analyzed and reported in Chapter 6. The loss functions investigated were
modified SSIM, reverse Huber, L1, gradient, Laplacian, LOG, and DOG-based loss func-
tions and operators. The modified SSIM loss used a sharpened image in the SSIM loss
function (SSIM’). State-of-the-art loss functions were constructed by combining multiple
functions and operators such as SSIM, BerHu, Sobel, and Laplacian. These improved the
feature definitions and accuracy of the depth maps. The algorithm scored higher – 85.26%
for the δ1 performance parameter trained with NYU V2 benchmark datasets. The study de-
duces that the new edge loss functions improve depth map accuracy and range (Table-6.3,
Fig. 6.4). Further, it is observed that loss functions based on derivatives and differentiation
perform better than smoothing loss functions. Ablation studies here covered different net-
work encoders and tuning of hyperparameters.

Deep learning networks for monocular depth estimations are based on complex large
networks like DenseNet, LeNet, ResNet, etc. These are computationally intensive and need
GPU-based hardware for long training sessions. Light networks were examined in Chap-
ter 7. UNET-like networks are simple, robust, and traditionally used for medical analysis
using small datasets. These networks have mostly been used for semantic segmentation,
and only a few works exist for depth estimation. These networks influence this third the-
sis work. A new network, NDWTN, is conceived using a multi-scale encoder-decoder
structure with skip functions. A lossless DWT-based pooling function is implemented to
improve the efficiency of preserving the local features and their definitions. Other im-
provements are the incorporation of attention layers, skip paths, residual convolutions, and
variants of activation functions, which resulted in 13 variants of the network. Experimental
analysis, both qualitative and quantitative, demonstrated the effectiveness of these variant
models for monocular depth estimation. These were trained with both NYU datasets and

119



KITTI datasets. Analysis revealed that better performance is achieved with the batch nor-
malization regulator before the LR activation function and with the attention function in
the skip path. These reduced co-variance shifts and vanishing neurons while improving
training, validation, and evaluation scores. The quality metrics after training with the NYU
dataset are tabulated in Table 7.3. These scores are also compared with current state-of-
the-art algorithms. The designed NDWT has the best RMSE score and outperforms pub-
lished DWT-type and UNET++ models for depth prediction in all six performance metrics.
Further, all the models took approximately 17 minutes per epoch to train, compared to
the earlier DenseNet backbone model, which took about 150 minutes per epoch with the
same processing machine. The training accuracy reaches more than 92% within 10 epochs,
which is fast and is due to lower trainable feature maps compared to dense networks like
DenseNet, RESNET, etc. Ablation studies included wavelet variability, training parame-
ters, and the density of convolution blocks.

8.1 Research Contributions

The thesis met the defined research goals and objectives. The outcomes of this research and
experiments provide rich insight into new depth estimation techniques. These will be use-
ful to the research community in further expanding the work done and may also open new
avenues for lean networks. First, the thesis concludes that classical depth estimation meth-
ods are not suitable for mobile platforms. Most methods estimate relative depth, which
inspired a new calibration method to recover absolute depth. The work further develops
a framework for calibration targets and methods. These will be valuable for the scien-
tific community. Secondly, five new efficient loss functions are conceptualized for training
networks, which successfully improved the depth map estimation accuracy. These loss
functions used a combination of multiple functions and operators and highlighted the need
for tuning loss functions with applications. Third, a new network architecture is demon-
strated that is less complex, provides faster training with a smaller database, and competes
with state-of-the-art networks. The concept explores the encoder-decoder structure, dense
layers, wavelets, attention, and regularization elements. Such studies are rare and open new
avenues. The thesis further investigated various network and loss parameters and elements
as ablation studies and experiments for optimizations.
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8.2 Future Research Scopes

The thesis offers a fresh perspective on network designs and loss functions that will be
beneficial for depth inference on mobile platforms. A novel calibration method to retrieve
absolute depth is introduced, and additional research using calibrated settings can enhance
the achieved depth range. Moreover, it encourages the investigation of new calibration
goals and techniques.

There has been limited study on the loss functions required for depth inference. This
study highlights the improvements when these functions are chosen or specially designed
for the intended application and datasets. It is expected that the use of multiple loss func-
tions may increase complexity, impacting training parameters and duration. There is room
for further improvement in edge functions such as Canny’s techniques, and several investi-
gations are needed to optimize these.

The NDWTN network has numerous parameters that require significant time and com-
puting resources. Some of these parameters may be unnecessary and can be removed. The
work has shown that strided convolution can decrease parameter values at the cost of per-
formance. It’s common for deep learning networks to experience overfitting and vanishing
neurons, which requires further investigation during pruning. Pruning involves retraining,
fine-tuning filters, and quantization of weights. Additionally smaller network encoder can
be studied as segmentation is not needed. Future research could focus on these areas.
Additionally, there is a need to explore suitable loss functions for reducing filter weights
and nodes. The majority of edge computing platforms rely on real-time inference, which
mandates light networks. The challenges of deep learning networks on mobile platforms
can be met by separating training and inference phases. Here, powerful remote computers
can train the network while dedicated optimized hardware can make real-time inference.
Specialized parallel calculations, made possible by hardware such as FPGAs and accel-
erators, help to achieve low-latency results. However, optimizing latency and embedding
the trained model in hardware pose challenges. Model optimization, weight, and network
node pruning for hardware implementation are key areas of future research.However, op-
timizing latency and embedding the trained model in hardware pose challenges. Model
optimization, weight, and network node pruning for hardware implementation are key ar-
eas of future research. In addition, to deliver quick and accurate results, it’s crucial to use
suitable training datasets. Identifying and utilizing relevant datasets helps to expand the
potential of the research.
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Chapter 9

Appendix A: Camera parameters

9.1 Computation methods

Diagonal
Diagonal is calculated by the use of the Pythagorean theorem:

Diagonal =
√
w2 + h2 (9.1)

where, w = sensor width and h = sensor height Canon 400D diagonal:
w = 22.20 mm
h = 14.80 mm

Diagonal =
√
22.202 + 14.802 = 26.68mm (9.2)

Surface area
Surface area is calculated by multiplying the width and height of a sensor.
Width = 22.20 mm
Height = 14.80 mm

Surface area = 22.20 ∗ 14.80 = 328.56mm2 (9.3)

Pixel pitch
Pixel pitch is the distance from the center of one pixel to the center of the next measured in
micrometers (µm). It can be calculated with the following formula:

Pixel pitch =
sensor width in mm

sensor resolution width in pixels
∗ 1000 (9.4)
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Canon 400D pixel pitch:
Sensor width = 22.20 mm
Sensor resolution width = 3893 pixels

Pixel pitch =
22.20

3893
∗ 1000 = 5.7 µm (9.5)

Pixel area
The area of one pixel can be calculated by simply squaring the pixel pitch:

Pixel area = pixel pitch2 (9.6)

You could also divide the sensor surface area with effective megapixels:

Pixel area =
sensor surface area in mm2

effective megapixels
(9.7)

Canon 400D pixel area:
Pixel pitch = 5.7 µm

Pixel area = 5.72 = 32.49 µm2 (9.8)

Pixel density
Pixel density can be calculated with the following formula:

Pixel density =
sensor resolution width in pixels

(sensor width in cm)2
∗ 1

1000000
(9.9)

You could also use this formula:

Pixel density =
effective megapixels ∗ 1000000
sensor surface area in mm2

∗ 1

10000
(9.10)

Canon 400D pixel density:
Sensor resolution width = 3893 pixels
Sensor width = 2.22 cm

Pixel density =
(3893/2.22)2

1000000
= 3.08MP/cm2 (9.11)
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9.2 Canon EOS 400D Camera

Sensor size numbers are quite accurate so you can rely on them. Pixel–related numbers
have more limitations, so take them as approximations (pixel pitch is usually within 2%
accurate). The actual size is set to a 14.8" screen. This is the actual size of the 400D
sensor: 22.2 x 14.8 mm. The sensor has a surface area of 328.6mm2. There are approx.
10,100,000 photosites (pixels) in this area. Pixel pitch, a measure of the distance between
pixels, is 5.7 µm. Pixel pitch tells you the distance from the center of one pixel (photosite)
to the center of the next. The pixel or photosite area is 32.49 µm2. The larger the photosite,
the more light it can capture and the more information can be recorded. Pixel density tells
you how many million pixels fit or would fit in one square cm of the sensor. Canon 400D
has a pixel density of 3.08 MP/cm2. These numbers are important in terms of assessing
the overall quality of a digital camera. Generally, the bigger (and newer) the sensor, pixel
pitch, and photosite area; the smaller the pixel density, the better the camera.

9.2.1 Specifications of Camera

Brand: Canon
Model: EOS 400D
Also known as EOS Digital Rebel XTi (US), EOS Kiss Digital X (Japan)
Effective megapixels: 10.10
Total megapixels: 10.50
Sensor size: 22.2 x 14.8 mm
Sensor type: CMOS
Sensor resolution: 3893 x 2595
Max. image resolution: 3888 x 2592
Crop factor: 1.62
Optical zoom:
Digital zoom: No
ISO: Auto, 100, 200, 400, 800, 1600
RAW support:
Manual focus: y
Normal focus range:
Macro focus range:
Focal length (35mm equiv.):
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Aperture priority: Yes
Max aperture:
Max. aperture (35mm equiv.): n/a
Depth of field: simulate
Metering: Center-weighted, Matrix, Spot
Exposure Compensation: ±2 EV (in 1/3 EV steps)
Shutter priority: Yes
Min. shutter speed: Bulb+30 sec
Max. shutter speed: 1/4000 sec
Built-in flash: y
External flash: y
Viewfinder: Optical (pentamirror)
White balance presets: 6
Screen size: 2.5"
Screen resolution: 230,000 dots
Video capture:
Storage types: CompactFlash type I, CompactFlash type II, Microdrive
USB: USB 2.0 (480 Mbit/sec)
HDMI:
Wireless:
GPS:
Battery: AA (2) batteries (NiMH recommended)
Weight: 556 g
Dimensions: 126 x 94 x 65 mm
Year: 2006
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9.3 CM-030 GE / CB-030 GE

The CM-030GE and CB-030GE are designed following the GigE Vision standard. It trans-
mits digital images over Cat5e or Cat6 Ethernet cables. All camera functions are also
controlled via the GigE Vision interface. The camera can operate in continuous mode, pro-
viding an endless stream of images. For capturing individual images, related to a specific
event, the camera can also be triggered. For precise triggering, it is recommended to use
a hardware trigger applied to the Hirose 12-pin connector. It is also possible to initiate
a software trigger through the GigE Vision interface. However, when using software trig-
gers, certain latency inherent to the GigE interface must be anticipated. This latency, which
manifests itself as jitter, greatly depends on the general conditions and traffic on the GigE
connection. The frame rate described in this manual is for the ideal case and may deterio-
rate depending on conditions.

9.3.1 Main Features

Member of Compact series, covering VGA to UXGA resolution
656 (h) x 494 (v) 7.4 µm square pixels
1/3” progressive scan – Monochrome and Bayer mosaic color versions
High frame rate of 90.5 frames/second with full resolution in continuous operation
90 frames/second with external trigger and full resolution
Increased frame rate with vertical binning (CM-030GE only) and partial scan
Exposure time from 21.6µs to 2 sec. using Pulse Width Control trigger mode
Programmable exposure from 43.2µs to 11.037 ms in Full Frame scan
Sequencer trigger mode for on–the–fly change of gain, exposure, and ROI
Edge Pre-select and Pulse width trigger mode
LVAL-synchronous/-asynchronous operation (auto-detect)
Auto iris lens video output allows a wider range of light
GigE Vision Interface with 10 or 8-bit output
Programmable GPIO with optoisolated inputs and outputs
Comprehensive software tools and SDK for Windows XP/Vista
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9.3.2 Specifications

 
CM-030 GE / CB-030 GE 

 

11.2 Specification table 
Specifications CM-030GE CB-030GE 
Scanning system Progressive scan  

Frame rate full frame  90.5 frames/sec. Progressive (511 lines/frame)  
Pixel clock 40 MHz  
Line frequency 46.296 kHz  ( 1H = 21.6 µs ), (864 pixel clock/line)   
CCD sensor  1/3”. Monochrome ICX424AL   1/3” Bayer Color ICX424AQ 
Sensing area 4.85 (h) x 3.66 (v) mm  1/3 inch diagonal 

7.4 (h) x 7.4 (v) μm Cell size 
Active pixels 656 (h) x 494 (v) 

Pixels in video output.    
Full Scan 656 (h)  x  494  (v)   90.5 fps.   H = 46.296 kHz 

              2/3 partial Scan  656(h)   x  326  (v)  128   fps    H=   46.296kHz 
              1/2 partial Scan 656 (h)  x  246  (v)  159   fps.   H =  46.296 kHz 

656 (h)  x 122   (v)  255   fps.   H =  46.296kHz               1/4 partial Scan 
              1/8 partial Scan 656 (h)  x  62   (v)   361   fps.   H =  46.2965 kHz 
              Vertical Binning 656 (h) x  247  (v)   166.2 fps.   H = 42.735 kHz ( *Note) 
    Region-of-interest (ROI)  User Definable.  Memory read-out 

*Note: Vertical binning is for CM-030GE only 

Sensitivity on sensor (minimum) 0.004 Lux (Max. gain, Shutter OFF, 
50% video ) 

1.21 Lux (Max. gain, Shutter OFF,50% 
Green, w/IR cut filter)                                       

S/N ratio More than 50 dB  (0dB gain) 
GigE Vision Compliant Digital Video output.        GigE Vision Compliant 

Mono8,Mono10,Mono10_Packed  BAYRG8,BAYGB8,BAYRG10,BAYGB10 
 

Iris video output. Analogue 0.7 V p-p , enabled by internal switch 
Gain Manual   -3 to +12 dB  
Synchronization Internal  X-tal 

 GPIO Module 
Configurable 14-in / 9-out switch Input/output switch 

12-bit counter based on 25MHz clock or Pixel clock Clock Generator ( One) 
20-bit counter programmable for length, start point, stop point, repeat Pulse Generators ( Four) 

Hardware Trigger modes Edge Pre-Select , Pulse Width Control, Frame Delay and Sequence  
OB area transfer mode ON / OFF 

SYNC / ASYNC mode ( Trigger mode status when exposure starts ) Event message Exposure start, Exposure end, Trigger IN, Video start, Video end 

Electronic Shutter  
Preset Shutter speed OFF(1/90) and  1/100  to 1/10,000 in 9 steps 

Programmable exposure 2L(43.2µs) to 511L ( 11.037ms) in 1L steps 
Exposure Time (Abs) µsec – user definable. Same range as PE 

GPIO plus Pulse Width  max. 2 sec  ( Can be set by 100µs unit or Pixel Clock unit) 
Control interface Register based. GigE Vision / GenIcam compliant 
Functions controlled via GigE Shutter, Gain, Black Level, Trigger mode, Read out mode,  
Vision Interface GPIO setup ,ROI ( GenIcam mandatory functions )  

Packet size, Delayed ( Frame ) read-out, inter-packet delay GigE Vision Streaming Control Jumbo frame can be set at max. 4K(4040) , Default packet size is 1428 Byte. 

Indicators on rear panel Power, Hardware trigger, GigE Link, GigE activity 
-5°C to +45°C Operating temperature 

Humidity 20 – 90% non-condensing 
-25°C to +60°C/20% to 90% non-condensing Storage temp/humidity 

Vibration 10G (20Hz to 200Hz, XYZ) 
Shock 70G 
Regulatory CE (EN61000-6-2 and EN61000-6-3), FCC part 15 class B, RoHS, WEEE 

12V DC ± 10%.  3.6 w  Power 

C-mount, Rear protrusion on C-mount lens must be less than 10.0mm Lens mount 
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CM-030 GE / CB-030 GE 

 
 

IR-cut & Optical Low Pass Filter Built in (only for CB-030GE) 
Dimensions 29 x 44 x 75 mm  (HxWxD) 
Weight  125 g 125  g 

For stable operation within the above specifications, allow approximately 30 minutes warm 
up. 
 
 
Note: Above specifications are subject to change without notice 
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Chapter 10

Appendix B: Depth Perception by Humans

10.1 Human Eye

The human eye (Fig. 10.1) is a sensory organ that, by responding to visible light, provides
humans with knowledge for various intelligent activities. The human eye is roughly 2.3
cm in diameter and consists of optical elements that consist of the cornea lens, which is
the dome-shaped tissue covering the eye in front. This tissue lens focuses light from the
external world, while the iris controls the pupil size (aperture) to regulate the amount of
light entering the eye. A second lens is located just behind the iris and focuses the light on
the light-sensitive retina at the back of the eye. The retina has photoreceptors like cones
and rods. Cones are optic nerve cells that sense bright light and provide the perception
of high-resolution, colored images. The rods are nerve cells that sense dim lights and
provide low-resolution, black-and-white images, or peripheral vision. Ganglion cells are
also present, which respond to the full light intensity range and help limit the amount of
light reaching the retina. Light enters the eye through the cornea, pupil, and lens. The
ciliary muscles adjust the lens shape for continuous focus (accommodation). The cones
and rods convert light into electrical signals, which are transmitted to the brain through the
optic nerve. No photoreceptors are present at the junction of the retina and optic nerve,
which creates a blind spot.

The eye is sensitive to wavelengths within 380 nm to 800 nm. The non-linear response
peaks at 555 nm (green light). The CIE standard defines the average spectral eye sensitivity
during a daylight environment (photopic vision) as a spectral luminous efficiency function’
V (λ). Low light (scotopic vision) eye sensitivity is defined by the function V ′(λ). These
eye spectral sensitivity functions are normalized as shown in Fig. 10.2. Humans cannot see
infrared wavelengths (< 800 nm), which are exploited by many active depth cameras.
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Figure 10.1: Basic components of an eye for human vision.

Figure 10.2: CIE spectral luminous efficiency function (a) photopic vision V (λ) and (b)
scotopic vision V ′(λ)).

10.2 Depth Perception modes

Humans have two eyes and perceive depth primarily due to stereopsis and accommodation
of the eye. Each eye sees a common view with small, different angles, which leads to
stereopsis. The brain processes these two views into a single 3D image (Fig. 10.3). The
subconscious processing includes prior knowledge to understand the surroundings around
us. Humans can also judge depth with just one eye by using a variety of depth cues.
Human depth perception can be summarized into three categories: binocular, monocular,
and oculomotor.

10.2.1 Binocular cues

Depth perception through binocular cues uses both eyes. The cues can be categorized into
stereopsis, shadowstereopsis, and convergence. Stereopsis, also known as retinal dis-
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Figure 10.3: Binocular field of view limitation.

parity or binocular parallax, uses the frontal eyes to derive different projections of objects.
The eyes are separated horizontally by about 6 cm and create parallax (Fig. 10.4). Each
eye provides information about the scene with different view angles, leading to binocular
disparity in the brain. Humans use this disparity to estimate the distance to an object with
good accuracy through triangulation. The disparity is large for close objects and poor for
distant objects. The disparity does improve with an increase in the distance between the
eyes, which is possible in some animals. This property of human vision is exploited in 3-D
movies and stereoscopic photos.

Figure 10.4: Stereopsis cue leads to disparity image in the brain by creating mirror image
in L and R eye. Small distances give large disparities of β depth information.

Shadows are good cues for depth perception. Retinal images with different shadows
are also processed by the brain as stereo images to get depths (Fig. 10.5). This is called
shadow stereopsis [101].

For close objects, our eyes angle inward to focus on the same point, which leads to
convergence (Fig. 10.6). The convergence stretches the extraocular muscles of the eye,
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Figure 10.5: Shadow stereopsis cue provides depth perception.(Copyright Akiyoshi Ki-
taoka 2005)

which produces kinesthetic sensations that assist in depth perception. This is also called
a binocular oculomotor cue. As the angle of convergence reduces for distant objects, the
convergence cue is useful up to 10 meters in depth.

Figure 10.6: Convergence requires the eye to angle inward. Small distances give large
angles.

10.2.2 Monocular cues

Monocular depth cues come from one eye. One cue type is Motion parallax and comes
from the differential movement or speed of static objects relative to the background. The
motion parallax can provide absolute depth information along with additional information
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like direction and velocity. Examples include driving in a car where near objects move
faster than distant objects.

In Depth from motion, the changing object size with time provides a cue. Examples
include a ball coming towards a person. This dynamic change in object size leads to a
deeper perception of the moving object. Rotating objects also create depth cues due to the
kinetic effect.

Near objects provide finer granular details compared to distant objects. This leads to
cues based on Texture gradient. The fine details like shape, size, color, etc. on nearby
objects are clearer than those at a distance where the features merge. Examples are long
gravel roads, tiled footpaths, etc., where the texture merges uniformly at a distance (Fig.
10.7).

Figure 10.7: Texture gradient as a depth cue. The flowers in front have more details than
those in the background.(https://pxhere.com/id/photo/912200)

The limited depth of focus of the human eye creates a selective blurring of objects as
seen in top left corner of (Fig. 10.7). This defocus blur provides the perception of depth.

Relative sizes between similar known objects also provide depth cues. One can also
estimate depth from the perceived size of a known object. Thus, a small object is perceived
to be far away compared to a bigger object (flowers in Fig. 10.7) when we know that they
are the same. Prior information on the object’s size also provides a depth cue. This is
called the Familiar size cue. Similarly, a small object is perceived as far away when we
are aware of the absolute size or Absolute cue.

Occlusion or the interposition of objects, provides information about depth as the ob-
ject in front partially blocks the background (Fig. 10.8). The object with a discontinuous
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border is perceived as being behind the foreground.

Figure 10.8: The objects are identical; the occluded object is behind.

In Perspective, parallel lines converge in the distance, which provides the relative
distance of objects (Fig. 10.9). An object in the larger area is treated as near, while those
at converging ends are far.

Figure 10.9: Convergence of parallel lines creates a depth cue.

Similarly, elevation provides information on the depth of objects relative to the hori-
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zon. An object position that is higher than the horizon will be perceived as distant compared
to one below the horizon. The buildings in Fig. 10.9 are of the same size.

Lighting and shadows provide the perception of position with knowledge of the light
source (Fig. 10.10). The atmosphere scatters light, and hence distant objects have lower
luminance contrast, poor color saturation, and appear hazy compared to the foreground.
The distant objects shift towards blue (Fig. 10.11).

Figure 10.10: Light and shade create depth perspective.

Figure 10.11: The mountains at a distance have a bluish tinge due to atmospheric light
scattering, giving rise to the color cue.(https://pixy.org/4801691/)

10.2.3 Oculomotor cues

The human eye has oculomotor and ciliary muscles. The oculomotor muscles control the
movement of the eye, constriction of the pupil, focusing of the eyes, and the position of
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the upper eyelid. The ciliary muscles change the focal length by compressing the eye
lens. Oculomotor depth cues are proprioceptive information from oculomotor muscles and
ciliary muscles.

The ciliary muscles stretch or contract the lens to focus on the object. This information
about stretch or contract is the cue to interpret depth and is called Accommodation.

V ergence makes both eyes move in appropriate directions to focus on an object. Near
objects require both eyes oriented inwards (convergence) to have the object foveated,
whereas far objects need the eyes to be aligned along parallel lines of sight.

Convergence, accommodation, and familiar size among human vision depth cues pro-
vide absolute distance information. Other cues provide relative information.

10.2.4 Camera

In machine vision, the equivalent of the human eye is the camera (Fig.10.12). The camera
is an optical instrument that captures mostly 2D images. Some advanced cameras can also
capture 3D images. The camera has evolved from a pinhole camera to an optics-based lens
camera. The image recorder or photosensitive zone has also evolved from photosensitive
chemical plates, films, analog vacuum tubes, and solid-state CCDs to modern active-pixel
digital sensors. The basic camera consists of a light-sealed box. The light enters the box
through a lens system, a small controllable hole (aperture) that regulates light input, and a
mechanical or electronic shutter to integrate photons. The lens focuses the light onto the
digital sensor to capture the image. The camera focuses on objects of interest by moving
the lens along the optical axis to sharpen the object’s features. The aperture consists of a
ring of overlapping plates (the aperture ring), which adjusts the light intensity by changing
the opening. The digital sensor has a cluster of photosensitive pixels. The dimension
of the pixel defines the spatial resolving power, contrast resolution, and dynamic range
characteristics. Present sensors have more than 64 megapixels. Color digital sensors use
red, green, and blue filters to capture 2D RGB images. Modern sensors use pixel-size
lattice filters arranged in a Bayes pattern mosaic to mimic human spectral sensitivity. This
mosaic is a repeated 2 x 2-pixel set that has a pair of diagonal green pixels, a red pixel, and
a blue pixel. The electronics or image processor uses a decoding algorithm to interpolate
the RGB information. Table.10.1 compares the properties of the eye and camera.
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Figure 10.12: Basic digital camera schematic. Most are available as systems-on-chip.

Table 10.1: Properties of eye and camera: similarity and difference.

Sl.# Eye Camera
1 Living organ Technology/ instrument
2 Consists of lenses and light-sensitive surfaces. Consists of lenses and light-sensitive surfaces.
3 Need an external light source to image Most need an external light source to image,

active cameras have a built–in light source.
4 The iris controls the light entering the eye. The aperture controls the light entering the

camera.
5 Fixed 2.3 cm diameter spherical-shaped ball.

Eyes are flexible and are filled with fluid.
Cameras are rigid boxes with a rigid lens.

6 An inverted image is formed on the retina. May or may not record an inverted version of
the image.

7 The lenses change shape continuously to stay
focused on objects of interest.

Rigid lens cannot change focal length, so ob-
jects within a narrow range of distances are in
focus. The camera focus needs adjustment be-
yond this range. Alternatively, replacing the
lens with a different focal length will focus on
objects at a new range of distances.

8 Retinas contain rods and cones. Rods cater
to low-light monochrome images, while red,
green, and blue cones respond to different
spectral wavelengths.

Cameras have the same photosensitive pixels,
which respond to monochrome light passed
through spectral filters (color).

9 The retina center has no photoreceptors. This
creates a blind spot.

All pixels on the image plane are evenly dis-
tributed, and no blind spot exists.

10 Recording of images is not possible, Cameras can record images and videos
11 Can adjust to the dark in a matter of seconds Cannot adapt to the dark.
13 Only responds to 390nm to 780 nm Can respond to beyond 390nm to 780 nm
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Chapter 11

Appendix C: Datasets

11.1 Datasets using cameras

Standard datasets available from researchers, organizations, and universities that are ac-
quired with cameras are summarized in Table 11.1.

Table 11.1: Various Datasets for Training

Sl. Database Resources Benchmark,
No. papers
1 Karlsruhe Institute of

Technology and Toyota
Technological Institute
(KITTI) [59]

>93k RGB traffic scene images with
aligned sparse depth maps

120,
2459

2 Cityscapes,
Cityscapes3D [102]

Outdoor dataset with 5k high-quality
pixel-level annotations with 30 classes
and 8 categories.

37,
2564

3 NYU Depth V1/V2
[60]

Indoor dataset of 464 scenes, 407,024
unlabeled frames and semi-synthetic
depth data. The depth range is 10m.

18,
612

4 Dense Indoor and Out-
door DEpth (DIODE)
[103]

Diverse set of RGBD images of 8574
indoor, 16884 outdoor with dense
wide-range depth data. Provides 50m
and 300m depth ranges for indoor and
outdoor data respectively.

2, 32

Continued on next page
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Table 11.1 – continued from previous page
Sl. Database Resources Benchmark,
No. papers
5 Southampton-

York Natural
Scenes (SYNS),
https://syns.soton.ac.uk.

Has 1175 urban and natural images,
panorama of stereo image pairs, high-
dynamic range (HDR) spherical im-
ages, spherical LiDAR data with 120m
range

6 SYNS-Patches [104] Has 1656 images and LiDAR views
of 92 scenes belonging to a wide va-
riety of environments like residential,
industrial, agriculture, natural forests
and fields, indoor, etc.

7 Cambridge-driving la-
beled Video Database
(CamVid) [105]

Manually annotated outdoor image
sets with 32 classes of annotation. The
images are useful for testing but not
training.

8 Baidu ApolloScape
[106]

A large-scale open dataset for
self-driving technologies width
high-resolution RGB videos (>100k
frames).

9 Sun RGB-D [107] Indoor dataset of 10,335 images, cor-
responding reference depth maps and
dense annotations with 2D and 3D
bounding boxes.

10 SUN3D [108] Has 8 annotated sequences of large-
scale RGBD videos of buildings, with
each frame in the scene providing in-
formation about the camera pose and
semantic segmentation of the objects.

Continued on next page
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Table 11.1 – continued from previous page
Sl. Database Resources Benchmark,
No. papers
11 ScanNet [109] An 2D and 3D instance-level indoor

RGBD dataset with labeled voxels
and 1513 annotated scans, surface re-
constructions, instance-level semantic
segmentation and 3D camera poses.

15,
701

12 Matterport3D [110] Has 194,400 RGBD indoor images
with 10,800 panoramic inside views of
90 real building-scale scenes, annota-
tions like semantic segmentation, sur-
face construction and camera poses.

4,272

13 Middlebury (Middle-
bury Stereo) [111]

Has high-resolution stereo sequences
and accurate, pixel level disparity
ground truth using structured light.

5,186

14 TUM RGB-D [112] Contains RGBD images from Mi-
crosoft Kinect camera

15 Make3D [113] Has 400 single RGB image and depth
map pairs for training monocular depth
estimation algorithms and 134 test
samples.

1,
117

16 2D-3D-S (2D-3D-
Semantic) [114]

Has >70k RGB images from 6 large
indoor areas with depths, surface nor-
mals, camera information, multiple an-
notations, 3D meshes, point clouds,
and global XYZ images to provide co-
registered modalities from 2D, 2.5D,
and 3D domains.

5,103

17 2D-3D Match Dataset
[115]

Has 110 RGBD scans from 3DMatch
and SceneNN 3D data. The dataset
provides about 1.4 million 2D-3D cor-
respondences.

Continued on next page
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Table 11.1 – continued from previous page
Sl. Database Resources Benchmark,
No. papers
18 Taskonomy [116] This indoor scene dataset distils

knowledge from ImageNet, MS
COCO, and MIT with Semantic
information, pixel-level geometric
information, camera poses and camera
intrinsics.

2, 97

19 ETH3D [117] Has indoor and outdoor multi-view
stereo and 3D reconstruction bench-
mark.

1,53

20 DrivingStereo [118] Provides a diverse set of driving sce-
narios of >180k images with high-
quality disparity labels

21 Dense Depth for Au-
tonomous Driving
(DDAD) [119]

Have monocular videos from self-
driving cars of a variety of urban en-
vironments with a long range of 250m.

1

22 Visual Odometry with
Inertial and Depth
(VOID)} [120]

Outdoor and indoor dataset having 56
sequences of >47K motion frames and
time stamped sparse depth maps at
1500, 500, and 150 density levels.

1

23 Stanford Light Field}
[121]

Light field data from microscope,
gantry, Stanford Multi-Camera Array
and a simple Lego Mindstorms gantry.

24 HUMAN4D [122] 4D dataset of multi—modal, diverse
social and physical human activities
along with audio by 2 male and 2 fe-
male actors for a wide range of mo-
tions and poses.

Continued on next page

159



Table 11.1 – continued from previous page
Sl. Database Resources Benchmark,
No. papers
25 A large-scale high-

resolution outdoor
stereo dataset (UA-
SOL) [123]

Has 2280x1282 pixel RGBD frames
from 33 different scenes, totaling to
160902 frames. Each scene of 2k
to 10k frames gives a pedestrian’s
perspective along with a GPS geo-
localization tag.

1

26 DurLAR [124] Multi-modal autonomous driving
dataset with diverse 2048×128
panoramic ambient (near infrared),
high-fidelity 3D images and high-
fidelity GNSS/INS data.

27 Headcam [125] A helmet-mounted camera collected
this panoramic video dataset

28 Pano3D [126] Provides spherical panoramas consis-
tently and holistically for evaluating
the transfer performance of zero-shot
cross-datasets and provides general-
ization by decomposing data into three
different splits.

29 SeasonDepth [127] Derived from the CMU Visual Lo-
calization dataset, this provides cross-
season scaleless data using SfM.

30 Autonomous-driving
Streaming Perception
Benchmark (ASAP)
[128]

Aims to evaluate online performance
of vision–centric perception in au-
tonomous driving.

31 Indoor and outdoor
DFD dataset [129]

Has 110 indoor images with related
depth images for training and 29 im-
ages for testing.

Continued on next page
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Table 11.1 – continued from previous page
Sl. Database Resources Benchmark,
No. papers
32 Mars DTM Estimation Provides Mars surface 250k stereo im-

age patches of a 3–channel 512 x 512
raster and digital terrain map (DTM).

33 VIS-TIR Provides dual–spectrum of visible
light and thermal infrared images.

11.2 Synthetic and simulated datasets

Many synthetic and simulated datasets are available for training and benchmarking. These
are listed in the table. 11.2.

Table 11.2: Various Datasets for Training

Sl. Database Resources Benchmark,
No. papers
1 SUNCG [130] A large-scale dataset for indoor scenes

with over 45K manually created real-
istic diverse scenes of furniture layouts
and room, which have semantic anno-
tations at object level.

2 SceneNet RGB-D
[131]

A large scale photo realistic data con-
tains 5m indoor images with corre-
sponding pixel wise depth maps with
randomly generated room conditions,
lighting, and textures.

Continued on next page
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Table 11.2 – continued from previous page
Sl. Database Resources Benchmark,
No. papers
3 SYNTHIA [131] Virtual urban driving scenes com-

prising street blocks, suburban areas,
highways, etc. YNTHIA–Seqs and
SYNTHIA–Rand are the two comple-
mentary datasets. A panoramic ver-
sion of this dataset is the SYNTHIA–
PANO.

Aerial depth dataset
[132]

Artificial outdoor provides large view-
point and depth variations from 18 vir-
tual 3D models and contains 83797
single-view RGBD images.

4 Hypersim [133] Contains photo-realistic 461 indoor
scenes totaling to 77,400 images along
with ground truth geometry. The data
provides a per–pixel, detailed ground
truth label .

1, 25

5 Depth Estimation
oN Synthetic Events
(DENSE) [134]

Contains synthetic events with perfect
ground truth from the CARLA simula-
tor and caters to low contrast.

1,24

6 3D60 [135] A synthetic spherical depth estimation
dataset with ray and annotations.

7 CocoDoom [136] Generated from Doom 3D gaming has
annotations in the MS Coco format
useful at the level of instances, train-
ing and evaluation.

8 3D Ken Burns [137] Large-scale photo-realistic scenes
along with accurate ground truth
depth.

Continued on next page
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Table 11.2 – continued from previous page
Sl. Database Resources Benchmark,
No. papers
9 4D Light Field [138] Ddensely sampled 4D light fields with

highly accurate disparity ground truth
providing camera settings, disparity
ranges, 5120x5120 disparity maps,
9x9x512x512x3 light fields, 512x512
depth maps, and evaluation masks of
resolutions 512x512 and 5120x5120.

10 Endoscopic SLAM
(EndoSLAM) [139]

Endoscopic videos for depth estima-
tion with 35 sub-datasets and ex-vivo
data.

11 Mila Simulated Floods
[140]

A 1.5 square km virtual world of be-
fore and after flood pairs of rural sub-
urban and urban areas.

1

12 Enclosed garDEN
(EDEN) [141]

Has > 100 garden models and >300k
images along with annotations for
depth, semantic segmentation, optical
flow, intrinsic colors and surface nor-
mal.

13 FutureHouse [142] A virtual, photo–realistic, large-scale
and panoramic dataset with >70k
models, high-resolution meshes ,
1,752 house-scale scenes with 28,579
panoramic views.
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14 INRIA Dense Light

Field (INRIADLFD)
[143]

A light field dataset using Blender,
provides 512x512 pixels with 9x9 an-
gular resolution with two subsets. The
Dense Light Field Dataset (DLFD),
with 39 scenes, provides a disparity
range of [-4, 4] pixels. The Sparse
Light Field Dataset (SLFD) provides
53 scenes with a disparity range of [-
20, 20] pixels.

15 Virtual KITTI Synthetic videos from the KITTI with
changing weather, modified camera
parameters, poses and vehicle loca-
tions

11.3 Database from the Web

A good number of databases are created from information available on the Web. These are
listed in the table. 11.3.

Table 11.3: Various Datasets for Training

Sl. Database Resources Benchmark,
No. papers
1 Office-31 [144] Has 795 low-resolution indoor office

images of online merchants (Amazon,
DSLR) against a clean background
within a normalized scale with noise,
color, and white balance artifacts.

8,
466
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2 MegaDepth [145] A multi-view photo collection of 196

different locations caters to depth pre-
diction. Models trained on MegaDepth
exhibit strong generalization.

0,87

3 MannequinChallenge
[146]

In-the-wild dataset contains video
clips (>170k frames) of people in static
pose (imitating mannequins) leading
to natural diverse poses for training,
validation, and testing.

4 Relative Depth from
Web (ReDWeb) [147]

A wide variety of RGB images and re-
lated dense relative depth with 3600
image pairs and includes various non-
rigid objects.

5 Depth in the Wild [148] A variety of 495K single images from
the wild with corresponding relative
depths annotated between a pair of
randomly sampled points.

6 Open Annotations of
Single Image Surfaces
(OASIS) [149]

Crowdsourced 140k single images
with rich annotations like relative
depth, surface normal, fold boundary,
occlusion boundary, relatively normal,
and planarity. OASIS V2 has annota-
tions for an additional 102k images.

7 Holopix50k [150] A diverse, in the wild, crowd sourced
mobile stereo images (49,368).

8 Web Stereo Video
Dataset (WSVD) [151]

A in the Wild 553 stereo video for re-
construction of non-rigid scenes. Pairs
of frames within the videos provide the
depth information.
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9 High-Resolution Web

Stereo Image (HRWSI)
[152]

A wide variety of high-resolution RGB
images and related relative depth ob-
tained from stereo images with invalid
pixel masks, sky segmentation masks
and instance segmentation masks.

10 eBDtheque [153] Contains selected and manually anno-
tated 100 comic pages with informa-
tion of semantic annotation and visual
segmentation.

1

11 DCM [154] The data Contains 772 images from
27 comic books (Digital Comics Mu-
seum) with annotation like human-
like, animal-like, ground truth bound-
ing, etc.

12 InstaOrder [155] Provides 101K natural scenes and in-
formation to understand the geomet-
rical relationship instances in an im-
age with relative depth from the cam-
era and occlusion.

13 TikTok [156] A collection of >300 human dance
videos and >100k RGB images taken
from the TikTok social media for train-
ing high–fidelity human depths.

11.4 Tools for Database

Tools are also available for custom synthetic database development 9Table.11.4).
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Table 11.4: Tools for database development

Sl.No. Tool Capability
1 CALRA simulator

[157]
An open-source simulator for autonomous driv-
ing research with a good collection of depth
maps and corresponding RGB images. CARLA
provides open digital assets (urban layouts,
buildings, vehicles) and a sensor suite includ-
ing LIDARs, multiple cameras, depth sensors,
and GPS, among others.

2 MineNav Minecraft (sandbox game) generates these syn-
thetic data w.r.t. scenes from a large game com-
munity. Several plug-in programs allow ren-
dered image sequences with time-aligned depth
maps, camera poses and surface normal.

3 SuperCaustics This is a tool made with Unreal Engine to simu-
late massive computer vision datasets. The sim-
ulated data can include transparent objects.

167




	List of Figures
	List of Tables
	Abbreviations
	Nomenclature
	Introduction
	Depth estimate from stereo vision
	Depth estimate from single cameras
	Challenges for Mobile Platforms
	Motivation and Research Objective 
	Organization of the Thesis

	Depth Estimation and Methods-A Survey
	Introduction
	Camera
	Modeling the camera

	Market survey of depth cameras
	Stereo vision
	LiDAR
	Structured light

	Monocular Depth Estimation Methods
	Depth from Motion
	Classical Methods
	Coded aperture methods
	Blur Cues
	Light field method

	Learning-based methods
	Convolutional neural networks (CNNs)

	Datasets
	Selection of Database
	Data splitting and augmentation

	Performance Analysis
	Quantitative Measures

	Applications
	AR / VR and Entertainment:
	Security:
	Robotics:
	Artificial Intelligence (AI):

	Challenges
	Summary

	Depth from Defocus
	Introduction
	Aim
	Implementation Method
	Experiments
	Results and Analysis
	Summary

	Coded Aperture for Depth Estimation
	AIM
	Color-coded aperture
	Implementation of DFCCA
	Experiments
	Results and Observations
	Discussions

	Multi-coded Aperture
	Implementation Method
	Experiments
	Results
	Observations

	Summary

	Calibration and Absolute Depth
	Introduction
	AIM
	Implementation Method
	Calibration
	Choice of PSF
	Target and Result
	Experiments
	Ground truth

	Verification
	Summary

	Loss Functions for Edge Enhancement
	Introduction
	AIM
	Network architecture
	Training a Network

	Loss function
	Formulation-Multi-Loss Function
	Optimization
	Regularization

	Ablation Studies
	Experiments and Results 
	Results and Observation
	Summary

	Nested Wavelet-Net for Depth Estimation
	Introduction
	AIM
	Wavelets
	Deep network architecture
	Convolution Layer
	Pooling Layer
	Activation functions
	Regularization
	Proposed Network Architecture

	Loss Function
	Experiments
	Network Models
	Ablation Studies and Results

	Observations
	Summary

	Conclusions and Future work
	Research Contributions
	Future Research Scopes

	Bibliography
	List of Publications
	Appendix A: Camera parameters
	Computation methods
	Canon EOS 400D Camera
	Specifications of Camera

	CM-030 GE / CB-030 GE
	Main Features
	Specifications


	Appendix B: Depth Perception by Humans
	Human Eye
	Depth Perception modes
	Binocular cues
	Monocular cues
	Oculomotor cues
	Camera


	Appendix C: Datasets
	Datasets using cameras
	Synthetic and simulated datasets
	Database from the Web
	Tools for Database


