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ABSTRACT 
 

 
 

The effects of atmospheric turbulence on light beams and the turbulence induced higher order 

aberrations plays an important role for free space optical communication. In this thesis, the 

immunity of higher order Gaussian beams in maintaining its integrity during its propagation 

through atmospheric turbulence is experimentally investigated. The propagation analysis of 

laser Gaussian beam passing twice through a dynamic atmospheric turbulent mimicking 

Pseudo Random Phase Plate (PRPP) is carried out using variance matrix method. The 

characteristics like twist, symplectic Eigen values, asymmetry parameters, scintillation and 

beam wander are calculated for Gaussian and standard Laguerre Gaussian beams through 

rotating PRPP. 

Further wavefront detection using a common path vectorial shearing interferometer based 

wavefront sensor has been carried out. Copies of input shearing beam is obtained using 

cascaded sagnac interferometer. The proof of principle of Vectorial shearing interferometer 

based wavefront sensor is carried out. Wavefront variation introduced due to change in 

position of collimating lens has been calculated and verified with simulated results. A 

comparative study on SHWFS and Vectorial interferometric wavefront sensor has been done.  

For simulating the wavefront sensing using a natural light source or an artificially induced 

guide star, the proposed interferometer based wavefront sensor is tested with low coherent 

light source with finite spatial extent. The designs for maintaining the interference within 

temporal coherence domain and reviving the spatial coherence using diffraction effects 

ensured the sensing of wavefront. Wavefront of turbulent impacted (PRPP) low coherent 

wave has been detected using vectorial shearing interferometer based wavefront sensor. 
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Chapter 1 

Introduction 

1.1 Atmospheric Turbulence 

In general, the earth‘s atmosphere is considered to be locally homogeneous medium. 

However, its properties change considerably due to temperature, humidity, pressure, 

wind velocities, etc. [1-3]. The atmospheric turbulence is caused due to naturally 

occurring variations in temperature (less than 1
º
) causing small changes in 

atmospheric density which ultimately results in changes in refractive index. The 

magnitude of atmospheric refractive index fluctuations depends on the air density and 

temperature variations and in true sense, the optical effects of turbulence decrease 

with increase in altitude. Though this change in refractive index is of the order of 10
-6

 

it can accumulate and cause cumulative effect in the index profile of the atmosphere 

resulting in random fluctuations of phase of a beam passing through it. The 

atmospheric turbulence can be classified in to Kolmogorov type and non-

Kolmogorov type turbulent medium and Kolmogorov, in his theory, proposed that the 

structure of atmosphere is homogenous and isotropic for large Reynolds numbers 

with the inertial sub-range defined by the eddy size bounded by the inner scale l0 and 

the outer scale L0 respectively. This (Kolmogorov) model assumes that the 

atmosphere is comprised of small eddies that interact and exchange energy [2].  

There are many ways in which one can tap the possibilities brought forth by such a 

mundane thing like turbulence. Researchers have recently demonstrated the 

possibility of using the random phase acquired by a light field on propagation through 

atmospheric turbulence for cryptographic purposes [4-6]. Using phase fluctuations of 

a light field that has propagated through a turbulent atmosphere the random-key 

generation was demonstrated [4]. It was shown that the phase acquired by a light field 
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on propagation through atmospheric turbulence like conditions can be used by two 

remote observers to distil a shared random key [5-6]. 

Wavefront of a light beam is defined as deviation of its phase from a reference sphere 

[1]. It changes while propagating through atmospheric turbulence. In an actual sense, 

the wavefront of a propagating light beam is the two-dimensional map of its phase at 

the aperture or a plane normal to the propagation. Due to the changes in refractive 

index profile of the atmosphere, the light beam passing through experiences 

wandering, scintillation effect and spreading. This can compromise the information 

carrying capacity of photons in free space optical communication.  

The atmospheric turbulence induced phase fluctuations affects the image quality of 

distant objects in deep space whenever viewed from ground based telescopes [1]. In 

general, atmospheric turbulence can impact lower order aberrations like piston 

(uniform shift in wavefront), tilt of wavefront, defocus, astigmatism and higher order 

aberrations like coma, spherical aberration and trefoil  [1, 3]. Apart from piston which 

is a uniform shift in wavefront, tilt and focus normally affect the image quality or 

propagation of a wavefront. The cumulative effects of these lower order aberrations 

can cause high spatial frequency beam spreading, low spatial frequency beam 

wandering, and intensity variations(also known as scintillation) resulting in blurring 

or twinkling of stars[7-8]. The beam wandering is produced by the turbulent eddies in 

atmosphere with the sizes of the order of (L)
1/2

 where L is the propagation length.   

1.2 Wavefront sensors  

A wavefront is an important parameter in the propagation of light and can be used to 

characterize optical surfaces, align optical assemblies or help to improve the 

performance of optical systems. Wavefront sensor is a device which measures the 

optical wavefront (phase) and its aberration [1]. Phase is important information in 

optical testing, optical communication and adaptive optics systems to do required 

phase correction.  
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Phase detection can be done by transporting phase information in intensity using 

diffraction, refraction or interference [9-12]. The format of the information often 

drives the ability to use it in an optimal manner. Two basic types of wavefront 

information are used i.e. zonal and modal. When the wavefront is expressed in terms 

of the optical path difference over a small spatial area, the wavefront sensing is said 

to be zonal. When wavefront is expresses in terms of coefficients of the modes of a 

polynomial expressed over entire pupil then the wavefront is said to be modal [1].  

It is possible to reconstruct the wavefront of the entire field from the measurements of 

tilt in smaller regions. Wavefront division using various techniques like sub-apertures 

division and the Hartmann test is most common [9-10]. By fitting a continuous curve 

to local tilted planes, a two-dimensional surface is generated [13]. This information is 

necessary for the correction of a wavefront at the sub-aperture region. The decision to 

use a modal, zonal, or combination of sensing methods depends on its application. If 

the lower-order aberrations like tilt and defocus is dominating then modal analysis 

used. For example, optical testing can be done in a small range of parameters. The 

optics under test is well-characterized through previous examinations. In mass 

production, optics has only a few aberrations to be checked each time, since some 

high-order components may not be important for the application. If higher order 

aberrations are present, then a zonal approach should be used [1]. The adaptive optics 

techniques are required to correct the wavefront affected by atmospheric turbulence. 

The aberration presents are of higher order. Adaptive optics wavefront sensing 

requires highly precision detector for wide range of wavelength [1]. 

Wavefront sensing can be done directly from recorded intensity. Many researchers 

have approached the problem, direct evaluation of Fraunhofer diffraction pattern [14-

17] and multiple intensity patterns to extract the phase [18-19] by using phase 

retrieval techniques [20-22..]. J. R. Fienup in 1982 reviewed and compared a number 

of phase retrieval techniques. In this technique, intensity of the diffraction pattern is 

recorded, then with initial guess of the phase and using iterative algorithms phase 

information can be converged. The retrieval of the complex object information can be 
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directly done from the object autocorrelation using edge point referencing [23]. In 

these types of technique iterative algorithms are required which takes time to process. 

There may be possibility of not converging the phase information [24]. Some of 

important wavefront sensors are described in following sections. 

1.2.1 Shack-Hartmann Sensor 

The Shack-Hartmann wavefront sensor measures the wavefront gradients in two 

perpendicular directions over an array of sub-apertures (lenslet array) inside the 

telescopic pupil. Shack-Hartmann sensor is one basic techniques which convert 

wavefront slope into a change in illumination that can be measured photo electrically. 

Shack-Hartmann sensor consists of an array of lenslets of same focal length in which 

each one is focused into a photon sensor. The aberration can be found out from the 

local tilt of the wavefront across each lens from the position of the focal spot of the 

sensor. By measuring all the tilts from a sample of an array of lenslets, the whole 

wavefront can be approximated [25-26]. For each lenslet, the amount of spot 

displacement in two orthogonal directions is directly proportional to the slope of the 

wavefront at each lenslet that indicates the average phase tilt over the aperture. By 

assembling all these local flat tilted wavefronts, the input wavefront can be 

reconstructed and thus can be compared with the diffracted spots of a reference input 

beam. Indeed, Shack-Hartmann measures the 1
st
 order derivative of the input 

wavefront [1].  

Shack-Hartmann sensors have reached a high degree of sophistication. Binary optics 

enables the lenslet array to be fabricated with high precision and stability. The photon 

sensor used is a CCD array with high quantum efficiency and mechanical stability. It 

has high optical efficiency and has the ability to work with either pulsed or 

continuous reference sources [25-26]. It is completely achromatic as the slopes do not 

depend on the wavelength, it can also work on extended sources. However the 

resolution of a Shack-Hartmann wavefront sensor is equal to the sub-aperture size. If 

the atmospheric turbulence is high, more the higher order aberrations will be present. 
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Hence, phase variation smaller than the one micro lens will not be able to resolve. Its 

inflexibility with respect to wavefront tilt sensitivity and the inability to change the 

dynamic range during operation forms the drawbacks of the sensor [27]. 

1.2.2 Interferometric Wavefront Sensor 

The relative phase of an optical wave can be measured by interfering it with another 

optical wave as a reference. In wavefront detection, the self-referencing 

interferometers (SRI) are considered to be good choices as separate reference optical 

field is not required. The information measured using such interferometers is the 

phase gradient. There are various self-referencing interferometers like lateral, radial 

and rotational shear interferometers are used to measure the phase gradient. This 

phase gradients information is used to realize the complete 2-D wavefront by various 

iterative algorithms [28]. The radial, rotational and lateral shearing interferometer 

gives phase gradient information along one coordinate i.e. radial, azimuthal and along 

lateral direction [29-31]. The reconstruction from the gradient data, especially for 

wavefronts lacking symmetry in Cartesian/polar coordinates, gradients along both 

orthogonal coordinates (x and y or radial and azimuthal) need to be measured [32].  

 

To overcome the problem of reconstruction of 2D wavefront reconstruction, 

researchers have proposed a three wave interferometer based wavefront sensor [33-

38]. It is an extension of the 1-D lateral shearing. In this type of wavefront sensor, 

input beam is sheared along two directions depending upon integration method used. 

To make it a single shot technique, three copies of input beam are made using 

reflection, diffraction [33-39]. Interferometers are very sensitive to vibrations so they 

are good to use in laboratory conditions like optical shop testing not for outdoor 

conditions. Another problem with interferometer is input beam should have enough 

coherence to get good contrast fringes. It has been shown that the wavefront can be 

sensed in the case of extreme UV low brightness source by suitably modulating the 

light source intensity distribution using Multi Incoherent Source Talbot 

Interferometer (MISTI) [40] 
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1.3Analysis of wavefront from phase gradients 

1.3.1Variance matrix 

One of the important wave propagation analyses is using variance matrix approach 

based on Wigner distribution [41-46].  This is because, the Wigner distributions can 

give faithful representation of quantum mechanics and so, a similar approach is 

possible in classical optics [42]. Later, Schempp [47] and Bastiaans [48-49] used 

Fourier transform of Wigner distribution function for signal processing design and 

first order optics. Simon and Mukunda based on phase space method synthesized ray 

and wave approach in to one using symmetrical structure existed between Wigner 

distribution function and quantum mechanics in many of their works [42-46]. Main 

advantage of their techniques is the formulation of symplectic invariants called as 

quality parameters which led to optical uncertainty principle. These invariant quality 

parameters have been studied extensively by the same authors for different class of 

beams [44-46]. The variance matrix (V) can capture the changes in wave-field 

characteristics upon its passage through a turbulent medium at the level of second 

moments [50-51]. The Variance matrix can be easily estimated with the available 

data for intensity and wave-field centroid position extracted from a Shack-Hartmann-

Wavefront-Sensor (SHWFS) [52-57]. This does not involve any inbuilt wavefront 

reconstruction algorithm as is generally the case with SHWFS [58-64]. The Variance 

matrix estimation is the universal and repeatable, given the wave-field of same kind. 

In addition to this, the Variance matrix can also give certain other quantities of 

physical significance such as the Twist, the Symplectic Eigenvalues [50-51] and a 

distance measure between two Variance matrices. The Twist parameter measures the 

overall beam twist or rotation along the propagation direction and the Symplectic 

Eigen values are direct indicators of the presence of higher-order modes in a laser 

wave-field. The distance measure between two Variance matrices can be used as an 

effective tool towards checking the wave-field‘s symmetry in the ‗x‘ and ‗y‘ 
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directions and at the same time can compare the asymmetry between two Variance 

matrices calculated for the same wave-field in two different situations. Further the 

uncertainty principle, which puts a restriction on the Variance matrices that are 

physically possible, can be effectively used for the purpose of discarding the invalid 

data. This can act as a check on the experimental estimations of Variance matrices. 

1.3.2 Zernike polynomials 

Wavefront reconstruction is a standard mathematical process and is based on 

mathematical functions called Zernike polynomials [1, 65]. The Zernike polynomials 

are a sequence of polynomials that are orthogonal on the unit disk.The prediction of 

Zernike coefficients is very critical because they provide not only the overall 

performance but also provide insight into significant aberration coefficients of the 

wave front. These Zernike coefficients will thus become very useful tool in providing 

the scope for estimating actual performance and also correcting/optimizing the 

system performance. The Zernike polynomials have the advantage that, they 

represent balanced aberrations. Because of their orthogonality   across a circular 

aperture, the Zernike polynomial coefficients are independent of each other. Each 

coefficient represents the standard deviation of the corresponding Zernike term (with 

exception of the piston term), and the variance of the aberration is equal to the sum of 

squares of Zernike the coefficients. However Zernike polynomials are not good for 

applying to fields with phase singularities.  

Zernike polynomials are normally expressed in polar coordinates  ,  where       

0 1,0 2      . 

Each Zernike term consists of three components 

  
  [                   ]  [                ]  [             ] 

1) Normalization factor: Normalization factor for scaling different Zernike modes 

to unit variance is multiplied with the corresponding orthogonal polynomial 

which defines the Orthonormal Zernike circle polynomial. 
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2) Radially dependent polynomial: It describes the deviation of the wave front 

portion from zero mean. 

3) Azimuthal term: Zernike term with cos(mθ) and sin(mθ) represents symmetric 

and asymmetric polynomial varying as cos(mθ) and sin(mθ) respectively. 

Polar Representation: The polar representation of Zernike polynomial can be 

expressed as: 

  
  (       

   
| |(     (       for    m   0, 0 ≤            

                   =  
   

| |(     (         for     m  0, 0 ≤            

   
   

| |(                     for     m = 0 ,  0 ≤     

(1.1) 

Where 

      are positive integers and        and even. 

   
   is the normalization factor.  

  
  √

 (    

     
                                     

1.4 Minimizing the effect of turbulence 

. 1.4.1 Higher order Gaussian beams as light source 

The topologically charged beams or standard Laguerre Gaussian (LG) beams have 

their characteristic physical properties such as barrel/dough-nut shaped intensity 

distribution, helical wavefront, centre  phase singularity, ability to carry spin and 

orbital angular momentum and spatial propagation invariance [66-68]. The influence 

of atmospheric turbulence on beam quality is mainly restricted to Laser Gaussian 

beams however the optical vortex beams that possess an intensity null along their 
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propagation axis known as singular phase do not have such limitations. This is 

because there has been flurry of research works in propagation characteristics of 

Gaussian and topologically charged beams through atmospheric turbulence [69-78]. 

In one of their papers, Greg Gbur and Robert K Tyson showed the robustness of such 

topologically charged vortex beams when they propagate through weak and strong 

turbulence using multiple phase screen simulations [69]. This result showed that such 

vortex beams can be used for free space optical communications as they are 

insensitive to atmospheric turbulence. One of the major disturbances in free space 

optical communications is the scintillation effect due to atmospheric turbulence. 

Xiang long Liu et al showed that Gaussian Shell model vortex beams have less effect 

due to scintillation compared to Gaussian Shell model beams when they propagate 

through atmospheric turbulence [77].They can be used as optical pipes, optical 

tweezers and optical spanners due to their rotational symmetry along propagation axis 

and intrinsic orbital angular momentum of iћ per photon. Hence it is a powerful tool 

in the manipulation and control of microscopic particles. The most significant 

character of this beam is central vortex and partial coherence which enables to resist 

the effects of atmospheric turbulence. Standard LG beam of different orders can be 

generated using a spatial light modulator which acts as a reconfigurable diffractive 

optical element [77]. The circularly symmetric LG laser modes form an orthonormal 

complete basis set of solutions for paraxial light beams. The standard LG modes are 

characterized by two parameters, n and l that represent radial and azimuthal indices 

where l indicates orbital angular momentum of the beam. The standard LG beams 

describe a set of propagation modes where the equation for the radial electric field is 

proportional to the product of a Gaussian and an associated Laguerre polynomial 

L(nl). The complex amplitude of Laguerre-Gaussian beam is as follows [77]; 

  

2

2

2 2

2

2 ! 1 2 2
( , , )

( )!

exp 2 1
2

l

l

nl n

z z z

g

z z

n r r
LG r z L

n l w w w

r kr
i l n l

w R




 

   
        

  
        

  
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(1.2) 

Where ( , , )r z  are cylindrical-polar coordinates, k is the wavenumber, zw  is the 

beam width, zR  is the radius of curvature of the wavefront, g  is the Gouy phase and 

l

nL   is the generalized Laguerre polynomial function. 

2

0

0

1z

z
w w

z

 
   

 
 

where, 0z is known as the Rayleigh range and 0w   is the waist radius. 

2

01z

z
R z

z

  
   

   

 

1

0

tang

z

z
   

  
 

 

0
0

z
w




  

The lowest order standard Laguerre-Gaussian beam (l=n=0) is again the Gaussian 

beam. When |l| is greater than zero, the electric field has an azimuthal phase change 

of 2 l which results in a phase singularity in the field and a node for the intensity at 

the centre of the beam. lin the phase factor l indicates the scaling for the phase 

variation as a function of the azimuthal angle   [77]. 

The intensity of the standard Laguerre-Gaussian beam is a function of r and z, so that 

it is circularly symmetric.  For l ≠ 0, the beam has zero intensity at its centre (r = 0) 

and an annular intensity pattern. The phase Φ(r, ϕ, z) has the same dependence on r 

and z as does the Gaussian beam, except that the Gouy phase that is greater by a 

factor of (l+2m+1) and there is an additional term proportional to the azimuthal angle

 . Because of the linear dependence of the phase on the azimuthal angle   (for l ≠ 0), 
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the wavefront assumes a helical form as the wave travels in the z direction. Beams 

with such spiral phase are of interest since they carry orbital angular momentum that 

can impart torque to the system under illumination. 

LG beams are natural Eigen modes of optical systems whose optical surfaces are 

spherical and whose symmetry is cylindrical. The amplitude and phase images of 

LG01 beam is given in the Fig.1.1. 

 

   

Figure 1.1 Amplitude and phase distribution of LG01 beam 

Main reasons for considering the standard LG beams are due to their integrity even 

with the impact of turbulence [68 69 75 77 78] and due to that the vortex beams 

proved to have potential applications in free space optical communications 

(information carriers). 

1.4.2 Adaptive optics   

Adaptive optics is used to enhance the capability of optical systems by actively 

compensating for aberrations. Adaptive optics is real-time distortion-compensating 

systems. The aberrations can be represented in form of coefficients of Zernike 

polynomials [65] and these distortions can be corrected using adaptive optics by 

controlled adjustment of Zernike coefficients or disk harmonics of deformable mirror. 
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The most common adaptive optics system in use today consists of three subsystems 

i.e. a wavefront sensor, a deformable mirror and a control system [1]. 

1.5 Scope of the thesis 

There have been several works in the recent past related to effects of atmospheric 

turbulence on light beams and the turbulence induced higher order aberrations [1-3, 

7-8]. Overcoming the effects of atmospheric turbulence through adaptive optics plays 

an important role for free space optical communication and in imaging of distant 

objects in space using ground based telescopes. [1,68]. In the case of optical 

communication, one can also design the properties of source light beams so that it 

gets less affected by the atmospheric turbulence during its propagation [69-71]. In 

this thesis, the immunity of higher order Gaussian beams in maintaining its integrity 

during its propagation through atmospheric turbulence is experimentally investigated. 

Inferences from the investigation paved the way to explore wavefront sensing with 

higher resolution and better accuracy for the measurement of phase gradients. To 

achieve the accurate phase gradient measurement unaffected by amplitude variations 

in the optical field, interferometry based sensing scheme is proposed and 

experimentally demonstrated. For simulating the wavefront sensing using a natural 

light source or an artificially induced guide star, the proposed interferometer based 

wavefront sensor is tested with low coherent light source with finite spatial extent. 

The designs for maintaining the interference within temporal coherence domain and 

reviving the spatial coherence using diffraction effects ensured the sensing of 

wavefront. 

1.6 Thesis Outline 

In chapter 2, propagation analysis of laser Gaussian beam passing twice through a 

dynamic atmospheric turbulent mimicking Pseudo Random Phase Plate (PRPP) is 

carried out using variance matrix method. The characteristics like twist, symplectic 

Eigen values and asymmetry parameters are compared with characteristics of single 
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passage beams of topologically charged Laguerre Gaussian beams through same 

rotating PRPP. 

In chapter 3, scintillation and beam wander study of turbulent impacted Gaussian and 

topologically charged vortex beams has been carried out. Aberration calculation on 

these beams using SHWFS has been done.  

In chapter 4, wavefront detection using a common path vectorial shearing 

interferometer based wavefront sensor has been carried out. In this experiment 3 

copies of input shearing beam is obtained using cascaded sagnac interferometer. The 

proof of principle of Vectorial shearing interferometer based wavefront sensor is 

carried out. Wavefront variation introduced due to change in position of collimating 

lens has been calculated and verified with simulated results. 

In chapter 5, a comparative study on SHWFS and Vectorial interferometric wavefront 

sensor has been done. Aberrations introduced due to insertion of atmospheric 

turbulence mimicking pseudo random phase plate are measured and compared. 

In chapter 6, sensing of low coherent wavefront is carried out using Vectorial 

shearing interferometer. The partial enhancement of spatial coherence is 

demonstrated by introducing a hard aperture at the source plane. The introduction of 

hard aperture at extended light source leads to the spatial coherence having Bessel 

distribution with extended side lobes. The fringe contrast has maintained at detection 

level by setting the lateral shear corresponding to one of the maxima of these side 

lobes. Wavefront of turbulent impacted (PRPP) low coherent wave has been detected 

using Vectorial shearing interferometer based wavefront sensor.  
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CHAPTER 2 

Propagation analysis of double passage Gaussian and 

single passage topologically charged vortex laser beam 

using variance matrix 

2.1 Introduction 

Like conventional laser Gaussian beams, researchers have found that the Vortex 

beams (topologically charged) are also useful for free space optical communications 

[72, 79]. The vortex beams possess intensity and a helical phase structure with a point 

of undefined phase in the heart of helical phase structure. The phase variation around 

undefined phase known as singularity is in the order of l (2π), where integer l stands 

for topological charge of the vortex beam. Unlike laser Gaussian beams, when these 

vortex beams propagate through atmospheric turbulence the normal turbulent 

impacted beam effects like scintillation, beam spreading and wandering are greatly 

reduced. These vortex beams with different topological charges can also be used for 

increasing data rate in free space optical communications using simultaneous 

multiplexing of different modes [72, 79]. Most of these beam characteristics analysis 

consider single passage through turbulence and many researchers [80-85] have shown 

the impact of enhanced back scattering of light beam through atmospheric turbulence 

when it passes twice through it. Recently, J. Yu et. Al [85] have reported that the 

enhanced backscattering behaviour of different topologically charged vortex beams 

through atmospheric turbulence, found that odd charges show negative enhancement 

and even charges show positive enhancement of backscattering. This is because 

enhanced backscattering of laser beams through atmospheric turbulence can be used 

for precision pointing and tracking. R. Sharma et. Al [86] have demonstrated that one 

can use variance matrix approach to characterize the turbulent affected He-Ne laser 

beam (λ=632.8 nm) using Shack-Hartmann wavefront sensor. Using the optical 
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invariant quality parameters like, optical uncertainty principle and symplectic Eigen 

values, we had analysed propagation of laser Gaussian beam through atmospheric 

turbulent mimicking Pseudo Random Phase Plate (PRPP). In this approach, unlike 

measuring conventional scintillation parameter, beam wandering and spreading of 

light beam through turbulence, we found twist parameter, asymmetry value of the 

beam and fluctuation of a turbulent infected He-Ne laser beam (6328 Å) using 

variance matrix. The wave propagation analysis using variance matrix approach 

requires the calculation of expectations of observable operators [50] on the wavefield 

and for a coherent wave field; this can be done in restricted manner by evaluating its 

second moments which is the elements of variance matrix (V).  

In this chapter considering the paraxial scalar optics, propagation analysis of laser 

Gaussian beam passing twice through a dynamic atmospheric turbulent mimicking 

Pseudo Random Phase Plate (PRPP) is carried out and the characteristics is compared 

with characteristics of single passage beams of topologically charged c Laguerre 

Gaussian beams   through same rotating PRPP. We used the optical invariant quality 

parameters like, optical uncertainty principle, symplectic Eigen values, for this 

turbulent impacted beam propagation analysis. The physical parameter from variance 

matrix like twist parameter(), asymmetry values () of the beam and symplectic 

Eigen values () are used in this analysis which are obtained using Shack-

Hartmann wavefront sensor as detector.  

2.2 Beam propagation characterization using Variance 

matrix 

The laser beam is a monochromatic light-field with the paraxial approximation 

travelling along the z axis can be described by its field amplitude as, 

      0, , , , expE x y z t E x y i kz t     

     (2.1) 
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Where,  0 ,E x y  represents amplitude in its transverse plane, and   exp i kz t 

indicates phase of that the light-field propagating close to the z axis. If the laser beam 

travels twice through the pseudo random phase plate (PRPP), the phase of such a 

double passage beam can be represented by  , then the transverse field amplitude 

 ,E x y can be rewritten as, 

       0, , exp ,E x y E x y i x y    
 

(2.2) 

Where,  0 ,E x y  is the amplitude,  ,x y is the phase of light beam and 

represents the phase introduced in double passage laser beam through the pseudo 

random phase plate(PRPP) mimicking atmospheric turbulence. On the other hand, 

when the phase ( , )x y has a singularity, then the light-field is said to carry a ―charge‖ 

or angular momentum. A fundamental example for a laser light-field which possesses 

such a phase singularity is given by the Laguerre–Gaussian modes. In general a 

standard Laguerre Gaussian (LG) vortex beam with cylindrical co-ordinates is given 

by, 

2

2
( , ) exp

l

l

z z

r r
E r il

w w
 

   
      
     

(2.3) 

In Eqn. 2.3, r is the radial coordinate,   is the azimuthal coordinate and wz is the 

transverse beam waist size. The azimuthal index l, corresponding to the topological 

charge of the LG vortex beam, indicates the number of twists of the helical wavefront 

within a wavelength and represents the amount of Orbital Angular Momentum. It can 

be positive or negative or zero. 
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In terms of rectangular co-ordinates for paraxial type LG beams passing through a 

pseudo random phase plate (PRPP) mimicking the atmospheric turbulence, the field 

component can be represented by, 

      0, , expE x y E x y i m   
 

(2.4) 

Where, m takes integer values 0, 1, 2 etc., which determines the topological charges 

and the term in Eqn.2.35 represents phase of LG beams single passage through 

PRPP. If m=0 then the beam will be simply Gaussian and if m=1 then it will be 

having topological charge 1 and for m = 2 it will be topological charge 2 and so on.  

The variance matrix of a wave-field at a particular propagation distance z is estimated 

from the second moments of the ―position‖ and ―momentum‖ variables measured at 

various distances with respect to z. It can be estimated with the available data for the 

intensity and beam centroid position extracted from the Shack–Hartmann wavefront 

sensor (SHWFS). This does not involve any inbuilt wavefront reconstruction 

algorithm. The variance matrix estimation is thus universal and repeatable, given the 

same kind of wave-field. To get proper results the estimated V of an undistorted 

wave-field can be compared with the V corresponding to the distorted beam, i.e. the 

one, which is subject to pass through the random medium or turbulence mimicking 

medium such as a Pseudo-random phase plate (PRPP). 

Now, the intensity of double passage beam through pseudo random phase plate 

mimicking atmospheric turbulence is given by, 

       

     

0

0

, , exp ,

, exp ,

I x y E x y i x y

E x y i x y

 

 

  

 
 

(2.5) 


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 

 

2

0

0

,

,

I x y E

E I x y




 

(2.6)                                              

Calculation of variance matrix requires finding partial differentiation of intensity 

along x and y directions and it is given by, 

   
 

 
2

0 0

0

, ,,
2 ,

E x y E x yI x y
E x y

x x x

 
 

    

(2.7) 

 

   
 

 
2

0 0

0

, ,,
2 ,

E x y E x yI x y
E x y

y y y

 
 

    

(2.8) 

Since we used Shack-Hartmann wavefront sensor‘s CCD for the intensity 

measurements, the intensity derivatives at a point (i, j) are given by, 

       , 1 , , , 1

2 2

I i j I i j I i j I i jI

x x x

   
 

  
 

       , 1 , , , 1

2 2

I i j I i j I i j I i jI

y y y

   
 

  
 

(2.9) 

In Eqn.2.9 the values Δx and Δy indicate the least count of the CCD i.e., the size of 

each pixel in millimetres in the x and y directions, respectively (here, it is 4.65 µm in 

both directions). 
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2.2.1 Variance Matrix 

The variance matrix normally used for calculating beam propagation parameters like 

twist parameter ( ), symplectic Eigen values ( 1 and 2 ) symmetry and asymmetry 

values ( asV ) is given by following [87], 

 

   

   

   

   

2

2

2

2

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

2

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

2

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

2

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

2

x y

x x x x y

x y

y x y y y

x x p x y x p

x p p p y p p

V

x y p y y y p

x p p p y p p

 
       

 
       
 

  
       
 
 

       
 

 

               (2.10) 

Where the values of individual matrix elements are given by, 

1. The term  
2

x̂ : 

    

 

 

2

22

22

22

22

1

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ

x x x x x

x x x x x x

x x x x x x

x x

x c

   

   

   

 

   

(2.11) 

where, it should be noted that 1x̂ c  has been defined. 

2. The term  
2

ŷ : 
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 

 

22 2

22

2

ˆ ˆ ˆ

ˆ

y y y

y c

  

   

(2.12) 

where,
2ŷ c . 

3. The term  
2

ˆ
xp : 

    

 

 

2

22

22

22

22

3

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ

x x x x x

x x x x x x

x x x x x x

x x

x

p p p p p

p p p p p p

p p p p p p

p p

p c

   

   

   

 

   

(2.13) 

where again,
3

ˆ
xp c has been defined. 

4. The term  
2

ˆ
yp : 

 

 

2 2
2

22

4

ˆ ˆ ˆ

ˆ

y y y

y

p p p

p c

  

   

(2.14) 

where, 4
ˆ

yp c . 

5. The term  
1

ˆ ˆ,
2

xx p  : 



21 

 

        

 

   

   
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1 3
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1 1
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(2.15) 

6. The term  
1

ˆ ˆ,
2

yy p  : 

     

   
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2 4

2 4

1 1 1
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2 2 2

1
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y p p y yp p y y p

yp p y c c
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       

  

 

 

(2.16) 

7. The term ˆ ˆx y  : 

  

 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ

ˆˆ

x y y x x x y y

xy x y

xy c c

       

 

   

(2.17) 

8. The term ˆ ˆ
yx p  : 



22 

 

  

 1 4
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x p p x x x p p

xp x p
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   

(2.18) 

9. The term ˆ ˆ
xy p  : 

  

 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ
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yp y p
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 

   

(2.19) 

10. The term ˆ ˆ
x yp p  : 

  

 3 4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

x y y x x x y y

x y x y

x y

p p p p p p p p

p p p p

p p c c

       

 

 
 

(2.20) 

In the variance matrix elements there are two types, which are first order moments 

and the second order moments respectively. The first order moments related to the 

intensity measurements are given by following expressions, 
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2.21 (b)  
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2.21 (c) 
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2.21 (d) 

where x̂ , ŷ represent position and ˆ
xp , ˆ

yp represent momentum operators 

respectively.   Similarly, the second order moments which, are related to the beam's 

width and angular divergence in the far field, are given by the following expressions, 
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2.22(d)    

and the second order moments of cross terms are given as, 
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2.23(b) 

Now, the observable operators array can be defined as   1 2 3 4
ˆ ˆ ˆ ˆ, , , , , ,x yx p y p     for 

a given transverse field amplitude  , ;A x y z , for instance, i  is defined as

ˆ ˆ ˆ
i i i     with the expectation value    *ˆ ˆ, ; , ;i ix y z x y z dxdy  

 

 
   . 

Then the entries ijV  of the variance matrix V corresponding to the transverse field 

amplitude  , ;A x y z  are defined as the expectation values 
†ˆ ˆ,ij i jv      with i, j 

taking values from 1 to 4. In a more explicit form, the variance matrix V  is defined as 

a 4 × 4 matrix which is written in block form following [87], Then the entries ijV  of 

the variance matrix V corresponding to the transverse field amplitude  , ;E x y z  for 

any propagating optical beam is defined as the expectation values 
†ˆ ˆ,ij i jv      

with i, j taking values from 1 to 4. In a more explicit form, the variance matrix V is 

defined as a 4 × 4 matrix which is written in block form following [86], 
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11 12

21 22

V V
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V V
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  
   

(2.24) 

Where, the terms are defined as 
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(2.25) 
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(2.26) 
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  
    
   

(2.27) 

By substituting Eqns.2.25 2.26 and 2.27 in the matrix elements of Eqn.2.24, the 

variance matrix will reduce to Eqn.2.10. The important application of this variance 

matrix described in Eqn. 2.10 is for finding the beam propagation characteristics.  
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2.2.2 Characteristics of Variance matrix 

From Eqns. 2.16 and 2.18, the 2×2 matrices V
11

 and V
22

 can be recognized 

individually as variance matrices for the variables x̂  and ŷ   or the matrices for the 

two separate single modes.  

For V
11

, 

    

 

2211

22

1
ˆ ˆ ˆ ˆ,

4

1
ˆ ˆ ˆ ˆ,

4

x x

x x

Det V x p x p

x p x p

     

     
 

(2.28)

 It should be noted that for two Hermitian operators x̂  and ˆ
xp  

1.  ˆ ˆ, xx p  is always Hermitian i.e.,  

   ˆ ˆ ˆ ˆ, † ,x xx p x p    
 

(2.29)
 

2.  ˆ ˆ, xx p  is always anti-Hermitian i.e. 

   
†

ˆ ˆ ˆ ˆ, ,x xx p x p     
 

(2.30)
 

Proof for uncertainty principle for above mentioned operation derived using Schwartz 

inequality is given by, 

 
2

11

4
Det V 

 

(2.31) 

It is worth noticing that when the 2×2 matrix V11/22 (V
11

/V
22

) has a (canonical) 

diagonal form, 
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11/22

0

0
V





 
  
   

(2.32) 

Then the statement of uncertainty principle takes the following form: 

2

11/22

2
2

( )
4

4

2

Det V










 

(2.33) 

where  is the symplectic Eigen value. 

 

The variance matrix V obeys the uncertainty principle and it can be stated as 

following [86], 

0
2

i
V  

 

(2.34) 

 where, α = σ ⊕ σ and  
0 1

1 0


 
  

 
 with σ, the Pauli matrix. The operator ⊕ 

denotes the Kronecker sum. The variance matrix contains several important wave 

propagation physical parameters like twist of light beam (), the symplectic Eigen 

values denoting spread of light beams (𝜅1,2), symmetry and asymmetry of 

propagating wave field (Vδ) .  Apart from these parameters using the intensity 

measurements one can find scintillation and beam wandering parameters of the 

propagating light beam.  
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2.3 Computation of Physically Significant Parameters 

from Variance matrix 

The variance matrix completely specifies the wave-field, like symplectic Eigen 

values (), twist parameters () and symmetry () of propagating light beams. 

These beam characteristics parameters are calculated from the Variance matrix. 

2.3.1 Symplectic Eigen values () 

A real linear transformation on the variables ̂  with a 4×4 real matrix S such that 

following [88], 

ˆ ˆS     

This transformation is canonical if ̂  obeys the same commutation relationships as do

̂ . This restriction amounts to saying, 

TS S 
 

(2.35) 

where, (2 , )PS S n R .Since n=2 is being considered here (4, )PS S R . The 

symmetric symplectic transform of the 4×4 matrix V under such S is as follows: 

' TV SVS  

(2.36) 

If a given V is physically realizable then its Symplectic transform V’ and the 

invertibility of S also guarantees the opposite statement. In order to check the 

realizability of a variance matrix, one needs to check the feasibility of the Symplectic 
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transform of V. A simple (canonical) form for the same with only diagonal entries is 

guaranteed by the following Williamson‘s Theorem: which states that, 

―For any real symmetric positive definite 2n×2n matrix V, there exists (2 , )PS S n R  

such that the symplectic transform of V by S has the canonical scaled diagonal form, 

unique up to the ordering of j ‖. 

For n=2 case 

1

1

2

2

"

0 0 0

0 0 0

0 0 0

0 0 0

TV SVS











 
 
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 
 
 

 

(2.37) 

Here 1 and 2 are referred to as symplectic Eigen values of V. the transformation 

expressed in (2.37) is not a similarity transformation, hence the Eigen values of V” 

are not in general the Eigen values of V. However the transformation,  

   

2 2 2 2

1 1

1

2 2

2 2

( , , , )

"  

diag

V

k

V

k

S S

k k

  







 

(2.38) 

is a similarity transformation and so the Eigen values of     
2

V V V    has a 

spectrum (of Eigen values) i.e., 
2 2 2 2

1 1 2 2, , ,k k k k . Thus one can evaluate the Eigen values 

of  
2

V in order to calculate the symplectic Eigen values. These symplectic Eigen 

values indicate the presence of higher-order modes in the wave-field.  
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2.4.2 Twist Parameter ()  

Twist parameter τ is the measure of how much a wave-field twists as it propagates 

along the z axis and it is given by: 

    12 2

1 1
ˆˆ ˆ ˆ

y xxp yp Tr V i    
 

(2.39) 

2.3.3 Asymmetry Parameter 

The distance measure between two variance matrices can be used as an effective tool 

towards checking the wave-fields asymmetry in x and y directions and at the same 

time can compare asymmetry between two variance matrices calculated for the same 

wave-field in two different situations. 

Given two variance matrices V1 and V2, the quantity: 

 

2

1 2

2 2

1 2

( )

( ) ( )

Tr V V
v

Tr V Tr V






 

(2.40)

 

   captures how different the variance matrix V1 is from the variance matrix V2. This 

quantity can be used to compare two wave-fields at the level of the second moments. 

If the two wave-fields are identical, then   =0, and if the two wave-fields are not 

identical, then 0 ≤   < 1. Similarly,   can also be used to capture the asymmetry of a 

wave-field in the x and y variables. Assuming V1 = V11 and V2 =V22 then   = Vas =0 if 

the wave-field in consideration is symmetric. If the wave-field is asymmetric in the 

variables x and y, then 0 ≤ Vas< 1. 
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2.4 Experimental results and discussion 

The experiment is divided into two parts. First the laser Gaussian beam is passed 

twice through rotating pseudo random phase plate which is turbulence mimicking 

simulator in laboratory condition. Second part involves the propagation of different 

topologically charged vortex beams through the same rotating PRPP. The intensity 

and centroid information for both cases are recorded using SHWFS at different 

distance from PRPP along z (beam propagation) direction. 

 

 

Figure 2.1 shows the experimental set-up for double pass laser Gaussian beam. 

Fig. 2.1 shows the experimental geometry where, the collimated laser beam from He-

Ne source is propagated through a rotating pseudo random phase plate (PRPP) 

mimicking atmospheric turbulence twice.  
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Figure 2.2 shows the conceptual arrangement of experimental geometry for Fig. 2.1 

The Laguerre-Gaussian beam of different topological charges are passed through the 

same PRPP only once for a comparative analysis at various distances and the 

experimental geometry for single passage of propagation of LG beams of different 

topological charges is given in Fig. 2.3. In this part, vortex Phase plate is used to 

generate different topological charges. The vortex phase plate (manufactured by RPC 

Photonics.) geometry and its charge map are shown in Fig. 2.4(a) and (b) 

respectively. 

 

Figure 2.3 shows the experimental set-up for single pass laser vortex beam. 
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Figure 2.4 shows (a) Vortex geometry of phase plate and (b) Charge map of phase plate 

manufactured by RPC Photonics. 

The working principle and details of Shack-Hartmann wavefront sensor is also given 

in Appendix-B and the details of pseudo random phase plate (PRPP) used in this 

experiment is given in Appendix-A respectively. 

The propagation characteristics  of a double passage of He-Ne Laser Gaussian beam 

and single passage of topologically charged 1, 3 (odd) and 2, 4 (even) Laguerre 

Gaussian beam through a dynamic (Rotating) turbulent mimicking PRPP are carried 

out  using a Shack-Hartmann wavefront sensor. The Shack-Hartmann Wavefront 

Sensor used in this experiment consists of 10mm×10mm×2mm lenslet array having 

lenslet pitch of 150 µm and a 1280 × 1024 pixels CCD with the size of each pixel 

being 4.65 µm × 4.65 µm. The 1024 × 1024 pixels CCD surface area of SHWS 

sensor is divided into 31 × 31 domains, with these domains being labelled by indices 

i, j (starting from top most left corner) as has been shown in the Fig.B.1andhave 

values 1 ≤ i, j ≤ 31. The incoming wavefront gets divided into 31 × 31 parts, and each 

part is focused into a spot in one domain by its corresponding lenslet as shown in Fig. 

B.1. The spot centroid and intensity coordinates corresponding to each of these 

domains are labelled as xij, yij and Iij respectively for position and intensity values 

respectively. Initially, using the geometry shown in Fig. 2.1 the laser beam from He-

Ne laser is allowed to propagate after double passage through a distance d (d1+d2) and 

detected using SHWS. Then the PRPP is inserted at a distance from laser in such a 

way that the turbulent impacted beam can propagate same distance d like the previous 



34 

 

case. This will enable us to compare the turbulent fluctuations at same distances. 

After finding the twist parameter for a double passage laser beam through a dynamic 

(rotating) PRPP mimicking atmospheric turbulence, the experiment was carried out 

for odd and even topologically charged LG beams propagating through the same 

PRPP using the experimental geometry shown in Fig. 2.3. The topologically charged 

beams are generated using vortex phase plate (Fig. 2.4 a, b). Unlike double passage 

beams, the topologically charged beams (odd and even) pass through PRPP only once 

as it is evident from the geometry shown in Fig. 2.3. 

The speed of rotating dynamic PRPP is adjusted to the same level of wavefront 

sensor speed so that the sensor sees the rotating PRPP as stationary.  In a similar way 

using the experimental geometry shown in Fig. 2.3 first the intensities of 

topologically charged beams (Odd and Even)  without propagating through PRPP is 

determined using the same Shack-Hartmann wavefront sensor and then after inserting 

the rotating PRPP the intensities of turbulent impacted topologically charged beams 

of all 4 charges have been measured for twist parameter calculations 

2.4.1 Twist parameter  

The twist parameters of a double passage beam through dynamic atmospheric 

turbulence mimicking pseudo random phase plate and the single passage of Laguerre 

Gaussian beams of odd charges (1, 3) and even charges (2, 4) through dynamic 

atmospheric turbulence mimicking Pseudo Random Phase Plate (PRPP) are analyzed 

at various propagating distances.  
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(a)     (b) 

 

(c)     (d) 

 

(e)     (f) 

Figure 2.5 shows (a-e) Twist values for double pass Gaussian, vortex beam charge 1, 2, 3 

and 4 respectively at 30 cm from PRPP. (f) Twist parameter for all beams at different 

distance from PRPP. 

The twist parameter for a double passage beam is shown in Fig. 2.5(a), where at 

distance d=30cm, 300 samples at an interval of 2.5cm are measured using SHWS 

data and computed. The dark line shows the twist values for non-turbulent impacted 

beam (without inserting PRPP) and red lines show the twist parameter for a 

turbulence impacted (after insertion of rotating PRPP) double passage beam 

respectively. As expected the twist is more for the double passage beam through a 

rotating PRPP. Similarly Fig. 2.5 b, c, d and e show the twist parameters computed 

for the topologically charged LG beams with and without inserting rotating PRPP. It 
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can be seen from the Fig. 2.5 b, c, d and e the twist parameter is same for even 

charges (2, 4) at a particular distance (d=30cm) and it is different for odd charges (1, 

3) at same distance. The twist values are not exactly matching with charge of the 

beam as the effect of external twist. The exact angular momentum (twist) cannot be 

calculated without knowing the proper point of origin [90]. Recently, J Yu et al [85] 

has shown that the topologically charged beams show enhanced back scattering effect 

on evenly charged beams and none for oddly charged beams for double passage 

vortex beams through turbulence. However in this case from Fig. 2.5, it is clear that 

evenly charged vortex beams show similar positive twist value compared with oddly 

charged vortex beams even for a single passage. This is an important observation in 

our analysis as for single passage of topologically charged beams, even charges that 

is 2, 4 show same positive twist values (Fig. 2.5c and 2.5e) and odd charge 1 shows 

negative twist value (2.5b) and whereas Charge 3 shows zero twist(2.5d)at same 

distance of measurement from PRPP. In case of double passage Gaussian beam, at 

the same distance i.e. 30 cm from rotating PRPP Fig. 5a shows large twist values in 

both positive and negative directions. Figure 2.5(f) shows a comparative plot 

computed for all 5 cases, and from that it is clear that as distance increases the charge 

4 has highest twist value at a distance of 50 cm from the PRPP followed by charge 1, 

2 and 3. It is interesting to observe that charge 3 has lowest twist values among all 

charges and its twist value is uniformly same up to 50 cm from 5 cm distance from 

the PRPP. Also, it is evident from Fig. 2.5(f), that the double passage beam has same 

twist value equivalent to charge 2, 3 at a distance 30 cm from PRPP and 45 cm from 

PRPP respectively. Thus the double passage beam acquires topological charge values 

of two and three at two distances as it propagates through turbulence. 

2.4.2 Symplectic Eigen Values 

The symplectic Eigenvalues of variance matrix for the double passage and the single 

passage of different topologically charged LG beams through dynamic PRPP are 

calculated. 
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(a) (b) 

(c) (d) 

(e) (f) 
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Figure 2.6 shows the plot of 1 and 2 for different charge-1 (a-b), charge-2 (c-d), charge-3 

(e-f), charge-4 (g-h) beams and double passage Gaussian beam (i-j). Red and black colour 

plot shows symplectic Eigen values for beam with and without inserting rotating PRPP.   

 

Figure 2.6(a) and (b) shows the symplectic Eigen values ( 1 and 2 ) computed for the 

topologically charge-1 LG beams with and without inserting rotating PRPP. Figure 

2.6(c) and 2.5(d) for charge 2 and so on. Thus, Figure 2.6(a), (c), (e), (g) and (i) show 

the 1  values for charges1, 2, 3, 4 and double passage Gaussian beam respectively. 

Figure 2.6(b), (d), (f), (h) and (j) show the 2 values plotted with respect to distances 

from PRPP for charges 1,2,3,4 and double passage Gaussian beam respectively. The 

symplectic Eigen value 1  representing beam spread and presence of higher order 

modes show for charge 1 beam alternatively maximum and minimum values at 

various distances as the beam propagates after turbulence impact. The value reaches 

(g) (h) 

(i) (j) 
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maximum at a distance 45 cm but drops to 20 at 50 cm and again it increases (Fig. 

2.6a). At the same time in other direction i.e. the symplectic Eigen value 2  for the 

same charge 1, has maximum value at a distance 28 cm but as beam propagates 

further it increases and decreases but, drops back to its initial value at a distance of 55 

cm.  In case of charge 2, the Eigen value 1  reaches maximum at 30 cm and again 

raises to second maxima 25 at a distance close to 50 cm. The 2 value for same 

charge 2 reaches maximum value of 25 at 30 cm and drops down close to its initial 

starting value at 55 cm. For charge 3 the maximum values for 1 reaches at 3 

distances 30 cm, 45 cm and 55 cm and the value 2  shows uniformly flat curve and 

reach its initial value at 53 cm. The 1  value for charge 4 reaches maximum value 

only after the turbulent impacted beam reaches a distance of 53 cm and 2  value 

remains slightly higher than charge 3 but remains flat mostly and reaches lowest 

value even below turbulent un-impacted beam at 53 cm. Finally, the plot shown in 

Fig. 2.6i and 2.6j for double passage Gaussian beam show that the Eigen values 1  

and 2  reach maximum at 30 cm and remains uniform before and after 30 cm 

distances. These plots clearly show that the topologically charged beams show 

instability of higher order modes as turbulent impacted beam propagates but twice 

turbulent impacted Gaussian beam show a strong higher order mode at 30 cm in both 

directions( 1 and 2 ). 

2.4.3 Asymmetry Parameter 

Asymmetry values for double passage and topologically charged beams are shown in 

Fig.2.7. 
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Figure 2.7 shows the plot of Vas for different charge-1 (a), charge-2 (b), charge-3 (c), charge-

4 (d) beams and double passage Gaussian beam (e). Red and black colour plot shows 

Asymmetry values for beam passing through with and without rotating PRPP. 

 

Figure 2.7 (a), (b), (c), (d) and (e) shows the Asymmetry parameter (Vas) computed 

for the topologically charged LG beams with (red colour) and without (black colour) 

(e) 

(c) 

(a) (b) 

(d) 



41 

 

inserting rotating PRPP for the charges 1, 2, 3, 4 and double passage beam 

respectively. The asymmetry value for charge 1 reaches a maximum of 0.25 at a 

distance of 45 cm and then falls below .1 before it rises again to 0.2 at a distance of 

53 cm. For charge 2 it reaches maximum value at a distance close to 50 cm and falls 

back to 0.1. For charge 3 the asymmetry gradually increases to a maximum of 0.18 at 

52 cm and for charge 4 the asymmetry values are below 0.15 and only at a distance of 

45 cm it touches 0.15. This reveal that charge 4 has more symmetry than all other 

topologically charged beams. On the other hand from Fig. 2.7e it is clear that double 

passage turbulent impacted Gaussian beam is more asymmetrical in nature as it 

propagates with its minimum value starting from 0.2 and reaching a maximum of 1.5 

at 50 cm. 

2.5 Observation 

We have carried out a detailed experimental analysis of double passage Gaussian 

beam through a dynamic (rotating) pseudo random phase plate (PRPP) mimicking 

atmospheric turbulence and single passage topologically charged Laguerre Gaussian 

beams of odd and even charges. We used variance matrix analysis for finding twist 

parameter (), symplectic Eigen values ( 1 and 2 ) and asymmetry parameter (Vas) of 

the turbulent impacted beams. i) The twist parameter has same positive twist values 

for even charges (2,4) at a distance of 30 cm and it is at zero level for charge 3 and 

shows negative twist value for charge 1 at the same distance. A comparative plot 

computed for all 5 twist values show that as distance increases the charge 4 has 

highest twist value at a distance of 50 cm from the PRPP followed by charge 1, 2 and 

3. Charge 3 has lowest twist values among all charges and its twist value is 

consistence from 5cm to 50 cm. when twist parameters are compared it is found that 

the Gaussian beam passing twice through PRPP behaves like Laguerre Gaussian 

beams of charge 2 at a distance of 30 cm and charge 3 at a distance of 45 cm. ii) The 

symplectic Eigen value ( 1 ) show stronger instability of higher order modes in one 

direction and symplectic Eigen value ( 1 and 2 ) show lesser instability of higher 
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order modes in other direction. However for a double passage turbulent impacted 

Gaussian beam at a distance of 30 cm the Eigen values ( 1 and 2 ) show strong stable 

higher order mode in both directions which is an interesting result. iii) The 

asymmetric parameter measurements at various distances clearly reveal that as 

topological charges increase the symmetry of beam increases and the asymmetry 

increases for double passage Gaussian beam as propagation distance increases. 
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Chapter 3 

Insensitiveness of higher order topologically charged 

Laguerre Gaussian beams to dynamic turbulence impact 

 

3.1 Introduction 

 One of the most important characteristics of the vortex beams is the topological 

charge which is measure of its angular momentum and remains stable under phase 

perturbations of the beam. The topologically charged vortex beams shows robustness 

when propagate through weak and strong turbulence using multiple phase screen 

simulations [69, 79]. Hence, vortex beams can be used for free space optical 

communications as they are insensitive to atmospheric turbulence. One of the major 

disturbances in free space optical communications is the scintillation effect due to 

atmospheric turbulence. Xiang long Liu et al showed that Gaussian Shell model 

vortex beams have less effect due to scintillation compared to Gaussian Shell model 

beams when they propagate through atmospheric turbulence [77].  There has been 

flurry of research works in propagation characteristics of Gaussian and topologically 

charged beams through atmospheric turbulence [69-79]. But, these works are mostly 

simulation based analysis, in this work we present the wave propagation analysis of 

Gaussian and topologically charged L-G beams through a dynamic (rotating) pseudo 

random phase plate which mimics atmospheric turbulence in real sense.  There are 

two parts in our  experimental analysis, with first one for determining scintillation 

index and beam wandering parameter for Laser Gaussian and topologically charged 

vortex beams of 4 charges(1, 2, 3 and 4) and the second one for determining Zernike 

Polynomials of turbulent impacted Laser Gaussian and topologically charged beams 

respectively. In this experiment, we have used a Pseudo-Random Phase Plate (PRPP) 

which is a turbulence mimicking random medium for generating artificial laboratory-

level turbulence (Appendix A). The PRPP can be rotated at various velocities with 
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the help of a computer controlled stepper motor with a single driver, so that the time 

varying phase profile of turbulence can be achieved. Our detailed experimental 

results show the robustness of higher order topologically charged LG beams through 

a dynamic turbulence and their insensitiveness to refractive index fluctuations of 

atmospheric turbulence.  

3.2 Experimental procedure and theory 

3.2.1 Propagation characteristics of LG beams through a 

dynamic(Rotating) turbulence mimicking Pseudo Random Phase 

Plate (PRPP) 

 

Figure 3.1 shows the experimental set-up for different topological charged beams 

passing through PRPP. In this set-up SF is Spatial Filtering assembly, L is 

collimating Lens, VPP is Vortex Phase plate, PRPP is Pseudo Random Phase Plate its 

details are given in Appendix-A and SHWFS is Shack-Hartmann Wavefront sensor. 

3.2.2 Scintillations due to dynamic turbulent impact 

Whenever, an optical beam passes through atmospheric turbulence intensity of light 

beam fluctuates and scintillation of light beam corresponds to this intensity 

fluctuations. The scintillation is mainly caused due to refractive index fluctuations in 

the turbulent atmosphere. While measuring the scintillations, at the ground based 

adaptive optics system, we assume that the power spectrum of the phase is taken as 

almost equal to the power spectrum of the relative fluctuations of the complex 

amplitude (neglecting the log-amplitude). Normally, the optical path fluctuations in 
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thin atmospheric layer like that of turbulence is considered to be smaller than 1 i.e.

  1   and therefore the field  hE r immediately after the thin atmospheric 

turbulent layer can be written as [75-78], 

     0 exp 1hE r E i i r     

(3.1) 

and after free propagation when it reaches ground based adaptive optics system via 

ground based telescope we get, 
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(3.2) 

Introducing the complex term in Eqn.2.4 as    
21

exp
i r

C r i r
i h h




 

 
   

 
 and 

rewriting Eqn. 3.2 as, 

   0 1E r C r   

(3.3) 

The term  C r  in Eqn.3.3 represents the relative fluctuations of the complex 

amplitude at the ground due to the turbulent thin layer at an altitude of h. The real 

part  r  and imaginary part  0 r  represent relative fluctuations of phase  r  in 

the complex quantity  C r respectively. 

The real part    
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and the imaginary part
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  follow Gaussian statistics as the phase is Gaussian. 

Now, the complex field amplitude at the ground becomes, 

 

     0 01E r r i r   
 

(3.4) 
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And the intensity  I r can be written after neglecting second order terms, 

 

     
2

0 1 2I r E r r    

(3.5) 

 

The term  2 r  in Eqn. 3.5 describes the relative fluctuations of the intensity and 

one can measure the scintillation index which is defined by the term 2

I
 
and is 

normalized variance of irradiance fluctuation. The scintillation index is defined as, 

22

2

2I

I I

I





 

 (3.6)

 

Where, I  is ensemble average of irradiance (Intensity) of the optical beam defined 

by Eqn. 3.5. The scintillation index is unit less quantity.  

The experimental geometry shown in Fig. 3.1 is used for determining the scintillation 

index and beam wandering of the turbulent impacted topologically charged LG 

beams and laser Gaussian beams. The laser beam from a He-Ne laser is spatially 

filtered and collimated before it falls on a vortex phase plate (R C Photonics) which 

was used to generate topologically charged beams. The laser beam after passing 

through a vortex phase plate gets topologically charged and then it passes through a 

dynamic (Rotating) PRPP mimicking atmospheric turbulence as shown in Fig. 3.1. 

The turbulent impacted topologically charged beams then fall on a Shack Hartmann 

wavefront sensor. The Shack-Hartmann sensor is the image sensor, which provides 

high sensitivity and a wide dynamic range that are ideal for high precision 

measurement. The Thorlabs Shack-Hartmann sensor‘s CCD has an image resolution 

of 1.3 megapixels and sensitivity up to 150  and it has a wavelength range of 400-
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900 nm. For laser Gaussian beam we have used the phase term given by Eqn. 2.3 and 

for topologically charged beams Eqn. 2.3 is modified to include the charge terms. 

Though the Laguerre Gaussian beams are represented in cylindrical co-ordinates for 

measuring scintillation index it can be in rectangular co-ordinates for paraxial type 

LG beams passing through a pseudo random phase plate (PRPP) mimicking the 

atmospheric turbulence. So, the complex electric field     0 expE r E i m     

where whenever m = 0 it is Gaussian and for 1, 2, 3.. the charges become 1,2,3 … 

The term  represents single passage accumulated phase through the dynamic 

turbulence. Initially, without introducing the vortex phase plate, only laser beam is 

allowed to pass through the rotating PRPP and then after introducing Vortex Phase 

Plate in the experimental set up shown in Fig. 3.1 the topologically charged beams 

are generated and allowed to pass through the rotating PRPP. Thus all beams 

including Laser Gaussian and topologically charged beams will be impacted by the 

turbulence. 

 

 Figure 3.2 shows Scintillation index for Gaussian and topologically charged beams 

at different distance.
 

The speed of rotating PRPP is controlled using a stepper motor in such a way that it 

sees the Shack Hartmann Wavefront sensor at stationary. This helps us to record 

accurate values. The irradiance of the turbulent affected beams and its centroid points 
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are captured at various distances from PRPP by positioning the Shack-Hartmann 

wavefront sensor at various distances. In total 300 samples have been recorded at a 

plane 5 cm from the position of rotating PRPP. This process is then repeated at ten 

different planes with an interval of 2.5 cm. From the recorded irradiance data, the 

scintillation index i.e. 2

I
 
is measured and the same is plotted which is shown in Fig. 

3.2. The intensity data for all 5 turbulent impacted beams are measured from a 

distance 5 cm from rotating PRPP to a maximum value of 55 cm. The plot in Fig. 3.2 

clearly shows that the scintillation index fluctuates greatly for a laser Gaussian beam 

and minimum for topological charges 1, 2, 3 and 4 and is less than 1. The charge 4 

shows small initial variations up to a distance of 20 cm and then increases a bit more 

compared to other charges. All other 3 charges show minimum scintillations effect. 

The vortex phase plate, operating on a Gaussian beam does not produce a LG beam, 

i.e. it is not a doughnut beam, but is a Gaussian beam with a step-like vortex. But 

after propagation it becomes a doughnut beam, as the step-like vortex is unstable. The 

scintillation effect could be due to the doughnut shape, rather than the vortex itself. 

Also, as the charge increases, the size of the dark centre increases, so this will make 

scintillation more stable. This result clearly establishes that topologically charged 

beams show minimum scintillation effects due to turbulent impact compared to laser 

Gaussian beam. 

3.2.3 Beam wandering due to dynamic turbulent impact along x and 

y directions 

Beam wandering effects in the turbulence atmosphere occurs, when a beam of light 

propagates through it due to random fluctuations in the refractive index [3]. In the 

turbulent field, the in-homogeneities scale ranges from few millimetres (l0) to several 

meters (L0) and those in-homogeneities which are large compared with the diameter 

of the propagating light beam tend to deflect the beam, whereas those in-

homogeneities which are small compared with the beam diameter tend to broaden the 

light beam. Thus beam wandering effect occurs due to later i.e. smaller in-
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homogeneities in which the laser beam waist is broadened. The beam wandering 

effect causes the centroid of laser beam to move randomly due to motion of 

individual eddies in the atmosphere [3, 71]. The beam wandering phenomena can be 

of two types i) jitter and ii) drift. The jitter type beam wandering is mainly due to 

fastness of wander and drift type beam wandering effect is due to slowness of wander 

in the turbulent field. The simplest way of determining beam wandering is by using 

Shack Hartmann wavefront sensor where the shift of centroid along x and y 

directions due to the impact of turbulent field can be directly measured. Fig. 3.3 

shows a typical Shack-Hartmann wavefront sensor measuring the centroid shift of 

incoming aberrated beam. 

 

Figure 3.3a shows one micro lens of lens let array. 

     

Figure 3.3b Spot diagram for plane reference beam. Figure 3.3c Spot diagram for 

aberrated beam 
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Fig. 3.3a, shows the un-distorted and distorted wavefront spot positions of a single 

lens of lens-let array of Shack Hartmann wavefront sensor along x-direction. The 

incoming wavefront, if it is perfectly collimated then at the detector of Shack-

Hartmann wavefront sensor, we will get exact centre spots at the detector as shown in 

Fig. 3.3b due to all lens let arrays. On the other hand if it is distorted due to aberration 

of incoming wavefront then it will show displaced centroid spots as shown in Fig. 3c. 

For determining beam wandering of the turbulent impacted beam, since we require 

the centroid shifts along x and y direction in the transverse plane of incoming beam, 

we can directly get it from Shack-Hartmann wavefront sensor. In our experiment we 

recorded these centroid shifts along x (x – x0) and y (y – y0) directions for turbulent 

impacted Laser Gaussian beam, topologically charged beams for 4 charges (1, 2, 3 

and 4) using a Shack-Hartmann wavefront sensor using the experimental geometry 

shown in Fig. 3.1. The centroid shifts along x and y directions are measured for all 5 

turbulent impacted beams, at various distances starting from 5 cm to 55 cm from the 

rotating PRPP.  The results are plotted for all 5 turbulent impacted beams and are 

shown in Fig. 3.4a and Fig. 3.4b for x and y directions centroid shift respectively. The 

beam wandering along x direction (Fig. 3.4a) for a turbulent impacted laser Gaussian 

beam (Blue colour) shows extreme positions from + 40 to –5µm as the distance from 

rotating PRPP increases. The (-) sign represents the co-ordinate chosen keeping 

centre of the sensor as origin.  For topologically charged beams the beam wandering 

values are positive and lesser than Laser Gaussian beam. Only topological charge 2 

beam shows +24µm value at a distance of 30 cm. Similarly, along y direction the 

beam wandering value goes from positive 13µm to negative 12µm as distance from 

rotating PRPP increases for a laser Gaussian beam (Fig. 3.4b). But for topologically  
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Figure 3.4a Beam wander in x-direction 

 

Figure 3.4b Beam wander in y-direction 

charged beams the beam wandering values for charge 1 goes down to -19 from 13µm 

as distance increases  along y-direction (Fig. 3.4b). For charge 2 goes down to -18 

from 8µm as distance increases along y-direction. For charge 4 goes down to -22 

from 14µm as distance increases along y-direction. For charge 3 the beam wandering 

values remain mostly positive along y-direction. 
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3.2.4 Intensity and Zernike polynomials measurements for turbulent 

impacted Laser Gaussian and topologically charged beams 

In the second part of our experiment we generated the topologically charged Laguerre 

Gaussian beams as well as Gaussian beam using a Spatial Light Modulator. The 

amplitude and phase images of LG01 beam generated using SLM is given in the Fig. 

3.5. The SLM used in the experiment is Holoeye PLUTO phase-only SLM based on 

reflective LCOS micro-displays with a resolution of 1920 1080 pixels and pixel size 

of 8  . It is optimized for different wavelength ranges (420-1700 nm).The phase 

patterns are set at the center of SLM. In this experiment we measured from the 

intensity patterns of turbulent impacted Gaussian and LG beams the Zernike 

Polynomials for obtaining lower and higher order aberrations. 

 

Figure 3.5 shows amplitude and phase distribution of LG01 beam. 

Consider, Fig. 3.6 in which the light beam from He-Ne laser of 632.8nm wavelength 

is spatially filtered using spatial filtering assembly and falls on a collimation lens. 

The collimated laser beam further passes through a polarizer and falls on the spatial 

light modulator(SLM) in which the phase profile of Laguerre-Gaussian light beam of 

different modes is loaded. The information is loaded by the computer controlled 

phase hologram generated using MATLAB programming. The reflected beam from 

SLM then passes through a pinhole and mirror as shown in Fig. 3.6. The mirror 

reflects this beam towards the Pseudo Random Phase Plate (PRPP) which is fixed on 
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a rotary stage. The laser beam further gets split by a beam splitter to reach CCD 

(Charge Coupled Device) and Shack-Hartmann wavefront sensor simultaneously for 

detection. First the SLM is programmed to produce simple Gaussian beam by making 

m=0 and then it is allowed to fall on the Shack-Hartmann wavefront sensor and CCD 

camera. The Zernike polynomials and intensity of Gaussian beam without turbulence 

is recorded.  

 

Figure 3.6 shows experimental set-up for SLM generated LG beam passing through 

PRPP. 

Then the PRPP is introduced and rotated at a speed where the Shack-Hartmann 

wavefront sensor and CCD can record. Figure 3.7a, b and c show the intensity of 

Gaussian beam without propagating through turbulent beam and with propagating 

through turbulent beam and corresponding Zernike polynomials for both respectively. 

From Fig. 3.7 c it is clear that there is no much turbulent impact on higher order 

aberrations but variations occur due to lower order aberrations like tilt/piston. Then 

experiments are repeated for topologically charged beams of 1, 2 and 3 by 

propagating without and with dynamic turbulence using the same geometry shown in 

Fig. 3.6. 
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(a)      (b) 

 

(c) 

Figure 3.7 shows the recorded intensities and Zernike coefficients for different 

Gaussian charged beam. 
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(a)     (b) 

 

(c) 

 

   

  

(d)                                       (e)                               
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(g)                                    (h) 

 

(i) 
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Figure 3.8 shows the recorded intensities and Zernike coefficients for different 

topologically charged beams. 

The intensities are recorded and using Shack-Hartmann sensor Zernike polynomials 

are plotted. Figure 3.8a and b show the intensities of topologically charged beam for 

charge 1, without and with turbulent impact. Figure 3.8c shows the Zernike 

polynomials representing both higher order and lower order aberrations for both un-

impacted and turbulent impacted beams respectively. Similarly for charge 2, Fig. 3.8 

d, e and f show the influence of turbulence impact and finally for charge 3, Fig. 3.8 g, 

h and i show the intensities and Zernike polynomials for un-impacted and turbulence 

impacted beams respectively. The photographs of intensities of turbulent impacted 

Gaussian and 3 topologically charged beams show that compared to topologically 

charged beam with charge 1, the charge 3 has least impact of turbulence. Also, the 

Zernike polynomials of laser Gaussian and topologically charged beams, show almost 

similar values for lower and higher order aberrations for turbulent un-impacted and 

impacted beams respectively. The impact of dynamic turbulence is severe for laser 

Gaussian beam(Fig. 3.7 b), However it is much lesser for topologically charged beam 

of charge 3 (Fig. 3.8 h). These results clearly show that as topologically charge 

increases the robustness of Laguerre Gaussian beam increases considerably.  

3.3 Observation 

In detailed experimental analysis for measuring scintillation index and beam 

wandering values of a dynamic turbulent impacted laser Gaussian and topologically 

charged beams (Charges 1, 2, 3 and 4) has been performed. The experimental 

geometry shown in Fig. 3.6, used for finding Zernike polynomials of same turbulent 

impacted laser Gaussian and topologically charged (Charges 1, 2 and 3) beams 

respectively. It is observed that compared to Laser Gaussian beams, the topologically 

charged beams show much less scintillation index values. In case of beam wandering 

along both x and y directions, Laser Gaussian beam show large variations compared 

to topologically charged beams. It is observed in Fig. 3.7-3.8, when Gaussian and 
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Laguerre Gaussian beam passed through dynamic turbulence the charge of higher 

order beam retains.  

It can be observed from the results shown in Fig. 3.7c and 3.8 (c, f, i) that change in 

lower order Zernike coefficients value (piston and tilt) for all beam with and without 

PRPP is distinguishable. However the higher orders Zernike coefficients values are 

not changing much. This may be because of under sampling of incoming wavefront 

from shack Hartman wavefront sensor. In experimental set-up in Fig 3.6, the PRPP is 

not imaged over SHWFS, so beam passing through PRPP is also propagating in free 

space before reaching to SHWFS. The 0r  fried coherence length for PRPP is 320 µm 

[88, 89] and size of one micro lens of SHWFS is 150 µm. So only 4 micro lenses are 

sampling that region which results in tilt information. For detecting the phase 

information properly, Wavefront sensor with more resolution will be required. This is 

the motivation for chapter 4. 
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Chapter 4 

Vectorial shearing cascaded Sagnac interferometric 

wavefront sensor 

4.1 Introduction 

A wavefront sensor is device to measure the aberrations in an optical wave front. A 

wavefront sensor is immensely used in optical shop testing, ophthalmology and in 

adaptive optics system. Wavefront is the locus of field with same phase. It is difficult 

to get the direct phase at optical frequency due to the limited response time of 

available detectors. So, the phase has to be encoded into intensity for any meaningful 

measurement. The intensity change can be brought forward by refraction, diffraction 

or interference. As a result the fundamental aspects of light propagation paved the 

way for sensing the phase/phase gradients in the wavefront. The wavefront sensors 

that work on principle of intensity transport such as refraction and diffraction are 

micro-lens based Shack-Hartmann and grating based wavefront sensor respectively. 

The wavefront sensors based on intensity redistribution are interferometric wavefront 

sensors where the phase gradients are detected from the resulting intensity 

redistribution. 

In the strong turbulence situation, interferometric sensors such as the self-

referencing interferometer (SRI) are considered to be good choices. SRI has an 

inherent advantage that it does not require any separate reference optical field. 

However, the quantity that can be measured using such interferometers is not the 

phase of the optical field, but the phase gradient. The scalar interferometers like 

lateral, radial and rotational shear interferometers are used to measure the phase 

gradient. The phase gradients measured from either of them can give gradients along 

only single coordinate direction (x/y/radial/azimuthal). To realize the complete 2-D 

wavefront reconstruction from the gradient data, especially for wavefronts lacking 
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symmetry in Cartesian/polar coordinates, gradients along both orthogonal coordinates 

(x and y or radial and azimuthal) need to be measured.  

To overcome the problem of reconstruction of 2D wavefront reconstruction, we 

propose a vectorial shearing interferometer based wavefront sensor. It is an extension 

of the 1-D lateral shearing and is able to displace the wavefront with a suitable 

amount in two orthogonal directions (x and y) and measure the corresponding 

interference independently. For a robust wavefront sensing scheme, all the three 

interfering copies of the wavefronts should ideally pass through the same path, 

encountering every element of the system, so that the system induced error does not 

reflect in the relative phase measurement. This is possible only in common path 

interferometer as it will ensure that no dynamically varying phase difference gets 

introduced between the interfering copies of wavefront. Keeping these points in 

mind, we have designed vectorial shearing wavefront sensor using a pair of cascaded 

Sagnac interferometers that allow spatial frequency multiplexing in the interferogram 

to detect the vector gradients simultaneously and independently along orthogonal 

directions x and y respectively. In this approach, the vector gradients are 

simultaneously extracted using Fourier transform method of fringe analysis and by 

two-dimensional numerical integration method for sensing a complete wavefront. 

 

4.2 Principle of Vectorial Shearing wavefront sensor 

The conceptual diagram for common-path vectorial shearing wavefront sensor is 

shown in Fig.4.1. The system is a combination of a pair of cascaded Sagnac 

interferometers and a 4-F telescopic system with two lenses of focal length f1 and f2 

respectively. The core part of this system is the common path vectorial shearing 

interferometer. It is positioned between the lens L1 and its back focal plane. O is the 

object plane which is at Z1 distance from plane-A i.e. focal plane of lens L1. The 

combination of lens L1 and vectorial shearing interferometer will generate four 

copies of the Fourier transform of input wavefront at plane-F which can be equally 

separated along x and y direction i.e. ˆ
sx  and ˆ

sy  respectively. The detailed alignment 
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to achieve it will be explained in experimental section. Plane-B is the back focal 

plane of the lens L2 where all four wavefront copies will completely overlap. Plane-I 

is the shearing plane at which wavefront can be sheared long two perpendicular 

directions simultaneously. Plane-I is at Z2 distance from back focal plane of lens L2.  

 

Figure 4.1 shows conceptual diagrams for common-path Vectorial shearing wavefront 

sensor 

 

Let ( )o x',y',u  be the field at object plane O corresponding to a monochromatic light 

component having frequency c  , where c is the velocity of the light and  is the 

wavelength. The field at plane A will be following [91] as: 
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(4.1) 

Where 
 1f

F and 
 1

1

f
F   represents the Fourier and inverse Fourier transform due to lens 

L1. Field at plane F will be Fourier transform of field at plane-A and can be written 

as 
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For brevity, the scaling and normalization factors are dropped from the equation. 

Now the field of shifted beam at plane F can be written as, 
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(4.3) 

Where, wavefront copies are shifted to each other by ˆsx along x̂ -direction and ˆsy  

along ŷ -direction.  1 1,ˆ ˆFS ,U x f y f   represents field of one of the shifted copies at 

plane F. 

Field at plane B will be Fourier transform of the field at input focal plane of lens L2 

(having focal length of f2) 
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(4.5) 

Now, field at shearing plane I, can written as 
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Where, n in , ( , )I nU x y  represents the one of the copy of input field generated by 

cascaded Sagnac interferometer. Since we will select only three copies, so n can have 

values of 1, 2 and 3.  
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(4.7)

 

Substituting the value of  1 1ˆ ˆ, ,FS x f y fU     from Eqn.4.3 in above Eqn.4.7. 
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(4.8) 

Substituting the value of 2
1 2 1 2,  z z m m f f  in above equation, where m is the 

lateral magnification and m
2
 is longitudinal magnification. After doing binomial 

expansion and rearranging the Eqn.4.8, field of one of the wavefront at plane-I can be 

written as: 
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(4.9) 

 

The field at plane-I can be divided into three parts. The first shows a constant phase 

depending on the focal lengths of lenses L1 and L2 and image plane or shearing plane 

distance Z2 from plane-B (the back focal plane of lens L2). Second part shows the 

presence of  a linear phase which is a function of focal length of lens L2, the 

separation introduced  at the output of the cascaded Sagnac interferometer i.e. ,
ˆ

s nx  

and ,
ˆ

s ny   respectively. Part three shows the complex field of wavefront at plane O 

which is inverted, scaled by factor of 2 1m f f and shifted by , 2 2
ˆ

s nx z f along x-

direction and by , 2 2
ˆ

s ny z f along y-direction. Out of four copies generated, the three 

orthogonally sheared copies of the wavefront alone can be selected by spatially 

filtering them at plane-F. These three copies interfere at plane-I as shown in Eqn. 

4.10 and the resulting intensity is recorded by a CCD. 

 

       
2

I I,1 I,2 I,3I x, y, = u x, y, u x, y, u x, y,    
 

(4.10) 

 

4.3 Experimental Procedure 

The experimental set-up for the implementation of the Vectorial shearing is shown in 

Fig.4.1. It consists of telecentric system and cascaded Saganc interferometer. The two 

cascaded Sagnac interferometers are shown in Fig. 4.2. First Sagnac shown in Fig. 
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2(a) consist of mirrors M1, M2 and beam splitter BS1. It generates two copies (1-red 

and 2-green) of input wavefront (blue) separated symmetrically along y-axis such that 

such separation between two copies is ˆ
sx . The output of Sagnac-1 is given to the 

Sagnac-2 shown in Fig. 4.2(b). Sagnac-2 consists of mirrors M3, M4 and beam 

splitter BS2. It also generates two copies for every single wavefront at its input, but 

separate them symmetrically along x-axis. Thus the output of Sagnac-2 contains four 

copies i.e. 1‘, 2‘, 3‘ and 4‘. The separation along y-direction is ˆ
sy . This separation of 

wavefront along x and y direction can be controlled by shifting one of the mirror in 

Sagnac 1 and equal tilting of both the mirrors in Sagnac 2 as represented in Fig.4.2. 

By doing this we achieve co-propagating but spatially separated copies of wavefront.  

 

(a)                                                                                 (b) 

Figure 4.2 Generation of four copies of the wavefront using two Sagnac interferometers kept 

in series. 

By introducing the lens L1 (focal length f1 = 500mm) at the input of the cascaded 

Sagnac interferometers, four copies represented as 1‘, 2‘, 3‘ and 4‘ becomes Fourier 

transform 
ˆ ˆ

,FS

1 1

,
x y

U
λf λf

 
 

 
related to the input wavefront  ', ',Ou x y  as represented 

in Eqn. 4.2. The lens L2 (focal length f2 = 200mm), introduced at the output of the 

cascaded Sagnac interferometer performs another Fourier transform in order to obtain 

 I,nu x,y, at plane I. We record the interferogram of laterally sheared beams, 

described by Eqn. 4.10, on CCD (PCO pixelfly, 1392x1040, with pixel size of 6.4um) 
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kept at plane I, located at a distance z2 = 18mm from plane-B, the back focal plane of 

lens L2. Being nearly common-path geometry allow us to cancel any system induced 

errors and surrounding vibrations.  . 

 

 

Figure 4.3 Wavefront sensing using vectorial shearing interferometer. 

Experimental set-up to validate vectorial shearing cascaded Sagnac interferometric 

wavefront sensor is shown in Fig. 4.3. In this set-up, a He-Ne laser (633nm) is used 

as a source whose output is spatially filtered and then collimated with lens L having 

focal length f of 100mm. This collimated beam is fed as input to the vectorial 

shearing wavefront sensor followed by CCD. As the position of the collimating lens 

L changes (f+dr), the shape of the beam changes. Depending upon the direction in 

which the lens is moved the beam output may be converging or diverging. The 

collimating lens is moved in direction towards the VSWFS with step size of 0.5mm. 

Corresponding to each position of lens the interferogram is recorded with 8-bit CCD 

as shown in Fig 4.4(a).  

 

4.4 Results and Analysis 

 

The recorded interferogram when the collimating lens is shifted by an amount of 

dr=3mm from the initial position is shown in Fig 4.4(a). The selected region of 

interferogram for processing is marked with white color square (having each side of 

2.6mm). The spatial carrier frequency multiplexed interfered data corresponds to the 

superposition of three sheared wavefronts. The phase gradients can be obtained using 
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Fourier transform method of fringe analysis [92-94]. Fig. 4.4(b) shows the 2D Fourier 

spectrum of the recorded interferogram with spatial frequencies xf  and yf  

represented as 2
ˆ

sx f  and 2
ˆ

sy f . There are seven spots in Fig. 4.4(b) in which the 

center one is the zeroth order term representing the dc-part in the recorded 

interferogram. The upper three are resulting from the mutual superposition of sheared 

wavefronts. They get separated due to the spatial carrier frequency introduced. Their 

conjugates appear at the lower side. Out of the upper three spots, one along x-

direction and one along y-direction is selected (marked with yellow circle) and 

filtered out. The spatial filter having diameter of 400um is used in our experiment. 

After doing inverse Fourier transform of the selected spot, phase of the complex field 

can be calculated. However, precise amount of the spatial carrier frequency 

introduced should be known. In addition, it should be noted here that during the 

alignment of the cascaded Sagnac interferometers and the accompanying lenses, there 

can be system induced aberrations which should be cancelled. Therefore, the phase of 

the complex field obtained for a particular case is always compared to that obtained 

for the initial condition of a well collimated beam; thereby automatically cancelling 

the spatial carrier frequency and the system induced aberrations. 

 

 

             (a)                                                      (b)   

Figure 4.4 (a) Vectorial sheared fringe pattern, (b) Fourier transform of fringe pattern. 
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Further, proper phase unwrapping algorithm is performed to get the phase gradient 

information without 2π jumps. Fig. 4.5(a) and 4.5(b) shows the calculated phase 

gradient information along x and y directions respectively when the collimating lens 

is shifted by an amount of 3mm from the initial position. We use two-dimensional 

trapezoidal numerical integration method to integrate these x and y gradient that will 

reconstruct the complete wavefront W(x,y). Since we are doing relative gradient 

measurement, the constant of integration will not affect the results much. Fig. 4.5(c) 

shows the reconstructed wavefront from obtained phase gradients. The same process 

is repeated for recorded interferograms at different positions of collimating lens L 

(dr=0.5mm, 1.0mm, 1.5mm, 2.0mm, and 2.5mm) from the initial position. Then lens 

L is moved back to its intial collimation position with same step size (dr=2.0mm, 

1.5mm, 1.0mm, 0.5mm and final collimation state). 

 

(a)                                         (b) 

 

 (c) 
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Figure 4.5 (a) Gradient along X-direction, (b) Gradient along Y-direction (c) Reconstructed 

Wavefront. 

 

 

 

  

dr = 0 dr = 0.5 

  

dr = 1.0 dr = 1.5 

  

dr = 2.0 dr = 2.5 
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Figure 4.6 Shows the horizontal line profile (y=0) of reconstructed wavefront at different 

positions of collimating lens along z-direction with step size of 0.5mm. Red and green 

coloured dashed lines show experimental results and blue coloured line shows simulation 

results. 

Using the parameters used for the experiment, a numerical simulation was 

performed using MATLAB software for wavefront reconstruction by using phase 

gradients obtained by orthogonal shearing of wavefront with different position of 

collimating lens as done in experiment. Fig. 4.6 shows the experimental (Red and 

Green dashed line) and simulation (Blue line) results.  Red dashed line represents 

the wavefront reconstructed when lens moved forward along z-direction with 

step size of 0.5mm. Green dashed line represents the wavefront when lens moved 

in backward direction. The matching results confirm the accurate and stable 

wavefront reconstruction achieved using the scheme. From the results shown in 

Fig. 4.6, a deviation in wavefront shows a gradually increasing/decreasing tilt. 

This can be attributed to the in-plane mechanical movement of lens mount when 

the collimating lens is shifted in z-direction. 

Lens L 

position 

(mm)  

Deviations from reference/simulated wavefront during 

Forward motion of  Lens L  

from dr = 0mm to 2.5mm  

Backward motion (return) of  Lens 

L from dr = 2.5mm to 0mm 

dr = 0 

 

 

(f) 
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dr = 0.5 

(a) (g) 

 

 

 

 

dr = 1.0 

 

(b) 

 

 

(i) 

dr = 1.5 

 

 

(c) 

 

 

(j) 

dr = 2.0 
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(d) (k) 

dr = 2.5 

 

 

(e) 

 

 

 

Figure 4.7 (a), (b), (c), (d) and (e) shows the wavefront deviations when collimating 

lens moves in forward direction. Figure (f), (g), (h), (i) and (j) shows the wavefront 

deviations when collimating lens moves in backward direction.  

 

Experimental results of calculated wavefronts at different positions of collimating 

lens are compared with MATLAB simulated results and the error images are shown 

in Fig. 4.6 (a)-(k). The colour bar in images shows the value in term of wavelength 

(λ). For each wavefront Peak to Valley (PV) and root mean square (RMS) values are 

calculated and these values are shown in Table 4.1.  

 

Position of 

collimating  

lens L (mm) 

When lens moved 

forward along z-

direction 

When lens brought back 

to initial position 

PV(λ) RMS (λ) PV (λ) RMS (λ) 

0.0 --- --- 0.2432 0.1362 

0.5 0.8250 0.3534 0.6772 0.2069 

1.0 0.9074 0.2339 0.8564 0.1298 

1.5 1.1697 0.3047 1.1986 0.1851 

2.0 1.5926 0.2635 1.8844 0.3310 
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2.5 2.8985 0.5021 --- --- 

 

Table 4.1 Shows PV and RMS values of calculated wavefront at different position of 

collimating lens L. 

 

The laser beam was collimated when lens L positioned at distance f=100mm 

from the pin hole of spatial filter assembly (dr=0). This condition was considered 

as reference for above experiment. When lens L is moved, the change in 

wavefront should match with simulated wavefront. But as table 4.1 shows PV 

and RMS values are increasing as the lens L is moved in forward direction. It is 

also observed that when lens L is moved back towards collimation position, PV 

and RMS values are not matching with that of forward direction at same 

position. This error may be result of inline mechanical moment of lens which 

might introduce tip and tilt to wavefront. Even when lens L reaches the initial 

collimation position, there is error present in calculated wavefront. Thus these 

types of wavefront errors can also be detected with Vectorial sheared cascaded 

Sagnac wavefront sensor. 

4.5 Summary 

The principle and experimental results of a wavefront sensor using Vectorial shearing 

interferometer (common path interferometer) and a telecentric lens system has been 

demonstrated. The amount of spatial carrier frequency for multiplexing the shearing 

interferogram can be fixed by introducing controlled mirror alignments of cascaded 

Sagnac interferometer. The lateral shear can be varied by moving the detector plane 

alone along z direction. Wavefront gradient along two perpendicular directions are 

computed simultaneously.  By changing the position of collimation lens it is shown 

that mechanical errors inducing wavefront deviations of the order of fraction of 

wavelength can be detected using the proposed scheme. The near common-path 

geometry makes it stable in vibration sensitive environment allowing one to choose 

only the wavefront deviations of an aberrated light beam. 
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Chapter 5 

Features of cascaded Sagnac based vectorial shearing 

interferometer for wavefront sensing 

5.1 Introduction 

Wavefront sensor is very important device in adaptive optics system as it gives the 

phase information and aberration introduced due to atmospheric turbulence. There are 

various types of wavefront techniques available but most commonly used techniques 

involve the transport of phase information in the intensity recorded using diffraction, 

refraction and interferometry. The wavefront sensors that work on the principle of 

intensity transport such as micro-lens (refraction) and grating (diffraction) seemed to 

be easily designed and handled as compared to the interferometric wavefront sensors 

where the phase gradients are detected from the resulting intensity redistribution. In 

this sense, it is important to bring out the features of the proposed interferometric 

wavefront sensor that sets it apart from the rest of the sensors. Shack Hartmann 

wavefront sensor is an example of refraction based wavefront sensor. Its working 

principle is explained in Appendix-B. The input wavefront is sampled into small sub-

aperture regions using micro-lenslet arrays. The slope or tilt in sub-aperture region is 

calculated from shift in the centroid point as shown in Appendix-B. This device is 

simple and portable. 

 

Figure 5.1 Shift in centroid from lens of SHWFS. 
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Optical shearing interferometer based WFS, is an example of interferometric 

wavefront sensor which has an inherent advantage that it does not require separate 

reference optical field. They are good choices for wave front sensing. The quantity 

that can be measured using Shearing interferometers is the phase gradients of the 

optical field. The scalar interferometers like lateral, radial and rotational shear 

interferometers are normally used to measure the phase gradients. Fig. 5.2 (a) and (b) 

explains the lateral and radial shearing techniques. The information measured using 

either of them can give gradients along only single coordinate direction 

(x/y/radial/azimuthal).  

 

Figure 5.2 shows (a) lateral shearing beams, (b) radiall y shearing beams. 

For the complete 2-D wavefront reconstruction, especially for wavefronts lacking 

symmetry in Cartesian/polar coordinates, the gradients along both orthogonal 

coordinates (x and y or radial and azimuthal) has to be measured. So if the beams are 

sheared along two orthogonal directions as shown in Fig. 5.3, the gradients along x 

and y directions can be measured. 

 

Figure 5.3 shows three beam shearing along x and y directions. 
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The shearing along two orthogonal directions can be done using Michelson or Mach-

Zehnder interferometer but it will be two-step process. Such interferometers cannot 

be used for adaptive optics corrections for telescopic imaging under strong 

atmospheric turbulence, or for microscopic imaging under scattering media because 

conditions can change for two recorded interferograms. Hence, three wave lateral 

shearing interferometer is very important. It uses a predesigned diffractive optical 

element (DoE) or cascaded Sagnac Interferometer for generating 3 copies of the 

incoming wavefront to encode the vector gradients in the interference pattern in a 

single shot. Though there are many wavefront sensing schemes are available 

However most commonly used are Shack Hartmann Wave Front Sensor(SHWFS) 

and diffractive optics based wavefronts sensors. The work in this chapter will include 

a comparison of cascaded Sagnac Vectorial shearing interferometer (VSI)based 

wavefront sensing and Shack Hartmann Wave Front Sensing. 

5.2 Experimental comparison of VSI and SHWFS  

An experiment is performed in which the wavefront detection is carried out using a 

Shack-Hartmann Wavefront Sensor (SHWFS) and cascaded Sagnac Vectorial 

Shearing Interferometer simultaneously. The experimental set-up is shown in Fig. 5.4 

 

 

Figure 5.4 shows experimental set-up for wavefront sensing using SHWFS and cascaded 

sagnac VSI 
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A He-Ne laser of wavelength of 633nm is used as a source. The output of laser is 

spatially filtered and collimated using spatial filtering assembly (Microscopic 

objective and pin hole) and using a collimating lens (L). 

The experiment is divided into two parts: 

1. Measurement of curvature introduced due to motion of collimating lens. 

2. Measurement of turbulence impacted  wavefront. 

5.2.1 Measurement of curvature 

The collimated beam is fed to cascaded sagnac VSI as shown in Fig. 5.4. It consists 

of telecentric geometry (lens L1 and L2) and two sagnac interferometers (Mirrors 

M1, M2, M3 and M4, Beam splitters BS1 and BS2). Two sagnac interferometers are 

used to make four copies of input beam. By using beam selector three out of four 

beams are selected. Telecentric geometry is used to image the input on CCD and 

SHWFS simultaneously. The SHWFS used in this experimental set up consists of 

31x31micro lens array, with 150 m pitch of micro lens array and each microlens 

having an effective focal length of 3.5mm. The sensor in SHWFS is having 

1024x1024 pixels, with each pixel is of size 4.6 m. The CCD sensor used in 

Vectorial Shearing Interferometer is having 1040x1392 pixels, with each pixel is of 

size 6.m. 

First, in this experiment the collimating lens L is moved along z-direction with each 

step size of 0.25mm. The intensity recorded using SHWFS is shown in Fig. 5.5 (a), 

and the centroid shifts along x and y directions respectively. The gradient along x and 

y directions can be calculated from centroid shift data as shown in Fig.  5.5(b) and 

(c).  
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(a) 

 

(b)     (c) 

Figure 5.5 shows (a) Intensity recorded using SHWFS, (b) Gradient along x-direction, and 

(c) Gradient along y-direction. 

The two dimensional sheared beam interferogram (three wave shearing) recorded 

using VSI is shown in Fig. 5.6(a). After applying Fourier transform fringe analysis 

process, the wavefront gradients along x and y directions are obtained and the results 

are shown in Fig. 5.6 (b) and (c) respectively. 
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(a) 

 

(b)     (c) 

Figure 5.6 shows (a) Recorded interferogram using VSI, (b) gradient along x direction and 

(c) gradient along y direction. 

The wavefronts are reconstructed from gradients information retrieved from SHWFS 

and cascaded Sagnac VSI by applying two dimensional numerical integration 

methods. The reconstructed wavefront at different positions of collimating lens 

(dz=0mm, 0.25mm, 0.5mm, 0.75mm, 1.00mm and 1.25mm) for SHWFS data are 

shown in Fig. 5.7. 

 

Figure 5.7 shows reconstructed wavefront for SHWFS data at different position of 

collimating lens L. 
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The reconstructed wavefront at different positions of collimating lens (dz=0mm, 

0.25mm, 0.5mm, 0.75mm, 1.00mm and 1.25mm) for cascaded Sagnac VSI data are 

shown in Fig. 5.8. 

 

Figure 5.8 shows reconstructed wavefront for cascaded sagnac data at different position of 

collimating lens L. 

The curvatures introduced due to motion of collimating lens are detected from both 

SHWFS and VSI. The results show that the reconstructed wavefront is sharper in 

Sganac Vectorial Shearing Iinterferometer compared to SHWFS. The least square 

algorithm, southwell and other  curve fitting algorithms are used to get back the 

reconstructed wavefront from the SHWFS data However in case of  Sagnac Vectorial 

Shearing Interferometer, no such algorithms are required. 

5.2.2 Measurement of turbulence affected wavefront 

Using same experimental set up shown in Fig. 5.4, the pseudo random phase plate 

(PRPP) mimicking atmospheric turbulence is introduced after collimating lens. The 

PRPP is positioned in such a way that it is imaged on to CCD of VSI and SHWFS. 

The details of PRPP is given in Appendix-I. The beam diameter used is about 5mm 

but due to telecentric geometry (f1=500mm and f2=200mm) it reduces to about 2mm. 

The r0 (Fried parameter) value for the PRPP is 640 m and if the beam size is bigger 

than r0, then higher order aberration will be present in the beam. The images obtained 

are captured on sensor of SHWFS with and without introducing PRPP and they are 
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shown in Fig. 5.9. When PRPP is inserted, the intensity variations obtained using 

Shack Hartmann Wavefront Sensor before and after inserting PRPP are shown in Fig. 

5.9(a) and 5.9(b) respectively. But, it can be seen that the spot shifts obtained after 

inserting PRPP shown in Fig.5.9(b) is very difficult to detect. Now, the data is 

recorded for different spatial positions on PRPP and processed. 

   

(a)     (b) 

Figure 5.9 shows (a) Image on sensor of SHWFS with plane wave(Without PRPP) as 

input, (b) image on sensor of SHWFS after inserting PRPP. 

The reconstructed wavefront results for SHWFS data is shown in Fig. 5.10. It can be 

seen that the resolution of the reconstructed wavefront is very poor. 

 

Figure 5.10The reconstructed wavefront results for SHWFS data after inserting PRPP. 
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The experiment is repeated in Sagnac Vectorial Shearing Interferometer and the 

results are shown in Fig. 5.11. Fig.5.11 shows the reconstructed wavefront results for 

cascaded sagnac VSI with and without inserting PRPP. It can be seen that the 

resolution obtained for the reconstructed wavefront is far better than that of SHWFS. 

This shows that under severe turbulent conditions the cascaded Sagnac Vectorial 

Shearing Interferometer can give better results compared to SHWFS. 

 

Figure 5.11 The reconstructed wavefront results for cascaded Sagnac VSI data after inserting 

PRPP. 

5.3 Merits of cascaded Sagnac vectorial shearing 

interferometer 

1) The design of cascaded Sagnac VSI is such that all the three wavefronts nearly 

pass through the common path, encountering every element of the system, so that the 

system induced error does not reflect in the relative phase measurement. Moreover, 

the common-path geometry will ensure that no dynamically varying phase difference 

gets introduced between the interfering copies of wavefront.  

2) In VSI, using a pair of cascaded Sagnac interferometer allows spatial frequency 

multiplexing in the interferogram in order to detect the vector gradients 

simultaneously and independently. The spatial carrier frequencies can be increased or 
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decreased by controlling tilt from mirrors of Sagnac interferometers. On the other 

hand, in all other wavefront sensing techniques, the spatial carrier frequency is fixed 

as there is no option for controlling the tilt. 

3) The SHFWS samples the wavefront using sub aperture regions equal to the size of 

a micro lens. So the information recorded is limited by size of sub aperture lens. In 

cascaded Sagnac VSI, the interferogram is recorded upto pixel size of sensor. As 

fringe width can be controlled, minimum two pixels will be required to resolve one 

fringe. 

4) In cascaded Sagnac wavefront sensor the phase information is calculated 

independent of intensity. Any amplitude variation for the optical field will only result 

in reduction in fringe visibility for the recorded interferogram. The fringe modulation 

depends only on the phase distribution of the optical field. As long as there exists a 

detectable  amount of fringe visibility, the phase grdient can be measured. In case of 

SHWFS the centroid of the spot focused by the lenes in a micro;lens array is 

dependent not only on the phase distribution, but also on the intensity distribution 

across the sub-aperture. 

5) In high turbulence condition, the phase variation will be much higher to be 

detected by single micro lens. 

 

(a)     (b) 
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(c)     (d) 

Figure 5.12 when different modes are input to a lens. 

This is because, the lens act as a Fourier transforming element. It can be seen from 

Fig. 5.12 (a-d), that even the smaller amplitude modulation in the input will result in 

spread of the focal spot in Fourier plane, the detector plane in SHWFS.   

5.4 Limitation of cascaded Sagnac VSI 

1) Every device has some limitations so as cascaded Sagnac VSI. It has low 

efficiency as it uses only ~19 % of the input light. In this case SHWFS is highly 

efficient as it uses maximum input light. In three wave shearing based on grating also 

has low efficiency as it uses three first order copies of diffracted beam. 

2) Cascaded Sagnac VSI wavefront sensor looks little complicated compared to 

SHWFS and grating based three wave SI. However it can be made compact with 

proper designing technique.  

5.5 Summary 

In this chapter, a comparative analysis of SHWFS and cascaded Sagnac VSI is 

carried out. Experimentally it is observed that SHWFS resolution is limited by sub-

aperture size of  micro lens array whereas cascaded Sagnac VSI resolution depends 

on the minimum pixels of sensor required to solve one fringe. Wavefront 

reconstruction for VSI is better than SHWFS as no special curve fitting algorithms 

are required in VSI. The experimental results of wavefront reconstruction for a 

turbulent impacted (when beam passes through PRPP) beam shows that under high 

turbulence condition cascaded Sagnac VSI senses the wavefront better than SHWFS.  
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Chapter 6 

Wavefront sensing using low-coherent sources through 

spatial coherence revival 

6.1 Introduction 

An interferometry based wavefront sensing scheme applicable to low-coherent light 

sources like LED (Light Emitting Diode) is demonstrated in this chapter. In adaptive 

optics, it requires a guided star (laser beacon) in the vicinity of the object being 

imaged to correct the turbulence induced aberrations. A guide star used in adaptive 

optics need not be always a coherent light source. Keeping this aspect in mind, we 

test the potential of cascaded Sagnac Vectorial shearing interferometer in sensing the 

wavefront aberrations in optical field originating from a light source with limited 

spatial and temporal coherence. To simulate this situation, a light emitting diode as 

the source of light is chosen. The generation of copies of wavefront using simple 

reflection instead of diffraction is implemented.The distortions in the wavefront of 

this light source, acquired when passing through the turbulent medium, is sensed to 

correct the imaging optics. 

Using a pair of cascaded Sagnac interferometers, spatial frequency multiplexed 

interference of three sheared copies of the wavefront is recorded and the independent 

vector gradients obtained from this, are used to reconstruct the wavefront as done in 

chapter 4. The problem for detection of LED like sources wavefront with 

interferometry is its low spatial and temporal coherence. J. Primot et al has shown 

detection of low coherent front using diffractive optical techniques [36]. In this work 

three challenges were: 

 i) If three copies of a wavefront are made using simple reflections rather than 

diffraction, the shear becomes independent of the wavelength [Appendix C]. 

However, this implies that the phase gradients will become wavelength sensitive.  
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ii) In addition, the spatial carrier fringe introduced in the interference between the 

wavefront copies in this case, becomes wavelength dependent leading to possible 

degradation in the fringe contrast at the periphery of the interference pattern.  

iii) Finally, the requirement of a finite amount of lateral shear demands the light 

source to be spatially coherent so that the interference fringes can be visualized.   

To overcome the first two challenges without resolving the spectrum, we take a leaf 

out of white light interferometry. For a light source with a Gaussian spectrum, it has 

been shown that the phase can be calculated for the central wavelength [95]. With 

sufficient amount of temporal coherence length and the use of high dynamic range for 

the intensity detector allows introduction of high spatial carrier fringe with sufficient 

visibility at the periphery of the interferogram. The wavefront sensing using low-

coherent/extended light sources is challenging as the spatial coherence of the 

propagating optical field is modulated by the structure of the light source. Deriving a 

point-like light source from an extended source is not recommended considering the 

light through-put requirements. By suitably modulating the light source intensity 

distribution using Multi Incoherent Source Talbot Interferometer (MISTI), it has been 

shown that the wavefront can be sensed in the case of extreme UV low brightness 

source [40]. For a field propagated from an extended incoherent source, the spatial 

coherence dies out as a function of increasing correlation length (lateral shear). To 

overcome the limitation of spatial coherence introduced by a finite spatial extension 

of an incoherent light source, we propose to utilize the diffraction effect of spatial 

coherence. Using, Van Cittert Zernike theorem, it can be shown that by spatially 

modulating the incoherent source distribution, the spatial coherence function can be 

revived for specific values of lateral shear [96-97].In the literature, the term 

coherence revival is generally used to describe the enhancement of temporal 

coherence through modulation of temporal frequency spectrum [97]. In this 

experiment, we adopt it to describe the partial enhancement of spatial coherence and 

demonstrate it by introducing a hard aperture at the source plane that leads to spatial 

coherence having Bessel distribution with extended side lobes. By setting the lateral 
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shear corresponding to one of the maxima of these side lobes, fringe visibility in the 

interferogram is maintained at the detectable level. In this way the coherence 

limitations in the interference of copies of the wavefront derived merely through 

reflections are resolved. The meaning of the term ‗revival‘ is betterment. 

6.2 Principle behind low coherence wavefront sensing 

Low coherence wavefront sensing needs stability against external vibrations and that 

we could avoid due to design of a cascaded Sagnac interferometer. The Sagnac 

interferometer generates three copies of wavefront and allows spatial frequency 

multiplexing in the interferogram in order to detect the vector gradients 

simultaneously and independently. By simultaneous extraction of vector gradients 

using Fourier transform method of fringe analysis followed by a two-dimensional 

numerical integration method, the complete wavefront W(x,y) is reconstructed. The 

conceptual diagram for common-path vectorial shearing wavefront sensor using low 

coherent LED is shown in Fig.6.1. The system is a combination of a pair of cascaded 

Sagnac interferometers (shown in Fig.6.2) and a 4-f telescopic system with two lenses 

of focal length f1 and f2 respectively. O is the object plane which is at z1 distance 

from plane A i.e. focal plane of lens L1. The combination of lens L1 and vectorial 

shearing interferometer will generate four copies of the input wavefront at plane F 

which will be equally separated along X and Y directions as shown in Fig.6.1. Plane 

B is the back focal plane of the lens L2 where all four wavefront copies will overlap 

on each other. Plane I is the shearing plane at which wavefront can be sheared along 

two perpendicular directions simultaneously. Plane I is at z2 distance from back focal 

plane of lens L2. 



88 

 

 

Figure 6.1. Conceptual diagram for common-path VSI 

 

Let ( )o x', y',u  be the field at object plane O corresponding to a monochromatic light 

component having frequency c  , where c is the velocity of the light and  is the 

wavelength. The field at plane I can be written as: 
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(6.1)

 

 

The above equation representing field can be divided into three parts.  

 The first part shows a constant phase depending on the focal lengths of lenses 

L1 and L2 respectively at a shearing plane distance z2 from plane B (the back 

focal plane of lens L2).  

 Second part shows the presence of a linear phase which is a function of focal 

length of lens L2, with the separation introduced at the output of the cascaded 

Sagnac interferometer along x̂  and ŷ  directions having magnitude ˆsx  and ˆsy  

respectively. 
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 The third part of Equation shows the complex field of wavefront at plane O 

which is inverted and scaled by factor of 
2 1m f f   and shifted by 

2 2
ˆ

sx fx z   along x-direction and by 
2 2

ˆ
sy fy z   along y-direction 

respectively with n = 1, 2 and 3 representing the three copies of the wavefront. 

It should be noted here that the shift introduced is independent of the 

wavelength. 

Let us consider a two-beam interference of ,1( , )I ,u x y  and ,2 ( , )I ,u x y  shifted by an 

amount    2 2 2 2
ˆ ˆ, ,s sfx y x z y fz   and    2 2 2 2

ˆ ˆ, ,s sx y x zf fz y    respectively. 
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From equation 6.1,  
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For a polychromatic light having a Gaussian spectral distribution given by  
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(6.4) 

Where G is a constant depending on the mean power, ν is the central frequency and 

 is the spectral width. 

The total field can be written as [95]: 

   ( , , ) ,O Ou x y S u x y 
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(6.5) 

Considering that the spatial distribution of the field components are independent of 

the spectrum  , ,Ou x y   
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Substituting the value of  
2

S  in Eqn.6.6 and solving it. 
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phase gradient along y direction. 
2

c cl    denotes the temporal coherence length, 

  denotes the central wavelength and   is the spectral bandwidth . The term 

2

ˆ4
exp s

c

y
i y

f





 
 
 

introduces the linear phase corresponding to the spatial carrier 

frequency 2
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s cy f . 
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(a)      (b) 

 

(c)     (d) 

Figure 6.2 (a) Spectra of LED source. (b) Residual of intensity plot after curve fitting of 

LED spectra. (c) Fall of contrast for the spatial carrier fringes along y direction as explained 

by equation 6.14, (d) The intensity variation along the y direction after normalizing with the 

intensity distribution of the interfering beams. 

The contrast of the fringes in the interferogram, decided by the strength of

*

,1 ,2( , ) ( , )I Iu x y u x y , falls as a Gaussian along y. Spectra of the LED source used in 

experiment after curve fitting is shown in Fig.6.2 (a). Residual of intensity plot after 

curve fitting is shown in Fig. 6.2 (b). It is a nearly symmetric Gaussian distribution 

having central wavelength of ~634 nm. Interferogram resulting from the 

superposition of ,1( , )Iu x y  and ,2 ( , )Iu x y  under complete overlapping condition (z2 = 
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0) and with spatial carrier frequency introduced along y direction, is shown in 

Fig.6.2(c). The contrast of the fringes exhibits a Gaussian decay along y-direction. A 

detectable contrast at the periphery of the field of view can be maintained by suitable 

choice of the spatial carrier frequency. The intensity variation in the interferogram 

along the y direction after normalizing with the intensity distribution of the interfering 

beams is shown in Fig.6.2(d). 

To understand the influence of limited spatial coherence provided by the light source, 

consider an extended, but quasi-monochromatic, incoherent source. At that source 

plane with  ,x y as the coordinates, we assume a delta function for the field 

correlation, as follows. 

       *
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(6.8) 

The field correlation at its Fourier plane can be described using Van Cittert Zernike 

theorem: 
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(6.10) 

By suitably choosing the source intensity distribution  ,I x y , it is possible to 

maintain high correlation/coherence value corresponding to a particular value of the 

shear. This phenomena, generally termed as diffraction effect of spatial coherence 

function can be effectively utilized to revive the fringe contrast for certain specific 
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values of lateral shear. We choose a hard circular aperture for  ,I x y so that its 

Fourier Transform results in a Bessel function as described in Fig.6.3. The red curve 

describes the experimentally measured fringe contrast as a function of lateral shear 

whereas the blue curve describes the theoretical fit generated based on the 

experimental parameters. Had the field at the detector plane propagated from a single 

point source, the spatial coherence would have been high for any value of lateral 

shear. The contributions from other point sources due to finite spatial extent of the 

source results in the spatial coherence falling to zero within 100 m of lateral shear; 

effectively making it impossible to define a wavefront. We set the lateral shear value 

of 152 m matching with the maxima of the 1
st
 side-lobe.  
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Figure 6.3 The diffraction effect in spatial coherence function, introduced by hard aperture, 

measured at the interferogram plane. Interferograms recorded at specific values of lateral 

shear are provided at the top and bottom rows. The central region of the interferogram is 

cropped and shown in the inset for better visualization of fringe contrast variations. 

In a similar way, we can tune the spatial coherence to be high for the lateral shear 

provided along x direction as well.  

The three orthogonally sheared wavefronts interfere at plane I and the resulting 

intensity is recorded by a CCD equal to, 

       
2

I I,1 I,2 I,3I x, y = u x, y u x, y u x, y   

(6.11)
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The terms representing the orthogonal shearing interference *

,1 ,2( , ) ( , )I Iu x y u x y and 

*

,1 ,3( , ) ( , )I Iu x y u x y  are retrieved through Fourier transform method of fringe analysis 

[95][96]. The resulting phase gradients are used to reconstruct the wavefront. 

6.3. Experimental Results and discussion 

6.3.1 Validation of the scheme sensing quadratic wavefronts 

The experimental set-up to validate the proposed vectorial shearing cascaded Sagnac 

interferometric wavefront sensor is shown in Fig. 6.4. In this set-up, a LED (Light 

Emitting Diode) having central wavelength ~634 nm and spectral bandwidth of ~18 

nm as shown in Fig.2(a) is used as the low-coherent source. To revive the spatial 

coherence corresponding to the lateral shear introduced, a 50 m diameter circular 

aperture is introduced at the LED plane and imaged using a 10x microscope objective 

(MO) at the front focal plane of lens L resulting in an equivalent hard aperture of 0.6 

mm diameter, is introduced as shown in Fig. 6.4.  

 

Figure 6.4 Wavefront sensing using vectorial shearing interferometer 

The light collimated by lens L is fed as input to the vectorial shearing wavefront 

sensor. The beam coming out of vectorial shearing sensor is then falls on a CCD 

(Pixelfly, 1392x1040, pixel size 6.4 µm). As the position of the collimating lens 

changes, the shape of the beam also changes. Depending upon the direction in which 

the lens is moved the beam output may be converging or diverging. First the 

collimating lens was moved in direction towards the VSWFS with increasing steps of 



96 

 

0.25 mm. Corresponding to each position of lens the interferogram is recorded. The 

interference of three sheared wavefronts is recorded as a single interferogram using 

spatial frequency multiplexing technique [96]. Demultiplexed phase gradients are 

obtained using Fourier transform method of fringe analysis [98-99]. Figure 6.5(a) 

shows the recorded interferogram showing the vectorially sheared fringe pattern and 

Fig.6.5(b) shows the 2D Fourier spectrum of the recorded interferogram with spatial 

frequencies 
xf and yf represented as 

2x̂ f and
2ŷ f . There are seven spots shown in 

Fig.6.5(b) in which the center one is the zeroth order term representing the dc-part in 

the recorded interferogram. The upper three spots show the mutual superposition of 

sheared wavefronts. They get separated due to the spatial carrier frequency
2

ˆ2 sx f  

and 
2

ˆ2 sy f with ˆ2 3.037sx mm  and ˆ2 2.90sy mm   introduced. The conjugate spots 

of upper three appear at the lower side. The circular regions with radius 230 m

around  ˆ ˆ ˆ2 , 0sx x y  and  ˆ ˆ ˆ0, 2 sx y y  are individually selected and inverse Fourier 

transformed. From the inverse Fourier transform of the selected regions, phase 

gradient along x and y direction of the complex field can be separately calculated 

provided the precise amount of the spatial carrier frequency introduced is known. The 

wrapped phase gradients along y and x direction are shown in Fig.6.5(c) and 6.5(d) 

respectively. In addition, it should be noted here that during the alignment of the 

cascaded Sagnac interferometers and the accompanying lenses, there can be optical 

system which can introduce aberrations and they have to be cancelled. Therefore, the 

phase of the complex field obtained for a particular case is always compared to that 

obtained for the initial condition of a well collimated beam; thereby automatically 

cancelling the phase introduced by the spatial carrier frequency and the system 

induced aberrations. 



97 

 

 

(a)     (b) 

 

(c)     (d) 

Figure 6.5 (a) Interferogram, (b) Fourier transform of fringe pattern, (c) Wrapped phase 

gradient along y-direction and (d) Wrapped phase gradient along x-direction. 

Further, proper phase unwrapping algorithm is performed to get the phase gradient 

information without 2π jumps in the wrapped phase. Figure 6.6(a) and 6.6(b) show 

the calculated phase gradient information along x and y directions respectively when 

the collimating lens is shifted by an amount of 1.25 mm from the initial position. We 

use two-dimensional trapezoidal numerical integration method to integrate these x 

and y gradient that will reconstruct the complete wavefront W(x,y). In case that the 

gradients are not exactly orthogonal due to alignment limitations in the experiment, 

an orthonormalization process is followed before integration.  Figure 6.6(c) shows the 

reconstructed wavefront from obtained phase gradients. The same process is repeated 
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for recorded interferogram at different positions of collimating lens (0 mm, 0.25 mm, 

0.5 mm, 0.75 mm, 1.0 mm and 1.25 mm) from the initial position as shown in Fig.6.7. 

 

(a)      (b) 

 

 

(c) 

 

Figure 6.6 (a) & (b) Unwrapped phase gradient along x and y-direction respectively and (c) 

Reconstructed phase. 

Using the parameters used for the experiment, a numerical simulation was performed 

using MATLAB software for wavefront reconstruction by using phase gradients 

obtained by orthogonal shearing of wavefront with different position of collimating 

lens as done in experiment. Figure 6.7 shows the 3D view and the line profile of 
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reconstructed wavefront where Red dashed line represents experimental and Blue line 

represents simulation results. For each wavefront Peak to Valley (PV) and root mean 

square (RMS) values are calculated. The matching results confirm the accurate and 

stable wavefront reconstruction achieved using the scheme. As it is observed from the 

results shown in Fig.6.7, there is tilt in experimental results. This can be attributed to 

the in-plane mechanical movement of lens mount when the collimating lens is shifted 

along z-direction. 

 

Figure 6.7 Recorded interferogram, line profile and 3D plot of reconstructed phase at 

different position of collimation lens. 
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6.3.2 Sensing of wavefront distortion by atmospheric turbulence 

simulator 

The cascaded Sagnac vectorial shearing interferometry based wavefront sensor is 

validated in last experiment. Now the sensing of wavefront distortion is done when 

Pseudo Random Phase Plate (an atmospheric turbulence mimic) is introduced in the 

path of collimated beam as shown in Fig.6.8. The details of PRPP is given in 

Appendix A. 

 

Figure 6.8 Wavefront sensing of aberrated wavefront by PRPP using vectorial shearing 

interferometer. 

The recorded Interferograms at different position of PRPP and corresponding 

reconstructed Wavefronts are shown in Fig.6.9. First interferogram is recorded in the 

absence of PRPP which is considered as reference wavefront. The other five 

interferograms recorded when PRPP was rotating i.e. when beam was passing 

through different points on annular region of PRPP. Due to possible dust and stains 

on the PRPP, the intensity varies across the field of view due to transmission losses. 

However, a careful look at the fringes reveals spatial modulation of its spacing. These 

recorded interferogram are then digitally processed as mentioned earlier. The lower 

half of Fig.6.9 shows the distortions in wavefront as PV and RMS values with 

respected to reference wavefront. 
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Figure 6.9 Interferograms at different position of PRPP and corresponding reconstructed 

Wavefronts 

6.4 Discussion 

When diffractive optical elements are used to generate the copies of the wavefront 

[36-39], the shear becomes wavelength dependent [Appendix D]. As a consequence, 

the phase difference/gradient becomes independent of wavelength. This property 

rendered those schemes achromatic.  This condition is valid only if one assumes 

linearity in phase variation between the two points on the wavefront that are brought 

together and interfered through lateral shear. This condition is generally satisfied as 

the amount of lateral shear is chosen depending on the phase gradient being 

measured.  The spatial carrier fringe introduced in the interference between the 

wavefront copies also retains the same periodicity irrespective of the wavelength. In 

short, the use of diffractive optics to generate the necessary wavefront copies seems 

to be the best option. However, fabrication of such dedicated element can be 

challenging. On the contrary, our technique will not have this problem as we use 
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simple reflections to generate the wavefront copies. However, in this case, the lateral 

shear being independent of the wavelength, the conditions of achromaticity discussed 

above will not be met. This is one of the reasons that set our scheme different from 

that of grating based schemes. We show that the wavelength dependence of the phase 

gradient does not influence the measurement as long as the spectral distribution is 

Gaussian. This can be explained with the example of white light interferometry where 

the phase difference corresponding to the central wavelength is accurately measured 

[95]. The periodicity of the spatial carrier fringe depends on wavelength. This can 

lead to reduction in contrast of the fringes at the periphery of the interferogram. 

However, with LED having a spectral band width of 16 nm used in our experiment, 

the contrast of the carrier fringes were detectable using an 8 bit CCD sensor. 

Practically, it is difficult to derive a light source having high spatial coherence and 

sufficient intensity from a spatially incoherent extended source. For the field 

propagated from an extended incoherent source, the spatial coherence dies out as a 

function of increasing correlation length (lateral shear). We overcome this issue by 

choosing a hard-edged circular disk at the extended source plane and introduced the 

side lobes for the spatial coherence function. It can be thought of as reviving a 

decaying or dying function. The introduction of the hard aperture was an easier 

option for the spatial coherence revival. Alternatively, a two dimensional amplitude 

grating as the mask for the extended source can synthesize high spatial coherence at a 

particular correlation length (lateral shear) decided by the pitch of the grating. As a 

practical application of the proposed experimental scheme, we reconstructed the 

wavefront of a low coherent source when passed through Pseudo Random Phase Plate 

(PRPP), an atmospheric turbulence simulator. 

6.5 Summary 

We overcame the limitations introduced by temporal and spatial coherence through 

the choice of Gaussian spectra for the light source and using hard aperture at the 

source respectively for sensing aberrated wavefronts using low coherent source like 
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Light Emitting Diode(LED). The proposed scheme has immense potential in 

astronomical and biomedical sensing applications with low-coherent light sources. 
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Chapter 7 

Conclusion and Future Scope 

The initial focus of the thesis is to reveal the impact of atmospheric turbulence 

mimicking PRPP on Gaussian and Laguerre Gaussian beam when passing through it. 

There were challenges in sensing of highly turbulent impacted wavefront using 

SHWFS. This paved the way to work on cascaded Sagnac VSI. This wavefront 

sensing techniques is extended to the detection of wavefront of low coherent sources. 

 This thesis begins with an experimental analysis of double passage Gaussian 

beam through a dynamic (rotating) pseudo random phase plate (PRPP) 

mimicking atmospheric turbulence and single passage topologically charged 

Laguerre Gaussian beams of odd and even charges. Intensities and beam 

centroid data at different plane from PRPP is captured by SHWFS for 

calculating Variance matrix elements. The physical parameters of Variance 

matrix are calculated and compared for double pass Gaussian beam and 

topologically charged beams. It is found that there is enhancement in 

fluctuation for all these parameters after insertion of PRPP. Asymmetry for 

double pass Gaussian beam found higher than LG beam. 

 Further, intensities and centroid values captured from SHWFS are used to 

measure scintillation and beam wander. It is observed that the topologically 

charged beams show less scintillation and beam wander compared to Laser 

Gaussian beams. It is observed that when Laguerre Gaussian beam passed 

through dynamic turbulence the charge of higher order beam retains. Zernike 

coefficients for turbulence impacted beams have been calculated using 

SHWFS. Higher order aberration values with and without PRPP are difficult 

to distinguish due to poor spatial resolution.  To measure aberrated phase 

information accurately, wavefront sensor with more spatial resolution would 

be required. 
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 This thesis also presents the principle and experimental results of a wavefront 

sensor using Vectorial shearing interferometer (common path interferometer) 

and a telecentric lens system. In this sensor the amount of spatial carrier 

frequency for multiplexing the shearing interferogram can be fixed by 

introducing controlled mirror alignments of cascaded Sagnac interferometer. 

The lateral shear can be varied by moving the detector plane alone along z 

direction and the wavefront gradient along two perpendicular directions are 

computed simultaneously.  Wavefront curvature induced due to motion of 

collimation is measured. It is shown that mechanical errors inducing 

wavefront deviations of the order of fraction of wavelength can be detected 

using the cascaded sagnac VSI wavefront sensor.  

 Further comparative analysis of SHWFS and cascaded Sagnac VSI is carried 

out. It is observed that SHWFS resolution is limited by sub-aperture size of  

micro lens array whereas cascaded Sagnac VSI resolution depends on the 

minimum pixels of sensor required to solve one fringe. Wavefront 

reconstruction for VSI is better than SHWFS as no special curve fitting 

algorithms are required in VSI and under high atmospheric turbulence 

condition cascaded Sagnac VSI measurement of measures the wavefront 

better than SHWFS. 

    Finally the detection of low coherent source wavefront like Light Emitting 

Diode (LED) is performed using cascaded VSI. The limitations introduced by 

temporal is overcome through the choice of Gaussian spectra for the light 

source. The spatial coherence can be revived using hard aperture at the 

extended source. 

The future scope for the research work in the thesis is as follows: 

 

 Since the cascaded Sagnac is used to generate four copies of input wavefront 

it makes VSI little complicated. The efficiency also reduced to ~19% as two 

beam splitters are used. So if VSI can be designed with single Sagnac 
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interferometer then the efficiency can be increased and complexity of the 

system can be reduced. 

 Since VSI will give gradients along two directions and intensity information 

simultaneously it can be used for analysing the Optical beams propagating 

through atmospheric turbulence.  

 The study on phase detection and reconstruction of optical singularity can be 

done using VSI. 

 The cascaded Sagnac VSI can be made into a product by proper designing 

using Zemax or CodeV optical designing tools. 
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Appendix- A 

Pseudo random phase plate 

There are several methods by which one can simulate atmospheric turbulence in 

laboratory [88-89]. The Pseudo Random Phase Plate(PRPP) used in the experiments 

for mimicking atmospheric turbulence, is a five layered transparent packed system 

consists of two outer layers made of BK-7 glass and the two inner layers of near 

index matching (NIM) polymer[88]. The middle one is an acrylic layer in which a 

turbulence profile is written onto one of its sides. The phase plate allows varying 

levels of turbulence which leads to aberrated wavefront. The phase screens that are 

machined on PRPP are generated using Fourier transform technique. Each phase 

screen has 4096 sample phase points across a side. The turbulence profile is mapped 

on a 3.28‖ acrylic annulus with a 1.35‖ diameter obscuration at the centre so that the 

spacing at each plate is 20    [ ]. 
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Figure A.1 Diagram of static Pseudo random phase plate [88] 

The PRPP can be rotated in various velocities with the help of a computer controlled 

stepper motor with a single driver, so that the time varying phase profile can be 

achieved. The PRPP is fabricated using a technique called Near-Index-Match (NIM) 

optics. The principle of NIM is illustrated in Fig.4.4. Two different materials of 

refractive indices n1 and n2 with an interfacial surface profile h(x) provides an optical 

path difference (OPD) on an incident plane wave which is given by 

        

   

1 2OPD x h x n n

h x n

 



 

 

 

 

Figure A.2 Diagram of Near-Index-Match concept [89] 
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To produce an OPD of 1λ, a relief height of  50λ is required for an index difference 

(  ) of  0.02 [89]. While designing such combinations, for very small     the 

required surface relief should be very high for adequate OPD. If    is very high, the 

accuracy of OPD will get affected due to precision of the machine tool. Practically, 

the index difference in the range 0.02-0.06 works well for wavelength range 0.5-1.5 

   with maximum machine tool accuracy [89]. 

Limitations 

Even for well characterized materials, only a limited range of refractive index 

differences is available. Since the refractive index depends on wavelength and 

temperature, thermal and mechanical stresses affect the optical figure of a rigidly 

mounted optic. Mechanical stresses due to temperature changes leads to separation of 

sandwich. These stresses are greater for dissimilar materials like glass and polymers. 

The combination of acrylic and a castable optical element have similar thermal and 

mechanical properties, so this combination will be less affected by temperature [89]. 
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Appendix B 

Shack-Hartmann Wavefront Sensor 

 

Shack-Hartmann Wavefront Sensor (SHWFS) is a widely used device for wavefront 

measurement. A SHWFS consists of micro lenslet array followed by CCD sensor. 

The CCD sensor is placed at focal point of the micro lenslet array. Each micro lens 

generates a spot in the sensor whenever a light bam is incident on it. The centroid of 

the spot depends on the slope of the wavefront infront of the lens. 

 
 

Figure B.1 (a) Plane wavefront incident on lenslet array and its spot diagram (b) Aberrated 

wavefront incident to micro lenslet array and its spot diagram. 

 

Figure B.1. shows spot diagram detected using SHWFS for an incoming plane 

wavefront. The incoming wavefront is sampled on to small wavefronts equal to a 

small micro lens of lenslet array. As this incoming wavefront is normal to the optical 

axis of lens, it gets focused at focal point on optic axis and this is called reference 

spot position. Figure B.1 (a) shows spot diagram when a plane wave front (collimated 

beam) is incident on to a SHWFS. If this beam is aberrated then there will be shift in 

focal points of each lenslet arrayand that is shown in Fig.B.1 (b). 
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Figure B.2 Centroid shift for Single Lens 

Fig.B.2 demonstrates about the response of one of single lenses in the lens-let array to 

an incoming wavefront. The slope of incoming wavefront is calculated from the 

Shack Hartmann wavefront sensor data using following equation: 

0

0

( , )

( , )

ij ij

ij ij

x x x y

f x

y y x y

f y





 




 




(B.1) 

Where, is 
2


with 633nm  . Where,  ,x y  is the shape of the wavefront. Its 

partial derivative along x and y direction can be calculated by spot shift 0ij ijx x and 

0ij ijy y respectively and by focal length of the micro lens.  

 

In this thesis, a Thorlabs Shack-Hartmann Wavefront Sensor WFS 150-5C has been 

used. Each lenslet is of 150 m  diameter and pixels in that domain are 31 31  where 

each pixel size is 4.6 m . The spot intensity measurement in each domain is done by 

calculating the summation of intensity over all pixels present in that domain. If each 

domain is labeled by indices i,j , then pixels in that domain can be labeled by k. The 

spot intensity in ij
th

 domain can be calculated as: 
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, ,

k

i j i j

k

N I  

 (B.2) 

Where, k is the pixel index of (i,j)
th

 domain and N is the intensity value stored at k
th

 

pixel in (i,j)
th

 domain. Shift in the centroid is calculated from the reference centroid 

spots. 
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Appendix C 

Derivation for shearing copies generated by two cascaded Sagnac interferometer is 

wavelength independent. 

To show that image is shifted and has a linear phase: 

 

Figure C.1 Conceptual diagram for common-path VSI 

Let,  ', 'O x yu  be object field: 
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(C.6) 

Expanding exponential part…… 
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(C.8) 

The field at plane-I given in Eqn. C.8 can be divided into three parts. The first shows 

a constant phase depending on the focal lengths of lenses L1 and L2. Second part 

shows the presence of a linear phase. Part three shows the complex field of wavefront 

at plane O which is inverted, scaled by factor of 2 1m f f and shifted by , 2 2
ˆ

s nx z f

along x-direction and by , 2 2
ˆ

s ny z f along y-direction. The complex field of shearing 

wavefront is independent of wavelength. 
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Appendix D 

Derivation of copies generated by grating 

Derivation for shearing wavefront copies generated by grating based wavefront 

sensor is wavelength dependent. 

 

Figure D.1Conceptual diagram for Grating based wavefront sensor 

Let  ,Ou x y  be the object field at plane G (object plane) which has to be sheared at 

image plane I. 

Field at plane A can be expressed as: 
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Now, field at Fourier plane F will be 
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 
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



 
  
 
  

        
  

  
     

  

 

(D.5) 

Now,
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  , 

1
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y
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f
  , 1 2x xf mf  , 1 2y yf mf , 2 2

1

z
m

z
  , 2

1

f
m

f
  , 

2

1
1 2

2

f
z z

f

 
  

 
 

Substituting z1,fx1 and fy1 in Eqn. (D.5) 
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 

     

   

2 2

2 2

2 2

0 0

2 2
1 2

2 0 02

2 2

2

2 , 2

2
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G x x y y
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m
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 
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



 
  
 
  

        
  

 
 

     
     

(D.6) 

Expanding exponential terms using binomial theorem 

   
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         

  
     
   

  

 

After simplifying above term and substituting in Eqn. D.6 
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 
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(D.7) 

The field at shearing plane-I given in Eqn. D.7 can be divided into three parts. The 

first shows a constant phase and third part shows the presence of a linear phase. Part 

second shows the complex field of wavefront at plane O which is inverted, scaled by 

factor of 2 1m f f and shifted by 2 02 xz f m along x-direction and by 2 02 yz f m

along y-direction. The complex field of shearing wavefront is dependent on 

wavelength. 
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