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ABSTRACT 

A Satellite Launch Vehicle (SLV) is a dynamic system with time-varying 

characteristics whose model consists of highly uncertain and nonlinear parameters. 

During the ascent phase, the SLV experiences continuous variations in atmospheric 

density, Mach number and aerodynamic forces and moments. The presence of 

lightly damped structural and slosh modes whose frequency is closer to the control 

frequency, further complicates the attitude control problem.  Current practice in the 

flight control design is to linearise the plant dynamics about various points of a 

nominal trajectory designed to satisfy the mission requirements. For this purpose, 

the plant is assumed to be frozen between the operating points. The classical gain 

scheduled control design works perfectly for the existing Space Transportation 

Systems (STS). However, these controllers cannot be applied to modern STS where 

the systems are highly non-linear and coupled. The flight control system for such 

systems has to work for a wide spectrum of flight conditions.  

This thesis proposes the use of adaptive controllers for the flight control of 

various STS, such as structurally optimized slender launch vehicles and winged re-

entry vehicles. These controllers replace the existing gain-scheduled controllers and 

maintain the performance of the closed-loop system in the event of failure of sub-

systems and also in the presence of parametric and non-parametric uncertainties.  

The initial phase of the research work focuses on dynamic modelling and 

ascent flight control of a highly unstable and flexible launch vehicle. Stabilising 

adaptive PD/PID controllers are developed in MRAC framework using standard 

quadratic Lyapunov function to control the time-varying rigid body dynamics 

during the atmospheric phase of flight. Further, Lyapunov stability and Barbalat’s 

Lemma are applied to prove the stability of the time-varying system. These 

controllers are robust to parametric uncertainties and all the signals are uniformly 

ultimately bounded. To reduce the effect of sensor noise, a continuous form of dead 

zone is applied on the tracking error. The lack of robustness of these control 

algorithms for unstructured uncertainty is shown analytically and through 

simulations. A stable adaptive control design that completely avoids actuator 
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position and slew rate saturation is proposed using the standard quadratic Lyapunov 

function. Here both the control and reference inputs are adaptively adjusted.  

Two adaptive control laws are proposed to improve the robustness of the 

adaptive controllers to non-parametric uncertainties. These controllers are 

developed in MRAC framework using Lyapunov functions. Time-varying 

reference models are used, which capture the desired behaviour of the closed-loop 

plant at various operating points along the nominal trajectory. Classical stability 

margin requirements are to be met for flight control certification.  Hence, reference 

models are selected to satisfy these requirements. A continuous projection operator 

constrains the adapted parameters within the user-defined bounds in the first 

algorithm, which helps maintain the stability of the time-varying plant and avoids 

actuator saturation. The robustness of this algorithm to structured and unstructured 

uncertainty is proved analytically. The second algorithm uses a Barrier Lyapunov 

Function to constrain the trajectory tracking error and the adapted parameters within 

the user-defined constraint compact sets. These two algorithms require full state 

feedback. An extended Kalman filter is designed to estimate the plant's states from 

the available noisy measurements. Proposed adaptive controllers are used in the 

ascent phase of a highly flexible, unstable launch vehicle, and the results are 

compared with the existing gain scheduled controller.  

In the second phase of the research work, projection and barrier Lyapunov 

based adaptive controllers are proposed for the descent phase flight control of a 

winged re-entry vehicle. A rectangular projection operator is used in the adaptive 

control design to simultaneously constrain the adapted gains within a maximum and 

minimum limit. Extensive simulation studies are conducted with non-linear 

actuator models, wind and extreme parametric perturbations to demonstrate the 

robustness of the proposed algorithms. 
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Chapter 1 

Introduction 

Adaptive controllers are ideal for dealing with complex systems with 

unpredictable parameter variations and uncertainties and maintaining consistent 

system performance. These controllers will adjust themselves to the changing 

environments. The plant's output carries information about its current state and the 

change in its parameters. Hence adaptive controller is designed with a feedback 

structure and adjustable controller parameters which vary with respect to the change 

in plant parameters.  

Adaptive controllers were proposed for flight control in the early 1950s as 

an option to enhance the performance of the autopilot design for fighter aircraft 

[1][2][3]. Such aircraft dynamics are time-varying and nonlinear and operate over 

a wide range of speeds and altitudes. These dynamics can be linearized about the 

operating point specified by the aircraft's velocity and altitude. The controllers need 

to be designed for each operating point for large stability margins. The controller 

parameters are scheduled with respect to parameters whose variations correlate well 

with the change in plant behavior. This procedure is time-consuming and the 

controller's performance at all the points along the trajectory is not guaranteed. This 

emphasizes the need for adaptive controllers that can handle non-linear time 

varying characteristics of the aircraft.  

 All formal control designs are based on the mathematical model of a 

physical system [4]. Before starting the control design, a model that captures the 

plant's behavior in the desired domain of operation is to be developed. A plant 

model may be developed using the laws of physics [4][5][6] and also using 

identification methods by processing the input and output of the plant [3]. Such a 

model may be complicated and may not be helpful for control design. A simplified 

model is to be developed for control design purposes using certain approximations 

and assumptions.  Usually, in the classical control design, sufficient margins are 

built so that the controller's performance is satisfactory for the actual plant and 
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stability is maintained; however, performance is gracefully degraded in the 

presence of uncertainties. Hence, the main criteria for any flight control system 

design is to embed robustness properties so that closed-loop stability and tracking 

performance are achieved even with uncertainties. Fig. 1.1 shows the control 

structure of a plant with uncertainty. 

 

 

Figure 1. 1  Feedback Control Structure for a Plant with Uncertainty 

There are two ways of handling the uncertainties in the plant model. The 

first is robust control, which can regulate the plant with bounded uncertainties. 

These controllers are designed to work for a set of plants (can be linear or non-

linear), assuming a worst-case condition. Hence the robust controllers are more 

conservative and there will be performance limitations for the nominal plant. Such 

controllers may use excessive control actions to control the plant. The second option 

is adaptive control, which helps to enhance the applicability domains of a robust 

control system. The adaptive controllers use some kind of online estimate of the 

controller and plant parameters and are more suitable for time-varying plants. They 

produce control input to anticipate or overcome the undesirable deviations from the 

desired closed-loop behaviour. However, designing a stable adaptive controller is 

challenging as the controller and plant parameters continuously vary with time. 

 Various researchers propose many methods to design stable adaptive 

controllers for time-varying plants [1][2] and are still not sufficiently robust to 

bounded uncertainties. Hence, a combination of robust and adaptive controllers is 
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the best option for maintaining closed-loop stability, enforcing robustness to 

uncertainties and ensuring the desired performance in unanticipated events. 

1.1   Classifications of Adaptive Controllers 

 An adaptive controller is formed by combining an online parameter 

estimator and control law for a known plant. Adaptive controllers are classified as 

indirect adaptive control or explicit adaptive control and direct adaptive control or 

implicit adaptive control based on how the estimator and the controller are 

combined. In indirect adaptive control, the plant parameters are estimated online 

and are used to compute the controller parameters. In direct adaptive control law, 

the plant model is parametrized in terms of controller parameters that are directly 

estimated online without estimating plant parameters.  This cannot be used for non-

minimum phase plants, whereas the indirect method can be used for both minimum 

and non-minimum phase plants. 

1.2   Model Reference Adaptive Control 

 Model Reference Adaptive Control [1] popularly known as MRAC is 

derived from the model following problem. Here the desired plant behaviour is 

captured by a reference model. The controller parameters are adjusted online by an 

adaptation mechanism that operates based on the error between the plant output and 

the output of the reference model. The adaptation mechanism (also known as 

adaptation law, update law or adjustment mechanism) will adjust the controller 

parameters in such a way that this error is converged to zero with time.  The design 

of the adaptation law is crucial for the stability properties of the adaptive controller.  

The adaptation law introduces a multiplicative nonlinearity to the plant, making the 

closed loop plant nonlinear and time-varying. This makes the analysis of the 

stability and robustness of the adaptive controllers more challenging [7]. Some of 

the methods used for the design of adaptive law [2] are (i) Sensitivity methods (MIT 

rule) (ii) Positivity and Lyapunov Design (iii) Gradient method and least-squares 

methods. The general MRAC block diagram is given in Fig. 1.2. 
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Figure 1. 2  MRAC Structure 

1.3   Introduction to Satellite Launch Vehicles 

 Satellite Launch Vehicles (SLV) are generally aerodynamically unstable, 

highly flexible and have time-varying dynamics. The basic approach to stability and 

control analysis for aerospace vehicles like aircraft and launch vehicles are the 

same. But, large variation of vehicle mass due to the expulsion of fuel and staging 

of rockets makes the problem complex for launch vehicles. Stabilizing the 

conditionally stable, lightly damped structural modes of a slender launch vehicle or 

missile and avoiding control-structure interaction is a very challenging problem. 

The attitude control design problem is further complicated by the presence of liquid 

propelled stages which introduces moments due to sloshing of the liquid propellant 

and the gimballed engines used for controlling the vehicle. On the other hand, 

winged re-entry vehicles and crew re-entry modules have to undergo a wide 

spectrum of flight conditions. The flight control system has to cater to various abort 

mission scenarios due to partial or total failure of sub-systems and under actuation 

due to failure.  

 Accurate models are to be developed for flight control system design to 

ensure satisfactory performance. At the same time, a hi-fidelity model will be 

highly non-linear and coupled with time-varying parameters. It is challenging to 
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design controllers for such plant models. Hence a simplified model is derived, 

which captures the behavior of the plant reasonably well and then the controller is 

designed. Various interactions between different dynamics for complex systems are 

difficult to capture using a simplified model. The controller parameters should be 

allowed to vary to cater to the time-varying nature of the plant and also be able to 

cater to the uncertainties due to modelling inadequacy. Adaptive controllers are 

ideal for handling such scenarios. 

1.4   Literature Survey 

Many adaptive controllers, when applied to high-risk aerospace 

applications, are infeasible due to the rigorous flight certification environment [8]. 

These control techniques are not suitable for controlling conditionally stable 

dynamics like structural flexibility.  Metrics of performance and robustness of 

adaptive controllers are difficult to reconcile with the classical control system 

performance and robustness requirements specified using gain margin and phase 

margin. Hence an adaptive controller augmented with an existing well-designed 

classical controller is proposed. L1 output feedback adaptive controller is proposed 

in [9] for the Ares launch vehicle, whose first flexible mode frequency is close to 

the rigid body frequency. It consists of a state predictor and a control law defined 

via the output of a low-pass filter.  

The adaptive controllers can be constructed to “learn.” Learning refers to 

remembering or recognizing specific patterns and then act on some prior 

knowledge. Several learning controllers based on neural networks, fuzzy logic etc., 

are available in the literature. A direct adaptive fuzzy controller is designed in [10] 

to control the pitch dynamics of a launch vehicle. The adaptation law is designed 

using Lyapunov theorem, which ensures asymptotic stability of the closed-loop 

system. An adaptive controller in MRAC framework is designed for an expendable 

launch vehicle [11] in which several basis functions are used to represent various 

uncertainties in the system dynamics. A reference model is obtained using feedback 

linearization. This avoids the use of several reference models and a single reference 

model which is suitable for all operating points is used. Choice of appropriate basis 
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functions is another criticality. Several basis functions may be required to represent 

the uncertainties when the plant contains other modes like slosh and flexibility.  

An adaptive attitude and vibration control law is designed in MRAC 

framework for the Ares crew launch vehicle [12]. The control law uses an output 

feedback neural network adaptive element which augments an existing gain 

scheduled decoupled linear control law to enhance the controller's performance in 

the presence of a wider class of uncertainties. The major concern here is the stability 

of the resulting closed-loop system, which is demonstrated through a Lyapunov-

like stability analysis where all the signals are shown to be Uniformly Ultimately 

Bounded (UUB). An integrated guidance and control design for autonomous launch 

vehicles using direct model reference adaptive control is presented in [13]. It 

consists of an inner loop controller, a dynamic inversion based controller, made 

robust using an adaptive neural network based controller. The outer guidance loop 

is also based on adaptive control, which adapts to the force perturbations. Pseudo 

control hedging is used in the inner loop to enable adaptation during control 

saturation and in the outer loop to prevent adaptation to inner loop dynamics. It may 

not be able to ensure stability and the performance of the adaptive neural network 

based controller for a condition that is outside the training set.   

The major challenge in the flight control system design is to build the 

capacity to handle underactuated dynamics. Launch vehicle systems have inherent 

underactuated dynamics like slosh and flexibility. Aircraft and RLV vehicles 

become underactuated when some fault occurs in the actuators. Since adaptive 

controllers adjust to various environments, they are considered an ideal choice to 

control underactuated systems. Stability and tracking performance of an SLV is 

ensured in [14] in the event of an actuator fault by designing an adaptive control in 

MRAC and combining it with the control allocation algorithm. An improved 

weighting algorithm and an anti-saturation controller are developed to compensate 

for the saturation error. A multi-variable adaptive control method that uses an 

observer is presented in [15] for a wing-damaged aircraft. Two different adaptive 

control approaches are presented in [16] to solve aerodynamic surface failure during 

formation flight. A reconfigurable control system for re-entry vehicles based on an 
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adaptive control strategy combined with a control allocation approach is presented 

in [17]. 

An adaptive notch filter design and a PID controller are proposed to stabilize 

the flexible modes for an SLV in [18]. This controller can be implemented for real-

time applications. Here, the notch filter parameters are adjusted adaptively to handle 

the time-varying nature of the flexibility data and the uncertainties. But the 

parameters of the PID are fixed, which are insufficient to handle the time-varying 

rigid body parameters. An attitude controller is designed for a flexible launch 

vehicle in MRAC framework [19]. This paper assumes that the vehicle is symmetric 

in pitch and yaw planes with negligible flexibility effect. The yaw plane rigid body 

dynamics is identified and its closed-loop model is used as a reference for the pitch 

plane. This assumption will not work for clustered launch vehicles.        

Robust identification of the dominant flexible mode frequencies is done and 

closed-loop notch filtering at these frequencies is employed in [20]. In [21], a linear 

control design methodology is presented for a launch vehicle autopilot using a 

multi-objective method based on the Youla parameterization and the optimization 

under constraints described by linear matrix inequalities. These controllers are 

scheduled, which guarantees the closed-loop stability. A systematic approach to 

robustness analysis of a classical controller for a flexible launch vehicle with multi-

linear uncertainties, having multiple minimum phase margin and gain margin points 

is described [22]. An adaptive controller is designed to stabilise the aeroservoelastic 

mode of a hypersonic air-breathing vehicle [23]. In this case, the first three flexible 

modes are stabilised using an adaptive notch filter. Its performance is compared 

with a phase stabilised controller, where stabilisation is achieved by properly 

placing the sensor. A nonlinear feedback control law is developed for the ascent 

vehicle [24] that stabilises the equilibrium point by suppressing lateral motion due 

to pitching and sloshing. Here slosh is modelled as a pendulum. A nonlinear 

dynamic inversion based control law is developed in [25] to stabilise the ascent 

vehicle which is modelled as a multi-body-vehicle with slosh modelled as a 

pendulum. This is a critically under-actuated system. 
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In [3], three modifications are suggested to improve the robustness of the 

adaptive control algorithms (i) deadzone (ii) e-modification and (iii) sigma-

modification. A Lipschitz-continuous version of the projection operator is proposed 

in [26][27][28]. This modification enables the adaptive control law to achieve more 

robustness to both parametric and non-parametric uncertainties. Here the adaptation 

law is continuously modified such that the negative definiteness of the Lyapunov 

function time derivative is ensured and at the same time, the adaptive gains are 

uniformly bounded in time. A projection-like modification of the adaptation law is 

proposed in [29] and an extended version of this method is presented in [3]. The 

projection based control law tolerates fast adaptation and enforces uniform 

boundedness to adapted parameters. 

 Another method to get robust adaptive controllers is using Barrier Lyapunov 

Functions (BLF), which constrains tracking error and the adapted parameters within 

the limit. BLF is used along with backstepping controllers and learning controllers 

to achieve this. A backstepping controller is designed with BLF [30] to constrain 

the states to an allowable boundary that satisfies the stability conditions. 

Asymptotic tracking is achieved without violating the constraints and all the closed-

loop signals remain bounded. An adaptive servo controller is designed in [31] with 

both position and velocity constraints using BLF. 

A method to constrain both tracking error and adaptive gains of an adaptive 

controller is given in [32]. An adaptive finite-time tracking problem is solved for a 

hypersonic flight vehicle with state constraints using backstepping control and BLF 

[33]. As required by the backstepping algorithm, a sliding mode differentiator is 

used to estimate the virtual control laws' derivatives. A reinforcement learning 

controller using two Radial Basis Function (RBF) neural networks is proposed in 

[34] to control the longitudinal dynamics of a hypersonic air-breathing vehicle with 

variable geometry inlet. Here the tracking performance and state constraints are 

guaranteed by a BLF. 

MRAC for a Multi-Input-Multi-Output (MIMO) system with quadratic 

Lyapunov function is formulated in [3]. A robust adaptive non-affine control is 

designed in [35], combining the sliding mode method, fuzzy logic systems and 
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adaptive control techniques. Compound adaptive fuzzy H-infinity control is 

presented in [36] to solve the attitude control problem of RLV in the presence of 

parameter uncertainties and external disturbances. A robust adaptive backstepping 

controller is designed in [37] during the re-entry phase of RLV. A saturating 

adaptive control law is developed in [38] for a MIMO uncertain aeroelastic system 

with constraints on control surface deflections. An adaptive fault-tolerant controller 

is developed in [39] based on H∞ and RBF. An output feedback adaptive controller 

which augments a baseline controller with a Luenberger observer is designed for a 

MIMO system [40]. This approach uses a closed loop reference model and Linear 

Matrix Inequality technique. 

 An adaptive predictor-corrector guidance law is proposed in [41] for the 

approach and landing phase of an RLV. An integrated guidance and control scheme 

is developed for RLV [42] in which the outer loop guidance law is obtained using 

adaptive Gauss pseudospectral method (GPM) and attitude control law is developed 

based on a multi-variable smooth second order sliding mode control and 

disturbance observer. An adaptive-gain fast super-twisting algorithm is proposed in 

[43] for the finite-time fault-tolerant attitude control problem of the RLV without 

any knowledge of the bounds of uncertainties and actuator faults. Super twisting 

sliding mode control scheme is a modified second order sliding mode control 

scheme that does not require the information of any derivative of the sliding 

variable. The direct MRAC method is used to develop a multiple model adaptive 

control scheme in [44] and is applied to a linear multivariable plant. 

 A new adaptive control framework is presented in [45], in which the update 

law is modified to achieve a faster learning rate. Higher adaptation gain causes high-

frequency oscillations and is filtered out in the update law ensuring UUB for the 

parameters. A higher-order direct MRAC is presented in [46]. Here the 

conventional Lyapunov based parameter update law is augmented by an observer 

type parameter predictor dynamics. A novel adaptive robust fault-tolerant control 

is proposed in [47] for a linear MIMO system with unmatched uncertainties. 

Additive functions are designed to compensate for the un-matched uncertainty. An 
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adaptive feedback linearization-based disturbance rejection scheme is developed in 

[48] for a multi-variable nonlinear system with unmatched input disturbances. 

 Adaptive control laws based on Lyapunov methods are not adequately 

robust to parameter uncertainties and bounded disturbances. To enhance the 

robustness, various modifications are suggested in literature. Also, BLF are more 

used whenever there are constraints on the states and outputs. An adaptive 

backstepping design based on BLF is proposed in [49] which is applied to a system 

transformed to strict-feedback structure. A time-varying BLF method is integrated 

with backstepping technique to constrain the states is proposed in [50], which is 

independent of the initial state and ensures constraint satisfaction even during the 

transient phase. Various adaptive control methods using BLF are given in 

[51][52][53] to constrain the states of a hypersonic flight vehicle. 

An adaptive Neural Network (NN) based output feedback optimal controller 

is designed in [54] in the backstepping framework for a class of nonlinear systems 

in strict-feedback form which have unknown internal dynamics. Some of the states 

of the system are not measurable and estimated using an adaptive NN. Another NN 

approximates the internal dynamics of the system. Barrier optimal cost functions 

combined with the actor–critic architecture have been employed to construct virtual 

and actual optimal controllers. This control strategy guarantees that the system 

states are confined within specified compact sets. For strict-feedback nonlinear 

systems with stochastic disturbance, an adaptive NN based optimal controller in 

backstepping framework is designed [55] based on identifier–critic–actor 

architecture for the reinforcement learning algorithm. Novel BLF are defined for 

various sub-systems to constrain the system states.  

Recently, a new set of robust adaptive control strategies based on Function 

Approximation Techniques (FAT) have been proposed in literature. Here the 

uncertainties (both parametric and non-parametric) are represented using 

orthogonal basis functions such as Fourier series expansion, Bessel functions, 

Legendre polynomials, etc. In [56], a novel FAT based robust adaptive impedance 

controller is proposed for an electrically driven robot. Here the uncertainty is 

approximated by Fourier series expansion and the Fourier series coefficients are 
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adaptively adjusted based on Lyapunov stability. This algorithm has the advantage 

that the number of regressor matrices are reduced and is very simple to implement 

for robots with large number of joints. A Szász–Mirakyan operator is used in [57] 

as universal approximator for both parametric uncertainty and un-modelled 

dynamics. The polynomial coefficients are tuned adaptively based on Lyapunov 

stability. The effectiveness of the algorithm is demonstrated for the chaotic 

synchronization of two Duffing–Holmes oscillators. 

1.5   Motivation of the Research 

In order to improve the payload capability, modern Space Transportation 

Systems (STS) are adopting highly optimized slender and long structures. This 

results in lightly damped, very low frequency bending modes which are difficult to 

control. The attitude control design problem is further complicated by the presence 

of liquid propelled stages which introduces moments due to sloshing of the liquid 

propellant and the gimballed engines used for controlling the vehicle. SLV 

dynamics is modelled using a set of nonlinear, time-varying differential equations 

whose parameters are highly uncertain [4][5][6].  Non-linear control problems 

arising in the digital autopilot design of present-day space transportation systems 

are mostly handled by time-slice approach in which a sequence of linear systems 

approximates the non-linear system. The controllers designed for the linear systems 

are scheduled as a function of one or more independent parameters [4][5][6]. 

Though this approach provides viable practical designs, its applicability is limited 

for complex systems with a high degree of coupling, dominant nonlinearities and 

increased degrees of freedom due to structural flexibility. 

For the last several decades, there has been an increasing interest in the 

design and development of Re-usable Launch Vehicles (RLV) which can be 

engaged for multiple missions. This is undoubtedly the best solution to achieve 

lower cost, higher reliability and on-demand access to space. Such vehicles require 

a reliable navigation, guidance and control system which is robust under all 

conditions. Re-usable vehicles such as space shuttle mostly use classical control 

tools for the flight control system design, resulting in gain scheduling. The design 
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task is to be performed for several operating points which is cumbersome and 

become in-effective when flight envelope becomes large or when unforeseen 

changes occur in the dynamics.  

The nonlinearities present in such systems can be effectively handled by 

designing nonlinear controllers which are free from approximations due to 

linearization. But large parametric variations can be handled only by building novel 

adaptation mechanisms in the flight control system. For RLV missions which carry 

humans to outer space, flight control designs should be able to work like a nominal 

mission in the event of a subsystem failure. Various abort missions are to be 

designed for expendable launch vehicles which carry humans in re-entry modules. 

Currently, these missions are executed by generating large number of abort 

trajectories anticipating various failures on ground itself and then designing the 

flight controller for these trajectories using the classical gain scheduling method. 

These trajectories and flight control parameters are stored onboard. This is a very 

time-consuming process and huge effort is required for flight control system design. 

This can be reduced by designing algorithms that can cater to a wide spectrum of 

flight conditions without retuning the controller parameters. 

Moreover, to handle the loss of the degrees of freedom in the presence of 

partial failure or degradation of the control effectors, the controller should be 

capable of controlling under-actuated systems.  This feature also helps to cater to 

the extra degrees of freedom resulting from large flexible modes and fuel sloshing. 

This dissertation will focus on the development of stable adaptive controllers in 

MRAC framework for aerospace applications like SLV and RLV.  

1.6   Research Contributions  

 As stated earlier in this dissertation, the main focus is on developing 

adaptive control laws for high-risk aerospace systems. Though the academic 

community has been emphasizing the use of advanced control techniques such as 

adaptive controllers for SLV and missile systems, the industrial practice is to go for 

legacy classical control designs. This is mostly because of the flight certification 
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requirements and the concerns raised regarding the stability of the adaptive 

controllers. Moreover, many adaptive control techniques are unsuitable for 

conditionally stable systems like the flexibility dynamics of a launch vehicle.  

 Our attempt is to develop implementable, stable adaptive controllers for 

advanced STS. Two applications are selected for this purpose (i) Atmospheric 

phase autopilot design for a highly flexible launch vehicle whose stabilization is 

difficult due to high aero dynamic disturbance moments and lightly damped low 

frequency structural modes and (ii) design of autopilot for a reusable launch vehicle 

during the autonomous landing phase. The research contributions of the thesis are 

summarized as follows: 

(i) Adaptive controller design for the atmospheric phase of an 

aerodynamically unstable SLV plant  

a. Lyapunov methods are utilized to design adaptive PD/PID 

controllers in MRAC framework to replace the existing gain 

scheduled PD/PID controllers. Standard quadratic Lyapunov 

function is used for controller design. 

b. Stability of the time-varying closed-loop system, the convergence 

of the tracking error to zero and the boundedness of all the signals 

are analytically proved using Barbalat’s Lemma. 

c. Extensive simulation studies are carried out to demonstrate the 

tracking performance and robustness of the proposed controllers to 

parametric uncertainties and wind disturbances. 

(ii) Novel adaptive control schemes to ensure robustness to non-parametric 

uncertainties  

a. A continuous form of projection operator and barrier Lyapunov 

functions are used to update the parameters of the MRAC. These 

controllers use full state information for feedback. 

b. Slosh and flexibility dynamics are introduced in the existing rigid 

body SLV model and states of those dynamics are estimated using 

extended Kalman filter from available noisy measurements. 
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c. Robustness of the proposed algorithms to parametric uncertainties, 

unmodelled dynamics etc. is proved analytically and are 

demonstrated through simulations.  

d. An adaptive control scheme is developed to ensure the stability of 

the system in the presence of actuator position and slew rate 

constraints. This scheme gives theoretically justifiable and 

verifiable conditions for stable adaptive controller design and 

avoids actuator saturation by modifying control input and reference 

model dynamics.  

(iii)  The modified adaptive control laws are extended to control a MIMO 

system: re-entry vehicle dynamics during the approach and landing phase 

of an RLV.  

a. A rectangular projection operator is used to simultaneously 

constrain both the upper and lower bounds of the adapted 

parameters so that both gain margin and gain reduction margin 

constraints are met. 

b. Stability and robustness of the controllers are demonstrated through 

extensive simulation studies. 

Fig. 1.3 show the summary of the proposed work in the form of a flow diagram.  

1.7   Organisation of the Thesis 

 Modelling and control of the rigid body dynamics of an SLV is described in 

chapter 2. Various assumptions to get a simplified model which can be used for the 

controller design are described. A quadratic Lyapunov function based MRAC 

design is done on this model and the results are compared with existing classical 

control design.  

 In order to increase the robustness of this controller to non-parametric 

uncertainties and bounded disturbances, two modifications are proposed in the 

update law (adaptation mechanism). The derivation of these update laws is 

presented in chapter 3.  
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 The robustness of these laws is demonstrated for an SLV with underactuated 

dynamics like slosh and flexibility. A full state feedback structure is provided for 

the controller. Since all the states are unavailable and the measurements are noisy, 

an Extended Kalman Filter (EKF) is also proposed. The development of the SLV 

model is also described in this chapter.  

 Chapter 4 describes the modelling of the rotational dynamics of an RLV 

during the descent phase. RLV is simulated with various adaptive controllers and 

performance is compared. Conclusions and future scope of the research is given in 

chapter 5. 

 

 

Figure 1. 3  Comprehensive Flow Diagram that Explains the Proposed Work 
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Chapter 2 

Lyapunov Based MRAC for the Rigid Body Dynamics 

of a Satellite Launch Vehicle  

2.1. Introduction 

 As discussed in chapter 1, SLV dynamics is nonlinear, time-varying and 

unstable. The instability is caused by the aerodynamics in which the center of 

pressure is ahead of the center of gravity in most launch vehicles. The aerodynamic 

forces and moments depend on the angle of attack, which is the angle between the 

vehicle's longitudinal axis and the velocity vector. For an aerodynamically unstable 

vehicle, due to wind, if the angle of attack builds up, the aerodynamic moment will 

try to further increase the angle of attack. Hence the function of the controller is to 

stabilize the vehicle during the atmospheric phase and to reduce the angle of attack. 

The attitude controller has to track the guidance commands with minimum error.  

 In this chapter, the rigid body equations for an SLV are derived and is 

reduced to a simplified transfer function model. Further, this is converted to a 

second order state-space model. Adaptive PD/PID controllers are developed in 

MRAC framework using standard quadratic Lyapunov function for the time-

varying launch vehicle plant in the atmospheric phase. It is proved using Lyapunov 

stability and Barbalat’s Lemma that the time-varying system is robust to parametric 

uncertainties and all the signals are UUB. The performance of the designed 

controllers is compared with existing gain scheduled PD/PID controllers.  

2.1.1 Attitude Control System for an SLV 

 Attitude control system (also called ‘autopilot’) is the inner loop of the 

Navigation, Guidance and Control (NGC) sub-system of a launch vehicle. It 

controls the rotational dynamics (motion about the Centre of Gravity) of the launch 

vehicle.  The block diagram of the NGC system is given in Fig. 2.1. 
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Figure 2. 1 Block Diagram of NGC Subsystem 

 Navigation gives the current position, velocity and the attitude of the launch 

vehicle with respect to an inertial frame and also the body rate information. 

Navigation derives this information from accelerometer and gyroscopes mounted 

on the body of the SLV. The Guidance system controls the translational dynamics 

(motion of the CG) of the launch vehicle. It receives the position and velocity 

information with respect to an inertial frame from navigation. The objective of the 

guidance is to steer the space vehicle optimally to the designated terminal 

conditions satisfying the constraints imposed by the environment, mission and 

space vehicle subsystems. Typically, guidance is formulated as a constrained non-

linear optimal control problem with split boundary conditions. The guidance system 

computes the optimum acceleration profile to control the trajectory of the space 

vehicle. The propulsion system controls the acceleration magnitude (in the case of 

engines with throttling capability) and the acceleration direction is controlled by 

digital autopilot by changing the attitude. Hence the primary function of the attitude 

control system is to follow the guidance commands while maintaining the stability 

and integrity of the launch vehicle. It achieves this by using the vehicle's present 

attitude and body rate. This dissertation focuses on the design and development of 

attitude control systems for STS. 

2.2. Modelling of the Rigid Body Dynamics of an SLV  

The oscillations about the CG of the vehicle have a comparatively short 

period and are called short-period oscillations. The short period dynamics of the 

SLV is derived for analysis and design of the attitude control system [4][5]. A pre-

S
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requisite for this model development is a nominal reference trajectory obtained 

from a trajectory optimiser, generated after considering various constraints and 

maximising the payload. The vehicle is assumed to be moving along this nominal 

trajectory with slight deviations. Another assumption is that the time-varying 

parameters are assumed to be frozen at the linearisation point over a short period of 

time. In this way, powerful linear analysis techniques can be used for the analysis 

and design of attitude control system.   

 Short period equations are derived in the body axis system (a right-handed 

coordinate system 𝑋𝑏𝑌𝑏𝑍𝑏) whose origin is coinciding with the CG of the vehicle. 

Here 𝑋𝑏 axis is defined along the longitudinal axis of the vehicle,  𝑋𝑏𝑍𝑏 is the pitch 

plane and 𝑋𝑏𝑌𝑏 is the yaw plane.  Since the launch vehicles are axi-symmetric, 

attitude control design can be performed plane wise. Fig. 2.2 shows the geometry 

of the SLV in pitch plane. Here 𝑍𝑏 is the lateral axis. In this plane, there are two 

translational Degrees of freedom (DoF). 𝑌𝑏 axis points towards us, out of the plane 

of paper. Rotation about 𝑌𝑏 axis is the third DoF. Rotation is achieved by deflecting 

the thrust vector 𝑇𝑐 by an angle 𝛿. Since the translational motion along the 𝑋𝑏 axis 

will not be much affected by the control deflection 𝛿, this can be neglected.  

 Hence there are only one translational DoF and one rotational DoF. This 

produces two rigid body equations (i) force equation and (ii) moment equation. 

Force equation defines the relation between lateral acceleration (�̈�) / drift and the 

forces acting and moment equation gives the relation between angular acceleration 

(�̈�) and moments acting on the vehicle. These relationships are defined using 

Newtons laws which are applied on an inertial frame and then translated to body 

frame. Various forces and moments acting on the vehicle are aerodynamic forces 

(with modification by the bent shape of the vehicle due to flexibility) and thrust 

(again modified by the bent shape of the vehicle). For the present study, effects due 

to flexibility are not considered and vehicle is assumed as a pure rigid body. 
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Figure 2. 2  Short Period Model of the SLV in Pitch Plane 

Referring to Fig. 2.2, we can write the force equation as  

�̈� = −
𝑇𝑇 − 𝐷

𝑚
𝜃 −

𝐿𝛼
𝑚
𝛼 +

𝑇𝑐
𝑚
𝛿 (2.1) 

where, total thrust  𝑇𝑇 = 𝑇𝑐 + 𝑇𝑠, is the sum of control thrust (𝑇𝑐) and the un-

gimballed thrust (𝑇𝑠). 𝐷 is the aerodynamic drag force which will be acting opposite 

to the direction of velocity. Mass of the vehicle is defined by 𝑚. 𝜃 is the attitude 

angle (angle at which body frame to be rotated to align with inertial frame) and 𝛼 

is the angle of attack of the vehicle (angle between velocity vector and longitudinal 

axis). 𝐿𝛼 is the aerodynamic load per unit angle of attack acting at the center of 

pressure location. 𝛿 is the control deflection angle. It is assumed that all these angles 

are small. It is also assumed that the variation of the flight path angle 𝛾 is negligible 

compared to 𝛼 and 𝜃. The force equation can be re-written in terms of the drift angle 

(
�̇�

V
) as 

�̈�

V
= −

(𝑇𝑇 − 𝐷)

𝑚V
𝜃 −

𝐿𝛼
𝑚V

𝛼 +
𝑇𝑐
𝑚V

𝛿 (2.2) 

where, 𝑧 is the inertial Z axis drift position of the center of mass and  �̇� is the inertial 

drift velocity. Moment equation can be written as 

�̈� = 𝜇𝛼𝛼 + 𝜇𝑐𝛿 (2.3) 
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where,  

𝜇𝛼 =
𝐿𝛼𝑙𝛼

𝐼
, 𝜇𝑐 =

𝑇𝑐𝑙𝑐

𝐼
 , 𝑙𝛼 (aerodynamic moment arm) is the distance from center of 

gravity of the vehicle to the center of pressure location and 𝑙𝑐 (control moment arm) 

is the distance from the center of gravity to the engine gimbal point. 𝐼 is the moment 

of inertia. The effective angle of attack (𝛼) can be written as 

𝛼 = 𝜃 +
�̇�

V
+ 𝛼𝑤 (2.4) 

where,  𝛼𝑤 is the wind induced angle of attack which can be defined as 𝛼𝑤 =
−𝑉𝑤

𝑉
,  

𝑉𝑤 is the velocity of the wind in the lateral direction and 𝑉 is the total velocity of 

the vehicle. During the control design phase, wind disturbances are not considered. 

Hence the angle of attack can be written as 𝛼 = 𝜃 +
�̇�

V
 . For a launch vehicle, the 

total velocity of the vehicle (𝑉) is very much higher than the lateral drift velocity. 

Hence, in order to get a simplified transfer function model for the rigid body of the 

SLV, the term 
�̇�

V
  is neglected. Hence it is assumed that 𝛼 = 𝜃. Substituting this in 

the moment equation (2.3) we get   

�̈� = 𝜇𝛼𝜃 + 𝜇𝑐𝛿 (2.5) 

Taking the Laplace transform on both sides and neglecting the initial conditions 

𝑠2. 𝜃(𝑠) = 𝜇𝛼. 𝜃(𝑠) + 𝜇𝑐. 𝛿(𝑠) (2.6) 

where, 𝑠 is the Laplace variable. The transfer function can be written as 

𝜃(𝑠)

𝛿(𝑠)
=

𝜇𝑐
𝑠2 − 𝜇𝛼

 (2.7) 

Remark 1: This simplified transfer function has two roots 𝑠 = ±√𝜇𝛼 . If 𝜇𝛼 is 

positive, then this transfer function will have one pole on the right half side of the 

complex plane which indicates the instability of the plant. Most of the SLV’s have 

positive 𝜇𝛼 and are aerodynamically unstable.  

Remark 2: Parameters of the plant (𝜇𝛼 and 𝜇𝑐) vary with respect to time. These are 

derived from the following time dependant parameters. Thrust of the vehicle varies 

with time; Mass and inertial properties (CG location and the moment of inertia) of 

the vehicle are continuously varying as the propellant is getting depleted; 
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Aerodynamic force is dependent on the aerodynamic characteristics of the vehicle 

and the dynamic pressure which in turn depends on the velocity and altitude of the 

vehicle. 

The state-space representation of the simplified transfer function model of the rigid 

body dynamics of the SLV can be written as  

𝑥�̇� = 𝐴𝑝𝑥𝑝 + 𝐵𝑝𝑢 

𝑦𝑝 = 𝐶𝑝𝑥𝑝 + 𝐷𝑝𝑢 
(2.8) 

where, 𝐴𝑝 = [
0 1
𝜇𝛼 0

], 𝐵𝑝 = (
0
𝜇𝑐
), 𝐶𝑝 = [

1 0
0 1

], 𝐷𝑝 = (
0
0
) 

2.3. Attitude Controller Design for the Simplified 

SLV Model  

 The function of the attitude controller is to track the guidance command 

stabilising the vehicle suppressing various high frequency oscillations due to other 

dynamics. The launch vehicle achieves this by deflecting the thrust vector or using 

additional thrusters that provide control moments to rotate the vehicle so that the 

vehicle follows the desired trajectory commanded by the guidance system. Since 

the plant is time-varying, time-varying controller gains are required. 

2.3.1 Gain Scheduled Control Law 

During the atmospheric phase, the load acting on the vehicle is mostly due 

to the aerodynamic and control forces. The load should be less than the limit 

specified by the structural designers to maintain structural integrity. By reducing 

the angle of attack, the load acting on the vehicle will be minimized (aerodynamic 

load is a function of the dynamic pressure and angle of attack). In general, ‘load 

relief’ is achieved by two methods. The first is a passive method in which the 

attitude steering angles will be ‘biased’ to the wind measured before launch. In this 

case, the attitude controller (autopilot) has to track the steering commands closely 
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to avoid the angle of attack build-up. Here the structure of the attitude controller is 

of the form   

𝛿 =𝐾𝐴∗ (𝐾𝜃(𝑢𝑐 − 𝜃) −𝐾𝑅∗ �̇�) (2.9) 

where, 𝑢𝑐 is the guidance command to be followed, 𝐾𝐴  is the forward path gain, 

𝐾𝑅 is the rate feedback gain, 𝐾𝜃 is the attitude feedback path gain which is equal to 

1 for this control law. This control law uses two feedbacks (𝜃 and �̇�). Forward path 

gain decides the bandwidth of the system and rate path gain is used to stabilise the 

plant. These gains are scheduled with respect to time and stored onboard. 

In order to reduce the tracking error and counteract the slowly varying 

disturbances, an integrator also can be included in the control law. 

𝛿 =𝐾𝐴∗ (𝐾𝜃(𝑢𝑐 − 𝜃) −𝐾𝑅∗ �̇� +𝐾𝐼∗ ∫(𝑢𝑐 − 𝜃)) (2.10) 

where, 𝐾𝐼 is the integrator gain which is also a scheduled parameter. 

 The second method to achieve load relief is the active load relief scheme in 

which the autopilot will use lateral acceleration feedback, body rate, and attitude 

angle feedback. There are two active load relief control concepts introduced by 

Hoelkner [58] in 1959. They are “drift-minimum” and “load-minimum” control 

principles. These laws help to reduce the angle of attack and load. Control law will 

be in the form 

𝛿 = 𝐾𝐴(−𝐾𝑅�̇� + 𝐾𝜃(𝑢𝑐 − 𝜃) − 𝐾𝛼𝛼) (2.11) 

where,  𝜃 attitude angle, �̇� attitude rate and 𝛼 is the angle of attack. 𝐾𝛼 is the 𝛼 

feedback gain scheduled with respect to time. Here the tracking performance is 

compromised to get reduction in load and the attitude gain 𝐾𝜃 can be less than one. 

For an aerodynamically unstable vehicle, to get load relief, 𝛼 feedback is required. 

For pure attitude tracking control law, 𝛼 feedback is not applied and  𝐾𝜃=1 gives 

good tracking capability. Load relief control law will not be designed in this work. 

The launch vehicle considered for this study uses only attitude and rate feedback 

and uses Day-of-the launch wind biased steering for load reduction. 
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2.3.2. Proposed Adaptive Control Design 

 The current practice in the SLV autopilot design is to linearise the plant 

about the operating point, design the controller for each operating point and then 

schedule the control gains with respect to an auxiliary variable that correlate well 

with the changes in the plant parameters [7][59].  In this section, two Lyapunov 

based adaptive controllers are designed in MRAC framework to replace the existing 

gain-scheduled controller. 

2.3.2.1 Adaptive PD Controller Design 

In this section, a Lyapunov based MRAC is developed for the simplified 

SLV plant. A standard quadratic Lyapunov function is used for the design. Consider 

the plant defined in (2.8) and is re-written as 

�̇� = 𝐴𝑥 + 𝐵𝑢 (2.12) 

where, 𝑥 ∈ ℛ2,  𝐴 ∈ ℛ2×2, 𝐵 ∈ ℛ2×1 and (𝐴, 𝐵) is controllable. It is a second order 

model with full state measurements available for feedback. A second order model 

whose characteristics are defined based on the desired characteristics of the closed 

loop system is chosen as the reference model. 

�̇�𝑚 = 𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑢𝑐 

𝑦𝑚 = 𝐶𝑚𝑥𝑚 + 𝐷𝑚𝑢𝑐 
(2.13) 

where, 𝑥𝑚 is the state of the reference model, 𝐴𝑚 is a Hurwitz matrix and 𝑢𝑐 is the 

bounded reference signal to be tracked. The state trajectory of the plant 𝑥(𝑡) should 

follow the reference state trajectory 𝑥𝑚(𝑡). The closed loop plant should behave 

similar to a second order dynamics with 3.5 rad/s bandwidth and 0.7 damping. 

Hence the natural frequency 𝜔𝑚 is equal to 3.5 rad/s and 𝜁𝑚 is equal to 0.7. Hence 

𝐴𝑚, 𝐵𝑚, 𝐶𝑚 and 𝐷𝑚 can be defined as 𝐴𝑚 = (
0 1

−𝜔𝑚
2 −2𝜁𝑚𝜔𝑚

), 𝐵𝑚 = [
0
𝜔𝑚

2], 

𝐶𝑚 = (
1 0
0 1

) and 𝐷𝑚 = [
0
0
]. 
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If the plant matrices  𝐴 and 𝐵 are known accurately, the following control law can 

be defined, which helps in tracking the reference signal and stabilising the plant: 

𝑢 = −𝐾∗𝑇𝑥 + 𝐿∗𝑢𝑐 (2.14) 

where, 𝐾∗ is the state feedback gain matrix and 𝐿∗ is the feedforward gain.  

Remark 3: Since a second order SLV plant is considered here with states 𝜃 and �̇�, 

this control law can be written in the form of a PD control law 𝑢 = −𝐾∗(1). 𝜃 −

𝐾∗(2). �̇� + 𝐿∗𝑢𝑐 = 𝐿
∗(𝑢𝑐 −

𝐾∗(1)

𝐿∗
𝜃 −

𝐾∗(2)

𝐿∗
�̇�). 

The closed loop system can be written as 

�̇� = (𝐴 − 𝐵𝐾∗𝑇)𝑥 + 𝐵𝐿∗𝑢𝑐  (2.15) 

Applying the model matching condition 

𝐴 − 𝐵𝐾∗𝑇 = 𝐴𝑚, B𝐿
∗ = 𝐵𝑚 (2.16) 

If 𝐾∗ and 𝐿∗ are chosen to satisfy the matching condition, then the transfer matrix 

of the closed loop system is the same as that of the reference model and 𝑥(𝑡) →

𝑥𝑚(𝑡) exponentially for any bounded reference input. But sometimes 𝐾∗ and 𝐿∗ 

may not exist, indicating that the control structure needs to be modified to satisfy 

the matching conditions. Since the plant matrix 𝐴 and 𝐵 are known with 

uncertainty, the control law in (2.14) cannot be implemented. Hence the estimates 

of 𝐾∗ and 𝐿∗  is used to implement the control law. These estimates, defined as 𝐾(𝑡) 

and 𝐿(𝑡) has to be generated by an adaptation law. The adaptation law is derived 

using a quadratic Lyapunov function defined in terms of the tracking error between 

the trajectories (𝑒 = 𝑥(𝑡) − 𝑥𝑚(𝑡)) and the deviations of the gains from the ideal 

gains which satisfy the matching conditions (�̃� ≜ 𝐾 − 𝐾∗,  �̃� ≜ 𝐿 − 𝐿∗). The 

tracking error dynamics can be obtained from 

�̇� = �̇� − �̇�𝑚 (2.17) 

Let’s add and subtract the desired term −𝐵(𝐾∗𝑇𝑥 − 𝐿∗𝑢𝑐) from the plant given in 

(2.12). 
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�̇� = 𝐴𝑥 + 𝐵𝑢 − 𝐵(𝐾∗𝑇𝑥 − 𝐿∗𝑢𝑐) + 𝐵(𝐾
∗𝑇𝑥 − 𝐿∗𝑢𝑐) 

 = (𝐴 − 𝐵𝐾∗𝑇)𝑥 + 𝐵𝐿∗𝑢𝑐 + 𝐵(𝑢 + 𝐾
∗𝑇𝑥 − 𝐿∗𝑢𝑐) 

= 𝐴𝑚𝑥 + 𝐵𝑚𝑢𝑐 + 𝐵(−𝐾
𝑇𝑥 + 𝐿𝑢𝑐 + 𝐾

∗𝑇𝑥 − 𝐿∗𝑢𝑐) 

(2.18) 

Subtracting �̇�𝑚 from (2.18) the error dynamics is obtained 

�̇� = 𝐴𝑚𝑒 + 𝐵(−�̃�
𝑇𝑥 + �̃�𝑢𝑐)  (2.19) 

A quadratic Lyapunov function in terms of 𝑒, �̃� and �̃� is defined as follows: 

𝑉(𝑒, �̃� , �̃�) = 𝑒𝑇𝑃𝑒 + 𝑡𝑟(�̃�𝑇𝛤−1𝐾 + �̃�𝛤−1�̃�) (2.20) 

where, 𝑃 satisfies the algebraic Lyapunov equation 

𝑃𝐴𝑚 + 𝐴𝑚
𝑇𝑃 = −𝑄,  𝑄 = 𝑄𝑇 > 0 (2.21) 

Control parameter update law can be found out from the derivative of the Lyapunov 

function in such a way that this ensures the negative definiteness of the derivative 

of the Lyapunov function. Derivative of the Lyapunov function evaluated along the 

trajectories of (2.19) is 

�̇�(𝑒, �̃� , �̃�) = �̇�𝑇𝑃𝑒 + 𝑒𝑇𝑃�̇� + 𝑡𝑟𝑎𝑐𝑒(�̇̃�𝑇Γ−1�̃� + �̃�𝑇Γ−1�̇̃� +

�̇̃�Γ−1�̃� + �̃�Γ−1�̇̃�)  

 = (𝐴𝑚𝑒 + 𝐵(−�̃�
𝑇𝑥 + �̃�𝑢𝑐))

𝑇𝑃𝑒

+ 𝑒𝑇𝑃 (𝐴𝑚𝑒 + 𝐵(−�̃�
𝑇𝑥 + �̃�𝑢𝑐))

+ 2 𝑡𝑟𝑎𝑐𝑒(�̃�𝑇Γ−1�̇̃� + �̃�Γ−1�̇̃�) 

= 𝑒𝑇(𝐴𝑚
𝑇𝑃 + 𝑃𝐴𝑚)𝑒 + (−�̃�

𝑇𝑥 + �̃�𝑢𝑐)
𝑇𝐵𝑇𝑃𝑒

+ 𝑒𝑇𝑃𝐵(−�̃�𝑇𝑥 + �̃�𝑢𝑐) + 2 𝑡𝑟𝑎𝑐𝑒(�̃�
𝑇Γ−1�̇̃�

+ �̃�Γ−1�̇̃�) 

= 𝑒𝑇(−𝑄)𝑒 + 2𝑒𝑇𝑃𝐵(−�̃�𝑇𝑥) + 2𝑡𝑟𝑎𝑐𝑒 (�̃�𝑇𝛤−1�̇̃�)

+ 2𝑒𝑇𝑃𝐵�̃�𝑢𝑐 + 2𝑡𝑟𝑎𝑐𝑒(�̃�𝛤
−1�̇̃�) 

(2.22) 
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Using the vector trace identity, for any two co-dimensional vectors 𝑎 and 𝑏 , the 

trace identity relation is 𝑎𝑇𝑏 = 𝑡𝑟(𝑏𝑎𝑇), 

𝑒𝑇𝑃𝐵⏟  
𝑎𝑇

 (−�̃�𝑇𝑥)⏟    
𝑏

= 𝑡𝑟𝑎𝑐𝑒(((−�̃�𝑇𝑥)⏟    
𝑏

 𝑒𝑇𝑃𝐵⏟  
𝑎𝑇

) 

 𝑒𝑇𝑃𝐵⏟  
𝑎𝑇

 (�̃�𝑢𝑐)⏟  
𝑏

= 𝑡𝑟𝑎𝑐𝑒((�̃�𝑢𝑐)⏟  
𝑏

 𝑒𝑇𝑃𝐵⏟  
𝑎𝑇

) 
(2.23) 

Substituting (2.23) in (2.22) we get 

�̇�(𝑒, �̃� , �̃�) = 𝑒𝑇(−𝑄)𝑒 + 2𝑡𝑟𝑎𝑐𝑒 (−�̃�𝑇𝑥𝑒𝑇𝑃𝐵 + �̃�𝑇𝛤−1�̇̃�)

+ 2𝑡𝑟𝑎𝑐𝑒 (�̃�𝑢𝑐𝑒
𝑇𝑃𝐵 + �̃�𝛤−1�̇̃�) 

(2.24) 

In order to make �̇�(𝑒, �̃� , �̃�) = 𝑒𝑇(−𝑄)𝑒 (negative semi-definite), all the terms 

inside trace have to be made zero. 

−�̃�𝑇𝑥𝑒𝑇𝑃𝐵 + �̃�𝑇𝛤−1�̇̃� = 0 (2.25) 

�̃�𝑇𝛤−1�̇̃� = �̃�𝑇𝑥𝑒𝑇𝑃𝐵 (2.26) 

Pre-multiplying both sides of (2.26) by 𝛤�̃�𝑇
−1

, we get 

�̇̃� = 𝛤𝑥𝑒𝑇𝑃𝐵 (2.27) 

Since  �̇̃� = �̇� − 𝐾∗̇ = �̇�  (𝐾∗̇ = 0), we get the update law for K 

�̇� = 𝛤𝑥𝑒𝑇𝑃𝐵 (2.28) 

Similarly 

�̃�𝑢𝑐𝑒
𝑇𝑃𝐵 + �̃�𝛤−1�̇̃� = 0 (2.29) 

Pre-multiplying both terms of (2.29) by (𝛤�̃�−1), we get 

�̇̃� = �̇� = −𝛤𝑢𝑐𝑒
𝑇𝑃𝐵 (2.30) 

Equations (2.28) and (2.30) are the controller gain update laws which ensure the 

negative semi-definiteness of the derivative of Lyapunov function. The resulting 
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closed loop system is a nonautonomous system of the form �̇� = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) =

𝑥0, 𝑓(𝑡, 0) = 0. In order to prove that the tracking error tends to zero and the 

adapted controller parameters 𝐾(𝑡) remain bounded in time, the same Lyapunov 

function can be used and then Barbalat’s Lemma can be applied. Derivative of the 

Lyapunov function is  

�̇�(𝑒, �̃�) = �̇�𝑇𝑃𝑒 + 𝑒𝑇𝑃�̇� + 2𝑡𝑟𝑎𝑐𝑒 (�̃�𝑇𝛤−1�̇̃�)

+ 2(−�̃�𝑥))𝑇𝐵𝑚
𝑇𝑃𝑒 

= −𝑒𝑇𝑄𝑒 ≤ 0 

(2.31) 

The inequality presented here infers global stability and uniform boundedness 

of 𝑒(𝑡) , 𝐾(𝑡) and 𝐿(𝑡). This in turn ensures the boundedness of �̇�(𝑡) and the second 

time derivative of the Lyapunov function �̈�(𝑒, �̃�, �̃�) = −2𝑒𝑇𝑄�̇�  . Therefore, 

�̇�(𝑒, �̃�, �̃�) is continuous in 𝑡. Since 𝑉(𝑒, �̃� , �̃�) ≥ 0 and �̇�(𝑒, �̃�, �̃�)  ≤ 0 , the 

Lyapunov function is having a limit. By applying the Barbalat’s Lemma : If a scalar 

function 𝑓: 𝑅 → 𝑅 is twice continuously differentiable on [0,∞) and has a finite 

limit, lim
𝑡→∞

𝑓(𝑡) < ∞, and its second derivative is bounded, then lim
𝑡→∞

𝑓̇ (𝑡) = 0, 

lim
𝑡→∞

[𝑒𝑇(𝑡)𝑃𝑒(𝑡)] = lim
𝑡→∞

[�̇�(𝑡), 𝐾(𝑡), 𝐿(𝑡)] = 0, and consequently lim
𝑡→∞

‖𝑒(𝑡)‖ =

0; . This ensures global convergence of the tracking error to the origin and the other 

parameters remain bounded.  

2.3.2.2 Adaptive PID Controller Design 

 In order to improve the tracking performance and disturbance rejection 

capability to steady or slowly varying disturbances, an integrator is added to the 

error path. Here also control design is attempted with full state feedback. The 

integrator state (𝑥𝐼) is augmented to the original plant defined in (2.12). Integrator 

dynamics can be written as 

𝑥�̇� = 𝑥(1) − 𝑢𝑐 (2.32) 

Control structure is 

𝑢 = 𝐾1
𝑇𝑥 (2.33) 
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Here feedforward control is not required as integrator is added in the system. The 

augmented plant with integral state is 

[
𝑥
𝑥�̇�

̇
] = [

𝐴      0
1        0

] [
𝑥
𝑥𝐼
] + [

𝐵
0
] 𝑢 + [

0
−1
] 𝑢𝑐 (2.34) 

The control law with integrator can be written as  

𝑢 = 𝐾1
𝑇𝑥𝑝 + 𝐾𝐼𝑥𝐼 (2.35) 

Here also a standard quadratic Lyapunov function in terms of tracking error and 

gains is chosen. 

𝑉(𝑒, �̃� ) = 𝑒𝑇𝑃𝑒 + 𝑡𝑟𝑎𝑐𝑒(�̃�𝑇𝛤−1�̃�) (2.36) 

Following the same procedure described in sub-section 2.3.2.1, the control 

parameter update law can be obtained as 

[
𝐾
𝐾𝐼̇
̇
] = −𝛤 [

𝑥
𝑥𝐼
] 𝑒𝑇𝑃𝐵 (2.37) 

The detailed steps to obtain the controller parameter update law is given in 

Appendix-A.5. This control law ensures global convergence of tracking error to the 

origin and all other parameters remain bounded. 

2.4. Results and Discussions  

 A simplified rigid body model given in (2.7) is used for the simulation 

studies. The first 100 s of the trajectory of a highly unstable SLV is simulated. The 

plant parameters are varying with respect to time. The variation of plant parameters 

during the atmospheric phase of flight is given in Fig. 2.3. The control moment 

coefficient 𝜇𝑐 appearing in the numerator of (2.7) is dependent on the thrust 

variations and the inertia variations of the SLV.  

 The parameter 𝜇𝛼 is the aerodynamic disturbance moment coefficient. This 

represents the aerodynamic stability/instability of the SLV. Positive 𝜇𝛼 shows the 
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aerodynamic instability. The parameter 𝜇𝛼 depends on the aerodynamic 

characteristics of the vehicle, inertial properties and also on the dynamic pressure 

𝑄 =
1

2
𝜌𝑉2 where, 𝜌 is the atmospheric density which depends on the altitude and 

temperature and 𝑉 is the velocity of the vehicle. Peaking of  𝜇𝛼 occurs from 45 s to 

65 s where the dynamic pressure is high. This is called ‘high-Q’ region. For all 

aerospace vehicles, the aerodynamic characteristics are highly uncertain and vary 

significantly around transonic Mach numbers (0.8 to 1.2). For the SLV considered 

in this study, the transonic and high Q regimes coincided around 45 s. A jump in   

𝜇𝛼 can be seen from 35 s to 45 s which is the transonic region. 𝜇𝑐 also comes down 

from 25 s to 50 s. This is because of the reduction in thrust to reduce the dynamic 

pressure. Variation of the control parameters is shown in Fig. 2.4 and aero 

parameters are shown in Fig. 2.5.   

 

 

Figure 2. 3  Plant Characteristics 

 The plant is simulated for a duration of 100 s with Gaussian white noise 

introduced in the rate sensor output for full scale. During the design of the 

controllers, actuator dynamics is not considered. But a second order actuator model 

with a deflection limit of 8 deg, slew rate limit of 10 deg/s and angular acceleration 

limit of 1000 deg/s^2 is simulated. 
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Figure 2. 4  Variation of the Control Parameters for the Rigid Body Model 

The purpose of the feedback control is to stabilise the plant dynamics and make 

it follow a desired attitude command during the atmospheric phase generated by the 

open loop guidance system. Four different types of controllers are designed in 

Section 2.3. They are  

(i) Gain Scheduled PD controller 

(ii) Gain Scheduled PID controller 

(iii) Adaptive PD controller and  

(iv) Adaptive PID controller 

The plant is simulated with these controllers in loop and their performances are 

compared in terms of stability, robustness, tracking performance and disturbance 

rejection.  
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Figure 2. 5  Variation of the Aero Parameters for the Rigid Body Model 

 

 Two different types of reference signals are given to the plant to 

demonstrate the tracking capability (i) a ramp input and (ii) a typical guidance 

command. In order to demonstrate the robustness, plant parameters are perturbed 

to the specified limit and the performance of the controllers are assessed. The 

disturbance rejection capability of the controllers is demonstrated by injecting a 

synthetic wind profile with shear and gust. Simulation set up is shown in Fig. 2.6. 

2.4.1 Nominal Plant with a Ramp Command  

 Tracking performance of different controllers are tested by inputting a ramp 

command to the closed loop plant. During the atmospheric phase, the steering 

commands are usually biased to the wind. In the presence of a wind shear, a ramp 

command is likely to come for a short duration. The tracking performance of the 

controllers and corresponding tracking error for a ramp command are shown in Fig. 

2.7 and Fig. 2.8. 
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Figure 2. 6  Simulation Setup 

 

 

Figure 2. 7  Tracking Performance of the Controllers for a Ramp Command 
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Figure 2. 8  Tracking Error of the Controllers for a Ramp Command 

 

 

Figure 2. 9 Initial Capture of Tracking Errors by the Controllers for a Ramp 

Command 
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From Fig. 2.8, it can be seen that the gain-scheduled PD controller has the 

maximum tracking error (~ 2deg) during the high-Q regime. Both gain-scheduled 

PID and adaptive PD have almost same performance however with lesser tracking 

error for adaptive PD. The adaptive PID controller produces better tracking 

performance (less error) than adaptive PD and gain scheduled PD/PID controllers. 

However, it is noted from Fig. 2.9 that the time taken to capture the initial conditions 

is slightly more in the case of adaptive PID controller, which improves the tracking 

performance as time progresses. During transonic regime (from 35 s to 45 s) where 

the aerodynamic parameters are changing drastically (refer Fig. 2.5), adaptive PID 

gives near zero tracking error compared to other controllers. 

 Gaussian white noise is added at the sensor output and the noisy rate is used 

for feedback. Fig. 2.10 shows the noise used to perform the simulations. Fig. 2.11 

shows the attitude rate of the SLV after the sensor. It is observed that adaptive PD 

controller is showing less noise suppression. Initial rate during the capture is also 

high for adaptive PD. This can be reduced by reducing the bandwidth of the 

reference model used in the adaptive PD design. 

 

 

Figure 2. 10  Noise Generated for Simulation Study 
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Figure 2. 11  Attitude Rate of the SLV while Tracking the Ramp Command 

 

 

 

Figure 2. 12  Control Deflections for Ramp Tracking 
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Fig. 2.12 shows the control deflections of various controllers for ramp command 

tracking. Since the initial condition capture is slow for adaptive PID, initial control 

demand is less. Adaptive PD controller demands maximum control during capture 

followed by gain scheduled controllers. During high dynamic pressure regime, gain 

scheduled PD controller demands full gimbal deflection while adaptive PID 

demands the least deflection. Gain scheduled PD saturates for a short duration 

during high Q. In general, adaptive controllers are noisier compared to gain 

scheduled controllers. 

2.4.2 Nominal Plant with a Typical Guidance Command Input 

 During the atmospheric phase of flight, most important function of the 

control system is to reduce the aerodynamic load acting on the vehicle. As explained 

in sub-section 2.3.1, there are two types of load relief systems: Passive (wind biased 

steering) and active load relief (using additional feedback which senses the angle 

of attack build up or lateral acceleration due to aerodynamic forces). This SLV uses 

‘Day-of-the-launch’ wind biased steering to achieve load reduction. Here, open 

loop guidance commands are generated which are biased to the wind measured prior 

to launch on the same day. Depending on the measured wind, the steering can give 

aggressive commands which may excite high frequency dynamics. In this section, 

a typical open loop guidance command is applied to the closed loop plant and results 

are compared for various controllers. 

Fig. 2.13 shows the attitude tracking performance of various controllers. 

Initially, the guidance commands are zero because the vehicle has to vertically go 

up till it clears the launch tower. Around 10 s, the gravity turn maneuver starts to 

reduce the angle of attack. Vehicle experiences a step like command at this point. 

During the maneuvers, the adaptive PID controller responds slowly, but improves 

the tracking in increasing timescale and provides a near zero tracking error during 

the steady phase. 
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Figure 2. 13  Attitude Tracking for a Typical Guidance Command 

 

 

Figure 2. 14  Tracking Errors of Different Controllers for a Typical Guidance 

Command 
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Fig. 2.14 shows the tracking error. It can be seen that, during the transients, 

adaptive PID shows slightly higher tracking error compared to the other three 

controllers however, steady state tracking error is near zero. Fig. 2.15 shows the 

rate of the SLV. As in earlier simulations with ramp input, rates are noisy for 

adaptive controllers. Control demands are shown in Fig. 2.16. Adaptive controller 

outputs are noisy compared to gain scheduled controllers. 

 

 

Figure 2. 15  Attitude Rates for a Typical Guidance Command Tracking 

A comparison of the performances of different controllers for a typical guidance 

command is consolidated and given in Table 2.1. 
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Figure 2. 16  Control Responses of Different Controllers for a Typical Guidance 

Command Tracking 

 

Table 2. 1  Comparison of the Performance of Different Control Schemes with 

Typical Guidance Commands for Nominal Plant 

Scheme Maximum 

Control Demand 

(deg) 

Control effort 

(deg)  

Integral 

Absolute Error 

(degrees) 

Gain Scheduled 

PD Controller 

1.0 deg during 

high disturbance 

17.2571 1.1811 

Gain Scheduled 

PID controller  

0.8733 deg during 

high disturbance 

13.9822 0.1950 

 

Adaptive PD 

Controller 

1.2 deg during 

high disturbance 

15.6068 0.2134 

Adaptive PID 

Controller 

1.15 deg during 

high disturbance 

13.5636 0.0562 

 Gain scheduled PD control scheme gives the maximum tracking error, 

Integral of absolute error and control effort. Performance of gain scheduled PID 

and adaptive PD are much closer, and adaptive PID gives the best tracking 

performance with the least control effort. 
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2.4.3 Perturbation Studies 

Aerodynamic parameters are highly uncertain during the transonic regime of flight. 

There will be uncertainties in the launch vehicle's thrust values and inertial 

properties. Hence to demonstrate the robustness of the control schemes, plant is 

simulated with perturbed parameters. For all launch vehicles, bounds on the 

perturbations will be available and the controller has to stabilize the vehicle and 

perform satisfactorily within these bounds. The bounds used for this SLV are ±10% 

in thrust and 15% in mass and inertia. Aerodynamic coefficient perturbations vary 

with Mach number.  Variation of perturbed 𝜇𝑐 and 𝜇𝛼 is shown in Fig. 2.17. There 

are sudden variations in the aerodynamic parameters between 40 to 50 s when the 

vehicle is in the transonic regime. These jumps will be reflected in the body rates 

and enter the control loop through feedback. The control commands also will 

respond to these jumps. 

 
Figure 2. 17  Perturbed Plant Parameters 

 Fig. 2.18 shows the tracking performance of various controllers under 

parameter perturbation. Adaptive PID controller follows the open loop guidance 

command with very little tracking error as shown in Fig. 2.19. The proposed 

adaptive PID controller offers a near nominal tracking performance with a slight 
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increase in the control deflections, as shown in Fig. 2.20. Tracking performance of 

gain scheduled PID and adaptive PD controllers are very close. As in the nominal 

case, adaptive control commands are noisy compared to gain scheduled controllers. 

Hence proper noise filtering should be provided for the output signals before using 

them in adaptive control. 

 

Figure 2. 18  Tracking Performance of Controllers for a Perturbed Plant 

 

Figure 2. 19  Tracking Error for a Perturbed Plant 
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Figure 2. 20  Control Responses of Different Controllers for a Perturbed Plant 

Table 2.2 compares performance in terms of tracking error and control demand for 

different controllers with a typical guidance command for the plant under parameter 

perturbations. It is observed that the adaptive PID control works with near zero 

tracking error and requires slightly increased control demand for the perturbed 

system compared to the nominal system discussed in section 2.4.2. 

Table 2. 2  Comparison of the Performance of Different Control Schemes with 

Typical Guidance Commands under Plant Parameter Perturbation 

Scheme Maximum Control Demand 

(deg) 

Control effort 

(deg)  

Integral 

Absolute 

Error 

(degrees) 

Gain 

Scheduled PD 

Controller 

0.4 deg for initial capture 

1.404 deg during high 

disturbance 

41.93 2.8574 

Gain 

Scheduled 

PID controller 

0.4 deg for initial capture 

1.0722 deg during high 

disturbance 

23.31 0.2783 

Adaptive PD 

Controller 

0.46 deg for initial capture 

1.528 deg during high 

disturbance 

30.89 0.3589 

Adaptive PID 

Controller 

1.24 deg for initial capture 

1.33 deg during high 

disturbance 

23.7558 0.0558 
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2.4.4 Disturbance Rejection Studies 

 During the atmospheric phase of flight, a launch vehicle experiences severe 

disturbances such as wind shear and gust. The rigid body model given in (2.2) to 

(2.4) is simulated to study SLV's wind disturbance rejection capability. Controllers 

are designed using the simplified transfer function model. A synthetic wind profile 

with wind shears and a gust is injected into the closed-loop plant keeping the 

command zero. During the atmospheric phase of flight, the angle of attack (AoA) 

should be kept minimum to reduce the aerodynamic loads acting on the vehicle, 

which is a function of the dynamic pressure and the angle of attack.  

Fig. 2.21 gives the AoA build up due to the injected wind. All controllers 

show the same AoA build up however adaptive PID giving slightly lower AoA with 

reduced tracking error. For this vehicle AoA is smaller than the injected wind. The 

adaptive PID controller's initial response is somewhat higher than other controllers. 

Fig. 2.22 gives the attitude error build-up due to injected wind. It can be seen that, 

adaptive PID gives the slightest error build-up compared to the other three 

controllers. 

 

Figure 2. 21  Angle of Attack Build up due to Synthetic Wind Disturbance 
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Figure 2. 22  Attitude Error Build up due to Injected Wind   

The wind disturbance rejection capability of different controllers is shown in Table 

2.3. It is evident that adaptive PID controller provides the least angle of attack build-

up and almost zero integral of absolute error compared with gain scheduled 

controller and adaptive PD controller. However, it requires more control demand 

during initial capture. 

Table 2. 3  Comparison of the Wind Disturbance Rejection of Different 

Control Schemes 

Scheme Angle of 

Attack 

(deg) 

Tracking 

Error 

(deg) 

Maximum Control 

Demand (deg) 

Integral 

Absolute Error 

(deg) 

Gain 

Scheduled 

PD 

Controller 

4.663 0.6103 4.04 deg for initial capture  

2.36 deg during wind gust 

2.2879 

Gain 

Scheduled 

PID 

controller  

4.631 0.4802 4.066 deg for initial 

capture 

2.34 deg during wind gust 

1.0804 

Adaptive 

PD 

Controller 

4.602 0.3804 5.82 deg for initial capture 

2.20 deg during wind gust 

0.8710 

Adaptive 

PID 

Controller 

4.49 0.078 8 deg for initial capture 

2.142 deg during wind 

gust 

0.1427 
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2.5. Summary 

 Lyapunov based Adaptive PD/PID controllers are developed in MRAC 

framework for a highly unstable SLV plant. Only rigid body dynamics of the plant 

is considered for this work. It is demonstrated that adaptive controllers can replace 

existing gain scheduled controllers that use classical control design techniques.  

 A rigid body model of the SLV plant is developed and then a simplified 

transfer function model is derived by making certain assumptions. A gain-

scheduled PD controller and a PID controller is developed for the atmospheric 

phase of an aerodynamically unstable plant. The function of the controller is to 

stabilise the plant and follow a guidance command. These controllers are replaced 

by adaptive PD and PID controllers. Since the plant and controller parameters are 

changing with respect to time, the stability of the closed-loop system is to be 

ensured. To achieve stabilising adaptive controllers, Lyapunov methods are 

utilised. Stability of the time-varying closed-loop system, the convergence of the 

tracking error to zero and the boundedness of all the signals are analytically proved 

using Barbalat’s Lemma. These controllers can be extended to MIMO dynamical 

systems also. 

 Extensive simulation studies are carried out to demonstrate the tracking 

performance of the proposed adaptive controllers. It is seen that both adaptive 

controllers are showing superior tracking performance with a ramp input compared 

to gain scheduled classical controllers. Simulations are repeated with a typical 

guidance command. Here also, the adaptive PID controller is giving a near zero 

tracking error. In order to demonstrate the robustness of the controllers to 

parametric uncertainties, perturbation studies are conducted. The adaptive PID 

controller gives a near nominal performance in the presence of parametric 

uncertainties with slightly increased control deflection. The disturbance rejection 

capability of the controllers are demonstrated by injecting a synthetic wind profile.  

 Simulations are carried out with Gaussian white noise injected at the rate 

output. It is observed that the adaptive controllers are noisier compared to gain 

scheduled controllers and the controller parameters are drifting from the ideal value.  
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Hence proper noise filtering should be done before feeding back the sensed signals 

to the adaptive controllers.  

 The controller developments are done for a simplified rigid body model 

neglecting higher dynamics like slosh and flexibility whose stabilisation is the most 

challenging task in SLV flight control system design. These dynamics also will be 

considered in the controller design in the next chapter. 
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Chapter 3 

Novel Adaptive Control Laws For A Flexible Satellite 

Launch Vehicle  

3.1 Introduction 

A launch vehicle is essentially a long slender beam with a large length to diameter 

ratio. Hence it is structurally very flexible. The flight control system designed for 

SLV uses signals from sensors mounted along the vehicle to stabilize the vehicle 

and track the guidance commands.  These sensors pick up local elastic vibrations 

also along with the rigid body motions. To achieve attitude control, the SLV’s use 

thrust vector control which deflect the nozzle to generate control forces. The forces 

and moments generated in this way are governed both in magnitude and direction 

on the sensor outputs which are fed back. Under some adverse conditions, the 

closed-loop control can reinforce the amplitude of structural vibration, leading to 

structural failure [4][5]. This is called control-structure interaction and this is 

illustrated in Fig. 3.1. Stabilisation of the structural modes is the most challenging 

task in autopilot design for SLV’s. 

 

Figure 3. 1  Interaction Between Flight Control System and the Structural 

Dynamics 
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 Preliminary structural analysis is conducted by assuming SLV as a free-free 

beam. For launch vehicles with more strapons and clustered engines, sophisticated 

finite element analysis will be required to generate the vibration frequencies and 

mode shape data. There will be a large number of lightly damped vibrational modes 

for a free-free beam. In general, the first few modes will be of importance for flight 

control system design. High frequency modes will be usually attenuated by the low-

pass nature of the autopilot system. The first bending mode frequency will be closer 

to the rigid body frequency and the control actions of the autopilot will excite this 

mode and may destabilise the vehicle dynamics if not properly compensated. Some 

of the higher modes are also significant and can cause control- structure interaction 

unless modelled and compensated properly.  

 Presently the control-structure interaction problem arising in the flight 

control system is handled in two ways (i) phase stabilisation and (ii) gain 

stabilisation. In phase stabilisation, the phase of the sensor feedback signal is 

modified so that the control actively damps out the structural oscillations. For this, 

accurate phase of the sensor outputs is required, which in turn depends on the 

accuracy of the bending mode's mode shape/frequency information. Usually, the 

mode shape and frequency data will be more accurate for the first, low-frequency 

bending mode. Hence this mode is phase stabilised. Gain stabilisation is used for 

higher mode stabilisation in which the control system will not be allowed to pump 

in energy at the resonant structural frequencies by filtering or attenuating the 

signals. A review of the various stabilisation techniques is given in [60]. Detailed 

modelling and stability analysis of longitudinal and lateral structural vibrations are 

also given. Effect of wind on the flexible launch vehicle and trajectory planning 

during atmospheric phase is also described.   

 Conventional roll off and/or notch filters are used for the stabilisation of 

unstably interacting bending modes [61][62]. Some launch vehicles use body rate 

feedbacks from more than one rate gyros placed at different locations along the 

length of the vehicle. The outputs from these rate sensors are blended and used in 

the control law so that the control signal damps out the oscillations. The blending 

ratios are designed to achieve the phase stabilisation of the low-frequency bending 
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mode. Sometimes, rate blending is used to reduce the magnitude of the bending 

mode signal in the rate fed back so that gain stabilisation is achieved. Usage of non-

minimum phase structural filters is shown to be very effective and robust in flexible 

mode stabilisation [5][63][64].   

 Since the parameters of the flexible body model change with time and are 

highly uncertain, several advanced control techniques are also proposed for flexible 

mode stabilisation. These techniques avoid the use of gain scheduling and complex 

compensator switching algorithms. Designing classical controllers that ensure 

stability and robustness at all flight regimes is time-consuming and requires huge 

effort. Adaptive control techniques are more suitable for such time-varying 

systems. In this chapter we extend the Lyapunov based MRAC design for the 

stabilisation of under actuated dynamics such as slosh and flexibility. Though this 

controller has sufficient robustness to parametric uncertainties, it lacks robustness 

to non-parametric uncertainties. 

3.2 Model of a Flexible SLV  

 Effect of flexible mode vibrations on attitude control system of an SLV is 

explained in section 3.1. The attitude control design problem is further complicated 

by the presence of liquid stages, which introduces moments due to sloshing of the 

liquid propellant and the gimballed engines used for controlling the vehicle. 

3.2.1 Slosh Dynamics 

 Rigid body models for an SLV were developed in section 2.2. Mathematical 

equations depicting the slosh dynamics are derived in this section. Slosh refers to 

the movement of liquid in a partially filled tank. External torques and resonant 

modes can excite the fuel and amplify slosh behaviour causing rapid energy 

dissipation. This unpredicted coupled resonance between the vehicle and its 

onboard fuel could threaten a mission. Launch vehicles have an enormous 

percentage of their initial weight as fuel. Consequently, the dynamic forces 

resulting from the motions of these large liquid masses could be substantial, even 
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beyond the capabilities of the control system to counteract them or the structure to 

resist them. The dynamic effects of the sloshing can be closely approximated by 

replacing the liquid mass with a rigid mass and a series of pendulums whose size 

and location along the longitudinal axis of the vehicle depend on the vehicles mass, 

size and geometry of the tank, liquid fill level and also on the liquid properties. But 

if the tank wall is flexible, the interaction between the liquid free surface motions 

and the elastic motion of the tank wall can become significant. But the analysis for 

the case of a coupled elastic tank and liquid propellant is complex. Hence the 

bending modes are computed in terms of normal coordinates after removing the 

sloshing pendulums and swivellable rocket engines. The slosh modes are computed 

assuming rigid vehicle. In this way, the slosh and flexible dynamics are artificially 

de-coupled. The coupling will be introduced through the forcing function while 

writing the equations of motion. A detailed theoretical procedure for generating 

these parameters is presented in [65]. 

 

Figure 3. 2  Slosh Pendulum in Pitch Plane 

 One or more slosh modes are associated with each tank and each mode (k) 

can be visualised as a pendulum attached to a flexible tank as shown in Fig. 3.2. 

Each pendulum has the following parameters: mass (𝑚𝑝𝑘), frequency (𝜔𝑘), 

damping (𝜁𝑘), length of the pendulum (𝐿𝑝𝑘), hinge point of the pendulum with 
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respect to the CG of the vehicle (𝑙𝑝𝑘). Pendulum length (equivalently frequency) 

depend on the longitudinal acceleration of the vehicle.  

 The forces on the slosh pendulum originate from the lateral and rotational 

acceleration of the vehicle. It is assumed that forces due to structural flexibility is 

not affecting slosh as their frequencies are separated. Also, it is assumed that the 

sloshing pendulum angles are small and is represented by a second order dynamics. 

Velocity of the kth sloshing pendulum relative to inertial space is given by 

𝜇𝑝𝑘 = 𝜇 +
𝑑𝜌𝑝𝑘

𝑑𝑡
=  𝜇 +

𝜕𝜌𝑝𝑘

𝜕𝑡
+ 𝜔 × 𝜌𝑝𝑘 (3.1) 

where 𝜇 = 𝑈𝑖̂ + 𝑊�̂� is the inertial velocity of body frame, 𝜔 = 𝑄𝑗̂ is the angular 

velocity of body frame in pitch plane and 𝑖̂, 𝑗̂, �̂� are the unit vectors in X, Y, Z 

directions in body frame. The radius vector from the pendulum to the origin of the 

body axis system (𝜌𝑝𝑘) which can be written as 

𝜌𝑝𝑘 = (𝑙𝑝𝑘 − 𝐿𝑝𝑘 cos(𝜏𝑝𝑘)) 𝑖̂ + (𝐿𝑝𝑘 sin(𝜏𝑝𝑘))�̂� (3.2) 

The effect of flexibility is neglected while writing this equation. Substituting this in 

(3.1) we get, 

𝜇𝑝𝑘 = [𝑈 + 𝐿𝑝𝑘�̇�𝑝𝑘 sin(𝜏𝑝𝑘) + 𝑄𝐿𝑝𝑘 sin(𝜏𝑝𝑘)]𝑖̂ + [𝑊

+ 𝐿𝑝𝑘�̇�𝑝𝑘 cos(𝜏𝑝𝑘) − 𝑄(𝑙𝑝𝑘 − 𝐿𝑝𝑘 cos(𝜏𝑝𝑘))]�̂� 
(3.3) 

where, 𝜏𝑝𝑘is the pendulum angle. The Kinetic Energy (KE) is  
1

2
𝑚𝑝𝑘𝜇𝑝𝑘

2. Since 

the system is in free fall, there is no potential energy; hence, the total energy is 

L=KE. The equation of motion can be expressed in Lagrangian form as 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑝𝑘
) −

𝜕𝐿

𝜕𝜏𝑝𝑘
= 0. Assuming 𝜏𝑝𝑘 and �̇�𝑝𝑘 as small quantities we get 

�̈�𝑝𝑘 +
�̇�

𝐿𝑝𝑘
𝜏𝑝𝑘 = −

1

𝐿𝑝𝑘
[�̇� − 𝑈𝑄 − �̇�(𝑙𝑝𝑘 − 𝐿𝑝𝑘)] (3.4) 

where, 
�̇�

𝐿𝑝𝑘
= 𝜔𝑝𝑘

2 , 𝑊 = 𝑊0 + 𝑤, 𝑈 = 𝑈0 + 𝑢, 𝑄 = 𝑄0 + 𝑞 
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Here, 𝑈0,𝑊0, 𝑄0 are the steady state values of 𝑈,𝑊,𝑄 and 𝑢,𝑤, 𝑞 are the 

perturbation values and �̇�0, �̇�0, �̇�0 are zero. After subtracting the steady 

components, the perturbed equation in pitch plane can be written as 

�̈�𝑝𝑘 + 𝜔𝑝𝑘
2 𝜏𝑝𝑘 =

1

𝐿𝑝𝑘
[𝑈0�̇� − �̇� + �̈�(𝑙𝑝𝑘 − 𝐿𝑝𝑘)] (3.5) 

3.2.2 Flexibility Dynamics 

The launch vehicle in ascent flight can be considered as a free-free beam. The 

schematic diagram of the flexible SLV in the pitch plane is given in Fig. 3.3. 

 

Figure 3. 3  Flexible SLV in Pitch Plane 

The forced vibration of a free-free beam model can be expressed mathematically 

by Euler-Bernoulli beam model. Detailed derivations for the Euler-Bernoulli model 

and forced vibrations of nonuniform beam can be found in [4][5][66]. Neglecting 

shear and rotational inertia, 

𝑚(𝑙)
𝜕2𝜉(𝑙, 𝑡)

𝜕𝑡2
+
𝜕2

𝜕𝑙2
[𝐸𝐼(𝑙)

𝜕2𝜉(𝑙, 𝑡)

𝜕𝑙2
] = 𝑇(𝑡)𝛿 (3.6) 
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where,  𝑚 is mass per unit length, 𝐸𝐼 is the bending stiffness and 𝜉 is beam 

deflection. In the case of free vibration, right hand side of (3.6) will be zero. For 

free-free case, the bending moment 
𝜕3𝜉

𝜕𝑙3
 and shear 

𝜕2𝜉

𝜕𝑙2
 is zero at the ends of the beam, 

boundary conditions can be written as 

𝜕2𝜉(0, 𝑡)

𝜕𝑙2
=
𝜕2𝜉(𝐿, 𝑡)

𝜕𝑙2
= 0 

𝜕3𝜉(0, 𝑡)

𝜕𝑙3
=
𝜕3𝜉(𝐿, 𝑡)

𝜕𝑙3
= 0 

(3.7) 

Assume that the solution to (3.6) can be written as 

𝜉(𝑙, 𝑡) = 𝑞𝑖(𝑡)𝜑𝑖(𝑙) (3.8) 

where, 𝜑𝑖(𝑙) represents the shape of ith natural vibration mode and 𝑞𝑖(𝑡) is the 

modal coordinate (normal coordinate or generalised coordinate) of this mode. 

Substituting (3.8) in (3.6) we get 

−
1

𝑞𝑖(𝑡)

𝑑2𝑞𝑖(𝑡)

𝑑𝑡2
=

𝑑2

𝑑𝑙2
[𝐸𝐼(𝑙)

𝑑2𝜑𝑖(𝑙)

𝑑𝑙2
] (3.9) 

The term on the left side is a function of time only and that on the right side is a 

function of length. This can be true only if they are equal to some constant, say 𝜔2 

where 𝜔 is the vibration frequency. Thus, the partial differential equation in (3.6) 

can be written as two ordinary differential equations. 

𝑑2𝑞𝑖(𝑡)

𝑑𝑡2
+ 𝜔2𝑞𝑖(𝑡) = 0 (3.10) 

𝑑2

𝑑𝑙2
[𝐸𝐼(𝑙)

𝑑2𝜑𝑖(𝑙)

𝑑𝑙2
] − 𝜔2𝑚(𝑙)𝜑𝑖(𝑙) = 0 

(3.11) 

Numerical methods are used to get the solutions of (3.10) and (3.11) to get the 

frequencies and mode shapes of various modes to get the complete solution which 

can be written as 
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𝜉(𝑙, 𝑡) =∑𝑞𝑖(𝑡)𝜑𝑖(𝑙)

∞

𝑖=1

 (3.12) 

We have 

𝜕𝜉(𝑙, 𝑡)

𝜕𝑙
= −∑𝑞𝑖(𝑡)𝜎𝑖(𝑙)

∞

𝑖=1

 (3.13) 

where,  𝜎𝑖(𝑙) =
𝜕𝜑𝑖(𝑙)

𝜕𝑙
 is called the normalised mode slope of the ith bending mode. 

The generalised coordinate satisfies 

�̈�𝑖 + 2𝜁𝑖𝜔𝑖𝑞𝑖 + 𝜔𝑖
2𝑞𝑖 =

𝑄𝑖(𝑡)

𝑀𝑖
 (3.14) 

𝜁𝑖 is the damping ratio, 𝑄𝑖(𝑡) is the generalised force and 𝑀𝑖 is the generalised mass 

of the ith bending mode which are defined as 

𝑄𝑖(𝑡) = ∫∑𝐹𝜑𝑖(𝑙) 𝑑𝑙

𝐿

0

 

𝑀𝑖 = ∫ 𝑚(𝜑𝑖(𝑙))
2

𝐿

0

𝑑𝑙 

(3.15) 

The model of the flexible SLV with slosh dynamics can now be written. Assuming 

𝛼 ≈ 𝜃, 

�̈� = 𝜇𝛼𝜃 − 𝜇𝑝𝜏𝑝 −
𝑇𝑐(𝑙𝑐𝜎𝑙𝑡 + 𝜑𝑙𝑡)

𝐼
𝑞 + 𝜇𝑐𝛿  

𝜏�̈� =
(
𝐿𝛼

𝑚0
+ (𝑙𝑝 − 𝐿𝑝)𝜇𝛼) 𝜃

𝐿𝑝

− (
1

𝐿𝑝
)((1 +

𝑚𝑝

𝑚0
) �̇�0 + (𝑙𝑝 − 𝐿𝑝)𝜇𝑝)𝜏𝑝

− 2𝜁𝑝𝜔𝑝𝜏�̇�

+ (
1

𝐿𝑝
)(
𝑇𝑐𝜎𝑙𝑡
𝑚0

−
(𝑙𝑝 − 𝐿𝑝)𝑇𝑐(𝑙𝑐𝜎𝑙𝑡 + 𝜑𝑙𝑡)

𝐼
) 𝑞

− (
1

𝐿𝑝
) (
𝑇𝑐
𝑚0

− (𝑙𝑝 − 𝐿𝑝)𝜇𝑐) 𝛿 

(3.16) 
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�̈� = (−𝜔2 + 𝑇𝑐𝜎𝑙𝑡𝜑𝑙𝑡/𝑀)𝑞 − 2𝜉𝑞𝜔�̇� − (𝑇𝑐𝜑/𝑀)𝛿  

 

where, 𝜇𝛼 =
𝐿𝛼𝑙𝛼

𝐼
, 𝜇𝑐 =

𝑇𝑐𝑙𝑐

𝐼
, 𝜇𝑝 =

𝑚𝑝𝑙𝑝𝑢0̇

𝐼
. Here the moment of inertia (I), 

thrust (𝑇𝑐), control moment arm (𝑙𝑐), aerodynamic force (𝐿𝛼) and moment arm (𝑙𝛼) 

are time varying and hence the parameters 𝜇𝑐, 𝜇𝛼 and 𝜇𝑝 are time varying. 

Flexibility parameters also vary with time. The dynamical equations (3.16) can be 

presented in state space form as 

𝑥�̇� = 𝐴𝑝𝑥𝑝 + 𝐵𝑝𝑢 

𝑌𝑝 = 𝐶𝑝𝑥𝑝 + 𝐷𝑝𝑢 
(3.17) 

𝑥𝑝 are the states 𝜃 , �̇�, 𝜏𝑝, �̇�𝑝,𝑞, �̇� and 𝑢 is the control input (𝛿 ). 

𝐴𝑝 =

[
 
 
 
 
 
 
𝐴𝑝11 𝐴𝑝12 𝐴𝑝13
𝐴𝑝21 𝐴𝑝22 𝐴𝑝23
𝐴𝑝31 𝐴𝑝32 𝐴𝑝33

    

𝐴𝑝14 𝐴𝑝15 𝐴𝑝16
𝐴𝑝24 𝐴𝑝25 𝐴𝑝26
𝐴𝑝34 𝐴𝑝35 𝐴𝑝36

𝐴𝑝41 𝐴𝑝42 𝐴𝑝43
𝐴𝑝51 𝐴𝑝52 𝐴𝑝53
𝐴𝑝61 𝐴𝑝62 𝐴𝑝63

    

𝐴𝑝44 𝐴𝑝45 𝐴𝑝46
𝐴𝑝54 𝐴𝑝55 𝐴𝑝56
𝐴𝑝64 𝐴𝑝65 𝐴𝑝66]

 
 
 
 
 
 

 

where, 𝐴𝑝12 = 1 , 𝐴𝑝21 =𝜇𝛼, 𝐴𝑝23 = −𝜇𝑝, 𝐴𝑝25 =−
𝑇𝑐(𝑙𝑐𝜎𝑙𝑡+𝜑𝑙𝑡)

𝐼
, 𝐴𝑝34 = 1,  

𝐴𝑝41 =
(
𝐿𝛼
𝑚0
+(𝑙𝑝−𝐿𝑝)𝜇𝛼)

𝐿𝑝
 , 𝐴𝑝43 =− (

1

𝐿𝑝
) ((1 +

𝑚𝑝

𝑚0
) 𝑢0̇ + (𝑙𝑝 − 𝐿𝑝)𝜇𝑝) , 

 𝐴𝑝44 =− 2𝜁𝑝𝜔𝑝, 𝐴𝑝45 =(
1

𝐿𝑝
) (

𝑇𝑐𝜎𝑙𝑡

𝑚0
−
(𝑙𝑝−𝐿𝑝)𝑇𝑐(𝑙𝑐𝜎𝑙𝑡+𝜑𝑙𝑡)

𝐼
), 𝐴𝑝56 = 1, 

 𝐴𝑝65 =(−𝜔
2 + 𝑇𝑐𝜎𝑙𝑡𝜑𝑙𝑡/𝑀), 𝐴𝑝66 =− 2𝜉𝑞𝜔 

where, 𝜑𝑙𝑡 and 𝜎𝑙𝑡 is the mode shape and slope at the thrust acting location. 

All other 𝐴𝑝𝑖𝑗 are zeros. 

𝐵𝑝 = [𝐵𝑝1 𝐵𝑝2 𝐵𝑝3     𝐵𝑝4 𝐵𝑝5 𝐵𝑝6]𝑇 

𝐵𝑝2 = 𝜇𝑐, 𝐵𝑝4 = (
𝑇𝑐

𝑚0
− (𝑙𝑝 − 𝐿𝑝)𝜇𝑐), 𝐵𝑝6 = −(𝑇𝑐𝜑𝑙𝑡/𝑀) 

All other 𝐵𝑝𝑖 are zeros 

𝐶𝑝 = [
1 0 0
0 1 0

    
0 𝜎𝑝𝑜𝑠 0

0 0 𝜎𝑟
]   

𝐷𝑝 = [
0
0
] 
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where, 𝜎𝑝𝑜𝑠 is the mode slope of the first bending mode at the position sensor 

location and 𝜎𝑟 is the slope at the rate sensor location. 

3.3 Proposed Adaptive Controller Design  

A Lyapunov based MRAC is developed in chapter 2 for the rigid body dynamics of 

an SLV using a quadratic Lyapunov function. It is proven that the stability of the 

system and convergence of the tracking error to zero using Barbalat’s Lemma. Also, 

the robustness of the controller for parametric uncertainty is demonstrated using 

extensive simulation studies.  To solve the state feedback output regulation problem 

for a generic class of MIMO uncertain dynamical systems,  a gemeralized MIMO 

plant model with matched nonlinear uncertainty and bounded environmental 

disturbance is presented below.  

�̇� = 𝐴𝑥 + 𝐵𝛬(𝑢 + 𝜃𝑇𝛷(𝑥)) + 𝐵𝑚𝑢𝐶 + 𝜉(𝑡) 

𝑦𝑝 = 𝐶𝑥 
(3.18) 

where, 𝜉(𝑡) ∈ 𝑅𝑛  is a uniformly bounded time-dependent disturbance such that 

‖𝜉(𝑡)‖ ≤ 𝜉𝑚𝑎𝑥. The upper bound 𝜉𝑚𝑎𝑥 ≥ 0 is known. 𝛬 ∈  𝑅𝑚×𝑚 is a diagonal 

positive-definite matrix which is used to simulate the control failures and increase 

in control gain and 𝜃 ∈  𝑅𝑁×𝑚. 𝑥 ∈ 𝑅𝑛 is the system state vector and 𝑢 ∈ 𝑅𝑚 is the 

control input. 𝑢𝐶  is the command to be tracked. The pair (𝐴, 𝐵𝛬) is controllable. 

𝜃𝑇𝛷(𝑥) ∈ 𝑅𝑚 is the linear-in-parameter state-dependent matched uncertainty, 𝜃 ∈

𝑅𝑁×𝑚 is the matrix of unknown constant parameters, 𝛷(𝑥) ∈ 𝑅𝑁 is the known N-

dimensional regressor vector whose components are locally Lipschitz-continuous 

functions of 𝑥. Also 𝐵 ∈ 𝑅𝑁×𝑚 is known and 𝐴 ∈ 𝑅𝑛×𝑛 is unknown. The control 

goal is to force the system regulated output 𝑦𝑝 ∈ 𝑅
𝑚×1 to track any bounded time-

varying reference signal 𝑢𝐶∈ 𝑅
𝑚×1, with bounded errors and in the presence of 

constant parametric uncertainties 𝐴, 𝛬, 𝜃 and bounded uncertainty 𝜉(𝑡). We shall 

also require that the rest of the signals in the corresponding closed-loop system 

remain uniformly bounded in time. The MRAC system is designed to enable 

tracking of the reference model output. The model is as follows 



59 

 

�̇�𝑚 = 𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑢𝐶  

𝑦𝑚 =𝐶𝑚𝑥𝑚 
(3.19) 

To derive the control law, it is assumed that there exists a gain matrix 𝐾𝑥 which 

satisfies the matching condition. Given a reference Hurwitz matrix 𝐴𝑚 and an 

unknown positive diagonal matrix 𝛬, there exists a constant unknown matrix 𝐾𝑥 ∈

𝑅𝑛×𝑚 such that 𝐴𝑚 = 𝐴 + 𝐵𝛬𝐾𝑥
𝑇. Using this we can write the open-loop extended 

system dynamics in the form 

 

�̇� = 𝐴𝑚𝑥 + 𝐵𝛬 (𝑢 − 𝐾𝑥
𝑇𝑥 + 𝜃𝑇𝛷(𝑥)) + 𝐵𝑚𝑢𝐶 + 𝜉(𝑡) (3.18A) 

Absorbing the uncertain 𝐾𝑥
𝑇𝑥 in the uncertainty 𝜃𝑇𝛷(𝑥), we can write the generic 

open loop plant as  

�̇� = 𝐴𝑚𝑥 + 𝐵𝛬(𝑢 + 𝜃
𝑇𝛷(𝑥)) + 𝐵𝑚𝑢𝐶 + 𝜉(𝑡)   (3.18B) 

A full state feedback control law is chosen to make the system output follow the 

reference output in the presence of system parametric uncertainties while 

maintaining all other signals uniformly bounded. The control law is  

𝑢 = 𝜃𝑇𝛷(𝑥) (3.20) 

where,  𝜃 ∈  𝑅𝑁×𝑚 are the adaptive parameters to be found out. Substituting (3.20) 

in (3.18B), we get 

�̇� = 𝐴𝑚𝑥 + 𝐵𝛬 (−((�̂�
𝑇 − 𝜃𝑇)𝛷(𝑥)) + 𝐵𝑚𝑢𝐶 + 𝜉(𝑡) 

= 𝐴𝑚𝑥 − 𝐵Λ𝛥𝜃
𝑇𝛷(𝑥) + 𝐵𝑚𝑢𝐶 + 𝜉(𝑡) 

(3.21) 

where, 𝛥𝜃 = 𝜃 − 𝜃 is the parameter estimation error. Let the tracking error be 

defined as 

𝑒 = 𝑥 − 𝑥𝑚 (3.22) 

The tracking error dynamics can be written as 

�̇� = 𝐴𝑚𝑒 − 𝐵Λ𝛥𝜃
𝑇𝛷(𝑥) + 𝜉(𝑡) (3.23) 

The quadratic Lyapunov function chosen is 
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𝑉(𝑒, 𝛥𝜃) = 𝑒𝑇𝑃𝑒 + 𝑡𝑟𝑎𝑐𝑒(𝛥𝜃𝑇Γ−1𝛥𝜃Λ) (3.24) 

where,  Γ is positive and are the constant adaptation rates.  𝑃 is a positive-definite 

matrix and is the solution of the algebraic Lyapunov equation. Differentiating 𝑉 

along the trajectories of (3.23) and using (2.22), we get 

�̇�(𝑒, 𝛥𝜃) = −𝑒𝑇𝑄𝑒 + 2𝑡𝑟𝑎𝑐𝑒(𝛥𝜃𝑇{Γ−1�̇� − 𝛷(𝑥)𝑒𝑇𝑃𝐵}Λ)

+ 2𝑒𝑇𝑃𝜉(𝑡) 
(3.25) 

The adaptive law chosen was to make �̇�(𝑒, 𝛥𝜃) negative semi-definite, that is 

�̇� = Γ𝛷(𝑥)𝑒𝑇𝑃𝐵 (3.26) 

This adaptation law will make [82][83] 

�̇�(𝑒, 𝛥𝜃) = −𝑒𝑇𝑄𝑒 + 2𝑒𝑇𝑃𝜉(𝑡) 

≤ −𝜆𝑚𝑖𝑛(𝑄)‖𝑒‖
2 + 2‖𝑒‖𝜆𝑚𝑎𝑥(𝑃)𝜉𝑚𝑎𝑥 

(3.27) 

Hence, �̇�(𝑒, 𝛥𝜃) < 0 outside of the set 𝐸0 which is defined as 

𝐸0 = {(𝑒, 𝛥𝜃):  ‖𝑒‖ ≤ 2
𝜆𝑚𝑎𝑥(𝑃)

𝜆𝑚𝑖𝑛(𝑄)
𝜉𝑚𝑎𝑥 = 𝑒0} (3.28) 

Derivation of these inequalities is given in Appendix A.6 

Theorem 3.1:  

Lyapunov-like theorem to show the uniform boundedness and ultimate 

boundedness [3][67][68]. Consider the system 

�̇� = 𝑓(𝑡, 𝑥) (3.29) 

where,  𝑓: [0,∞) × 𝐷 → 𝑅𝑛 is piecewise continuous in t and locally Lipschitz in 𝑥, 

𝐷 ⊂ 𝑅𝑛 is a domain that contains the origin. Let 𝑉: [0,∞) × 𝐷 → 𝑅 be a 

continuously differentiable function such that 
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𝛼1(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝛼2(‖𝑥‖) 

𝜕𝑉

𝜕𝑡
+
𝜕𝑉

𝜕𝑥
𝑓(𝑡, 𝑥) ≤ −𝑊3(𝑥)  ∀ ‖𝑥‖ ≥ 𝜇 > 0 

(3.30) 

∀ 𝑡 ≥ 0 and ∀ 𝑥 ∈ 𝐷, where 𝛼1, 𝛼2 are class 𝒦 functions and 𝑊3(𝑥) is a continuous 

positive definite function. Take 𝑟 > 0 such that 𝐵𝑟  ⊂ 𝐷 and suppose that 𝜇 <

𝛼2
−1(𝛼1(𝑟)). Then, there exists a class 𝒦ℒ function 𝛽 and for every initial state 

𝑥(𝑡0), satisfying ‖𝑥(𝑡0)‖ ≤ 𝛼2
−1(𝛼1(𝑟)), there is 𝑇 ≥ 0 (dependent on 𝑥(𝑡0) and 

𝜇) such that the solution of (3.29) satisfies 

‖𝑥(𝑡)‖ ≤ 𝛽(‖𝑥(𝑡0)‖, 𝑡 − 𝑡0), ∀ 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇 

‖𝑥(𝑡)‖ ≤ 𝛼1
−1(𝛼2(𝜇)), ∀ 𝑡 ≥  𝑡0 + 𝑇 

(3.31) 

If  𝐷 = 𝑅𝑛 and  𝛼1 belongs to class 𝒦∞ and (3.31) hold for any initial state 𝑥(𝑡0), 

with no restriction on how large 𝜇 is. 

According to the theorem 3.1, trajectories of 𝑒(𝑡) defined by the dynamics (3.23) 

enter a compact set (Ω0 ⊃ 𝐸0) ⊂ 𝑅
𝑛 in finite time and will remain there for all 

future time. However, Ω0 is not compact in the  (𝑒, 𝛥𝜃) space and is unbounded 

since the parameter estimation errors are not restricted. Hence, inside Ω0, �̇� can 

become positive and the parameter estimation errors (𝛥𝜃) builds up even though 

the tracking error norm remains at finite at all times. This phenomenon is known as 

parameter drift; hence, the adaptive control law defined in (3.26) is not robust to 

bounded disturbances and unmodelled dynamics.  

 Many design modifications are proposed in the literature to make the 

adaptation law robust to bounded disturbances. In this chapter, we propose to use 

projection operators and BLF to make the MRAC robust to both parametric and 

non-parametric uncertainties. 

3.3.1 Modified Control Parameter Update Law Using Projection 

Operator 

 Let the plant model be defined by (3.18) and the reference model by (3.19). 

Let the Lyapunov function be as in (3.24) and its time derivative be (3.25). The 

design task is to choose �̇� such that the trace term in (3.25) became nonpositive 

while the adapted parameters  𝜃 remained uniformly bounded functions of time. Let 
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𝑓(𝑥): 𝑅𝑛 → 𝑅 be a differentiable convex function, select a constant    𝛿 > 0 and 

consider the subset 𝛺𝛿 =  {𝜃 ∈  𝑅𝑛|𝑓(𝜃) ≤ 𝛿} ⊂  𝑅𝑛, 𝛺𝛿 is a convex set. 

Projection operator [3] is defined as 

𝑃𝑟𝑜𝑗(𝜃, 𝑦)

= {
𝑦 −

Γ∇𝑓(𝜃)(∇𝑓(𝜃)𝑇)

‖∇𝑓(𝜃)‖𝛤
2 𝑦𝑓,   𝑖𝑓 𝑓(𝜃) ≥ 0⋀𝑦𝑇∇𝑓(𝜃) > 0

𝑦 ,   𝑖𝑓 𝑛𝑜𝑡

 
(3.32) 

where, Γ ∈  𝑅𝑛𝑋𝑛 is any constant symmetric positive definite matrix and 

‖∇𝑓(𝜃)‖𝛤
2 = 𝛻𝑓𝑇𝛤𝛻𝑓 is the weighted Euclidean squared norm of 𝛻𝑓. In order to 

derive the adaptive control law, we make use of the important convex property of 

the projection operator given in Lemma 3.1. 

Lemma 3.1: For any symmetric positive-definite matrix  Γ ∈  𝑅𝑛𝑋𝑛,  

(𝜃 − 𝜃∗)𝑇(Γ−1𝑃𝑟𝑜𝑗(𝜃, Γ𝑦) − 𝑦) ≤ 0 (3.33) 

Proof of Lemma 3.1 is given in Appendix A.3. Another result which is of 

conceptual importance is stated in Lemma 3.2. This is also used in the development 

of the adaptive controllers. 

Lemma 3.2: Let 𝑓(𝜃) be a convex continuously differentiable map from 𝑅𝑛 → 𝑅. 

Using the projection operator given in (3.32), consider the n-dimensional dynamics 

�̇� = 𝑃𝑟𝑜𝑗(𝜃, 𝑦) (3.34) 

where, 𝜃 ∈  𝑅𝑛 is the system state and 𝑦 ∈  𝑅𝑛 is a time-varying piecewise 

continuous vector. Then starting from any initial condition 𝜃(0) = 𝜃0 within the 

set 

Ω0 = {𝜃 ∈  𝑅
𝑛 |𝑓(𝜃) ≤ 0} (3.35) 

the system trajectory 𝜃(𝑡) will remain in the set 

Ω1 = {𝜃 ∈  𝑅
𝑛 |𝑓(𝜃) ≤ 1} (3.36) 

for all 𝑡 ≥ 0 
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Proof of Lemma 3.2 is given in Appendix A.3.  

The trace term in (3.25) can be written as 

𝑡𝑟𝑎𝑐𝑒(𝛥𝜃𝑇{Γ−1�̇� − 𝛷(𝑥)𝑒𝑇𝑃𝐵}Λ)

=∑(𝜃 − 𝜃)𝑇
𝑖

𝑛

𝑖=0

{Γ−1�̇� − 𝛷(𝑥)𝑒𝑇𝑃𝐵}λ𝑗) 
(3.37) 

Selecting the adaptation law as  

�̇� = 𝑃𝑟𝑜𝑗(𝜃, Γ𝛷(𝑥)𝑒𝑇𝑃𝐵) (3.38) 

Substituting (3.38) in (3.37) and putting 𝛷(𝑥)𝑒𝑇𝑃𝐵 = 𝑌,we get 

𝑡𝑟𝑎𝑐𝑒(𝛥𝜃𝑇{Γ−1�̇� − 𝛷(𝑥)𝑒𝑇𝑃𝐵}Λ)

=∑(𝜃 − 𝜃)
𝑇

𝑖

𝑛

𝑖=0

(Γ−1𝑃𝑟𝑜𝑗(𝜃, Γ𝑌𝑗) − 𝑌𝑗)λ𝑗 ≤ 0 
(3.39) 

(𝜃 − 𝜃)𝑇
𝑖
(Γ−1𝑃𝑟𝑜𝑗(𝜃, Γ𝑌𝑗) − 𝑌𝑗) ≤ 0, λ𝑗 ≥ 0, and hence the trace term will be 

negative semidefinite. 

�̇�(𝑒, 𝛥𝜃) = −𝑒𝑇𝑄𝑒 + 2𝑒𝑇𝑃𝜉(𝑡) 

≤ −𝜆𝑚𝑖𝑛(𝑄)‖𝑒‖
2 + 2‖𝑒‖𝜆𝑚𝑎𝑥(𝑃)𝜉𝑚𝑎𝑥 

                                    = −𝜆𝑚𝑖𝑛(𝑄)‖𝑒‖(‖𝑒‖ − 2
𝜆𝑚𝑎𝑥(𝑃)𝜉𝑚𝑎𝑥
𝜆𝑚𝑖𝑛(𝑄)

) 

(3.40) 

�̇�(𝑒, 𝛥𝜃) < 0  outside of the compact set 

Ω = {(𝑒, 𝛥𝜃) ∈ 𝑅𝑛 × 𝑅𝑁×𝑚: ‖𝑒‖

≤ 2
𝜆𝑚𝑎𝑥(𝑃)

𝜆𝑚𝑖𝑛(𝑄)
𝜉𝑚𝑎𝑥  ∧  ‖𝛥𝜃‖𝐹 ≤ 𝛥𝜃𝑚𝑎𝑥} 

 𝛥𝜃𝑚𝑎𝑥 = 2(𝜃1
𝑚𝑎𝑥  …   𝜃𝑚

𝑚𝑎𝑥) = 2𝜃𝑚𝑎𝑥 

(3.41) 

where, 𝜃𝑗
𝑚𝑎𝑥 is the maximum allowable bound for the jth column of 𝜃. Hence all the 

signals of the closed loop system are uniformly ultimately bounded with this 
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adaptation law allowing the closed loop system to track the reference command 

with errors bounded as in (3.41). 

A dead zone modification is applied on the tracking error 𝑒 to make it more 

robust to bounded disturbance. Here the adaptation is stopped when the tracking 

error falls below the dead zone boundary. A continuous form of dead zone proposed 

in [69] is used. A Lipschitz-continuous modulation function in the form 

𝜇(‖𝑒‖) = max (0, (min(1,
‖𝑒‖ − 𝛿𝑒0
(1 − 𝛿)𝑒0

)) (3.42) 

where, 0 < 𝛿 < 1. Adaptive control law with continuous form of dead zone is 

�̇� = 𝑃𝑟𝑜𝑗(𝜃, Γ𝛷(𝑥)𝜇(‖𝑒‖)𝑒𝑇𝑃𝐵) (3.43) 

The projection operator ensures that the adaptive time-varying matrix 𝜃(𝑡) 

do not exceed their pre-specified bounds (𝜃𝑚𝑎𝑥) and also ensures the negative semi-

definiteness of the time derivative of the Lyapunov function. This is achieved by 

defining the convex function 𝑓(𝜃) in terms of the maximum upper bound of the 

adapted parameters (𝜃𝑚𝑎𝑥). This gives Uniform Ultimate Boundedness (UUB) of 

adapted parameters. For the launch vehicle attitude control problem, the convex 

function is defined as 

𝑓(𝜃) =
(1 + 𝜀1)‖𝜃‖

2 − (𝜃𝑚𝑎𝑥)
2 

𝜀1(𝜃𝑚𝑎𝑥)2
 (3.44) 

where, 𝜀1>0. The two convex sets can be defined as 

𝛺0 = {𝜃: ∈  𝑅𝑛|𝑓(𝜃) ≤ 0} = {𝜃: ‖𝜃‖ ≤
𝜃𝑚𝑎𝑥

√1 + 𝜀1
} 

𝛺1 = {𝜃: ∈  𝑅𝑛|𝑓(𝜃) ≤ 1} = {𝜃: ‖𝜃‖ ≤ 𝜃𝑚𝑎𝑥} 

(3.45) 

In the launch vehicle control problem, the gains are modified adaptively to get the 

required stability and performance. The bounds are selected in such a way that 

stability is maintained during the atmospheric phase of the flight.  

Remark 1: Modification of the adaptation laws using projection operator ensures 

boundedness of the tracking error. Here the bounds on the adapted gains can be 
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specified in the convex function but the bounds on the tracking error cannot be 

specified. 

Remark 2: In aerospace vehicles, both the gain margin and gain reduction margins 

are important. Hence the gains need to be limited within a maximum and minimum 

bound for certain applications. In such scenarios, the projection operator defined in 

(3.32) cannot be used as the convex function in (3.44) defined to constrain the gains 

lose its convexity when both minimum and maximum values of gains are specified. 

3.3.2 Modified Control Parameter Update Law using BLF  

 Modification of the update mechanism using projection operator and 

quadratic Lyapunov functions ensures boundedness of the tracking error. Here the 

bounds on the adapted gains can be specified in the convex function but the bounds 

on the tracking error cannot be specified. For complex systems, it is very difficult 

to find out an explicit relation between the trajectory tracking error and the solution 

of the Lyapunov equation underlying the adaptive law.  Hence BLF [30][31][32] is 

introduced to guarantee the boundedness of tracking error and adapted gains within 

the defined constraints. To establish the asymptotic convergence of the signals, the 

continuity properties of the derivative of the Lyapunov function can be analyzed 

using Barbalat’s Lemma. This section explains the adaptive control strategy which 

constrains the tracking error and the deviations of the controller gains from the ideal 

control gains which satisfy the matching conditions. 

Definition: A BLF is a scalar function 𝑉(𝑥), defined with respect to the system 

�̇� = 𝑓(𝑥) on an open region 𝐷 containing the origin; that is continuous, positive 

definite, has continuous first-order partial derivatives at every point of 𝐷, has the 

property 𝑉(𝑥) → ∞  as 𝑥 approaches the boundary of 𝐷, and satisfies condition: 

∃𝑀, ∀𝑡 > 0 𝑉(𝑥(𝑡)) < 𝑀 along any system trajectory starting inside 𝐷. 

Usually, it is assumed that  𝐷 is a hyper-rectangle defined by 𝐷 = {𝑥: |𝑥𝑖| ≤ ∆𝑥𝑖}. 

Consider the plant dynamics  

�̇� = 𝐴𝑥 + 𝐵𝛬(𝑢 + Θ𝑇𝛷(𝑥)) (3.46) 
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𝑥 ∈  𝑅𝑛 , 𝑢 ∈ 𝑅𝑚, Θ ∈  𝑅𝑛×𝑚, 𝐴 ∈ 𝑅𝑛×𝑛 is unstable, 𝐵 ∈  𝑅𝑛×𝑚, the pair (𝐴, 𝐵) 

is controllable. 𝛷:𝐷 → 𝑅𝑁 is the regressor vector which is Lipschitz continuous.  

The term Θ𝑇𝛷(𝑥) captures both parametric and matched uncertainties. The MRAC 

system is designed to enable tracking of the reference model output. The model is 

as given in (3.19). Let the feedback control law be  

𝑢 = 𝐾 ∗ [𝑥𝑇   𝑢𝑐
𝑇  − 𝛷(𝑥)]𝑇 = 𝐾𝜋(𝑡) (3.47) 

where 𝐾 = [𝐾𝑥
𝑇 𝐾𝑢

𝑇 − Θ𝑇] and 𝜋(𝑡) = [𝑥𝑇(𝑡), 𝑢𝑐
𝑇(𝑡), −Φ𝑇(𝑥)]𝑇 . The matching 

conditions are  

𝐴𝑚 = 𝐴 + 𝐵𝐾𝑥
𝑇 

𝐵𝑚 = 𝐵𝐾𝑢
𝑇 

(3.48) 

where, K is the ideal gain which satisfy the matching condition which cannot be 

found out as the plant parameters are uncertain. Hence, we have to find some 

estimates (𝐾𝑒) of the ideal gain so that the control law (3.47) can be implemented. 

We want to get an accurate estimate of the ideal gains such that ‖𝐾𝑒 − 𝐾‖𝐹 < 𝜀 

where, 𝜀 is a small number.  Let 𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑚(𝑡) is the trajectory tracking 

error and ∆𝐾(𝑡) = �̂�(𝑡) − 𝐾𝑒 is the estimated adaptive gain’s error and ∆�̃�(𝑡) =

�̂�(𝑡) − 𝐾 is the adaptive gains error. Consider a compact, connected constraint set 

𝐶 ≜ {(𝑒, ∆𝐾) ∈ ℝ𝑛 × ℝ𝑚×(𝑛+𝑚+𝑁): 𝑓(𝑒𝑇𝑀𝑒, ∆𝐾Γ−1∆𝐾𝑇) ≥ 0}  (3.49) 

where 𝑀 and Γ  are symmetric and positive-definite. This set captures the user 

defined constraints on the trajectory tracking error and the estimated adaptive gains’ 

error.  𝑓(𝑒𝑇𝑀𝑒, ∆𝐾Γ−1∆𝐾𝑇) is continuously differentiable and such that 𝑓(0,0) >

0. The function  𝑓 should be designed in such a way that it’s derivative with respect 

to 𝑒𝑇𝑀𝑒 named as (𝑓𝑒) and ∆𝐾Γ−1∆𝐾𝑇 named as (𝑓𝐾) is negative definite for all 

(𝑒, ∆𝐾) inside the set 𝐶. A candidate function for this problem is 

𝑓(𝑒𝑇𝑀𝑒, ∆𝐾Γ−1∆𝐾𝑇) = 𝑓𝑚𝑎𝑥 − 𝑒
𝑇𝑀𝑒 − ∆𝐾Γ−1∆𝐾𝑇   (3.50) 

Here 𝑓𝑚𝑎𝑥 is selected as a positive number and 𝑓𝑒 = −1 and 𝑓𝐾 = −𝐼𝑚. Using the 

control law (3.47), the tracking error dynamics can be written as 
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�̇�(𝑡) = 𝐴𝑚𝑒(𝑡) + 𝐵∆�̃�(𝑡)𝜋(𝑡) 

𝑒(𝑡0) = 𝑥0 − 𝑥𝑚0, ∆�̃�(𝑡) = �̂�(𝑡) − 𝐾, 𝑡 >  𝑡0, 

𝜋(𝑡) = [𝑥𝑇(𝑡), 𝑢𝑐
𝑇(𝑡), −Φ𝑇(𝑥)]𝑇 

(3.51) 

The Lyapunov function can be selected as 

𝑉(𝑒, ∆𝐾) =
𝑒𝑇𝑃𝑒 + 𝑡𝑟(∆𝐾Γ−1∆𝐾𝑇) 

𝑓(𝑒𝑇𝑀𝑒, ∆𝐾Γ−1∆𝐾𝑇)
 , (𝑒, ∆𝐾) 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶 (3.52) 

This Lyapunov function goes to infinity, when 𝑓 is zero, ie. 𝑒𝑇𝑀𝑒 + ∆𝐾Γ−1∆𝐾𝑇 =

 𝑓𝑚𝑎𝑥 . But inside 𝐶, the function 𝑓 is always positive. Maximum value of 𝑉(𝑒, ∆𝐾) 

inside 𝐶 is obtained when the tracking error and the deviation of the adaptive gain 

from ideal is zero.  A set of adaptive gains �̂�(𝑡) to be found out which ensure the 

negative definiteness of the derivative of Lyapunov function and (𝑒(𝑡), ∆𝐾(𝑡)) is 

always inside the constraint set 𝐶. 

�̇�(𝑒, ∆𝐾) = 𝑓−2{𝑓. (𝑒𝑇𝑃�̇� + �̇�𝑇𝑃𝑒

+ 𝑡𝑟(∆𝐾𝑇Γ−1Δ�̇� + Δ�̇�𝑇Γ−1∆𝐾)

− (𝑒𝑇𝑃𝑒 + 𝑡𝑟(∆𝐾Γ−1∆𝐾𝑇)). 𝑓𝑒(𝑒
𝑇𝑀�̇� + �̇�𝑇𝑀𝑒)

+ 𝑓𝐾(∆𝐾
𝑇Γ−1Δ�̇� + Δ�̇�𝑇Γ−1∆𝐾)} 

(3.53) 

 

�̇�(𝑒, ∆𝐾) = 𝑓−1[𝑒𝑇 . (𝐴𝑚
𝑇(𝑃 − 𝑉𝑓𝑒𝑀) + (𝑃 − 𝑉𝑓𝑒𝑀)𝐴𝑚)𝑒

+ 𝜋𝑇∆�̃�𝑇𝐵𝑇(𝑃 − 𝑉𝑓𝑒𝑀)𝑒

+ 𝑒𝑇(𝑃 − 𝑉𝑓𝑒𝑀)𝐵∆�̃�𝜋 + 𝑡𝑟(∆�̇�
𝑇Γ−1∆𝐾

+ ∆𝐾𝑇Γ−1∆�̇�)(𝐼𝑚 − 𝑉𝑓𝑘) 

(3.54) 

Define another set 

𝐺𝛼,𝜋 = {−𝛼𝑒
𝑇𝑒

+ 2𝜀 𝑡𝑟𝑎𝑐𝑒((𝜋𝑒𝑇[𝑃

− 𝑉𝑓𝑒𝑀]𝐵)(𝜋𝑒
𝑇[𝑃 − 𝑉𝑓𝑒𝑀]𝐵))

𝑇)1/2} 

(3.55) 
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Since 𝑢𝑐 is bounded and 𝐴𝑚 is Hurwitz 𝑥𝑚 is bounded. If 𝑒(𝑡) is bounded then 

𝜋(𝑡) ∈  Π where Π is a compact set. If both 𝑒(𝑡) and ∆𝐾 are bounded then there 

exists an extremum value (𝜋∗) given by  

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥[−𝛼𝑒𝑇𝑒

+ 2𝜀 𝑡𝑟((𝜋𝑒𝑇[𝑃

− 𝑉𝑓𝑒𝑀]𝐵)(𝜋𝑒
𝑇[𝑃 − 𝑉𝑓𝑒𝑀]𝐵))

𝑇)
1

2] 

(3.56) 

The set 𝐺𝛼,𝜋∗ captures the set where the total derivative of the Lyapunov function 

given in (3.52) is not guaranteed to be negative-definite. Also, the set 𝐺𝛼,𝜋∗ captures 

the effect of not being able to determine exactly the K for enforcing satisfactory 

trajectory tracking defined by the user. Assume that there exists a symmetric 

positive definite matrix 𝑃 and 𝑄 ≥ 𝛼𝐼𝑛 where 𝛼 > 0, such that  

−𝑄(𝑒𝑇𝑀𝑒, ∆𝐾Γ−1∆𝐾𝑇) = 𝐴𝑚
𝑇[𝑃 − 𝑉𝑓𝑒𝑀] + [𝑃 − 𝑉𝑓𝑒𝑀]𝐴𝑚,  

(𝑒, ∆𝐾) ∈ 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶 
(3.57) 

If 𝑒(0), ∆𝐾(0) ∈ 𝐶0\{0} then the control parameter update law  

�̇̂�𝑇 = −Γ𝜋(𝑡)𝑒𝑇(𝑡)[𝑃 − 𝑉𝑓𝑒𝑀]𝐵 × [𝐼𝑚 − 𝑉𝑓𝑘]
−1 (3.58) 

The control law (3.47) with the parameter update law given in (3.58) ensures that 

if the set 𝐺𝛼,𝜋∗ ⊂ 𝐶
0 then 𝑒(𝑡), ∆𝐾(𝑡) ∈ 𝐶0 for  𝑡 ≥ 𝑡0. The derivation of the control 

law is given in Appendix – A.4.  

3.3.3 Stable Adaptive Controller Design in the Presence of 

Actuator Constraints 

 Input saturation or actuator saturation is a characteristic of all physical 

systems. In addition, the control designer also introduces additional saturation as 

part of control allocation or to improve the system transient responses. A linear 

system becomes nonlinear with the introduction of saturation. This will introduce 

null controllable regimes where no control strategy can bring the system to a 

particular equilibrium. The best we can achieve is to maximise the domain of 

attraction within the boundaries imposed by these null control domains. This is a 

problem for both adaptive and non-adaptive control systems. Several strategies are 
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available for non-adaptive systems to tackle these problems. These strategies can 

be extended to the proposed controllers. The techniques available in the literature 

to handle the input saturation for adaptive controllers are limited.  

 Adaptive controllers proposed in sections 3.3.1 and 3.3.2 do not consider 

the actuator constraints such as position and slew rate constraints. Assuring stability 

of the adaptive controllers in the presence of actuator constraints is a very 

challenging problem. Theoretically justified and verifiable conditions for stable 

adaptation should be derived and control design should try to avoid actuator 

saturation criteria. Several design solutions are proposed in the literature which 

includes modification of the adaptation gains of the control input, tracking error and 

reference model. The positive µ- modification described in [70] is modified for the 

adaptive PID controller to avoid actuator position and rate saturation. The actuator 

model used in this section considers both position and slew rate constraints. The 

system state equation is defined as  

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝑏𝜆𝑢(𝑡), 𝑥 ∈ 𝑅𝑛, 𝑢 ∈ 𝑅 (3.59) 

where, 𝐴 is the unknown plant matrix, 𝑏 is the known control direction and 𝜆 > 0 

is unknown positive constant which can be used to simulate actuator failures.  A 

second order actuator model can be written as 

�̈� + 2𝜉𝜔�̇� + 𝜔2𝛿 = 𝜔2𝛿𝑐 (3.60) 

where, 𝛿 is the actuator output, 𝛿𝑐 is the input, 𝜔 is the actuator bandwidth 

and 𝜉 is actuator damping. 𝑢(𝑡) in (3.59) is the actuator position 𝛿. Actuator 

model in (3.60) is written in state space as 

(�̇�
�̈�
) = (

0 1
−𝜔2 −2𝜉𝜔

) (
𝛿
�̇�
) (

0
𝜔2
)𝛿𝑐 (3.61) 

In order to impose the position constraint (±𝛿𝑚𝑎𝑥) and slew rate constraint 

(±�̇�𝑚𝑎𝑥), we shall use projection operator described in (3.32) and modify the 

actuator dynamics as follows. 

�̇�𝑎𝑐𝑡 = 𝑃𝑟𝑜𝑗(𝑥𝑎𝑐𝑡, 𝐴𝑎𝑐𝑡𝑥𝑎𝑐𝑡 + 𝐵𝑎𝑐𝑡𝛿𝑐) (3.62) 
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where, �̇�𝑎𝑐𝑡 = (
�̇�
�̈�
) , 𝑥𝑎𝑐𝑡 = (

𝛿
�̇�
) , 𝐴𝑎𝑐𝑡 = (

0 1
−𝜔2 −2𝜉𝜔

) , 𝐵𝑎𝑐𝑡 = (
0
𝜔2
) 

For this model, a convex function 𝑓(𝑥𝑎𝑐𝑡)=𝑓𝑎𝑐𝑡(𝛿,�̇�) which defines the projection 

operator can be selected as 

𝑓𝑎𝑐𝑡(𝛿,�̇�)=
(1 + 𝜀) (

𝛿2

𝛿𝑚𝑎𝑥
2 +

�̇�2

�̇�𝑚𝑎𝑥
2 ) − 1

𝜀
 (3.63) 

This leads to the following two convex sets 

Ω0 = {𝑓𝑎𝑐𝑡(𝛿,�̇�)≤ 0} = {|𝛿| ≤
𝛿𝑚𝑎𝑥

√1 + 𝜀
∧ |�̇�| ≤

�̇�𝑚𝑎𝑥

√1 + 𝜀
} 

Ω1 = {𝑓𝑎𝑐𝑡(𝛿,�̇�)≤ 1} = {|𝛿| ≤ 𝛿𝑚𝑎𝑥 ∧ |�̇�| ≤ �̇�𝑚𝑎𝑥} 

(3.64) 

From Lemma 3.2, it can be asserted that starting from any initial conditions in Ω0 

which satisfies the bounds on slew rate and position, the actuator states will not 

leave Ω1. The ideal reference model state equation of the plant in (3.59) can be 

written as 

�̇�𝑚
∗ (𝑡) = 𝐴𝑚𝑥𝑚

∗ (𝑡) + 𝑏𝑚𝑟(𝑡), 𝑥𝑚
∗ ∈ 𝑅𝑛, 𝑟 ∈ 𝑅  (3.65) 

Control command deficiency is defined as  ∆𝑢𝑐 = 𝛿 − 𝑢𝑐. Here 𝛿 is the slew rate 

limited and position limited output of the actuator. Adaptive control law can be 

written as 

𝑢𝑐 = 𝑘𝑥
𝑇𝑥 + 𝜇∆𝑢𝑐 = 𝑢𝑙𝑖𝑛 + 𝜇∆𝑢𝑐 (3.66) 

where,  𝑢𝑙𝑖𝑛 = 𝑘𝑥
𝑇𝑥 and 𝜇∆𝑢𝑐 is the control deficiency feedback.   

Adaptive control with  𝜇-modification is given as a convex combination of 𝑢𝑙𝑖𝑛 

and  𝛿𝑙𝑖𝑛. Here  𝛿𝑙𝑖𝑛 is the output of the actuator model in (3.62) when 𝑢𝑙𝑖𝑛 is the 

input to the actuator model.  𝑢𝑐 is defined as 

𝑢𝑐 =
1

1 + 𝜇
(𝑢𝑙𝑖𝑛 + 𝜇 𝛿𝑙𝑖𝑛) (3.67) 
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Here 𝑢𝑐 is a convex combination of 𝑢𝑙𝑖𝑛 and  𝛿𝑙𝑖𝑛, i.e., the coefficients (
1

1+𝜇
) and 

(
𝜇

1+𝜇
) are positive and is equal to 1 when added. Substituting (3.66) in (3.59) we 

get the closed-loop state equation as 

�̇� = 𝐴𝑥 + 𝑏𝜆𝑢𝑐 + 𝑏𝜆(𝑢 − 𝑢𝑐) 𝑤ℎ𝑒𝑟𝑒, ∆𝑢 = 𝑢 − 𝑢𝑐 

= 𝐴𝑥 + 𝑏𝜆𝑢𝑙𝑖𝑛 + 𝑏𝜆(𝜇∆𝑢𝑐 + ∆𝑢) 𝑤ℎ𝑒𝑟𝑒, ∆𝑢𝑙𝑖𝑛 = 𝜇∆𝑢𝑐 + ∆𝑢 

= (𝐴 + 𝑏𝜆𝑘𝑥
𝑇)𝑥 + 𝑏𝜆𝑢𝑙𝑖𝑛 + 𝑏𝜆(∆𝑢𝑙𝑖𝑛) 

(3.68) 

In order to satisfy the matching criteria, the reference state equation is modified as 

�̇�𝑚 = 𝐴𝑚𝑥𝑚 + 𝑏𝑚(𝑟(𝑡) + 𝑘𝑢∆𝑢𝑙𝑖𝑛) 

𝐴 + 𝑏𝜆𝑘𝑥
𝑇 = 𝐴𝑚 ; 𝑏𝜆 = 𝑏𝑚𝑘𝑢 

(3.69) 

Tracking error and Parameter errors are defined as 

𝑒 = 𝑥 − 𝑥𝑚; ∆𝑘𝑥 = 𝑘𝑥 − 𝑘𝑥
∗ ; ∆𝑘𝑢 = 𝑘𝑢 − 𝑘𝑢

∗  (3.70) 

Tracking error dynamics 

�̇� = 𝐴𝑚𝑒 +𝑏𝜆(∆𝑘𝑥
𝑇𝑥 −𝑏𝑚∆𝑘𝑢∆𝑢𝑙𝑖𝑛) (3.71) 

Lyapunov function is 

𝑉(𝑒, ∆𝑘𝑥, ∆𝑘𝑢) = 𝑒
𝑇𝑃𝑒 +𝜆(∆𝑘𝑥

𝑇Γ𝑥
−1∆𝑘𝑥 + 𝛾𝑢

−1∆𝑘𝑢
2) (3.72) 

Adaptation laws are derived for stability as given below 

�̇�𝑥 = −Γ𝑥𝑥𝑒
𝑇𝑃𝑏 

�̇�𝑢 = −γ𝑢∆𝑢𝑙𝑖𝑛𝑒
𝑇𝑃𝑏𝑚 

(3.73) 

This control law ensures the convergence of tracking error while maintaining the 

actuator deflections within the safe limit.   

3.4 State Estimation and Noise Filtering Using EKF  

 The proposed control laws use full state feedback. In the case of launch 

vehicles, only attitude and attitude rate measurements are available. The remaining 
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states are to be estimated from the available measurements which can be noisy as 

seen from the simulation results presented in section 2.4. It is observed that the 

white noise added to the rate outputs enters the control loop; hence, control signals 

and responses are noisy. This has to be suppressed as the noise in the control signals 

can excite high frequency dynamics such as slosh and flexibility. An Extended 

Kalman Filter (EKF) is proposed for state estimation and noise filtering [71]. It has 

the advantage that the perturbations include only the state estimation errors, which 

are generally smaller than the deviations from any pre-defined nominal trajectory; 

hence, the linear approximations are good but have larger computational effort. 

Plant and measurement models are given below: 

Plant:                    �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑡) + 𝑤(𝑡),   𝑤(𝑡)~𝒩(0, 𝑄(𝑡))  (3.74) 

Measurement:      𝑧(𝑡) = ℎ(𝑥(𝑡), 𝑡) + 𝑣(𝑡) , 𝑣(𝑡)~𝒩(0, 𝑅(𝑡)) (3.75) 

Plant noise:      

𝐸〈𝑤(𝑡)〉 = 0 

𝐸〈𝑤(𝑡)𝑤𝑇(𝑠)〉 = 𝛿(𝑡 − 𝑠)𝑄(𝑡) 

 

(3.76) 

Measurement noise: 

𝐸〈𝑣(𝑡)〉 = 0 

𝐸〈𝑣(𝑡)𝑣𝑇(𝑠)〉 = 𝛿(𝑡 − 𝑠)𝑅(𝑡) 

 

         

 

        (3.77) 

Differential equation of the state estimate is 

�̂��̇�(𝑡) = 𝑓(�̂�(𝑡), 𝑡) + �̅�(𝑡)[𝑧(𝑡) − �̂�(𝑡)] 

 

(3.78) 

Predicted Measurement 

�̂�(𝑡) = ℎ(�̂�(𝑡), 𝑡) 

 

(3.79) 

Linear approximation equations 

𝐹[1](𝑡) ≈
𝜕𝑓(𝑥, 𝑡)

𝜕𝑥
|
𝑥=�̂�(𝑡)

 

𝐻[1](𝑡) ≈
𝜕ℎ(𝑥, 𝑡)

𝜕𝑥
|
𝑥=�̂�(𝑡)

 

 

 

 

(3.80) 

Kalman Gain 

�̇�(𝑡) = 𝐹[1](𝑡)𝑃(𝑡) + 𝑃(𝑡)𝐹[1]𝑇(𝑡) − �̅�(𝑡)𝑅(𝑡)�̅�𝑇(𝑡) 

�̅�(𝑡) = 𝑃(𝑡)𝐻[1](𝑡)𝑅−1(𝑡) 

 

 

(3.81) 
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3.5 Results and Discussions  

 In this chapter, the rigid body model presented in chapter 2 is augmented 

with slosh and flexibility dynamics. The adaptive control law is modified using 

projection operator and BLF. These controllers demand full state information for 

feedback and these are estimated from available noisy measurements using an EKF.  

 The proposed adaptive control laws are tested in two simulation conditions 

and the results are compared with the controller using quadratic Lyapunov 

functions. First, the tracking capability is demonstrated using a ramp input. The 

launch vehicle will be experiencing ramp commands in response to wind shears. 

An open-loop guidance profile that is biased to a wind measured on the day of 

launch is used. The typical guidance profile is used to demonstrate the tracking 

capability and stability of the various dynamics that are excited due to the variations 

in the command profile.  

 To show the superiority of the proposed control parameter update laws (i) 

studies are conducted to demonstrate the robustness by perturbing the plant 

parameters within specified limits as well as beyond and (ii) to show the wind 

disturbance rejection capability and the stability of various dynamics, a synthetic 

wind profile is injected to the nominal and perturbed plant.  

 Three adaptive controllers are designed for a plant with slosh and flexibility 

and the resulting closed-loop plants are simulated with ramp and typical guidance 

commands. The plant is simulated from lift-off till 100 s. During the atmospheric 

phase of the flight, the purpose of the controller is to stabilise the vehicle dynamics 

and follow the guidance commands to reduce the load on the vehicle. Gaussian 

white noise is applied to the rate sensor output and a nonlinear second order actuator 

model is used in simulations.  

 The reference models are varied with respect to time. These models are 

selected in such a way that the plant stability is ensured in the sense of classical 

control stability margins [aero margin (gain reduction margin), phase margin and 
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gain margin]. The bandwidth for the reference model is selected in such a way that 

actuator saturation is avoided.  

 

Figure 3. 4  Slosh Parameter Variations 

 The plant parameters are varying with respect to time. Rigid body plant 

parameter and control parameter variations are already given in Chapter 2. Fig. 3.4 

shows the slosh parameter (pendulum frequency, moment arm and moment 

coefficient) variations. The frequency of the slosh mode depends on the vehicle's 

acceleration and the slosh moment arm depends on the location of the hinge point 

of the pendulum with respect to the vehicle's center of gravity. Flexible mode 

frequency, generalised mass and mode shape are depending on the mass distribution 

and vary with respect to time. 

3.5.1 Nominal Plant Simulated with a Ramp Command  

In this case, nominal values of the plant parameters are considered and 

simulation is carried out for about 100 s. A ramp command is applied to the closed-

loop plant.  Fig. 3.5 and Fig. 3.6 show that attitude tracking is achieved in all three 

update algorithms with very low tracking error. In specific, the controller using BLF 
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responds to the ramp command with the least tracking error compared to the 

projection algorithm and quadratic Lyapunov functions.  

 
Figure 3. 5  Attitude Tracking by Different Controllers with Ramp Command 

 

 

Figure 3. 6  Attitude Tracking Error of Different Controllers with Ramp 

Command 
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Figure 3. 7  Control Responses of Different Controllers for Ramp 

Command 

 

Slosh and flexibility effects are not seen as significant in all the controller 

responses as shown in Fig. 3.7. This indicates that there is less interaction between 

control-structure and slosh dynamics. In general, slosh and flexible modes are 

excited whenever some excitations are in the command or some excursions are in 

the plant parameters. From Fig. 3.8, it is evident that the various modes excited are 

damped out; hence, the closed-loop stability is achieved for all modes. Fig. 3.9 

shows the noisy rate output measured by the sensor, the actual rate from simulations 

and the rate estimated by EKF. It can be seen that the EKF gives a very accurate 

estimate of the original state from the noisy measurement. 
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Figure 3. 8  Attitude Rate for Ramp Command Tracking 

 

Figure 3. 9  Attitude Rate Estimated using EKF 

3.5.2 Perturbed Plant Responses to a Ramp Command 

 In order to assess the robustness of the control schemes, plant (aero, 

flexibility and slosh) parameters are perturbed beyond 3-𝜎 levels (ie. ±10% in 
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thrust, 30% in aerodynamic coefficients, ±15% in slosh and flexible mode 

frequency, 100% in mode shape perturbation with sign reversal, 15% in mass and 

inertia). Fig. 3.10 shows the rigid body plant parameters under perturbed conditions. 

Attitude tracking for the perturbed plant is shown in Fig. 3.11 and Fig. 3.12 show 

the attitude tracking error for various controllers. It is observed that integral 

absolute error is the least for projection based controller with the highest control 

demand. Plant parameter excursions due to aero perturbation are significant during 

the transonic regime (40-60 s). This causes a sudden jump in the control commands 

seen in Fig. 3.13.  Fig. 3.14 gives the attitude rate due to slosh and flexible modes 

under excited conditions. The oscillations introduced in attitude rate due to slosh 

and flexible mode excitation are damped out quickly, showing the designed 

controllers' stability and robustness. 

 

Figure 3. 10  Perturbed Plant Parameters – Rigid Body 
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Figure 3. 11  Attitude Tracking of Perturbed Plant for Ramp Command 

 

 

Figure 3. 12  Attitude Tracking Error of Perturbed Plant for Ramp Command   
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Figure 3. 13  Control Responses of Perturbed Plant for Ramp Command 

 

 

 

Figure 3. 14  Attitude Rate of Perturbed Plant for Ramp Command   
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Results of the simulations with various controllers under nominal and off-nominal 

conditions are given in Table 3.1. It can be seen that the performances of all the 

controllers are comparable. 

Table 3. 1 Performance Evaluation of Different Adaptive Controllers for a 

Ramp Command  

 Under nominal condition Under perturbed condition 

Control 

Schemes 

Barrier 

Lyapunov 

Projection 

Based 

Quadratic 

Lyapunov 

Barrier 

Lyapunov 

Projection 

Based 

Quadratic 

Lyapunov 

Integral 

Absolute 

Error 

(deg) 

0.0477 0.1176 0.1188 0.1270 0.0768 0.1379 

Control 

effort 

(deg) 

845.9551 841.55 841.32 1698.1 1707.2 1698.1 

 

3.5.3 Robustness Verification  

 It is noted that the control signals are not saturated for the cases discussed 

in sections 3.5.1 and 3.5.2.  In order to assess the limit of the robustness of the 

controllers, the perturbation levels of the aero parameters are increased such that 

control is saturated beyond which the system becomes uncontrollable. From Fig. 

3.15, it can be inferred that the controller using BLF handles the highest level of 

aerodynamic parameter perturbation, followed by the controller using the 

projection operator. Fig. 3.16 shows the attitude tracking and Fig. 3.17 gives the 

controller output under this worst perturbation. Attitude rate signals shown in Fig. 

3.18 have more oscillations with slower convergence for quadratic Lyapunov 

function, whereas the proposed methods show converging stable oscillations 

similar to nominal plant even with higher level of perturbation. Since BLF based 

controller handles higher perturbation levels, it shows more tracking error. This 

study indicates that BLF based controller is giving the best performance and 

stability (similar to nominal) for the highest level of perturbations, followed by 

projection based controller. Quadratic Lyapunov based controller lacks robustness 



82 

 

in presence of non-parametric uncertainties and un-modelled dynamics like non-

linear actuator. 

 
Figure 3. 15 Plant Parameter Perturbation Tolerable by Different Controllers 

 
Figure 3. 16  Tracking of Ramp Commands by Different Controllers for the 

Plant Parameters Perturbed to the Limit 
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Figure 3. 17  Control Response of Different Controllers for the Plant Parameters 

Perturbed to the Limit 

 
Figure 3. 18  Attitude Rate of Different Controllers for the Plant Parameters 

Perturbed to the Limit 
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3.5.4 Nominal Plant with a Typical Guidance Command 

 As explained in chapter 2, SLV’s, during the atmospheric phase do not face 

continuous ramp commands. Closed Loop Guidance (CLG) typically will not be 

used during the atmospheric phase of flight. Attitude steering commands will be 

biased to a wind measured before the launch and will be stored onboard as a 

function of altitude to reduce the loads due to AoA build-up. CLG will start after 

the atmosphere is over to manoeuvre the SLV to the desired orbit. In the first stage, 

the autopilot should follow the open-loop guidance commands as close as possible 

to reduce the angle of attack build-up due to tracking error and reduce the trajectory 

deviations so that the CLG can start with benign initial conditions. This will 

increase the fuel margin, which is most desirable for guidance design.   

 Fig. 3.19 to Fig. 3.22 show the responses of various adaptive controllers 

compared with the responses of gain scheduled controller to a typical guidance 

command for a nominal plant.  The plant simulated has high aerodynamic 

instability. Slosh and flexible mode frequency are very close to the rigid body 

frequency. Since the plant is having high √𝜇𝛼, the gain scheduled controller is 

designed with high bandwidth to ensure specified margins for rigid body. This 

causes interactions with slosh and flexibility dynamics. The open-loop steering 

command starts around 7 s and provides larger excitation to the slosh and flexible 

modes as seen in Fig. 3.22. The oscillations are converging, which shows the 

stability of the closed-loop system. The gain-scheduled controller is not able to 

provide sufficient stability and damping to the higher modes like adaptive 

controllers. This is the limitation of the gain scheduled controllers. It is observed 

that all adaptive controllers give almost the same performance for the nominal plant. 

Since similar observations are seen for the case of perturbed plant, figures are not 

included. 
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Figure 3. 19  Attitude Tracking by Different Controllers for Nominal Plant 

with Typical Open Loop Guidance Command 

 

 
Figure 3. 20  Attitude Tracking Error by Different Controllers for Nominal 

Plant with Typical Open Loop Guidance Command 
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Figure 3. 21  Control Response for Typical Open Loop Guidance Command by 

Different Controllers for Nominal Plant 

 

 
Figure 3. 22  Attitude Rate for Typical Open Loop Guidance Command by 

Different Controllers for Nominal Plant 



87 

 

The tracking error and control demand for the nominal and perturbed plant are given 

in Table 3.2. It is noted that the performances of all the controllers are very close 

under normal and perturbed plant conditions.  

Table 3. 2  Comparison of the Performance of Different Controllers for 

Typical Guidance Commands 

 Under nominal condition Under perturbed condition 

Control 

Schemes 

Barrier 

Lyapunov 

Projection 

Based 

Quadratic 

Lyapunov 

Barrier 

Lyapunov 

Projection 

Based 

Quadratic 

Lyapunov 

Integral 

Absolute 

Error 

(deg) 

0.0839 0.0833 0.0836 0.0836 0.0843 0.0836 

Control 

effort 

(deg) 

8.1524 8.1444 8.1302 16.5957 16.6606 16.5958 

3.5.5 Disturbance Rejection Studies 

A synthetic wind profile consists of shear and a tuned gust to excite the flexible and 

slosh modes. This profile is applied to the plant as a disturbance. Aerodynamic 

parameter variation is large between 40 to 50 s and the aerodynamic disturbance 

moment coefficient peaks around this time.  The wind gust is applied around 45 s 

where the aerodynamic disturbance is at its peak. Wind disturbance rejection of 

various controllers are demonstrated in Fig. 3.23. All the controllers show almost 

the same performance until the wind gust is applied. After applying wind gust, the 

AoA oscillates at slosh and bending mode frequency which are very close. The 

tracking and disturbance rejection performance of the three controllers are given 

from Fig. 3.24 to Fig. 3.26.  The wind gust, along with the jump in the plant 

parameters cause the control command to jump and hence the bending modes and 

slosh modes are excited.  

 Attitude tracking performance in the presence of wind is shown in Fig. 3.24 

and Fig. 3.25. It can be seen that tracking is good till 40 s where a large wind shear 

comes. At 45 s, a gust is also applied. Fig. 3.26 and Fig. 3.27 show the control 

signals and Fig. 3.28 gives the attitude rates. Slosh pendulum angles are shown in 

Fig. 3.29 and Fig. 3.30. Corresponding bending mode generalised co-ordinates are 
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given in Fig. 3.31. It can be seen that the slosh pendulum and the bending mode are 

excited due to the wind shear, gust and control signal. Slosh pendulum angles and 

bending mode signals converge, showing the controllers' stability property. But the 

convergence is poor for quadratic Lyapunov based controller compared to the other 

two controllers. Projection based controller shows the highest stability compared to 

the other schemes. This is because the convex function used in the projection based 

controller is defined in such a way that the controller gains are allowed to vary only 

between the stability boundaries. 

 
Figure 3. 23  Comparison of Wind Disturbance Rejection Capability of 

Different Controllers for Perturbed Plant 
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Figure 3. 24  Attitude Tracking and Wind Disturbance Rejection for Typical 

Guidance Command by Different Controllers for Perturbed Plant 

 

 
Figure 3. 25  Attitude Tracking Error for Typical Guidance Command by 

Different Controllers for Perturbed Plant with a Wind Disturbance 
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Figure 3. 26  Control Response for Typical Guidance Command by Different 

Controllers for Perturbed Plant with a Wind Disturbance 

 

 
Figure 3. 27  Control Response by Different Controllers: Fig.3.26 Zoomed 

from 35 s to 80 s 
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Figure 3. 28  Attitude Rate Response for Typical Guidance Command by 

Different Controllers for Perturbed Plant with a Wind Disturbance 

 

 
Figure 3. 29  Slosh Pendulum Angles in Response to Typical Guidance 

Commands for Perturbed Plant with Wind Disturbance 
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Figure 3. 30  Slosh Pendulum Angles for Perturbed Plant: Fig 3.29 Zoomed 

from 35 s to 80 s 

 

 
Figure 3. 31  Bending Mode Generalised coordinate in Response to Typical 

Guidance Commands for Perturbed Plant with Wind Disturbance 



93 

 

3.5.6 Studies with Actuator Saturation Avoidance Algorithm 

 Studies are done on the perturbed plant with the adaptive controller, which 

avoids actuator saturation. The non-linear actuator is modelled using a projection 

operator, which imposes a limit on actuator position and slew rate with a safe limit. 

Actuators are nearly saturated during the high dynamic pressure regime for the 

perturbed plant when a ramp command is applied. The algorithm tries to limit the 

actuator commands within the safe limit. This causes oscillations in the control 

signal, which excites the slosh and bending mode dynamics.  

 
Figure 3. 32  Control Output of the Stable Adaptive Controller that Avoids 

Actuator Saturation 

Fig. 3.32 and Fig. 3.33 show the control signals for different safe limits on actuator 

position and slew rate. When the safe limit is increased, the amplitude of the control 

oscillations increases and results in higher mode excitations, as observed in Fig. 

3.34 - Fig. 3.36. Control signals were oscillating at slosh frequency in the high Q 

regime due to aero parameter variations till the safe limit of the control deflection 

was exceeded. Because of the oscillations in the control signal, flexibility also gets 
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excited, as evident from Fig. 3.34. Since this control algorithm is causing 

excitations of the higher modes, it is not proposed for the SLV plant with slosh and 

flexibility during the atmospheric phase of flight. However, this algorithm can be 

proposed for the upper stages under actuator failure conditions. This can be a future 

research direction. Actuator saturation can be avoided in the projection based and 

BLF based controllers through proper selection of the bounds and the reference 

model. 

 
Figure 3. 33  Control Output of the Stable Adaptive Controller that Avoids 

Actuator Saturation – Fig 3.32 Zoomed from 50 s to 70 s 
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Figure 3. 34  Attitude Rate Response of the Stable Adaptive controller that 

Avoids Actuator Saturation–Zoomed from 50 s to 70 s 

 

 
Figure 3. 35  Slosh Pendulum Angles –Zoomed from 50 s to 70 s 
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Figure 3. 36  Bending Mode Generalized coordinates –Zoomed  

 

3.6 Summary 

Major contributions in this chapter are as follows: 

 Slosh and flexibility dynamics are introduced in the existing rigid body SLV 

model and states of those dynamics are estimated using EKF from available noisy 

measurements. The projection operator and BLF are used to update the parameters 

of the MRAC. Robustness of the proposed algorithms to parametric uncertainties 

and unmodelled dynamics are demonstrated. The results are compared with existing 

Quadratic Lyapunov based MRAC and the gain scheduled classical controller. A 

control scheme is developed using Lyapunov theory to ensure the stability and 

performance of the proposed adaptive controllers in the presence of actuator 
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nonlinearities like position saturation and slew rate saturation. A set of theoretically 

justifiable and verifiable condition for stability of the adaptive controllers is found 

out. This algorithm excites the high frequency modes when the actuator operates 

near the safe limit and hence not proposed.  

 The simulation studies indicated that adaptive controllers based on 

Projection/Barrier Lyapunov functions provide excellent tracking error 

performance and robustness to parameter perturbations. All three controllers have 

shown almost the same performance for typical guidance commands. Adaptive 

control using BLF provided the least integral of absolute error for nominal plant 

whereas projection based controller has shown minimum integral of absolute error 

for perturbed plant compared to quadratic Lyapunov based controller. 

 It is found that the Barrier Lyapunov and projection based adaptive control 

provides the highest robustness to parameter perturbations during tracking, whereas 

quadratic Lyapunov method offers limited robustness.  During the perturbed 

condition, projection based adaptive controller exhibits maximum disturbance 

rejection followed by other methods. However, the quadratic Lyapunov based 

controller shows the least stability under perturbed condition. 

 Use of BLF and projection operators allows higher adaptation gains and 

tracking error was minimal in both cases. Both schemes restrict the adapted 

parameters within the specified boundary and remain stable throughout the 

simulation. The proposed control schemes are similar in performance under 

parameter perturbation and disturbance conditions. 
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Chapter 4 

Adaptive Control Designs for a Winged Re-Entry 

Vehicle  

4.1. Introduction 

 Reusable launch vehicles are getting developed to use multiple times to have 

low-cost access to space. The major challenge is the re-entry of the vehicle from 

outer space into the earth’s atmosphere. During the re-entry phase, several stringent 

constraints and unknown uncertainties come into action. Though RLV’s look like 

aircraft, they have to work for a large flight envelope, starting with hypersonic 

Mach numbers at the time of re-entry to landing at subsonic Mach numbers. There 

are several challenges unique to the RLV that makes the goal of such a “full 

envelope” flight control system more difficult to achieve than for a conventional 

airplane. The RLV experiences a wider range of dynamic pressure, Mach number, 

and mass properties during nominal and off-nominal flight. The dynamics of RLV 

change dramatically as the velocity and altitude go through a wide range of flight 

envelope during its re-entry process. As a result, the dynamic model of RLV is 

highly nonlinear, strongly coupled and fast time-varying, with large parameter 

uncertainties, environmental disturbances and un-modelled dynamics. Hence the 

flight control system for RLV should be robust, adaptive and reconfigurable. Thus, 

to assure a safe and reliable re-entry flight, it is significant for an RLV to track the 

guidance commands more accurately and rapidly while improving the robust 

performance.  

 Flight control system design for open loop stable aircraft is done using 

conventional classical analytical tools. These methods are iterative in which the 

nonlinear, coupled, time-varying plant dynamics is decoupled and linearised about 

several operating points in the flight envelope [6]. For such systems, classical 

controllers are designed for large stability margins about the operating points, 
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ensuring robustness towards the parameter perturbations. On the other hand, 

modern aircraft and winged re-entry vehicles have highly coupled nonlinear 

dynamics and has to work for a large flight envelope. Hence the system 

nonlinearities can be handled by designing nonlinear controllers which are free 

from approximations. For these systems, large parameter variations can be handled 

by building adaptive mechanisms in the controller [3]. However, ensuring stability 

and robustness to large parameter variations with different environmental 

conditions is challenging. 

The modified adaptive controllers developed in chapter 3 are applied to a 

winged re-entry vehicle to track the angle of attack and bank angle commands 

during the approach and landing phase of an RLV mission. The six DoF rigid body 

equations are developed and a control design-oriented model is developed from 

these equations using various assumptions. Here the projection operator is re-

defined to constrain the gains within the upper and lower bounds. Both the 

trajectory tracking error and gains are constrained using BLF. Tracking capability, 

robustness and disturbance rejection properties are demonstrated using extensive 

simulations. 

4.2. Modelling of an RLV in the Descent Phase  

 The model of RLV during the descent phase is same as that of an aircraft. 

Six-degrees-of-freedom (6-DoF) rigid body equations for an aircraft can be 

obtained based on Newton’s second law of motion [72][73][74][75]. These 

equations are derived in the aircraft-fixed body axes coordinate system as shown in 

Fig. 4.1.  The origin is fixed at the CG of the vehicle. 

 The dynamics consists of 3 translational and 3 rotational DoF. The 

translational motion is described by the forward velocity 𝑢 along the fuselage (𝑥 

axis), lateral velocity 𝑣 along the right wing (𝑦 axis) and the vertical velocity 𝑤 

positive down and along the body 𝑧 axis. The three rotational DoF are given by 

body roll rate 𝑝 about the 𝑥 axis, pitch rate 𝑞 about 𝑦 axis and yaw rate 𝑟 about 𝑧 

axis. The 6-DoF rigid body equations for an RLV can be written as follows. 
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Figure 4. 1  RLV Co-ordinate System 

The translational dynamics is  

𝑚(
�̇�
�̇�
�̇�
) = − [(

𝑝
𝑞
𝑟
) ×𝑚(

𝑢
𝑣
𝑤
)] + (

𝐹𝑥
𝐹𝑦
𝐹𝑧

)

+𝑚‖�⃗�‖(

−sin (𝜃)

cos(𝜃) sin (𝜑)

cos(𝜃) cos (𝜑)

) 

(4.1) 

The rotational dynamics is  

𝐼 (
�̇�
�̇�
�̇�

) = − [(
𝑝
𝑞
𝑟
) × 𝐼 (

𝑝
𝑞
𝑟
)] + (

𝐿
𝑀
𝑁
) (4.2) 

where, 𝑚 is the mass of the RLV, �⃗� is the gravity vector which is expressed in the 

body axes coordinates and 𝐼 is the inertia matrix and 𝐿, 𝑀, 𝑁 are the moments about 

the XB, YB, ZB axes. Here 𝜑 is the vehicle bank angle (positive when aircraft right 

wing is down), 𝜃 is the pitch angle (positive when the nose is up) and 𝜓 is the true 

heading angle (clockwise rotation of the aircraft nose from the true north direction 

is positive). The three Euler angles (𝜃, 𝜓, 𝜑) are the inertial angular orientation of 

the rigid body or the instantaneous orientation of the body coordinate system with 
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respect to earth fixed (inertial) frame of reference. The kinematic relation between 

the Euler angle dynamics with the body rates is 

(

�̇�

�̇�
�̇�

) =

(

 

1 sin (𝜑) tan(𝜃) cos (𝜑) tan(𝜃)

0 cos (𝜑) −sin (𝜑)

0
sin (𝜑)

cos(𝜃)

cos (𝜑)

cos(𝜃) )

 (
𝑝
𝑞
𝑟
) (4.3) 

𝐹𝑥, 𝐹𝑦 and 𝐹𝑧 are the components of forces due to aerodynamics and propulsion 

acting on the vehicle. In this study, the RLV is performing an unpowered flight 

during descent phase. Hence the forces are due to aerodynamics and are often 

resolved into two perpendicular components. The lift force is perpendicular to the 

vehicle true air speed vector (𝑉𝑇) and the drag force is opposing the vehicle motion 

along the airspeed direction. These forces depend on the angle-of-attack (α), which 

is the angle between the longitudinal (𝑥) axis, the projection of the true airspeed 

vector on the plane of symmetry (𝑥𝑧 plane) and dynamic pressure 𝑄 =
1

2
𝜌𝑉𝑇

2 

where, 𝜌 is the air density which is dependent on the altitude (ℎ).  The aero data 

measurements (𝑉𝑇 , 𝛼, 𝛽) can be written as 

𝑉𝑇 = √𝑢2 + 𝑣2 + 𝑤2 

𝛼 = 𝑡𝑎𝑛−1 (
𝑤

𝑢
) , 𝛽 = 𝑠𝑖𝑛−1 (

𝑣

𝑉𝑇
) 

(4.4) 

The lift and drag forces can be resolved into the body coordinate system as follows: 

𝑋𝑎 = 𝐿 sin(𝛼) − 𝐷 cos (𝛽)cos (𝛼) 

𝑌𝑎 = 𝐷 𝑠𝑖𝑛(𝛽) 

𝑍𝑎 = −𝐿 cos(𝛼) − 𝐷 cos(𝛽) sin (𝛼) 

(4.5) 

Substituting (4.5) in (4.1), we get 

�̇� = 𝑟𝑣 − 𝑞𝑤 +
𝐿

𝑚
sin(𝛼) −

𝐷

𝑚
cos(𝛽) cos(𝛼) − ‖�⃗�‖ sin(𝜃) 

�̇� = 𝑝𝑤 − 𝑟𝑢 +
𝐷

𝑚
sin(𝛽) + ‖�⃗�‖ cos(𝜃) sin (𝜑) 

(4.6) 
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�̇� = 𝑞𝑢 − 𝑝𝑣 −
𝐿

𝑚
cos(𝛼) −

𝐷

𝑚
cos(𝛽) sin(𝛼)

+ ‖�⃗�‖ cos(𝜃) cos (𝜑) 

 In order to write the position dynamics equations, we need to consider the 

relationship between the body fixed velocities (𝑢, 𝑣, 𝑤) and inertial velocities in 

north-east-down frame (𝑥,̇ �̇�, ℎ̇). 

(

�̇�
�̇�

−ℎ̇

)

= (

1 0 0
0 cos(𝜑) sin(𝜑)

0 − sin(𝜑) cos(𝜑)
) (
cos(𝜃) 0 − sin(𝜃)
0 1 0

sin(𝜃) 0 cos(𝜃)
) (

cos(𝜓) sin(𝜓) 0

− sin(𝜓) cos(𝜓) 0
0 0 1

)(
𝑢
𝑣
𝑤
) 

(4.7) 

 The inertial positions (𝑥, 𝑦, ℎ) are derived by integrating these velocities. 

Inertial position and velocity information is required by the guidance algorithm 

design. This information is very significant during landing and take-off. This is a 

fully coupled 6 DoF model and there are 12 states, namely, 

𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, 𝜑, 𝜃, 𝜓, 𝑥, 𝑦, ℎ.  

 The RLV considered here is an unpowered vehicle. The control in pitch, 

yaw and roll planes is achieved by deflecting the control surfaces. Usual aircraft, 

roll control is through differential deflection of two ailerons (on the left and right 

wings) and pitch control is through elevators near the tail. The rudders, which are 

control surfaces on the vertical tail, control the yawing motion. For the RLV, for 

which the control design is attempted, pitch control and roll control are through a 

set of elevons (elevator + aileron) on the two wings. However, for modelling 

purposes, the control deflection required for roll (𝛿𝑎𝑖𝑙), pitch (𝛿𝑒) and yaw (𝛿𝑟𝑢𝑑) 

are taken separately. Hence the input vector is 

�⃗⃗� = (𝛿𝑎𝑖𝑙, 𝛿𝑒 , 𝛿𝑟𝑢𝑑)
𝑇 (4.8) 

The vehicle dynamics can be modified and manoeuvred through appropriate 

selection of the control input. The RLV is fitted with several sensors on its body to 

measure different physical variables. The body angular rates (𝑝, 𝑞, 𝑟) are measured 

by the gyroscopes usually located near the CG of the vehicle. These measurements 
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can be used to get the Euler angles (𝜑, 𝜃, 𝜓). In addition to these, accelerometers 

are used to measure the body acceleration 𝐴𝑥 , 𝐴𝑦, 𝐴𝑧 (load in longitudinal, lateral 

and vertical). The air-data system measures the true airspeed, AoA and angle of 

side-slip. Hence, the output vector is 

�⃗� = [𝐴𝑥, 𝐴𝑦, 𝐴𝑧 , 𝑉𝑇 , 𝛼, 𝛽, 𝑝, 𝑞, 𝑟, 𝜑, 𝜃, 𝜓]
𝑇 (4.9) 

This fully coupled 6 DoF model will result in impractical control solutions 

if used for control design. Hence there is a strong requirement to make a simplified 

control design-oriented model so that the resulting control solution will be simple, 

robust and works well with the real plant. The nonlinearities present in the model 

can be handled by using nonlinear controllers like dynamic inversion and 

backstepping control. These techniques avoid the linearisation of the plant 

dynamics about various operating points and gain scheduled controller design. 

Dynamic inversion requires the perfect model of the system to be controlled (which 

is practically impossible), so that all the nonlinearities are cancelled and desired 

dynamics are added [76][77][78][79]. Backstepping is a Lyapunov based method 

which ensures the stability of the system, but representing the performance 

specifications in the Lyapunov function is a challenge. In this chapter, the plant is 

linearized about the operating point and design adaptive controllers, ensuring 

stability and performance in the entire flight envelope. 

The 6 DoF equations can be linearised about an operating point (trim point). 

Trimming an aircraft means finding a balance between aerodynamic, propulsive 

and gravitational forces and moments that are acting on the vehicle constantly. It is 

done by deflecting primary controls to values that would result in the specified 

steady state conditions. In the case of RLV, only the moments can be balanced and 

the forces are continuously changed by the guidance system (trajectory controller) 

to satisfy various constraints and to safely land on the desired location. The adaptive 

controllers described in the following sections, control the rotational dynamics of 

the vehicle. The translational dynamics is being controlled by a guidance system.  

When the vehicle is trimmed about an operating point, the dynamics gets 

decoupled into longitudinal dynamics and lateral-directional dynamics. The 
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longitudinal dynamics describe the motion of the vehicle in forward, vertical planes 

and the rotation about the pitch (𝑌𝐵) axis. These dynamics can be further 

decomposed into fast (short period) and slow (phugoid) modes. The short period 

dynamics describes the fast coupling between the AoA (𝛼) and the pitch rate (𝑞). 

The phugoid mode is much slower compared to the short period mode. This 

represents the dynamical interchange between the vehicle’s kinetic and potential 

energy or the vehicle attitude and the airspeed. The aircraft longitudinal equations 

of motion after trimming with respect to an operating point can be written as 

(

�̇�𝑇
�̇�
�̇�

�̇�

) =

(

 
 

𝑋𝑉 𝑋𝛼 0
𝑍𝑉
𝑉0

𝑍𝛼
𝑉0

1 +
𝑍𝑞
𝑉0

𝑀𝑉 𝑀𝛼 𝑀𝑞

     

−𝑔 𝑐𝑜𝑠(𝛾0)
−𝑔 𝑠𝑖𝑛(𝛾0)

𝑉0
0

0       0     1               0       )

 
 
(

𝑣𝑇
𝛼
𝑞
𝜃

)

+

(

 
 

𝑋𝛿𝑒
𝑍𝛿𝑒
𝑉0
𝑀𝛿𝑒
0 )

 
 
𝛿𝑒 

(4.10) 

where,  𝑋𝑉 and 𝑋𝛼 are the aerodynamic stability derivatives of the forces in the 𝑋 

axis and 𝑋𝛿𝑒 is the force coefficient with respect to elevon deflection. 𝑍𝑉, 𝑍𝛼 are 

the force coefficient in Z axis and 𝑍𝑞 derivative of force in Z direction with respect 

to 𝑞 . 𝑀𝑉, 𝑀𝛼 and 𝑀𝑞 are the moment coefficients about the pitch axis and 𝑀𝛿𝑒is 

the pitching moment derivative with respect to elevon deflection. 𝑉0 is the trimmed 

velocity and 𝛼0 is the trimmed angle of attack. 

𝛾0 = 𝜃0 − 𝛼0 is the trimmed flight path angle and 𝜃0 is the trimmed pitch angle. 

The short period mode is defined by: 

(
�̇�
�̇�
) = (

𝑍𝛼
𝑉0

1 +
𝑍𝑞

𝑉0
𝑀𝛼 𝑀𝑞

)(
𝛼
𝑞) + (

𝑍𝛿𝑒
𝑉0
𝑀𝛿𝑒

)𝛿𝑒 (4.11) 

Short period mode is controlled by the attitude controller and the phugoid mode is 

controlled by the guidance system. 
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Lateral-directional dynamics 

Using the kinematic relationship between the Euler angle dynamics with the body 

rates as defined in (4.3), the Euler roll equation is written as follows 

�̇� = 𝑝 + tan (𝜃)(𝑞 sin(𝜑) + 𝑟 cos (𝜑)) (4.12) 

Let 𝜃0 be the trimmed pitch angle, then the linear approximation of (4.12) around 

the trim point (𝜑0 = 𝑝0 = 𝑞0 = 𝑟0 = 0) is  

�̇� = 𝑝 + 𝑟 tan (𝜃0)  (4.13) 

Stability axis roll and yaw rates (𝑝𝑠, 𝑟𝑠) are related to the body axis roll and yaw 

rates (𝑝, 𝑟) in the following way: 

𝑝𝑠 = 𝑝 𝑐𝑜𝑠(𝛼) + 𝑟 sin(𝛼) 

𝑟𝑠 = −𝑝 sin(𝛼) + 𝑟 cos (𝛼) 
(4.14) 

At the trim point this relation becomes 

𝑝𝑠 = 𝑝 𝑐𝑜𝑠(𝛼0) + 𝑟 sin(𝛼0) 

𝑟𝑠 = −𝑝 sin(𝛼0) + 𝑟 cos (𝛼0) 
(4.15) 

In order to get the body rates, inverse is taken 

𝑝 = 𝑝𝑠 𝑐𝑜𝑠(𝛼0) − 𝑟𝑠 sin(𝛼0) 

𝑟 = 𝑝𝑠 sin(𝛼0) + 𝑟𝑠 cos (𝛼0) 
(4.16) 

Substituting (4.16) in (4.13), we get 

�̇� = 𝑝𝑠 𝑐𝑜𝑠(𝛼0) − 𝑟𝑠 sin(𝛼0)

+ (𝑝𝑠 sin(𝛼0) + 𝑟𝑠 cos(𝛼0)) tan(𝜃0) 

= 𝑝𝑠(𝑐𝑜𝑠(𝛼0) + sin(𝛼0) tan(𝜃0)) + 𝑟𝑠(− sin(𝛼0)

+ cos(𝛼0) tan(𝜃0)) 

(4.17) 

We have, at zero bank angle and sideslip angle 

𝛼0 = 𝜃0 − 𝛾0 (4.18) 
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∴ 𝑐𝑜𝑠(𝛼0) + sin(𝛼0) tan(𝜃0)

= cos(𝜃0 − 𝛾0) + sin(𝜃0 − 𝛾0) tan(𝜃0)

=
cos(𝛾0)

cos(𝜃0)
 

−sin(𝛼0) + cos(𝛼0) tan(𝜃0) =
sin(𝛾0)

cos(𝜃0)
 

(4.19) 

Hence the bank angle dynamics can be written as 

�̇� =
cos(𝛾0)

cos(𝜃0)
 𝑝𝑠 + 

sin(𝛾0)

cos(𝜃0)
 𝑟𝑠 (4.20) 

Assuming small angles, the angle of sideslip dynamics can be written as 

�̇� =
1

𝑉0
(𝑌𝛽𝛽 + 𝑌𝑝𝑝𝑠 + 𝑌𝑟𝑟𝑠 + 𝑌𝛿𝑎𝑖𝑙𝛿𝑎𝑖𝑙 + 𝑌𝛿𝑟𝑢𝑑𝛿𝑟𝑢𝑑)

+ (
𝑔 cos (𝜃0)

𝑉0
)𝜑 − 𝑟𝑠 

(4.21) 

where, 𝑌𝛽, 𝑌𝑝, 𝑌𝑟 are the derivatives of the side force 𝑌 with respect to 𝛽 , 𝑝𝑠 and 𝑟𝑠 

and 𝑌𝛿𝑎𝑖𝑙 , 𝑌𝛿𝑟𝑢𝑑 correspond to those with respect to control deflections 𝛿𝑎𝑖𝑙 and 𝛿𝑟𝑢𝑑. 

The dynamics of 𝑝𝑠 and 𝑟𝑠 can be written as 

�̇�𝑠 = 𝐿𝛽𝛽 + 𝐿𝑝𝑝𝑠 + 𝐿𝑟𝑟𝑠 + 𝐿𝛿𝑎𝑖𝑙𝛿𝑎𝑖𝑙 + 𝐿𝛿𝑟𝑢𝑑𝛿𝑟𝑢𝑑 

�̇�𝑠 = 𝑁𝛽𝛽 + 𝑁𝑝𝑝𝑠 + 𝑁𝑟𝑟𝑠 + 𝑁𝛿𝑎𝑖𝑙𝛿𝑎𝑖𝑙 + 𝑁𝛿𝑟𝑢𝑑𝛿𝑟𝑢𝑑 
(4.22) 

where, Lβ, Lp and Lr are the rolling moment coefficients with respect to lateral–

directional states β, ps, rs. Lδail, Lδrud are rolling moment coefficients due to control 

surface deflections. Similarly, Nβ, Np, Nr, Nδail and Nδrud are the yawing moment 

coefficients with respect to β, ps, rs, Yδail and Yδrud. 

Using (4.20) to (4.22), the state-space representation of linearised lateral-directional 

dynamics can be written as 
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(

�̇�

�̇�
�̇�𝑠
�̇�𝑠

) =

(

 
 
 
 
0                   0           

𝑐𝑜𝑠(𝛾0)

𝑐𝑜𝑠(𝜃0)
      

𝑠𝑖𝑛(𝛾0)

𝑐𝑜𝑠(𝜃0)
 

𝑔
𝑐𝑜𝑠(𝜃0)

𝑉0
      
𝑌𝛽

𝑉0
           

𝑌𝑝

𝑉0
              

𝑌𝑟
𝑉0
− 1

0             𝐿𝛽                 𝐿𝑝        𝐿𝑟
0             𝑁𝛽                 𝑁𝑝        𝑁𝑟 )

 
 
 
 

 (

𝜑
𝛽
𝑝𝑠
𝑟𝑠

)

+

(

 
 

0
𝑌𝛿𝑎𝑖𝑙
𝑉0
𝐿𝛿𝑎𝑖𝑙
𝑁𝛿𝑎𝑖𝑙

     

0
𝑌𝛿𝑟𝑢𝑑
𝑉0
𝐿𝛿𝑟𝑢𝑑
𝑁𝛿𝑟𝑢𝑑

 

)

 
 
(
𝛿𝑎𝑖𝑙
𝛿𝑟𝑢𝑑

) 

(4.23) 

 This model has 2 inputs (𝛿𝑎𝑖𝑙, 𝛿𝑟𝑢𝑑) and four outputs 𝜑, 𝛽, 𝑝, 𝑟. From these 

measurements, 𝑝𝑠 and 𝑟𝑠 can be obtained by using AoA measurement. Here, both 

these inputs affect all the states. Also, an increase in side-slip angle can cause both 

yaw rate and roll rate. Hence this plant model is highly coupled and Multi Input 

Multi Output (MIMO) design techniques have to be used for the controller design. 

4.3. Adaptive Control Design  

 Longitudinal and lateral-directional models developed in the above section 

are used for the adaptive control development. Adaptive controllers developed in 

the previous chapter, for a flexible SLV can be used for this MIMO plant. However, 

a different projection operator is used for this plant, which will constrain the 

controller parameters within a minimum and maximum bound. 

4.3.1 Using Rectangular Projection Operator  

 In section 3.3, it is proven that the MRAC law derived using a standard 

quadratic Lyapunov function is not robust to non-parametric uncertainties. Hence, 

this control law is modified to achieve more robustness using the projection 

operator and BLF. In this section, an adaptive control law is derived using a 

rectangular projection operator to constrain the controller parameters within an 

upper and lower limit. The design philosophy is similar to that given in section 
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3.3.1. To derive a rectangular projection based control law, the plant and reference 

models are re-written here. 

�̇� = 𝐴𝑥 + 𝐵Λ(𝑢 + 𝜃𝑇Φ(x)) + 𝐵𝑚𝑢𝑐 + 𝜉(𝑡) 

𝑦 = 𝐶𝑥 
(4.24) 

𝜉(𝑡) is the uniformly bounded disturbance in 𝑅𝑛 and ‖𝜉(𝑡)‖ ≤ 𝜉𝑚𝑎𝑥 where, 

𝜉𝑚𝑎𝑥 ≥ 0. The diagonal positive-definite matrix Λ ∈ 𝑅𝑚×𝑚 and constant matrix 

𝜃 ∈ 𝑅𝑁×𝑚 represent the matched uncertainties. The pair (𝐴, 𝐵Λ) is controllable. 

The reference model for MRAC is given by  

�̇�𝑚 = 𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑢𝑐 

𝑦𝑚 = 𝐶𝑚𝑥𝑚 
(4.25) 

The control has to be designed in such a way that the system output (y) tracks the 

command 𝑢𝑐 in the presence of uncertainties keeping all the signals uniformly 

bounded in time. The feedback control law can be chosen in the form 

𝑢 = −Θ̂𝑇Φ(𝑥) (4.26) 

where, Θ̂ ∈ 𝑅𝑁×𝑚 is the matrix of parameters to be adapted. Using (4.26), the error 

dynamics can be written as 

�̇� = 𝐴𝑚𝑒 − 𝐵Λ∆𝜃
𝑇Φ(𝑥) + 𝜉(𝑡) (4.27) 

Lyapunov function is chosen as 

𝑉(𝑒, ∆𝜃) = 𝑒𝑇𝑃𝑒 + 𝑡𝑟𝑎𝑐𝑒(∆𝜃𝑇Γ𝜃
−1∆𝜃Λ) (4.28) 

where,  𝑒 = 𝑥 − 𝑥𝑚, ∆𝜃 = Θ̂ − 𝜃 is the parameter estimation error. 𝑃 is a positive 

definite matrix which is the solution of the algebraic Lyapunov equation 𝑃𝐴𝑚 +

𝐴𝑚
𝑇𝑃 = −𝑄,   𝑄 = 𝑄𝑇 > 0. 

�̇�(𝑒, ∆𝜃) = −𝑒𝑇𝑄𝑒 + 2𝑡𝑟𝑎𝑐𝑒 (∆𝜃𝑇 (Γ𝜃
−1Θ̇̂ − Φ𝑒𝑇𝑃𝐵)Λ)

+ 2𝑒𝑇𝑃𝜉(𝑡) 
(4.29) 
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 The adaptation law should ensure the negative semi-definiteness of the 

derivative of the Lyapunov function ie. 2𝑡𝑟𝑎𝑐𝑒 (∆𝜃𝑇 (Γ𝜃
−1Θ̇̂ − Φ𝑒𝑇𝑃𝐵)Λ)  ≤ 0 

and all the adapted parameters should be uniformly bounded in time.  To impose 

minimum and maximum limit for the adapted gains, a rectangular formulation of 

the projection operator is used. Consider a convex hypercube in 𝑅𝑛,  

Ω = {𝜃 ∈ 𝑅𝑛: (𝜃𝑖
𝑚𝑖𝑛 ≤ 𝜃𝑖 ≤ 𝜃𝑖

𝑚𝑎𝑥)𝑖=1,2,….,𝑛} (4.30) 

where, (𝜃𝑖
𝑚𝑖𝑛, 𝜃𝑖

𝑚𝑎𝑥) are the minimum and maximum bounds for the ith component 

of the n-dimensional parameter vector 𝜃. Define another hypercube 

Ω𝛿 = {𝜃 ∈ 𝑅
𝑛: (𝜃𝑖

𝑚𝑖𝑛 + 𝛿 ≤ 𝜃𝑖 ≤ 𝜃𝑖
𝑚𝑎𝑥 − 𝛿)𝑖=1,2,….,𝑛} (4.31) 

such that Ω𝛿 ⊂  Ω. A rectangular version of the projection operator can be defined 

for two ‘n’ dimensional vectors (𝜃, 𝑦) as 

𝑃𝑟𝑜𝑗𝑖(𝜃, 𝑦)

=

{
 
 

 
 (

𝜃𝑖 − 𝜃𝑖
𝑚𝑖𝑛

𝛿
)𝑦𝑖,    [(𝜃𝑖 < 𝜃𝑖

𝑚𝑖𝑛 + 𝛿) ∧ (𝑦𝑖 < 0)]

(
𝜃𝑖
𝑚𝑎𝑥 − 𝜃𝑖
𝛿

)𝑦𝑖,    [(𝜃𝑖 > 𝜃𝑖
𝑚𝑎𝑥 − 𝛿) ∧ (𝑦𝑖 > 0)]

𝑦𝑖,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 

 
(4.32) 

Suppose that 𝜃∗ ∈ Ω𝛿 is a constant vector. Then it can be proven that for any 𝜃 ∈

 Ω and for any 𝑦 ∈ 𝑅𝑛, the following inequality holds good 

(𝜃 − 𝜃∗)𝑇(𝑃𝑟𝑜𝑗(𝜃, 𝑦𝑖) − 𝑦𝑖) ≤ 0 (4.33) 

 

Figure 4. 2  Pictorial Representation of Rectangular Projection Operator 

Proof: Referring to Figure 4.2, we can see that  
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When (𝜃𝑖 < 𝜃𝑖
𝑚𝑖𝑛 + 𝛿) ∧ (𝑦𝑖 < 0), two cases arise: 

When 𝜃𝑖 < 𝜃𝑖
𝑚𝑖𝑛 ∧ (𝑦𝑖 < 0),  

(𝜃𝑖 − 𝜃
∗)𝑇⏟      

< 0

((
𝜃𝑖 − 𝜃𝑖

𝑚𝑖𝑛

𝛿
)𝑦𝑖 − 𝑦𝑖)

⏟              
>0

< 0 
(4.34) 

When 𝜃𝑖 > 𝜃𝑖
𝑚𝑖𝑛 ∧ (𝜃𝑖 < 𝜃𝑖

𝑚𝑖𝑛 + 𝛿) ∧ (𝑦𝑖 < 0), 

(𝜃𝑖 − 𝜃
∗)𝑇⏟      

< 0

((
𝜃𝑖 − 𝜃𝑖

𝑚𝑖𝑛

𝛿
)𝑦𝑖 − 𝑦𝑖)

⏟              
>0

< 0 
(4.35) 

When 𝜃𝑖 < 𝜃𝑖
𝑚𝑖𝑛 + 𝛿 ∧ (𝑦𝑖 ≥ 0), then 𝑃𝑟𝑜𝑗(𝜃, 𝑦𝑖) = 𝑦𝑖, 

∴ (𝜃𝑖 − 𝜃
∗)𝑇⏟      

< 0

(𝑦𝑖 − 𝑦𝑖)⏟      
=0

= 0 
(4.36) 

Similarly, when (𝜃𝑖 > 𝜃𝑖
𝑚𝑎𝑥 − 𝛿) ∧ (𝑦𝑖 > 0), again two cases arise.  

When (𝜃𝑖 > 𝜃𝑖
𝑚𝑎𝑥 − 𝛿) ∧ (𝜃𝑖 < 𝜃𝑖

𝑚𝑎𝑥) ∧ (𝑦𝑖 > 0),then (
𝜃𝑖
𝑚𝑎𝑥−𝜃𝑖

𝛿
) < 1 

(𝜃𝑖 − 𝜃
∗)𝑇⏟      

> 0

((
𝜃𝑖
𝑚𝑎𝑥 − 𝜃𝑖
𝛿

)𝑦𝑖 − 𝑦𝑖)
⏟              

<0

< 0 
(4.37) 

When (𝜃𝑖 > 𝜃𝑖
𝑚𝑎𝑥) ∧ (𝑦𝑖 > 0), then (

𝜃𝑖
𝑚𝑎𝑥−𝜃𝑖

𝛿
) < 0 

(𝜃𝑖 − 𝜃
∗)𝑇⏟      

> 0

((
𝜃𝑖
𝑚𝑎𝑥−𝜃𝑖

𝛿
) 𝑦𝑖 − 𝑦𝑖)⏟            
<0

< 0  
(4.38) 

when (𝜃𝑖 > 𝜃𝑖
𝑚𝑎𝑥 − 𝛿) ∧ (𝑦𝑖 ≤ 0), then 𝑃𝑟𝑜𝑗(𝜃, 𝑦𝑖) = 𝑦𝑖, 

(𝜃𝑖 − 𝜃
∗)𝑇⏟      

> 0

(𝑦𝑖 − 𝑦𝑖)⏟      
=0

= 0  
(4.39) 

Hence, (𝜃 − 𝜃∗)𝑇(𝑃𝑟𝑜𝑗(𝜃, 𝑦𝑖) − 𝑦𝑖) ≤ 0 is proved. With the adaptive control law  

�̇� = 𝑃𝑟𝑜𝑗(𝜃, Γ𝛷(𝑥)𝑒𝑇𝑃𝐵)  (4.40) 
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Substituting (4.40) in 2𝑡𝑟𝑎𝑐𝑒 (∆𝜃𝑇 (Γ𝜃
−1Θ̇̂ − Φ𝑒𝑇𝑃𝐵)Λ) and putting 

𝛷(𝑥)𝑒𝑇𝑃𝐵 = 𝑌 ,we get 

𝑡𝑟𝑎𝑐𝑒(𝛥𝜃𝑇{Γ−1�̇� − 𝛷(𝑥)𝑒𝑇𝑃𝐵}Λ)

=∑(𝜃 − 𝜃)
𝑇

𝑖

𝑛

𝑖=0

(Γ−1𝑃𝑟𝑜𝑗(𝜃, Γ𝑌𝑗) − 𝑌𝑗)λ𝑗 ≤ 0 
(4.41) 

(𝜃 − 𝜃)𝑇
𝑖
(Γ−1𝑃𝑟𝑜𝑗(𝜃, Γ𝑌𝑗) − 𝑌𝑗) ≤ 0, λ𝑗 ≥ 0, and hence the trace term will be 

negative semidefinite. 

�̇�(𝑒, 𝛥𝜃) = −𝑒𝑇𝑄𝑒 + 2𝑒𝑇𝑃𝜉(𝑡) 

≤ −𝜆𝑚𝑖𝑛(𝑄)‖𝑒‖
2 + 2‖𝑒‖𝜆𝑚𝑎𝑥(𝑃)𝜉𝑚𝑎𝑥 

                                    = −𝜆𝑚𝑖𝑛(𝑄)‖𝑒‖(‖𝑒‖ − 2
𝜆𝑚𝑎𝑥(𝑃)𝜉𝑚𝑎𝑥
𝜆𝑚𝑖𝑛(𝑄)

) 

(4.42) 

�̇�(𝑒, 𝛥𝜃) < 0  outside of the compact set 

Ω = {(𝑒, 𝛥𝜃) ∈ 𝑅𝑛 × 𝑅𝑁×𝑚: ‖𝑒‖ ≤ 2
𝜆𝑚𝑎𝑥(𝑃)

𝜆𝑚𝑖𝑛(𝑄)
𝜉𝑚𝑎𝑥  ∧  ‖𝛥𝜃‖𝐹

≤ 𝛥𝜃𝑚𝑎𝑥 ∧ ‖𝛥𝜃‖𝐹 ≤ 𝛥𝜃𝑚𝑖𝑛} 

(4.43) 

where, 𝜃𝑖
𝑚𝑎𝑥 is the maximum allowable bound for the ith column of 𝜃 and 𝜃𝑖

𝑚𝑖𝑛 is 

the minimum bound. Hence all the signals of the closed-loop system are UUB with 

this adaptation law allowing the closed-loop system to track the reference command 

with errors bounded as in (4.43). 

 The projection operator ensures that the adaptive time-varying matrix 𝜃(𝑡) 

do not exceed their pre-specified bounds (𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥) and also ensures the negative 

semi-definiteness of the time derivative of the Lyapunov function. This gives UUB 

of adapted parameters. The advantage of this update law is that the method can 

provide a higher adaptation rate and more robustness towards parametric and non-

parametric uncertainties. 
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4.3.2 Using Barrier Lyapunov Functions 

 Adaptive control parameter update law based on BLF is the same as that 

explained in section 3.3.2. Here the bounds on the adapted gains can be specified 

in the convex function but the bounds on the tracking error cannot be specified. For 

complex systems, it is very difficult to find an explicit relation between the 

trajectory tracking error and the solution of the Lyapunov equation underlying the 

adaptive law.  Hence BLF is introduced to guarantee the boundedness of tracking 

error and adapted gains within the defined constraints. To establish the asymptotic 

convergence of the signals, the continuity properties of the derivative of the 

Lyapunov function can be analyzed using Barbalat’s Lemma. 

4.4. Results and Discussions 

 RLV systems are designed to perform multiple missions. There are two 

major flight phases for a mission, (i) Ascent phase in which the RLV ascends 

through the dense atmosphere to the orbit and (ii) Descent phase. The descent phase 

is further divided into deboost phase in which the RLV is de-orbited from an orbit 

of 400 km and brought to the re-entry point and the re-entry phase. The re-entry 

phase starts from around 120 km. During this phase of RLV flight, almost all 

vehicle energy is dissipated through atmospheric drag and this phase extends from 

hypersonic Mach to supersonic Mach numbers. Next is the Terminal Area Energy 

Management (TAEM) phase in which energy level of vehicle is further decreased. 

The last phase is the approach and landing phase where the vehicle is prepared for 

automatic landing. 

 In this work, adaptive controllers are designed to control the rotational 

dynamics of RLV. The closed loop guidance system controls the translational 

dynamics. Entry guidance system steers the vehicle to the TAEM transit point 

meeting the range requirements and satisfying the constraints. Usually, optimal 

control techniques are used for launch vehicle guidance system design. But this 

results in non-linear two-point boundary value problem which is difficult to solve. 
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Entry guidance algorithms available in the literature mostly use a trajectory planner 

to generate a feasible trajectory and a tracker to follow the planned trajectory [80]. 

The re-entry guidance system commands the AoA and bank angles to control the 

trajectory and to bring the vehicle to the desired landing site.  

 This chapter describes the attitude control responses of the RLV during the 

approach and landing phase. The function of the attitude control system is to follow 

AoA (𝛼𝑐), bank angle (𝜎𝑐) commands from the guidance system and angle of 

sideslip (𝛽) is regulated. For the RLV considered in this simulation, both pitch and 

roll control are by elevons and the yaw control is by rudders. Integrator states are 

also augmented to the longitudinal and lateral directional plant dynamics in alpha, 

beta and sigma channels. 

 RLV plant is simulated with open-loop guidance commands and the 

modified adaptive controllers. The performance of these controllers is compared 

with the regular Lyapunov based adaptive control law. These controllers require 

full state feedback and the measurements of all the states are available. To assess 

the stability and robustness of the controllers, extensive perturbation studies are 

conducted. The actuator dynamics is not considered during the design of the 

controllers. But in simulations, a nonlinear second order actuator model for both 

rudder and elevons with a limit on the maximum deflection, slew rate limit and 

angular acceleration is included. 

4.4.1 Studies with Nominal RLV Plant 

 In this study, only the approach and landing phase of RLV is simulated. 

Open-loop guidance commands (αc and σc) are applied to the nominal plant. Here 

it is assumed that the RLV is dropped from a helicopter and when the dynamic 

pressure picks up, a pull up manoeuvre is performed followed by a flare manoeuvre 

and landing. Aggressive bank angle commands are given to the plant to demonstrate 

the tracking performance in the lateral plane. The attitude controller should follow 

the guidance commands without much tracking error to achieve the precise landing 

point.   
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 Tracking responses for a nominal plant is shown from Fig. 4.3 to Fig. 4.7. 

It can be seen from Fig. 4.4 that all the three controllers follow the AoA (αc) 

command closely. Projection based controller gives the least tracking error. AoA 

error is more during the initial phase, since the control force is minimum as the 

dynamic pressure is less. Projection based controller demands maximum rate to 

track the alpha command which in turn produces the least tracking error. Control 

deflection requirement is slightly higher for the BLF based controller in the alpha 

channel during initial capture where the dynamic pressure and control effectiveness 

is less. This causes slight oscillations in the longitudinal responses for BLF based 

controller. As per formulation, BLF based controller tries to limit the tracking error 

within the user defined limit by demanding maximum control deflection. This can 

be reduced by proper tuning of the reference model or reduction in the tracking 

error weightage matrix used to define the constraint set and BLF. Bandwidth of the 

reference model can be reduced initially during the low control effectiveness 

regime. 

 Banking manoeuvre starts from 15 s onwards and a 10 deg/s command is 

given for 5 s. A bank reversal is performed at 23 s with the same rate as seen from 

Fig.  4.4. It can be observed that all three controllers show very good tracking of 

bank angle commands (sigma) and the angle of sideslip (Beta-β) is regulated. Least 

β build up is exhibited by the controller using BLF for parameter update followed 

by projection-based controller. Fig. 4.5 shows the tracking error when various 

controllers are simulated during banking manoeuvre. Barrier Lyapunov based 

controller gives the least tracking error followed by the projection based controller 

and quadratic Lyapunov based controller.  Fig. 4.6 shows the control demand in 

pitch/yaw/roll planes. Control demand in yaw and roll planes comes when the bank 

angle command tracking starts. This causes a build-up in beta and the rudders 

generate commands to regulate this beta. Tracking of sigma command is achieved 

by deflecting elevons in a differential manner. Control demand in yaw/roll planes 

is slightly higher for projection based controller. In the lateral-directional plane 

barrier Lyapunov is giving a slightly better performance (in terms of sigma tracking 

error and beta build up) compared to other two control schemes. Fig. 4.7 give the 
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control command to the various effectors. All the three controllers demand the same 

control for the nominal case. 

 
Figure 4. 3  Longitudinal Plane Responses for Nominal Case 

 
Figure 4. 4  Lateral Plane Responses for Nominal Case 



117 

 

 

 
Figure 4. 5  Bank Angle Tracking Error for the Nominal Case 

 

 
Figure 4. 6  Control Demand in Roll/Yaw/Pitch Planes for the Nominal Case 
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Figure 4. 7  Control Deflection of Various Effectors for the Nominal Case 

4.4.2 Studies with Perturbed RLV Plant 

 Plant parameter perturbation studies are done to assess the robustness of the 

various adaptive controllers. Parameters are perturbed in such a way as to increase 

the disturbance moments, coupling and to decrease the control efficiency. To study 

the gain margin loss, control effectiveness is increased beyond the specifications 

and disturbance moments are minimised. These perturbations are consolidated in 

Table 4.1. 

Results of the perturbation studies are shown in the following figures and it is 

consolidated in Table 4.2. In Case 2, perturbations are given in such a way that the 

aero disturbances are maximised and the control moments are minimised. 

Responses are given in Fig. 4.8 to Fig. 4.11. 
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Table 4. 1 Plant Parameter Perturbations for Different Cases 

Case Condition Remarks 

1 Nominal  

2 𝐶𝑚=45%;𝐶𝑧=40%;𝐶𝑚𝛿𝑒=-20%; 

𝐶𝑚𝛿𝑟=-50% 

Perturbations in longitudinal 

plane: - Aero disturbance 

moment increased and control 

moment reduced 

3 𝐶𝑚=-40%;𝐶𝑧=-30%;𝐶𝑚𝛿𝑒=40%; 

𝐶𝑚𝛿𝑟=20%;   

Perturbations in longitudinal 

plane: - Aero disturbance 

moment reduced and control 

moment increased 

4 𝐶𝑚=20%; 𝐶𝑛=120%; 𝐶𝑙=140%; 

𝐶𝑧=20%; 𝐶𝑦=20%; 𝐶𝑚𝛿𝑒=-30%; 

𝐶𝑚𝛿𝑟=40%;𝐶𝑙𝛿𝑒=-90%; 𝐶𝑛𝛿𝑒=-

90%; 𝐶𝑙𝛿𝑟=440%; 𝐶𝑛𝛿𝑟=-20% 

Combined worst case 

perturbation in longitudinal 

and lateral 

5 𝐶𝑚=50%; 𝐶𝑛=220%; 𝐶𝑙=240%; 

𝐶𝑧=20%; 𝐶𝑦=20%; 𝐶𝑚𝛿𝑒=-20%; 

𝐶𝑚𝛿𝑟=-50%;𝐶𝑙𝛿𝑒=-50%; 𝐶𝑛𝛿𝑒=0%; 

𝐶𝑙𝛿𝑟=-60%; 𝐶𝑛𝛿𝑟=-50% 

Combined worst case 

perturbation in longitudinal 

and lateral 

 Tracking of 𝛼𝑐 command is shown in Fig. 4.8. All the controllers are trying 

to follow the command, the proposed controllers are giving better performance 

compared to the quadratic Lyapunov based controller. When the dynamic pressure 

is low at the beginning (during drop), barrier Lyapunov is trying to reduce the 

tracking error (as formulated in the Lyapunov equation) by increasing the control 

deflection and hence slightly oscillatory response is observed during the initial 

capture. But as time progresses, barrier Lyapunov based controller is giving a better 

performance in terms of tracking error and stability. Projection based controller 

maintains a consistent performance always as it is maintaining the controller 

parameters within the allowable limits. Quadratic Lyapunov based control 

deflections abruptly saturate as the parameters are perturbed and the longitudinal 

plane responses are oscillatory near the touch down point. Such abrupt change in 

behaviour is not acceptable for a flight control system. The control responses should 

gracefully degrade in presence of nonlinear actuator and parameter perturbations. 
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Figure 4. 8  Longitudinal Plane Responses for Perturbed Case 2 

 Fig. 4.9 gives the lateral plane responses which is similar to nominal case. 

Beta build up is maximum for quadratic Lyapunov based controller and barrier 

Lyapunov gives the least sideslip angle. The bank angle tracking error is the least 

for barrier Lyapunov followed by Projection based controller and quadratic 

Lyapunov based controller. Fig. 4.10 gives the control demand in all channels and 

Fig. 4.11 gives the individual control deflections of various effectors. Control 

demand in alpha channel during the initial drop phase is high (nearly saturated) for 

barrier Lyapunov based controller. This controller is trying to minimise the 

trajectory tracking error during the low dynamic pressure regime by increasing the 

control deflection. This resulted in small oscillations at the beginning but later it is 

giving the best performance.  

When a sigma command with a rate of 10 deg/s is given at 15 s, all three 

adaptive controllers give oscillatory response, but gradually improve with barrier 

Lyapunov giving the least tracking error. Control deflections for quadratic 

Lyapunov controller is more during the later stages and gets saturated near the 

landing phase. This causes oscillations in the longitudinal responses, whereas the 

other two controllers perform as in nominal simulations. 



121 

 

 
Figure 4. 9  Lateral Plane Responses for Perturbed Case 2 

 

 
Figure 4. 10  Control Demands in Roll/Yaw/Pitch Channels for Perturbed  

Case 2 
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Figure 4. 11  Control Deflections of Effectors for Perturbed Case 2 

 

 In case 3, a gain margin loss case is simulated in which the control 

deflections are increased and the aerodynamic disturbances are minimised. Fig. 

4.12 gives longitudinal plane responses. Attitude rates and angles are diverging for 

simulations with quadratic Lyapunov based controller. Here the actuators are not 

saturated. Fig. 4.13 gives the control demands in various planes. Projection based 

and BLF based controllers are giving near nominal performance with slightly higher 

control deflections. 
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Figure 4. 12  Longitudinal Plane Responses for Case 3 

 
Figure 4. 13  Control Demands in Roll/Yaw/Pitch Channels for Case 3 



124 

 

Cases 4 and 5 are combined worst case perturbations in both longitudinal 

and lateral channels. The performances are comparable for all three controllers for 

case 4. The control is saturated for barrier Lyapunov based adaptive scheme during 

the initial drop phase but recovers fast. The corresponding responses are shown 

from Fig. 4.14 to Fig. 4.16. 

 

 
Figure 4. 14  Longitudinal Plane Responses for Case 4 
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Figure 4. 15  Lateral Plane Responses for Case 4 

 
Figure 4. 16  Control Demands in Roll/Yaw/Pitch Channels for Case 4 
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 For case 5, simulation fails for adaptive control with quadratic Lyapunov 

functions. Other controllers give a near nominal performance. Here severe 

perturbations are given in both longitudinal plane and lateral-directional plane. For 

the quadratic Lyapunov based controller, slew rate limits of the actuators are 

touched for the elevon actuators and system become unstable. Hence oscillations 

started when a large sigma command is provided. Finally, it fails in the longitudinal 

plane also. The performance of the proposed controllers also is slightly degraded 

due to large perturbations. The corresponding responses are shown from Fig. 4.17 

to Fig. 4.19. This simulation shows that the proposed adaptive controllers based on 

rectangular projection operator and BLF are more robust towards non-linear 

actuator dynamics and is able to handle more parameter perturbations. 

 

 
Figure 4. 17  Longitudinal Plane Responses for Case 5 
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Figure 4. 18  Lateral Plane Responses for Case 5 

 
Figure 4. 19  Control Demands in Roll/Yaw/Pitch Channels for Case 5 



128 

 

The results of the simulations are consolidated in Table 4.2.  

Table 4. 2 Performance Evaluation of Various Controllers During Approach 

and Landing Phase of RLV 

Case 

Defin-

ition 

Control 

Schemes 

Simulat

ion 

passed/

Not 

Max. 

Alpha 

Error 

(deg) 

Steady 

State 

Sigma 

error 

(deg) 

Max. 

Beta 

(deg) 

Max. 

Elevon 

Deflection 

(deg) 

Max. 

Rudder 

Deflection

(deg) 

Remarks 

Case 1  

 

Nomi

nal 

Barrier 

Lyapunov  

Y 

 

6.7 

 

2.15 

 

0.36 

 

-15.57 1.2 Normal 

Projection 

Based 

Y 6.87 2.18 

 

0.40 

 

-13.5 1.2 Normal 

Quadratic 

Lyapunov 

Y 

 

6.94 

 

2.23 

 

0.468 

 

-13.6 1.2 Normal 

Case 2  

 

Barrier 

Lyapunov 

Y 

 

7.11 2.15 0.36 

 

-29.15 1.2 Control near 

saturation 

Projection 

Based 

Y 7.27 2.18 0.4 

 

-22.12 1.2 Normal 

Quadratic 

Lyapunov 

Y 

 

7.32 

 

2.4 

 

0.49 

 

-30  1.2  Control 

saturated 

Case 3 

 

Barrier 

Lyapunov 

Y 

 

6.3 2.15 0.36 

 

-7.77 1.2 Normal 

Projection 

Based 

Y 6.4 2.18 0.4 

 

-7.6 1.2 Normal 

Quadratic 

Lyapunov 

Y 

 

6.41 2.4 

 

0.49 

 

-7.7 1.2  Divergence 

in 

longitudinal 

response 

Case 4 Barrier 

Lyapunov 

Y 7.3 2.15 0.36 -30 0.21 Control 

saturated 

Projection 

Based 

Y 7.5 2.2 0.41 -22 0.23 Normal 

Quadratic 

Lyapunov 

Y 7.6 2.5 0.5 -23 0.25 Normal 

Case 5 Barrier 

Lyapunov 

Y 7.44 

 

2.312 0.414 -18.1 2 Normal 

Projection 

Based 

Y 7.54 2.427 0.433 -17.8 2 Normal 

Quadratic 

Lyapunov 

N - - - - 2 Failure in 

lateral/longi

tudinal 

plane 

 From Table 4.2 it can be inferred that projection based controller gives 

maximum stability for combined worst case perturbations. The gains are allowed to 

vary strictly between the stability boundaries specified by the gains' upper bound 

and lower bound values. Barrier Lyapunov based controller also show very good 

performance. In certain extreme perturbation cases, this controller tries to minimise 

the tracking error by increasing the control effort, which results in control 

saturation. 
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4.4.3 Disturbance Rejection Studies 

 Wind disturbance rejection studies are conducted by injecting wind gusts of 

different magnitudes in alpha and beta channels. All three controllers are exhibiting 

similar performance in these studies. Fig. 4.20 gives the longitudinal responses of 

the controllers. Here wind gusts are applied at 14 s, 35 s, 40 s and at 55 s near the 

landing time. At 35 s and 40 s, alpha was already ramping down with a body rate 

of 5 deg/s. When wind gust is applied, control commands and body rates show 

oscillatory behaviour at these points as observed from Fig. 4.21 to Fig. 4.22. In the 

lateral channel, barrier Lyapunov shows the least tracking error and better 

disturbance rejection as observed from Fig. 4.23 to Fig. 4.24. 

 
Figure 4. 20  Longitudinal Plane Responses with Wind Gust 
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Figure 4. 21  Control Demands in Roll/Yaw/Pitch Channels with Wind Gust 

 
Figure 4. 22  Control Deflections of Effectors with Wind Gust 
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Figure 4. 23  Lateral Plane Responses with Wind Gust 

 

 
Figure 4. 24  Bank Angle Tracking with Wind Gusts Applied 
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4.5. Summary 

 Adaptive control laws designed for the approach and landing phase of a 

winged re-entry vehicle using BLF and a rectangular projection operator are 

presented in this chapter. Extensive simulation is carried out for the proposed 

update laws under normal and perturbed conditions and results are compared with 

existing quadratic Lyapunov based controller update law.  Under normal conditions 

(without perturbations), all the three controllers provided excellent performance.  

For conditions in which aero disturbance moment is maximised and control 

effectiveness is reduced, the quadratic Lyapunov based control showed control 

saturation and oscillatory response. Barrier Lyapunov and projection based 

controller gave near nominal responses. Control effort required is more for barrier 

Lyapunov based controller. For the combined worst-case perturbation, simulation 

failed for the quadratic Lyapunov based controller and control goes near saturation 

for the proposed updated laws but responses are good. 
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Chapter 5 

Conclusions and Future Scope  

 A set of dynamic models for a flexible launch vehicle and a winged re-entry 

vehicle were developed. These models are complex and as such cannot be used for 

control design purpose. Hence control design models were developed stating 

various assumptions used for the derivation. The need for advanced control system 

design for the futuristic STS was emphasized with an appropriate literature survey.  

 The rigid body equations were derived and reduced to a simplified transfer 

function model. This was converted to a second order state-space model. Adaptive 

PD/PID controllers were developed in MRAC framework using standard quadratic 

Lyapunov function for the time varying launch vehicle plant in the atmospheric 

phase. It was proved using Lyapunov stability and Barbalat’s Lemma that the time-

varying system is robust to parametric uncertainties and all the signals are bounded. 

The performance of the designed controllers was compared with existing gain 

scheduled PD/PID controllers. 

 The rigid body model of the SLV was augmented with slosh and flexibility. 

The adaptive controller based on the quadratic Lyapunov law was not robust to 

bounded disturbance. Hence modifications were proposed on the controller 

parameter update law based on projection operator and barrier Lyapunov functions. 

It was proved that these adaptive controllers provide excellent tracking of the 

guidance commands and all the other signals are bounded even in the presence of 

non-parametric uncertainties. This was demonstrated using extensive simulations. 

An EKF was used to estimate all the states of the plant from noisy measurements 

which are used for feedback. An adaptive control algorithm to avoid actuator 

saturation was studied for this plant. Here both control input and reference model 

dynamics are varied to avoid both position and slew rate saturation of the actuator.   
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 The proposed adaptive controllers based on projection and BLF were 

applied to a winged re-entry vehicle to track the angle of attack and bank angle 

commands during the approach and landing phase. 6 DoF rigid body equations were 

developed and a control design oriented model was developed from these equations 

using various assumptions. Here the projection operator was re-defined to constrain 

the gains within the upper and lower bounds simultaneously. Both the trajectory 

tracking error and gains were constrained using barrier Lyapunov functions. 

Tracking capability, robustness and disturbance rejection properties are 

demonstrated using extensive simulations. 

5.1 Future Scope 

 This section provides potential future directions of research in continuation 

of this work.  As mentioned in the introduction section, adaptive controllers are not 

widely used in the flight control systems because of the difficulty in translating the 

flight control certification guidelines defined for classical controllers to the adaptive 

control domain. Major questions raised against the use of adaptive controllers in 

flight control systems are the following: 

(i) Is there any possibility that the adaptive controllers can cause the loss of the 

vehicle? 

(ii) Is it possible for the adaptive controllers to recover back from a failure in 

adaptation? 

(iii)  Is it possible to test the adaptive controllers in flight safely? 

 The first two questions are related to the incorrect learning of the adaptive 

controller. It is very difficult to show that an adaptive controller will not learn 

incorrectly. After learning incorrectly, whether it will be able to come back is the 

next issue to be addressed. Future adaptive control systems for flight should address 

these questions correctly to get it certified for flight. Third question is regarding the 

testability. Limited tests only will be possible during the flight. Extensive 

simulations are to be performed in ground to demonstrate the robustness and 



135 

 

stability of the controllers. This is the case with classically designed gain scheduled 

controllers also. Hence flight control certification requirements of the adaptive 

control should be clearly spelt out. This is another future research direction. 

 It is very difficult to ensure transient responses of the adaptive controller. In 

order to improve the transient response characteristics of adaptive controllers, the 

use of closed loop reference models is proposed in literature. The proposed control 

laws can be modified using these closed loop reference models in which an observer 

like gain is added in the reference model with feedback from the plant states.  

 The proposed adaptive controllers are designed for a slender flexible launch 

vehicle and for an RLV in the descent phase of flight. Hypersonic air breathing 

propulsion is the key technology needed for a sustained hypersonic cruise and 

improving the payload capability of the launch vehicle. Here the airframe will be 

integrated with scramjet/ramjet propulsion. For an air breathing launch vehicle, 

there is large interaction between aerodynamics, structure and propulsion system.  

In hypersonic propulsion, the entire aerodynamic configuration must be 

considered as part of the propulsion system. The stability and control of the 

hypersonic vehicle becomes sensitive to changes in the angle of attack as it induces 

variations in the thrust vector magnitude and direction. Significant elastic and rigid 

body interactions are likely at hypersonic speeds. This in turn influences the flow 

conditions at the engine inlet. The need for low structural weight calls for low 

frequency bending modes. These couplings have to be considered in flight control 

system design.  The extension of the proposed adaptive controllers to such highly 

coupled systems is another future direction. In this scenario, the function 

approximation technique based approaches can very well be used in which the 

flexible modes and their interactions with rigid body and aerodynamics can be 

modelled as unstructured uncertainties. This is an interesting future direction. 

Intelligence-based control strategies such as neural networks, fuzzy systems etc. 

can also be explored for such systems.   
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Appendix A 

A.1 Mathematical Preliminaries Required to Derive the 

Control Laws in Chapter 3 

Definitions given in this chapter are based on [81]. 

A.1.1 Metric Space 

A metric space is a non-empty set equipped with the concept of distance. Let 𝑋 be 

a non-empty set. A metric on 𝑋 is a real function d of ordered pairs of elements of 

𝑋 which satisfies the following three conditions: 

a. 𝑑(𝑥, 𝑦) ≥ 0, and 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦; 

b. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (symmetry); 

c. 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (the triangle inequality) 

The function d assigns to each pair (𝑥, 𝑦) of elements of X a non-negative real 

number 𝑑(𝑥, 𝑦), which by symmetry does not depend on the order of the elements. 

𝑑(𝑥, 𝑦) is called the distance between x and y. A metric space consists of two 

objects, a non-empty set X and a metric d on X. Several different metrics can be 

defined on a single given non-empty set, giving different metric spaces. 

A.1.2 Converging Sequences  

A sequence {𝑥𝑛} = {𝑥1, 𝑥2, … , 𝑥𝑛, … } of real numbers is said to be 

convergent if there exists a real number 𝑥 (called the limit of the sequence) such 

that, given 𝜖 > 0, a positive integer 𝑛0 can be found with the property that 𝑛 ≥

𝑛0 ⇒ |𝑥𝑛 − 𝑥| < 𝜖. This condition means that 𝑥𝑛 must be “close” to  𝑥 for all 

“sufficiently large” 𝑛, and it is usually symbolized by 𝑥𝑛 → 𝑥 or lim 𝑥𝑛 = 𝑥 and 

expressed by saying that 𝑥𝑛 approaches 𝑥 or 𝑥𝑛 converges to 𝑥.  
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   A more general definition in metric space is as follows: 

Let  𝑋 be a metric space with metric 𝑑, and let {𝑥𝑛} = {𝑥1, 𝑥2, … , 𝑥𝑛, … } be 

a sequence of points in 𝑋. We say that {𝑥𝑛} is convergent if there exists a point 𝑥 

in 𝑋 such that either  

1) For each 𝜖 > 0, there exists a positive integer 𝑛0 such that 𝑛 ≥ 𝑛0 ⇒

𝑑(𝑥𝑛, 𝑥) < 𝜖; or equivalently, 

2) For each open sphere 𝑆∈(𝑥) centered on  𝑥, there exists a positive integer  

𝑛0 such that 𝑥𝑛 is in 𝑆∈(𝑥)  for all 𝑛 ≥ 𝑛0 

Every convergent sequence is a Cauchy sequence 

A.1.3 Complete Metric Space 

It is a metric space in which every Cauchy sequence is convergent. Complex 

plane and real line are complete. 

A.1.4 Continuous Function  

A real function 𝑓 defined on a non-empty subset 𝑋 of the real line is said to be 

continuous at 𝑥0 in 𝑋 if for each 𝜖 > 0 there exists 𝛿 > 0 such that 𝑥 in 𝑋 and 

|𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜖, and 𝑓 is said to be continuous if it is 

continuous at each point of 𝑋. This can be defined in metric space as follows: 

Let  𝑋 and 𝑌 be metric spaces with metrics 𝑑1 and 𝑑2, and let 𝑓 be a mapping of  𝑋 

into 𝑌. 𝑓 is said to be continuous at a point 𝑥0 in 𝑋 if either of the following 

equivalent conditions is satisfied.  

1) For each 𝜖 > 0 there exists 𝛿 > 0 such that 𝑑1(𝑥, 𝑥0) < 𝛿 ⇒

 𝑑2(𝑓(𝑥), 𝑓(𝑥0)) < 𝜖 ; 

2) For each open sphere 𝑆∈(𝑓(𝑥0)) centred on 𝑓(𝑥0) there exists an open 

sphere 𝑆𝛿(𝑥0) centred on 𝑥0 such that 𝑓(𝑆𝛿(𝑥0)) ⊆ 𝑆∈(𝑓(𝑥0)). 
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A.1.5 Compactness  

Let 𝑋 be a topological space. A class {𝐺𝑖} of open subsets of 𝑋 is said to be an open 

cover of 𝑋 if each point in 𝑋 belongs to at least one 𝐺𝑖, that is ∪𝑖 𝐺𝑖 = 𝑋.  A compact 

space is a topological space in which every open cover has a finite subcover. A 

compact subspace of a topological space is a subspace which is compact as a 

topological space in its own right. 

A.1.6 Compactness for Metric Spaces 

1) Bolzano-Weirstrass theorem: if 𝑋 is a closed and bounded subset of the real 

line, then every infinite subset of 𝑋 has a limit point in 𝑋. A metric space is said 

to have the Bolzano-Weirstrass property if every infinite subset has a limit 

point. A metric space is said to be sequentially compact if every sequence in it 

has a convergent subsequence.  

2) A metric space is compact implies that it is complete and totally bounded. 

3) A closed subspace of a complete metric space is compact implies that it is totally 

bounded. 

A.1.7 Connectedness 

A connected space is a topological space 𝑋 which cannot be represented as the 

union of two disjoint non-empty open sets. Connectedness of 𝑋 amounts to the 

condition that ∅ and 𝑋 are its only subsets which are both open and closed. 
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A.2 Uniform Ultimate Stability  

Definition 1: Stability of Equilibrium in the Sense of Lyapunov 

A nonautonomous unforced dynamical system can be defined as   

�̇� = 𝑓(𝑡, 𝑥) (A.1) 

with 𝑓: [0,∞) × 𝐷 → 𝑅𝑛 which is piece-wise continuous in 𝑡 and locally Lipschitz 

in 𝑥 and with a domain 𝐷 ⊂ 𝑅𝑛 that contains the origin 𝑥 = 0. 

A nonzero vector 𝒙∗ ∈ 𝑹𝒏 can be defined as an equilibrium point of (A.1) at a 

nonzero initial time 𝒕𝟎: 𝒇(𝒕, 𝒙∗) = 𝟎, ∀ 𝒕 ≥ 𝒕𝟎. The equilibrium point 𝒙∗ = 𝟎 of the 

nonautonomous unforced dynamics (A.1) is stable if for any 𝜺 > 𝟎 and 𝒕𝟎 ≥ 𝟎 there 

exists 𝜹(𝜺, 𝒕𝟎) > 𝟎 such that for all initial conditions ‖𝒙(𝒕𝟎)‖ < 𝜹 and for all 𝒕 ≥

𝒕𝟎 ≥ 𝟎, the corresponding system trajectories are bounded, as in ‖𝒙(𝒕)‖ < 𝜺. The 

equilibrium is uniformly stable if it is stable and 𝜹 does not depend on 𝒕𝟎. Finally, 

the equilibrium is unstable if it is not stable. 

Definition 2: Global Stability 

The origin is globally stable if it is stable and lim
𝜀→∞

𝛿(𝜀, 𝑡0) = ∞. 

Uniform Ultimate Boundedness  

Uniform Ultimate Boundedness (UUB) is considered as a milder form of stability 

in the sense of Lyapunov. Consider the nonautonomous system 

�̇� = 𝑓(𝑡, 𝑥) + 𝜉(𝑡), 𝑥(𝑡0) = 𝑥0 (A.2) 

 

The solutions of this equation are uniformly ultimately bounded with ultimate 

bound 𝑏 if there exists positive constants 𝑏 and 𝑐, independent of 𝑡0 ≥ 0, and every 

𝑎 ∈ (0, 𝑐), there is 𝑇 = 𝑇(𝑎, 𝑏), independent of 𝑡0, such that 

‖𝑥(𝑡0)‖ ≤ 𝑎 ⇒ ‖𝑥(𝑡)‖ ≤ 𝑏, ∀𝑡 ≥ 𝑡0 + 𝑇 (A.3) 
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These solutions are said to be globally uniformly ultimately bounded if (A.3) holds 

for arbitrarily large 𝑎. In the definition above, the term “uniform” indicates that the 

bound 𝑏 does not depend on 𝑡0. The term “ultimate” means that boundedness holds 

after the lapse of a finite time 𝑇. The constant 𝑐 defines a neighborhood of the 

origin, independent of 𝑡0, such that all trajectories starting in the neighbourhood 

will remain bounded in time. If 𝑐 can be chosen arbitrarily large, then the local UUB 

property becomes global. 
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A.3 Projection Operator 

A Lipschitz-continuous version of the projection operator as described in [3][26] 

[27][29] is explained here.  

Definition 1: A subset Ω ⊂ 𝑅𝑛 is convex if 

[∀𝑥, 𝑦 ∈ Ω ⊂ 𝑅𝑛] ⇒ [𝜆𝑥 + (1 − 𝜆)𝑦 = 𝑧 ∈ Ω], ∀ 0 ≤ 𝜆 ≤ 1    (A.4) 

This shows that if two points belong to a convex subset Ω then all the points on the 

connecting line also belong to Ω. 

Definition 2: A function 𝑓: 𝑅𝑛 → 𝑅 is convex on 𝑅𝑛 if  

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦 ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦), ∀ 0 ≤ 𝜆 ≤ 1, ∀𝑥, 𝑦 ∈  𝑅𝑛    (A.5) 

The graph of a convex function must be located below the straight line, which 

connects the two corresponding function values. 

Lemma 1: Let  𝑓(𝑥): 𝑅𝑛 → 𝑅 be convex. Then for any constant 𝛿 > 0, the subset 

𝛺𝛿 = {𝜃 ∈ 𝑅
𝑛|𝑓(𝜃) ≤ 𝛿} is convex. 

Proof of Lemma 1: Let 𝜃1, 𝜃2 ∈ 𝛺𝛿. Then 𝑓(𝜃1) ≤ 𝛿, 𝑓(𝜃2) ≤ 𝛿. Since 𝑓(𝑥) is 

convex, then for any 0 ≤ 𝜆 ≤ 1, 𝑓 (𝜆𝜃1 + (1 − 𝜆)𝜃2⏟          
𝜃

) ≤ 𝜆 𝑓(𝜃1⏟
≤𝛿

) + (1 −

𝜆) 𝑓(𝜃2⏟
≤𝛿

) ≤ 𝜆𝛿 + (1 − 𝜆)𝛿 = 𝛿. Therefore,  𝑓(𝜃) ≤ 𝛿 and consequently, 𝜃 ∈ 𝛺𝛿 . 

 

Figure A.3. 1  Gradient Vector on the Boundary of a Convex Set 

𝜃∗. 

← 𝛺𝛿 = {𝜃: 𝑓(𝜃) = 𝛿} 

△ 𝑓(𝜃) 
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Lemma 2: Let 𝑓(𝑥): 𝑅𝑛 → 𝑅 be a differentiable convex function. Choose a constant 

𝛿 > 0 and consider the subset  𝛺𝛿 = {𝜃 ∈ 𝑅
𝑛|𝑓(𝜃) ≤ 𝛿} ⊂ 𝑅𝑛. Let 𝜃∗ ∈ 𝛺𝛿 and 

assume that 𝑓(𝜃∗) < 𝛿, that is 𝜃∗ is an interior point (not on the boundary) of  𝛺𝛿. 

Also let 𝜃 ∈ 𝛺𝛿  and assume that 𝑓(𝜃) = 𝛿, that is 𝜃 is on the boundary of 𝛺𝛿. Then 

the following inequality holds  

(𝜃∗ − 𝜃)𝑇𝛻𝑓(𝜃) ≤ 0, where  𝛻𝑓(𝜃) = (
𝜕𝑓(𝜃)

𝜕𝜃1
…
𝜕𝑓(𝜃)

𝜕𝜃𝑛
)
𝑇

∈ 𝑅𝑛  
(A.6) 

is the gradient vector of 𝑓 evaluated at 𝜃. 

Figure A.3.1 shows that the gradient vector of a function, evaluated at the boundary 

of a convex level set generated by this function, always points away from the set. 

Proof of Lemma 2: 

Since 𝑓(𝑥) is convex, then  

𝑓(𝜆𝜃∗ + (1 − 𝜆)𝜃) ≤ 𝜆𝑓(𝜃∗) + (1 − 𝜆)𝑓(𝜃) (A.7) 

Re-writing the above equation 

𝑓(𝜃 + 𝜆(𝜃∗ − 𝜃)) ≤ 𝑓(𝜃) + 𝜆(𝑓(𝜃∗) − 𝑓(𝜃)) (A.8) 

For any nonzero 0 < 𝜆 ≤ 1 

𝑓(𝜃 + 𝜆(𝜃∗ − 𝜃)) − 𝑓(𝜃)

𝜆
≤ 𝑓(𝜃∗)⏟  

<𝛿

− 𝑓(𝜃)⏟
𝛿

< 𝛿 − 𝛿 = 0 
(A.9) 

Taking the limit as 𝜆 → 0 gives (𝜃∗ − 𝜃)𝑇∇𝑓(𝜃) ≤ 0. This completes the proof. 

Continuous Projection Operator 

Suppose that a parameter vector 𝜃 belongs to a convex set 

Ω0 = {𝜃 ∈ 𝑅
𝑛|𝑓(𝜃) ≤ 0} (A.10) 

Another convex set is defined such that Ω0 ⊆ Ω1 
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Ω1 = {𝜃 ∈ 𝑅
𝑛|𝑓(𝜃) ≤ 1} (A.11) 

Projection operator is defined as in [3] 

𝑃𝑟𝑜𝑗(𝜃, 𝑦)

= {
𝑦 −

Γ∇𝑓(𝜃)(∇𝑓(𝜃)𝑇)

‖∇𝑓(𝜃)‖𝛤
2 𝑦𝑓(𝜃),   𝑖𝑓 𝑓(𝜃) ≥ 0⋀𝑦𝑇∇𝑓(𝜃) > 0

𝑦 ,   𝑖𝑓 𝑛𝑜𝑡

 

(A.12) 

where, Γ ∈  𝑅𝑛𝑋𝑛 is any constant symmetric positive definite matrix and 

‖∇𝑓(𝜃)‖𝛤
2 = 𝛻𝑓𝑇𝛤𝛻𝑓 is the weighted Euclidean squared norm of 𝛻𝑓. This concept 

is given Figure A.3.2. 

 

Figure A.3. 2  The Projection Operator 

For an identity matrix 𝛤,  𝑃𝑟𝑜𝑗(𝜃, 𝑦) will not alter the vector 𝑦 if 𝜃 belongs to the 

convex set  Ω0. In the annulus between 0 ≤ 𝑓(𝜃) ≤ 1, the projection operator 

subtracts a vector normal to the boundary 𝑓(𝜃) = 𝜆 from 𝑦. As a result, we get a 

smooth transformation from the original vector field  𝑦 for 𝜆 = 0 to the tangent to 

the boundary vector for 𝜆 = 1. 

Lemma 3: Convex Property of Projection Operator 

For any symmetric positive-definite matrix Γ ∈ 𝑅𝑛×𝑛,  

(𝜃 − 𝜃∗)𝑇(Γ−1𝑃𝑟𝑜𝑗(𝜃, Γ𝑦) − 𝑦) ≤ 0 (A.13) 

Proof: Using (A.6) and (A.12) 

𝜃∗

.

𝜃 

{𝜃: 𝑓(𝜃) ≤ 0} ← 𝛺0 = {𝜃: 𝑓(𝜃) = 0} 

← 𝛺1 = {𝜃: 𝑓(𝜃) = 1} 

△ 𝑓(𝜃) 

𝑦 
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(𝜃 − 𝜃∗)𝑇(Γ−1𝑃𝑟𝑜𝑗(𝜃, Γ𝑦) − 𝑦)

=

{
 
 

 
 
−(𝜃 − 𝜃∗)𝑇∇𝑓⏞        

>0

‖∇𝑓(𝜃)‖𝛤
2 [∇𝑓𝑇Γ𝑦⏞    

>0

] 𝑓⏞
>0

,   𝑖𝑓 𝑓(𝜃) > 0⋀𝑦𝑇Γ∇𝑓(𝜃) > 0

0 ,   𝑖𝑓 𝑛𝑜𝑡 }
 
 

 
 

< 0 

(A.14) 

Lemma 4: Let 𝑓(𝜃) be a convex continuously differentiable map from 𝑅𝑛 → 𝑅. 

Using the projection operator (A.12), consider the n-dimensional dynamics 

�̇� = 𝑃𝑟𝑜𝑗(𝜃, 𝑦) (A.15) 

where, 𝜃 ∈  𝑅𝑛 is the system state and 𝑦 ∈  𝑅𝑛 is a time-varying piecewise 

continuous vector. Then starting from any initial condition 𝜃(0) = 𝜃0 within the 

set 

Ω0 = {𝜃 ∈  𝑅
𝑛 |𝑓(𝜃) ≤ 0} (A.16) 

the system trajectory 𝜃(𝑡) will remain in the set 

Ω1 = {𝜃 ∈  𝑅
𝑛 |𝑓(𝜃) ≤ 1} (A.17) 

for all 𝑡 ≥ 0. 

Proof: To get the solution of the system (A.15), following facts are used: (i) the 

projection operator is locally Lipchitz in 𝜃 and (ii) the system external input 𝑦 is 

piecewise continuous in time. To prove the lemma, we need to show that the 

following relation holds 

𝑓(𝜃0) ≤ 0⏟      
𝜃0∈Ω0

⇒ 𝑓(𝜃(𝑡)) ≤ 1⏟        
𝜃(𝑡)∈Ω1

, ∀𝑡 ≥ 0 (A.18) 

The time derivative of  𝑓(𝜃(𝑡)) along the trajectories of the system dynamics (A.15) 

is derived as 

𝑓̇(𝜃) = (∇𝑓(𝜃))
𝑇
𝑃𝑟𝑜𝑗(𝜃, 𝑦) 

= {
(∇𝑓(𝜃))

𝑇
𝑦(1 − 𝑓(𝜃),      𝑖𝑓 [𝑓(𝜃) > 0 ∧ 𝑦𝑇∇𝑓(𝜃) > 0]

(∇𝑓(𝜃))
𝑇
𝑦,                               𝑖𝑓 𝑛𝑜𝑡

} 

(A.19) 
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Hence, 

𝑓̇(𝜃) > 0,      𝑖𝑓 0 < 𝑓(𝜃) < 1 ∧ 𝑦𝑇∇𝑓(𝜃) > 0 

= 0       𝑖𝑓 𝑓(𝜃) = 1 ∧ 𝑦𝑇∇𝑓(𝜃) > 0 

≤ 0,      𝑖𝑓  𝑓(𝜃) ≤ 0 ∧ 𝑦𝑇∇𝑓(𝜃) ≤ 0 

(A.20) 

The first and second relations in (A.20) imply that if 𝑓(𝜃0) > 0, then 𝑓(𝜃(𝑡)) 

monotonically increases in time for all 𝑡 ≥ 0, but will never exceed 1. The third 

condition indicates that if  𝑓̇(𝜃) ≤ 0, then 𝑓(𝜃(𝑡)) will monotonically decrease for 

all 𝑡 ≥ 0. Therefore, irrespective of initial values (as long as they are negative) 

𝑓(𝜃(𝑡)) ≤ 1 for all 𝑡 ≥ 0. Hence, Lemma 4 is proved. 
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A.4 Barrier Lyapunov Based Control Design 

Consider a compact, connected constraint set 

𝐶 ≜ {(𝑒, ∆𝐾) ∈ ℝ𝑛 × ℝ𝑚×(𝑛+𝑚+𝑁): 𝑓(𝑒𝑇𝑀𝑒, ∆𝐾Γ−1∆𝐾𝑇) ≥ 0}, where 𝑀 and Γ  

are symmetric and positive-definite. This set captures the user defined constraints 

on the trajectory tracking error and the estimated adaptive gains’ error. The 

Lyapunov function can be selected as 

𝑉(𝑒, ∆𝐾) =
𝑒𝑇𝑃𝑒 + 𝑡𝑟(∆𝐾Γ−1∆𝐾𝑇) 

𝑓(𝑒𝑇𝑀𝑒, ∆𝐾Γ−1∆𝐾𝑇)
 , (𝑒, ∆𝐾) 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶 

(A.21) 

Derivative of the Lyapunov function is 

�̇�(𝑒, ∆𝐾) = 𝑓−2{𝑓. (𝑒𝑇𝑃�̇� + �̇�𝑇𝑃𝑒 + 𝑡𝑟(∆𝐾𝑇Γ−1Δ�̇� + Δ�̇�𝑇Γ−1∆𝐾)

− (𝑒𝑇𝑃𝑒 + 𝑡𝑟𝑎𝑐𝑒(∆𝐾Γ−1∆𝐾𝑇)). 𝑓𝑒(𝑒
𝑇𝑀�̇� + �̇�𝑇𝑀𝑒)

+ 𝑓𝐾(∆𝐾
𝑇Γ−1Δ�̇� + Δ�̇�𝑇Γ−1∆𝐾)} 

= 𝑓−1{(𝑒𝑇𝑃�̇� + �̇�𝑇𝑃𝑒 + 𝑡𝑟(∆𝐾𝑇Γ−1Δ�̇� + Δ�̇�𝑇Γ−1∆𝐾)

− 𝑉. (𝑓𝑒(𝑒
𝑇𝑀�̇� + �̇�𝑇𝑀𝑒)

+ 𝑓𝐾(∆𝐾
𝑇Γ−1Δ�̇� + Δ�̇�𝑇Γ−1∆𝐾))} 

(A.22) 

�̇�(𝑒, ∆𝐾) = 𝑓−1

∗ {(𝑒𝑇(𝑃 − 𝑉𝑓𝑒𝑀)�̇� + �̇�
𝑇(𝑃 − 𝑉𝑓𝑒𝑀)𝑒

+ 𝑡𝑟(∆𝐾𝑇Γ−1Δ�̇� + Δ�̇�𝑇Γ−1∆𝐾) − 𝑉𝑓𝐾(∆𝐾
𝑇Γ−1Δ�̇�

+ Δ�̇�𝑇Γ−1∆𝐾)} 

= 𝑓−1{𝑒𝑇(𝑃 − 𝑉𝑓𝑒𝑀)�̇� + �̇�
𝑇(𝑃 − 𝑉𝑓𝑒𝑀)𝑒

+ (𝐼 − 𝑉𝑓𝐾)(Δ�̇�Γ
−1∆𝐾𝑇 + ∆𝐾Γ−1Δ�̇�𝑇)} 

= 𝑓−1{𝑒𝑇(𝑃 − 𝑉𝑓𝑒𝑀)(𝐴𝑚𝑒 + 𝐵∆�̃�𝜋)

+ (𝐴𝑚𝑒 + 𝐵∆�̃�𝜋)
𝑇(𝑃 − 𝑉𝑓𝑒𝑀)𝑒

+ (𝐼 − 𝑉𝑓𝐾)(Δ�̇�Γ
−1∆𝐾𝑇 + ∆𝐾Γ−1Δ�̇�𝑇)} 

= 𝑓−1{𝑒𝑇(𝑃 − 𝑉𝑓𝑒𝑀)𝐴𝑚𝑒 + 𝑒
𝑇(𝑃 − 𝑉𝑓𝑒𝑀)𝐵∆�̃�𝜋)

+ 𝑒𝑇𝐴𝑚
𝑇(𝑃 − 𝑉𝑓𝑒𝑀)𝑒 + 𝜋

𝑇∆�̃�𝑇𝐵𝑇(𝑃 − 𝑉𝑓𝑒𝑀)𝑒

+ (𝐼 − 𝑉𝑓𝐾)(Δ�̇�Γ
−1∆𝐾𝑇 + ∆𝐾Γ−1Δ�̇�𝑇)} 

 

 

 

 

 

 

(A.22) 
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Assuming that there exists a 𝑄 ≥ 𝛼𝐼𝑛 where 𝛼 > 0 such that 

−𝑄(𝑒𝑇𝑀𝑒, ∆𝐾Γ−1∆𝐾𝑇) = 𝐴𝑚
𝑇[𝑃 − 𝑉𝑓𝑒𝑀] + [𝑃 − 𝑉𝑓𝑒𝑀]𝐴𝑚 (A.23) 

�̇�(𝑒, ∆𝐾) = 𝑓−1{𝑒𝑇(−𝑄)𝑒 + 𝑒𝑇(𝑃 − 𝑉𝑓𝑒𝑀)𝐵∆�̃�𝜋) +  𝜋
𝑇∆�̃�𝑇𝐵𝑇(𝑃

− 𝑉𝑓𝑒𝑀)𝑒 + (𝐼 − 𝑉𝑓𝐾)(Δ�̇�Γ
−1∆𝐾𝑇 + ∆𝐾Γ−1Δ�̇�𝑇)} 

(A.24) 

Using the property of trace  𝑡𝑟𝑎𝑐𝑒(𝐴𝐵) = 𝑡𝑟𝑎𝑐𝑒(𝐵𝐴); 𝑡𝑟𝑎𝑐𝑒(𝑦𝑥𝑇) = 𝑥𝑇𝑦 

�̇�(𝑒, ∆𝐾) = −𝛼𝑓−1𝑒𝑇𝑒

+ 2𝑓−1𝑡𝑟{∆�̃�𝜋𝑒𝑇(𝑃 − 𝑉𝑓𝑒𝑀)𝐵) + ∆𝐾Γ
−1Δ�̇�𝑇(𝐼

− 𝑉𝑓𝐾)} 

(A.25) 

Control parameter update law is 

�̇̂�𝑇 = −Γ𝜋(𝑡)𝑒𝑇(𝑡)[𝑃 − 𝑉𝑓𝑒𝑀]𝐵 × [𝐼𝑚 − 𝑉𝑓𝑘]
−1 (A.26) 

By assumption ‖∆�̃�(𝑡) = �̂�(𝑡)‖ ≤ 𝜀, 𝜀 > 0. Using (A.25) and Cauchy–Schwarz 

inequality 

�̇�(𝑒, ∆𝐾) ≤ 𝑓−1[−𝛼𝑒𝑇𝑒 + 2𝜀 𝑡𝑟(𝜋𝑒𝑇(𝑃 − 𝑉𝑓𝑒𝑀)𝐵)] (A.27) 

Another set is defined as 

𝐺𝛼,𝜋 = {−𝛼𝑒
𝑇𝑒

+ 2𝜀 𝑡𝑟((𝜋𝑒𝑇[𝑃 − 𝑉𝑓𝑒𝑀]𝐵)

∗ (𝜋𝑒𝑇[𝑃 − 𝑉𝑓𝑒𝑀]𝐵))
𝑇)1/2} 

(A.28) 

Inside C, 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥[−𝛼𝑒𝑇𝑒 + 2𝜀 𝑡𝑟((𝜋𝑒𝑇[𝑃 − 𝑉𝑓𝑒𝑀]𝐵)(𝜋𝑒
𝑇[𝑃 −

𝑉𝑓𝑒𝑀]𝐵))
𝑇)

1

2]. Hence �̇�(𝑒, ∆𝐾) < 0 ∀ (𝑒, ∆𝐾) ∈ 𝐶 ∖ 𝐺𝛼,𝜋∗. 𝐺𝛼,𝜋∗ gives the 

inability of finding K which will limit the tracking error within the bounds and �̇� 

becomes positive in 𝐺𝛼,𝜋∗. By choosing sufficiently large 𝛼, 𝑀 and Γ we can enforce 

that 𝐺𝛼,𝜋∗ is a proper subset of  𝐶 and hence the trajectories of (𝑒, ∆𝐾) will not leave 

𝐶. To prove this, let us assume that (𝑒(𝑡0), ∆𝐾(𝑡0)) ∈ 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑓 𝐶 ∖ {0} and 

suppose that there exists a 𝑇∗ > 0 such that lim
𝑡→𝑇∗

𝑑𝑖𝑠𝑡( (𝑒(𝑡), ∆𝐾(𝑡)), 𝜕𝐶) = 0 
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where 𝜕𝐶 is the boundary of the set 𝐶 and 𝑑𝑖𝑠𝑡 gives the distance of a point in the 

set. As per definition  lim
𝑡→𝑇∗

𝑓 (𝑒𝑇(𝑡)𝑀𝑒(𝑡), ∆𝐾(𝑡)Γ−1∆𝐾𝑇(𝑡)) = 0 along the 

trajectory of 𝑒 and ∆𝐾. Since 𝑓(𝑒𝑇(𝑡)𝑀𝑒(𝑡), ∆𝐾(𝑡)Γ−1∆𝐾𝑇(𝑡)) > 0 for all 

(𝑒, ∆𝐾) ∈ 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑓 𝐶 and (0,0)  ∈ C by assumption. 

lim
𝑡→𝑇∗

𝑓 (𝑒𝑇(𝑡)𝑀𝑒(𝑡), ∆𝐾(𝑡)Γ−1∆𝐾𝑇(𝑡))

= 𝑓(𝑒𝑇(𝑇∗)𝑀𝑒(𝑇∗), ∆𝐾(𝑇∗)Γ−1∆𝐾𝑇(𝑇∗))

⇒ (𝑒𝑇(𝑇∗), ∆𝐾(𝑇∗)) ≠ 0 

(A.29) 

Since  𝑒𝑇𝑃𝑒 + 𝑡𝑟(∆𝐾Γ−1∆𝐾𝑇) > 0 ∀ (𝑒, ∆𝐾) inside C,  

𝑒𝑇(𝑇∗)𝑃𝑒(𝑇∗) + 𝑡𝑟(∆𝐾(𝑇∗)Γ−1∆𝐾𝑇(𝑇∗)) ≠ 0 (A.30) 

lim
𝑡→𝑇∗

𝑉 (𝑒(𝑡), ∆𝐾(𝑡)) =
𝑒𝑇(𝑇∗)𝑃𝑒(𝑇∗) + 𝑡𝑟(∆𝐾(𝑇∗)Γ−1∆𝐾𝑇(𝑇∗))

𝑓(𝑒𝑇(𝑇∗)𝑀𝑒(𝑇∗), ∆𝐾(𝑇∗)Γ−1∆𝐾𝑇(𝑇∗))
 

= ∞ 

(A.31) 

If the initial points of 𝑒(𝑡0), ∆𝐾(𝑡0) ∈ 𝐺𝛼,𝜋∗, then ∀ 𝑇∗∗ > 𝑡0 such that 

𝑒(𝑇∗∗), ∆𝐾(𝑇∗∗) ∈ 𝜕𝐺𝛼,𝜋∗ where 𝜕𝐺𝛼,𝜋∗ is the boundary of 𝐺𝛼,𝜋∗. Since 𝐺𝛼,𝜋∗ ⊂ 𝐶 

by assumption, 𝑇∗∗ < 𝑇∗. As per (A.26), ∀ 𝑡1, 𝑡2, 𝑎𝑛𝑑  𝑡2 ≥ 𝑡1, 𝑉(𝑒(𝑡2), ∆𝐾(𝑡2)) ≤

𝑉(𝑒(𝑡1), ∆𝐾(𝑡1)) < ∞ along the trajectories of  𝑒 𝑎𝑛𝑑 𝐾. This contradicts (A.30). 

Similarly, for 𝑒(𝑡0), ∆𝐾(𝑡0) ∈ 𝐶 ∖ 𝐺𝛼,𝜋∗ also we can prove that (A.31) is 

contradicted. Therefore for 𝑒(𝑡0), ∆𝐾(𝑡0) ∈ 𝐶 ∖ {0}, the trajectories of  𝑒 and ∆𝐾 

will remain inside the connected constraint compact set 𝐶 with the control update 

law given in (A.26). 
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A.5 Derivation of the Adaptive PID Control Law for the 

Simplified SLV Plant 

 The state-space representation of the simplified transfer function model of 

the rigid body dynamics of the SLV can be written as  

𝑥�̇� = 𝐴𝑝𝑥 + 𝐵𝑝𝑢 

𝑦𝑝 = 𝐶𝑝𝑥 + 𝐷𝑝𝑢 
(A.32) 

where, 𝐴𝑝 = [
0 1
𝜇𝛼 0

], 𝐵𝑝 = (
0
𝜇𝑐
), 𝐶𝑝 = [

1 0
0 1

], 𝐷𝑝 = (
0
0
) 

Assuming a full state feedback control law 

𝑢 = 𝐾1
𝑇𝑥 (A.33) 

Let the reference model be 

𝑥�̇� = 𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑢𝑐 (A.34) 

where, 𝐴𝑚 = [
0 1

−𝜔𝑚
2 −2𝜉𝑚𝜔𝑚

] ,  𝐵𝑚 = [
0
𝜔𝑚

2]. Using the matching condition 

𝐴𝑝 − 𝐴𝑚 = 𝐵𝑝 ∗ 𝐾
𝑇 (A.35) 

The integrator state (𝑥𝐼) is augmented to the original plant defined in Equation 

(A.32). Integrator dynamics can be written as 

𝑥�̇� = 𝑥(1) − 𝑢𝑐 (A.36) 

The augmented plant with integral state is 

[
𝑥
𝑥�̇�

̇
] = [

𝐴𝑝      0

1        0
] [
𝑥
𝑥𝐼
] + [

𝐵𝑝
0
] 𝑢 + [

0
−1
] 𝑢𝑐 (A.37) 

The control law with integrator can be written as  

𝑢 = 𝐾1
𝑇𝑥𝑝 + 𝐾𝐼𝑥𝐼 (A.38) 

Hence the closed loop system is  

[
𝑥
𝑥�̇�

̇
] = [

𝐴𝑃 + 𝐵𝑝𝐾
𝑇        𝐵𝑝𝐾𝐼

1                         0
] [
𝑥
𝑥𝐼
] + [

0
−1
] 𝑢𝑐 (A.39) 
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Applying additional matching condition, we get  

[
𝐴𝑃 + 𝐵𝑝𝐾

𝑇        𝐵𝑝𝐾𝐼
1                         0

] = 𝐴𝑚̅̅ ̅̅  (A.40) 

where  𝐴𝑚̅̅ ̅̅ = [
0   1     0

𝑎1   𝑎2    𝑎3
1        0        0

] 

A standard quadratic Lyapunov function in terms of tracking error and gains is 

chosen. 

𝑉(𝑒, �̃� ) = 𝑒𝑇𝑃𝑒 + 𝑡𝑟(�̃�𝑇𝛤−1�̃�) (A.41) 

The parameter update law can be obtained using the Lyapunov function based 

approach and is given by 

[
𝐾
𝐾𝐼̇
̇
] = −𝛤 [

𝑥
𝑥𝐼
] 𝑒𝑇𝑃𝐵 (A.42) 
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A.6 Derivation of the Inequalities Given in Chapters 3 

and 4 

 First derivative of the Lyapunov function is  

�̇�(𝑒, 𝛥𝜃) = −𝑒𝑇𝑄𝑒 + 2𝑡𝑟𝑎𝑐𝑒(𝛥𝜃𝑇{Γ−1�̇� − 𝛷(𝑥)𝑒𝑇𝑃𝐵}Λ)

+ 2𝑒𝑇𝑃𝜉(𝑡) 
(A.43) 

The adaptive law chosen was to make �̇�(𝑒, 𝛥𝜃) negative semi-definite, that is 

�̇� = Γ𝛷(𝑥)𝑒𝑇𝑃𝐵 (A.44) 

Next, we will try to use Lyapunov’s direct method to prove the Uniform Ultimate 

boundedness (UUB) of the closed loop system. It is a milder form of Stability in 

the Sense of Lyapunov (SISL).  

This adaptation law will make the first derivative of the Lyapunov function 

�̇�(𝑒, 𝛥𝜃) = −𝑒𝑇𝑄𝑒 + 2𝑒𝑇𝑃𝜉(𝑡) 

= −𝑒𝑇(𝑄𝑒 − 2𝑃𝜉(𝑡) 
(A.45) 

The upper bound of  �̇�(𝑒, 𝛥𝜃) can be found out from (A.45) 

�̇�(𝑒, 𝛥𝜃) = −𝑒𝑇(𝑄𝑒 − 2𝑃𝜉(𝑡) 

≤ −‖𝑒‖ (𝜆𝑚𝑖𝑛(𝑄)‖𝑒‖ − 2𝜆𝑚𝑎𝑥(𝑃)𝜉𝑚𝑎𝑥) 
(A.46) 

where 𝜆𝑚𝑖𝑛(𝑄) is the minimum eigen value of  𝑄 and 𝜆𝑚𝑎𝑥(𝑃) is the maximum 

eigen value of  𝑃. Proof of this is given below. 

Proof: [82][83] 

Let us take the first term on the R.H.S of (A.45) ie. 𝑒𝑇𝑄𝑒. This is in 

quadratic form. Here 𝑄 is chosen as a real symmetric positive definite matrix. 

Hence the solution (𝑃 ) of the algebraic Lyapunov equation 𝑃𝐴𝑚 + 𝐴𝑚
𝑇𝑃 = −𝑄 

also will be real symmetric positive definite.  
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We have to prove that 𝑒𝑇𝑄𝑒 > 𝜆𝑚𝑖𝑛(𝑄)‖𝑒‖
2. Since 𝑄 is a real symmetric 

positive definite matrix, all its eigen values will be real and positive and ∃ 𝑈 such 

that 𝐷 = 𝑈𝑄𝑈𝑇 and                         𝑈𝑇 = 𝑈−1 where 𝐷 is the diagonal matrix. We 

can write 𝑄 in terms of 𝐷 and 𝑈. 

𝑄 = 𝑈𝑇𝐷𝑈 (A.47) 

𝑒𝑇𝑄𝑒 = 𝑒𝑇𝑈𝑇𝐷𝑈𝑒 (A.48) 

Let 𝑈𝑒 = 𝑦. Then 

 

𝑒𝑇𝑄𝑒 = 𝑦𝑇𝐷𝑦 

=∑𝑦𝑖
2

𝑛

𝑖=1

𝜆𝑖   , 𝜆𝑖 > 0 ∀ 𝑖 ∈ [1, 𝑛]  

≥∑𝑦𝑖
2

𝑛

𝑖=1

𝜆𝑚𝑖𝑛 

= 𝜆𝑚𝑖𝑛∑𝑦𝑖
2

𝑛

𝑖=1

 

= 𝜆𝑚𝑖𝑛‖𝑦‖2 

(A.49) 

 

Since transformation by unitary matrix is norm preserving, ‖𝑦‖2 = ‖𝑒‖2 the lower 

bound of 𝑒𝑇𝑄𝑒 ≥ 𝜆𝑚𝑖𝑛‖𝑒‖2 

The second term (2𝑒𝑇𝑃𝜉(𝑡)) in the R.H.S of (3.27) is in the bilinear form. 

Here the matrix 𝑃 is a real symmetric positive definite matrix. Since the eigenvalues 

𝜆𝑖 are positive for a positive definite matrix 𝜆𝑖 = |𝜆𝑖|. We have to show that                         

𝑒𝑇𝑃𝜉 ≤ 𝜆𝑚𝑎𝑥(𝑃)‖𝑒‖‖𝜉‖. Following the arguments given in the first part of the 

proof 

𝑒𝑇𝑃𝜉 = 𝑒𝑇𝑈𝑇𝐷𝑈𝜉, 𝐿𝑒𝑡 𝑈𝑒 = 𝑓 𝑎𝑛𝑑 𝑈𝜉 = 𝑔 

= 𝑓𝑇𝐷𝑔 

=∑𝑓𝑖 𝑔𝑖  𝜆𝑖

𝑛

𝑖=1

 

(A.50) 
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Since  𝑒𝑇𝑃𝜉 ≤ |𝑒𝑇𝑃𝜉| 

 

𝑒𝑇𝑃𝜉 ≤ |𝑒𝑇𝑃𝜉| 

= |∑𝑓𝑖  𝑔𝑖 𝜆𝑖

𝑛

𝑖=1

| 

≤∑|𝑓𝑖 𝑔𝑖 𝜆𝑖|

𝑛

𝑖=1

 

=∑|𝑓𝑖 𝑔𝑖|

𝑛

𝑖=1

𝜆𝑖 

≤∑|𝑓𝑖 𝑔𝑖|

𝑛

𝑖=1

𝜆𝑚𝑎𝑥 

≤ ‖𝑓‖2‖𝑔‖2𝜆𝑚𝑎𝑥 

= ‖𝑒‖‖𝜉‖𝜆𝑚𝑎𝑥(𝑃) 

(A.51) 

(Since transformation by unitary matrix is norm preserving, ‖𝑓‖2 = ‖𝑒‖2 and 

‖𝑔‖2 = ‖𝜉‖2) 

The upper bound of  �̇�(𝑒, 𝛥𝜃) can be found out from (A.45) 

�̇�(𝑒, 𝛥𝜃) = −𝑒𝑇(𝑄𝑒 − 2𝑃𝜉(𝑡) 

≤ −‖𝑒‖ (𝜆𝑚𝑖𝑛(𝑄)‖𝑒‖ − 2𝜆𝑚𝑎𝑥(𝑃)𝜉𝑚𝑎𝑥) 
(A.52) 

(𝜆𝑚𝑖𝑛(𝑄)‖𝑒‖ − 2𝜆𝑚𝑎𝑥(𝑃)𝜉𝑚𝑎𝑥) > 0 to make �̇�(𝑒, 𝛥𝜃) negative definite 

‖𝑒‖ >
2𝜆𝑚𝑎𝑥(𝑃)𝜉𝑚𝑎𝑥)

𝜆𝑚𝑖𝑛(𝑄)
 

(A.53) 

Hence, �̇�(𝑒, 𝛥𝜃) < 0 outside of the set 𝐸0 which is defined as 

𝐸0 = {(𝑒, 𝛥𝜃):  ‖𝑒‖ ≤ 2
𝜆𝑚𝑎𝑥(𝑃)

𝜆𝑚𝑖𝑛(𝑄)
𝜉𝑚𝑎𝑥 = 𝑒0} (A.54) 
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