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ABSTRACT 
 

 
 
 

The random scattering of coherent and polarized light generates a 

complicated and spatially varying polarization states apart from the intensity and 

such random field is referred as polarization speckle. The speckle is a ubiquitous 

feature due to a complicated interference of the randomly scattered coherent light.  

Because the light is considered to be monochromatic and scattering medium is 

static, the scattered light is free from any temporal fluctuations and carries only 

spatial varying information. Investigations on such random light fields are 

important to understand physical properties of the speckles, and use physical 

parameters for applications such as lensless imaging and diagnosis etc. 

This thesis covers investigations on the generation and analysis of the 

speckles using the spatial statistical optics. This is realized using the Hanbury 

Brown and Twiss (HBT) approach and polarization correlation.  The HBT 

approach makes use of the two-point correlation of the random light fields. On the 

other hand, polarization is associated with the correlation between two orthogonal 

polarized components at a single point and described by the Stokes parameters. To 

characterize in-homogeneously polarized light, extension of the Stokes parameter 

to the two points known as generalized Stokes parameters and the HBT for 

polarized light are required. 

New and significant features of this thesis are: The effects of different 

parameters of random source structures on two-point intensity correlation, in a two-

dimensional and a three-dimensional propagation, are studied. A computational 

model is developed to analysis the 2D and 3D intensity correlations for comparison 

of the results with experiments. The effects of degree of spatial polarization on 

intensity correlation of the speckle are studied. An experimental technique is 

efficiently demonstrated to recover the polarimetric parameters of light field from 

a non-imaged laser speckle. To recover polarized objects hidden behind a scatter, 

a new approach, Lensless Stokes holography with Hanbury Brown Twiss 

interferometer is presented. The advantage of compressive sensing in correlation 

imaging is also presented. 
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The research scholar should explain the meaning of special symbols and nomenclature 

used in the thesis. Some examples are provided below. 

 

 

|x| - absolute value of x 

 
μ - mean 

 
logn(x) - logarithm (x) to the base n 

 

|.| - Absolute value 

θ - Angle of rotation 

δ - Delta function 

  - Ensemble average 
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CHAPTER 1 
 

INTRODUCTION 

 

Randomness in a light field is an unavoidable yet a common problem due 

to various practical reasons. It may arise as a result of either erratic fluctuations in 

the light source or propagation of light through an optically inhomogeneous 

media. Propagation of coherent laser light through random media distorts light 

wavefront and spatially scrambled the light information. It further aggravates 

coherent noise due to stochastic interference of randomly scattered waves, known 

as speckle (Dainty, 1984; Goodman, 2007; Sirohi, 1933). A coherent beam 

diffused by the disordered media produces this speckle pattern which is a typically 

granular pattern. However, these random fluctuations carry an important signature 

of light source and its propagating medium, and can therefore by exploited to 

develop several lasers speckle-based instruments and in the analysis of light 

source. Based on the nature of propagation of coherent light through disordered 

medium, two broad strategies can be adopted. First one which considers the 

speckle pattern is time-invariant and the speckle can be utilized to investigate 

diffuser properties. This case is widely used in the speckle metrology such as 

displacement ((Archbold et al., 1970; Freund and Berkovits, 1990; Burch and 

Tokarski, 1968; Wang et al., 2006), vibration and source (Bianchi, 2014; Zalevsky 

et al., 2009), and blood flow mapping in tissues (Briers et al., 2013), high 

resolution imaging (Mehta and Srivastava, 2012) etc.  Second case is a situation 

wherein diffuser is static and speckle pattern is used to probe properties of the 

incident light. Some of the examples in this category are laser stabilization (Mazilu 

et al., 2014; Hanson et al., 2015; Metzger et al., 2017; Bruce et al., 2019; 2020; 

O’Donnell et al., 2020; Gupta et al., 2019), spectroscopy (Redding and Cao, 2012; 

Redding et al., 2013; Cao, 2017), mode characterization (Mazilu et al., 2012; 

Mourka et al., 2013), and imaging (Singh et al., 2014). 
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To analyze the statistical properties of light, it is expedient to have a deep 

understanding of mathematical correlations. For instance, correlation at two points 

known as a complex coherence function is a significant parameter to characterize 

random light with the Gaussian statistics (Goodman, 2000). Other examples of 

correlation include correlation at the single point, in both, time and space that 

gives polarization information of the light. The seminal work and foundations 

developed by Emil Wolf on the wave nature of coherence have led to the 

significant interest on the correlation optics and its related areas (Mandel and 

Wolf, 1995; Wolf, 2007). Some other interesting and central results of the 

correlation optics are the Van Cittert Zernike theorem and Hanbury brown Twiss 

experiment. Significant progress and developments in the correlation optics had 

led to the emergence of numerous fundamental and practical applications. Van 

Cittert Zernike theorem provides a relationship between the intensity distribution 

and degree of spatial coherence of monochromatic beam in the source and detector 

planes (Gori et al., 2000). On the other hand, the correlation function of the fourth 

order with respect to complex amplitude is used in the Hanbury Brown Twiss 

approach (Hanbury and Twiss, 1956). 

Intensity correlation proposed by Hanbury Brown and Twiss (HBT) has 

become a preferred approach to analyze the random fields. The work of HBT 

about 60 years ago led to development of several ideas covering classical and 

quantum optics domain. HBT approach makes use of the relation between second 

order and fourth order Gaussian random fields and provides a simple and stable 

experimental method to characterize the correlation parameters. The approach 

offered a novel insight into statistical optics. It led to the invention of several 

applications in the fields of speckle contrast imaging, high energy physics, nuclear 

physics, and atomic physics (Hassinen et al., 2011; Bromberg et al., 2010; Kumar 

et al., 2012; Singh et al., 2014; Schultheiss et al., 2016; Wiedemann and Heinz, 

1997; Baym, 1997). Most of the investigations on HBT approach are limited to 



3 

 

temporal fluctuations and scalar optics (without polarization). Laser speckles are 

complex random pattern arising due to interference of randomly scattered light 

and at a particular time (frozen time) randomly scattered light in the speckle is 

completely coherent. This is the reason why a coherent speckle pattern is 

characterized as spatial fluctuation rather than temporal. Recently, Takeda and co-

workers in a review article discussed the concept of spatial statistical optics and 

use this approach to explain some of the fundamental features of the laser speckle 

(Takeda, 2013; Takeda et al., 2014). Further, based on the concept they have 

established a well-known nonconventional holographic technique such as 

coherence holography and photon correlation holography.  

Traditionally, the coherence has been associated (attributed only to) with 

interference fringe visibility of scalar light field. However, recent attempts have 

been made to incorporate both visibility and polarization in a common framework. 

Polarization has been associated with the correlation between two orthogonal 

polarized components at a single point observation. The state of polarization at a 

single point is described by Stokes parameters. These parameters are graphically 

presented by a point on Poincare sphere. In recent years, significant efforts have 

been made to generalize Stokes parameters at two different points (Singh et al., 

2011; 2012). This enabled describing statistical properties of vectorial random 

fields in an inhomogeneously polarized field. Multiple scattering of coherent light 

in a random media and propagation of structured polarized light through an 

anisotropic media are few such examples of generating inhomogeneously 

polarized field. In contrast to the scalar speckle, these inhomogeneously polarized 

fields arise due to complex polarization interference, for instance, a 

monochromatic polarized light strongly scattered through a static rough surface 

which involves multiple scattering.  

Presence of coherent noise in both scalar and vectorial domain affects the 

performance of a laser-based imaging and communication system. For instance, 

intensity correlation has been applied to image 3D object from a speckle pattern 
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using the two-point intensity correlation (Soni et al., 2016; Katz et al., 2014; Singh 

et al., 2014; 2016; Somkumar et al., 2017; Tripathi et al., 2014; Aguiar et al., 

2014). However, emergence of polarization fluctuations in speckle field, i.e., in 

speckle polarization, intensity correlation parameter is significantly affected by 

polarization fluctuations and has its affect in 3D imaging reconstruction from the 

speckle. In another direction, random fields and their intensity correlation have 

been significantly utilized to develop to several unconventional imaging 

techniques such as correlation holography, ghost imaging, ghost diffraction, single 

pixel imaging etc. However, majority of these works are either limited to scalar 

and simple binary objects except some recent investigations. In a generic case, 

coherent beam interacts remotely with the object, and scattered light is 

characterized to recover information about the object. Roughness of the object and 

refractive index inhomogeneity in propagation medium creates speckle with/or 

without polarization fluctuations. 

In context of the polarization speckle, random fluctuation is introduced 

into Stokes parameters. For a monochromatic and a static scattering surface, the 

scattered polarized field shows only spatial fluctuations rather than temporal. 

Attempts have been made to characterize polarization speckle in terms of complex 

degree of mutual polarization and two-point stokes correlation (Singh et al., 2011; 

2012; 2014). In many applications, it is required to image a scalar or vectorial 

object obscured by scattering medium. When the object is hidden behind the 

random scattering media, it is difficult to apply usual conventional imaging 

methods. Correlation parameters can be used to develop a novel imaging 

technique by exploiting statistical features of random fields without restoring to 

any wavefront correction schemes. The invention of HBT can be combined with 

the holography to develop several new and innovation methods to overcome the 

challenges of imaging from random generic light such as polarization speckle. 

Such strategy provides opportunity to use tool and techniques of the coherent 

optics and export it to the coherence waves or issue of developing optics with 



5 

 

random light fields. Some attempts have been made in this direction. However, 

majority of these works are limited to speckle field with only intensity fluctuations 

and recovery of the scalar objects except some limited works. To overcome and 

examine the existing challenges in correlation optics particularly on polarization 

speckle and on the imaging of polarized objects, detailed investigations are carried 

out and reported in this thesis. 

 

1.2 Background and Context 

When a coherent polarized light travel through a static diffuser which 

involves multiple scatterings, random fluctuations are introduced into the spatial 

distribution of the state of polarization (SOP). Such a random field is referred to 

as polarization speckle. The polarization fluctuation of the light can be 

engineered using the random source parameters such as amplitude, phase and 

polarization etc. One simple representation of the light synthesis is shown in Fig. 

1, where source is used to synthesize the correlation property of the light. 

 

Figure 1-1 Geometry of source structure, propagation system and observation plane. 

Propagation of a structured polarized light from scattering plane to any 

arbitrary observation plane can be represented by a proper propagation kernel for 

each polarization components as follows 
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( ) ( , ) ( )i iE G E d= r r   
       (1.1) 

where ( )iE   and ( )iE r  with ,i x y= is polarization information of the object at 

diffuser and observation plane respectively and ( , )G r   is a propagation kernel. 

Transverse position vectors at the source and observation planes are denoted by 

  and r respectively. Synthesis of coherence and polarization properties of the 

randomly fluctuating electromagnetic field and consequently speckle grain size 

in two and three dimensions can be controlled by incident light structure at the 

source plane. For an instance, circular aperture of specific size and/or by 

introducing vortex of different topological charges which shapes the spatial 

degree of coherence and polarization at the observation plane. The intensity at 

the observation plane is related with the intensity correlation and cross-

covariance of the intensity for Gaussian random field. The cross-covariance of 

the intensity is given as 

2

1 2 1 2 1 2,
( , ) ( ) ( ) ( , )iji j
r r I r I r W r r =   =     (1.2) 

where,   stands for the ensemble average, 1 2( , )ijW r r  is an element of 2X2 

coherence polarization matrix. The coherence-polarization matrix for a 

monochromatic random light field is defined as 

1 2 1 2

1 2

1 2 1 2

( , ) ( , )
( , )

( , ) ( , )

xx xy

yx yy

W r r W r r
W r r

W r r W r r

 
=  
 

     (1.3) 

Under the condition of spatial ergodicity of the scattered field, elements 

of the CP matrix of the scattered field are obtained by space averaging (rather 

than temporal averaging). Non-separable experimental schemes designed to 

synthesize the spatial polarization fluctuations in the random fields.  

The correlation method based on HBT approach has brought many 

results in the fundamental and applied statistical optics. Since intensity 
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interferometers are far stable and reluctant to the environmental fluctuations, they 

are preferred over field-based interferometers. HBT has led us to the development 

of new metrological tools for performing optical diagnostics of light-scattering 

objects and media. It provides opportunities to analyze the correlation property 

of optical fields.  Coherence and polarization in randomly fluctuating 

electromagnetic field has inspired researchers to investigate vectorial coherence 

theory, and in the same context, HBT phenomenon has also begun to attract 

interest. Use of HBT is mostly limited to the exotic beams like electromagnetic 

Gaussian Schell model, Schell model etc. with some recent works on polarized 

light. HBT approach is also used to examine partially coherent electromagnetic 

beam by examining the different source parameters on correlation of intensity 

fluctuation (HBT effect) at two points of a random electromagnetic field. 

However, most of these investigations are either theoretical or limited to 

experiments dealing with scalar light. In this thesis, detailed investigation is 

carried out on extending concept of the HBT approach for the polarized random 

fields particularly on the polarization speckles. After establishing a link between 

the polarizations speckle with the HBT approach, such methods are used to 

develop new imaging methods by combining HBT approach with the holography. 

1.3 Objectives 

The primary objective of the thesis is to theoretically and experimentally 

investigate the properties of randomly fluctuating field in scalar and vectorial 

domain using HBT and to formulate it in imaging applications. The specific 

objectives of this work are summarized below. 

• Investigation on the statistical properties of speckle field using second order 

intensity correlation technique. 

• Impact of different parameters of random source structures on two-point 

intensity correlation in two-dimensional and three-dimensional space. 
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• Development of computational model to analysis 2D and 3D intensity 

correlations and comparing these results with experiments. 

• Effect of degree of spatial polarization on intensity correlation of the speckle. 

• Recovery of polarimetric parameters from non-imaged laser speckles. 

• Experimental demonstration of Stokes holography with Hanbury Brown 

Twiss interferometer and its implementation in 3D imaging. 

• Practical implementation of Compressive Sensing application in optical 

imaging. 

1.4 Overview of Thesis 

The thesis is split into 7 chapters. In chapter 2, a brief review of related 

literature is presented. In chapter 3-4 we describe the different experimental 

techniques developed for light synthesis and analysis of polarization speckles 

based on intensity interferometer. Chapter 5 presents the novel holographic 

technique to use intensity interferometer, i.e., HBT type for Stokes holography. 

Chapter 6 highlights the potential of compressed sensing in the imaging through 

a random scattering medium. In chapter 7 we conclude by summarizing the key 

points and looking into the future scope of a research work. 

Chapter 2 is intended to provide preliminaries, giving a brief description 

of polarization, propagation, laser speckle pattern, polarization speckle, and 

analysis of speckle patterns. The significance of correlation of light field in 

optical characterization and its importance in optical imaging. Also discuss the 

concept of HBT approach that has opened a new field of holographic technique 

to use intensity correlation. 

In chapter 3, we aim to study intensity correlation of the spatially 

fluctuating polarized random fields at different distances under the paraxial 

propagation. Quantitative analysis of the random field is carried out by following 

relation between the degree of coherence of the electromagnetic fields, spatial 

degree of polarization and the intensity correlation for the Gaussian random 

fields. An experimental scheme is designed to generate and analyze the random 
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fields with different polarization fluctuations and results are presented. The 

polarization fluctuation in the random field is synthesized by introducing 

different vortex modes into orthogonal polarization components of the light prior 

to the random scattering from a diffuser.  Our purpose is to use the vortex beams 

to generate spatial polarization inhomogeneity in the laser speckle and analyze 

the speckles at the focal plane and at different transverse plane using the intensity 

correlation and spatial optics. 

In chapter 4, we propose and experimentally demonstrate a new 

technique to recover the polarimetric parameters of the light field observed by a 

static non-birefringent diffuser. We recover the PPs from non-imaged laser 

speckle patterns. Propagation of coherent and polarized light through a static 

diffuser may generate polarization fluctuation in the random scattered field 

depending on the nature of incident polarized light.   To analyze the polarization 

speckle, we apply idea of coherence wave interference for the vectorial light 

field. This is realized by using 2X2 coherence-polarization matrix elements and 

their interference. Moreover, this approach is free from any artifacts associated 

with imaging/or Fourier transforming lens and its possible impact on the spatial 

stationarity of the random field. 

In chapter 5, we propose a new method to use intensity interferometer, 

i.e., HBT type for Stokes holography. The HBT approach permits to remove a 

Fourier transforming lens as required in the field-based interferometer for the 

Stokes holography. Making use of this feature, we design and develop a new 

lensless Fourier transform holography setup for the GSPs. This helps to achieve 

spatial stationarity of the random fields at an arbitrary distance z from the 

scattering plane and replaces the ensemble averaging by the space averaging of 

the random field. We further make use of the lensless Fourier transform 

holograms of the GSPs to recover the desired GSPs for depth recovery of the 

objects encoded into the Stokes fringes. This is implemented by digital 

propagation of the GSPs (rather than mechanical scanning of the detector).  To 

the best of our knowledge, this is first such attempt to exploit the interference of 
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the GSPs to realize lensless Fourier transform hologram for the Stokes vector 

waves and apply the HBT type interferometer for 3D imaging of the polarized 

objects.  

Chapter 6 highlights the potential of compressed sensing in the imaging 

through a random scattering medium. This method can reduce the noise level in 

recovered signal and super-resolved images can be obtained using the CS-based 

technique compared to the usual FT. The demonstrated technique is well efficient 

in retrieving the information by reconstructing objects from limited sized FTH. 

Quantitative analysis has been carried out to compare the quality of 

reconstruction using inverse Fourier transform (IFT) and CS techniques. The 

finding highlights that the CS reconstruction is better than that of IFT 

reconstruction. 

In concluding chapter 7, we summarize the research work by pointing 

out key research outcomes and look on to the future scope of the work. Followed 

by this chapter bibliography, appendices and the list of publications are provided. 
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CHAPTER 2 
 

COHERENCE: SCALAR AND VECTORIAL 

DOMAIN 

2.1 Introduction 

Light fields are inherently of a statistical in nature and correlations of 

the light play very important role in describing the fundamental features such as 

diffraction and interference. In particular, the cross-correlations at two points 

either in space/ time or both, known as the complex coherence, has been widely 

explore for large range of fundamental and practical interests. Theoretical bases 

and foundations of the optical coherence permit to deal with generalized light 

ranging from fully coherent to the incoherent. For an instance, the fully coherent 

light is a special case of the light where the correlation between two points is 

significant. Another case is light with correlation between two spatially/or 

temporally separated point becomes zero and this situation is referred as the 

incoherent light. Seminal work of Emil Wolf on the wave nature of the coherence 

function has provided a strong theoretical basis to the coherence optics and since 

then significant progress has been achieved in this area. Learning from analogy 

between the optical fields and complex coherence functions, various fundamental 

and practical aspects of the coherence optics have been explored and some of 

these are coherence current, conservation law (wang, 2006). In the context of 

experimental optics, the Young’s interference approach has played a crucial role 

in characterization of the correlations features of the light field. Lately, the 

intensity interferometer approach proposed by the Hanbury Brown and twiss 

(HBT) has also been widely used in the characterization of the random light fields 

and correlation structures [HBT]. However, majority of these studies are mainly 

limited to the scalar light field ignoring polarization features of the light. 

It has been noticed that a combined effect of the polarization and 
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coherence plays critical role in the wide range of applications such as diffraction, 

light matter interactions etc. For instance, propagation of spatially non-uniform 

polarized light has opened new fundamental questions on the interpretation of the 

interference effects for the vectorial light (Roy Chowdhury and Wolf, 2005; Gori 

et al., 2006; Wolf, 2003; Tervo et al., 2003; Setela et al., 2004; Luis, 2007; 

Korotkova and Wolf, 2005). In recent years, significant efforts are being made to 

address these questions and interpret the interference effects for polarized light 

using both fringe visibility and polarization characteristics. In contrast to two-

point correlation for coherence, polarization of the light can be explained using 

the single point correlation between two orthogonal polarization components.  

The state of polarization (SOP) at a point is usually described by the Stokes 

parameters (SPs). Attempts are also being made to generalize concept of the 

degree of polarization and SPs to cover the inhomogeneous random fields. It has 

been highlighted that conventional SPs provide time averaged (as ensemble 

average replaced by the time average) evaluation and hence not suitable to access 

the instantaneous SOP. Observation of instantaneous SOP of a natural light 

source is practically challenging due to slow response of the detectors compared 

to the fast fluctuations of natural light. Nevertheless, a slowly fluctuating random 

light source can be designed in the laboratory by a controlled rotating ground 

glass with a monochromatic laser source illumination. Freezing rotation of the 

ground glass will lead to generation of random complex field known as laser 

speckle. 

Propagation of the laser light in thick scattering mediums is one of the 

interesting examples of generating the inhomogeneously polarized light. Such 

random pattern arises from a complex interference effect and produces speckle 

pattern. Under consideration of a monochromatic light and static scattering, 

scattered field is free from temporal fluctuations and remains to be fully polarized 

with well-defined SOPs at each and every point is the random pattern according 

to traditional definition based on the temporal averaging. Such random field with 
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spatial varying SOP is refereed as a polarization speckle. The random field such 

as this remains to be fully polarized according to traditional definition, can be 

also regarded as partially or totally depolarized according to alternate definition 

relying on the spatial average as a replacement of the ensemble average (Takeda 

et al., 2014). The spatial degree of polarization, based on the spatial average, is 

analogous to the idea of degree of macroscopic magnetization of magnetic 

materials due to ordered or disordered orientations of microscopic atomic 

dipoles, and polarization speckles show resemblance to magnetic domains in 

their geometrical structures (Kittel, 1976).  Existence of the polarization spackle 

is very common in the area of coherent light propagation through random 

scattering medium and such patterns are practically relevant in applications such 

as diffraction and imaging.  

Based on the emerging interests in the analysis and applications of the 

coherence-polarization of the light, this chapter cover mathematical basis of the 

coherence optics ranging from scalar to the vector domains. Generation and 

analysis of light source with inhomogeneous polarization distributions are 

discussed in the context of existing literature and recent progress in this area.   

Different methods based on the field and intensity interferometers to measure 

coherence-polarization of the light are discussed and practical aspects are 

examined. In contrast to the usual practice to describe and discuss correlations 

properties of the light with time averaging as replacement of the ensemble 

average, we make special emphasis on the spatial averaging with some examples 

and applications in the imaging.  

 

2.2 Coherence and Polarization of light 

Consider a two-dimensional transverse quasi-monochromatic light field 

at the source plane Ã with orthogonal polarization components ( , )xE r t  and 

( , )yE r t  at transverse spatial position 𝑟 ≡ (𝑥, 𝑦) at the source plane and 
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instantaneous time t. Here, subscripts 𝑥 and 𝑦 denotes direction on the 

polarization vector components. Propagation direction is represented by the 

longitudinal coordinate z. 

x

y

P

z

Ã

 

Figure 2-1 A representation of propagation of light from source plane Ã to the 

observation point P in the coordinate system (x, y, z) 

 

The polarization vector at the source plane is represented as 

( , )
( , )

( , )

x

y

E r t
E r t

E r t

 
=  
 

        (2.1) 

2.2.1 Coherence –Polarization matrix  

Our main interests in this chapter to deal with the monochromatic light 

and spatial coherence and hence mathematical foundations are discussed in the 

context of only spatial coherence. The second-order spatial correlation properties 

of the field at a pairs of spatial position points 𝑟1and 𝑟2can be described by the 

coherence-polarization matrix (or cross-spectral density matrix) as 
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* *

1 2 1 2

1 2 * *

1 2 1 2

( ) ( ) ( ) ( )
( , )

( ) ( ) ( ) ( )

x x x y

y x y y

E r E r E r E r
W r r

E r E r E r E r

 
 =
 
 

     (2.1.1a) 

where  stands for ensemble average and usually replaced by the temporal 

averaging and asterisk * denotes complex conjugate. Element of the 2x2 

coherence polarization matrix is represented as 𝑊𝑚𝑛(𝑟1, 𝑟2) = 〈𝐸𝑚
∗ (𝑟1)𝐸𝑛(𝑟2)〉 

where 𝑚, 𝑛 = 𝑥, 𝑦 represents orthogonal polarization components.   

Estimation of the CP matrix elements provides direct access of the degree of 

coherence and degree of polarization of the light field. Following definition 

proposed by Tervo et. al. (Tervo et al., 2003), the degree of coherence of the 

stochastic electromagnetic field is 

𝛾2(𝑟1, 𝑟2) =
∑ |𝑊𝑚𝑛(𝑟1,𝑟2)|2

𝑚𝑛

∑ 𝑊𝑚𝑚(𝑟1,𝑟1𝑚𝑛 )𝑊𝑛𝑛(𝑟2,𝑟2)
      (2.1.1b) 

𝑃(𝑟) = √2𝛾2(𝑟) − 1       (2.1.1c) 

𝑃(𝑟) = (1 −
4 det 𝑊(𝑟,𝑟)

|𝑇𝑟 𝑊(𝑟,𝑟)|2)
1/2

       (2.1.1d) 

where 𝛾 and 𝑃 are degree of coherence and degree of polarization of the light. 

Definition of the degree of coherence of the electromagnetic field is different 

from the definition proposed by Emil Wolf (Wolf, 2007).  Degree of polarization 

unity states that all four elements of the CP matrix at single point are equal and 

non-zero. Equations Eq. 2.1.1b and 2.1.1c highlights that light will be fully 

polarized when all four components are correlated. The degree of polarization 

will be unity for 𝛾(𝑟, 𝑟) = 1 and zero for 𝛾(𝑟, 𝑟) = √1/2. Therefore, light will 

be un-polarized when the single point correlation of the orthogonal polarization 

components vanishes, i.e., non-diagonal elements of CP matrix at the single point 

becomes zero.  This can also be explained using Eq. 2.1.1d and the polarization 
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matrix. The single point correlation of the CP matrix is also known as 

polarization matrix J and defined as 

* *

* *

( ) ( ) ( ) ( )
( , )

( ) ( ) ( ) ( )

x x x y

y x y y

E r E r E r E r
J r r

E r E r E r E r

 
 =
 
 

      (2.1.1e) 

Uniformly polarized light field or scalar case can be considered as a special case 

such as 

An x polarized light source: 

*

1 2

1 2

( ) ( ) 0
( , )

0 0

x xE r E r
W r r

 
=  
 
   

Light will be always fully polarized in this case. 

Light with equal orthogonal polarization components but no correlations between 

them 

*

1 2

1 2 *

1 2

( ) ( ) 0
( , )

0 ( ) ( )

E r E r
W r r

E r E r

 
 =
 
   

Light will be un-polarized in this case and un-polarization of such light source is 

possible by attenuating strength of one of the orthogonal polarization 

components.  

2.2.2 Propagation of elements of the coherence-polarization 

matrix 

Consider that the beam propagates in free space from source at plane 

z=0 into the half space z>0. If {𝐸(𝑟, 𝑡)} represents the ensemble of the electric 

field at the source plane and {𝐸(𝜌, 𝑡)} denotes the ensemble of the propagated 

electric field at the observation point P (𝜌, 𝑧) as shown in Fig.2.1. Then the field 

at the observation point can be connected with source under a paraxial 



17 

 

approximation as follows 

𝐸𝑚(𝜌, 𝑡) = ∫ 𝐸𝑚(𝑟, 𝑡) 𝐺(𝜌, 𝑟)𝑑𝑟       (2.1.2a) 

Eq.2.1.2a is a two dimensional integral due to source coordinate𝑟 ≡ (𝑥, 𝑦) and 

the propagation kernel 𝐺(𝜌, 𝑟) is given as 

𝐺(𝜌, 𝑟) ≈
exp (𝑖𝑘𝑧)

𝑖𝜆𝑧
 𝑒𝑥𝑝 (𝑖𝑘

|𝜌|2 − 2𝜌. 𝑟 + |𝑟|2

2𝑧
) 

where 𝜆 and 𝑘 =
2𝜋

𝜆
 are, respectively, the wavelength and wave number of light. 

The observation distance z is considered to be larger than the transverse spatial 

extent of the source and observation point. 

Under consideration of stochastic source at the plane z=0 and non-stochastic 

propagation kernel, elements of the CP matrix are given as 

〈𝐸𝑚(𝜌1)𝐸𝑛
∗(𝜌2)〉 = ∬〈𝐸𝑚

∗ (𝑟1)𝐸𝑛(𝑟2)〉 𝐺∗(𝜌1,𝑟1)𝐺(𝜌2, 𝑟2)𝑑𝑟1 𝑑𝑟2   (2.1.2b) 

Eq. 2.1.2 b shows that elements of the CP matrix can be easily propagated from 

one plane to another and such relation helps to examine propagation induced 

coherence-polarization change of the light. Some special cases relevant to our 

thesis works are: 

(i) Incoherent light source: 〈𝐸𝑚
∗ (𝑟1)𝐸𝑛(𝑟2)〉 = 𝐼𝑚𝑛(𝑟)𝛿(𝑟1 − 𝑟2) 

We would like to emphasize here that 𝐼𝑚𝑛(𝑟) is nothing but polarization matrix 

represented by Eq. 2.1.1e and this term may be complex for 𝑚 ≠ 𝑛.  For 

incoherent but polarized light, elements of the CP matrix elements at the 

observation plane are given as 

𝑊(𝜌1, 𝜌2) = ∬ 𝐽(𝑟) 𝐺∗(𝜌1, 𝑟1) 𝐺(𝜌2, 𝑟2) 𝑑𝑟 

(ii) Incoherent light and propagation kernel as Fourier transform 
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Let us consider propagation kernel𝐺(𝜌, 𝑟) = exp (𝑖
𝑘

2𝑧
𝜌. 𝑟). Therefore, the 

complex coherence at the observation plane which is located at the far field is 

given as 

𝑊(𝜌1, 𝜌2) = ∬ 𝐽(𝑟) exp [−𝑖
𝑘

2𝑧
(𝜌2 − 𝜌1). 𝑟]  𝑑𝑟 

This relation is also referred as the van Cittert-Zernike theorem for the incoherent 

polarized light source. 

2.2.3 Generalized Stokes parameters 

It is possible to extend single point Stokes parameters (SPs) to the two 

points and develop formation similar to the coherence-polarization matrix. The 

generalization of the SPs from one-point to two-point, known as generalized 

Stokes parameter, helps to characterize stochastic electromagnetic fields and in 

the propagation of light. The Stokes parameter at a point 𝑟on the source plane 

can be explained using complex field from Eq. 2.1 and given as 

𝑆0(𝑟) = 〈𝐸𝑥
∗(𝑟)𝐸𝑥(𝑟)〉 + 〈𝐸𝑦

∗(𝑟)𝐸𝑦(𝑟)〉     (2.1.3 a) 

𝑆1(𝑟) = 〈𝐸𝑥
∗(𝑟)𝐸𝑥(𝑟)〉 − 〈𝐸𝑦

∗(𝑟)𝐸𝑦(𝑟)〉     (2.1.3b)  

𝑆2(𝑟) = 〈𝐸𝑥
∗(𝑟)𝐸𝑦(𝑟)〉 + 〈𝐸𝑦

∗(𝑟)𝐸𝑥(𝑟)〉      (2.1.3c)  

𝑆3(𝑟) = 𝑖[〈𝐸𝑦
∗(𝑟)𝐸𝑥(𝑟)〉 − 〈𝐸𝑥

∗(𝑟)𝐸𝑦(𝑟)〉]    (2.1.3d) 

It is very important to highlight close connection between Equations (2.1.1a-

2.1.1d) and the polarization matrix given by Eq. 2.1.1e. The SPs elements can 

also be explained using the polarization matrix. In contrast to elements of the CP 

matrix, the polarization matrix elements and hence the SPs are real quantities and 

not suitable for propagation (Korotkova and Wolf, 2005). The generalized Stokes 

parameters (GSPs) are defined as 
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𝑆0(𝑟1, 𝑟2) = 〈𝐸𝑥
∗(𝑟1)𝐸𝑥(𝑟2)〉 + 〈𝐸𝑦

∗(𝑟1)𝐸𝑦(𝑟2)〉    (2.1.3 e) 

𝑆1(𝑟1, 𝑟2) = 〈𝐸𝑥
∗(𝑟1)𝐸𝑥(𝑟2)〉 − 〈𝐸𝑦

∗(𝑟1)𝐸𝑦(𝑟2)〉     (2.1.3f) 

𝑆2(𝑟1, 𝑟2) = 〈𝐸𝑥
∗(𝑟1)𝐸𝑦(𝑟2)〉 + 〈𝐸𝑦

∗(𝑟1)𝐸𝑥(𝑟2)〉    (2.1.3g) 

𝑆3(𝑟1, 𝑟2) = 𝑖[〈𝐸𝑦
∗(𝑟1)𝐸𝑥(𝑟2)〉 − 〈𝐸𝑥

∗(𝑟1)𝐸𝑦(𝑟2)〉]    (2.1.3h) 

The GSPs elements can also be explained using the CP matrix elements as 

follows 

𝑆0(𝑟1, 𝑟2) = 𝑊𝑥𝑥(𝑟1, 𝑟2) + 𝑊𝑦𝑦(𝑟1, 𝑟2)      (2.1.3i) 

𝑆1(𝑟1, 𝑟2) = 𝑊𝑥𝑥(𝑟1, 𝑟2) − 𝑊𝑦𝑦(𝑟1, 𝑟2)      (2.1.3j) 

𝑆2(𝑟1, 𝑟2) = 𝑊𝑥𝑦(𝑟1, 𝑟2) + 𝑊𝑦𝑥(𝑟1, 𝑟2)     (2.1.3k) 

 𝑆3(𝑟1, 𝑟2) = 𝑖[𝑊𝑦𝑥(𝑟1, 𝑟2) + 𝑊𝑥𝑦(𝑟1, 𝑟2)]     (2.1.3 l) 

Following propagation kernel described earlier, we can also connect the GSPs 

elements between the source z=0 and at the observation plane and relation is 

given as 

𝑆𝑙(𝜌1, 𝜌2) = ∬ 𝑆𝑙 (𝑟1, 𝑟2)𝐺∗(𝜌1, 𝑟1)𝐺(𝜌2, 𝑟2)𝑑𝑟1 𝑑𝑟2             (2.1.3m) 

where 𝑖 = 0 − 3 . Relation 2.1.3m permits to propagate the GSPs from one plane 

to another and helps to evaluate the propagation induced coherence-polarization 

change. Under consideration of incoherent -polarized light, the GSPs at the far 

field can be written as 

𝑆𝑙(𝜌1, 𝜌2) = ∬ 𝑆𝑙(𝑟) exp [−𝑖
𝑘

2𝑧
(𝜌2 − 𝜌1). 𝑟]  𝑑𝑟                                           (2.1.3n) 

Term 𝑆𝑙(r) represents the Stokes parameters at the incoherent source and this 

relation is interpretation of the van Cittert-Zernike theorem in terms of the SPs 
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and GSPs. Relation 2.1.3n can be utilized to design and develop polarization 

holography techniques and the Stokes holography (Singh et al., 2012). 

2.3. Field interferometer  

Consider a stationary polarized light illuminates two pinholes 𝑄1 and 𝑄2 

in an opaque screen as shown in Fig. 2.2.  Under this condition, relation of 

random electromagnetic field at a point 𝜌 on the screen is given as  

𝐸(𝜌) = 𝐾1 𝐸(𝑄1)
exp (𝑖𝑘𝑅1)

𝑅1
+𝐾2 𝐸(𝑄2)

exp (𝑖𝑘𝑅2)

𝑅2
         (2.2a) 

where 𝐸(𝑄𝑡), 𝑡 = (1,2) represents complex fields in the pinhole, and 𝑅𝑡 is the 

distance from source to the observation plane. The quantities 𝐾1,2 are pure 

imaginary numbers that depends on the pinhole area at 𝑄1,2 (Setälä et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 A representation of the young’s interference with monochromatic polarized 

light 

 

As discussed earlier, intensity and polarization state of the light at the observation 

point can be obtained from the polarization matrix elements𝐽𝑚𝑛(𝜌) =

𝑅2 

𝑄2 

𝑃 

 

𝑅1 

𝑄1 
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〈𝐸𝑚
∗ (𝜌)𝐸𝑛(𝜌)〉. Substitution of the polarization matrix elements into Eq. 2.2a 

leads to relation as (Setälä et al., 2006) 

1 2 1 2

1 2 1 2

2 1 1 2

( ) ( ) ( ) ( ) ( ){ ( , ) ( ( )

( , ) ( ( )})

mn mn mn mn

mn

J J J trJ trJ Q Q exp ik R R

Q Q exp ik R R

     



= + + − − +

−

(2.2b)                                                                                      

Term 𝐽𝑚𝑛
𝑡 (𝜌 ), 𝑡 = (1,2)are the polarization matrix elements when only the 

pinhole at the 𝑄𝑡is open. In connection with elements of the CP matrix, we have 

defined 

𝜂𝑚𝑛(𝑄1, 𝑄2) =
𝑊𝑚𝑛(𝑄1, 𝑄2)

√𝑡𝑟 𝐽(𝑄1)𝑡𝑟 𝐽(𝑄2) 
 

Using connection between the GSPs and elements of the CP matrix, we can also 

give relation of the polarization interference in terms of the Stokes parameters 

and the generalized Stokes parameters as 

𝑆𝑙(𝜌) = 𝑆𝑙
1(𝜌) + 𝑆𝑙

2(𝜌) + 2  {
𝑆𝑙(𝑄1, 𝑄2) exp  (−𝑖𝑘 (𝑅1 − 𝑅2) 

+𝑆𝑙(𝑄2, 𝑄1) exp  (𝑖𝑘 (𝑅1 − 𝑅2)
}      (2.2c) 

Eq. 2.2c states that polarization modulation takes place at the observation plane 

and contrast of the polarization fringes depend on the GSPs at the source plane. 

First modulation for 𝑙 = 0corresponds to the intensity modulation as usually 

represented in the scalar interference. Stokes or intensity fringes discussed in this 

section depends on the second order correlation parameters such as 𝑊𝑚𝑛(𝑄1 , 𝑄2) 

or 𝑆𝑙(𝑄1 , 𝑄2). 

2.3.1. Stokes holography to see the unseen information 

The Stokes parameters are useful in characterizing and encoding 

vectorial nature of the light in terms of the polarization modulations as explained 

in Eq. 2.2c. While interference plays a significant role in recording and 
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reconstructing the wavefront of the light and hence information of the object like 

in holography, majority of these investigations mainly deal with the intensity 

modulation, i.e., modulation in 𝑆0(𝜌), and reconstruct only complex field of the 

light leaving aside the polarization feature.  Attempts have been made to use full 

Stokes parameters in recording and reconstruction of the complete wavefront, 

i.e., amplitude, phase and polarization (Singh et al., 2012). Basic principle of this 

technique, known as Stokes holography, is explained below with the help of Fig. 

2.3. Stokes fringes records complete wavefront information as explained in the 

previous section. Mode of recording and reconstructing such fringes is another 

crucial factor for appealing application of the holography based on the Stokes 

fringes. In conventional digital holography, recording of the intensity fringes is 

done optically and the intensity hologram is captured by a detector. Such 

holograms are digitally reconstructed using various types of algorithms (Schnars 

and Werner, 2003).  

 
Figure 2-3 Schematic diagram for recording and reconstruction in the Stokes holography 

Usually, SPs are recorded in multiple steps or using expensive 

commercial polarization camera. Formation and recording of the Stokes fringes 

is shown in the left side of Fig. 2.3. However, combination of polarization fringes 

with Eq. 2.1.3n provides an un-conventional way to reconstruct information in 

terms of the GSPs. This approach states that real time scattering of Stokes fringes 

through diffuser generated stochastic electromagnetic field in the reconstruction 

process in the right-hand side as shown in Fig. 2.2.1. This situation permits to 

exploit connection between the Stokes fringes and the generalized Stokes 
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parameters discussed earlier. Therefore, information encoded in the Stokes 

fringes is reconstructed as two or three dimensional distributions of the 

generalized Stokes parameters (GSPs). Measurement of the GSPs require 

specifically designed un-conventional detector as highlighted by a cartoon in the 

schematic sketch. In this chapter and thesis, we will discuss some experimental 

methods to measure the GSPs and hence reconstructs the Stokes fringes. 

Amplitude interferometers discussed in this section face several challenges, since 

such interferometers require coherence of the light detected at two different ports. 

For optical telescope and applications in the astronomical imaging, presence of 

atmospheric turbulence and the fact that light from the two different telescopes 

has to be brought together with same precision limits applications of such 

interferometers. Similar problems also come in the application of field 

interferometer in the issue of imaging through random scattering medium. Any 

external disturbance or vibrations during experiment affects quality of 

reconstruction (Chen et al., 2020). 

2.3.2 Field interferometer: detection of instantaneous complex 

fields 

To exploit advantage of the spatial averaging in evaluation of the 

coherence-polarization features of the stochastic electromagnetic fields, we 

present an experimental technique of a simultaneous complete polarization 

mapping of a field at a fixed time t and full data acquisition. This uses ensemble 

averaging of the spatially fluctuating random vector field with space averaging. 

Spatial distribution of the temporally frozen random electromagnetic field is 

detected using a specially designed field-based polarization interferometer 

(second order correlation). An experimental system to instantaneously detect 

ASPs. A linearly polarized beam from a coherent laser is oriented at 45 degrees 

by half wave plate (HWP1), spatially cleaned by combination of microscope 

objective O1, pinhole S, and a collimated lens L1. This collimated beam splits 

into two arms by a beam splitter BS1. A specially designed triangular Sagnac 

polarization interferometer in the first arm of the interferometer (shown by a blue 
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line) creates two mutually tilted orthogonally polarized reference beams with the 

help of a telescopes assembly formed by lens system L2 and L3. Linear polarized 

beam at 45 enters polarization beam splitter PBS1 and separates into two counter 

propagating beams in the Sagnac interferometer. These beams come out of the 

PBS1 as a pair of collimated orthogonally polarized reference beams. Mirror M3 

and M4 together introduce desired amounts of tilts to the orthogonally polarized 

beams to make a spatial-frequency multiplexed fringes pattern suitable for 

Fourier fringe analysis. 

The second arm of the interferometer (shown by a red line) created a 

spatial random field by illumination of the ground glass. Another triangular 

Sagnac interferometer along with imaging optics is placed in this arm to generate 

a secondary speckle with controlled statistics as explained in coming lines. A 

circular aperture, located at the entrance of the second arm, is imaged through the 

Sagnac interferometer by lens L4 on the ground glass in such a way that two 

counter propagating and orthogonally polarized beams (indicated by green and 

blue lines) together form duplicated images of the source at the diffuser plane as 

shown in Fig. 2.4. The separation between the two orthogonal polarization 

sources (twin images) at the diffuser is controlled by mirror M5 and M6 and 

hence this control instantaneous polarization modulation Imn(r̂) or sA(r̂). The 

degree of overlap of the orthogonally polarized source at the diffuser plane 

control the statistics of the random field at the observation plane according to the 

van Cittert-Zernike theorem established using the spatial optics. For instance, 

when the orthogonally polarized circular apertures fully overlap at the ground 

glass plane, the ground glass introduces a same random phase φ(r̂) to the x-and 

y- field components, and hence polarization is uniform over the random field at 

the observation plane. This case will give spatial degree of polarizationP(0) =

1. Similarly, partially overlapping replicas as the ground glass will introduce 

partial correlation between the x- and y- components at the observation plane and 

hence 0 < 𝑃(0) < 1. The ratio of the orthogonal polarization components at the 
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ground glass can be controlled by rotation of the HWP2 and this will lead to 

increase in value of spatial degree of polarization, which is also known as en-

polarization in literature.  Another case is full separation between two copies of 

imaged source at the ground glass and this corresponds to complete loss of 

correlation between the x-and y- field components at the observation plane and 

hence generation of completely spatially depolarized (spatially random 

polarization) situation with P(0) = 0. 
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Figure 2-4 An experimental setup to detect ASP and orthogonal polarization components 

of random electromagnetic field from a single measurement at the CCD 
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Figure 2-5 Triangular Sagnac interferometer to make two copies of the source 

at the ground glass and control overlap of the orthogonal polarization components 

and second part shows recorded interferogram which is composed of two 

orthogonal polarization components with Fourier analysis process. FT and IFT 

stand for two dimensional Fourier and inverse Fourier transform 

Scattering of polarization structured beam due to overlap of the two 

orthogonal polarization components through ground glass generated speckle 

pattern with the Gaussian statistics. The scattered fields polarization components 

encoded into interference fringes are recorded by the charged coupled device 

CCD with the help of magnifying lens combination L6 and L7. The fringe pattern 

is composed to the two sets of interference fringes with different periodicity for 

two orthogonal polarization components. Making use of the Fourier fringe 

analysis, the spectrum of each orthogonal polarization components is 

distinguishable in the Fourier space and the information about the amplitude and 

phase is retrieved in the signal domain. The complex amplitude of the x- and y- 

polarization components coming from the diffuser is calibrated with a standard 
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beam to erase errors introduced by optical system due to misalignment. Using the 

spatial averaging of these experimentally detected orthogonal polarization 

components at a fixed time, i.e., ASP, we can evaluate the GSPs and CP matrix 

of the random fields and detailed analysis in this direction can be found in Singh 

et al., 2014 and Singh et al., 2013). Stability challenge of the field-based 

polarization interferometer can be solved using the intensity interferometer and 

some of these techniques will be discussing in coming chapters. 

2.4. The Hanbury Brown-Twiss (HBT) 

interferometer 

A possible solution of challenges of the field interferometer is intensity 

interferometer which relies on not measuring light amplitudes at different 

positions but intensities, collecting photons in other words. In year 1956 Hanbury 

Brown and Twiss proposed to use the correlations of the intensities to determine 

diameter of the Sirius from the Jodrell Bank Experimental station of the 

University of Manchester as in Fig. 2.6. System was built with two mirrors 

focusing starlight on photo-multipliers, whose signals were amplified (Hanbury 

and Twiss, 1975).  

 

Figure 2.6 The first Stellar intensity interferometer at Jodrell Bank (University of 

Manchester) in 1956. (Picture source: Davis, 2018) 
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After a series of laboratory experiments, which also generated considerable 

controversy and lead to birth of advance quantum optics, this group further 

explored intensity interferometry measurement with the Narrabri Stellar Intensity 

Interferometer as shown in Fig. 2.7. This circular rail has a diameter of 188 m 

and angular size up to(0.41 ∓ 0.03) mas were measured with this interferometer 

[23]. Advantage of an intensity interferometer is associated with the fact that this 

approach does not require measurement of the amplitude but number of photons. 

Hence, effect of turbulence which changes phase of the incoming wave does not 

influence the quality of measurement. 

 

 Figure 2.7 The intensity interferometer near Narrabri (Australia). The two telescopes 

placed on the circular track on move to vary the baseline and to change the angle of sight. 

(Picture source: Hanbury et al., 1974) 

2.4.1 Physics of intensity interferometer 

The normalized nth order correlation functions 𝑔(𝑛) provides 

correlations at any arbitrary positions in space and time and such parameters are 

useful in characterizing light source and developing new applications as 

explained earlier. In this chapter and in line with theme of the thesis, we will 

consider only separation of points in space not in time, i.e., temporal correlation 
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part not considered. The first and second order correlation functions 𝑔(1) and 

𝑔(2)are of special interests. The expression of the first order correlation function, 

also described earlier, is given as 

𝑔(1)(𝑄1, 𝑄2) =
〈𝐸∗(𝑄1,𝑡)𝐸(𝑄2,𝑡)〉

〈𝐸∗(𝑄1,𝑡)𝐸(𝑄1,𝑡)〉
       (2.3.1a)  

where 𝑄1 and 𝑄2 are two spatially separated points. The bracket  denotes 

ensemble average and traditionally replaced by temporal averaging 〈𝐸(𝑡)〉 =

1

𝑇
∫ 𝐸(𝑡)𝑑𝑡

𝑇

0
 for recording time T. In the normalization, we assume that the 

average intensities at two-point sources are nearly same, therefore the choice of 

𝑄1 and 𝑄2 does not influence result. The quantity given in Eq. 2.3.1a is also 

referred as the degree of coherence defined earlier by 𝜇(𝑄1, 𝑄2). 

The second-order correlation can be described as 

𝑔2(𝑄1, 𝑄2) =
〈𝐸∗(𝑄1) 𝐸∗(𝑄2)∙𝐸(𝑄1) 𝐸(𝑄2)〉

〈𝐸∗(𝑄1) 𝐸∗(𝑄1)〉〈𝐸∗(𝑄2) 𝐸(𝑄2)〉
     (2.3.1b) 

This equation can be further simplified by substituting intensities 𝐼 = 𝐸∗𝐸 

𝑔2(𝑄1, 𝑄2) =
〈𝐼(𝑄1) ∙𝐼(𝑄2)〉

〈𝐼(𝑄1) 〉〈𝐼(𝑄2)〉
        (2.3.1c) 

The correlation (multiplication of the intensities as mentioned above) can be 

implemented either electronically or digitally. Using Siegart relation, the second 

order intensity correlation (or fourth order field correlation) can be explained in 

terms of the first order intensity (second order field) correlation (Goodman, 2000) 

as 

〈𝐼(𝑄1)𝐼(𝑄2)〉 = 〈𝐼(𝑄1)〉〈𝐼(𝑄2)〉 + |𝐸∗(𝑄1)𝐸(𝑄2)|2    (2.3.1d) 

Therefore, 
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𝑔(2)(𝑄1, 𝑄2) = 1 + |𝑔(1)(𝑄1, 𝑄2)|
2
 

 This highlights the insensitivity the intensity interferometers to the phase.  

2.4.2 HBT for polarized light 

Consider a stochastic polarized light field that propagates along the z 

direction in the coordinate system given in Fig. 2.1.  The mean value of the optical 

intensity is given as 

〈𝐼(𝑟)〉 = 〈|𝐸𝑥(𝑟)|2〉 + 〈|𝐸𝑦(𝑟)|
2

〉 = 𝑡𝑟𝑊(𝑟, 𝑟) 

The electromagnetic degree of coherence of the vector light is given as 

𝛾2(𝑟1, 𝑟2) =
𝑡𝑟[𝑊(𝑟1,𝑟2)𝑊(𝑟2,𝑟1)]

〈𝐼(𝑟1)〉〈𝐼(𝑟2)〉
       (2.3.2a) 

Fluctuations of the intensities from its mean value is given as 

〈∆𝐼(𝑟)〉 = 𝐼(𝑟) − 〈𝐼(𝑟)〉 

Under consideration of Gaussian random process and applying the Siegart 

relation, correlation of the cross covariance at two points is given as 

〈∆𝐼(𝑟1)∆𝐼(𝑟2)〉 = ∑ |𝑊𝑚𝑛(𝑟1, 𝑟2)|2 = 𝑡𝑟[𝑊(𝑟1, 𝑟2)𝑊(𝑟2, 𝑟1)]𝑚,𝑛   (2.3.2b) 

The degree of coherence of the stochastic electromagnetic beam can also be 

expressed as second order intensity correlation as follows 

𝛾2(𝑟1, 𝑟2) =
〈∆𝐼(𝑟1)∆𝐼(𝑟2)〉

〈𝐼(𝑟1)〉〈𝐼(𝑟2)〉
        (2.3.2c) 

Hence, the correlation between intensity fluctuations, at a pair of points, depends 

on the mean intensities, and on the degree of electromagnetic coherence 
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(Hassinen et al., 2011). The normalized correlation of intensity fluctuations is 

equal to the square of the degree of coherence for electromagnetic fields.  

2.5 Spatial statistical optics and its importance 

Ranging from classical to quantum domains, the optical fields are 

intrinsically of statistical in nature. The statistical optics covers stochastic light 

which shows randomness in time and/or in space. To deal with the stochastic 

light fields, the ensemble average is usually replaced with the temporal average, 

considering that the statistical field is stationary and ergodic in time (Goodman, 

2000). This approach is justifiable in majority cases of fundamental and practical 

interests, such as thermal light source, partially coherent beams etc. Such ideas 

of traditional statistical optics build on the foundation of temporal stationarity 

and temporal ergodicity is called ‘temporal statistical optics’ to clearly 

distinguish it from spatial statistical optics dealing with spatially fluctuating 

random light (Takeda et al., 2014). 

 

Figure 2.8 Schematic representation of light fields that are temporally and spectrally 

confined in phase space. (Picture source: Takeda 2014) 
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With development of the laser technology, applications have emerged on the 

basis of extreme optical fields that are strongly confined either on the time axis 

or on the optical frequency axis in the time-frequency phase space as shown in 

Fig. 2.6. For such situations, temporal statistical optics is not a useful tool. For 

instance, an ultra-short optical pulse strongly focused on the time axis, does not 

show temporal stationarity required for the temporal statistical optics. On the 

other hand, for ideally stabilized monochromatic laser light with the optical 

frequency confined on the optical frequency axis, time averaging is not useful 

because the light field is not fluctuating in time scale. Therefore, we have two set 

of example where different types of statistical optics are desired. Considering an 

example of the spatial variation of the light fields, we note that such light fields 

generate spatially fluctuating pattern when scattered by diffusing medium. An 

example of such spatially fluctuating light field is speckle pattern. The spatial 

statistics of the scattered field and replacement of the ensemble average by the 

space average provides signature of the object obscured by the diffuser using 

from a single random pattern (rather than several patterns as usually required in 

the temporal averaging). Such idea inspires to explore analysis of instantaneous 

or time frozen optical fields that cannot dealt with the temporal statistical optics. 

From the formal symmetry of space and time in the wave equation, this 

interchange between space and time appears to be a natural choice in the sense 

of analogy. A schematic representation of the polarized random field, known as 

polarization speckle, is shown in Fig. 2.3.2. Considering the orthogonal 

polarization components 𝐸𝑥(𝑟, 𝑡) and 𝐸𝑦(𝑟, 𝑡) as defined earlier. The GSPs terms 

of the time varying electric field are defined as 

𝑆0(𝑟1, 𝑟2; 𝑡1, 𝑡2) = 〈𝐸𝑥
∗(𝑟1, 𝑡1)𝐸𝑥(𝑟2, 𝑡2)〉 + 〈𝐸𝑦

∗(𝑟1,𝑡1)𝐸𝑦
∗(𝑟2, 𝑡2)〉  (2.4 a) 

𝑆1(𝑟1, 𝑟2; 𝑡1, 𝑡2) = 〈𝐸𝑥
∗(𝑟1, 𝑡1)𝐸𝑥(𝑟2, 𝑡2)〉 − 〈𝐸𝑦

∗(𝑟1,𝑡1)𝐸𝑦(𝑟2, 𝑡2)〉  (2.4b)  

𝑆2(𝑟1, 𝑟2; 𝑡1, 𝑡2) = 〈𝐸𝑥
∗(𝑟1, 𝑡1)𝐸𝑦(𝑟2, 𝑡2)〉 + 〈𝐸𝑦

𝑥(𝑟1, 𝑡1)𝐸𝑥(𝑟2, 𝑡2)〉 (2.4c) 
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𝑆3(𝑟1, 𝑟2; 𝑡1, 𝑡2) = 𝑖[〈𝐸𝑦
∗(𝑟1, 𝑡1)𝐸𝑥(𝑟2, 𝑡2)〉 − 〈𝐸𝑥

∗(𝑟1, 𝑡1)𝐸𝑦(𝑟2, 𝑡2)〉] (2.4d) 

where 𝑟1 ,𝑟2 are two spatial coordinates and 𝑡1,𝑡2 are two different instants of 

time. When 𝑟1 = 𝑟2 and 𝑡1 = 𝑡2,the GSPs transforms to conventional SPs. 

Considering stationarity and ergodicity in space, we replace ensemble average 

  by the space average
R

 . Since our interests in this thesis are on the spatial 

correlation, we put 𝑡1 = 𝑡2 = 𝑡 to evaluate GSPs as 

𝑆0(∆𝑟, 𝑡) = 〈𝐸𝑥
∗(𝑟1, 𝑡1)𝐸𝑥(𝑟2, 𝑡2)〉𝑅 + 〈𝐸𝑦

∗(𝑟1,𝑡1)𝐸𝑦
∗(𝑟2, 𝑡2)〉𝑅   (2.4 e)                             

𝑆1(∆𝑟, 𝑡) = 〈𝐸𝑥
∗(𝑟1, 𝑡1)𝐸𝑥(𝑟2, 𝑡2)〉𝑅 − 〈𝐸𝑦

∗(𝑟1,𝑡1)𝐸𝑦
∗(𝑟2, 𝑡2)〉𝑅   (2.4 f)                                                                                  

𝑆2(∆𝑟, 𝑡) = 〈𝐸𝑥
∗(𝑟1, 𝑡1)𝐸𝑦(𝑟2, 𝑡2)〉𝑅 + 〈𝐸𝑦

∗(𝑟1,𝑡1)𝐸𝑥(𝑟2, 𝑡2)〉𝑅   (2.4 g) 

𝑆3(∆𝑟, 𝑡) = 𝑖[〈𝐸𝑦
∗(𝑟1,𝑡1)𝐸𝑥(𝑟2, 𝑡2)〉𝑅 − 〈𝐸𝑥

∗(𝑟1, 𝑡1)𝐸𝑥(𝑟2, 𝑡2)〉𝑅]   (2.4 h) 

Here 
R

 represents the space average as a replacement of the ensemble average 

and GSPs depend on the difference of spatial coordinates ∆𝑟 = 𝑟2 − 𝑟1 The 

complex random field selected inside the  represents a snap shot pattern at a 

particular instant of time as represented in Fig. 2.7. Polarization variation in the 

space (at a frozen time t) is shown in Fig. 2.7 using the Poincare sphere 

representation. In analogy to instantaneous intensity without time averaging, we 

can introduce at-the points (which means ‘without space averaging’) SPs (ASPs), 

which involve no averaging operation (neither in time nor in space) as 

𝑆0
𝐴(𝑟) = 𝐸𝑥(𝑟)𝐸𝑥

∗(𝑟) + 𝐸𝑦(𝑟)𝐸𝑦
∗(𝑟)      (2.4 i) 

𝑆1
𝐴(𝑟) = 𝐸𝑥(𝑟)𝐸𝑥

∗(𝑟) − 𝐸𝑦(𝑟)𝐸𝑦
∗(𝑟)      (2.4 j)            

𝑆2
𝐴(𝑟) = 𝐸𝑥

∗(𝑟)𝐸𝑦(𝑟) + 𝐸𝑦
∗(𝑟)𝐸𝑥(𝑟)     (2.4 k) 

 𝑆3
𝐴(𝑟) = 𝑖[𝐸𝑦

∗(𝑟)𝐸𝑥(𝑟) − 𝐸𝑥
∗(𝑟)𝐸𝑦(𝑟)]     (2.4 l) 
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Figure 2.9 Space-time representation of stochastic electromagnetic field, and dynamics 

of polarization change in a single random pattern (at a frozen time t) is represented at the 

Poincare sphere. The SOPs in the random field is varying from point A to B. (Picture 

source: Singh et al., 2014) 

The ASPs are real quantities and characterize instantaneous SOPS at the point in 

the space, which is well-defined at every spatial location in the randomly 

coherent field (Singh et al., 2014) and follows the relation 

[𝑆1
𝐴(𝑟)]2 + [𝑆2

𝐴(𝑟)]2 + [𝑆3
𝐴(𝑟)]2 = [𝑆0

𝐴(𝑟)]2      (2.4m) 

The ASPs are geometrically represented by a Poincare vector as follows 

𝑆𝐴(𝑟) = (𝑆1
𝐴(𝑟),      𝑆2

𝐴(𝑟),        𝑆3
𝐴(𝑟)) = �̂�𝐴𝑆0

𝐴(𝑟) 

The length of the Poincare vector ss equal to the at-the point intensity 𝑆0
𝐴(𝑟) , 

and  �̂�𝐴   is a unit vector parallel to 𝑆𝐴(𝑟) that represents SOP at the spatial point 

r. 

2.5.1 Vectorial van Cittert-Zernike theorem based on the 

spatial averaging 

One of the important results of the coherence optics is the van Cittert 

Zernike theorem which connects a random source with the spatial coherence in 

the far field. In this section, we present a discussion on the derivation of the van 
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Cittert-Zernike theorem with the spatial averaging (rather than temporal 

averaging). To cover a more generalized situation, we deal with a polarized light 

and establish vectorial van Cittert-Zernike theorem. This generalized van Cittert-

Zernike theorem will be on equal footing to the scalar case. This derivation is 

performed by considering ergodicity in space (rather than in time) and taking the 

space average over the observation plane (rather than over the source plane). 

Van Cittert Zernike Theorem in scalar and vectorial domain: Spatial optics approach

Far Field ObservationRandom source
z

2a

Vectorial random source Polarization 

Speckle detection 

E

E

 

Figure 2.10 A sketch to represent scattering of the coherent light from a diffuser and 

generation of speckle pattern in the far field. 

The scattered field at the observation plane locate in the far field, for a fixed time 

t, is given by  

𝐸𝑚(𝑟) = ∫ 𝐸𝑚(�̂�) exp(𝑖𝜑𝑚( �̂�)) 𝑒𝑥𝑝 (−𝑖
2𝜋

𝜆𝑧
𝑟 ∙ �̂�)  𝑑�̂�    (2.5.1a) 

Here, 𝐸𝑚(�̂�) is the vector field component of the incident light at the diffuser 

plane as shown in Fig. 2.5.1, and �̂� is the two-dimensional position vector at the 

diffuser (ground glass) plane, 𝜑𝑚(𝑟)̂ is a random filed introduced by the diffuser. 

Elements of the CP matrix for the field are given (Singh et al., 2013) as 
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𝑊𝑚𝑛(𝑟1, 𝑟2) = 〈𝐸𝑚 
∗ (𝑟1) 𝐸𝑛( 𝑟2)〉𝑅 = 〈𝐸𝑚 

∗ (𝑟1) 𝐸𝑛( 𝑟1 + Δ𝑟)〉𝑅 = 𝑊𝑚𝑛(Δ𝑟) ∝

∫ {∬ 𝐸𝑚
∗ (�̂�1)𝐸𝑛(�̂�2) × exp [−𝑖

2𝜋

𝜆𝑧
[( 𝑟1 + Δ𝑟) ∙ �̂�2 − 𝑟1 ∙ �̂�1] 𝑑�̂�1𝑑�̂�2̂} 𝑑𝑟1    ∝

∫ 𝐼𝑚𝑛(�̂� ) exp (−𝑖
2𝜋

𝜆𝑧
Δ𝑟 ∙ �̂�) 𝑑�̂�       (2.5.1b) 

Here, �̃�𝑚(�̂�) = 𝐸𝑚(�̂�)exp (𝑖𝜑𝑚(�̂�)) is the random field coming out of the 

diffuser and diffuser is considered to be non-birefringence, i.e.,𝜑𝑚(�̂�) = 𝜑𝑛(�̂�), 

and we have 𝑟2 = 𝑟1 + Δ𝑟. In equation (2.5.1b), the integration taken over the 

observation plane for spatial averaging results in a delta 

function∫ exp (−𝑖
2𝜋 (�̂�2−�̂�1)∙𝑟1

𝜆𝑧
) 𝑑𝑟1 ∝ 𝛿(�̂�2 − �̂�1). In Eq. 2.5.1b, 𝐼𝑚𝑛(�̂�) =

𝐸𝑚
∗ (�̂�)𝐸𝑛(�̂�), which can take a complex value for 𝑚 ≠ 𝑛. Eq. 2.5.1b is regarded 

as a spatial average version of the van Cittert-Zernike theorem for the CP matrix. 

Following definition of the degree of coherence for the stochastic 

electromagnetic field, we can characterize the spatial coherence-polarization 

matrix of the scattering field by 

𝛾(∆𝑟) = (
𝑡𝑟[𝑊∗(∆𝑟)𝑊(∆𝑟)]

𝑡𝑟 𝑊(0)𝑡𝑟 𝑊(0)
)

1/2

 

𝑃(0) = (1 −
4 det 𝑊(0)

|𝑡𝑟 𝑊(0)|2
)

1/2

 

Here, 𝛾(∆𝑟) and 𝑃(0) are a spatial-average version of the degree of coherence 

and the spatial degree of polarization, respectively. The random field is fully 

spatially polarized for 𝛾(0) = 1 , i.e., no polarization fluctuation in space. On the 

basis of close relation between the GSPs and CP elements, we can also establish 

the vectorial van Cittert-Zernike theorem using the SPs and GSPs. 
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CHAPTER 3 

DEGREE OF SPATIAL POLARIZATION AND 

INTENSITY CORRELATION IN 2D AND 3D 

 

3.1 Introduction 

Intensity correlation measurement, proposed by Hanbury Brown and 

Twiss (HBT), has become an important technique to analyze the correlations of 

the random fields (Hanbury and Twiss, 1956). The HBT technique was proposed 

to examine the angular size of the stars and has been studies in detail using both 

the classical and quantum theory of light (Hanbury and Twiss, 1957). The 

intensity correlations have been widely used in multidisciplinary applications. 

Some of these applications are in laser speckles, high energy physics, nuclear 

physics, and atomic physics etc. (Mandel and Wolf, 1995; Bromberg et al., 2010; 

Kumar et al., 2012; Singh et al., 2014; Schultheiss et al., 2016; Wiedemann and 

Heinz, 1997; Baym, 1997). Uniqueness of the HBT approach and the intensity-

based interferometer lies with their ability to develop highly stabilized 

interferometer for light analysis in comparison to the field-based interferometers 

such as the Young’s interferometer. Experimental measurement techniques to 

measure the field correlation of the light based on the Young’s approach and 

second order correlation are highly sensitive to external disturbances such as 

vibration, noise etc. On the other hand, the intensity interferometers based on the 

HBT approach are highly stable and able to characterize the correlation structures 

of the light even in the non-stable conditions. Origin of the HBT approach can be 

traced back to the technological development in the astronomical imaging. Early 

works in the astronomical imaging were mainly confined to the direction 

detection of the optical field intensity with help of telescope. Later, the HBT 

experiment on the use of intensity correlation, i.e., fourth order correlation, 

brought a breakthrough in the astronomy.  
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Correlation methods, particularly the intensity correlation, has also 

brought major revolution in development of the un-conventional imaging 

techniques such as ghost imaging, ghost diffraction, single pixel correlation 

holography, intensity correlation holography etc. (Erkmen and Shapiro, 2010; 

Padgett and Boyd, 2017; Singh et al., 2017). The ghost imaging reconstructs the 

image from measurement of the intensity correlations between the two random 

fields. This measurement is realized by two photo detectors: a charged coupled 

device and a bucket detector. The ghost imaging was first detected with the 

correlation of quantum sources and later technique is also successfully 

implemented with the classical thermal light source. In recent years, new trends 

have also emerged to use intensity correlation of the spatially fluctuating random 

field such as laser speckle and develop new un-conventional imaging techniques 

such as correlation holography, ghost imaging etc. 

However, majority of the investigations on the intensity correlations have 

been limited to the scalar wave treatment under notion of one polarization mode. 

With development of unified theory of coherence-polarization and emerging 

interests in the polarization inhomogeneous random fields, the correlation features 

of vector waves have drawn significant attention (Perrin et al., 2012; Wolf, 2007; 

Sahin et al., 2009; Xin et al., 2008; Korotkova, 2006; Kuebel, 2009). Tervo et al. 

(2011) discussed the intensity correlation effect with classical vector-valued fields 

in the space-time domain and showed that the electromagnetic degree of 

coherence of the stationary electromagnetic waves obeying Gaussian statistics can 

relate to the intensity correlation (Tervo et al., 2003).  Such investigations have 

also been extended to the space-frequency domain and it is demonstrated that the 

spectral degree of electromagnetic coherence has an impact on the spectral HBT 

effect (Setälä et al., 2004). It has been shown that the correlation of intensity 

fluctuations between two detectors depends on the degree of cross polarization 

(Sirahi and wolf, 2007; Volkov et al., 2008; Al-Qasimi et al., 2010; Hassinen et. 

al., 2011). In a separate investigation, Hassinen et. al. (2011) has discussed the 
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effects of spatial correlations and the degree of polarization of the field on the 

correlations of the intensity fluctuations at pair of separate points, even when the 

degree of polarization varies with the position (Hassinen et. al., 2011). Wu and 

Visser, (2014) have recently derived expression to examine the effect of source 

parameters on the two-point intensity correlation in the same cross section of a 

random electromagnetic beam (Wu and Visser, 2014). Some experimental 

implementations of the intensity correlation for the vector light fields have been 

reported in recent years (Wu and Visser, 2014; Chen et al., 2014). Majority of 

these intensity correlation techniques are restricted to temporal ergodicity and 

applying temporal averaging as replacement of the ensemble averages except 

some recent works on the spatial ergodicity in the different context (Chen et al., 

2016; Vinu and Singh, 2015).  

The spatial ergodicity plays an important role in characterizing the 

spatially fluctuating random fields such as speckles. When a coherent polarized 

light travel through a static diffuser which involves multiple scatterings, random 

fluctuations are introduced into the spatial distribution of the state of polarization 

(SOP). Because the light is monochromatic and the diffuser is static, the random 

field is free from temporal fluctuation and remains to be fully polarized according 

to the conventional definition based on time averaging and has a well-defined SOP 

at each spatial point. Such a random field is referred to as polarization speckles (D 

Singh and Singh, 2018; Singh et al., 2014; Takeda et al., 2010; Reddy et al., 2017). 

An example of polarization fluctuation in the polarization speckle is represented 

on the Poincare sphere as shown in Fig. 3.1 

 



40 

 

 

Figure 3.1. (a) Space-time distribution of polarization speckles. Point A and B are 

observation points in the area of a stationary patch within which statistics remains 

unchanged. (b)  Trajectory of an at-the point Stokes vector ˆ ( )AS r on Poincare sphere as 

the observation point moves from A to B. 

To analyze such random fields, definitions of the degree of coherence 

and spatial degree of polarization based on the spatial average can be introduced 

(Takeda et al., 2010). The spatial degree of polarization is conceptually analogous 

to the degree of macroscopic magnetization of magnetic materials induced by 

ordered or disordered orientations of many microscopic atomic dipoles, and the 

polarization speckles bear similarity to magnetic domains in their geometrical 

structures (Kittel, 1976). In a review article Takeda and coworkers have given a 

detailed discussion on spatial statistical optics that placed more emphasis on the 

spatial statistics of the optical field, rather than on their temporal statistics (Takeda 

et al., 2014). The intensity correlation with spatial averaging has been utilized in 

recent years for characterization of scalar and polarization speckles (Reddy et al., 

2014; Vinu and Singh, 2015; Alves et al., 2015). However, these investigations 

are limited at a fixed transverse plane and with different objectives. 

This chapter aims to study intensity correlation of the spatially 

fluctuating polarized random fields at different distances under the paraxial 

propagation. Quantitative analysis of the random field is carried out by following 

relation between the degree of coherence of the electromagnetic fields, spatial 
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degree of polarization and the intensity correlation for the Gaussian random fields. 

An experimental scheme is designed to generate and analyze the random fields 

with different polarization fluctuations and results are presented. The polarization 

fluctuation in the random field is synthesized by introducing different vortex 

modes into orthogonal polarization components of the light prior to the random 

scattering from a diffuser. Presence of the helical modes, i.e., vortex, in the one of 

the orthogonal polarization components of the incident light makes coupling 

between the spatial and polarization modes of the light and hence generates 

spatially varying polarization states. Our purpose is to use the vortex beams to 

generate spatial polarization inhomogeneity in the laser speckle and analyze the 

speckles at the focal plane and at different transverse plane using the intensity 

correlation and spatial optics. For quantitative comparison, experimental results 

are compared with the theory using digital propagation of the light. 

3.2 Principle 

Let’s consider a monochromatic polarized light from a random source as 

shown in Fig. 3.2. The complex electric field at a fixed transverse plane is 

represented by the transverse polarization vectors as 

ˆ ˆ( ) ( ) ( )x yE xE yE= +r r r
             (3.1) 

where 𝑥 ̂, �̂� are unit vectors along x and y direction and r is position vector in the 

transverse plane.  The orthogonal polarization components of the light field are 

represented by ( )xE r  and ( )yE r . Following angular spectrum method, the 

complex field at an arbitrary transverse plane located at distance z from the source 

is given as 

𝐸(𝒓, 𝑧) = 𝑒𝑥𝑝( 𝑖𝑘𝑧) ∫ 𝐸(𝒖) 𝑒𝑥𝑝( 𝑖𝑘𝑧(𝒖)𝑧) 𝑒𝑥𝑝(𝑖𝒖 ⋅ 𝒓) 𝑑𝒖       (3.2) 
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where u is normalized optical coordinates at the source, λ wavelength of the light 

and𝑘 =
2𝜋

𝜆
wave number. Term 𝑘𝑧(𝑢) =

|𝑢|2

2𝑘
 under paraxial approximation. The 

intensity pattern of the light at a transverse plane z is given as 

𝐼(𝒓, 𝑧) = |𝐸𝑥(𝒓, 𝑧)|2 + |𝐸𝑦(𝒓, 𝑧)|
2
             (3.3) 

The correlation of intensity fluctuations at two points in the different transverse 

plane is defined as 

𝑐(𝒓1, 𝑧1; 𝒓2, 𝑧2) = ⟨∆𝐼(𝒓1, 𝑧1)∆𝐼(𝒓2, 𝑧2)⟩            (3.4) 

where 𝑐(𝒓1, 𝑧1, 𝒓2, 𝑧2)is cross-covariance of the intensity fluctuation and 

∆𝐼(𝒓, 𝑧) = 𝐼(𝒓, 𝑧) − ⟨𝐼(𝒓, 𝑧)⟩is fluctuation of the intensity with respect to its mean 

value ⟨𝐼(𝒓, 𝑧)⟩.  Let us consider that the statistical properties of the random field 

are Gaussian. Therefore, the fourth order correlation, i.e., intensity correlation, can 

be expressed in terms of the second order field correlation. Substituting Eq. (3.2) 

into the intensity correlation relation, the cross covariance of the intensity at two 

different transverse planes is written as 

⟨∆𝐼(𝒓1, 𝑧1)∆𝐼(𝒓2, 𝑧2)⟩ = ∑ |⟨∫ ∫ 𝐸𝑖
∗(𝒖1)𝐸𝑗(𝒖2) 𝑒𝑥𝑝[𝑖(𝑘𝑧(𝒖2) −𝑖,𝑗

𝑘𝑧(𝒖1))] 𝑒𝑥𝑝[𝑖(𝒖2 ⋅ 𝒓2 − 𝒖1 ⋅ 𝒓1)] 𝑑𝒖1𝑑𝒖2⟩|
2
           (3.5) 

where 𝑖, 𝑗 = 𝑥, 𝑦. Let us introduce spatial averages as replacement of the ensemble 

averages and considering𝒓1 = 𝒓, 𝒓2 = 𝒓 + ∆𝒓, therefore the cross-covariance of 

the intensity is given as (D Singh and Singh, 2018) 
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1 2

2
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2 1
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i j
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where 𝐼𝑖𝑗(𝒖) = |𝐸𝑖(𝒖)||𝐸𝑗(𝒖)|𝑒𝑖[𝜙𝑗(𝒖)−𝜙𝑖(𝒖)]is real for 𝑖 = 𝑗and may take 

complex value for 𝑖 ≠ 𝑗. Eq. (3.6) is derived by making of using 

relation∫ 𝑒𝑥𝑝[𝑖(𝒖2 − 𝒖1) ⋅ 𝑟] 𝑑𝑟 = 𝛿(𝒖2 − 𝒖1).  

Therefore, polarization features of the random field are encoded into the intensity 

fluctuations as derived into Eq. (3.6). For the fields obeying Gaussian statistics, a 

connection exists between the intensity fluctuations and the degree of coherence 

(DOC). Following the definition of the degree of coherence of the electromagnetic 

fields proposed by Tervo et al. in the space-time domain, we define the DOC and 

the degree of polarization (DOP) of the spatially fluctuating fields as 

𝜇2(∆𝒓, ∆𝑧) =
⟨∆𝐼(𝒓, 𝑧)∆𝐼(𝒓 + ∆𝒓, 𝑧 + ∆𝑧)⟩𝑠

⟨𝐼(𝒓, 𝑧)⟩𝑠⟨𝐼(𝒓 + ∆𝒓, 𝑧 + ∆𝑧)⟩𝑠
 

𝑃(0) = [2𝜇2(0) − 1]1/2              (3.7) 

Here 𝜇(𝛥𝒓, 𝛥𝑧)and 𝑃(0) are spatial version of the DOC and DOP of the spatially 

fluctuating random fields. To examine the effect on polarization on the intensity 

fluctuations, we have experimentally measured intensity fluctuations of the 

random fields and these results are compared with the simulation based on right 

hand side of Eq. (3.6) based on the vectorial domain van Cittert-Zernike theorem 

(Singh et al., 2013).  

3.3 Experiment Implementation 

To study intensity correlation of the spatially fluctuating random fields 

at different distances following experimental set-up has been proposed as shown 

in Fig. 3.2. A monochromatic laser source of wavelength 632.8nm =  (Melles 

Griot 25-LHP-928-230) is spatial filtered SF and collimated by a lens L1. A 

collimated beam propagates through a circular aperture of size 2.7mm diameter 

followed by the static ground glass and creates the speckle pattern. Subsequent 

speckle field is collected by a lens L2 of focal length 100mm and further 

propagates down to the camera plane. The intensity of the random speckle field is 
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captured using a CCD camera (PCO Pixel fly with 1040×1392 pixels and a pixel 

pitch of 6.45µm). A CCD is placed on a motorized z-scanner and hence, multiple 

speckle fields have been recorded at different longitudinal planes. Spatial 

averaging is performed on the scattered random fields to obtain cross-correlation 

of the speckles located at different longitudinal planes. Results are presented in 

the next section. 

 

Figure 3.2. Experimental Set up to study degree of spatial polarization 

 

In the second case, like the first experiment, a Spiral Phase Plate (SPP) 

is introduced in the set-up as shown in Fig. 3.4. The SPP as shown in Fig 3.3 is 

made by RPC photonics, USA. It can generate topological charges from 1 to 8. It 

is wavelength specific and is used for 633 nm only. 

 

Figure 3.3 A schematic representation of the topological charge distribution in spiral 

phase plate (SPP). 
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Vortex generates spatial polarization inhomogeneity in the laser speckle. In this 

experiment, we have used vortices of different topological charges such as 0, 1 

and 2 to record the speckle field at different longitudinal planes. The cross-

correlation of the speckles has been measured by considering two speckles one 

with vortex beam and the other with non-vortex beam. 

 

Figure 3.4. Experimental Set up to study degree of spatial polarization, with SPP. 

In the third case as shown in Fig. 3.5, Mach-Zehnder type polarization 

interferometer is used which generates a complex interference pattern with spatial 

polarization variations known as polarization speckle. A linearly polarized laser 

light having 45˚orientation with respect to x-direction is spatially filtered SF and 

collimated by a Lens L1 respectively. Collimated beam splits into two orthogonal 

components using polarized beam splitter (PBS). In one of the components, a SPP 

is placed and it is combined with the other component of the beam by non-

polarizing beam splitter BS. Combined beam propagates through a static ground 

glass and creates a speckle pattern. Further these polarized speckles fields are 

recorded by CCD camera at different longitudinal planes.  
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Figure 3.5. Mach-Zehnder type experimental Set up to study degree of spatial polarization 

The effect of cross correlation of the intensity fluctuations in random fields has 

been studied at the focal plane and along the z-axis of a Fourier transforming lens 

using the spatial statistical optics approach and results are presented in the next 

section. 

3.4 Results and discussions 

Set of random fluctuating intensity patterns are recorded at different 

positions of CCD plane as shown in Fig. 3.6. By applying intensity correlation 

based on spatial averaging we have obtained correlation of intensity fluctuation of 

random fields at two different longitudinal planes using Eq. (3.4) -(3.6). The 

degree of coherence and degree of polarization have also been obtained using Eq. 

(3.7).  

 

Figure 3.6. Set of random speckle patterns recorded at different CCD positions 
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These intensity patterns are utilized to estimate the cross-covariance of the 

intensity at two different longitudinal planes. Considering the first experimental 

case, we have obtained the cross-covariance function for a circular aperture of 

diameter 2.7mm propagated along the z-axis plane. Figure 3.7 shows the 

experimental and digitally simulated results of the cross- covariance function 

calculated for two different random fields. 

 

 

Figure 3.7. cross-covariance function for a circular aperture in scalar domain; top: 

experimental, bottom: simulation 

The cross-covariance function is given by Iz1z2 where z1, z2 are the positions at 

z plane in mm units, where, z1, z2 = 0, 1, 2…. N, as shown in Fig. 3.7 for 

experimental and digitally simulated results respectively. I00 denotes the 

autocorrelation function of the intensity fluctuation at z = 0mm plane and cross-

correlation has been calculated for two different intensity fluctuations recorded at 

z plane. For example, I02 is the cross-correlation function of two intensity 

fluctuations captured at 0mm and 2mm respectively. We can observe that as the 

field propagates in the longitudinal plane, the energy of the center lobe distributes 

to the side lobes and later it randomly spreads over an entire area. Since the DOC 

is proportional to the correlation, therefore DOC for the center pixel follows as 

same as correlation function. For a circular aperture in the scalar domain 
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maximum achieved DOC i.e., ( )  0, 0r = z =  is unity and confirms that the 

random light source is spatially fully polarized i.e., (0) 1P = . It can be observed 

that the amplitude of DOC is decaying as two farther points in the z plane are 

being correlated. It is shown in Fig. 3.8 how the correlation becomes weak and 

almost saturated after propagating to some distances.  

 

Figure 3.8. DOC for a circular aperture in scalar domain as described in Fig. 3.2 

Considering the second case as described in Fig. 3.3, SPP with charge 1 has been 

introduced in the set-up and we have estimated cross-covariance function and 

DOC. It can be observed in Fig. 3.9, the maximum DOC is unity at z=0mm plane 

and later it decays while propagating to the further distances.  

 

Figure 3.9. DOC for a SPP charge 1 in scalar domain as described in Fig. 3.3 
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A very interesting observation can be made from Figs. 3.8 and 3.9, that the 

coherence function of non-vortex and vortex source structures in scalar domain 

behaves exactly the same. For more confirmation we have compared both the 

experimental results of two different source structures in Fig. 3.10 where DOC 

has been plotted against the propagation distance. 

 

Figure 3.10. DOC behavior for vortex and non-vortex propagation 

In the third case when vortex correlates with the non-vortex source structure, 

correlation turns out to be odd. In Fig. 3.11 SPP charge 1 is used and it is correlated 

with the non-vortex source structure and DOC drops to 0.5. Similarly, in Fig. 3.12 

vortex beam having charge 2 is correlated with the non-vortex beam and the 

maximum DOC observed as 0.4. 
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Figure 3.11. DOC for the vortex charge 1 correlated non-vortex structure 

 

Figure 3.12. DOC for the vortex charge 2 correlated non-vortex structure 

In the last case, a vortex has been introduced in the orthogonal states of 

the beam and allowed to pass through a static diffuser.  DOC is obtained from the 

cross correlation of the intensity fluctuation of the random fields. Longitudinal 

profile of the DOC for the vector source is shown in the Fig. 3.13. Experimental 

and simulated results show the calculated DOC at z=0 plane is 0.7 and (0) 0P = . 

In case of Mach-Zehnder interferometry, the introduction of SPP (a vortex) in one 

of the orthogonal components of polarized light beam. A vortex changes the 

polarization of the beam and hence shows inhomogeneity in polarization when 

observed at Z=0 plane. Here, the degree of polarization is 0. Therefore, the 
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randomly scattered light field is spatially unpolarized.  

 

Figure 3.13. DOC distribution for a beam controlled by circular aperture and SPP 

introduced in one of the orthogonal components. 

In summary, we have studied intensity correlation of the spatially 

fluctuating polarized random fields at different distances under the paraxial 

propagation. Quantitative analysis of the random field is carried out by following 

relation between the degree of coherence of the electromagnetic fields, spatial 

degree of polarization and the intensity correlation for the Gaussian random fields. 

For quantitative comparison, experimental results are compared with the theory 

using digital propagation of the light. 
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CHAPTER 4 

RECOVERY OF POLARIMETRIC PARAMETERS 

FROM NON-IMAGED LASER-SPECKLE 

 

4.1 Introduction 

When a laser source propagates through an optically rough medium, light 

wavefront gets distorted and generates a coherent noise due to stochastic 

interference of randomly scattered waves, known as speckle. Presence of coherent 

noise makes measurement difficult and degrades the performance of a laser-based 

imaging system (Goodman, 1996; 2007). In a generic case, coherent beam interacts 

remotely with the object and scattered light is characterized to recover the 

information about the object. Roughness of the object and refractive index 

inhomogeneity in the propagation medium or both further aggravates the coherent 

noise challenge and creates speckle. Level of noise depends on optical length scale 

of the underlying processes creating random scattering.  In spite of common 

occurrence of a speckle, a coherent laser is highly preferred source due to its high 

monochromaticity, brightness and color gamut. Therefore, significant efforts have 

been made to suppress the speckle using different means such as adaptive optics 

(Vorontsov and Kolosov, 2005), speckle averaging etc. (Goodman, 1976). The most 

common method to suppress the speckle is a moving diffuser to perform the 

temporal averaging.  This conventional approach works on incoherent summation 

of several speckle patterns. Alternatively, significant reduction in the coherent noise 

is also achieved without mechanically moving the diffuser and by using diversity in 

parameters of the light beam such as frequency, angular, spatial, polarization and 

DOE (Schmitt et al., 1999; Mehta et al., 2012; Sorrentini et al., 2009; Zhao and Gao, 

2015; Tran et al., 2016; Lapchuk et al., 2013).  

It has been demonstrated that noise free images of coherently illuminated, 

diffuse object can be retrieved from measurement of backscattered laser-speckle 
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intensity using phase retrieval algorithm (Fienup, 1978; Idell et al., 1987; Das et 

al., 2017). This technique evaluates the autocorrelation function of the illuminated 

object’s reflectance/transmittance from the average energy spectrum of laser-

speckle intensity. The Fourier transform of the autocorrelation of the object 

transmittance/reflectance is related to the squared modulus of the Fourier 

transform; hence recovery of the object is possible by applying the phase retrieval 

algorithm. A problem of similar nature has been attempted by using higher order 

correlation and coherence optics (Bartelt et al., 1984; Singh et al. 2014; Akhlaghi 

and Dogariu, 2017).  Recently, Akhlaghi and Dogariu have shown single-shot 

coherent noise suppression by spatial interferometric heterodyning. This 

technique separates the spectral components of the signal and noise and operates 

in very-low SNR conditions (Akhlaghi and Dogariu, 2017). Whereas such 

attempts on recovery of the polarized objects or PPs appear to be missing except 

some recent investigations in the context of ghost imaging (GI) (Kellock et al., 

2014; Shi et al., 2014, Hannonen et al., 2016; 2017).  It has been demonstrated 

that polarimetry can play an important role in distinguishing the object and its 

background having the same reflectivity or transmission in the classical GI (Shi et 

al., 2014). Recently a ghost ellipsometers operating with classical Gaussian 

statistics are also introduced to characterize the homogeneous and inhomogeneous 

samples (Hannonen et al., 2016; 2017). An ellipsometer is a device that gauges 

the change in the polarization state of light after interaction from an object and 

forms a picture of its ellipsometric information (Azzam, 2016). It has come to be 

recognized that a polarization fluctuation in the random field affects the degree of 

coherence and visibility of the intensity correlation (Shirai et al., 2011; Singh et 

al., 2014; Takeda et al., 2010).  

Polarimetry is a method to measure the rotation of polarized light when 

it passes through an optical media. From the previous chapter, it has been well-

known that a polarization fluctuation in the random field affects the degree of 

coherence and the correlation. To distinguish the object from its background 
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having same reflectivity and transmission, it is important to recover polarimetric 

parameters. In this chapter, we discuss and experimentally demonstrate our new 

technique to recover the polarimetric parameters of the light field observed by a 

static non-birefringent diffuser. We recover the polarization parameters (PPs) 

from non-imaged laser speckle patterns, i.e., without using any imaging lens. 

Propagation of coherent and polarized light through a static diffuser may generate 

polarization fluctuation in the random scattered field depending on the nature of 

incident polarized light.   Because the incident light is monochromatic and the 

scattering surface is static, the scattered field is free from temporal fluctuation and 

remains to be fully a polarized according to the conventional definition based on 

time averaging and has a well-defined state of polarization at each point in space. 

Such a random field with spatially fluctuating polarization is referred to as 

polarization speckles and useful to provide signature of the incident polarized light 

(Singh et al., 2014; Takeda et al., 2010; Singh et al., 2013). To analyze the 

polarization speckle, we apply idea of coherence wave interference for the 

vectorial light field. This is realized by using 2X2 coherence-polarization matrix 

elements and their interference. Moreover, this approach is free from any artifacts 

associated with imaging/or Fourier transforming lens and its possible impact on 

the spatial stationarity of the random field. The detailed theoretical explanation 

and the corresponding experimental works are discussed below in detail. 

4.2 Principle 

Let us consider two-dimensional transverse electric field of the coherent 

light from the object. The orthogonal polarization components are represented by 

𝑬𝒙(𝝆, 𝒕) and 𝑬𝒚(𝝆, 𝒕) at a position vector 𝝆 and time t, where x and y denote 

direction of polarization components. Time t is fixed in our study and hence 

removed thereafter. Assuming that the object structure is located at the diffuser 

plane, therefore the orthogonal polarization components immediately after the 

diffuser is 
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𝐸(𝜌) = (
𝐸𝑥(𝜌)𝑒𝑖𝜑(𝜌)

𝐸𝑦(𝜌)𝑒𝑖𝜑(𝜌))       (4.1) 

where 𝐸𝑖(𝝆) with 𝑖 = 𝑥, 𝑦 is polarization information of the object and 𝜑(𝜌) is a 

random phase introduced by the non-birefringent diffuser. Polarimetric parameter 

of the light field at the diffuser plane is given as 

𝐽(𝜌) = (
|𝐸𝑥(𝜌)|2   𝐸𝑥

∗(𝜌)𝐸𝑦(𝜌)

𝐸𝑦
∗(𝜌)𝐸𝑥(𝜌) |𝐸𝑦(𝜌)|

2
 

)     (4.2) 

Propagation of the orthogonal polarization components from the diffuser plane to 

an observation plane at a distance z is represented as 

𝐸𝑖(𝒓) = ∫ 𝐺(𝒓, 𝝆) 𝐸𝑖(𝝆)𝑑𝝆      (4.3) 

where 𝐺(𝒓, 𝝆) is propagation kernel. Equation (4.2) can be used to propagate the 

electric field vector represented by Eq. (4.1) as shown in Fig. 4.1. Let us consider 

propagation of the random field into the Fresnel domain as 

2 2
2exp( )

( , ) exp
2

ikz
G ik

i z z

 −  +
 
 
 

 


r r
r

     (4.4) 

where 𝜆and 𝑘 = 2𝜋/𝜆are, respectively, the wavelength and wave number of light. 

Consider that random field given in Eq. (4.2) is composed of two independent 

sources and represented as 

1 2

2 2 1 2

( ) ( , ) ( ) ( )

exp
exp exp exp ( ) ( )

2 2

i i i

i i

E G E E d

ikz ik ik
ik E E d

i z z z z

r r

r
r

          (4.5) 
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where 𝐸𝑖
1(𝝆) and 𝐸𝑖

2(𝝆) are two independent (spatially separated) orthogonal 

polarized sources at the diffuser plane. The intensity at the observation plane is 

𝐼(𝒓) = |𝐸𝑥(𝒓)|2 + |𝐸𝑦(𝒓)|
2
 which allows to measure the two point intensity 

correlation ⟨𝐼(𝒓1)𝐼(𝒓2)⟩ = ⟨𝐸∗(𝒓1)𝐸(𝒓1)𝐸∗(𝒓2)𝐸(𝒓2)⟩and the cross-covariance 

of the intensity as⟨∆𝐼(𝒓1)∆𝐼(𝒓2)⟩ = |⟨𝐸∗(𝒓1)𝐸(𝒓2)⟩|2for the speckle field. 

Here〈. 〉 represents ensemble averaging and ∆𝐼(𝒓) = 𝐼(𝒓) − ⟨𝐼(𝒓)⟩is the intensity 

fluctuation with respect to its mean value. The cross-covariance of the intensity is 

given as (Tervo et al., 2003) 

𝛤(𝑟1, 𝑟2) = ⟨𝛥𝐼(𝑟1)𝛥𝐼(𝑟2)⟩ = ∑ |𝑊𝑖𝑗(𝑟1, 𝑟2)|𝑖,𝑗
2
    (4.6) 

where 𝑊𝑖𝑗(𝑟1, 𝑟2) = ⟨𝐸𝑖
∗(𝑟1)𝐸𝑗(𝑟2)⟩is an element of 2X2 coherence-polarization 

(CP) matrix.  Therefore, intensity correlation relation for the randomly polarized 

light involves all four components of CP matrix and moreover phase information 

of CP matrix elements is lost. 

 

Figure 4.1 Geometry of source structure, propagation system and observation plane. 

Let us consider that element of the CP matrix elements is in the form 

of𝑊𝑖𝑗(𝒓1, 𝒓2) = 𝑊𝑖𝑗
1(𝒓1, 𝒓2) + 𝑊𝑖𝑗

2(𝒓1, 𝒓2), i.e., interference of the coherence 

waves. To describe the interference of polarized-coherence waves, let us start with 

Eq. (4.6) and write cross-covariance of the intensity as 
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𝛤(𝑟1, 𝑟2) = ∑ |𝑊𝑖𝑗
1(𝑟1, 𝑟2) + 𝑊𝑖𝑗

2(𝑟1, 𝑟2)|
2

𝑖,𝑗          (4.7)  

The terms 𝑊𝑖𝑗
𝑛(𝒓1, 𝒓2),𝑛 = 1,2 represent the complex coherence function for the 

nth source. Since the two interfering speckles from polarized sources are 

statistically independent, therefore the CP matrix of the random field is given as  

𝑊(𝒓1, 𝒓2) = (
𝑊𝑥𝑥

1 (𝒓1, 𝒓2) 𝑊𝑥𝑦
1 (𝒓1, 𝒓2)

𝑊𝑦𝑥
1 (𝒓1, 𝒓2) 𝑊𝑦𝑦

1 (𝒓1, 𝒓2)
) + (

𝑊𝑥𝑥
2 (𝒓1, 𝒓2) 𝑊𝑥𝑦

2 (𝒓1, 𝒓2)

𝑊𝑦𝑥
2 (𝒓1, 𝒓2) 𝑊𝑦𝑦

2 (𝒓1, 𝒓2)
)(4.8) 

The cross-covariance of intensity is expressed as interference of polarized 

coherence waves. This equation highlights that interference fringes can be 

generated in terms of the intensity correlation by considering one source, say 

𝑊1(𝒓1, 𝒓2) and other polarized coherence waves 𝑊2(𝒓1, 𝒓2) as reference. A 

stationary source at a distance 0Z   can be realized from a non-stationary source 

using a Fourier transforming lens (Takeda, 2013). It is also possible to realize a 

stationary field at any arbitrary plane 0Z  from a non-stationary source using 

notion of coherence wave interference with intensity correlation (Singh et al., 

2017).  This helps to avoid the phase curvature 

2
exp

2

ik

z
r

outside the integration 

in Eq. (4.5), and hence avoids non-stationarity. However, in contrast to the scalar 

case, cross-covariance is composed of contributions of all four elements, in 

general, and needs to be separated for polarimetric applications. Therefore, the 

cross-covariance replaces the CP matrix elements in Eq. (4.8) with the following 

form 

𝑊𝑖𝑗(𝑟, 𝑟 + 𝛥𝑟) =

∭ 𝐸𝑖
∗(𝜌1)𝐸𝑗(𝜌2) exp  (−𝑖

𝑘

2𝑧
|𝜌1|2)  exp  (𝑖

𝑘

2𝑧
|𝜌2|2)  exp  [−𝑖

𝑘

𝑧
{𝑟 + 𝛥𝑟} ⋅ 𝜌2 −

𝑟 ⋅ 𝜌1]  𝑑𝜌1𝑑𝜌2𝑑𝑟             (4.9) 
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By using relation
2 1 2 1exp ( ) ( )

k
dr i r

z


  
− −  = −  
  

     , Eq. (4.9) can be expressed in 

terms of the Fourier transform of polarized random source (Takeda, 2013) as 

1 2 2 1( , ) ( )exp ( )ij ij

k
W I i d

z

 
= − −  

 
r r r r  

       (4.10) 

where *( ) ( ) ( )ij i jI E E=    represents PPs at the random scattering plane as shown in 

Eq. (4.2). Term ( )ijI   may be complex for i j  but real for i j= . In what follows, 

Eq. (4.8) makes interference of four polarized-coherence waves. To record such 

patterns, we have selected two polarized sources at the scattering plane, and 

corresponding coherence functions are as follows 

 

1

1 2 2 1

2

1 2 2 1 2 1

2
( , ) ( )exp ( )

2
( , ) ( )exp ( ) exp ( )

ij ij

ij g

W I i d
z

W i d i
z






 



 
= − −  

 

 
= − − −  = − − 

 





r r r r

r r r r r r

  

   

   (4.11) 

where the spatial frequency  of the reference polarized coherence function 

2

1 2( , )ijW r r  is given by 
2 g

z





=  . We consider a 45  linearly polarized point source 

as reference and therefore all elements of the polarization matrix of this reference 

source will be represented by a delta function. Therefore, the reference point source 

generates a uniform polarized coherence function covering the support of 1

1 2( , )ijW r r  

to generate the lensless coherence wave holograms. 

In order to recover the complex elements of the CP matrix, we invoke interference 

of the polarized coherence waves and insert a polarization device before detection 

of the intensity. The polarized device is composed by a quarter wave plate (QWP) 

followed by a linear polarizer (LP) in the light facing direction. The fast axis of 

QWP is oriented at 𝜃 angle with respect to x direction as shown in Fig. 4.2. The LP 

in the polarization device is directed along the x direction.  
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Figure 4.2.  Geometry consists of QWP followed by linear polarizer to measure CP matrix 

elements. 

The light field after the combination of polarization elements is given as (Vinu and 

Singh, 2015) 

 2 2( , ) cos sin ( ) (1 )cos sin ( )x yE i E i E     = + + − r r r
      (4.12) 

Therefore, the cross-covariance of the intensity at the observation plane is given as 

2
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   (4.13) 

Considering orientations of the QWP at 0 ,22.5 ,45   =  and135 , the cross-

covariance for these angles is given as 

( )
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(4.14) 

These four cross-covariance structures are composed of different combinations of 

elements of the CP matrix. Fourier transform of these cross-covariance functions 
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generate spectra, its conjugate, and a dc term. The spectra is filtered and translated 

towards the origin of the frequency axis. The inverse transform of the centrally 

shifted spectra and its appropriate combinations will provide the CP matrix elements 

of the object’s field as (Vinu and Singh, 2015) 

1
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1

3 4 1

1

2 1 3 4

1

2 1 3 4

( ) 2 '( , )
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            (4.15) 

where 
2 1 = −r r r  and '( , )k r  with 1, 2,3k =  and 4 represents the inverse Fourier 

transform of the centrally shifted spectra. The PP at the diffuser plane can be 

obtained by suppressing the speckles using cross-covariance and applying the 

inverse Fourier transform to the recovered CP matrix of Eq. (4.15). We are able to 

retrieve the polarimetric information of the incident light from the non-imaged 

speckle patterns as  

( ) ( ) ( )
2

expij ijJ W i d
f





 
=    

 
 r r r 

     (4.16) 

where i, j = x or y, represent the orthogonal polarization components of the source.  

4.3 Experiment Implementation 

Experimental realization of the proposed technique is shown in Fig. 4.3. 

A monochromatic laser beam of wavelength 𝜆= 632.8nm (Melles Griot 25-LHP-

928-230) is spatial filtered and collimated by spatial filter assembly (SF) and lens 

L1. This beam is converted into a 
45 linearly polarized light by a half wave plate 

HWP1 and then enters into the beam splitter (BS1) and splits into two arms. The 

beam transmitted by BS1 folded by mirror M1 and then enters into an arbitrary 

polarization state generator (PSG) as shown by dotted lines. The PSG is an 

assembly of wave plate with an analyzer as shown in Fig. 4.2 and used to generate 

any arbitrary polarization state (Goldstein, 2010).  
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Figure 4.3. Experimental geometry for the proposed technique. HWP: half wave plate; 

MO: microscope objective; L: lens; BS: beam splitter; M: mirror; GG: ground glass; 

QWP: quarter wave plate; Pol: linear polarizer; CCD: charge coupled device. 

 

  

Figure 4.4. Four shots of speckle images captured by CCD. 



62 

 

The coherent light with an electric vector having arbitrary ellipticity and 

orientation passes through a non-birefringent ground glass (GG1). The ground 

glass GG1 generates the non-uniformly polarization speckle, known as the 

polarization speckle (Takeda et al., 2010), which further propagates and reaches 

the charge coupled device (CCD) plane. The beam reflected by the BS1 is titled 

by a mirror M2 and subsequently focused by a microscope objective (10X) at the 

off-axis location of another random scattering plane represented by ground glass 

GG2. Position of the off-axis point source is adjusted at the GG2 plane in order to 

give desired linear phase to the reference coherence wave as explained in Eq. 

(4.11). The random field coming out from the off-axis point source also 

propagates down to the charged couple device (CCD) plane. Both the random 

fields coming from GG1 and GG2 are fully coherent at a fixed time and recorded 

by a CCD at the distance z= 280mm from the source plane. The CCD camera is 

from Prosilica (model no GX 2750) with 14-bit dynamic range and 2750 X 2200 

pixels and a pixel pitch of 4.54 micron. 

4.4  Results and Discussions 

A set of measurements were made through the scattering medium as 

shown in Fig. 4.4. Both linear and elliptical polarized incident states were 

investigated. The effect of scattering on the spatial distribution of polarization 

state scattered from the diffuser is quantitatively analyzed and is given by the 

polarization matrix using Eq. (4.16). The polarization matrix is the set of values 

which determines the polarization state of light field. Figs. 4.5 and 4.6 show the 

measured polarization state of an elliptically polarized source. This state of 

polarization is generated by modulating input polarization with the help of PSG 

placed just before the GG1. Figs. 4.5 and 4.6 describe the amplitude of all four 

elements of the polarization matrix i.e., ( )xxJ  , ( )xyJ  , ( )yxJ  , and ( )yyJ   

respectively and ( )xy   gives the polarimetric information. The calculated phase 

difference between the two orthogonal components is π/2. Hence it shows the 
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successful recovery of polarimetric parameters from the laser speckles. Working 

of the proposed approach is demonstrated by recovering the PPs from the diffused 

light. The theory and experimental results are compared, and good match is found 

between the two. 

         

 

        

 

 

Figure 4.5. Polarization matrix for elliptical polarized beam at the ground glass plane. 

Experimental result shows the amplitude and phase of the polarization. 

𝑱𝒙𝒙(𝝆) 

𝑱𝒚𝒚(𝝆) 

𝑱𝒙𝒚(𝝆) 

𝑱𝒚𝒙(𝝆) 

∅𝒙𝒚(𝝆) 
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4.6. Polarization matrix for elliptical polarized beam at the ground glass plane. Theoretical 

results show the amplitude and phase of the polarization. 

𝑱𝒙𝒙(𝝆) 

𝑱𝒚𝒚(𝝆) 

𝑱𝒙𝒚(𝝆) 

𝑱𝒚𝒙(𝝆) 

∅𝒙𝒚(𝝆) 
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In order to study the effect of space averaging on intensity correlation, we 

performed detailed investigation on the effect of space averaging. From the given 

study we have obtained the ellipticity and orientation of the polarized source with 

different spatial averaging windows as shown in table 1 and table 2 respectively. 

The measurement of ellipticity and orientation for different averaging windows 

show the deviation from its expected value. 

 

Table 1. Ellipticity for elliptically polarized beam 

N AVERAGING WINDOW 
OBSERVED 

ELIPTICITY ( )x  

EXPECTED 

ELIPTICITY 

1 1800 X 900 29.08 

30 

2 1600 X 900 28.8 

3 1400 X 900 28.3 

4 1200 X 900 28.1 

5 1000 X 900 26.9 

6 800 X 900 26.5 

7 600 X 900 26.4 
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Table 2. Orientation for elliptically polarized beam 

N AVERAGING WINDOW 
OBSERVED 

ORIENTATION ( )x  
EXPECTED 

ORIENTATION 

1 1800 X 900 5.12 

5 

2 1600 X 900 6.13 

3 1400 X 900 7.8 

4 1200 X 900 10.3 

5 1000 X 900 12.8 

6 800 X 900 15 

7 600 X 900 15.8 

 

The above two tables show that the quality of recovered PPs depending on the 

ensemble averaging. The study shows the deviation in polarization parameters such 

as ellipticity and orientation of the beam with respect to the expected value for 

different spatial averaging window. 

Noteworthy is the fact that the orientation of an elliptically polarized beam is only 

close to the expected value when the averaging window is of maximum size i.e., 1800 

X 900. However, as we go lower in window size the error in observed orientation 

increases. 
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Figure 4.7. Polarization matrix for linear polarized beam at the ground glass plane. 

Experimental results show the amplitude and phase of the polarization.  

 

𝑱𝒚𝒚(𝝆) 𝑱𝒚𝒙(𝝆) 

∅𝒙𝒚(𝝆) 

𝑱𝒙𝒙(𝝆) 𝑱𝒙𝒚(𝝆) 
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Figure 4.8. Polarization matrix for linear polarized beam at the ground glass plane. 

Theoretical results show the amplitude and phase of the polarization. 

 

𝑱𝒙𝒙(𝝆) 

𝑱𝒚𝒚(𝝆) 

𝑱𝒙𝒚(𝝆) 

𝑱𝒚𝒙(𝝆) 

∅𝒙𝒚(𝝆) 
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A similar case has also been studied when the input source is linear 

polarized. Figure 5describe the amplitude of all four elements of the polarization 

matrix i.e., ( ), ( ), ( )xx xy yxJ J J    and ( )yyJ   respectively and ( )xy   gives the 

polarimetric phase information of the source structure. The calculated phase 

difference between the two orthogonal components is 0. Working of the proposed 

approach is demonstrated by recovering the PPs from the diffused light. Proof of 

the principle is confirmed by experiment and compared with numerical results. 

Polarization parameters like ellipticity and orientation have been measured for 

different spatial averaging window and shown in the respective tables.  

The quality of the recovered PPs depends on the ensemble averaging and the 

deviation from its expected value has been recorded, and same has shown in the 

table 3 and table 4 respectively. 

Table 3. Ellipticity for linearly polarized beam 

N AVERAGING WINDOW 
OBSERVED ELIPTICITY

( )x  

EXPECTED 

ELIPTICITY 

1 1800 X 900 0.8 

0 

2 1600 X 900 0.8 

3 1400 X 900 0.8 

4 1200 X 900 0.8 

5 1000 X 900 0.9 

6 800 X 900 1 

7 600 X 900 1.1 
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Table 4. Orientation for linearly polarized beam 

N AVERAGING WINDOW OBSERVED 

 ORIENTATION ( )x  

EXPECTED 

ORIENTATION 

1 1800 X 900 20.3 

20 

2 1600 X 900 20.7 

3 1400 X 900 21.2 

4 1200 X 900 22.2 

5 1000 X 900 23.5 

6 800 X 900 25 

7 600 X 900 25.2 

In conclusion, we have shown recovery of the polarization vectors for different 

cases of the incident light by determining polarization matrix of the randomly 

polarized light. Results are presented to show the effect of spatial averaging of 

different window size on the coherent noise suppression and respective deviation 

on the recovered polarimetric parameters at the scattered plane. The results present 

here suggest that the higher spatial averaging is required to reduce the deviation 

of the polarization parameters from its actual values. 
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CHAPTER 5 

LENSLESS STOKES HOLOGRAPHY WITH HBT 

APPROACH 

 

5.1 Introduction 

Holography records and reconstructs the wavefront of a light, finds its utility 

in a wide range of applications.  Direct recording of a hologram by a detector and its 

numerical reconstruction is called Digital Holography (DH). It has brought about a big 

change in the concept of the holography which has proved to be a big step forward 

(Schnars and Jueptner, 2005).  Advantages and uniqueness of the DH methods emerge 

from their ability in the non-destructive testing, quantitative three-dimensional imaging 

and digital propagation etc. In recent years, thee-dimensional (3-D) profiling and in-situ 

imaging of the microscale objects have been attractive significant attention in wide 

range of applications ranging from industry to the life sciences. For instance, 

quantitative evaluation of cancer cell morphology and shape variation in a 3-D condition 

provides signature of the biological characteristics for clinical need (Hong, 2014). One 

of the primary tools of the biologist is the light microcopy with staining agents for high 

visibility images. However, external staining agents are not desired in many conditions 

in order to preserves the inherent and pure structures of the target samples. Therefore, 

non-invasive optical means are gaining significant attention in recent years and some of 

the non-destructive techniques are digital holography microscopy and polarization 

microscopy. 

Many geometries have been proposed for the digital holography imaging, in 

the past. The most significant among them are in-line, phase shifting, off-axis and the 

Fourier transform holography. It was demonstrated that a point-reference coherent 

source in the principal plane of the object generates a lensless Fourier-transform 

hologram which provides a high resolution in the wavefront-reconstruction imaging 
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(Stroke, 1965; Goodman, 1996). Lensless Fourier transform configuration is 

particularly useful at short, ultraviolet, x-ray wavelengths, imaging through diffusive 

medium and coherence waves (Lee et al., 2001; Gauthier et al., 2010; Zhang et al., 2013; 

Singh et al., 2017). A single Fourier transform operation is used to retrieve the 

information from the Fourier transform hologram and it plays an important role in real 

time applications. However, considering a complete wavefront, the amplitude, the phase 

and the polarization are important for a full field description of the light (Lohmann, 

1965; Colomb et al., 2002; Nomura et al., 2007, Singh et al., 2011; 2012; Soni et al., 

2016). 

The polarization, a significant parameter to describe light matter interactions, 

have been very critical and significant in the contrast enhancement and highlighting 

specific cell structures which is otherwise missing in the conventional scalar imaging. 

Therefore, polarization imaging is considered to be a promising and futuristic tool, as it 

is capable to reveal order at a molecular scale that is usually hidden to the conventional 

microscopes (Tani et al., 1996; Cohen et al., 1968; Kuhn et al., 2001; Shribak et al., 

2003).  By showing the alignment of molecular bonds and submicroscopic shapes, 

polarized light offers a way to bridge the resolution gap between light and electron 

microscopy. In the early 1950, researchers demonstrated application of the polarization 

microscope and subsequently such techniques have been popularized for live cell 

imaging, chemistry, mineralogy, Biology, medical sciences etc.  Moreover, the 

recovered polarization features of the light coming after light matter interaction can be 

quantitatively characterized using the Jones or Muller matrix approaches and physical 

parameters of the samples like dichroism, attenuation etc. can be quantified. Extension 

of digital holography to a vectorial domain is also possible by recording holograms of 

the orthogonal components of the light (Colomb et al., 2002). Idea and interests in the 

extension of the DH to the vectorial domain are based on our interests to keep 

advantages of the digital holography and also recover the polarization features of the 

light.  In certain situations, however, interference effect does not manifest itself as 

intensity modulation. For instance, interference between an x-polarized object beam and 

a y-polarized reference beam generates only polarization modulation which can be 
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highlighted by measuring the Stokes Parameters (SPs). The SPs are important to 

characterize the light field and to describe the vectorial interference (Singh et al., 2012).  

In many applications, it is required to image an object obscured by a scattering 

medium. When the object is hidden behind the random scattering media, it is difficult 

to apply the usual DH recording and reconstruction approach. Several techniques have 

been developed in order to image through scattering medium (Singh et al., 2011; 2012; 

Soni et al., 2016; Katz et al., 2014; Somkumar et al. 2017; Hilman et al., 2013; Tripathi 

et al., 2012; Aguiar et al., 2017). Random scattering scrambles the vectorial wavefront 

and makes it a spatially fluctuating polarized field. In this situation, correlation 

parameters such as coherence-polarization matrix and GSPs have been used to analyze 

the randomly polarized fields to recover the wavefronts (Singh et al., 2011; 2012; 

Takeda et al., 2014). These parameters can be used to develop a novel imaging technique 

by exploiting the statistical features of the random fields without resorting to any 

wavefront correction schemes. Recently, Stokes holography was developed to 

synthesize the GSPs structure in 3D space and the technique makes use of a Fourier 

transform relation between the Stokes fringes at the scattering plane and GSPs at the 

Fourier plane (Singh et al., 2012). Polarized objects hidden behind the random scattering 

medium is encoded into the Stokes fringes and reconstructed as distribution of the GSPs 

in 3D. This is realized by applying the field-based interferometer and evaluating the 

GPSs at the back focal plane of a Fourier transforming lens. In order to highlight 

significance of the presented polarization imaging method and its uniqueness, we 

present a following flow chart here and technical details of our technique is discussed 

in coming sections. 
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In this chapter, we propose a new method to use intensity interferometer, i.e., 

HBT type for Stokes holography. The HBT approach permits to offer a completely new 

approach for the digital holography with the polarization speckle and also helps to 

remove a Fourier transforming lens as required in the field-based interferometer for the 

Stokes holography (Singh et al., 2012). Making use of this feature, we design and 

develop a new lensless Fourier transform holography setup for the GSPs. This helps to 

achieve spatial stationarity of the random fields at an arbitrary distance z from the 

scattering plane and replaces the ensemble averaging by the space averaging of the 

random field. The GSPs also termed as Stokes vector wave follow the wave features in 

exact analogy to a coherent function of a scalar field (Takeda et al., 2010). We further 

make use of the lensless Fourier transform holograms of the GSPs to recover desired 

GSPs for depth recovery of the objects encoded into the Stokes fringes. This is 

implemented by digital propagation of the GSPs (rather than mechanical scanning of 

the detector).  To the best of our knowledge, this is first such attempt to exploit the 

interference of the GSPs to realize lensless Fourier transform hologram for the Stokes 

vector waves and apply the HBT type interferometer for 3D imaging of the polarized 

objects. Moreover, combination of the HBT approach with the Stokes vector offers a 

new direction in the digital holography to analyze the randomly fluctuating 

electromagnetic fields and also offers new applications with coherence-polarization 

features of the light.  The detailed theoretical basis, and experimental technique and 

results are discussed below. 

5.2 Principle 

Let us consider a polarized monochromatic light source at plane 1 as shown in 

Fig. 5.1. A coherent and polarized light passing through the scattering layer propagates 

down to the observation plane 2 located at a distance z from the source structure.  The 

complex amplitude of the polarized field immediately after the scattering surface is 

represented as 

( )ˆ ˆ ˆ ˆ( ) ( ) exp ( ) ( )p p pE E i   = +
 

r r r r
      (5.1) 
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where ˆ( )pE r  and ˆ( )p r  are the amplitude and phase information of the polarized 

source at the scattering plane and ˆ( ) r  is the random phase introduced by the non-

birefringent scattering medium. The transverse spatial coordinate at the scattering 

medium plane is represented by r̂  and ,p x y=  represents two orthogonal polarization 

components. 

 

Fig. 5.1. Conceptual diagram shows the propagation of light from the scatter plane 1 to an 

observation plane 2. Here p stands for orthogonal polarization vector in x and y direction. 

The scattered field at a distance z, is given as 

( )
2

ˆ ˆ ˆ( , ) ( )exp ( ) expp p zE z E ik z i
f





 
= −  

 
r r r r r

     (5.2) 

where ( )
2

ˆ ˆ( ) 1 /zk k f= −r r ,
2

k



= is wavenumber and   is wavelength of the light and 

f is the Fourier transforming length. The correlation of the randomly scattered field is 

evaluated under the assumption of stationarity and ergodicity in space and is given 

(Singh et al., 2012) by 
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*

1 ' 2 1 1 2 2
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( , ; , ) ( , ) ( , )

ˆ ˆ ˆ ˆ( ) ( ) exp ( ) exp ( )

2
ˆ ˆ ˆ ˆ ˆexp ( )

2
ˆ ˆ ˆ ˆ ˆ( ) ( ) exp ( ) exp

pp p p
s

p p z z

p p z

W z z E z E z

E E ik z ik z

i + d d d
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E E ik z i d
f









+  = + 

= −

 
 − −   

 

 
=  −      

 

  



r r r r r r

r r r r

r r r r r r r r

r r r r r r 

 (5.3) 

Here 
' 1 1 1 2( , ; , )ppW z z+ r r r  represent two point correlation of the orthogonal polarization 

components p , 'p , 2 1z z z = − , 2 1 = −r r r  and s  represents spatial averaging and the 

relation  2 1 1 1 2 1

2
ˆ ˆ ˆ ˆexp ( ) ( )i d

f






 
− −  = − 
 

 r r r r r r  is used in Eq. (5.3). It is important to 

mention here that a Fourier transforming lens is used to achieve spatial stationarity of 

the random field to replace ensemble average by spatial averaging in (Singh et al., 2011; 

2012; Takeda et al., 2014).  The random field at the observation plane can be 

characterized by the GSPs, given (Singh et al., 2011; Katz et al., 2014; Korotkova et al., 

2005; Setala et al., 2006; Sahin, 2010; Singh et al., 2010) as 

* *

0 1 2 1 2 1 2

* *

1 1 2 1 2 1 2

* *

2 1 2 1 2 1 2

* *

3 1 2 1 2 1 2

( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( )

x x y y

x x y y

x y y x

y x x y

S E E E E

S E E E E

S E E E E

S i E E E E

= +

= −

= +

 = −
 

r r r r r r

r r r r r r

r r r r r r

r r r r r r
     (5.4) 

where   is ensemble average which can be replaced by spatial averaging (rather than 

time) for the spatial ergodic field (Takeda et al., 2014; Singh et al., 2010). The GSPs are 

transformed to the conventional SP for correlations at single point, i.e., 1 2=r r .  

The GSPs can be expressed in terms of the SPs at the scattering plane using Eqs. (5.3) 

and (5.4) and given (Singh et al., 2012) as 
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2
ˆ ˆ ˆ ˆ( , ) ( )exp ( ) expn n zS z s ik z i d

f





 
  =  −     

 
r r r r r r 

    (5.5) 

Here ( , ),( 0,1,2,3)nS z n  =r  are 3D GSPs that show the reconstructed images from 

the random field while ˆ( )ns r  are the SPs of the source which may be in the form of 

polarization modulations, i.e., holographic or non-holographic. The polarization 

modulations ˆ( )ns r  carry signature of the object located at any arbitrary distance from 

the scatterer. Equation (5.5) is a basic relation of the Stokes holography and states that 

complex valued object encoded into the Stokes fringes can be reconstructed as 3D 

spatial structure of the GSPs of the random field.  

To experimentally test the Stokes holography, a polarization interferometer is 

designed and developed in (Singh et al., 2012). This helps to simultaneously detect the 

orthogonal polarization components ( , )pE zr  of the random fields and hence recover 

the GSPs. The field interferometer is successful in retrieving the complex field and 

evaluating the second order correlation but also sensitive to external disturbances.  Here, 

we propose intensity correlation, i.e., HBT approach, for reconstruction of the GSPs in 

the Stokes holography. The HBT type interferometer is less susceptible to vibrations 

and evaluates the fourth order correlation of the random field. The fourth order 

correlation of the Gaussian random field is proportional to the modulus square of the 

second order field correlation (Mandel and Wolf, 1995; Hanbury and Twiss, 1956; Naik 

et al., 2011; Goodman, 1985; Shevchenko et al., 2008; Kumar et al., 2012; Singh et al., 

2014). The HBT approach for the Stokes holography permits us to make use of the 

interference of the GSPs from two independent sources and realize a lensless Fourier 

transform geometry for the Stokes waves. The new recording and reconstruction 

approach for the lensless Stokes holography is as follows. 

Let us consider that a coherent polarized light field at the observation plane is 

coming from two independent sources located in the Fresnel domain as shown in Fig. 

5.1. The complex field at the plane 2 in the Fresnel region is given as 
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1 2ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( , ) ( ) ( , )p p pE E G d E G d= + r r r r r r r r r
     (5.6) 

Where ˆ( , )G r r  is a propagation kernel and given as 

22
ˆ ˆ2exp( )

ˆ( , ) exp
2

ikz
G ik

i z z

 − 
 
 
 

r r r + r
r r

      (5.7) 

The constant phase term exp( ) / ( )ikz i z  is ignored from further consideration as we are 

interested in observations at a fixed z value. Using the above two relations along with 

the Fresnel kernel, the complex field is written as 

2

21

2

22

ˆ ˆ ˆ ˆ( ) exp ( )exp exp
2 2

ˆ ˆ ˆ ˆexp ( )exp exp
2 2

p p

p

k k
E ik E i i d

z z z

k k
ik E i i d

z z z

     
 = −          

     
  −          





r
r r r r r r

r
+ r r r r r

   (5.8) 

Intensity at the observation plane is given as 
22

( ) ( ) ( )x yI E E= +r r r . The intensity 

correlation can be explained in terms of the second order field correlation for the 

Gaussian random field. Under consideration of the intensity correlation, as in the 

coming section, we have ignored the common phase factor outside the integration in Eq. 

(5.8). Removal of this phase factor is significant in the intensity correlation-based 

measurement for spatial stationarity (Takeda et al., 2014). Therefore, a GSP of the 

random field coming from two independent sources is represented as 

( )( )

( ) ( )

( )( )

( ) ( )

1 2 1 2

1 1 2 2
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2 1 2 2 1 1

1 2 1 2

1 1 2 2
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ˆ ˆ ˆ ˆexp exp
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ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆexp exp
2

x x x x

y y y y
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S d d dk k
i i

z z
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k k
i i

z z
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 
 
 
 

   r r r

 (5.9) 
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The common phase curvature term outside the integration in Eq. (5.8) is canceled out. 

Therefore, Eq. (5.9) justifies our approach to achieve a spatial stationary random pattern 

even from a non-stationary source at any observation plane in the Fresnel propagation 

domain. Under the assumption of two statistically independent sources 
1 ˆ( )pE r  and 

2 ˆ( )pE r , we are justified by taking the cross correlation of these two random fields 

1* 2( ) ( ) 0p pE E +  r r r  and therefore the GSP in RHS of Eq. (5.9) is represented as  

1* 1 1* 1

0 1 2 2 1

2* 2 2* 2

2 1

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) exp ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) exp ( )

x x y y

x x y y

k
S E E E E i d

z

k
E E E E i d

z

 
 = + − −  +  

 

 
 + − −   

 





r r r r r r r r r r

r r r r r r r r

   (5.10) 

Equation (5.10) is derived by making use of the relation 

2 1 2 1
ˆ ˆ ˆ ˆexp ( ). ( )

ik
d

z


 
− − = − 
 

 r r r r r r  in Eq. (5.9). Similar relations can also be derived for 

the remaining GSPs by connecting GSPs with source SPs by a Fourier relation as 

1 2

1 2 2 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( )exp ( ) ( )exp ( )n n n

k k
S s i d s i d

z z

   
= − −  + − −    

   
 r r r r r r r r r r r r

  (5.11) 

where 1 2( , ),( 0,1,2,3)nS n =r r  are the GSPs of the random fields while 
1 ˆ( )ns r  and 

2 ˆ( )ns r  

are the SPs (instantaneous-non averaged for the source) at the scattering plane. The 

GSPs at the observation plane can be represented as interference of two Stokes waves 

as 

1 2

1 2 1 2 1 2( , ) ( , ) ( , ).n n nS S S= +r r r r r r
      (5.12) 

Equation (5.12) can be used to record the lensless Fourier transform hologram of the 

Stokes waves 
22 1 2

1 2 1 2 1 2( , ) ( , ) ( , )n n nS S S= +r r r r r r . To record this hologram, we follow 

Eq. (5.5) and generate a reference Stokes wave as follows 
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2

1 2 2 1

2
ˆ ˆˆ( , ) ( )exp )nS r i ( d

z






 
= −  − 

 
r r r r r r . Here, a point polarized source ˆ( )r  is 

selected in order to generate a uniform reference Stokes wave covering the support of  

1

1 2( , )nS r r  to record the lensless Stokes wave hologram. This helps to recover the GSPs 

of the object’s wave from a reference Stokes wave 
2

1 2( , )nS r r .  

Let us turn to the generation of the Stokes waves hologram using the intensity 

measurements. Here, we introduce intensity correlation of the polarized speckle. The 

two-point intensity correlation of the Gaussian random field is directly related to the 

second order field correlation and given (Shevchenko et al., 2008; Singh et al., 2014) as 

23

1 2 1 2 1 2

0

1
( , ) ( ) ( ) ( , )

2
n

n

I I S
=

 =   = r r r r r r

     (5.13) 

where ( ) ( ) I( )I I = − r r r  is an intensity fluctuation with respect to its mean value. 

Equation (5.13) emphasize that cross-covariance of the intensity is composed of 

contributions of modulus square of all four GSPs. Therefore, our objective is to retrieve 

the GSPs from the measured intensity correlation. We use Eq. (5.13) based on the HBT 

experiment to recover the GSPs from the intensity measurements.  

In order to retrieve individual GSPs, we inserted an assembly of a quarter wave plate 

(QWP) with a linear polarizer (LP) before the observation plane 2. The QWP is oriented 

at angle   with respect to the x-axis and a LP also oriented in the same direction as 

shown in Fig. 5.2. The complex field after the polarization elements is given as 

 2( , ) cos sin ( , ) (1 )cos sin ( , )x yE z i E z i E z     = + + − r r r
   (5.14) 

with the appropriate trigonometric substitution, the intensity correlation at a fixed z 

plane can be expressed in terms of the GSPs and given as (Vinu and Singh, 2015) 
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2
2

1 2 0 1 2 1 1 2 2 1 2 2 1 2

sin 4
( , , ) ( , ) ( , ) cos 2 ( , ) ( , )sin 2

2
S S S S


   = + + +r r r r r r r r r r

  (5.15) 

Therefore, the two-point intensity correlation is the direct function of the all four GSPs, 

which contains the Stokes wave, and interference of object and reference as described 

in Eq. (5.12). By selecting appropriate angles of QWP rotation (i.e., 𝜃), such that 1 0 =   

2 22.5 =  , 3 45 =   and 4 135 =   four intensity correlation patterns are recorded. 

They are combinations of the GSPs as 
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r r r r r r
   (5.16) 

Each of the intensity correlations resulting from a particular orientation of the QWP 

gives a hologram which comes from the interference of the different combinations of 

the Stokes waves in a lensless Fourier transform geometry. From these holograms, we 

recover the complex GSPs of the object field, i.e., 
1

1 2( , )nS r r  using the Fourier analysis 

technique (Vinu and Singh, 2015). Fourier transform of the intensity correlation 

hologram provides spectra, its conjugate and a dc term. The spectrum is filtered and 

translated to the origin of the frequency coordinate. The inverse Fourier transform of 

the centrally shifted spectra and its appropriate combinations provide all the desired 

GSPs of the object field. The recovered GSPs at the Fourier plane can be digitally 

propagated to retrieve the Stokes fringes at the scattering plane using Eq. (5.5), and also 

reconstruct the complex valued polarized objects as spatial distributions of the GSPs in 

the 3D space. 
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5.3 Experiment Implementation 

In order to demonstrate a lensless Stokes holography for the Stokes waves and 

realize the spatial averaging, we design an experimental setup for the proof of principle 

experiment as shown in Fig. 5.2. This consists of a system to encode a polarized object 

into the Stokes modulations ˆ( )nS r   behind the scattering medium as explained in section 

2, and experimental arrangements to implement a lensless Fourier transform Stokes 

holography and reconstruction with the HBT approach. The experimental scheme is 

designed to apply spatial averaging as a replacement of the ensemble averaging at a 

particular observation plane z and uses the recovered GSPs for digital propagation as 

described in the Eq. (5.5). This gives an advantage in the context of recovering GSPs 

spatial structures and hence reconstructing the 3D object structures encoded into the 

hologram without any mechanical z scanning of the detector. Detailed description of 

Fig. 5.2 is as follows. 

 

Fig. 5.2. Experimental set-up for the lensless Stokes holography. MO: microscope objective; S: 

pinhole; L: lens; BS: beam splitter; SLM: spatial light modulator; GG: ground glass; M: mirror; 

QWP: quarter wave plate; LP: linear polarizer; CCD: charge coupled device. 

A linearly polarized beam from a He-Ne laser of wavelength 633nm (Melles Griot 25-

LHP-928-230) is oriented at 45° with respect to x-direction, spatially filtered with 
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microscope objective O1 (20X, NA=0. 40) and pinhole S (10μm) and subsequently 

collimated by lens L1(f=150mm). The collimated beam splits into two arms by a non-

polarizing beam splitter BS1. The transmitted beam illuminates the spatial light 

modulator SLM (Holoeye LC-R 720, reflective type; pitch pixel=20μm) which carries 

hologram of an object (H) and this hologram is projected at the scattering plane by a 4f 

imaging system with unit magnification. The digital hologram displayed on the SLM is 

a computer-generated hologram (CGH) of off-axis objects and numerically recorded in 

the Fourier geometry as shown in Fig. 5.3. Figure 5.3(a) shows the formation of Fourier 

transform hologram encoding the object information and Fig. 5.3(b) shows composition 

of two objects placed at different longitudinal planes and their digitally generated FTH. 

 

Fig. 5.3. (a) Formation of Fourier hologram.  (b). Set of two objects with longitudinal distance 

of 50mm, and its Fourier transform hologram. 

Light coming from the SLM have an arbitrary polarization and travels through the 

ground glass GG1 (DG20/120/MD, Thorlab, 3mm thickness) and gets randomly 

distorted and generates speckle pattern. The SLM (LC- R720) shows some crucial 

amplitude and phase modulation characteristics and they are not uniform at each gray 

value of SLM (Tiwari et al., 2020). Hence, it modulates state of polarization with change 

in gray levels of SLM. The speckle pattern further propagates towards the charged 

coupled device (CCD) plane. The 45° linearly polarized light reflected from the BS1 

and folded by mirror M1 is focused at the ground glass plate GG2 using MO2. The focal 

spot at GG2 is placed at an off-axis in order to generate a reference Stokes wave with 

uniform amplitude profile and a linear phase structure as described in Eq. (5.11). The 
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speckle coming out of the GG2 propagates towards the CCD plane. Both the ground 

glasses are placed at distance z=280mm from the CCD plane in order to make a lensless 

Fourier transform geometry for the Stokes waves as described in Eqs. (5.12) and (5.13). 

The random fields coming from two independent diffusers are combined by BS2 and 

coherently add to generate the resultant speckle for the orthogonal polarization 

components as described in Eq. (5.6). The light further passes through a QWP, which is 

rotated at an angle θ with x direction and filtered by a LP.  The transmission axis of the 

LP is placed in the x direction and the resultant field is captured by a monochrome CCD 

camera. The camera has a 14-bit dynamic range with a resolution of 2750X2200 pixels 

and a pixel pitch of 4.54 micron (Prosilica GX2750). Both ground glasses are static 

during the recording of the intensity distribution of the resultant speckle field. The 

intensity is recorded for four different orientation angles of the QWP as described in the 

previous section and four intensity correlation holograms are digitally obtained from the 

experimentally recorded speckle patterns. 

5.4 Results and Discussion 

We have applied this technique for different cases of objects and demonstrated 

3D imaging as distribution of the spatial structure of the GSPs. In our first case, we 

consider a digital Fourier transform hologram (DFTH) of two longitudinally separated 

objects by a distance 50mm as shown in Fig. 5.3. And this DFTH is used as an object 

displayed at the SLM plane. Resultant speckle patterns for this case are shown in Fig. 

5.4 for the four different orientations of the QWP. 

 

Fig. 5.4. Raw intensity speckle images recorded in CCD. 
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The recorded intensity patterns are random which do not have any visual information. 

Spatially averaged two-point intensity correlation functions are digitally evaluated from 

the recorded speckle patterns that correspond to each of the QWP rotation, which are 

equivalent to ( , ) r  with 2 1 = −r r r . Fourier analysis operation and appropriate 

combinations of processed spectra of the intensity correlation holograms provide GSPs.  

To evaluate the quality of reconstruction, we introduce parameters like visibility, 

reconstruction efficiency and peak signal to noise ratio (PSNR). The visibility is defined 

as the extent to which the reconstruction is distinguishable from the background noise. 

It is given by the ratio of the average intensity level of object, to the background intensity 

level (Tripathi et al., 2012) 

O

obj

B

avg

avg

I
V

I
=

         (5.17) 

where, obj
V  is the visibility of the object, Oavg

I  is the average intensity of the object 

and Bavg
I  is the average intensity of the background.  Reconstruction efficiency 𝜂 is 

another parameter used to measure the quality of reconstruction (Tripathi et al., 2012). 

It is given as the ratio of the object signal to the total power and calculated as 

O

O B

avg

avg avg

I

I I
 =

+
        (5.18) 

PSNR is also one of the parameters to analyze the quality of reconstruction. PSNR is 

defined as the ratio of the maximum possible power of a signal to the power of 

corrupting noise that affects the quality (Huynh-Thu and Ghanbari, 2008). PSNR in 

logarithmic decibel (dB) is calculated as 
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10

2

PSNR 10log oMAX

MSE
=

        (5.19) 

where, MAX0 is the maximum possible pixel value of the object and MSE is the 

cumulative squared error between the compressed and the original image. 

Results of the GSPs at the plane z= 280mm are shown in Figs. 5.5(a) – 5.5(d). These 

results can be used to digitally propagate the GSPs to different planes and results at 

plane z+∆z =330mm are shown in Figs. 5.5(e) – 5.5(h). Phase structure of the 

reconstructed object 
0 ( )S r  is shown in Fig. 5.5(i). From the experimental results, it is 

clear that light field impinging the ground glass GG1 is predominantly linear. The 

calculated visibility ( obj
V ), reconstruction efficiency (𝜂) and the PSNR values for the 

images are shown in Fig. 5.5. 
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Fig. 5.5. Imaging of a 3D object through a scattering media. Figs. 5(a)-5(h) are the elements of 

GSPs and their amplitude distribution (a) 0 ( ),S r  (b) 1( ),S r  (c) 2 ( ),S r  and (d) 3( )S r  

at z=280mm plane and (e) 0 ( ),S r  (f) 1( ),S r  (g) 2 ( ),S r  and (h) 3( )S r  at z=330mm 

plane. (i) Shows the reconstructed phase of the two objects. (j) 3D representative diagram 

showing focusing of the two objects with depth separation of ∆𝑧=50mm. 
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Fig. 5.6. Imaging of an object through a scattering media. Figs. 6(a)-6(h) are the elements of 

GSPs and their amplitude distribution (a) 0 ( ),S r  (b) 1( ),S r  (c) 2 ( ),S r  and (d) 3( )S r  

at z=280mm plane and (e) 0 ( ),S r  (f) 1( ),S r  (g) 2 ( ),S r  and (h) 3( )S r  at z=310mm 

plane (i) Shows the reconstructed phase of the object. (j) 3D representative diagram showing 

focusing of the object with different depth separations. 

Reconstruction of another polarization hologram ˆ( )s r  was carried out and results are 

shown in Figs. 5.6(a)- 5.6(h). In this case, we consider an object ‘2’ encoded into the 

Fourier transforming hologram. Figures 5.6(a)- 5.6(d) represent the corresponding 

GSPs of an object at z=280mm plane. Whereas Figs. 5.6(e) – 5.6(h) show the propagated 

GSPs at different depth z+∆z =310mm, calculated by using numerical beam propagation 

technique based on angular spectrum method. Figures 5.6(a) – 5.6(d) show that the 
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object displayed on the ground glass GG1 has a predominantly elliptical polarization. A 

phase structure of the reconstructed object 0 ( )S r  is shown in Fig. 5.6(i) as distribution 

of phase of the GSPs. The calculated visibility ( obj
V ), reconstruction efficiency (𝜂) and 

the PSNR values for the images are shown in Fig. 5.6. 

In summary, we have experimentally demonstrated the imaging through scattering 

media by employing the Stokes holography with the Hanbury Brown-Twiss approach. 

The object information is encoded into the hologram and hidden behind the scattering 

media is successfully recovered from the polarization speckles by using a Lensless 

Fourier transform geometry for the Stokes waves and making use of the intensity 

correlation. This is possible by recovering the 3D-GSPs of the randomly polarized light 

fields. The demonstrated technique is well efficient in retrieving the information by 

reconstructing objects at their actual positions and provides a 3D complex field imaging 

facility. This technique can be used to retrieve anisotropic features of the objects lying 

behind the scattering media. Reconstruction results are quantitatively estimated by 

determining visibility, reconstruction efficiency and PSNR. 
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CHAPTER 6 

COMBINING COMPRESSED SENSING WITH 

INTENSITY CORRELATION FOR IMAGING 

 

6.1 Introduction 

Holography reconstructs the object in non-invasive and label free environment. 

We are in the era of digital imaging, in which images are recorded by digital cameras and 

reconstructed in computer using digital algorithms. On axis and off axis position of a 

reference wave with respect to object can be utilized to make different types of holograms. 

Depending on experimental geometry of recorded hologram, several numerical techniques 

have been developed to efficiently reconstruct the hologram, some of these are Fresnel 

transformation, Convolution approach and Fourier reconstruction etc. (Schnars et al., 

2002). Among many available digital holographic geometries, the Fourier hologram 

attracts significant attention. It is highlighted that a Fourier transform hologram (FTH) 

produces high resolution images in wave front reconstruction images. Fourier transform 

plays a pivotal role in the variety of imaging modalities ranging from homogeneous to 

inhomogeneous media. FTH is a non-iterative imaging technique which is widely used in 

the field of biology and material science (Kreis, 2006; Stroke, 1965). In FTH, the reference 

wave is chosen to be a point source placed in the object plane. When monochromatic 

coherent light source illuminates the object plane, object wave and the reference wave 

create interference pattern which forms the hologram in the far field plane (Fourier plane). 

Desired object image is then recovered by taking inverse Fourier transform (IFT) in a 

single step deterministic computation (Shapiro, 2005; Fienup, 1987). Utilization of a 

single Fourier transform operation to the recorded FTH provides the object information 

and hence make this geometry more appealing and computationally less expensive. For 

instance, FT hologram can be used to preserve and encode the object information as a 

distribution of the complex coherence function of the random field and technique is 
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referred to as correlation holography. In recent years, our group has developed several 

new modalities of the correlation holography for imaging of the scalar and vectorial 

objects from the randomly scattered light.  

In order to fulfill sampling requirements or control the random light grain size in 

3D, one must carefully limit the spatial extent of the FTH at the random scattering 

medium. However, restriction in the size of FTH causes a poor signal to noise ratio and 

distorted reconstruction. To overcome this limitation, it is always desired to use efficient 

schemes that can be used to reconstruct the full signal faithfully from a set of sparse 

measurements. In this chapter, we present a new approach to retrieve the complete signal 

even with the availability of limited size FTH. This becomes possible by combing 

correlation holography with compressed sensing (CS). Compressed sensing (also known 

as compressive sensing, compressive sampling, or sparse sampling) is a popular sparse 

signal processing technique for efficiently acquiring and reconstructing a signal, from few 

measurements, through optimization (Candes et al., 2006; Candes and Wakin, 2008). CS 

has emerged as a new framework for signal acquisition and sensor design. The basic 

principle behind the CS theory is, the sparsity of a signal can be exploited to recover it 

from far fewer samples than required by the Shannon-Nyquist sampling theorem, by 

finding solution to the underdetermined liner systems. CS enables a potentially large 

reduction in the sampling and computation costs for sensing signals that have a sparse or 

compressible representation. An early breakthrough in signal processing was the Nyquist 

– Shannon sampling theorem. It states that if the signal’s highest frequency is less than 

half of the sampling rate, then the signal can be reconstructed perfectly. The main idea is 

that with prior knowledge about constraints on the signal’s frequencies, fewer samples are 

needed to reconstruct the signal. It has been demonstrated that given knowledge about a 

signal’s sparsity, the signal may be reconstructed even with fewer samples than the 

sampling theorem required (Candes and Wakin, 2008; Donoho, 2006; Candes and 

Romberg, 2007; Candes et al., 2006). The fundamental idea behind CS: rather than first 

sampling at a high rate and then compressing the sampled data, we would like to find ways 

to directly sense the data in a compressed form i.e., at a lower sampling rate. CS has been 

utilized in a variety of applications to solve missing data problem. 
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The proposed chapter highlights the potential of compressed sensing in the 

imaging through a random scattering medium. This method can reduce the noise level in 

recovered signal and super-resolved images can be obtained using the CS-based technique 

compared to the usual FT. The demonstrated technique is well efficient in retrieving the 

information by reconstructing objects from limited sized FTH. Quantitative analysis has 

been carried out to compare the quality of reconstruction using inverse Fourier transform 

(IFT) and CS techniques. The finding highlights that the CS reconstruction is better than 

that of IFT reconstruction. 

6.2 Principle 

6.2.1 Fourier transform holography 

Recoding of hologram for intensity correlation holography is much similar to that 

in convention holography. In our work, we have adopted Fourier transform geometry to 

synthetically generate the hologram, object and point source reference wave are in the 

front focal plane of lens and the detector is located in back focal plane of the lens as shown 

in fig. (6.1).  

Let us consider an off- axis object expressed by a local field distribution 0 0( , )E x y
 

propagates to the Fourier plane by virtue of the Fourier transform lens. The complex 

amplitude to be recorded at the hologram plane becomes the Fourier spectrum of the object 

field 

0 0 0 0

2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( , ) exp[ ( )]E r E x y E x y i xx yy dxdy

f




= = − +

    (6.1) 
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Fig. 6.1. Formation of Fourier hologram. 

In synthesizing the hologram numerically, we remove autocorrelation term which become 

the source of an unwanted autocorrelation image. 

The hologram is illuminated by a monochromatic beam through the scattered/ground glass 

plane and generates a speckle field. A schematic representation of the generation of 

speckle field is shown in Fig. (6.2). The scattered field ( )OE r on the Fourier transform 

plane for fixed time t, is given by: 

ˆ2
ˆ ˆ ˆ( ) ( )exp( ( ))exp[ ]O O

r r
E r E r i r i dr

f







= −

      (6.2) 

Here, ˆ( )OE r  is the field incident on the ground glass and r̂  is position vector on the 

ground glass plane, ˆ( )r  a random phase introduced by the ground glass,  the 

wavelength of the light, f the focal length of the Fourier transforming lens. Suffix O stands 

for ‘object’ speckle and this is used to distinguish from the reference speckle which will 

be defined later. 
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Fig. 6.2. Geometry of reconstruction of hologram in intensity correlation holography 

The correlation of the randomly scattered field is evaluated under the assumption of 

stationarity and ergodicity in space and is given by (Takeda, 2013) 

* *

1 2 1 1 1

2

W ( ) ( ) ( ) ( ) ( )

2
ˆ ˆ ˆ( ) exp

O O O O Os

O

r E r E r E r E r r dr

E r i r r dr
f





 = = + 

 
= −   

 




    (6.3) 

Here W ( )O r represents two-point correlation, 2 1 = −r r r  and s  represents spatial 

averaging and the relation  2 1 1 1 2 1

2
ˆ ˆ ˆ ˆexp ( ) ( )i d

f






 
− −  = − 
 

 r r r r r r  is used in Eq. (6.3). For 

a random field obeying Gaussian statistic, there exist a relation between the fourth order 

correlation and second order correlation, and this is given as 

𝛤(𝛥𝑟) = 〈𝛥𝐼(𝑟) 𝛥𝐼(𝑟 + 𝛥𝑟)〉 ∝ |𝑊𝑂(𝛥𝑟)|2      (6.4) 

where ( ) ( ) I( )I I = − r r r  is an intensity fluctuation with respect to its mean value. 

Equation (6.4) emphasize that cross-covariance of the intensity is composed of 
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contributions of modulus square of second order correlation and phase information. 

However, this lost phase of the complex coherence function can be retrieved by using a 

known reference complex coherence function with the help of off- axis holography. To 

apply this, we generate a reference speckle pattern and spatial coherence of this field is 

given as 

ˆ ˆ 2
ˆ ˆW ( ) ( )exp[ ]

g

R

r r
r circ i r r dr

a f





−
 = −  

     (6.5) 

Here ˆ
ĝr r= represents lateral shift of the reference beam of radius ‘a’ on the ground glass 

plane. Let us consider coherent addition of the object and reference speckles, the intensity 

at the Fourier plane is given as 

2 2
( ) ( ) ( ) ( )O RI r E r E r E r= = +

       (6.6) 

where ( )RE r  is the speckle due to the reference source. Since the resultant intensity is a 

speckle hologram, the mutual coherence function corresponding to it should have 

contributions arising from 
2

( )OE r , 
2

( )RE r and the mixed terms. The coherence function 

of the resultant speckle field is 

*

1 1

1 1 1 1

W( r) = ( ) ( )

[ ( ) ( )] [ ( ) ( )]O R O R

E r E r r

E r E r E r r E r r

 +

=  +  + 
        (6.7) 

Since the scatterers used to realize the object- and reference beams are different, we are 

justified in taking the contribution from the mixed term zero, i.e., *

1 1( ) ( ) 0O RE r E r r+  = . 

Therefore, the resultant mutual coherence function for the resultant intensity is 

W( ) W ( ) W ( )O Rr r r =  + 
          (6.8) 

The fourth order intensity correlation of the resultant speckle field is given as 
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   (6.9) 

Here *W ( )O r and *W ( )R r denote complex conjugate of the coherence functions of the 

random scattered fields engineered by object and reference source respectively. 

Interference fringes exist in the cross-covariance of the intensity of the resultant speckle. 

This interference fringe results due to superposition of the complex coherence of the 

object and reference speckle fields. The off-axis geometry for superposition of the two 

speckle fields is important for experimental implementation of the proposed idea. This 

geometry modulates fringes of the intensity correlation with properly selected carrier 

frequency in such a way that Fourier spectrum of the ‘object’ coherence field gets 

separated from the central background or dc. The complex coherence of the object speckle 

field is retrieved using the Fourier transform. 

6.2.2 Compressive sensing framework  

The application of CS in this framework assists to reconstruct the signal from the 

incomplete information (Donoho, 2006). The information available in blocked FTH is less 

than the usual FTH. It has been shown that the measurements of signal can be from the 

space domain or from frequency domain (Candes and Romberg, 2005). In the FTH, the 

captured hologram is in the Fourier domain and hence measurements are the available 

frequency components of the FTH. The blocked FTH can be represented as 

IW = WI 

where I denotes FTH of an unknown object O of size n×n, and IW is filtered Fourier 

hologram of O. IW is of the same size of I but lacks frequency components those are 

filtered out (zero frequencies) and has only M measurements. W is the window that mimics 

the filter and removes the frequency components (lower or higher). W takes the N values 

from I and gives M measurements, (M < N).  
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In our investigation, we have modelled the beam stop by choosing W as low pass filter. 

Computing inverse Fourier transform of IW, makes it ill-posed or under determined 

problem (Akshay et al., 2018). As IW is the filtered FTH with blocked frequencies, by 

assigning missing frequencies with any random values while keeping the measured 

(observed) frequencies unchanged, there are an infinite number of solutions possible.  It is 

impossible to find unique solution to this situation hence some iterative method is required 

for reconstruction. In order to recover the missing contents of FTH, CS requires some 

additional information (Candes and Wakin, 2008).  

If the underlying signal is a 2D object image and the measurements are in frequency 

domain, an alternate recovery model is that the gradient of image is sparse (Rudin et al., 

1992). Let 
,i jO   denote pixel in the ith row and jth column of an n x n object O, and define 

the gradient operators 

, 1 ,

;
0

i j i j

v ij

O O if i n
D O

if i n

+ −  
=  

= 
       (6.10) 

The total variation of O is sum of the magnitudes of these discrete gradients at every points 

2 2

; ;

2

( ) ( ) ( )h ij v ij ij

ij ij

TV O D O D O D O= + =        (6.11) 

By enforcing the sparsity constraint on the total variation (TV) of O, we recover O′ by 

solving optimization problem based on sparse gradient of the object (Candes and 

Romberg, 2005). 

min ( )O TV O =  subject to IW=WI        (6.12) 

where O′ is required reconstructed object. It has been proved that, Eq. (6.12) will recover 

O′ for piecewise constant O with sufficiently few edges (i.e., DijO is non zero for few 

numbers of indices ij - gradient of object is sparse) (Candes and Romberg, 2005). Eq. 

(6.12) is the convex optimization problem in CS literature (Candes and Wakin, 2008; 

Candes et al., 2006). The optimization problem posed in Eq. (6.12) can be recasted as 

Second Order Cone Program (SOCP) as explained in Ref. [25] is given by 
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min ij

ij

t  subject to 
2ij ijD O t  ,  IW=WI    (6.13) 

where i; j = 1; :::; n. SOCP can be solved efficiently with a generic log-barrier algorithm 

(Candes and Romberg, 2005). Logarithmic barrier function approximately formulates the 

inequality constrained of Eq. (6.13) as an equality constrained problem to which Newton's 

method with equality constraints can be applied (Boyd and Vandenberghe, 2004). The 

standard log-barrier method transforms the Eq. (6.13) into a series of linearly constrained 

programs given by 

( )
2

1
min logij ij ijk

ij ij

t D O t


− − +   subject to  IW=WI    (6.14) 

where τ > 0 is the log barrier parameter that sets the accuracy of approximation. Initially 

τ-1 is defined as N/TV (O′) and at every log barrier iterations k, the value of τ is updated 

by factor μ (Candes and Romberg, 2005). Hence, τ k+1 = μ τ k and τ k+1 > τ k. Total number 

of log barrier iteration K is given by 

1log log log

log

N
K

 



− − −
=  
 

         (6.15) 

where N is number of elements of I. The log barrier algorithm terminates for duality gap 

N/ τ k < η, and μ is the factor by which barrier constant τ is updated (Candes and Romberg, 

2005). As number of iterations increases CS gives improved result than compared to the 

previous iterations. Number of log barrier iterations can be increased by selecting lowest 

possible values of μ (> 1) and η. Default values of μ and τ are 10 and 10-4 used in this 

analysis respectively. The flow chart of entire recovery process to obtain O′ from IW is 

shown in Fig. 6.3. 
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Fig. 6.3. Flow chart to reconstruct object O′ from IW (Picture source: Akshay et al., 2018) 
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6.3 Experiment Implementation 

We developed an experimental strategy equipped with an off- axis holography 

technique to retrieve the complex coherence function of the speckle fields. The 

experimental geometry to retrieve the complex coherence function using off-axis 

holography technique is shown in Fig. 6.4. 

 

Fig. 6.4. Experimental set-up for the lensless Stokes holography. MO: microscope objective; S: 

pinhole; L: lens; BS: beam splitter; SLM: spatial light modulator; GG: ground glass; M: mirror; 

CCD: charge coupled device. 

A linearly polarized beam from a He-Ne laser of wavelength 633nm (Melles Griot 25-

LHP-928-230) is spatially filtered with microscope objective O1 (20X, NA=0. 40) and 

pinhole S (10μm) and subsequently collimated by lens L1(f=150mm). The collimated 

beam splits into two arms by a non-polarizing beam splitter BS1. The transmitted beam 

illuminates the spatial light modulator SLM (Holoeye LC-R 720, reflective type; pitch 

pixel=20μm) which carries hologram of an object (O) and this hologram is projected at 

the scattering plane by a 4f imaging system with unit magnification. The digital hologram 

displayed on the SLM is a computer-generated hologram (CGH) of off-axis objects and 
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numerically recorded in the Fourier geometry as shown in Fig. 6.1. Figure 6.1shows the 

formation of Fourier transform hologram encoding the object information. 

Light coming from the SLM travels through the ground glass GG1 (DG20/120/MD, 

Thorlab, 3mm thickness) and gets randomly distorted and generates speckle pattern. The 

speckle pattern further propagates towards the charged coupled device (CCD) plane. The 

45° linearly polarized light reflected from the BS1 and folded by mirror M1 is focused at 

the ground glass plate GG2 using MO2. The focal spot at GG2 is placed at an off-axis in 

order to generate a reference wave with uniform amplitude profile and a linear phase 

structure as described in Eq. (6.11). The speckle coming out of the GG2 propagates 

towards the CCD plane. Both the ground glasses are placed at distance z=280mm from 

the CCD plane in order to make a lensless Fourier transform geometry. The random fields 

coming from two independent diffusers are combined by BS2 and coherently add to 

generate the resultant speckle at camera plane. The camera has a 14-bit dynamic range 

with a resolution of 2750X2200 pixels and a pixel pitch of 4.54 micron (Prosilica 

GX2750). Both ground glasses are static during the recording of the intensity distribution 

of the resultant speckle field.  

6.4 Result & Discussion 

The resultant speckle field due to coherent super position of object and reference 

speckle is recorded by CCD camera and the resultant speckle field is shown in Fig. 6.5 

The speckle grain size at camera plane can be controlled by varying aperture in the object 

arm of the interferometer.  
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Fig. 6.5. Random speckle pattern captured by the CCD camera 

The cross- covariance of the intensity distribution of the resultant speckle is obtained by 

spatial averaging under condition of spatial stationarity and ergodicity. The fourth-order 

intensity correlation of the speckle pattern results in interference fringes and is shown in 

Fig. 6.6. The interference fringe results due to superposition of the complex coherence of 

the object and reference speckle fields. 

 

Fig. 6.6. Results of fourth order correlation showing interference fringes 

The use of Fourier fringe analysis technique separates the spectra from dc part in the 

spatial frequency domain. High spatial carrier frequency due to linear phase of the 
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reference coherence function plays important role in separation of the frequency spectrum 

from the dc. Properly select one of the spectra and move it to center as shown in Fig. 6.7. 

           

Fig. 6.7. Results of Fourier fringe analysis (left) and Centrally shifted frequency spectrum (right) 

Inverse Fourier transform of properly selected centrally shifted frequency spectrum 

retrieves the complex coherence function of the speckle field as shown in Fig. 6.8. 

 

Fig. 6.8. Reconstruction with usual IFT 

In Fig. 6.7, centrally shifted frequency spectrum is mixed with DC term that limits the 

spatial extent of the FTH at the random scattering medium and causing a distorted 

reconstruction of letter ‘2’ with usual IFT. To avoid this problem, size of FTH is restricted 

using a low pass filter patch and resulted again poor reconstruction as shown in Fig. 6.9. 
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Fig. 6.9. (a). FTH, (b). FTH with low pass filter and (c). Reconstruction with usual IFT 

To demonstrate the effectiveness of CS technique in the reconstruction, FTH with 

restricted size is then taken for post processing using CS based framework. Fig. 6.10 

shows results obtained using CS based reconstructions. Much improvement is seen even 

with the 3rd iteration, it can be enhanced further with higher iterations. 

             

Fig. 6.10. CS based reconstruction with higher iteration 

Some more results are presented to demonstrate the performance of CS technique for 

various objects as shown in Figs. 6.11 and 6.12. The results show the robustness of CS 

reconstruction technique for limited size FTH. It is evident from both the results that 

images are super resolved and noise is completely reduced when they are reconstructed 

using higher iterations. 

(a) (b) (c) 
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Fig. 6.11. (a). IFT based reconstruction and (b). CS based reconstruction 

            

Fig. 6.12. (a). IFT based reconstruction and (b). CS based reconstruction 

 

In summary, a detailed investigation is carried out for the reconstruction of limited size 

FTH using the inverse Fourier transform and a technique equipped with compressed 

sensing. Our work highlights significance of CS framework in the reconstruction of the 

object information for apertured FTH. 

  

(a) (b) 

(a) (b) 
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CHAPTER 7 

CONCLUSION 

 

The work successfully investigates the properties of randomly 

fluctuating field in scalar and vectorial domain using Hanbury Brown Twiss 

(HBT), both theoretically and experimentally.  For analysis of laser speckle 

pattern and the effective utilization of their randomness, the statistical properties 

are investigated.  Polarization sensitive studies can be effectively carried out 

using the investigations and development of such new experimental techniques 

that are capable of treating coherence and polarization together, in account. The 

laser speckle pattern of a spatially fluctuating random field can be synthesized 

and analyzed using this technique. Various polarization fluctuations and results 

are presented throughout the thesis. The polarization fluctuation in the random 

field is synthesized by introducing different vortex modes into orthogonal 

polarization components of the light prior to random scattering from a diffuser. 

Spatially varying polarization states are generated by introducing the helical 

modes, i.e., vortex, in one of the orthogonal polarization components of the 

incident light. This makes coupling between the spatial and polarization modes 

of the light. 

The HBT interferometer based on two-point intensity correlation is 

combined with speckle holography to retrieve the complex information of a 

random field. The thesis presents the study of polarization and coherence of a 

random field, mainly in vectorial domain. A new experimental technique 

demonstrates the imaging through scattering media by employing the Stokes 

holography with the Hanbury Brown-Twiss approach. This approach is based on 

Lensless Fourier transform holography to recover object information i.e., Stokes 

parameters from a scattering medium. Furthermore, making use of the lensless 

Fourier transform holograms of the GSPs depth recovery of the object is done. 

This is implemented by digital propagation of the GSPs rather than mechanical 
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scanning of the detector.  This is arguably the first such attempt to exploit the 

interference of GSPs to realize lensless Fourier transform hologram for the 

Stokes vector waves. The HBT type interferometer for 3D imaging of the 

polarized objects, is also a maiden attempt through this thesis.  

Another major highlight of the thesis is the demonstration of 

compressed sensing in the imaging through a random scattering medium. This 

method can reduce the noise level in recovered signal and super-resolved images 

can be obtained using the CS-based technique compared to the usual FT. The 

demonstrated technique is well efficient in retrieving the information by 

reconstructing objects from limited sized FTH. The reconstruction is found to be 

very effective even in the cases of low sampling. A quantitative analysis has been 

carried out to compare the quality of reconstruction using inverse Fourier 

transform (IFT) and CS techniques. The CS reconstruction is conclusively better 

than IFT reconstruction. 
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