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Abstract
The Quadruple Tank Process (QTP) is a classical control problem often used in control
theory and practical research. This process is a valuable testbed for studying and imple-
menting control algorithms, allowing researchers/engineers to explore the various design
process such as feedback control in the presence of uncertainties and optimisation in a
practical context. The main objective of the problem is to maintain the desired levels in the
bottom two tanks under (i) nonlinearity due to the interconnected dynamics (ii) potential
coupling between the tanks and (iii) disturbance and uncertainty conditions. Interestingly,
QTP exhibits its operation under both minimum and non-minimum phase modes. In spe-
cific, designing a controller for a non-minimum phase system requires more attention due
to its inherent complexities and challenges involved.

The Linear Quadratic Integrator (LQI) controller, a widely acclaimed control design
technique combines both feedback control i.e Linear Quadratic Regulator (LQR) and feed-
forward integral control strategy. The integral action of the LQI controller plays an impor-
tant role in the system’s performance by integrating the error signal between the actual and
desired states over time, hence it eliminates the steady state error which drives the system
towards the desired setpoint. The optimisation problem leads to minimise the cost function
that combines quadratic penalties on state deviations, input deviations and integrated error
signals along with constraints on control inputs and states.

The initial phase of the research work proposes robust Fractional Order LQI (FOLQI)
controller design for QTP in the presence of disturbance and uncertainty conditions. This
approach involves utilising fractional calculus concepts in designing the controller which
allows more flexibility and adaptability in handling complex dynamics. By incorporating
fractionality in the integrator part of the LQI controller, the FOLQI controller can capture
more intricate system behaviours and effectively improve the system performance. The
controller parameters of FOLQI is obtained by minimising control effort in the presence of
load disturbance conditions along with time domain constraints such as overshoot, settling
time and steady state error.

The optimal tuning of FOLQI controller parameters are obtained by solving the pro-
posed constrained optimisation problem using (i) deterministic approach and (ii) heuristic
approach. Deterministic optimisation methods aim to find the optimal solution by system-
atically exploring the entire solution space or using mathematical algorithms to determine
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the best solution. These methods guarantee convergence to the global optimum (if such a
solution exists) under certain conditions. It utilises the fmincon function from MATLAB
which uses the Sequential Quadratic Programming (SQP) algorithm as a solver. The su-
perior time response characteristics obtained from FOLQI controller are compared with
responses obtained from the existing Integer Order LQI (IOLQI) and Linear Active Distur-
bance Rejection (LADR) controllers.

To enhance the performance, heuristic optimisation methods such as Cuckoo Search
(CS), Accelerated Particle Swarm Optimisation (APSO) and FireFly (FF) are used to solve
the proposed constrained optimisation problem. These methods are beneficial for complex
problems where deterministic optimisation techniques may need more computational com-
plexity or ample solution space that provides the solution within a reasonable time frame.
The superior performance of these algorithms are shown by conducting simulations in the
presence of disturbance along with parameter uncertainty conditions and the results are
compared with the existing IOLQI controller.

In the second phase of the research work, the Bond Graph (BG) based QTP model
along with FOLQI controller is proposed. BG serve as a graphical modelling technique,
offering a unified framework for representing the dynamics of interconnected physical sys-
tems. The closed loop configuration of the QTP and FOLQI controller are modelled using
BG technique. A unconstrained optimisation problem is proposed to tune the FOLQI con-
troller parameters using various optimisation algorithms such as Newton Raphson, Davi-
don–Fletcher–Powell, Steepest Descent Method and Broyden–Fletcher–Goldfarb–Shanno.
The obtained results using FOLQI controller are compared with the existing IOLQI con-
troller.
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Chapter 1

Introduction

In many industrial processes, particularly in process control and chemical engineering,
multiple variable must be controlled simultaneously to ensure optimal performance. These
variables can include temperature, pressure, flow rates and concentrations. The Quadru-
ple Tank Process (QTP) with its four interconnected tanks representing different variables
provides a platform for studying and implementing multivariable control strategies. En-
gineers/researchers can develop control algorithms considering the interactions between
these variables and nonlinearities which allow for more efficient and precise control. The
QTP is a complex system with various operating modes including minimum and non-
minimum phase conditions. Understanding and effectively controlling such a system re-
quires advanced control system design techniques with the ability to handle nonlinearities,
interactions and complex transfer matrix configurations.

This thesis presents the tuning of Fractional Order (FO) Linear Quadraic Integrator
(LQI) controller parameters to meet the required time domain specifications such as over-
shoot, settling time and steady state error using constrained optimisation problem with
minimum control effort. The optimisation problem is solved using the fmincon function
which uses Sequential Quadratic Programming (SQP) algorithm for obtaining the solution.
Further, various heuristic optimisation algorithms such as CS, APSO and FF are used to
tune the parameters of FOLQI controller in the presence of load disturbance conditions in
addition to meet the desired specifications. The obtained results are compared with exist-
ing controllers such as Integer Order (IO) LQI and LADR. Further, the feasibility of tuning
FOLQI controller parameters in the Bond Graph (BG) domain is explored without consid-
ering the constraints on the time domain requirements. This methodology offers valuable
insight into alternative method for representing QTP and tuning of controller parameters in
BG.
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1.1 Literature Survey and Motivation

In recent industrial and engineering applications, most systems are inherently nonlinear,
highly coupled and Multiple Input Multiple Output (MIMO) system. These systems can
operate in minimum and non-minimum phase modes which presents specific characteristics
and challenges. Unlike minimum phase systems, non-minimum phase systems exhibit a
delay between change in input and its output response. This delay is due to zeros placed in
(i) right half of the s-plane in case of continuous time systems and (ii) outside the unit circle
in case of discrete time systems [1]. A detailed analysis of non-minimum phase systems
and control synthesis techniques providing essential theoretical background for engineering
practitioners are given in [2]. This exhibits internal dynamics that can lead to instabilities
or undesirable transient behaviours. Control system design for the circuit system with
different configurations exhibiting non-minimum phase characteristics is presented in [3].
The benchmark provides a practical and theoretical foundation for testing and developing
control strategies modified to address the complexities associated with non-minimum phase
dynamics. A few such practical systems widely used for control applications are twin-rotor
system [4], AC/HVDC interconnected system [5], Rosenbrock’s system and Wood-Berry’s
binary distillation column [6], Shaker setup of an aeronautical structure [7] and QTP [1].
These systems typically exhibit inherent interaction effects among the process variables
which makes complex in system analysis and controller design. These interaction effect
requires a comprehensive review of various decoupling principles as discussed in [8].

1.1.1 QTP

To meet these challenges, the process industries consider QTP as a benchmark process
for analysing, detailing its configuration, mathematical modeling, and the concept of ad-
justable zeros, making it a key reference for understanding the non-minimum phase behav-
ior for designing controllers [9], [10] and [11]. The QTP presents with multivariable control
challenges which require coordinated regulation of multiple inputs to achieve the desired
outputs. To regulate the characteristics of QTP in the presence of disturbance/uncertainty,
the design of controller is crucial. Many researchers investigated different control tech-
niques like PID control, adaptive control, Model Predictive Control (MPC) and advanced
optimisation algorithms to achieve precise set point tracking, disturbance rejection and op-
timal control of QTP.

In 1985, authors introduced the concept of process modelling and feedback control
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using Kalman filter in two tank system in the presence of disturbance and measurement
error. This experimentation consist of PI and PID control, modelling and parameter fitting,
auto-tuning, selector control, anti-windup, state feedback and output feedback [12]. This
leads to establish QTP as a classic example in the field of process control and system
dynamic [13].

In [9] and [10] authors introduced the updated model of QTP, demonstrating the non-
linear dynamics, interaction effect and the complex nature of the non-minimum phase op-
erating modes. In [11], the effect of non-minimum phase behaviours such as reduction
in bandwidth, unstable dynamics for simpler control methods and extended computational
time issues are explored and found that Linear Quadratic Gaussian (LQG) controller aug-
mented with integrator provides better disturbance rejection capability than the existing
H∞, loop-shaping, feedback linearisation and MPC for non-minimum phase operating
condition.

1.1.2 Controllers for QTP

In [14], an effective method for designing and tuning decentralised PI controllers of stable
MIMO systems is presented. The approach uses the direct Nyquist array technique to shape
the Gershgorin bands individually for each control loop, intersecting a predefined point cor-
responding to a specified phase margin specification and found to provide better results than
Ziegler–Nichols tuning of controller. In [15], implementation of decentralised PI controller
by analysing the severity of the interaction using the Relative Gain Array (RGA) principle
and the performance comparison of the step response plots show that non-minimum phase
condition has nearly 10 times lower bandwidth than minimum phase operating condition.
The robust decentralised PID controller has been designed in frequency and time domain
using Linear Matrix Inequality (LMI) and inverse dynamic approach [16]. The results show
that (i) LMI based design of static output feedback controller provides better performance
for minimum phase configuration and (ii) non-minimum phase system prefers the inverse
dynamics approach.

Control design methodologies like decentralised PI, multivariable Internal Model Con-
troller (IMC) and µ analysis based H∞ controllers are employed in [17]. These controllers
are evaluated for stability, performance in set point tracking and disturbance rejection using
robustness metrices. The results show that IMC and H∞ controllers provide better perfor-
mance than the decentralised PI controller. In [18], gain and phase margin specifications
are used to tune the decentralised PI/PID controller. The evaluated performance measures
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such as Integral Absolute Error (IAE), Integral Square Error (ISE), Integral Time Absolute
Error (ITAE), peak overshoot and rise time show that the proposed method has better per-
formance than other controllers like IMC-PI and Bounded Linear Time invariant (BLT)-PI.
In [19], QTP operates with a nonlinear zero dynamic attack in non-minimum phase con-
ditions. The attack utilises Byrness-Isidori standard representation and employs Lyapunov
analysis to ensure stealthiness in the presence of uncertainties and parameter variations.
The attack remains undetectable until certain tanks reach overflow or depletion conditions,
exploiting the system’s nonlinear dynamics for stealthy intrusion. Experimental results
demonstrate the effectiveness and stealthiness of the proposed attack strategy, highlighting
its potential threat to the security and robustness of QTP control systems.

The design of a robust H∞ observer based controller for Takagi-Sugeno (TS) fuzzy
systems, equivalent to QTP with time varying delays, parameter uncertainties and external
disturbances are presented [20]. The Lyapunov-Krasovskii function is employed to guar-
antee the asymptotic stability of the proposed controller. Experimental results demonstrate
the effectiveness of the controller to achieve robust control performance and minimising
the effect of uncertainties and disturbances in TS fuzzy systems with time varying de-
lays. In [21], a Disturbance Observer based Integral Backstepping (DOIB) controller for
a two tank system is presented in the presence of external disturbances. The comparative
performance analysis is conducted with a Sliding Mode Controller (SMC) to evaluate the
effectiveness of the proposed DOIB controller. Experimental results demonstrate that the
DOIB controller outperforms SMC by avoiding chattering, reducing steady state error, and
enhancing disturbance suppression characteristics which highlights its superiority for con-
trol applications in dynamic systems subjected to external disturbances. In [22], design and
comparative analysis of two control laws for rejecting disturbances and handling parameter
uncertainty in dynamic systems are presented. These control laws have been designed to
address set point tracking problems while accounting for disturbances, uncertain parame-
ters, measurement errors and neglected dynamics. The comparative analysis provide the
strength and limitations of each control law for the given conditions.

In [23], design and comparative performance analysis of an Adaptive Inverse Evolu-
tionary Neural (AIEN) controller under the disturbance and uncertainty conditions against
a conventional PID controller designed using error criteria is presented. The performance
of both the controllers are evaluated based on error criteria such as ISE, IAE and ITAE.
In this work, AIEN controller outperforms the conventional PID controller across vari-
ous error criteria, highlighting its effectiveness in achieving superior control performance.
In [24], testing of two adaptive control strategies, namely Adaptive Pole Placement Con-
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troller (APPC) and Robust Adaptive Sliding Mode Controller (ASMC) are presented to
achieve high performance control of a minimum phase QTP. The controllers are evaluated
based on their robustness to set point variations, parametric uncertainties and rejection of
disturbance inputs. Simulation results demonstrate that the proposed adaptive control con-
figurations outperform PID controller due to lower performance indices and faster settling
times. ASMC also demonstrates superior performance compared to APPC across various
input variations and regulation scenarios due to the inherent robustness of SMC against
uncertainties and disturbances.

In [25], a single variable synthesis method, the balanced tuning and the desired model
approach based optimal controller is designed. The RGA tool obtains the optimal con-
trol pairs to minimise integral performance indices and ensure robust disturbance rejection.
Comparative performance analysis is conducted with conventional controllers to evaluate
the effectiveness of the proposed optimal controller in terms of set point tracking accuracy
and disturbance rejection. Experimental results demonstrate that the optimal controller
outperforms conventional controllers in terms of ITSE and ITAE under disturbance condi-
tions. An adaptive decentralised neuro-fuzzy inference system based controller provides
better performances in terms of accurate level tracking for QTP with less computational
time [26]. The SMC structured with an optimal integral sliding surface, is designed to out-
perform conventional LQI setup by minimising integral absolute error under disturbance
and uncertainty conditions [27]. In [28], robust optimal decentralised PID controller based
on nonlinear optimisation provides improved bandwidth for specified stability margins and
robustness against parameter uncertainty compared to existing adaptive decentralised PI
controller.

1.1.3 Fractional Order Controller

Researchers have developed novel control strategies based on Fractional Calculus (FC)
called FO Controller (FOC) [29] to address the challenges in control systems like (i) to
capture the complex dynamics more effectively [30] (ii) handle the nonlinearities more
efficiently [31], [32] and (iii) making them suitable for a wide range of control applica-
tions [33]. These include adaptive, robust and distributed FOC which provide improved
performance, robustness and scalability compared to traditional Integer Order (IO) con-
trollers [34]. A notable contribution by various researchers presented in the literature are
summarised and given below.

The authors of [30] present the tuning of FOPI controller using the kissing circle method
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which relies on a frequency domain approach that provides 6% decrease in power consump-
tion and better robustness characteristics compared to IOPI controller. This method does
not require model dynamics and controller parameters are obtained through frequency do-
main identification method. The design of FOPID controller to minimise IAE, ISE, ITAE
and control effort is proposed in [33]. The unconstrained optimisation problem is solved
using fmincon function in Matlab which shows better performance than the IO controller.
Implementation of FOC like PIα and [PI]α for limit cycle suppression of system with
backlash found to produce better performance than conventional PID controller [31], [32]
and [35]. In [36], unified expressions for FO and fractional complex order controllers to
regulate systems with complex coefficients and dead time are proposed to meet the Wang
et al. specifications. The FOC design with adaptive laws for the process with variable time
delay provides better performances than conventional controllers [37]. In [38] and [39],
numerical methods for optimising the parameters of FOC’s and the practical guidance on
implementing controllers using MATLAB are presented.

1.1.4 FOC for QTP

FOC presented for QTP are given below. In [40], a dual-mode adaptive FOPI controller
and an adaptive feed-forward controller using a variable parameter transfer function model
are presented for QTP. This research concludes that the proposed model performs better
than other controllers like decentralised PI, multivariable Quantitative Feedback Theory
(QFT) and SMC. FOPI controller and conventional feed-forward controller are designed in
[41] using frequency domain approach and found better performances than PI/PID/2DOF-
PI/3DOF-PI with feed-forward controller. In [42], an optimal FOPID controller based on a
Genetic Algorithm (GA) is presented for a system with time delay and found to have better
ITAE performance than a conventional controller.

The design of FO predictive controller for QTP with dead time is presented in [43] and
the performance characteristics like settling time, rise time, peak time, overshoot and ISE
are evaluated. The results indicates that gain shaping method of tuning controller provides
better performance than Hagglund, amigo and Z-N techniques. In [44], FO-SMC controller
is proposed to dealt with plant uncertainties which ensure the finite time convergence and
provide better performance than conventional SMC.
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1.1.5 LQI Controllers

The LQI controller is a robust and flexible tool in control theory, offering a comprehensive
approach to regulating dynamical systems addressing both transient and steady state per-
formance. It is a fusion of LQR and integral control action. This combines the benefits
of both methodologies aiming to optimise system performance across a broad spectrum of
applications. The Q and R matrices are the key components in formulating the control law
that maintains the desired state trajectory and control signal respectively [45], [46] and [47].

Few researchers have recently developed LQI controllers that produces better perfor-
mance than conventional controllers. Variable structured LQI controller presented in [46]
for underactuated rotary pendulum system equipped with adaptive weighting mechanism
performs better in terms of disturbance rejection, stability and minimum control effort com-
pared to SMC and Baseline Variable Structure (BVS) LQI controller. The complicated non-
linear and coupled twin rotor MIMO system introduced with LQI controller found to have
better set point tracking performances than the existing LQG and SMC controllers [47].
In [48], GA and cross entropy optimisation methods are employed to obtain the control pa-
rameters of LQR controller and found better time characteristics in terms of minimum error
and control effort. In [49], various optimal controllers like LQR, LQG Regulator (LQGR),
H∞ and H2 controllers are presented for QTP under disturbance conditions and noted that
the performance of LQR controller is better in terms of settling time.

1.1.6 Heuristic Optimisation based Controllers

Heuristic based tuning of controller parameters are often more robust to system uncertain-
ties and nonlinearities than controllers tuned using deterministic approaches [50]. Heuris-
tic controllers have been successfully applied to various optimisation problems including
scheduling, routing, resource allocation, machine learning and engineering design [51],
[52], [53] and [54]. Their ability to effectively explore complex solution space, handle un-
certainties and achieve optimal solution in less time make these methods as a valuable tools
for handling complex problems.

A few contributions of the researchers towards controller design using heuristic meth-
ods are as follows. In [55], authors presented the tuning of PID controllers using heuristic
algorithms like GA, Ant Colony Optimisation (ACO), Artificial Bee Colony (ABC) opti-
misation, Teaching-Learning-Based Optimisation (TLBO), Bat Algorithm (BA), Bacterial
Foraging Optimisation (BFO), Particle Swarm Optimisation (PSO), Cuckkoo Search (CS),
Simulated Annealing (SA), Grey Wolf Optimisation (GWO), Krill herd and Whale optimi-
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sation algorithms. In [56], researchers used GWO and PSO methods to reduce the annual
energy consumption of an industrial building under Seattle’s weather conditions. The result
shows that GWO performs better than PSO in terms of convergence rate and the required
number of building simulations.

PSO and GA based heuristic methods are adopted to minimise annual cooling energy
consumption for a residential building prototype situated in a hot and dry region of India,
found PSO provides more economical design compared to GA based optimisation [57].
In [58], authors have developed a new hybrid forecasting framework to enhance the fore-
casting performance of digital currencies such as BTC, XRP, DASH and LTC by forecast-
ing the nonlinear dynamical model. This model is developed by combining the Long Short
Term Memory (LSTM) neural network method and Empirical Wavelet Transform (EWT)
decomposition technique. The optimal estimated Intrinsic Mode Function (IMF) outputs
obtained using CS algorithm captures the nonlinear characteristics more accurately than all
considered models according to the statistical error criteria.

A novel hybrid wind speed forecasting model has been devised by integrating a long
short term memory neural network decomposition method with GWO [59]. This combined
approach effectively captures the nonlinear features inherent in wind speed time series data,
result in enhancing the forecast accuracy significantly compared to individual forecasting
models. In [60], authors investigated the design of PID controller parameters for attitude
and altitude control of a quadrotor using both PSO and Harris Hawks Optimisation (HHO)
algorithms under different geometric paths. The results indicate that HHO based con-
troller offers superior performance characterised by its simplicity, flexibility and capability
to explore the search space randomly, thereby obtaining local optimal solution. In [61],
a combination of Hybrid HHO and GWO based algorithms are utilised for optimal path
planning and tracking in executing the payload hold release mission of UAVs during obsta-
cle avoidance. This approach demonstrates superior performance compared to controllers
tuned using PSO and GWO.

The PID controller parameters obtained through an enhanced CS algorithm yield supe-
rior outcome in terms of peak time, overshoot and settling time in contrast to the controller
tuned using conventional CS and PSO methods [62]. In [63], PID controller is designed for
an automatic voltage regulator system tuned using CS demonstrates superior performance
compared to PSO and ABC algorithms in terms of overshoot, settling time and steady state
error. In [64], an integration of PSO and CS algorithm is utilised to tune the PID controller
parameters for a quadrotor system to demonstrate with an improved efficiency compared to
conventional CS and classical reference models in terms of ISE error. The implementation
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of FF algorithm to optimise the membership function within a fuzzy controller is presented
in [65] which improves the actuation function of autonomous mobile robots. In [66], tuning
of PID controllers for QTP using GA yields superior performances in terms of rise time,
settling time and steady state error compared to PI/PID controllers tuned using IMC, PSO
and BFO algorithms.

Implementation of heuristic based algorithms for optimising controller parameters in
LQI controller provide better performances. The optimal tuning of the LQI controller for
Z-source inverters in the presence of parameter variations, unmodeled dynamics and load
disturbances are performed by selecting the optimal weighting matrices Q and R through
BA for better time domain characteristics and robustness compared to existing PI and state
feedback controllers [49]. Utilising GA for tuning Q and R matrices of the LQI controller
in speed control applications provides superior performance in terms of overshoot and set-
tling time compared to conventional LQI and PID controllers [67].

1.1.7 LADR Controllers

Linear Active Disturbance Rejection (LADR) controllers specifically address disturbance
rejection problems which improve the performance in the presence of plant uncertainties
and disturbances. Unlike traditional control methods, LADR controllers actively estimate
and eliminate the disturbances in real time systems that provides more precise control [68]
and [69]. A proposed optimisation based approach for tuning the parameters of LADR con-
troller using Bacterial Foraging Optimisation-Flower Pollination Algorithm (BFO-FPA) of-
fers enhanced trajectory tracking and disturbance rejection capabilities compared to ADR
and PID controllers for the unmanned helicopter system [70]. An improved LADR con-
troller proposed in [71] provides superior attenuation of input disturbances compared to the
conventional LADR controller for wheeled robots operating on soft terrains.

In [72], LADR controller designed for QTP shows its superior performance in dis-
turbance rejection and position tracking compared to PID and ADR controllers. In [73],
ADR controller is presented with nonlinear PD control and the Track Differentiator (TD) to
serve as a nonlinear state error feedback. In feedback loop, a sliding mode extended state
observer is introduced to estimate both the system’s state and overall disturbance. The
proposed controller provides better performance in terms of disturbance rejection, output
tracking, ITAE and Objective Performance Index (OPI) compared to conventional linear
and nonlinear ADR controllers. The proposed centralised FOLQI controller is tuned us-
ing SQP optimisation under continuous load disturbance and parameter uncertainty condi-
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tions [74]. The controller outperforms LADR controller in terms of steady state error and
control effort.

1.1.8 Controller Implementation using BG

Recent study in BG reveals that the better performance characteristics and fault diagnosis
are achieved by representing the system and controller in BG domain using power variables
(ie. effort and flow). This method offers several advantages like unified representation,
causal representation, energy based modelling, hierarchical structure, graphical represen-
tation and model based control design.

Basic BG elements and its modelling aspects in various domains like electrical, me-
chanical and hydraulic are presented in [75] and [76]. In [77], synthesising the decoupling
law for a Linear Time Varying (LTV) system using BG provides a simplified approach with
less computing time compared to the conventional decoupling methods. In [78], heuristic
approach based controller for swing up phase and PI controller for stabilisation phase are
designed for inverted pendulum that overcomes the characteristics of pendulum nonlinear-
ity and its instability.

Modelling industrial back support exoskeleton platform with Kalman filter observer and
LQR controller using BG provides a simple representation compared to the conventional
model [79]. The experimental results indicate that both BG and conventional models pro-
vide similar responses. In [80], BG based controller is designed using an inversion of the
system through their causal input/output for trajectory tracking problem. The simulation
results show that this method is effective and robust against the parameter uncertainties.
On the other hand, the power and energy shaping principle is used in the BG approach to
synthesise the control law for QTP which produce efficient output regulation and better
fault tolerance [81].

1.2 Motivation and Research Contribution

1.2.1 Motivation

In [14] - [16], tuning of decentralised controllers are presented for QTP without disturbance
conditions. In contrast, an observer based controller is presented under disturbance and
parameter uncertainty conditions [20]. The results indicate that this approach required
more than 100 sec to reach the steady state value. The APPC/AMSC is presented for
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minimum phase QTP with disturbance and parameter uncertainty conditions. It is noted
that the parameter variations are limited only to the area of cross section of tank [24]. A
decentralised PI controller based on nonlinear constraint optimisation is presented which
provides better closed loop frequency domain performances limited to (i) overshoot as a
constraint and (ii) ± 10% of parameter variation [28]. In [72], tuning of LADR controller
for QTP provides better steady state and disturbance rejection performance compared to
conventional PID and ADR controllers.

LQI controller helps to eliminate steady state error with enhanced tracking performance
and disturbance rejection condition [82] and [83]. Introduction of integral action in LQ con-
troller improves a controller ability to handle setpoint changes and disturbances in specific,
system is subjected to steady state error [84]. This ensures better disturbance rejection and
zero steady state error in closed loop design [85]. In general, FC supports the design of
FOC by enhancing controller flexibility which allow to reduce controller effort [86]. The
additional degrees of freedom in FOC’s enable fine tuning of control performance, reduc-
ing the magnitude of control efforts while maintaining system stability [87] compared to
conventional PID controller performance [88].

FOC’s also perform well in time delay systems due to their flexibility in tuning with im-
proved system performance [89]. The ability to control both phase and magnitude across
a broad frequency range enables FOC’s to perform better in time delay systems than IO
controllers [90] and are more robust than conventional PID controllers with extra tuning
parameters that improve control of phase lag caused by delays which enhance the stability
and transient performance [91] and [92]. Comparative analysis shows that FOPID con-
trollers are more effective than traditional PID controllers in mitigating time delay effects
which leads to provide an improved transient response and stability margins [93]. On the
other hand, stability bounds derived for delayed FO systems demonstrate that FO con-
trollers are better suited for managing time delays due to their flexibility in controlling
system dynamics [94] and [95].

Many literature indicate that FOC provide better performances than their respective in-
teger order controllers [37] - [44]. Linear quadratic controllers provide better performances
than other controllers [45] - [47] as they try to penalise the change in state and control by
adapting the weights individually. On the other hand, obtaining the values of Q and R

matrices in LQR through optimisation provides better performance than conventionally
assigned Q and R matrices [48] and [49] .

Due to lack of performance in the presence of disturbance and parameter uncertainties,
it is mandate to develop a new controller that provides better performance with less control
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effort. This motivate to propose (i) FOLQI controller by introducing fractionality in the
integral part of the conventional LQR controller with optimal selection of Q and R matrices
and (ii) an energy based method using BG to model QTP and FOLQI controller.

1.2.2 Research Contribution

As stated in previous sections, the thesis aims to propose a constrained optimisation prob-
lem to tune the FOLQI controller parameters of QTP in the presence of disturbance condi-
tion. The contributions of this thesis are summarised as follows:

(i) The basic schematic representation with the nonlinear dynamical equations and its
linearised state space model of QTP are presented.

(ii) Centralised optimal FOLQI controller is proposed for rejecting continuous load dis-
turbances in both minimum and non-minimum phase operating conditions of QTP.

(iii) A constrained optimisation problem is framed for tuning the parameters of the pro-
posed FOLQI controller to effectively suppress the load disturbances and meet the
required time domain specifications with minimum control effort.

(iv) The controller parameters for the proposed FOLQI controller are obtained by solving
the constrained optimisation problem by using the SQP method and various heuristic
algorithms such as CS, APSO and FF.

(v) Through detailed simulation and time domain analysis, the superiority of the proposed
FOLQI controller for QTP is effectively demonstrated under disturbances and uncer-
tainty conditions by showcasing its improved performance compared to conventional
IOLQI and LADR controllers.

(vi) Implementation of FOLQI controller for QTP in BG domain is explored for an uncon-
strained optimisation problem. The simulation results show that the effective control
effort is less compared with an optimally tuned IOLQI controller.

1.3 Organisation of Thesis

• Chapter 2 details the schematic representation and construction of QTP which in-
cludes the dynamics of both nonlinear and linear. These models are useful to un-
derstand the dynamical behaviour of QTP which makes the analysis and controller
design systematically facilitating the future analysis.
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• Chapter 3 explores the introduction of FC includes transfer function representation
and approximation methods in continuous domain in specific Oustaloop method. It
also outlines the mathematical framework of LQI controller and further extended to
the proposed FOLQI controller. This chapter also explains the proposed optimisation
problem which includes objective function and related time domain constraints.

• In Chapter 4, the system parameters with required assumptions are outlined along
with the disturbance signal used in the simulation. The proposed optimisation method
explained in Chapter 3 is used to tune FOLQI controller parameters using SQP
method. The results are discussed in detail which includes how the controller pa-
rameters impact the system’s performance in the presence of disturbance and param-
eter uncertainty conditions. The superior performance of the FOLQI controller is
compared with existing IOLQI and LADR controllers.

• Chapter 5 presents the various heuristic algorithms for tuning FOLQI controller and
the performance of different algorithms are compared. Also, the performance of the
proposed FOLQI controller is compared with optimally tuned IOLQI controller.

• In chapter 6, the BG method of modelling QTP along with FOLQI controller is pre-
sented with unconstrained optimisation problem. The controller parameters are op-
timised by using various optimisation methods and the results are compared with
optimally tuned IOLQI controller.

• Chapter 7 provides the conclusion and future direction of this research work.
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Chapter 2

Quadruple Tank Process

2.1 Introduction

The QTP represents a benchmark dynamic system utilised in control theory and practise by
researchers and engineers. The primary objective of the QTP is to manipulate the fluid lev-
els within the tanks by adjusting the flow rates of incoming and outgoing streams, thereby
facilitating control system analysis and experimentation. Due to its inherent complexity and
multivariable nature, QTP is an ideal testbed for investigating various control strategies.
The experiments provide valuable insights into the dynamics of interconnected systems,
disturbance rejection and parameter estimation techniques. Hence, QTP is considered as a
benchmark problem to test the advanced controllers in industrial environments.

The QTP is a nonlinear and highly interacted MIMO system. The setup includes four
interconnected tanks made of transparent material and allow for easy visualisation of fluid
levels and interactions. Each tank has inlet and outlet valves which enable precise control
over fluid flow. The arrangement of interconnections between tank can vary depending on
the specific experiment or applications with various configurations such as series, parallel
and hybrid to mimic different real world process. In addition, (i) sensors are crucial for QTP
providing real time fluid levels, pressure or weight data and (ii) actuators such as valves or
pumps respond to sensor feedback to adjust flow rates and maintain desired set points.
These configurations influence the complex behaviour of the system dynamics which allow
the control practitioners to design and apply various control strategies.

In general, the controllers for QTP is implemented using PLCs, microcontrollers or
other programmable devices. Control algorithms such as PID control, cascade control
and MPC etc., are programmed to regulate fluid levels in addition to obtain the optimal
system performance. It is a scalable platform for simulating and optimising the complex
processes in chemical engineering, water treatment and manufacturing industries. The
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QTP offers a comprehensive approach to study process dynamics and control theory. Re-
searchers/engineers can experiment with different control strategies and parameter tuning
to achieve desired outcomes. Its modular design and advanced control algorithms enable
in depth learning experiences and practical insights into other real world applications.

2.2 Schematic Representation and Physical Construction

T3 T4

T1 T2

Reservoir

g1 g2
V1 V2

(1 - g2)(1 - g1)

O1 O2

O4O3

P1 P2

LT3 LT4

LT1 LT2

Figure 2.1: Schematic illustration of the QTP

The schematic diagram of QTP shown in Fig. 2.1 consists of various components which
includes four tanks with orifices, reservoir, two pumps, two directional control valves and
four Level Transmitters (LT). The reservoir delivers the input through two channels (i)
pump p1 supplies fluid to tanks T1 and T4 by maintaining proportional flows of γ1 and (1−
γ1) respectively controlled by directional control valve V1 and (ii) pump p2 feeds fluid to
tanks T2 and T3 by maintaining proportional flows of γ2 and (1−γ2) respectively regulated
by directional control valve V2. The discharge through pumps p1 and p2 is regulated by their
corresponding input voltages u1 and u2. Each tank Ti is equipped with orifice Oi (where i

ranges from 1 to 4). Orifices O1 of T1 and O2 of T2 direct the flow to the reservoir, while
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orifices O3 of T3 and O4 of T4 divert the flow to T1 and T2 respectively. Their respective
LT measures the liquid level in the tanks.

The construction of QTP emphasises precision and consistency to ensure reliable ex-
perimental results. Tank dimensions such as height, width and cross sectional area are
carefully measured and controlled to maintain uniformity across all tanks. The valves are
calibrated to accurately control the flow rates of fluid which makes precise manipulation of
the system dynamics during experiments. Table 2.1 provides symbols and its represention
of QTP.

Table 2.1: Symbols and descriptions of QTP

Symbols Descriptions
Ai, i = 1 to 4 Area of cross section of tank Ti in cm2

ai, i = 1 to 4 Area of cross section of orifice Oi in cm2

hi, i = 1 to 4 Height of liquid level in tank Ti in cm
LTi, i = 1 to 4 Level transmitter in tank Ti

ui, i = 1, 2 Input voltage to pump pi in volts
ki, i = 1, 2 Pump constant for pi
γi, i = 1, 2 Flow control coefficients between two tanks
g Gravitational constant in cm/sec2

2.3 Mathematical Modelling

The QTP model typically involved in solving a system representing either Ordinary Dif-
ferential Equations (ODE) or Partial Differential Equations (PDE) to capture the dynamics
of the liquid levels. The resulting model allows to analyse the system characteristics and
designing control strategies to regulate the liquid levels effectively. Through simulation
and experimentation, the researchers can validate the accuracy of the model and explore
the possible control techniques to optimise the performance of QTP in hardware-inloop
configuration.

The QTP model obtained using classical approach involves applying a mass balance
equation for individual tanks. This principle states that the rate of change of mass within a
control volume equals the net rate of mass flow into the control volume minus the net rate
of mass flow out of the control volume. Here, the liquid height in each tank is denoted as
hi, where ′i′ spans from 1 to 4.

The generalised mass balance equation for each tank can be formulated and as follows
[96]:
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d

dt
(hiAi) = (Totalinflowrate)− (Totaloutflowrate) (2.1)

where, Totalinflowrate is the inflow rate to the tank (i) and Totaloutflowrate is the outflow
rate from the tank (i).

The flow rate through the orifice Oi can be expressed as the function of valve position
and height of the liquid in tank i. This is expressed as ai

√
2ghi. Based on (2.1), mass

balance equation for each tank is formulated and as follows [97]:

Tank 1 :
dh1

dt
=

qin + q31 − qout
A1

(2.2)

Tank 2 :
dh2

dt
=

qin + q42 − qout
A2

(2.3)

Tank 3 :
dh3

dt
=

qin − q31
A3

(2.4)

Tank 4 :
dh4

dt
=

qin − q42
A4

(2.5)

where,

For tank 1 and 2 : qin = uikiγi (i ∈ 1, 2)

For tank 3 and 4 : qin = uiki(1− γi) (i ∈ 2, 1)

qout = ai
√

2ghi (i ∈ 1, 2)

q31 = ai
√

2gh3

q42 = ai
√
2gh4

2.3.1 Nonlinear Model and its Equilibrium Points

From (2.2) - (2.5), the nonlinear differential equations of QTP are obtained [1] and as
follows:

dh1

dt
= − a1

A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

u1 (2.6)

dh2

dt
= − a2

A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

u2 (2.7)

dh3

dt
= − a3

A3

√
2gh3 +

(1− γ2)k2
A3

u2 (2.8)

dh4

dt
= − a4

A4

√
2gh4 +

(1− γ1)k1
A4

u1 (2.9)
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The inputs to the system are control voltages (u1 and u2) and states are height of the
liquid in tanks (h1 - h4).

Mathematically, an equilibrium point of QTP can be interpreted as a combination of
state variables and input variables, where the fluid level variations result in a static condi-
tion. This indicates the attainment of a stable equilibrium point when inflow and outflow
rates in each tank are equal. The process of identifying the equilibrium points are im-
portant for solving the differential equations and this involves setting the time derivatives
of the state variables to zero such that one can determine the corresponding equilibrium
value of state and input variables. This process simplify the QTP model to understand the
dynamical characteristics in the presence of disturbance and parameter uncertainty condi-
tions. Using this procedure, initially the equilibrium levels (h30 and h40) are obtained and
as follows:

By equating dh3

dt
= 0 provides

− a3
A3

√
2gh3 +

(1− γ2)k2
A3

u2 = 0 =⇒ a3
A3

√
2gh30 =

(1− γ2k2)

A3

u20√
2gh30 =

(1− γ2)k2
a3

u20 =⇒ h30 =
1

2g

(1− γ2)
2k2

2

a23
u2
20

(2.10)

By equating dh4

dt
= 0 provides

− a4
A4

√
2gh4 +

(1− γ1)k1
A4

u1 = 0 =⇒ a4
A4

√
2gh40 =

(1− γ1)k1
A4

u10√
2gh40 =

(1− γ1)k1
a4

u10 =⇒ h40 =
1

2g

(1− γ1)
2k2

1

a24
u2
10

(2.11)

The equilibrium points h30 and h40 obtained from (2.10) and (2.11) are used to find h10

and h20. By equating dh1

dt
= 0 provides

− a1
A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

u1 = 0 =⇒ a1
A1

√
2gh10 =

a3
A1

√
2gh30 +

γ1k1
A1

u10

√
2gh10 =

a3
√
2gh30 + γ1k1u10

a1
=⇒

√
2gh10 =

a3

√
2g 1

2g

(1−γ2
2)k

2
2

a23
u2
20 + γ1k1u10

a1√
2gh10 =

√
(1− γ2)2k2

2u
2
20 + γ1k1u10

a1
=⇒ h10 =

(
1

2g

)(
(1− γ2)k2u20 + γ1k1u10

a1

)2

(2.12)

By equating dh2

dt
= 0 provides

19



=⇒ − a2
A2

√
2gh20 +

a4
A2

√
2gh40 +

γ2k2
A2

u20 = 0 =⇒ a2
A2

√
2gh20 =

a4
A2

√
2gh40 +

γ2k2
A2

u20

√
2gh20 =

a4
√
2gh40 + γ2k2u20

a2
=⇒

√
2gh20 =

a4

√
2g 1

2g

(1−γ2
1)k

2
1

a22
u2
10 + γ2k2u20

a2√
2gh20 =

√
(1− γ1)2k2

1u
2
10 + γ2k2u20

a2
=⇒ h20 =

(
1

2g

)(
(1− γ1)k1u10 + γ2k2u20

a2

)2

(2.13)

2.3.2 Taylor Series Expansion

Nonlinear dynamical equations of QTP are linearised using Taylor series expansion. An
equilibrium point of a dynamical system is a state at which all state variables and their
derivatives are independent of time. In general, state space equations and equilibrium points
are described as ẋ = f(x, u) and (xe, ue) respectively to satisfy f(xe, ue) = 0. The Taylor
series expansion is a mathematical method to approximate a function near a point using a
series of derivatives of the function. For a single variable function f(x), the Taylor series
expansion about a point x = a is given by:

f(x) ≈ f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·

For a multivariable function, f(x1, x2, . . . , xn), the expansion is extended to multiple di-
mensions.

The linearised system is expressed in terms of perturbations from the equilibrium point.
For example, if x = xe+∆x and u = ue+∆u, where ∆x and ∆u represent small deviations
from the equilibrium point. Hence, the linearised system can be written as:

∆ẋ = A∆x+B∆u

where, A and B are matrices obtained from the derivatives of the system dynamics at the
equilibrium point.

2.3.3 State Space Representation of Linearised Model

The state space representation of the QTP involves describing the system dynamics in terms
of state, input and output variables. Let h = [h1, h2, h3, h4]

T is the state variable denoting
state vector representing the liquid levels in tanks 1 to 4 respectively. The input vector
u = [u1, u2] is the pump voltage. The dynamics of QTP can be described by a state and
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output equations: dh
dt

= Ah + Bu and y = Ch + Du, where A, B, C and D are state,
input, output and feed forward matrix respectively. The nonlinear dynamical equations
represented in (2.6) - (2.9) are linearised around the equilibrium points specified in (2.10)
- (2.13) using Taylor series expansion and as follows:

f(h1, h2, h3, h4) ≈ f(h10, h20, h30, h40) +
∂f

∂h1

(h10, h20, h30, h40)(h1 − h10)+

∂f

∂h2

(h10, h20, h30, h40)(h2 − h20) +
∂f

∂h3

(h10, h20, h30, h40)(h3 − h30)+

∂f

∂h4

(h10, h20, h30, h40)(h4 − h40)

(2.14)

The linearised state equation for QTP is as follows:


∆ḣ10

∆ḣ20

∆ḣ30

∆ḣ40

 =


∂f(h1)
∂h1

∂f(h1)
∂h2

∂f(h1)
∂h3

∂f(h1)
∂h4

∂f(h2)
∂h1

∂f(h2)
∂h2

∂f(h2)
∂h3

∂f(h2)
∂h4

∂f(h3)
∂h1

∂f(h3)
∂h2

∂f(h3)
∂h3

∂f(h3)
∂h4

∂f(h4)
∂h1

∂f(h4)
∂h2

∂f(h4)
∂h3

∂f(h4)
∂h4



∆h10

∆h20

∆h30

∆h40

+


∂f(h1)
∂u1

∂f(h1)
∂u2

∂f(h2)
∂u1

∂f(h2)
∂u2

∂f(h3)
∂u1

∂f(h3)
∂u2

∂f(h4)
∂u1

∂f(h4)
∂u2


[
∆u10 ∆u20

]

where, f(h1), f(h2), f(h3) and f(h4) are the functions representing the dynamics of
each tank.
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From (2.6), the function f(h1) is written as follows:

f(h1) = − a1
A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

u1

Using linearisation,

∂f(h1)

∂h1

=⇒ −a1
√
2g

A1

1

2
√
h1

=⇒ − 1

T1

∂f(h1)

∂h2

=⇒ 0

∂f(h1)

∂h3

=⇒ a3
√
2g

A1

1

2
√
h3

=⇒ A3

A1.T3

∂f(h1)

∂h4

=⇒ 0

∂f(h1)

∂u1

=⇒ γ1k1
A1

∂f(h1)

∂u2

=⇒ 0

From (2.7), the function f(h2) is written as follows:

f(h2) = − a2
A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

u2

Using linearisation,

∂f(h2)

∂h1

=⇒ 0

∂f(h2)

∂h2

=⇒ −a2
√
2g

A2

1

2
√
h2

=⇒ − 1

T2

∂f(h2)

∂h3

=⇒ 0

∂f(h2)

∂h4

=⇒ a4
√
2g

A2

1

2
√
h4

=⇒ A4

A2.T4

∂f(h2)

∂u1

=⇒ 0

∂f(h2)

∂u2

=⇒ γ2k2
A2
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From (2.8), the function f(h3) is written as follows:

f(h3) = − a3
A3

√
2gh3 +

(1− γ2)k2
A3

u2

Using linearisation,

∂f(h3)

∂h1

=⇒ 0

∂f(h3)

∂h2

=⇒ 0

∂f(h3)

∂h3

=⇒ −a3
√
2g

A3

1

2
√
h3

=⇒ − 1

T3

∂f(h3)

∂h4

=⇒ 0

∂f(h3)

∂u1

=⇒ 0

∂f(h3)

∂u2

=⇒ 1− γ2k2
A3

From (2.9), the function f(h4) is written as follows:

f(h4) = − a4
A4

√
2gh4 +

(1− γ1)k1
A4

u1

Using linearisation,

∂f(h4)

∂h1

=⇒ 0

∂f(h4)

∂h2

=⇒ 0

∂f(h4)

∂h3

=⇒ 0

∂f(h4)

∂h4

=⇒ −a4
√
2g

A4

1

2
√
h4

∂f(h4)

∂u1

=⇒ 1− γ1k1
A4

∂f(h4)

∂u2

=⇒ 0

where, Ti =
Ai

ai
∗
√

2hio

g
, and i = 1 to 4.

Based on the above procedure, the dynamics of the QTP are obtained by linearising the
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nonlinear equations given in (2.6) - (2.9). It is as follows:


∆ḣ1

∆ḣ2

∆ḣ3

∆ḣ4

 =


− 1

T1 0 A3
A1.T3

0

0 − 1
T2

0 A4
A2.T4

0 0 − 1
T3

0

0 0 0 − 1
T4



∆h1

∆h2

∆h3

∆h4

+


γ1.k1
A1

0

0 γ2.k2
A2

0 (1−γ2).k2
A3

(1−γ1).k1
A4

0


[
∆u1

∆u2

]
(2.15)

∆y =

[
1 0 0 0

0 1 0 0

]
∆h1

∆h2

∆h3

∆h4

 (2.16)

2.4 Operating conditions of QTP

The QTP can operate in both minimum and non-minimum phase conditions, depending
on the configuration of the valves and how the pumps feed into the tanks. It refers to a
system in minimum phase condition, where the initial response to a control input is in the
same direction as the desired output and hence easier to control. On the other hand, non-
minimum phase systems have initial response to a control input in the opposite direction
of the desired output which makes the system more challenging to control. The critical
parameters influencing the operating conditions are flow control coefficients γ1 and γ2 as
shown in Fig. 2.1. Their corresponding flow control coefficients are given in the Table. 4.1.

In minimum phase condition, maximum water from p1 flows to T1, and p2 flows to T2.
This happens when γ1 and γ2 are relatively large (γ1 and γ2 ≥ 0.5). During this condition,
(i) change in the input from p1 results in a direct increase or decrease in the water level
of T1 and (ii) change in the input from p2 directly affects the water level of T2. During
non-minimum phase condition, system shows an initial inverse response to control inputs,
resulting an increase in the pump voltage might initially decrease the water level of the
desired tank before it eventually increases. In this configuration, p1 and p2 feeds maximum
water into T4 and T3 respectively. This condition occurs when γ1 and γ2 are small (γ1 and
γ2 ≤ 0.5). The flow from the pumps primarily feeds into the upper tanks (T3 and T4) which
lead to an initial inverse response in the water levels of the lower tanks (T1 and T2). This
makes more challenging to control the inverse response and hence, such systems requires
advanced control techniques.
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2.5 Summary

This chapter presented the schematic diagram of QTP along with its mathematical model
representing a complex nonlinear differential equations. The nonlinear model is linearised
about its equilibrium point using Taylor series expansion method. This model is useful
to simulate QTP along with the controller to analyse the closed loop characteristics under
disturbances and parameter uncertainty conditions.
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Chapter 3

Fractional Order LQI Controller

3.1 Preliminaries of Fractional Calculus

3.1.1 Introduction

Like converting from integer exponents to fractional exponents, FC is a natural extension of
conventional IO calculus. When dealing with an integer exponent, such as x4 = 1·x·x·x·x,
its physical interpretation involves multiplying 1 by x four times. However, this direct
interpretation becomes challenging for a fractional exponent, for an example x2.53. This is
difficult to form the notion of multiplying 1 by a fractional number of times by x. However,
the expression x2.53 holds a specific value for the given x and can be verified it through
infinite series expansion.

Similarly, understanding derivatives and integrals of arbitrary orders presents a chal-
lenge unlike their IO counterparts [98]. However, within the domain of mathematics, these
concepts exist. Their formulations naturally arise by extending the principles of IO calcu-
lus to incorporate arbitrary orders. Importantly, this extension can include orders that are
real and or even complex.

Considering an infinite sequence comprising n-fold integrals and n-th order derivatives,
illustrated as follows:

. . . ,

t∫
a

dτ2

τ2∫
a

f(τ1)dτ1,

t∫
a

f(τ1)dτ1, f(t),
df(t)

dt
,
d2f(t)

dt2
, . . . (3.1)

The sequence in (3.1) can be made continuous by incorporating derivatives and integrals
of arbitrary real orders.
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3.1.2 Fractional Order Transfer Functions

FO differential and integral equations consist of FO derivatives and integrals. A set of such
equations characterise the dynamics of FO system. Consider a Linear Time Invariant (LTI)
FO system governed by the subsequent FO ordinary differential equation:

anD
αny(t) + an−1D

αn−1y(t) + ...+ a0D
α0y(t) =

bmD
βmu(t) + bm−1D

βm−1u(t) + ...+ b0D
β0u(t)

(3.2)

where, y(t) and u(t) represents output and input signals respectively.

Also ai, αi(i = 0, 1, . . . , n), bk, βk(k = 0, 1, . . . ,m) ∈ R; n,m ∈ N. Assuming zero
initial conditions and applying the Laplace transform to (3.2), the following Transfer Func-
tion (TF) is obtained:

Y (s)

U(s)
=

bms
βm + bm−1s

βm−1 + ...+ b0s
β0

ansαn + an−1sαn−1 + ...+ a0sα0
(3.3)

where, Y (s) = L{y(t)}, U(s) = L{u(t)}
The TF given in (3.3) can represent either a commensurate or a non-commensurate

order system. It qualifies as a commensurate order system if there exists a greatest common
divisor q ∈ R such that αi = qei, βk = qfk; ei, fk ∈ Z. In such instances, q denotes the
commensurate order, which may be rational or irrational.

3.1.3 Oustaloup Approximation Method in Continuous Domain

The TF in FO systems often takes irrational forms, representing the ratio of pseudo poly-
nomials, i.e. polynomials of arbitrary orders. Various methods have been suggested in
the literature to approximate them using rational functions [87]. In this research work,
Oustaloup approximation is used for approximating fractional functions.

The Oustaloup approximation FOustaloup(s) for F (s) = sα (where the expected fitting
range [ωb, ωh] is achieved) is obtained as follows:

FOustaloup(s) = K
N∏

k=−N

s+ zk
s+ pk

(3.4)

where,
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zk = ωb

(
ωh

ωb

) k+N+1
2 (1−α)

2N+1

pk = ωb

(
ωh

ωb

) k+N+1
2 (1+α)

2N+1

K = ωα
h

This method utilises an approximation order of (2N + 1), where N is an odd inte-
ger (N = 1, 2, . . . ). The generalised Oustaloup method can be employed to derive the
approximation FGenOustaloup(s) with an order of N = 1, 2, . . . .

FGenOustaloup(s) = K
N∏
k=1

s+ zk
s+ pk

(3.5)

where,

zk = ωb

(
ωh

ωb

) 2k−1−α
2N

pk = ωb

(
ωh

ωb

) 2k−1+α
2N

K = ωα
h

The Oustaloup method is frequently employed to achieve a satisfactory rational approx-
imation of the FO TF within the selected frequency range, as noted in literature [99].

3.2 Linear Quadratic Integral Controllers

3.2.1 Linear Quadratic Regulator Controller

The LQR controller is a popular technique for designing optimal feedback controllers for
linear dynamical systems. The main objective of the LQR controller is to minimise a
quadratic cost function representing a trade off between control effort and system per-
formance. The LQR controller requires a linear dynamic model of the system, typically
represented by state space equations:

ẋ = Ax+Bu (3.6)

y = Cx+Du
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where, x represents the state vector, u is the control input and y is the output. The cost
function to be minimised by the LQR controller is given by:

J =

∫ ∞

0

(
xTQx+ uTRu

)
dt (3.7)

where, Q and R are positive semi-definite weighting matrices penalising state deviations
and control effort respectively. Continuous time algebraic Riccati equation is solved to
obtain the optimal control law:

ATP + PA− PBR−1BTP +Q = 0 (3.8)

where, P is the solution matrix.

Figure 3.1: Closed loop representation of MIMO system with LQR controller

Fig. 3.1 represents the structure of linearised system with LQR controller in its closed
loop configuration. The feedback gain matrix K is calculated as K = R−1BTP and the
control law is given by u(t) = e(t)−Kx(t). The LQR controller provides guaranteed sta-
bility for the closed loop system under certain conditions and is inherently robust. Overall,
the LQR controller is widely used in various engineering applications due to its simplicity,
effectiveness and optimality in controlling linear dynamical systems.

The LQR controller computes the optimal feedback gain matrix based on the system’s
state space representation and a cost function. Applying this gain matrix to the system’s
state vector determines the control input that minimises the specified cost function over a
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finite time horizon.

3.2.2 Integer Order Linear Quadratic Integral Controller

By combining LQR with integrator, Integer Order LQI (IOLQI) controller is developed.
Essentially, IOLQI controller provides the improved system performance by minimising
the quadratic cost function similar to the LQR controller and integral action eliminates the
steady state error which is absent in the conventional LQR design.

The optimal control law, u(t) = Ki

s

∫
e(t) dt - Kx(t), is derived by solving the asso-

ciated algebraic Riccati differential equation with an additional integral term. The IOLQI
controller requires careful tuning of the weighting matrices Q and R to achieve desired
performance specifications such as settling time, overshoot and steady state error.

This controller offers improved tracking performance and robustness to disturbances
compared to the LQR controller by adding an integral term. In practical applications,
IOLQI controller finds widespread use across diverse engineering disciplines including
aerospace, automotive, robotics and industrial automation, where precise control of system
dynamics and robust performance are critical. In specific, motion control systems, robotic
manipulators and automotive control systems, the system demands precisely tracks the
reference inputs. This controller delivers an improved stability, robustness and performance
through an ideal integration, making it well suited for managing complex systems subjected
to disturbances and uncertainties.

3.3 Fractional Order Linear Quadratic Integral Controller

3.3.1 FOLQI Design

By incorporating integral action, the LQI controller is capable of tracking setpoint changes
and rejecting disturbances more effectively, particularly in systems with non-zero steady
state error requirements. The integral term ensures that any steady state error is continu-
ously corrected which leads to improve the system performance.

Fig. 3.2 represents the FOLQI controller along with linearised system in closed loop
configuration. FOC provide greater flexibility in tuning the controller response due to
their additional FO. This allows for better matching of the controller dynamics to the sys-
tem dynamics resulting in improved performance, faster response times and reduced over-
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Figure 3.2: Closed loop representation of MIMO system with FOLQI controller

shoot [89]. This can effectively handle systems with time delay as FO introduces memory
effects that can compensate the system delay. Time delay in control systems can introduce
phase lag that reduce stability and responsiveness. These issues are increased in traditional
LQI controllers, as the delay impacts the integrator’s ability to correct errors in real time. A
detailed study presented in [100] show that FC can manage such lags by providing a more
comprehensive range of phase adjustment options. The robustness to time delay is partic-
ularly an advantage in control systems where delays are significant such as in networked
control systems or systems with long transportation delays [101].

Many physical systems exhibit non integer order dynamics due to the presence of com-
plex behaviours or nonlinearity. FOC offer a more accurate representation of these dy-
namics compared to traditional IO controllers allowing for better control performance and
stability [102]. FOC also can improve system stability by damping out oscillations and res-
onances more effectively than IO controllers. This is especially beneficial in systems with
complex dynamics or resonance phenomena such as flexible structures, electromechanical
systems or biological systems [103]. FOC can be adapted and tuned more easily to accom-
modate changes in system dynamics or operating conditions. This adaptability makes them
suitable for applications where the system parameters may vary over time [104]. FOC can
potentially reduce energy consumption in control systems by optimising the controller re-
sponse and limiting excess control action. This can lead to improved efficiency and reduced
operating costs in energy intensive applications [105].

The closed loop representation of QTP with the proposed FOLQI controller can be
realised as shown in Fig. 3.3. The additional control signal ∆u(t) required to reject the
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Figure 3.3: QTP with FOLQI controller

continuous load disturbance d(t) is given as:

[
∆u1

∆u2

]
= −

[
K11 K12 K13 K14

K21 K22 K23 K24

]
∆h1

∆h2

∆h3

∆h4

+

[
Ki1

sα1
0

0 Ki2

sα2

][
∆e1

∆e2

]
(3.9)

where, ∆ h1, ∆ h2, ∆ h3 and ∆ h4 are the change in levels of the tanks T1, T2, T3 and T4

respectively.

The change in tank levels are due to continuous load disturbance d(t).

3.3.2 Proposed Optimisation Problem

The closed loop representation of QTP with continuous load disturbance controlled by the
proposed FOLQI controller is shown in Fig. 3.3. The FOLQI controller has the advantage
of using fractionality in the integral part of the conventional LQI controller shown in (3.9).
The FOLQI controller parameters are obtained by formulating the optimisation problem
and as follows:
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Cost function:

Minimise
(Controller Parameters,Q,R)

J =

∫ T

0

(∆u2
1(t) + ∆u2

2(t))dt

subject to constraints:
(3.10)

Maximum overshoot / undershoot (Mp):

|∆h1

h1o

| ∗ 100 < %Mp; |
∆h2

h2o

| ∗ 100 < %Mp

Settling time (ts):

|∆h1

h1o

| ∗ 100 < x% of h1o; |
∆h2

h2o

| ∗ 100 < x% of h2o

Steady state error (ess):

|∆h1

h1o

| ∗ 100 < %ess; |
∆h2

h2o

| ∗ 100 < %ess



(3.11)

This design provides better controller performance in order to reject the continuous load
disturbance d(t) with the desired time domain specifications and minimal control effort at
the given operating conditions.

3.4 Summary

This chapter describes the fundamental concepts associated with FC, FOC, LQR, LQI and
FOLQI controllers. Additionally, it introduces a method for approximating continuous do-
main functions using Oustaloups approximation which is particularly beneficial for ratio-
nalising FO TF’s. It explores the proposed constrained optimisation problem for obtaining
the parameters of the proposed FOLQI controller under continuous load disturbance con-
ditions. The feasible values of the constraints are selected by iterating the simulations for
different optimisation methods. For deterministic approach, the constraints are limited to
(i) maximum overshoot/undershoot (Mp) = 15% (ii) settling time (ts) = 70 sec (iii) max-
imum steady state error (ess) = 3 % and (iv) ± 5% of parameter variations. For heuristic
methods, the constraints are limited to (i) maximum overshoot/undershoot (Mp) = 10%

(ii) settling time (ts) = 70 sec (iii) maximum steady state error (ess) = 1 % and ± 30% of
parameter variations.
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Chapter 4

Tuning of FOLQI Controller using De-
terministic Approach

4.1 Introduction

Tuning FOC using deterministic approach requires a significant understanding of system
dynamics and FC principles. This method typically integrates theoretical analysis, math-
ematical modelling, optimisation and practical experimentation to attain optimal control
performance. Deterministic optimisation stands as a mathematical strategy for identifying
the best solution to a given problem within specific constraints, excluding consideration of
random variations or uncertainty. Unlike stochastic optimisation methods which accommo-
date randomness in system dynamics or parameters, deterministic optimisation centres on
discovering the most suitable solution grounded on known and constant data [106]. Deter-
ministic optimisation defines the optimisation problem and identify the objective function
for maximisation or minimisation along with any required equality/inequality constraints.

The objective function signifies the parameters to optimise such as minimising costs,
maximising profits and reducing time for allocating resources. The search space encom-
passes all feasible solutions to the optimisation problem within the defined constraints. It
is used to systematically explore this space to ascertain the solution that optimises the ob-
jective function. Applying diverse deterministic optimisation algorithms attempts to nav-
igate the solution space effectively and identify the optimal solution. These algorithms
fall into distinct categories based on their search methodologies including gradient based
methods, direct search methods, dynamic programming, linear programming, nonlinear
programming, integer programming and mixed integer programming [107]. In general, set
of constraints introduced in the optimisation problem is complex to solve. In specific, deter-
ministic optimisation techniques are devised to navigate the solution space efficiently while
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reducing computational effort which include gradient descent, Newton’s method, simplex
method, branch and bound, interior point methods etc. Convergence denotes a solution that
satisfies predefined termination criteria such as reaching a specified tolerance threshold or
maximum iteration count. The solution quality introduced by deterministic optimisation
hinges on factors such as selected algorithm, problem formulation, initial conditions and
convergence criteria [108] and [109].

4.2 Sequential Quadratic Programming

SQP methods are generally efficient for solving medium to large scale optimisation prob-
lems with nonlinear objective functions along with constraints. This method can handle
problems with a moderate number of variables and constraints effectively. This algorithm
typically converge to a solution relatively faster in specific, for problems with smooth and
well behaved objective functions with constraints. With proper initialisation and conver-
gence criteria, SQP methods can often find a solution within a reasonable number of it-
erations and can handle a wide range of optimisation problems including problems with
equality/inequality constraints. They can also accommodate nonlinear and nonconvex ob-
jective functions. By approximating the objective function and constraints with quadratic
models at each iteration provide a good balance between accuracy and computational effi-
ciency [108].

The SQP method may not guarantee global optimality since it often converge to a local
minimum or maximum depending on the problem’s nature. With appropriate initialisa-
tion and problem setup, SQP algorithms can effectively find high quality solutions and
have been successfully applied to a wide range of real world optimisation problems in en-
gineering, economics, finance and other fields. Its ability to handle complex, nonlinear
optimisation problems makes it valuable tool for practical decision making and problem
solving [110]. The fmincon function in MATLAB is a powerful optimisation tool specifi-
cally designed for solving constrained nonlinear optimisation problems. It employs various
algorithms to efficiently find the optimal solution including SQP, Interior Point, and Trust
Region Reflective algorithms.

In this research work, the simulation uses fmincon function available in the MATLAB
tool with SQP algorithm for solving the proposed constrained optimisation problem to
obtain the controller parameters of FOLQI. Fig. 4.1 represents the flowchart indicating
the sequence of operations performed behind fmincon function for solving the proposed
problem.
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Figure 4.1: Flow chart representing sequence of steps for fmincon function
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4.3 Optimisation Specifications

In this section, the controller parameters of the proposed FOLQI controller of QTP are
tuned using deterministic method. Subsequently, the controller parameters for IOLQI and
LADR controllers are tuned using the same optimisation method with suitable ranges for
the controller parameters. The performance of the proposed FOLQI controller is compared
with the existing IOLQI and LADR controllers. The details of LADR controller is provided
in the Appendix A.

Table 4.1 illustrates the parameters of QTP and its equilibrium points for both minimum
and non-minimum phase operating conditions.

Table 4.1: QTP parameters and its equilibrium points

Parameters Minimum phase Non-minimum phase
Ai(cm

2), i = 1 to 4 176.71 176.71
ai(cm

2), i = 1, 2 2.54 2.54
ai(cm

2), i = 3, 4 1.43 1.43
hieq(cm), i = 1 to 4 16.47, 16.71, 8.69, 8.09 20.20, 13.33, 22.94, 15.29
ki, i = 1, 2 180.29 186.86
γi, i = 1, 2 0.60, 0.60 0.45, 0.35
g(cm/sec2) 981 981

The parameters of the FOLQI controller shown in Fig. 3.3 are tuned by solving the
proposed optimisation problem using SQP algorithm available in MATLAB [111]. The
simulation considers design specifications (i) overshoot Mp constrained to be less than
15% (ii) settling time (ts) is limited to 70 sec (iii) settling time band of 5% tolerance and
(iv) Steady state error constraint which is less than 3%. The bounds used for the controller
parameters during optimisation are as follows: Qii (i = 1 to 4) ∈ [0.01, 2.5], Rii (i = 1 and
2) ∈ [0.1, 5], Ki1 ∈ [0.1, 10], Ki2 ∈ [0.1, 10], α1 ∈ [0.1, 2] and α2 ∈ [0.1, 2].

The objective of the proposed FOLQI controller is to ensure the effective rejection of
continuous load disturbances while meeting the desired time domain specifications with
minimal control effort. To accomplish this optimisation, (i) an Oustaloup approxima-
tion [99] is utilised to realise the fractional component of the LQI controller with an ap-
proximation order set to 5 and validity across the frequency range [0.001, 1000]rad/sec and
(ii) simulation is conducted for 350 sec with a continuous load disturbance of magnitude 1
cm introduced at the 50th sec.

The selected fmincon optimisation algorithm operates according to the sequence pre-

38



sented in Fig. 4.1. This algorithm runs for 1000 randomly generated initial guesses with
the maximum of 100 iterations. A convergence tolerance of 10−6 is defined for the cost
function resulting in numerous converged controller parameters that meet the desired spec-
ifications.

Tables 4.2 and 4.3 display the chosen initial guesses and converged values of the FOLQI
controller for minimum phase of QTP. Similarly, Tables 4.4 and 4.5 present the selected
initial guesses and converged values of FOLQI controller for the non-minimum phase of
QTP. Among the converged parameter sets, FOLQI controller with minimal control effort
is selected for the closed loop simulation and is highlighted in Tables 4.3 and 4.5.

To illustrate the superiority of the proposed FOLQI controller, the performances are
compared with the conventional IOLQI and LADR controllers. The parameters of the
IOLQI and LADR controllers for both minimum and non-minimum phase conditions of
QTP are obtained by solving the proposed optimisation problem using the SQP algorithm.
For IOLQI controller, the optimisation bounds are chosen as follows: Qii (i = 1 to 4) ∈
[0.01, 2.5], Rii (i = 1 and 2) ∈ [0.1, 5], Ki1 ∈ [0.1, 10], and Ki2 ∈ [0.1, 10]. For LADR
controller, the controller parameters (β11 to β41, β12 to β42, β13 to β43, b1 to b4 and r1 to
r4) presented in [72] are selected and the optimisation bounds for the controller parameters
are chosen as follows: βij (i = 1 to 4; j = 1 to 3) ∈ [0, 150], bi (i = 1 to 4) ∈ [0, 10]

and ri (i = 1 to 4) ∈ [0, 10]. From the resulting set of converged solutions, IOLQI and
LADR controllers provide the minimum control effort and are given in Tables 4.6 and 4.7
respectively.

Table 4.2: Random initial guesses of FOLQI controller parameters for minimum phase
system

S.no Q11 Q22 Q33 Q44 R11 R22 Ki1 Ki2 α1 α2

1 0.9197 1.8302 0.4455 0.6012 0.8131 0.7667 8.7060 5.8391 0.9100 0.8290

2 1.6378 1.2567 1.0118 0.6100 1.3647 2.4569 2.3507 0.5812 0.8338 0.8517

3 0.2441 0.2025 1.1085 1.5804 4.6767 0.7365 5.7314 4.7470 0.8024 0.8674

4 0.9197 1.8302 0.4455 0.6012 0.8131 0.7667 8.7060 5.8391 0.9100 0.8290

5 0.6973 1.7025 1.6412 0.4149 0.6831 2.5420 9.6015 3.4698 0.9171 0.8448
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Table 4.3: Converged values of FOLQI controller parameters for minimum phase system

S.no Q11 Q22 Q33 Q44 R11 R22 Ki1 Ki2 α1 α2 (J ∗ 103)
1 0.9285 1.8205 0.4402 0.6060 0.7819 0.8117 8.7059 5.8392 0.9074 0.8348 4.0119

2 1.6121 1.7976 1.3507 0.6392 1.9367 1.6321 2.0377 0.2372 0.8338 0.8517 3.3025

3 0.2370 0.1688 1.0956 1.5823 4.6756 0.7695 5.7316 4.7467 0.8220 0.8644 3.9008

4 0.9266 1.8225 0.4413 0.6049 0.7886 0.8020 8.7060 5.8391 0.9144 0.8354 4.0051

5 0.1042 1.7308 1.7500 0.2024 1.6658 2.2580 9.6084 3.4441 0.8938 0.8009 4.0125

Table 4.4: Random initial guesses of FOLQI controller parameters for non-minimum phase
system

S.no Q11 Q22 Q33 Q44 R11 R22 Ki1 Ki2 α1 α2

1 1.7639 1.3069 0.2848 1.8260 0.2716 0.2948 9.8868 6.8932 0.8753 0.9009

2 1.9963 1.9985 0.5263 1.9891 0.1261 0.1000 0.5141 0.1376 0.8393 0.8243

3 0.9084 0.8682 0.8606 0.3127 2.1791 3.1064 9.8818 2.2770 0.8708 0.8532

4 1.1079 0.2408 0.6925 1.8008 4.1904 0.1115 6.4381 8.0515 0.8490 0.8128

5 0.6911 1.8544 0.9174 0.4512 4.5339 4.9008 4.4448 1.2001 0.8516 0.8817

Table 4.5: Converged values of FOLQI controller parameters for non-minimum phase
system

S.no Q11 Q22 Q33 Q44 R11 R22 Ki1 Ki2 α1 α2 (J ∗ 103)
1 0.8931 0.7372 1.9876 1.9980 0.2275 0.4175 5.6151 0.5002 0.8753 0.9009 4.2109

2 1.9737 1.9897 0.4951 1.9812 0.4053 0.3233 0.7192 0.1004 0.9768 0.9968 4.1012

3 1.9537 1.4782 1.9105 1.7601 1.3936 2.7536 7.9721 3.1429 0.8708 0.8532 4.5988

4 1.3497 0.1935 1.9878 1.9850 0.1532 0.2685 2.8742 3.0758 0.8490 0.8128 4.1867

5 0.7869 1.8420 0.2456 0.7864 4.4042 4.9829 4.4422 1.1555 0.9146 0.8956 3.9321
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Table 4.6: IOLQI controller parameters from the set of converged values resulting minimal
controller effort

Operating
condition Q11 Q22 Q33 Q44 R11 R22 Ki1 Ki2 (J ∗ 103)
Minimum phase 1.6734 1.0641 0.7957 0.5306 2.7207 1.5185 0.7769 0.9412 3.795
Non-minimum phase 1.6688 1.7685 1.5879 1.7679 0.9602 1.5284 0.8265 0.1952 4.461

Table 4.7: LADR controller parameters from the set of converged values resulting minimal
controller effort

Operating
condition

Controller parameters

Minimum
phase

β11 = 27.6941, β21 = 67.8033, β31 = 52.1144, β41 = 38.7474,
β12 = 91.4081, β22 = 64.4205, β32 = 60.5146, β42 = 100.8996,
β13 = 31.5137, β23 = 83.3163, β33 = 82.9348, β43 = 41.9110,
b1 = 0.8493, b2 = 1.8323, b3 = 1.5865, b4 = 1.9194,
r1 = 0.6592, r2 = 0.0454, r3 = 0.8506, r4 = 0.9347

Non-minimum
phase

β11 = 91.7276, β21 = 28.6553, β31 = 75.7443, β41 = 75.3975,
β12 = 38.1065, β22 = 56.8254, β32 = 7.6778, β42 = 5.4896,
β13 = 53.1267, β23 = 77.9388, β33 = 93.4077, β43 = 13.0776,
b1 = 1.7648, b2 = 4.1558, b3 = 2.9305, b4 = 2.7531,
r1 = 9.1728, r2 = 2.8655, r3 = 7.5744, r4 = 7.5398
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4.4 Results and Discussions

4.4.1 Performance under Disturbance Condition

The closed loop simulation for both minimum and non-minimum phase operating condi-
tions of QTP are performed with the converged controller parameters of FOLQI controller
under continuous load disturbance d(t). A constant disturbance level of 1 cm (step distur-
bance) is introduced in h1(t) and h2(t) as a continuous load disturbance at 50thsec which
is shown in Fig. 4.2. To show the superiority of FOLQI controller, the simulation is carried
out for QTP with the converged controller parameters of existing IOLQI and LADR con-
trollers. The obtained output responses (h1(t) and h2(t)) and controller responses (u1(t)

and u2(t)) with FOLQI along with IOLQI and LADR controllers are shown in Figs. 4.3
and 4.4.

Figure 4.2: Load disturbance signal
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Figure 4.3: Output and controller responses for minimum phase condition under d(t)

Figure 4.4: Output and controller responses for non-minimum phase condition under d(t)
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Table 4.8: Time domain performance metrices under d(t) condition for minimum and non-
minimum phase systems

Operating
condition

Controller Level
of the
tank

Overshoot
(%)

Settling
time
(sec)

Steady
state
error
(ess)
(%)

Controller
effort
(∗103)

Effective
controller

effort
(J ∗ 103)

Minimum
phase

IOLQI h1

h2

8.2777
6.6129

32.5670
20.1600

0.1066
0.0775

2.040
1.755

3.795

LADR h1

h2

6.0725
5.9856

0.1180
0.1060

2.2960
2.1806

2.109
1.871

3.980

FOLQI h1

h2

6.0720
5.9856

0.2050
0.2780

0.0180
0.0993

1.794
1.509

3.302

Non-minimum
Phase

IOLQI h1

h2

9.3713
12.5970

26.3810
36.8130

0.0056
0.0358

2.128
2.333

4.461

LADR h1

h2

4.9500
7.5023

0
0.4090

2.3150
4.9263

2.133
1.948

4.082

FOLQI h1

h2

4.9500
8.7694

0
19.7290

0.0963
0.6284

1.932
2.001

3.932
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From Figs. 4.3 and 4.4, the time domain performance indices such as maximum over-
shoot Mp (%), settling time ts (sec), steady state error ess (%) and controller effort (J)
are measured and listed in Table 4.8. Following are the observations from the obtained
performance indices: (i) FOLQI controller requires less controller effort compared to both
IOLQI and LADR controllers (ii) FOLQI and IOLQI controllers provide better steady state
error compared to LADR controller and (iii) FOLQI and LADR controllers provide better
overshoot and settling time compared to IOLQI controller. From the above findings, it is
concluded that FOLQI controller provides better performance characteristics than IOLQI
and LADR controllers.

4.4.2 Performance under Disturbance and Parameter Uncertainty

The performance of the proposed FOLQI controller is further analysed by introducing ±
5% uncertainty in the system parameters (Ai and ai; where i = 1 to 4) along with d(t) at
50th sec. The performance of the FOLQI controller is compared with the existing IOLQI
and LADR controllers. The output responses (h1(t) and h2(t)) are shown in Fig. 4.5 for
minimum and Fig. 4.6 for non-minimum phase operating mode of QTP. The corresponding
controller responses are shown in Figs. 4.7 and 4.8 for minimum and non-minimum phase
operating mode respectively. From these figures, the time domain performance indices
such as maximum overshoot (%), settling time (sec), steady state error (%) and controller
effort (J) are obtained and listed in Tables 4.9 and 4.10 respectively.

Following are the inferences from the obtained performance indices: (i) IOLQI and
LADR controllers require more controller effort in comparison to FOLQI controller (ii)
LADR controller provides larger steady state error compared to FOLQI and IOLQI con-
trollers and (iii) IOLQI controller underperforms in terms of overshoot and settling time
compared to FOLQI and LADR controllers. From the above insights, it is found that
FOLQI controller outperforms IOLQI and LADR controllers in the presence of parame-
ter uncertainty and disturbance conditions.

Remarks [1]: It is noted that the introduction of parameter variations beyond ±5%,
LADR controller fails to meet the required specifications and hence simulation is limited
to ±5%.
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Figure 4.5: Output responses under d(t) and parameter variations for minimum phase
condition
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Figure 4.6: Output responses under d(t) and parameter variations for non-minimum phase
condition
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Figure 4.7: Controller responses under d(t) and parameter variations for minimum phase
condition

48



0 50 100 150 200 250 300 350

0

2

4

0 50 100 150 200 250 300 350

0

2

4

0 50 100 150 200 250 300 350

0

2

4

0 50 100 150 200 250 300 350

0

2

4

0 50 100 150 200 250 300 350

0

1

2

3

0 50 100 150 200 250 300 350

0

1

2

3

Figure 4.8: Controller responses under d(t) and parameter variations for non-minimum
phase condition
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Table 4.9: Time domain performance metrices under d(t) and parameter uncertainty for
minimum phase condition

Controllers
Parameter
variation

Level
of the
tank

Overshoot
(%)

Settling
time
(sec)

Steady
state

error (ess)
(%)

Controller
effort
(∗103)

Effective
controller

effort
(J ∗ 103)

IOLQI
−5%

h1

h2

8.1929
6.1403

34.8860
17.1890

1.1906
0.9752

1.703
1.429 3.132

Nominal
h1

h2

8.2777
6.6129

32.5670
20.1600

0.1066
0.0775

2.040
1.753 3.795

+5%
h1

h2

7.9717
6.8839

29.7610
25.8410

0.9649
0.7878

2.560
2.263 4.824

LADR
−5%

h1

h2

6.0729
5.9856

0.1180
0.1060

2.2879
2.1729

1.941
1.472 3.413

Nominal
h1

h2

6.0725
5.9856

0.1180
0.1060

2.2960
2.1806

2.109
1.871 3.980

+5%
h1

h2

6.0721
5.9856

0.1180
0.1060

2.3079
2.1939

2.338
2.795 5.132

FOLQI
−5%

h1

h2

6.0720
5.9856

0.2100
0.2920

0.2231
1.6713

1.566
1.286 2.852

Nominal
h1

h2

6.0720
5.9856

0.2050
0.2780

0.0180
0.0993

1.794
1.509 3.302

+5%
h1

h2

6.0720
5.9856

0.2000
11.7360

0.1807
1.4299

2.167
1.876 4.043

Table 4.10: Time domain performance metrices under d(t) and parameter uncertainty for
non-minimum phase condition

Controllers
Parameter
variation

Level
of the
tank

Overshoot
(%)

Settling
time
(sec)

Steady
state

error (ess)
(%)

Controller
effort
(∗103)

Effective
controller

effort
(J ∗ 103)

IOLQI
−5%

h1

h2

9.2972
13.0600

21.1750
29.7010

0.3061
1.9642

1.752
1.819 3.572

Nominal
h1

h2

9.3713
12.5970

26.3810
36.8130

0.0056
0.0358

2.128
2.333 4.461

+5%
h1

h2

9.4515
11.5327

34.8930
47.6580

0.2974
1.9086

2.681
3.024 5.704

LADR
−5%

h1

h2

4.9500
7.5023

0
0.4190

2.3094
4.9193

1.960
1.501 3.461

Nominal
h1

h2

4.9500
7.5023

0
0.4090

2.3150
4.9263

2.133
1.948 4.082

+5%
h1

h2

4.9500
7.5023

0
0.4020

2.3235
4.9358

3.376
2.904 5.280

FOLQI
−5%

h1

h2

4.9500
8.6241

0
19.6690

0.2981
1.9282

1.621
1.672 3.293

Nominal
h1

h2

4.9500
8.7694

0
19.7290

0.0963
0.6284

1.932
2.001 3.932

+5%
h1

h2

4.9500
8.7110

0
26.4800

0.4456
2.8879

2.409
2.497 4.906
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4.4.3 Stability Analysis

In this section, the stability analysis of QTP with the proposed FOLQI controller is stud-
ied using frequency response. Figs. 4.9 and 4.10 show the open loop frequency responses
of various control loops of QTP. From these figures (i) phase crossover frequencies and
gain margins are found to be ∞ for all control loops and (ii) obtained phase margins and
gain crossover frequencies for all control loops are measured and given in Table 4.11. The
results indicates that all four control loops are stable with enough stability margins. Sim-
ilarly, Table 4.12 show the open loop frequency responses of all the control loops of QTP
tuned using IOLQI and LADR controllers respectively and it shows that FOLQI controller
outperforms IOLQI and LADR controllers in terms of phase margin measures for stability
conditions.

Remarks [2]: From Section 4.4.2 it is noted that FOLQI controller provided better time
response characteristics with minimum control effort compared with IOLQI and LADR
controllers for both minimal and non-minimal phase conditions. Hence, Bode response of
open loop TF with FOLQI controller is only plotted under minimum and non-minimum
phase conditions. However, the stability details of IOLQI and LADR controllers are shown
in Table 4.12 for the reference.
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Figure 4.9: Bode response of FOLQI controller for minimum phase condition
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Figure 4.10: Bode response of FOLQI controller for non-minimum phase condition

Table 4.11: Stability analysis of FOLQI controller for minimum and non-minimum phase
condition

Controller /
Operating condition

Loop interaction
Gain crossover

frequency
(rad/sec)

Phase margin
(deg)

Input Output

FOLQI /
Minimum

1 1 1.490 18.9
1 2 0.989 15.8
2 1 0.459 25.6
2 2 0.318 17.7

FOLQI /
Non-minimum

1 1 1.340 17.6
1 2 1.120 19.4
2 1 0.418 21.9
2 2 0.345 27.3
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Table 4.12: Controller performance of IOLQI and FOLQI controller under d(t) and pa-
rameter uncertainty conditions

Controller /
Operating condition

Loop interaction Gain crossover
frequency (rad/sec)

Phase margin
(deg)Input Output

IOLQI /
Minimum

1 1 0.690 4.57
1 2 0.701 5.66
2 1 0.759 4.16
2 2 0.772 5.15

IOLQI /
Non-minimum

1 1 0.610 8.39
1 2 0.554 8.45
2 1 0.292 17.00
2 2 0.268 18.90

LADR /
Minimum

1 1 6.090 0.49
1 2 6.200 0.69
2 1 7.860 0.38
2 2 8.000 0.54

LADR /
Non-minimum

1 1 1.880 2.91
1 2 1.690 3.14
2 1 1.590 3.44
2 1 1.430 3.71

4.5 Summary

This section introduces SQP algorithm for tuning FOLQI controller parameters to accom-
modate both minimum and non-minimum phase operating conditions of QTP. The FOLQI
controller is tuned to reject continuous load disturbances effectively while adhering to de-
sired time domain specifications with minimal control effort. Extensive simulation studies
are conducted under disturbance, parameter uncertainty conditions and stability analysis to
validate the performance of the proposed FOLQI controller with the results obtained from
IOLQI and LADR controllers. Even though IOLQI and FOLQI controllers have better
steady state error performance, there exists minor steady state error due to system non-
linearity and disturbances as referred in [112] and [113].
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Chapter 5

Tuning of FOLQI Controller using Heuris-
tic Approach

5.1 Introduction

Optimisation using heuristic algorithms involves applying problem solving approaches that
rely on intuition, experience or thumb rule rather than systematic and deterministic meth-
ods. Unlike classical optimisation techniques that guarantee finding the optimal solution,
heuristic algorithms provide efficient but not necessarily optimal solutions. Heuristic algo-
rithms can efficiently find near optimal solutions, particularly for large scale and complex
optimisation problems by exploring promising regions of the solution space and offer com-
putational efficiency by avoiding extensive search techniques [114]. These algorithms are
versatile and adaptable to different types of optimisation problems including those with
nonlinear objectives, discrete decision variables and complex constraints.

Heuristic algorithms exhibit robustness to uncertainties, noise and changes in problem
parameters. They can handle real world optimisation problems where exact information
may not be available or incomplete [115]. Many heuristic algorithms perform global search
efficiently by exploring diverse regions of the solution space. While they may not guarantee
to find the global optimum, they often converge to satisfactory solutions that are close to
the global optimum [116].

These algorithms find applications across various fields including engineering, finance,
logistics and healthcare. They provide versatile tools for solving optimisation problems
in diverse domains [117]. There is a wide variety of heuristic algorithms, each suited to
different types of optimisation problems. Common heuristic algorithms include genetic
algorithms, simulated annealing, PSO, Ant Colony Optimisation (ACO), tabu search, CS,
APSO, FF and various evolutionary strategies.
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5.2 Heuristic Algorithms

In this section, nature inspired meta heuristic based algorithms - CS, APSO and FF are used
to solve the proposed constraint optimisation problem given in Section 3.3.2.

5.2.1 CS Algorithm

CS algorithm effectively explore the solution space due to its combination of random walk
and Levy flights which allow rapid convergence to promising regions. It demonstrates
strong global optimisation capabilities often finding near optimal solutions for various op-
timisation problems. It is easy to implement and adapt different problem domains making
it suitable for various control applications and show robustness to noise and uncertainties in
optimisation problems which enable reliable performance in the real world scenarios [118].

The CS algorithm [119] introduced by Xin-She Yang in 2009, is inspired by the obli-
gate brood parasitic behaviour of cuckoo birds and the levy flight behaviour observed in
some birds and fruit flies. In this algorithm, the process of egg laying by cuckoo birds in
the nests of other host birds is considered. The eggs that successfully hatch are selected as
the best and are passed on to the next generation. This behaviour is mathematically rep-
resented using the levy flight mechanism which describes the stochastic movement pattern
of foraging animals. When a host bird discovers a foreign egg in its nest, it either ejects
the egg or abandons the nest leaving the foreign egg behind which typically fails to hatch.
Based on this process, the operation of CS algorithm is sequenced in three stages. The
detailed sequence of the process is shown in Fig. 5.1 and the procedure as follows:

1. A cuckoo lays an egg in one randomly selected nest at a time.

2. The nest with the highest quality egg is deemed successful and is carried forward to
the next generation. The best egg or solution from the current generation is replaced
by the best egg or solution from the next generation.

3. The number of host nests (n) is predetermined and the probability of a host bird
encountering a foreign egg (pa) is typically assumed to be 0.25.

The solution generated by the levy flight formulation is expressed as:

xi(t+ 1) = xi(t) + µ⊕+Levy(λ) (5.1)

where, (µ, ⊕ and λ) represents step size, entry wise multiplication and Levy distribution
parameter respectively.
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Figure 5.1: Flowchart and process sequence of CS algorithm
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The pseudocode of CS algorithm is given as follows:

Algorithm 5.1: CS algorithm
Require: (i) Objective function: J (ii) Inequality constraints: %Mp, ts and ess, (iii)

Maximum number of iterations: T , and (iv) Probability of encountering a new
solution: pa

1: Generate an initial population of n host nests xi, where i = 1, 2, ..., n
2: While t ≤ T do
3: Randomly select a cuckoo using Levy flights
4: Evaluate its objective function f(xi(t)) along with the inequality constraints
5: Randomly choose one nest among the n nests (denoted as j)
6: If Fi > Fj then
7: Replace the nest j with the new solution
8: End if loop
9: Abandon a fraction (pa) of worse nests and build new ones

10: Retain the best solutions
11: Rank the solutions and determine the current best
12: Increment t by 1
13: End while loop
14: Post-process results using the best solution

5.2.2 APSO Algorithm

APSO algorithm dynamically adjusts its parameters during optimisation by improving con-
vergence speed and solution quality. It balances acceleration and ranges effectively allow-
ing for thorough solution space exploration while exploiting promising regions. APSO’s
adaptability makes it well suited for optimisation problems in dynamic or uncertain envi-
ronments, where traditional optimisation methods may struggle [120].

The PSO algorithm introduced by Kennedy and Eberhart in 1995 [121], draw inspi-
ration from the collective behaviour observed in fish and bird swarms during foraging. In
this algorithm, each individual bird referred as a particle navigates through the search space
adjusting its flight characteristics based on the proximity of other particles to potential prey.

APSO is an updated version of PSO distinguished by deviating from the conventional
approach of computing individual bests and this introduces randomness into the initial
guesses leading to enhanced accuracy and faster convergence [122]. The detailed sequence
of the process and its procedure is shown in Fig. 5.2 and as follows:

During each iteration of the algorithm, velocity vectors are computed and correspond-
ing positions are updated. The updated velocity and position vectors are denoted as vi(t+1)
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Figure 5.2: Flowchart and process sequence of APSO algorithm

and xi(t+ 1) and expressed as follows:

vi(t+1) = vi(t) + λ(g∗ − xi(t)) + µ ∈t (5.2)

xi(t+1) = xi(t) + vi(t+1) (5.3)

where, λ and µ are the acceleration constants, g∗ is the global best value, xi represents
position of ith particle at time ’t’ and ∈t is drawn from N [0,1].
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The pseudocode of APSO algorithm is given as follows:

Algorithm 5.2: APSO algorithm
Require: (i) Objective function: J (ii) Inequality constraints: %Mp, ts, and ess, and (iii)

Maximum number of iterations: T
1: Generate an initial population of N particles xi, where i = 1, 2, ..., N
2: While t ≤ T do
3: For i = 1 to N do
4: Update the velocity vector
5: Update the position vector
6: Evaluate objective functions at the new locations xt+1

i along with constraints
7: Determine the current best
8: End for loop
9: Find the global best

10: Increment t by 1
11: End while loop
12: Post-process results using the best solution

5.2.3 FF Algorithm

The FF algorithm demonstrates strong global search capabilities, efficiently exploring the
solution space and converging towards the global optimum. Its easiness of understand-
ing and implementation makes it accessible to practitioners and researchers across various
disciplines. FF algorithm shows the robust performance across different optimisation prob-
lems which includes continuous, discrete and dynamic optimisation scenarios [123].

The FF algorithm proposed by Xin-She Yang in 2008 [124], draw attention and inspired
from the flashing behaviour exhibited by fireflies of a particular species. The behavioural
characteristics of fireflies is studied and the process sequence is presented in algorithm
form. It is as follows:

1. Fireflies are genderless and are drawn to one another based on the brightness of their
emitted light.

2. Fireflies with lower light intensity are attracted to those emitting higher light inten-
sity.

3. The brightness of light increases as fireflies approach each other.

If two fireflies emit the same level of brightness, they move randomly without mutual at-
traction. The relative motion between a less bright firefly and brighter one is described as
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follows:
xi(t+1) = xi(t) + β0e

−γr2ij(xj(t)− xi(t)) + µt ∈i (t) (5.4)

where, β0 is the brightness of the firefly, γ indicates light absorption co-efficient, r
represents euclidean distance between fireflies and it is given as: rij =

√
(xi − xj)2, µ(t) is

the random parameter and ∈i(t) is a vector of random numbers which belongs to Gaussian
or random distribution at time t.

The detailed sequence of the process and its procedure is shown in Fig. 5.3. The
corresponding pseudocode of FF algorithm is given as follows:

Figure 5.3: Flowchart and process sequence of FF algorithm
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Algorithm 5.3: FF algorithm
Require: (i) Objective function: J , (ii) Inequality constraints: %Mp, ts, and ess and (iii)

Maximum iterations: Maxiterations

1: Generate an initial population of fireflies Xi (where i = 1, 2, ..., n)
2: Determine the light intensity Ii at Xi using the objective function f(Xi)
3: While t < Maxiterations

4: For i = 1 to n, for all n fireflies
5: For j = 1 to n, for all n fireflies
6: If Ij > Ii, move firefly i towards firefly j in d-dimension
7: End if
8: Evaluate new solutions and update light intensity
9: End for loop for j

10: End for loop for i
11: Rank the fireflies and find the best
12: End while loop
13: Post-process results and visualization

5.3 Optimisation and its Specifications

In this section, heuristic algorithms CS, APSO and FF are used to tune the parameters of
FOLQI controller and subsequently compare the results with IOLQI controller. To imple-
ment FOLQI controller, the fractional element in the integrator is approximated to an in-
teger order using the Oustaloup approximation of order 5 over the frequency range [0.001,
1000] rad/sec [99]. The closed loop simulation is conducted in the presence of continuous
load disturbance d(t) = 1 cm introduced at t = 50th sec. The parameters and equilib-
rium points of QTP for both minimum and non-minimum phase operating conditions are
detailed in Table 4.1.

The parameters of the FOLQI controller are adjusted to eliminate continuous load dis-
turbance while minimising controller effort and adhering to specified constraints: (i) less
than 10% in %Mp (ii) less than 70 seconds in ts (with a tolerance band of ±3%) and (iii)
less than 1% in ess. The bounds for the controller parameters are defined as follows: Qii

(i = 1 to 4) within the range of [0.01, 2.5], Rii (i = 1 and 2) within [0.1, 5], Ki1 within
[0.1, 10], Ki2 within [0.1, 10], α1 within [0.1, 2] and α2 within [0.1, 2]. For optimisation, the
parameters of the CS, APSO and FF algorithms are presented in Table 5.1 are used with a
convergence tolerance of 10−6. Similarly, these algorithms are used to tune the parameters
of the existing IOLQI controller. The converged values of both FOLQI and IOLQI con-
trollers satisfying the specified time domain specifications with minimal control effort for
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Table 5.1: Parameters of CS, APSO and FF algorithms

Heuristic algorithm Parameters

CS
n=25
pa=0.25
T=100

APSO
n=25
T=100

FF

n=100
T=100
µ = 0.3
β = 0.3
γ = 1

both minimum and non-minimum phase operating conditions are presented in Table 5.2.
The convergence of the objective function J using the CS, APSO and FF algorithms for

both IOLQI and FOLQI controllers under minimum and non-minimum phase operating
conditions of QTP are shown in Figs. 5.4 and 5.5. Table 5.3 provide information on
convergence epochs and statistical parameters (mean and standard deviation) for CS, APSO
and FF algorithms of both IOLQI and FOLQI controllers. It is observed that FF algorithm
exhibits (i) faster convergence epochs for FOLQI minimum, IOLQI minimum and non-
minimum conditions compared to CS and APSO algorithms (ii) lower statistical parameter
- Mean compared to CS and APSO algorithms and (iii) improved statistical parameter -
Standard Deviation for minimum phase systems. Hence, it is inferred that FF algorithm
outperforms the CS and APSO algorithms.
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Table 5.2: Converged controller parameters of IOLQI and FOLQI controllers
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Figure 5.4: Convergence response of CS, APSO and FF algorithms for IOLQI Controller
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Figure 5.5: Convergence response of CS, APSO and FF algorithms for FOLQI Controller
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Table 5.3: Convergence epochs and statistical indices of CS, APSO and FF algorithms

Methods Controllers
Convergence

epochs
Statistical indices

Mean SD

CS
IOLQI: Minimum phase 74 1403.34 118.10

IOLQI: Non-minimum phase 66 1334.19 40.07

FOLQI: Minimum phase 70 1241.73 91.88

FOLQI: Non-minimum phase 47 1222.34 55.06

APSO
IOLQI: Minimum phase 72 1442.49 161.13

IOLQI: Non-minimum phase 67 1490.91 61.44

FOLQI: Minimum phase 64 1239.97 98.09

FOLQI: Non-minimum phase 61 1250.20 78.12

FF
IOLQI: Minimum phase 65 1288.23 102.02

IOLQI: Non-minimum phase 60 1541.80 62.71

FOLQI: Minimum phase 54 1237.66 30.62

FOLQI: Non-minimum phase 54 1213.70 88.50
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5.4 Results and Discussion

5.4.1 Performance under Disturbance Condition

The simulation is performed using the proposed FOLQI and existing IOLQI controller pa-
rameters obtained using CS, APSO and FF algorithms for the duration of 350 sec. At 50th

sec (as depicted in Fig. 4.2), a continuous load disturbance of 1 cm magnitude is introduced
to the outputs h1(t) and h2(t). The time domain performance metrics %Mp, ts, ess and J

are evaluated for IOLQI and FOLQI controllers under minimum and non-minimum phase
operating conditions. The results are summarised in Table 5.4. The output responses (h1(t)

and h2(t)) and controller responses (u1(t) and u2(t)) for QTP with IOLQI and FOLQI con-
trollers operating under minimum and non-minimum phase operating conditions are shown
in Figs. 5.6 - 5.13. Observations from the Table 5.4, show that FOLQI controllers exhibit
superior time related characteristics %Mp, ts and J compared to their IOLQI counterparts.
However, it is noted that IOLQI controllers outperform FOLQI controllers in terms of ess.

Remarks 1: The data presented in Table 5.4 suggest that controllers optimised using
CS, APSO and FF algorithms doesn’t provide consistency in time characteristics under
minimum and non-minimum phase conditions of IOLQI and FOLQI controllers. The sim-
ulation results demonstrate that in all cases, the control effort required to regulate h2 is
more compared to control effort necessary for regulating h1.
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Table 5.4: Performance characteristics for IOLQI and FOLQI controllers of QTP under
d(t) condition

Controller/
Operating
condition

Heuristic
algorithm

Output
(cm)

Overshoot
(%)

Settling
time
(sec)

Steady
state
error
(ess)

Controller
effort
(∗103)

Effective
controller

effort
(J ∗ 103)

IOLQI /
Minimum

phase

CS
h1 5.7977 24.1030 0.0014 1.827 3.6639

h2 6.1123 24.1750 0.0077 1.836

APSO
h1 5.5180 28.3980 0.0425 1.845 3.7028

h2 5.8153 29.9640 0.0105 1.858

FF
h1 5.6629 26.9330 0.0148 1.792 3.5972

h2 5.9180 29.2720 0.0334 1.805

FOLQI /
Minimum

phase

CS
h1 4.3728 2.7920 0.0069 1.765 3.5371

h2 4.6702 2.7200 0.0040 1.772

APSO
h1 4.3744 1.7480 0.0141 1.761 3.5342

h2 4.6647 1.7800 0.0317 1.773

FF
h1 5.2375 4.9460 0.1809 1.766 3.5719

h2 5.5283 4.9670 0.1615 1.806

IOLQI /
Non-minimum

phase

CS
h1 6.2989 51.5870 0.0322 1.720 3.6708

h2 8.1258 62.0230 0.0355 1.951

APSO
h1 4.9419 26.5330 0.0035 1.784 3.8153

h2 8.3099 55.8790 0.1366 2.032

FF
h1 6.5241 46.7880 0.0622 1.804 3.8519

xh2 7.5291 48.4790 0.0503 2.048

FOLQI /
Non-minimum

phase

CS
h1 4.2540 2.2600 0.1369 1.627 3.5416

h2 3.4549 23.2500 0.3901 1.914

APSO
h1 4.4437 2.2310 0.0264 1.650 3.5494

h2 3.7544 21.5190 0.1069 1.900

FF
h1 5.6173 13.8690 0.7047 1.700 3.5129

h2 4.6486 9.5570 0.6279 1.81369



Figure 5.6: Output h1(t) and controller u1(t) responses for minimum phase condition of
QTP with IOLQI controller

Figure 5.7: Output h2(t) and controller u2(t) responses for minimum phase condition of
QTP with IOLQI controller
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Figure 5.8: Output h1(t) and controller u1(t) responses for non-minimum phase condition
of QTP with IOLQI controller

Figure 5.9: Output h2(t) and controller u2(t) responses for non-minimum phase condition
of QTP with IOLQI controller
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Figure 5.10: Output h1(t) and controller u1(t) responses for minimum phase condition of
QTP with FOLQI controller

Figure 5.11: Output h2(t) and controller u2(t) responses for minimum phase condition of
QTP with FOLQI controller
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Figure 5.12: Output h1(t) and controller u1(t) responses for non-minimum phase condi-
tion of QTP with FOLQI controller

Figure 5.13: Output h2(t) and controller u2(t) responses for non-minimum phase condi-
tion of QTP with FOLQI controller
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5.4.2 Performance under Disturbance and Parameter Uncertainty

The robustness of the FOLQI controller is assessed by introducing parameter uncertainty
in Ai and ai, varied by ± 30 % along with a continuous load disturbance d(t) at 50th

sec. The performance of FOLQI controller is compared with their IO counterpart. Time
domain characteristics including %Mp, ts, ess and J of both IOLQI and FOLQI controllers
are computed for minimum and non-minimum phases of QTP and presented in Tables 5.5
- 5.7. The output responses h1(t) and h2(t) of QTP with IOLQI and FOLQI controllers
obtained using (i) CS algorithm are shown in Figs. 5.14 - 5.17 (ii) APSO algorithm are
shown in Figs. 5.18 - 5.21 and (iii) FF algorithm are shown in Figs. 5.22 - 5.25.

From Tables 5.5 - 5.7, the following results are inferred: (i) FOLQI controllers exhibit
superior time characteristics (%Mp, ts and J) compared to IOLQI controllers (ii) IOLQI
controllers demonstrate better performance in terms of ess compared to FOLQI controllers
(iii) CS algorithm tuned IOLQI and FOLQI controllers fail to meet the required ts and ess

for non-minimum phase respectively (iv) APSO tuned IOLQI controller fails to achieve
the required ts for non-minimum phase mode (v) FF tuned IOLQI and FOLQI controllers
successfully meet all the required specifications for minimum and non-minimum phases
of QTP. Based on the above observations, it is concluded that FF tuned FOLQI controller
exhibits superior time response characteristics (%Mp, ts, ess and J) compared to APSO
and CS tuned FOLQI controllers.
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Table 5.5: Performance characteristics for IOLQI and FOLQI controllers of QTP under
d(t) and parameter uncertainty conditions using CS algorithm

Controller /
Operating
condition

Parameter
uncertainty

(%)

Output
(cm)

Overshoot
(%)

Settling
time
(sec)

Steady
state
error
(ess)

Controller
effort
(∗103)

Effective
controller

effort
(J ∗ 103)

IOLQI /
Minimum

phase

-30 %

h1 5.8089 20.6680 0.0049 0.903 1.8122

h2 6.1224 20.7270 0.0425 909.2

Nominal

h1 5.7977 24.1030 0.0014 1.827 3.6639

h2 6.1123 24.1750 0.0077 1.836

+30 %

h1 6.0560 29.0490 0.0008 3.072 6.1559

h2 6.3768 30.8900 0.0132 3.084

FOLQI /
Minimum

phase

-30 %

h1 4.3322 2.5380 0.0119 0.865 1.735

h2 4.6280 2.4840 0.0083 0.870

Nominal

h1 4.3728 2.7920 0.0069 1.765 3.5371

h2 4.6702 2.7200 0.0040 1.772

+30 %

h1 4.5716 3.5200 0.0168 2.982 5.9742

h2 4.8736 3.4840 0.0113 2.992

IOLQI /
Non-minimum

phase

-30 %

h1 6.4819 43.6580 0.3433 0.8305 1.8160

h2 8.3504 52.2830 0.4847 0.9855

Nominal

h1 6.2989 51.5870 0.0322 1.720 3.6708

h2 8.1258 62.0230 0.0355 1.951

+30 %

h1 6.6453 67.0240 0.2686 2.949 6.1970

h2 8.1421 79.1180 0.3158 3.248

FOLQI /
Non-minimum

phase

-30 %

h1 4.1406 2.1340 0.4431 0.7718 1.7361

h2 3.2853 27.1110 1.1946 0.9643

Nominal

h1 4.2540 2.2600 0.1369 1.627 3.5416

h2 3.4549 23.2500 0.3901 1.914

+30 %

h1 4.9472 2.4790 0.0416 2.802 5.9831

h2 7.4995 17.7240 0.0761 3.18275



Table 5.6: Performance characteristics for IOLQI and FOLQI controllers of QTP under
d(t) and parameter uncertainty conditions using APSO algorithm

Controller /
Operating
condition

Parameter
uncertainty

(%)

Output
(cm)

Overshoot
(%)

Settling
time
(sec)

Steady
state
error
(ess)

Controller
effort
(∗103)

Effective
controller

effort
(J ∗ 103)

IOLQI /
Minimum

phase

-30 %

h1 5.7473 29.9520 0.0944 0.9212 1.8513

h2 6.0479 29.8620 0.0145 0.9302

Nominal

h1 5.5180 28.3980 0.0425 1.845 3.7028

h2 5.8153 29.9640 0.0105 1.858

+30 %

h1 5.6510 32.0650 0.0170 3.087 6.1898

h2 5.9519 33.9000 0.0048 3.103

FOLQI /
Minimum

phase

-30 %

h1 4.2845 1.6550 0.0295 0.8623 1.7333

h2 4.5714 1.6820 0.0715 0.8709

Nominal

h1 4.3744 1.7480 0.0141 1.761 3.5342

h2 4.6647 1.7800 0.0317 1.773

+30 %

h1 4.6015 1.8930 0.0065 2.977 5.9695

h2 4.8976 1.9390 0.0091 2.993

IOLQI /
Non-minimum

phase

-30 %

h1 4.8412 22.8300 0.0173 0.8599 1.8835

h2 9.2901 47.4860 0.9350 1.024

Nominal

h1 4.9419 26.5330 0.0035 1.784 3.8153

h2 8.3099 55.8790 0.1366 2.032

+30 %

h1 5.1532 38.5570 0.0232 3.040 6.3955

h2 8.0681 76.7930 0.3393 3.355

FOLQI /
Non-minimum

phase

-30 % h1 4.3313 2.1080 0.2745 0.7881 1.7407

h2 3.5948 25.2610 0.7400 0.9526

Nominal h1 4.4437 2.2310 0.0264 1.650 3.5497

h2 3.7544 21.5190 0.1069 1.900

+30 % h1 4.5975 2.4820 0.1237 2.829 5.9944

h2 3.9477 13.9610 0.2747 3.16576



Table 5.7: Performance characteristics for IOLQI and FOLQI controllers of QTP under
d(t) and parameter uncertainty conditions using FF algorithm

Controller /
Operating
condition

Parameter
uncertainty

(%)

Output
(cm)

Overshoot
(%)

Settling
time
(sec)

Steady
state
error
(ess)

Controller
effort
(∗103)

Effective
controller

effort
(J ∗ 103)

IOLQI /
Minimum

phase

-30 %

h1 5.8759 26.7950 0.0258 0.8852 1.7790

h2 6.1253 28.7900 0.0749 0.8938

Nominal

h1 5.6629 26.9330 0.0148 1.792 3.5972

h2 5.9180 29.2720 0.0334 1.805

+30 %

h1 6.0770 30.7940 0.0003 3.026 6.0686

h2 6.3546 33.4520 0.0192 3.043

FOLQI /
Minimum

phase

-30 %

h1 5.2602 4.2330 0.2694 0.8644 1.7563

h2 5.5461 4.2860 0.2415 0.8919

Nominal

h1 5.2375 4.9460 0.1809 1.766 3.5719

h2 5.5283 4.9670 0.1615 1.806

+30 %

h1 5.3317 6.4830 0.1315 2.984 6.0210

h2 5.6275 6.4840 0.1165 3.037

IOLQI /
Non-minimum

phase

-30 %

h1 6.4270 36.0870 0.3769 0.8716 1.8973

h2 7.5023 37.4690 0.3136 1.026

Nominal

h1 6.5241 46.7880 0.0622 1.804 3.8519

h2 7.5291 48.4790 0.0503 2.048

+30 %

h1 6.7010 67.7480 0.1609 3.068 6.4556

h2 7.6919 69.7580 0.1291 3.388

FOLQI /
Non-minimum

phase

-30 %
h1 5.3932 12.0800 0.4283 0.8233 1.7244

h2 4.1344 8.4150 0.4153 0.901

Nominal

h1 5.6173 13.8690 0.7047 1.700 3.5129

h2 4.6486 9.5570 0.6279 1.813

+30 %

h1 6.3565 15.6810 0.8626 2.894 5.9369

h2 5.6796 10.7130 0.7417 3.04377



Figure 5.14: Output responses (h1(t) and h2(t)) for minimum phase operating condition
of QTP with IOLQI controller using CS algorithm

126 127 128 129 130 131 132 133
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Figure 5.15: Output responses (h1(t) and h2(t)) for non-minimum phase operating condi-
tion of QTP with IOLQI controller using CS algorithm
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Figure 5.16: Output responses (h1(t) and h2(t)) for minimum phase operating condition
of QTP with FOLQI controller using CS algorithm

Figure 5.17: Output responses (h1(t) and h2(t)) for non-minimum phase operating condi-
tion of QTP with FOLQI controller using CS algorithm
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Figure 5.18: Output responses (h1(t) and h2(t)) for minimum phase operating condition
of QTP with IOLQI controller using APSO algorithm

Figure 5.19: Output responses (h1(t) and h2(t)) for non-minimum phase operating condi-
tion of QTP with IOLQI controller using APSO algorithm
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Figure 5.20: Output responses (h1(t) and h2(t)) for minimum phase operating condition
of QTP with FOLQI controller using APSO algorithm

Figure 5.21: Output responses (h1(t) and h2(t)) for non-minimum phase operating condi-
tion of QTP with FOLQI controller using APSO algorithm
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Figure 5.22: Output responses (h1(t) and h2(t)) for minimum phase operating condition
of QTP with IOLQI controller using FF algorithm

Figure 5.23: Output responses (h1(t) and h2(t)) for non-minimum phase operating condi-
tion of QTP with IOLQI controller using FF algorithm
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Figure 5.24: Output responses (h1(t) and h2(t)) for minimum phase operating condition
of QTP with FOLQI controller using FF algorithm

Figure 5.25: Output responses (h1(t) and h2(t)) for non-minimum phase operating condi-
tion of QTP with FOLQI controller using FF algorithm
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5.4.3 Stability Analysis

The stability of QTP with IOLQI and FOLQI controllers tuned using CS, APSO and FF
algorithms are ensured using frequency response. The phase margin and its correspond-
ing gain crossover frequencies of all the loops under minimum and non-minimum phase
conditions of IOLQI and FOLQI controllers tuned using CS, APSO and FF algorithms are
computed and shown in Tables 5.8 - 5.10.

Table 5.8: Stability analysis of controllers tuned using CS algorithm

Controller
Operating

mode
Loop interaction Gain crossover

frequency (rad/sec)
Phase margin

(deg)Input Output

IOLQI

Minimum

1 1 1.740 2.09
1 2 1.770 2.07
2 1 0.576 6.34
2 2 0.587 6.28

Non -
minimum

1 1 0.617 2.71
1 2 0.611 2.74
2 1 0.685 2.91
2 2 0.617 2.71

FOLQI

Minimum

1 1 1.030 4.17
1 2 1.050 4.15
2 1 2.230 15.3
2 2 2.270 15.3

Non -
minimum

1 1 1.900 18.9
1 2 1.690 18.7
2 1 1.120 13.5
2 2 0.997 13.2

It is noted that (i) phase margin for all control loops are finite in order to satisfy the
required time response specifications and (ii) gain margin is infinite which is due to the
absence of phase crossover frequency (not listed in tables). This leads to ensure adequate
stability margin for both IOLQI and FOLQI controllers.

Remarks 2: Since LADR controller fails to provide the performance when it exceeds
the uncertainty level of ±5%, the comparison with IOLQI and FOLQI controllers for the
uncertainty (±30%) are not attempted and hence the characteristics of LADR controller is
excluded in this chapter.
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Table 5.9: Stability analysis of controllers tuned using APSO algorithm

Controller
Operating

mode
Loop interaction Gain crossover

frequency (rad/sec)
Phase margin

(deg)Input Output

IOLQI

Minimum

1 1 0.724 3.77
1 2 0.737 3.73
2 1 1.730 1.57
2 2 1.760 1.55

Non -
minimum

1 1 1.590 1.63
1 2 1.430 1.51
2 1 0.277 9.44
2 2 0.253 10.30

FOLQI

Minimum

1 1 2.250 17.30
1 2 2.290 17.30
2 1 0.164 9.67
2 2 0.160 9.64

Non -
minimum

1 1 2.110 17.20
1 2 1.880 17.10
2 1 1.150 9.24
2 2 1.030 9.09

Table 5.10: Stability analysis of controllers tuned using FF algorithm

Controller
Operating

mode
Loop interaction Gain crossover

frequency (rad/sec)
Phase margin

(deg)Input Output

IOLQI

Minimum

1 1 1.120 2.72
1 2 1.140 2.70
2 1 0.628 4.85
2 2 0.640 4.82

Non -
minimum

1 1 1.160 3.56
1 2 1.040 3.35
2 1 1.570 2.64
2 2 1.410 2.46

FOLQI

Minimum

1 1 2.350 9.54
1 2 2.390 9.48
2 1 1.910 3.21
2 2 1.940 3.14

Non -
minimum

1 1 0.319 4.77
1 2 0.289 5.55
2 1 0.723 19.40
2 2 0.643 19.60
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5.5 Summary

This section uses heuristic algorithms - CS, APSO and FF to tune FOLQI controller pa-
rameters for the proposed constrained optimisation problem under continuous load dis-
turbance. Simulations were conducted for minimum and non-minimum phase operating
modes of QTP under conditions of (i) disturbance and (ii) disturbance along with parame-
ter uncertainty. The time response characteristics along with stability of FOLQI controller
are compared with optimally tuned IOLQI controller with the given uncertainty limit along
with disturbance condition.

86



Chapter 6

Tuning of FOLQI Controller using BG
Approach

6.1 Introduction to BG

A BG method is a powerful tool for modelling and analysing dynamical systems across
various engineering domains and it provides a unified framework for representing complex
physical system using graphical structure applied in both continuous and discrete domain.
Henry M. Paynter introduced BG during 1960s and since become widely adopted due to
their ability to capture the multidomain nature of engineering systems and improve the
system level understanding / analysis [125].

BG provide a unified framework for modelling complex inter disciplinary systems al-
lowing engineers to represent and analyse interactions between electrical, mechanical, hy-
draulic and thermal components within a single model [126]. It is based on the concept
of energy flow allowing for energy based analysis of system behaviour. This enables en-
gineers to analyse energy storage, transfer and dissipation within the system which lead to
better insights into system performance and efficiency [125]. It offers a clear and intuitive
representation of the causal relationships between system components making it to under-
stand the dynamics of the system. The causal nature of BG provides better understanding
of the cause and effect relationships between different components of the system aiding the
design of effective control strategies [127].

BG enable a dynamic analysis of systems under various operating conditions to assess
the performance of control strategies and detect faults in real time. It also serves as the
foundation for model based control approaches where controllers are designed based on
system’s dynamical behaviour represented in BG [128]. Due to multidisciplinary nature of
BG, it makes them suitable for a wide range of applications including mechanical, electri-
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cal, aerospace, automotive, biomedical and robotics engineering [129].

6.2 BG Elements

BG elements are fundamental components used in modelling, facilitating the representation
and analysis of dynamic systems across multiple domains. The key idea behind BG is to
represent the flow and storage of energy within a system using graphical elements called
bonds and junctions. Bonds represent the flow of energy, while junctions represent the
storage or interaction of energy. By combining bonds and junctions, complex systems can
be represented and analysed in a systematic manner. These elements provide a standard
way to represent the dynamics of the physical system. The half arrow is used to connect
one BG element/junction with other and it represent a straight line with a half arrowhead
at one end which is shown in Fig. 6.1. Here, line represents the bond and the direction of
arrowhead indicates the direction of energy flow which points from source of effort or flow
to the destination.

Figure 6.1: Representation of bond in BG

The common elements used in BG for representing the physical system is as follows:

• R Element (Resistor): The R element represents energy dissipation or resistance
within the system. It is analogous to resistors in electrical circuit which models the
dissipative process such as friction or damping.

• C Element (Capacitor): The C element represents energy storage or capacitance
within the system. It is analogous to electrical capacitors and used to model the
energy storage in the forms of compliance.

• I Element (Inductor): The I element represents energy storage due to magnetic ef-
fects. It is analogous to electrical inductors and used to model systems using mag-
netic energy storage such as inductors or flywheels.

• TF Element (Transformer): A transformer in BG represents the energy conversion
between same engineering domain. It is analogous to a mechanical gearbox or elec-
trical transformer where output is changing with respect to the input.
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• GY Element (Gyrator): A gyrator element represents the element transferring energy
between components of two different domains. It is analogous to energy exchange
between an electric motor and mechanical shaft and vice versa.

• Effort source: An effort source is an element that represents a source of effort/force
within a dynamic system. It typically represents a voltage source in electrical systems
or a force or torque source in mechanical systems.

• Flow source: A flow source is an element that represents a source of flow within a
dynamic system. It typically represents a current source in electrical systems or a
flow rate in fluid or thermal systems.

• 0 Junction (Zero Junction): The 0 junction represents a point where variables are
conserved. It is used to connect BG elements and ensures the conservation of energy
and effort within the system.

• 1 Junction (One Junction): The 1 junction represents a point where effort is divided
among multiple paths, but energy is conserved. It is used to model branching or
distribution of energy or effort within the system.

In BG modelling, ports are pivotal junctions that facilitate the exchange of energy be-
tween different components within a system. These ports serve as connection points where
energy flows into or out of a component allow to transfer power and signals. Each port is
characterised by (i) power variables and (ii) directionality. Power variables such as effort
and flow, represent the type of effort and flow being exchanged through the port which may
vary depending on the system’s physical domain.

Effort represents the driving force or input and flow signifies the resultant output. Direc-
tionality defines the nature of energy exchange with ports in either bidirectional or unidirec-
tional. In BG, ports are typically depicted as small circles or squares and arrows denoting
the direction of energy flow. By interconnecting ports of different elements, engineers can
model the dynamic flow of energy through complex systems which enables comprehen-
sive analysis and understanding of system behaviour across diverse domains. Each port of
these elements is associated with power variables (effort and flow) and the directionality of
energy flow is indicated by arrows on the ports.

One Port Elements:

• One port elements have a single port through which energy flows into or out of the
component.
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• Examples of one port elements include resistors, capacitors, inductors, mechanical
springs, dampers and electrical sources such as batteries or voltage sources.

• One port elements are fundamental building blocks in BG modelling and are used to
represent basic components and interactions within a system.

Two Ports Elements:

• Two port elements have two ports which allows energy exchange between two dis-
tinct parts of the system.

• Examples of two port elements include transformers, gyrators, mechanical transmis-
sions, electrical transmission lines and hydraulic pipes.

• Two port elements are crucial for modelling interactions between different subsys-
tems or components within a larger system. It enable the representation of energy
transfer and conversion between multiple domains (e.g., electrical to mechanical,
mechanical to hydraulic).

MultiPort Elements:

• Multiport elements have more than two ports which allow complex interactions and
energy exchanges between multiple components.

• Examples of multiport elements include junctions, transformers with multiple wind-
ings, multimass mechanical systems and complex electrical networks.

• Multiport elements are used in BG models to represent interconnected subsystems,
distributed parameter systems and networks with multiple pathways for energy flow.

6.2.1 Element Description

BG elements represent physical components relating their interaction within the system
and are described as follows:
C type elements:

In a C type element, the BG representation and its constitutive relation is given as
follows:
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The following examples are used to present the constitutive relation:
(i) The deformation (x) and effort (e) of spring element is given by,

x =

∫ t

−∞
vdt and e = Kx

(ii) The charge (q) and effort (e) of capacitor element is given by,

q =

∫ t

−∞
idt and e =

1

C
q

I type elements
I type element, BG representation and its constitutive relation is given as follows:

The following examples are used to present the constitutive relation:
(i) The momentum (p) and velocity (v) of mass element is given by,

p =

∫ t

−∞
Fdt and v =

1

M
p

(ii) The flux linkage (ϕ) and current (i) in the inductor element is given by,

ϕ =

∫ t

−∞
V dt and i =

1

L
ϕ

R type elements
In a R type element, the BG representation and its constitutive relation is given as

follows:

The following examples are used to present the constitutive relation:
(i) The effort (voltage V) and flow (current i) of resistor element is given by,

e = R ∗ f and V = R ∗ i
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(ii) The effort (force) and flow (velocity) of damper element is given by,

f =
1

R
e and v =

1

B
F

Effort Sources
The effort e is represented as e = E

(
t
)

and BG representation is shown as follows:

It is defined that the flow f is independent of effort e and is provided by the system to
which the source is connected.
Flow Sources

The flow f is represented as f = F
(
t
)

and the BG representation is shown as follows:

It is defined that the effort e is independent of flow f and is provided by the system to
which the source is connected.
Transformer

The BG representation of transformer is shown as follows:

where, τ represents the transformer turns ratio.
Gyrator

The BG representation of gyrator is shown as follows:

where, τ represents gyrator ratio.
0 junctions

The BG representation and its constitutive relations of 0 junction are shown as follows:
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1 junctions
The BG representation and its constitutive relations of 1 junction are shown as follows:

6.2.2 Representation of BG Variables and its Causal Relations

The effort and flow variables of different engineering domain are given in Table 6.1 and the
casual relations of each elements are presented in Table 6.2.

Table 6.1: Effort and Flow representation in various domain

Element type Element name Symbol Causal Relation (Preferred causality)

Source
Effort source Se -

Flow source Sf -

Storage element
Capacitance C e = ϕ−

c 1
∫
fdt

Inertance I f = ϕ−
L1

∫
edt

Resistance Resistance R e = ϕR(f), f = ϕ−
R1(e)

Transductor

Transformer TF f2 = n ∗ f1
e1 = n ∗ e2

Gyrator GY e2 = r ∗ f1
e1 = r ∗ f2

Junction

0 Junction 0 e1 = e1 = ...... = en
f1 + f2 + .....+ fn = 0

1 Junction 1 f1 = f2 = ... = fn
e1 + e2 + ....+ en = 0
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Table 6.2: Casual relationship of BG elements

Domain Effort (e) Flow (f)

Electrical Voltage (V) Current (i)

Mechanical
Force (F) Velocity (v)

Torque (τ ) Angular Velocity (ω)

Hydraulic Pressure (P) Volume Flow Rate (dQ/dt)

Thermal Temperature (T) Entropy Change Rate (dS/dt)

Chemical Chemical Potential (µ) Mass Flow Rate (dN/dt)

Magnetic Magneto motive Force (em) Magnetic Flux Rate (dϕ/dt)
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6.3 BG Model

6.3.1 BG Model of QTP

The BG representation of QTP is shown in Fig. 6.2.

Figure 6.2: BG model of QTP

The description of various elements presented in Fig. 6.2 is as follows: (i) Ri represents
resistor element which equals ai

√
Pi (i ∈ Tank 1 − 4) (ii) Ci (i ∈ Tank 1 − 4) represents

capacitor element and (iii) TFi (i ∈ Tank 1−4) represents transformer element, where TF1

represents γ1, TF2 represents γ2, TF3 represents (1− γ2) and TF4 represents (1− γ1). The
parameters and their equilibrium points for minimum and non-minimum phase operating
mode of QTP are given in Table 4.1. The nonlinear mathematical model with pressure term
(P - effort variable) are considered as state variables and as follows [81]:
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Ṗ1 = −a1
√
P1

C1

+
a3
√
P3

C1

+
γ1
C1

u1 (6.1)

Ṗ2 = −a2
√
P2

C1

+
a4
√
P4

C2

+
γ12

C1
u2 (6.2)

Ṗ3 =
a3
√
P3

C3

+
1− γ2
C3

u2 (6.3)

Ṗ4 =
a4
√
P4

C4

+
1− γ1
C4

u1 (6.4)

These equations are similar to state space representation of QTP shown in Section 2.3.

6.3.2 BG Model of FOLQI Controller

The FOLQI controller in BG representation is shown in Fig. 6.3.

Figure 6.3: BG model of FOLQI controller

In BG domain, the dynamic behaviour of the controller is captured by the power flow
through bonds, junctions and ports. The error values e1 and e2 i.e. (hi − hieq, i ∈ 1 and
2) are assigned as effort values by using modulated effort source component MSe. The

96



effort value is given to inductor element (I) and in consequence, it provides the integration
value of errors as per the dynamics of junction 1 presented in Section 6.2.1. The states of
QTP are given to state feedback block presented in Fig. 6.3 where, the values of states are
communicated to MATLAB by using ”doMatlab” function available in 20-sim. Further,
LQI function is performed to execute the IOLQI and FOLQI optimisation for calculating
the required control actions. The integral values of error and state feedback outputs are
combined and given to pump constants k1 and k2 to generate u1 and u2.

6.3.3 BG Model of QTP and FOLQI Controller in Closed Loop

The QTP along with FOLQI controller represented in BG is shown in Fig. 6.4. This is
similar to the closed loop representation of plant with controller in feedback. The 20-sim
software is used for implementing and simulating the closed loop representation of BG
model.

Figure 6.4: Closed loop BG representation of QTP with FOLQI controller
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6.4 Optimisation and its Specifications

The FOLQI controller parameters are obtained by solving the unconstrained optimisation
problem using 20-sim software. The following algorithms are used for optimising the
controller parameters: (i) Newton-Raphson (NR) [130] (ii) Davidon-Fletcher-Powell (DFP)
[131–133] (iii) Steepest Descent (SD) [108] and (iv) Broydon-Fletcher-Goldfarb-Shanno
(BFGS) [132,134–136]. The cost function used for solving the unconstrained optimisation
problem is as follows:

Minimise
(Controller Parameters,Q,R)

J =

∫ T

0

(∆u2
1(t) + ∆u2

2(t))dt (6.5)

For FOLQI controller, the fractional term in the integrator is approximated to an integer
order using the Oustaloup approximation of degree 5 with the frequency range of 0.001 to
1000 rad/sec [99]. A closed loop simulation is performed with the given optimisation
problem by introducing the continuous load disturbance d(t) = 1 cm at t = 50 sec to
obtain the parameters of IOLQI and FOLQI controllers. The bounds for the IOLQI and
FOLQI controllers are tabulated in Chapter. 4.

6.4.1 Optimisation Algorithms

6.4.1.1 Newton Raphson method:

NR method is an iterative numerical method which is used for finding successively better
approximations to the roots (or zeros) of a real valued function. It is particularly useful
for solving complex nonlinear equations. The method involves using the first and second
derivatives of the function to refine the solution until convergence is achieved iteratively.
The pseudo code of the algorithm is given as:
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NR algorithm
1. Define initial guess X0, and set k=0
2. Obtain descent direction dk = {H} x−1

k ▽ f(xk)
3. Set αk = 1
4. Calculate the step Sk = αk dk
5. Update the design xk+1=xk+sk
6. If | xk+1 - xk | < tot or ▽ | f(xk+1) | < tot, then stop
7. Increase the iterator k=k+1 and goto 2

6.4.1.2 Davidon–Fletcher–Powell method:

The DFP algorithm is a quasi-Newton optimisation algorithm used for unconstrained non-
linear optimisation. It belongs to the class of quasi-Newton methods which seek to approx-
imate the inverse Hessian matrix of the objective function using successive updates. The
algorithm is known for its efficiency and robustness in many optimisation problems. The
pseudo code of the algorithm is given as:

DFP algorithm
1. Define initial guesses X0, and A0, and set k=0
2. Obtain descent direction dk = { − Ak} x−1

k ▽ f(xk)
3. Set αk = 1
4. Calculate the step Sk = αk dk
5. Update the design xk + 1=xk+sk
6. If | xk + 1 - xk | < tot or ▽ | f(xk + 1) | < tot, then stop
7. Obtain the variation in the gradient yk = ▽ f(x_{k + 1}) - f(x_k)
8. Update the inverse Hessian approximation Ak+1 = Ak+ skS

T
k

sTk yk
− Akyky

T
k Ak

yTk Akyk

9. Increase the iterator k=k+1 and goto 2

6.4.1.3 Steepest Descent Method:

SD method is also known as gradient descent method. This method uses first order optimi-
sation algorithm for finding the minimum of a function and works by iteratively moving in
the direction towards the negative gradient of the function at each point. This algorithm is
simple to implement and converge slowly especially in highly non convex functions or ill
conditioned problems. The pseudo code of the algorithm is given as:
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SD Method algorithm
1. Given an initial x0, d0 = −g0 and a convergence tolerance tol
2. for k = 0 to max iter do
3. set α k = argmin(ϕ α) = f(k)- α gk
4. xk+1=xk- αk gk
5. Compute gk+1 = ▽ | f(xk + 1)
6. if ∥ gk+1 ∥ 2 ≤ tol then
7. converged
8. end if
9. end for

6.4.1.4 Broyden–Fletcher–Goldfarb–Shanno algorithm:

Like DFP, BFGS is also a quasi-Newton method used to solve the unconstrained optimi-
sation problems. It iteratively updates an approximation of the Hessian matrix using rank
one updates which aim to converge optimal point. This algorithm offers faster convergence
compared to DFP and is widely used in practice for its efficiency and reliability. The pseudo
code of the algorithm is given as:

BFGS algorithm
1. Define initial guesses X0, and B0, and set k=0
2. Obtain descent direction dk = { −Bk}−1 x−1

k ▽ f(xk)
3. Set αk = 1
4. Calculate the step Sk = αk dk
5. Update the design xk + 1=xk+sk
6. If | xk + 1 - xk | < tot or ▽ | f(xk + 1) | < tot, then stop
7. Obtain the variation in the gradient yk = ▽ f(x_{k + 1}) - f(x_k)
8. Update the inverse Hessian approximation Bk+1 = Bk+ yky

T
k

yTk sk
− Bksks

T
k Bk

sTk Bksk

9. Increase the iterator k=k+1 and goto 2

6.5 Results and Discussions

The simulation of QTP along with IOLQI and FOLQI controller parameters obtained using
optimisation algorithms are performed under (i) disturbance and (ii) parameter uncertainty
conditions. The converged values of IOLQI and FOLQI controller parameters for both
minimum and non-minimum phase operating conditions are shown in Tables 6.3 and 6.4.
Table 6.5 show the control effort utilised by the IOLQI and FOLQI controllers during the
simulation and it is observed that (i) FOLQI controller tuned using all four optimisation
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algorithms provide better controller effort for minimum and non-minimum phase operat-
ing modes of QTP (ii) controller tuned using BFGS algorithm provides least control ef-
fort to IOLQI controller under minimum phase operating mode (iii) controller tuned using
SD algorithm provides least control effort to IOLQI controller under non-minimum phase
operating mode (iv) controller tuned using NR algorithm provides least control effort to
FOLQI controller under minimum phase operating mode and (v) controller tuned using
SD algorithm provides least control effort to FOLQI controller under non-minimum phase
operating mode. Based on the above observation, FOLQI controller provides minimum
control effort than IOLQI controller.
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Table 6.3: Converged parameters of IOLQI and FOLQI controllers obtained using NR and
DFP methods
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Table 6.4: Converged parameters of IOLQI and FOLQI controllers obtained using SD and
BFGS methods
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Table 6.5: Controller effort of IOLQI and FOLQI controller under d(t) and parameter
uncertainty conditions

Algorithm
Controller/

Operating mode
Control effort

-30% Nominal +30%

NR

IOLQI /
Minimum

1.8120 3.6630 6.1550

IOLQI /
Non-minimum

2.0599 4.1129 6.7726

FOLQI /
Minimum

1.7162 3.5075 5.9324

FOLQI /
Non-minimum

1.7577 3.5693 6.0096

DFP

IOLQI /
Minimum

1.8210 3.6551 6.1355

IOLQI /
Non-minimum

1.9665 3.9518 6.5691

FOLQI /
Minimum

1.7479 3.5530 5.9921

FOLQI /
Non-minimum

1.7620 3.7072 6.0557

SD

IOLQI /
Minimum

1.7880 3.6108 6.0860

IOLQI /
Non-minimum

1.7910 3.6680 6.2082

FOLQI /
Minimum

1.5984 3.5397 6.0135

FOLQI /
Non-minimum

1.7530 3.5635 6.0066

BFGS

IOLQI
Minimum

1.7338 3.5194 5.9585

IOLQI /
Non-minimum

1.9073 3.8727 6.4864

FOLQI /
Minimum

1.6393 3.4439 5.8828

FOLQI /
Non-minimum

1.7541 3.5688 6.0170
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6.6 Summary

This chapter presents a graphical approach for representing the system and controller using
BG. An unconstrained optimisation problem is presented to tune the IOLQI and FOLQI
controller parameters to obtain the minimum controller effort using the optimisation meth-
ods (i) NR (ii) DFP (iii) SD and (iv) BFGS under minimum and non-minimum operating
modes in the presence of disturbance condition. The performance of these controllers are
evaluated under disturbance along with parameter uncertainty condition.
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Chapter 7

Conclusions and Future Scope

This research work focused on solving constrained optimisation problem for obtaining
FOLQI controller parameters of QTP using (i) deterministic and (ii) heuristic algorithms
under disturbance conditions. The performance of FOLQI controller was compared with
optimally tuned IOLQI and LADR controllers under disturbance and parameter uncertainty
conditions. The research also extended to explore the possibility of representing QTP along
with IOLQI and FOLQI controllers tuned using BG approach.

The summary of this research work is as follows:

(i) The constrained optimisation problem was proposed for tuning FOLQI controller
under disturbance conditions. Time domain constraints such as %Mp, ts and ess with
control effort as an objective function were used for tuning the controller parameters.
The performance of the FOLQI controller was compared with optimally tuned IOLQI
and LADR controllers and stability margins were computed and analysed. Frm the
simulation study, it is evident that FOLQI controller performed better than existing
IOLQI and LADR controllers.

(ii) The Heuristic based optimisation algorithms (i) CS (ii) APSO and (iii) FF were used
to solve the proposed constrained optimisation problem for obtaining the controller
parameters of FOLQI controller under disturbance conditions. The performance of
(i) FOLQI controller was compared with an optimally tuned IOLQI controller and
(ii) heuristic algorithms were compared among themselves. To show the stability of
the closed loop system, the stability margins of FOLQI controller was presented and
analysed. The result concluded that FF tuned FOLQI controller performs better than
other controllers.

(iii) The QTP along with (i) FOLQI and (ii) IOLQI controllers were represented using the
BG approach using 20-sim. An unconstrained optimisation problem was proposed
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for minimising the control effort under disturbance conditions. The proposed opti-
misation problem was solved using optimisation algorithms like (i) NR (ii) DFP (iii)
SD and (iv) BFGS for minimum and non-minimum operating modes of QTP. The
result indicated that FOLQI controller provided better controller responses than the
IOLQI controller.

The research work in this thesis points towards the following future directions:

• Various other optimisation algorithms in both (i) deterministic and (ii) heuristic ap-
proaches can be used to solve the optimisation problems with additional constraints
and extended parameter variations.

• The proposed problem in this thesis can utilise the frequency domain constraints such
as gain margin, phase margin, bandwidth etc., in order to get better visibility during
external noise and disturbance conditions.

• Fractional order approximation method like Trigeassou et al. for the approximation
of fractional integrator by keeping a low frequency integer effect.

• Controller parameter optimisation which ensure non zero steady state error in the
presence of nonlinearities and parameter uncertainties.

• The optimisation problem can be incorporated with various other features like pa-
rameter estimation along with the guaranteed stability conditions.

• Introduction of constrained optimisation problem using BG approach for tuning FOLQI
and IOLQI controllers.

• Using BG approach, synthesise of control law which helps to detect various faults
occurring in QTP and developing strategies for fault isolation conditions.
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Appendix A

Linear Active Disturbance Rejection Con-
troller

In [72], it describes the liquid level control of a QTP using Active Disturbance Rejection
(ADR) control technology which covers various aspects such as system modelling, con-
troller design, simulation and experimental validation.

Linear ADR (LADR) controller is based on the fundamental principles of ADR con-
troller which aims to estimate and compensate the disturbances in real time without de-
manding an accurate system model. In linear systems, the LADR controller utilises lin-
earised models of the plant dynamics to design control strategies that mitigate the effects
of disturbances and uncertainties. This typically consists of two main components: (i)
an Extended State Observer (ESO) and (ii) a linear feedback controller. The closed loop
representation of the plant with LADR controller is shown in Fig. A.1.

Figure A.1: Closed loop representation of LADR Controller with plant
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Extended State Observer

ESO is responsible for estimating the system states and disturbances affecting the per-
formance of the system. It provides real time estimates that the controller uses to generate
control actions. The linear feedback controller computes the control signal based on the
observed states and disturbances which aims to regulate the system behaviour with respect
to the desired specifications. LADR controller design involves tuning the parameters of
ESO and linear feedback controller. The observer gains are tuned to ensure accurate es-
timation of the system states and disturbances while the feedback gains are adjusted to
achieve desired closed loop performance characteristics. The corresponding expressions
are given below:

e12 = Z1 − x1 + Z4 − x4 (A.1)

Ż1 = Z5 − β11e12 + b1u1 (A.2)

Ż4 = Z7 − β41e12 + b4u1 (A.3)

Ż5 = −β12e12 + b4u1 (A.4)

Ż7 = −β12e12 (A.5)

e22 = Z2 − x2 + Z3 − x3 (A.6)

Ż2 = Z6 − β21e22 + b2u2 (A.7)

Ż3 = Z8 − β31e22 + b3u2 (A.8)

Ż6 = −β22e22 (A.9)

Ż8 = −β32e22 (A.10)

Track Differentiator

LADR controller often incorporates a Track Differentiator (TD) as part of its ESO de-
sign. It estimates the derivative of the output signal which can be useful for disturbance
estimation and compensation. By providing an estimate of the derivative, the TD enhances
the performance of the ESO in estimating state variables and disturbances affecting the sys-
tem performance. The TD design typically involves incorporating a high pass filter into the
ESO structure. The high pass filter signal serves as an estimate of the derivative for the out-
put signal.The ESO further uses this signal for disturbance estimation and compensation.
The corresponding expressions are given below:
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e11 = Z11 − x1d + Z14 − x4d (A.11)

Ż11 = −r1e11 (A.12)

Ż14 = −r4e11 (A.13)

e21 = Z12 − x2d + Z13 − x3d (A.14)

Ż12 = −r2e21 (A.15)

Ż13 = −r3e21 (A.16)

Nonlinear state error feedback control law
The nonlinear state error feedback control law refers to a control strategy incorporating

nonlinear elements into the feedback loop to improve the controller performance which
ensures robustness and disturbance rejection condition. By utilising nonlinearities in the
control law, the controller can better handle uncertainties, disturbances and nonlinear dy-
namics present in the system. The design of the nonlinear state error feedback control
law involves formulating a control law that incorporates nonlinear functions of the system
states and control inputs. Nonlinear elements such as saturation functions, dead zones or
nonlinear gains may be introduced into the control law to improve the controller’s response.
The corresponding expressions are given below:

e13 = Z11 − Z1 + Z14 − Z4 (A.17)

u01 = β13e13 + β43e13 (A.18)

u1 = u01 −
Z5

b1
− Z7

b4
(A.19)

e23 = Z12 − Z2 + Z13 − Z3 (A.20)

u02 = β23e23 + β33e23 (A.21)

u2 = u02 −
Z6

b2
− Z8

b3
(A.22)
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