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Abstract

Optical flow (OF ) computation for fast moving objects is an integral part of many vision
systems. It uses anOF constraint to measure the relative displacement of all pixels between
two consecutive frames of a video sequence. Most of the high-performing OF algorithms
in the literature are based on variationalOF algorithm proposed by Horn and Shunck (HS).
HS formulates the OF computation as a global optimization problem which can be solved
by iteratively minimizing the cost functional using a numerical solver. The OF constraint
used as data term in the cost functional is valid only for capturing slow-moving objects.
Hence the OF constraint is replaced by a non-linear image differencing constraint with a
multi-scale or coarse to fine warping approach to compute large displacement. The large
displacement OF computation finds a lot of application in high data rate applications rang-
ing from vision aided robots to the near real-time analysis of atmospheric clouds. Realiza-
tion of such a system requires high-speed computation of OF with deterministic latency
and negligible accuracy loss.

The CPU implementation of variational multi-scale OF algorithm for high-resolution
images in real-time is restricted due to the high data rate, the serial execution of pyra-
mid levels, and the high memory bandwidth required for buffering and retrieving the im-
age pyramids and the intermediate flow vectors. Hence this research work identifies the
bottlenecks of the variational multi-scale OF algorithm and devises various architecture
modification to enhance the throughput while reducing the resource utilization and power
consumption. There are three challenges in the variational multi-scale OF algorithm, (1)
the large number of arithmetic operations involved in the computation of every flow val-
ues, (2) the presence of various feedback loops corresponding to the number of pyramid
levels, flow refinements and solver iterations, (3) the high memory bandwidth required for
buffering and retrieving intermediate flow vectors and the huge amount of storage needed
for buffering the image pyramids as well as the intermediate flow vectors.

These limitations are overcome by making various hardware adaptations to the varia-
tional multi-scaleOF algorithm which involves the restriction of the complex and resource-
intensive flow refinement loop to a single iteration without much loss in accuracy, utilizing
a Jacobi solver whose current pixel value depends only on the neighbourhood pixels of
the previous iteration instead of a Successive Over Relaxation (SOR) solver, eliminating
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some of the complex repetitive arithmetic logic present in each solver iterations to a sin-
gle arithmetic logic before the solver stage to reduce the resource utilization. The work
proposes a variable fixed point time-sharing architecture for the modified algorithm and
utilizes parallel architectures for solver, gradient, denoising and interpolation modules to
improve the throughput while reducing the resource consumption. It also introduces three
different memory banking schemes with customized access pattern for the pyramid, warp-
ing and flow resizing stage to improve the system throughput while minimizing the storage
requirement. The proposed variational multi-scale OF architecture achieves a frame rate
of 306 fps for High Definition (HD) image which is the highest when compared to the state
of the art architectures. It makes use of 169 super-scalar units with 702 deep pipelines
to achieve a throughput of 395 Giga Operations Per Second (GOPS) with a computation
density of 21.5 GOPS/Watt on a Xilinx Virtex 7 device. The work also proposes various
fixed and floating point hardware variants of the variational multi-scale OF algorithms to
analyse the tradeoff in terms of area, power consumption and accuracy.

The variational multi-scale OF architecture is further analysed in terms of resource
utilization and the flow accuracy, which leads to the design of the improved architecture
for solver and flow filtering stage. The solver stage consumes the highest area in the pro-
posed variational multi-scale OF architecture. So in order to reduce resource utilization
of solver stage, different types of solvers are analysed to come up with a high throughput
Red-Black Successive Over-Relaxation (RBSOR) solver architecture. The proposed RB-
SOR solver architecture is utilized for implementing a variational OF architecture. The
proposed variational OF architecture is deeply pipelined to achieve high throughput and
provides better accuracy at the cost of a lesser number of iteration compared to other solver
implementations. It computes OF for Ultra High Definition (UHD) frames at 48 fps reach-
ing a throughput of 406 Megapixels/s achieving a power efficiency of 43 Giga Operations
Per Second/Watt (GOPS/Watt) on a Xilinx Virtex-7 device while operating at 412 MHz.

The flow denoising at each pyramid level of the variational multi-scale OF architecture
with fewer solver iterations has a significant impact on the OF accuracy. Hence a more
accurate and edge-preserving Bilateral Filter (BF) architecture is considered for flow de-
noising. But the large computational complexity and poor performance of the BF algorithm
motivated to design a High Throughput Bilateral Filter (HTBF) architecture. The unfold-
ing of the architecture utilizing the separability and symmetry property of the filter kernel
is explored to reduce the computational complexity. The architecture utilizes a streaming
variance compute module to dynamically adapt the range filter coefficients in accordance
with the varying noise level. The proposed HTBF architecture can denoise UHD flow fields
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at 53 fps on a Xilinx Virtex-7 FPGA device. The proposed fixed and floating point variants
of the HTBF architecture achieves a power efficiency of 318 GOPS/W at 470 MHz and 37

Giga Floating-point Operations Per Second/Watt (GFLOPS/W) at 190 MHz respectively.
The proposed multi-scale architecture with improved RBSOR and HTBF subsystems is

best suited for embedded vision applications, but the current work focuses on the design of
a hardware accelerator for cloud/cyclone tracking and analysis based on a selective choice
of various computer vision algorithms and the aforementioned architectures. It aids in tak-
ing necessary precaution against extreme climatic effects, helps to study the cloud system
interactions using near-real-time satellite data. The software implementation of the pro-
posed cloud analysis framework is computationally intensive and requires large processing
time. This motivated to the design of a hardware architecture for cloud accelerator achiev-
ing a throughput of 71 fps for HD frames on Xilinx Virtex UltraScale+ device interfaced to
host PC via Peripheral Component Interconnect Express (PCIe).
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Chapter 1

Introduction

Motion is an important cue which enables the artificial systems to interact with their sur-
roundings, infer the structure of the environment, detect objects and so on. Since the objects
are composed of pixels, their motion can be captured by computing the corresponding pixel
displacements. The pixel displacement across the image frames can be small or large based
on the speed of the objects. The pixel displacement is computed using Motion Estimation
(ME) techniques which are broadly classified into a) Feature tracking b) Block matching
and c) Optical flow. The feature tracking is a two stages algorithm containing feature selec-
tion and feature tracking. The pixels or regions with strong texture information are usually
selected as feature points. Then these regions are tracked across frames based on a certain
rule to infer their motion. The feature tracking process is treated as an optimization pro-
cess which minimizes the residue error in a given window. The feature tracking produces a
sparse flow field as only distinct feature points are considered. Another category of ME is
based on block matching algorithm which is widely used in video compression and media
processing applications. The performance of the block matching algorithm is determined
by various factors including block size selection, distance metric, searching strategy etc.

With the introduction of variational Optical Flow (OF ) algorithm by Horn and Schunck
(HS) [1], it became one of the most common methods for performing dense and accurate
ME. The Horn and Shunck Optical Flow (HSOF) algorithm treats the OF computation as
a global optimization problem which can be solved using the calculus of variation [2]. The
HS cost functional is formulated as a weighted average of a data term and a smoothness
term. The data term is based on OF constraint, which assumes the pixel intensity remains
invariant under motion whereas the smoothness term assumes that the neighbouring pixels
also undergo similar motion as that of the object. The HSOF algorithm minimizes the cost
functional using a direct or numerical iterative solver to compute the relative displacement
of all pixels between two frames. The computed OF can be represented either by displace-



ment vectors or by colour code representation to provide an intuitive perception of actual
motion. The Fig. 1.1 (c) and (e) shows the motion field computed across two consecutive
images (a) and (b) from Middlebury database. The colour-code representation (e) is a dense
visualization of the flow field based on the colour wheel defined in (d). It aids for a better
visual perception of difference in the flow field of the neighbouring pixels by associating a
colour hue and saturation to the direction and magnitude of the flow vector respectively.

(a) Backyard frame 10 (b) Backyard frame 11

(c) Quiver flow (d) Colour code (e) Colour-coded flow

Figure 1.1: Colour code and vector format representation ofOF computed from Backyard
image pair in the Middlebury database.

Several modifications have been proposed to original variational HS model in the liter-
ature during the past three decades, most of the top performing algorithm is based on the
variational OF algorithm [3]. The original HSOF algorithm is extremely sensitive to large
pixel displacement because the OF constraint is based on the first order Taylor approxi-
mation. This leads to undesired results especially in the cases where objects tend to have
large displacements. In order to handle large displacement, the OF constraint of HSOF
algorithm is replaced by an image differencing model, which leads to a highly non-linear
formulation of HS cost functional [4]. The direct computation of non-linear HS cost func-
tional by Euler Lagrange method at fine resolution leads to suboptimal results. A better
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initialization leads to faster convergence, which is achieved by multi-scale or coarse to
fine approach which downsamples the input image to create a pyramid stack. It help in
localizing the search over fewer number of pixels at the coarsest scale which is used to
initialize next finer scale thus increasing the effective motion range which is critical for
most of the real-world applications. The computation of large displacement OF finds a
lot of applications in flow-based action recognition [5], obstacle avoidance, video surveil-
lance [6], vehicle speed estimation [7], accurate solar irradiance forecast [8], tracking the
inter/intra motions of the cloud/cyclone systems and analysing the variation of long term
cloud patterns [9].

OF

Solver

Flow 

filter

Pre-

processing
Gradient

Level-1

(Fine)

Warping

D
o

w
n

sa
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le

Upsample

Image 2 Pyramid

PE 1

Level-3

Level-2

Level-4

(coarse)

PE 2

PE 3

PE 4

Image 1 Pyramid

Figure 1.2: Block diagram of a variational multi-scale OF algorithm having four different
PE operating on a consecutive image sequence.

Fig. 1.2 shows the block diagram of variational multi-scale OF system. The algorithm
constructs a 4 level image pyramids for two consecutive images, the number of pyramid
levels depends on the maximum pixel displacement that can be captured accurately by the
algorithm. Each pyramid level utilizes a basic Processing Element (PE) which contains
pre-processing, gradient computation, solver, flow filtering and image warping modules to
compute the variational OF . The OF computation for multi-scale architecture starts at the
coarsest level (level-4). A Gaussian filter is utilized in the pre-processing stage to smoothen
the input image, this is then fed to a spatiotemporal gradient stage for computing spatial
and temporal gradients. The OF is computed by iteratively minimizing the non-linear HS
cost functional using an iterative solver. It is denoised using a flow filter and upscaled to
the next finer level (level-3). The warping transforms the co-ordinate of the second frame
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with the upsampled flow to compensate for the displacement at every level. This helps in
reducing the motion range to a single scale OF filter range. This process is repeated for all
levels until the finest level (level-1) is reached. The warping and upsampling module are
unused in level 4 as the initial flow value are 0 and level 1 respectively. Due to the algorithm
complexity and huge computational requirement, the design of variational multi-scale OF
architecture with real-time [10] performance and sub-pixel accuracy [11] for embedded
vision applications is still an active research area.

1.1 Implementation platforms

The factors which limit the high throughput implementation of variational multi-scale OF
algorithm, while achieving low power consumption need to be analysed before the selec-
tion of implementation platform. The serial execution of the algorithm limits the achievable
parallelization since each level of the OF is to be computed only after the completion of
previous level OF . Hence the software implementation of variational multi-scale OF is
typically on the order of seconds per frame which prevents many real-time applications
of OF . The algorithm operates on a large amount of data (High Definition (1280 × 720)
frames at 176 fps) and involves a large number of computations to estimate motion at a
single pixel to find accurate OF . This computational complexity accounts to the fact that
the multi-scale variationalOF algorithm has L pyramid levels with each level havingNsolv

number of solver iterations. Also, since the non-linear multi-scale OF model involves
complex mathematical operation, this needs to be simplified in accordance with the se-
lected platform. A software profiling of variational multi-scale OF algorithm identifies
solver as the most computationally intensive part other than the flow filtering, warping and
interpolation stages. It also consumes a large amount of memory for buffering the interme-
diate results and storing the images of the pyramid stack. The available memory bandwidth
for a particular platform also limits the achievable performance.

There exist several platforms like CPU, General Purpose Graphics Processing Unit
(GPGPU), Field Programmable Gate Arrays (FPGAs), Digital Signal Processors (DSPs),
which can solve the above-mentioned challenges of variational multi-scale OF algorithm
at a granular level. Matlab is primarily intended for numerical computing, providing the
simplest platform for modelling the variational multi-scale OF algorithm with minimum
design time. A more practical and faster solution is provided by the software implementa-
tion of variational multi-scale OF [12, 13, 14, 4] algorithm on CPU. But is limited to reach
real-time performance due to the complex mathematical operations, iterative loops, high
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resource utilization and low memory bandwidth.

The performance improvement can be explored on a GPGPU [15] using CUDA trading
off the increased power consumption. There exists diverse GPGPU [16, 17] implementa-
tion of multi-scale variational OF approaches. However, a GPGPU implementation has
higher power consumption and cannot provide a deterministic latency in terms of the num-
ber of clock cycles, which are the most demanding requirements in embedded and portable
applications. The DSP or FPGA based solutions achieve a very high level of parallelism
in operations with a reduced clock frequency of about two orders of magnitude less than a
conventional processor or a GPGPU device. The DSPs are more suitable for low power ap-
plications while FPGAs are best suited for high-performance applications and serve as the
initial prototyping platform in the development of ASIC solutions [18]. The FPGA-based
platform was selected for its low power, small size and increasing computation capabil-
ity which are all essential for embedded vision applications. The research work explores
the enhancement of throughput, reduction in resource utilization and efficient memory or-
ganisation of multi-scale variational OF methods using optimization in architectural and
algorithmic level.

1.2 Objectives and Scope

Scope of the work is on the design of a VLSI architecture for variational multi-scale OF
to compute the dense and accurate motion of large displacement objects. The work ex-
plores different variational multi-scaleOF architecture and its internal subsystems in terms
of accuracy and hardware complexity. The research work focuses on hardware friendly
adaptation of variational multi-scale OF algorithm and its time-sharing VLSI architecture
prototyped on FPGA device. The proposed techniques are particularly designed for grey
scale image sequences. The problem addressed in the work is on how to overcome the
complexity of variational multi-scale OF algorithm for hardware implementation. Most
of the conventional methods based on CPU/GPGPU implementations are not suitable for
real-time and low power applications.

The objective of work is to realize a high throughput variational multi-scale OF archi-
tecture which can compute large displacement of OF with deterministic latency and negli-
gible accuracy loss in real-time. In order to achieve this, the work involves the analysis of
variational multi-scale OF architecture subsystems to understand a) resource requirement
of iterative Jacobi solver implementations and proposes methods to reduce the number of
iteration making design area efficient b) effect of flow accuracy on the selection of flow
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filter in each pyramid level and proposing improved filter architecture without affecting the
design throughput. Another goal is to design an accelerator based on the high throughput
variational multi-scale OF architecture to speed up the computation of fast moving clouds
and cyclones from satellite images or sky cameras which aids the disaster management
organizations to mitigate the impact on life and property by taking necessary precautions.

1.3 Our Contribution

The research work focuses on the design of a high throughput variational multi-scale OF
architecture for computing dense and accurate OF of fast moving objects in embedded and
portable vision applications. The major contributions of the work are the following,

• The work proposes a highly pipelined variational multi-scale OF architecture for
capturing large displacement in real-time. It involves the design of a variable fixed
point time-sharing architecture to minimize resource utilization and utilizes parallel
and unfolding architectures of solver, gradient, denoising and interpolation modules
to maximize the throughput. The architecture also introduces three different mem-
ory banking schemes with customized access pattern for the pyramid, warping and
flow resizing stage to improve the system throughput while minimizing the storage
requirement.

• Another focus of work is to explore the internal subsystems of variational multi-
scale OF architecture to improve throughput and area efficiency. It involves the
design of a high throughput hardware architecture for RBSOR solver consuming
lesser resources than Jacobi solver with a similar number of iterations. Followed
by the design of a high throughput BF architecture which helps in improving the
computed flow accuracy at each pyramid level of the variational multi-scale OF
architecture with less number of solver iterations.

• The validation of proposed variational multi-scale OF architecture with improved
RBSOR and HTBF subsystems is performed by designing a high throughput hard-
ware accelerator interfaced to host PC via Peripheral Component Interconnect Ex-
press (PCIe) for clouds/cyclone analysis and tracking from noisy satellite imagery.
It involves various hardware adaptations and utilizing high throughput architectures
for pre-processing, cloud motion computation, segmentation, labelling and tracking.
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1.4 Outline

This work investigates OF computation in several aspects, with a focus on the design of
variational multi-scale OF architecture for large displacement computation with its sub-
systems and application towards cloud/cyclone tracking. The rest of the thesis is structured
as follows:

Chapter 2 discusses the different OF algorithms and the main elements of the varia-
tional OF algorithm. The chapter gives a brief introduction to the general notion of OF ,
and the general cost function used to compute displacements. It also analyses the chal-
lenges faced in the real-time implementation of variational multi-scale OF architecture in
different platforms. Additionally, this chapter touches on the applications of OF .

Chapter-3 investigates the design of high throughput variational multi-scale OF archi-
tecture for fast moving objects. This chapter introduces the hardware adaptation of vari-
ational multi-scale OF algorithm, followed by the design of a variable fixed point time-
sharing architecture and dedicated banking schemes with their implementation details.

Chapter-4 compares different iterative solvers and come up with high throughput and
fast converging RBSOR solver architecture with the implementation details. Followed by
a design of high throughput BF architecture to improve the accuracy of the computed flow
field.

Chapter-5 discusses the design of a high throughput hardware accelerator interfaced
to host PC via PCIe for cloud/cyclone tracking. It also includes hardware implementation
details regarding pre-processing, segmentation and tracking stages. The chapter concludes
with experiments on synthetic and real-world satellite images showing their applicability
in cloud/cyclone tracking.

Chapter-6 concludes this thesis. In this chapter, the work presented is summarized with
the proposed improvements. A detailed discussion on future improvements is also included
in this chapter.
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Chapter 2

Preliminary study towards a Hardware
Implementation

This chapter presents a brief description of the existing OF techniques with an emphasis

on variational OF algorithm based on HSOF. This chapter discusses the modification in

the variational OF algorithm to handle large pixel displacement. This part focuses on the

challenges faced in the real-time implementation of variational multi-scale OF architec-

ture in different platforms. It also gives brief information about the application of large dis-

placement OF such as embedded vision systems, hardware accelerators for cloud/cyclone

analysis with the benchmarking datasets for analysing the architecture performance.

2.1 OF constraint model

Let I(X) or I(x, y, t) represent the intensity of the pixel (x, y) in the video sequence at
time t. The brightness constancy assumption states that the pixel intensities between two
consecutive frames I1(X) and I2(X + h) of a video sequence remain constant over time
as given in equation (2.1), where h = (∆x

∆t
, ∆y

∆t
) = (u, v) corresponds to the flow vectors in

horizontal and vertical direction respectively.

I1(X) = I2(X + h) (2.1)

By expanding the equation (2.1) using Taylor series [1] to get equation (2.2).

I2(X + h) = I1(X) + Ixu+ Iyv + It +H.O.T (2.2)

where Ix, Iy are the spatial gradients, It corresponds to temporal gradient and Higher
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Order Terms (H.O.T) are often set to 0. Substituting the equation (2.2) in equation (2.1)
leads to OF constraint given by equation (2.3).

Ixu+ Iyv + It = 0 (2.3)

However, the OF constraint is underconstrained with two unknowns u and v, which
leads to the aperture problem. The aperture problem describes the ambiguity of the in-
ferred motions when observing local image structures [19]. The local observation only
specifies the component of motion perpendicular to the edge boundary. Hence, any infor-
mation related to the component of motion parallel to the edge is lost, which results in
the ambiguity. Researchers have proposed various OF methods [3] by encoding a priori
information of the flow field along with theOF constraint to make the problem well posed.

2.2 Classification of OF algorithm

Generally, optical flow techniques are classified into a) Differential-based b) Region-based
c) Feature-based d) Energy-based e) Phase-based and f) Convolutional Neural Network
(CNN)-based techniques.

2.2.1 Differential methods

The differential technique or gradient-based approach computes the spatial and temporal
derivatives of the image brightness [20] to estimate the velocity of the object. The differ-
ential techniques are classified into global and local methods, based on the difference in
spatial coherence imposed by either local or global constraints.

Variational method

The HSOF algorithm is considered as the global variational method, which formulates the
OF as the minimizer of a certain energy functional having a data term and smoothness
term. The introduction of global smoothness term helps to solve the aperture problem. It is
based on the assumption that neighbouring pixels belong to the same object will undergo
a similar motion. The energy model uses quadratic functionals based on the assumption
that the image noise and the flow derivatives are expected to follow a Gaussian distribu-
tion and hence is sensitive to the presence of noise, illumination changes and occlusions.
The data term takes the form of high-order constraints like gradient constancy [14], Hes-
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sian constancy and Laplacian constancy in [21]. The gradient constancy together with the
OF constraint as data term in HSV colour space is utilized in [22] to handle illumination
changes. The work [23] introduce a more suitable data term based on a binary weighted
map to switch between gradient constancy or brightness constancy.

Smoothness term is another part of the cost functional which assumes similar motion
for pixels in the neighbourhood while preserving discontinuities at motion boundaries. The
original smoothness term proposed in the HS algorithm ignores flow discontinuities and
over-smooth motion boundaries. Hence an image-driven isotropic and anisotropic smooth-
ness terms are introduced in [24] and [25], to suppress smoothing across image bound-
aries. The isotropic term avoids over-segmentation of textured structures [26], while an
anisotropic term [27] achieves smoothing along flow discontinuities while producing fewer
discontinuities. The work [27] constructs a joint image and flow driven smoothness term
to avoid artefacts of over-smoothing and over-segmentation. The spatial-smoothness can
be extended to the temporal domain based on the assumption that flow varies smoothly and
slowly over time. The temporal smoothness is achieved by considering a temporal flow
gradient [28, 27], or considering a temporal coherence along the object motion trajectory
[29, 30].

The global cost functional can be minimized by continuous optimization [31, 32] like
gradient descent [27] and variational method [1, 14] or a discrete optimization [11] using
patch matching [33] or graph cuts algorithms [34]. The discrete optimization method ap-
proximates the continuous solutions space to enable a complete search of the state space.
The differentiation of the energy functional is not performed in discrete optimization meth-
ods and hence it can handle a wide variety of data and regularization [35]. But these
methods are limited in terms of accuracy and efficiency by the size and number of the label
space [36].

Local differential method

The Lucas and Kanade (LK) [37] proposed a parametric model to capture the motion within
a local neighbourhood. The model signifies the relation between the brightness and motion
of each pixel in a local neighbourhood. The OF is computed by performing a least-square
minimisation of the given set of equations for all the pixels in the local neighbourhood. The
selection of a small neighbourhood leads to insufficient information leading to the aperture
problem whereas the selection of large neighbourhood leads to the inclusion of pixels from
other motion surfaces. The local methods are not able to compute OF in homogeneous
regions as well as regions with motion discontinuities [38]. The implementation of non-
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variational LK [37] algorithms on GPU can be found in [39, 40]. The absence of smooth-
ness term in the LK algorithm made the computation simpler and hence is found to be
suitable for high-speed VLSI and FPGA implementations in [41] and [42] respectively.

2.2.2 Region matching

The region-based technique relies on finding the best match between two patches in the
consecutive images. The best match is obtained by identifying the largest correlation across
shifted patches [43]. It is more robust than differential methods in the presence of noise
and works well with downsampled images. The OF computed by region matching method
lacks sub-pixel accuracy, and hence need to perform additional flow refinement to improve
the flow accuracy.

2.2.3 Feature matching

The feature-based technique is a two-step process, in which the first step retrieves the sparse
discriminative features like corners and edges from successive images. Followed by the
feature matching step to compute the sparse OF . Even though the flow field is sparse, it
produces a robust field by ignoring ambiguous areas. The feature-based OF methods are
widely used for large displacement matching [44]. If the selected object lacks discrimina-
tive features or is disappeared in the subsequent frame, the computed motion field will be
very sparse.

2.2.4 Frequency methods

The frequency-based technique calculates OF in the Fourier domain using velocity-tuned
filters. The frequency-based techniques are classified into Energy based method and Phase
base method.

Energy based method

The energy-based methods compute the OF based on the energy of the velocity tuned
filters. The energy of continuous motion in space corresponds to the orientation of the
plane in the spatiotemporal frequency domain with the orientation corresponding to the
velocity [45]. The quadrature Gabor filter described for motion perception [46] is modified
to compute OF [47].
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Phase based method

The phase-based method is insensitive to changes in speed and contrast is utilized to com-
pute the phase response of the band-pass filter. Fleet-Jepson [48] defines the velocity com-
ponent as the output of bandpass velocity tuned Gabor filters. The image is decomposed
into band-pass channels, in a similar way as that of quadrature-pair filters in steerable pyra-
mids [49]. Phase-based methods have sub-pixel accuracy and the velocity resolution can
be further improved by taking responses from neighbouring filters.

2.2.5 CNN based method

The CNN based methods outperform most of image processing tasks including OF [50]
by replacing the hand-crafted features with learned features [51]. The learned features are
integrated into a common optimization framework to compute OF [52, 53]. CNN’s are
commonly trained in a supervised way requiring a large amount of ground-truth to achieve
reasonable accuracy. However, with limited data set in the case of OF , it is difficult to
train the algorithm to make it adaptable to the respective scenarios. The recent work also
addresses the unsupervised training of CNN for computing OF [51].

2.3 Algorithm formulation of Variational OF

With the introduction of variational OF algorithm by HS, many extensions and modifi-
cations have been suggested to improve the performance of the HS method on estimating
OF [14, 54]. According to the most recent survey [3], most of the top performing OF
algorithms are based on variational HS technique, where increased accuracy and the fill-in
effect are of major concern [55, 56]. The three main advantages of variational OF [31] are,
a) it can combine merits of different assumptions into one single minimization framework,
b) it has the filling-in effect which yields a dense flow field, whereas most other methods
perform post-processing to interpolate the sparse flow field and c) the cost functional can
be made rotational invariant.

The HS algorithm formulates theOF as a variational problem, where the desired vector
field h is defined as the minimizer of a certain energy functional E(h) as given in equa-
tion (2.4). This functional has two terms: a data term, given by the OF constraint, and a
smoothness term that is based on the gradient of flow:

E(h) = (Ixu+ Iyv + It)
2 + α2(|∇u|2 + |∇v|2) (2.4)
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where the parameter α controls the weight of smoothness term in comparison with the
OF constraint. The minimization of cost functional given in the equation (2.4) by Euler-
Lagrange formulation produces a system of Partial Differential Equations (PDE) given by
equation (2.5).

Ix
2u+ IxIyv = α2div(∇u)− IxIt (2.5)

IxIyu+ Iy
2v = α2div(∇v)− IyIt

The equations (2.5) is discretized by approximating Laplacian according to div(∇u) =

(ū − u), where (ū, v̄) represents the local averages of velocity components. The local
averages (ū, v̄) are estimated from the eight neighbours of (u, v) given in equation (2.6).

ū =
1

6
(un(i−1,j) + un(i+1,j) + un(i,j−1) + un(i,j+1)) +

1

12
(un(i−1,j−1)+ (2.6)

un(i+1,j−1) + un(i−1,j+1) + un(i+1,j+1));

v̄ =
1

6
(vn(i−1,j) + vn(i+1,j) + vn(i,j−1) + vn(i,j+1)) +

1

12
(vn(i−1,j−1)+

vn(i+1,j−1) + vn(i−1,j+1) + vn(i+1,j+1));

After substitution and rearranging the following system of equations (2.7) is obtained.

(Ix
2u+ Iy

2u+ α2)(u− ū) = −Ix(Ixū+ Iyv̄ + It) (2.7)

(Ix
2u+ Iy

2u+ α2)(v − v̄) = −Iy(Ixū+ Iyv̄ + It)

Writing these equations (2.7) for each pixel of the input images form a sparse system
of linear equations. This equation (2.8) can be solved efficiently with an iterative scheme.

un+1 = ūn − Ix
(Ixū

n + Iyv̄
n + It)

(α2 + Ix
2 + Iy

2)
(2.8)

vn+1 = v̄n − Iy
(Ixū

n + Iyv̄
n + It)

(α2 + Ix
2 + Iy

2)

The iterative process can be stopped before a fixed number of iterations, if a stopping
criterion in equation (2.9) based on two consecutive values of h is met.

1

N

∑
i,j

(un+1
i,j − uni,j)2 + (vn+1

i,j − vni,j)2 < ε (2.9)
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2.4 Variational Multi-scale OF algorithm

The main shortcoming of variational OF methods is that they are extremely sensitive to
large pixel displacement, as the OF constraint is based on the first order Taylor approxi-
mation. This leads to undesired results as the computed flow values can easily get trapped
in local minima especially in the cases where objects tend to have large displacements. To
estimate large pixel motion, the OF constraint is replaced with non-linear image differ-
encing model given in the equation (2.10) to get a non-linear HS cost functional [14, 4].

I1(X)− I2(X + h) = 0 (2.10)

Substituting the equation (2.10) in the original cost functional in the equation (2.4) yield
a modified non-linear HS cost functional given in the equation (2.11).

E(h) = (I1(X)− I2(X + h))2 + α2(|∇u|2 + |∇v|2) (2.11)

The minimization of energy functional in the equation (2.11) yields the following Euler-
Lagrange solution given in the equation (2.12).

(I2(X + h)− I1(X))I2x(X + h)− α2div(∇u) = 0 (2.12)

(I2(X + h)− I1(X))I2y(X + h)− α2div(∇v) = 0

The equations (2.12) are non-linear in h due to the I2(X + h) term. Hence a first order
Taylor series linearisation is performed on I2(X + h) as given in the equation (2.13).

I2(X + hn+1) = I2(X + hn) +∇I2(X + hn) · (hn+1 − hn) (2.13)

Further the divergence of the gradient of flow can be approximated by the equation (2.14).

div(∇u) = u− u (2.14)

div(∇v) = v − v

Substituting the equation (2.13) and (2.14) in the system of equations (2.12) to get the
new system of equations (2.15) which is solved using Jacobi numerical iterative scheme
with the iteration index l.
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Ix(Iz + Ixdu
l+1 + Iydv

l+1)− α2
(
(ul + du

l
)− (ul + dul)

)
= 0 (2.15)

Iy(Iz + Ixdu
l+1 + Iydv

l+1)− α2
(
(vl + dv

l
)− (vl + dvl)

)
= 0

where the given notation corresponds to the equation (2.16).

I1(x) = I1 (2.16)

I2(x+ h) = I2

I2x(x+ h) = Ix

I2y(x+ h) = Iy

Iz = I2(x+ h)− I1(x)

The system of equations (2.15) are rearranged to compute flow increments du and dv
of the original flow u and v respectively as given in the equations (2.17).

duk,l+1((Ikx)2 + α2) + dvk,l+1(IkxI
k
y ) = α2(uk,l + du

k,l − uk,l)− IkxIkt (2.17)

dvk,l+1((Iky )2 + α2) + duk,l+1(IkxI
k
y ) = α2(vk,l + dv

k,l − vk,l)− Iky Ikt

The solution of equations (2.17) at fine resolutions is complex, as it involves a higher
risk of converging to a local minimum. The numerical approximation is achieved using
a coarse-to-fine warping strategy [14] or multi-grid approaches [55], providing a better
initialization to improve the convergence. The multi-grid methods are numerical algorithms
used to solve differential equations [57] and offer a fast numerical scheme for solving linear
equations on CPUs for some low and medium resolution images. Bruhn et al. [58] proposed
the use of a full multi-grid method to speed up the computation of variational OF . Another
multi-grid computation algorithm was proposed in [55], which implements the variational
algorithm that was proposed by Brox et al.[14]. However multi-grid methods are known
to be problem specific and require very complicated implementation, hence multi-scale
methods are commonly used for solving the equations (2.17). The over smoothing of fine
structures in coarse-to-fine strategy can be handled by integrating an additional descriptor
matching in the HS cost functional [59].

The Gaussian smoothing followed by the sub-sampling is applied to the input image
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Figure 2.1: Block diagram of a variational multi-scale OF algorithm.

[60] to build the image pyramid as shown in Fig. 2.1. The sub-sampling at pyramid level k
reduces the image resolution by a factor of η as compared to the previous level k-1, which
also involves the reduction of the maximum pixel displacement in the available filter range
applied at that level. The solution is first looked for in the coarsest layer of this pyramid,
where the problem is usually easier to be solved. The flow computation stage evaluates
the equations (2.17) using iterative solvers. The computed flow increment at each level
is merged with the previous flow and filtered to remove the random flow values. A two-
dimensional median filter is used to regularize the results. The flow field is upsampled and
scaled by a factor of η to compute next fine level flow as given in the equation (2.18).

hk = Upsamp(
h(k−1)

η
) (2.18)

hk = hk+ < duk, dvk >

The images are warped with the flow estimate from the previous coarse level to com-
pensate for Taylor approximation of the solver equations. The process of image warping
is fundamental to many image processing application and is given in the equation (2.19).
Warping adds the motion field obtained from the previous scale in order to reduce the
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Figure 2.2: Backward image warping.

movement range in the input frames and adapt it to the filter size of the OF .

Ik2w = Ik2 +∇I2 · hk (2.19)

Since forward warping results in holes in the destination image, the backward image
warping transforms the coordinates of the destination image to the coordinates of the source
image using the estimated flow as shown in Fig. 2.2. Although image holes are avoided
during the transformation in backward warping, the transformed coordinates may be non-
integers. The non-integer coordinates thus obtained are then corrected using interpolation
techniques to get the nearest integer coordinates. The interpolation can be bilinear or bi-
cubic, their performance differs especially when comparing the speed, sharpness of the
interpolated image and how well they can preserve details and edges. In the bilinear in-
terpolation, the non-integer coordinate is approximated to an integer coordinate based on a
weighted average of 4 nearest neighbours.

It is having a better approximation value in comparison to nearest-neighbour interpola-
tion, and the transition between intensity values is smoother. The design utilizes a simple
2 × 2 bilinear interpolation scheme which consumes lesser resources than bi-cubic inter-
polation for smoothing the interleaved pixels whose address is generated from the warped
co-ordinates as given in equation (3.2) and ( 2.20).

I(x′, y′) = I(l, k)txty + I(l + 1, k)(1− tx)ty + (2.20)

I(l, k + 1)tx(1− ty) + I(l + 1, k + 1)(1− tx)(1− ty)

The warping utilize computed flow values to generate a motion compensated image at
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every level, except the fine level. This process is repeated for each pyramid layer until the
fine level is reached. The number of pyramid levels is dependent on the image resolution
and expected motion range presented in the scene.

2.5 Implementation platforms

The software implementation of variational multi-scale OF algorithm on CPU cannot sat-
isfy the real-time computation, size or power requirements due to the complex mathemat-
ical operations, iterative loops, high computation requirement and low available memory
bandwidth. In recent years, many new alternatives including ASICs (Application Specific
Integrated Circuits), FPGAs, GPUs, DSPs, MPPAs, appear to fill the gap between the con-
ventional CPU and high-performance requirements.

Table 2.1: Performance of different available platforms.

Platform
Chara.1 Performance Programmability Cost Power

CPU Low High Low High
ASIC High Low Low Low
FPGA Medium Low-Medium Medium Medium

GPGPU High High-Medium Low High
DSP Medium High-Medium Low Low

1 Characteristics of the platform.
Source : Zhaoyi Wei [61]

Table 2.1 shows the comparison of the performance of the available platforms for imple-
menting the variational multi-scale OF architecture. The flexibility of architecture comes
at the cost of difficulty in programmability. The development of an algorithm in CPUs is
easier but the serial nature of execution leads to low throughput. An ASIC implementation
can handle complex and compute-intensive processing tasks, but the design is very complex
and time consuming due to the timing, layout and routing in the hardware. Even though
the ASICs can achieve maximum performance, its high Non-Recurring Engineering cost
(NRE) and large design cycle lead to the development of alternatives like FPGAs, GPGPUs
and DSPs to fill the gap between ASICs and CPUs.
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2.5.1 GPGPU

With the release of Compute Unified Device Architecture (CUDA) by NVIDIA in 2007,
it became a popular platform for implementing the compute-intensive tasks. The CUDA
Application Program Interface (API) released by NVIDIA allows programming the CUDA-
compatible GPGPUs in the custom CUDA C language. The CUDA architecture is based
on a hierarchical structure with the top level having an array of Streaming Multiprocessors
(SMs). For each streaming multiprocessor, there are multiple Scalar Processor (SP) cores,
shared memory and other modules. The basic functional units are called threads which
are grouped to form warps, which are executed in SP cores inside the multiprocessor. The
GPGPU also have a hierarchical memory structure which includes global memory, constant
memory, texture memory, local memory and shared memory. The local memory is owned
by the SP core whereas the shared memory is accessible to all the SPs in a multiprocessor
and all multiprocessors have access to the global memory. The design of a GPGPU algo-
rithm with high performance needs critical memory management, as different memories
have different latency.

2.5.2 FPGA

Nowadays, FPGAs with good cost and performance traits is found to be a better alterna-
tive for most of video and image processing applications [62]. The FPGA architectures
improve the throughput by ordering the data in a hardware pipeline and processing them
in parallel. An FPGA design is coded in Verilog/VHDL Register Transfer Logic (RTL)
and synthesized to corresponding circuits. The place and route tool will map the hardware
circuits onto the physical resources on the FPGA. The higher level languages lead to low
quality synthesized codes than the manually written RTL. The basic elements of the FPGAs
include Block RAMs (BRAM), Ultra RAMs (URAM), Look-Up Tables (LUTs), DSP48,
registers, interconnection wires, etc. The FPGA designer needs to specify the behaviour of
hardware circuitry, the interconnection between modules, timing and other details at each
clock cycle. Hence FPGA design process consumes significantly more time than CPU im-
plementations. A post place and route simulation of the entire system and the independent
modules need to be performed separately before validating in the FPGA board. The design-
verification cycle of FPGA is much shorter than that of ASICs. The configurable structure
of FPGAs helps to design scalable architectures for multi-FPGAs systems. It provides an
efficient solution for implementing large resource-consuming algorithms. The tradeoffs
between FPGA and software implementation need to be analysed before mapping an al-
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gorithm into FPGA. It includes the feasibility of using the fixed-point operations instead
of floating-point operations, feasibility to fully pipelined the existing computer vision al-
gorithms, presence of complex arithmetic operations like division, trigonometric functions
and so on. With the floating point support available in the current FPGA, it is not still an
efficient platform for implementing complex floating-point algorithms.

2.5.3 Others

Besides FPGAs and GPGPUs, some of the other popular hardware architectures are DSPs
and Massively Parallel Processor Arrays (MPPAs). The DSP is a dedicated microproces-
sor with an optimal architecture for improving real-time signal processing performance.
It usually supports optimized arithmetic operations like geometric transforms, Multiply-
Accumulates (MACs) and even special memory addressing modes to improve efficiency.
Hence the DSP with a microprocessor architecture is more suitable for embedded, less com-
putationally intensive and lower power applications. An MPPA architecture is a single-chip
with a massively parallel processing array with hundreds or thousands of processor cores
with memories [63]. The array is based on a Reduced Instruction Set Computer (RISC)
processor. These processor arrays can be programmed using software languages and are
compiled with custom compilers. The complex algorithms are partitioned across differ-
ent processor arrays and there processing and communication are controlled by the custom
scheduler and dedicated bus interfaces. An Ambric [64] is an MPPA architecture imple-
menting OF algorithm.

2.6 Applications of Variational Multi-scale OF algorithm

Even though the OF is an approximate projection of the true motion of the scene, it pro-
vides valuable information about the spatial arrangement of the viewed objects and the
change rate. To extract information at a much finer granularity, OF becomes a necessity
for a wide range of applications such as activity recognition [5] through improved tracking
of limbs and balls in sports videos, video surveillance [6], vehicle speed estimation [7],
analysing the variation of long term cloud patterns [9] and so on.

2.6.1 Video surveillance

One of the important application ofOF is visual surveillance. The surveillance system con-
tain various functional modules such as motion detection, depth estimation, segmentation
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[65], object tracking[66], and object behavioural analysis [67]. The OF aids in effectively
separating the foreground objects from the background, and identifying the moving objects
[68]. This helps to detect and tracking of objects accurately across the image sequence.

2.6.2 Autonomous robot navigation

The behaviour of flying bees [69] have inspired the development ofOF for achieving robot
navigation. The autonomous navigation system helps the robots in determining the best
suitable path or track between the start location and destination [70]. OF is widely used for
obstacle detection and collision avoidance [71]. The OF helps to extract the information
about the unknown environment and aids in determining the speed and direction at which
the robot can navigate [72].

2.6.3 Metrological applications

Since the cloud has a significant role in controlling tropical circulation, the cloud analysis
based on OF helps to study the interaction between cloud systems, modification of radia-
tion by absorption and reflection. The cloud systems can move, grow and decay or could
be embedded in larger systems such as a Tropical Cyclones (TC). A larger cloud system
contains various hierarchy of cloud segments with different temporal and spatial scales.
The smaller segments can move at different speed or direction as compared to the large
cloud segment.

The tracking of cloud system interactions using near-real-time satellite data aids in
now-casting [73] to predict high-intensity precipitation. The tracking of TC centres from
satellite images aids in forecasting the cyclone track by integrating into a deep learning
framework [74]. It helps in predicting disastrous winds and heavy landfall on coastal areas.
Also, the analysis of cloud lifetime characteristics helps to study the variation of weather
condition [75] over a given region for a specific period of time.

2.7 Evaluation benchmarks

The public datasets with ground truth allow researchers to compare their novel algorithms
to existing work, and understand relative strengths and weaknesses. In [20], a quantitative
comparison of nine classical OF algorithms is performed with five synthetic and quasi-
synthetic testing sequences, but are too simple to check the performance of modern OF
algorithms. The image database is mainly divided into two types, synthetic and real-world
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images. It is relatively easy to find a precise ground truth for synthetic images, as these
images are generated by computer graphics. Conversely, obtaining ground truths for im-
ages with real objects are more challenging. This section introduces effective benchmarks
recently generated with modern techniques to evaluate OF algorithms throughout the re-
search work.

(a) Frame 10 (b) Frame 11

(c) Frame 10 (d) Frame 11

Figure 2.3: Backyard and Grove sequence from the Middlebury database.

2.7.1 Middlebury dataset

The Middlebury dataset [76] is divided into four types of test images, each encompassing
different challenge goals, such as non-rigid motion, real-world scenarios, and dense ground
truths with sub-pixel accuracy. The dataset includes both synthetic and real-world images
as shown in Fig. 2.3. The synthetic images have the ability to compute a precise ground
truth, in addition to having control of the texture and the scenario of the scenes. The training
contains images with less than 3% of the pixels have a displacement of over 20 pixels, and
none goes over 25 pixels.
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(a) (b)

Figure 2.4: Image sequence from MPI-Sintel database.

2.7.2 MPI-Sintel dataset

The MPI-Sintel dataset [77] is a long photo-realistic sequence with extremely difficult cases
taken from an animated 3D short film as shown in Fig. 2.4, it contains large motion, spec-
ular reflections, motion blur, defocus blur, and atmospheric effects. The dataset is divided
into two categories. The first is the training image category, which includes images with
open-access ground truth. The second category is the test image category, with withheld
ground truth. MPI-Sintel provides 1064 frames for training and 564 for testing. The frames
were taken from 35 clips selected from the film. Images used in this dataset are rendered
at different levels. The first level is albedo which is the simplest rendering which does
not contain illumination effect and has a piecewise constant colour. This means that the
OF constraint holds across the whole image. The second level is the clean rendering level
which includes illumination effects (e.g. shading, specular reflections). The final level is
the one that matches the final version of the film, which includes more complex effects and
adds motion blur, atmospheric effect, colour correction, etc. The training set contains more
than 17.5% of the pixels with motion over 20 pixels and approximately 10% over 40 pixels.

(a) (b)

Figure 2.5: Image sequence from KITTI database.

2.7.3 The KITTI dataset

The KITTI [78] is a dataset taken from a driving platform in an uncontrolled environment.
It contains real sequences captured from challenging conditions like non-Lambertian sur-
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faces, different illumination conditions and large motion. The database contains 50% den-
sity ground truth but offers a real-world benchmarking sequence rather than images taken
in a controlled environment as shown in Fig. 2.5. The KITTI benchmark evaluation is
based on a specially developed protocol. It uses Average Endpoint Error (AEE) threshold
of τ pixels (τ ∈ (2,.. 5)), and computes the percentage of pixels above the threshold.

2.7.4 Satellite Images dataset

The database contains Thermal Infra-red (TIR) channel images from various Geostation-
ary satellites like INSAT-3D and Kalpana-1 from Indian Space Research Organization,
Meteosat-5/7 from European Space Agency and so on, as shown in the Table. 2.2.

Table 2.2: Satellite dataset with their characteristics.

Satellite

Chara.
Country

Location

(deg)
Sensor Launch

Channel

(µm)

Spat.1

(km)

Temp.2

(min)

Radio.3

(bits)

KALPANA-1 India 74 E VHRR 2002 10.5− 12.5 8× 8 30 10

INSAT-3D India 82 E VHRR 2013 10.3− 11.3 4× 4 30 10

METEOSAT-7 Europe 57.5 E MVIRI 1997 10.5− 12.5 5× 5 30 8

METEOSAT-5 Europe 0 E MVIRI 1991 10.5− 12.5 5× 5 30 8

GMS Japan 140 E VISSR 1995 10.5− 12.5 5× 5 30 8

GEOS-8 US 75 W VISSR 1994 10.5− 12.5 4× 4 15 10

GEOS-10 US 135 W VISSR 1997 10.5− 12.5 4× 4 15 10

1 Spatial resolution is represented in kilometres.
2 Temporal resolution is denoted in minutes.
3 Radiometric resolution is described in number of bits.

The Kalapana-1 and INSAT-3D (Indian satellites) datasets are available from the oper-
ational website [79] the Meteosat-5/7 images are obtained from EUMETSAT [80] and the
NCEP/CPC 4km Global (60N-60S) IR Dataset is accessible from NOAA climate predic-
tion centre [81]. The Indian meteorological satellite Kalpana-1 was launched in the year
2002. It features a Very High-Resolution Scanning Radiometer (VHRR) for visible (VIS),
thermal infrared (TIR) and water vapour (WV) band images, and a Data Relay Transponder
(DRT) payload. The ground resolution of data is 2 km for VIS (0.55-0.75µm) and 8 km
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for TIR (10.5-12.5µm) and WV (5.7-7.1µm). It is a geostationary satellite with a temporal
frequency of 30 min.

Table 2.3: Different TCs with their characteristics.

Cyclone

Chara.
Landfall Lifetime

Max.Speed

(km/h)

Min.Pressure

(mbar)
Maturity

Hudhud
Visakhapatnam

12th Oct-0700 UTC
Oct:7→14, 2014 185 950 11th Oct-1200 UTC

Phet
Oman

3rd June-0200 UTC
May:31→Jun:7, 2010 155 964 2nd Jun-1200 UTC

Aila
Kolkata

25th May-0900 UTC
May:23→26, 2009 110 968 25th May-0600 UTC

Laila
Andhra Pradesh

20th May-1200 UTC
May:17→21, 2010 100 986 19th May-0000 UTC

Amara-Bruce N.A Dec:14→28, 2013 205 933 21st Dec-0600 UTC

Katrina
Florida

25th Aug-2230 UTC
Aug:23→31, 2005 280 902 28th Aug-1800 UTC

George
Port Hedland

8th Mar-1400 UTC
Feb:26→Mar:13, 2007 205 902 8th Mar-1200 UTC

2.7.5 Tropical cyclone dataset

Table. 2.3 shows the database of several cyclones including their characteristics like for-
mation time, maximum speed and lifetime. The accuracy of the proposed cyclone tracking
framework is tested with several TCs to name a few Aila, Hudhud, Laila and Phet that
hit the Indian coastline formed during 2009-2014 in the Northern Indian Ocean, the twin
TC Amara and Bruce formed during 2013-2014 in South-West Indian Ocean, the Atlantic
hurricane Katrina formed during 2005 and so on.

2.7.6 Numerical Weather Model

The Numerical Weather Prediction (NWP) model provides the prediction of the climatic
conditions for varying timescales with high accuracy for shorter predictions. The opera-
tional forecast by numerical models such as Global Forecast System (GFS) by the National
Centers for Environmental Prediction (NCEP), Weather Research and Forecasting Model
(WRF) supported by the National Center for Atmospheric Research (NCAR) Mesoscale
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and Micro-scale Meteorology Division provides better representations of the environment
and Tropical Cyclone (TC) structure. The Indian Meteorological Department (IMD) make
use of WRF regional models for short-range operational forecasts. The WRF model has
a horizontal resolution of 9km×9 km and has 38 vertical levels with the boundary condi-
tions being updated every six hours. The GFS model data is archived in the website [82],
whereas the WRF model data is accessible from [83]. The near real-time forecast is com-
monly used for the height assignment to the cloud tracer for accurate Atmospheric Motion
Vector (AMV) computation [84]. The model solves a set of nonlinear partial differential
equations about each grid point, does not perform any spatial analysis like segmentation or
morphological operation on the model response to study cyclogenesis.

2.8 FPGA Platforms

The different FPGA platforms utilized for hardware emulation in this research work is
briefly introduced in the Table 2.4. The selection of FPGA is an important factor when
comparing different architectures.

Table 2.4: Characteristics of various utilized FPGA prototyping platforms.

Chara.1
Platform

XUPV5 VC707 VC709 VCU118

Device Virtex-5 Virtex-7 Virtex-7 Virtex Ultrascale+

FPGA XC5VLX110T XC7VX485T XC7VX690T XCVU9P

Manufacturer Digilent Xilinx Xilinx Xilinx

Logic cells 17280 485760 693120 2586 (K)

DSP slices 64 2800 3600 6840

Internal Memory 5328 (Kb) 37080 (Kb) 52920 (Kb) 345.9 (Mb)

PCIe Gen1x1 Gen2x8 Gen3x8 Gen3 x16

External Memory 256MB DDR2 1 GB DDR3 4 GB DDR3 4 GB DDR4
1 Characteristics of the FPGA device.

2.9 Summary

After a comparative study between different existing methods, it can be stated that the vari-
ational multi-scale OF algorithm is best suitable for computing dense and accurate large
displacement OF . But the real-time implementation of the variational multi-scale OF
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algorithm is restricted due to the high algorithm complexity and sequential order of exe-
cution. Based on the comparative study across different implementation platforms, FPGA
is found to be the best candidate for prototyping the variational multi-scale OF algorithm
while meeting the requirements of embedded vision applications. The chapter also dis-
cussed the application of variational multi-scale OF algorithm along with other supporting
computer vision algorithms to perform cloud/cyclone analysis and tracking on available
benchmarking datasets.
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Chapter 3

High Throughput Variational Multi-scale
OF Architecture

This chapter deals with the design of a high throughput time sharing VLSI architecture for

variational multi-scale OF algorithm to compute large pixel displacement in real-time by

exploiting dedicated memory banking schemes.

3.1 Introduction

Dense and accurate computation of OF for fast moving objects is part of many embed-
ded vision sensors. The sensor must be portable and need to meet the high computation
requirement and low power consumption. It utilizes variational multi-scale OF algorithm
discussed in the previous Chapter 2.4 to compute large displacement OF . An unoptimized
version of the variational multi-scale OF algorithm with 4 pyramid levels, 40 SOR solver
iteration and 1 flow refinement iteration modelled on Matlab 2018 running on a host PC
with single-core Intel CPU i5-M460 operating at 2.53 GHz with 4 GB RAM takes 25.3 sec
for computing dense and accurate OF from an HD image sequence.

The software profiling of the variational multi-scale OF algorithm identifies that 47%

and 42% of the total processing time accounts for the SOR solver computation and BF
denoising respectively as shown in the Fig. 3.1 (a). Also, the computation time of the
variational multi-scale OF algorithm for different image resolutions is shown in Fig. 3.1
(b). This shows that a direct implementation of variational multi-scale OF algorithm for
high-resolution images in real-time is limited due to a large number of arithmetic opera-
tions involved in the computation of every flow value, the presence of various feedback
loops corresponding to the number of pyramid levels, flow refinements and solver itera-
tions, the high memory bandwidth required for buffering and retrieving intermediate flow
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Figure 3.1: Block diagram of (a) performance results and (b) computation cost for different
image resolutions.

vectors and the huge amount of storage need for buffering the image pyramids as well as
the intermediate flow vectors.

Hence this work identifies the bottlenecks of the variational multi-scale OF algorithm
and devises a high throughput VLSI architecture while reducing the area utilization and
storage. This is achieved by making various hardware adaptations to the variational multi-
scale OF algorithm which involves the restriction of the complex and resource-intensive
flow refinement loop to a single iteration without much loss in accuracy, utilizing a Jacobi
solver whose current pixel value depends only on the neighbourhood pixels of the previ-
ous iteration instead of a Successive Over Relaxation (SOR) solver, eliminating some of
the complex repetitive arithmetic logic present in each solver iterations to a single arith-
metic logic before the solver stage to reduce the resource utilization. The work proposes a
variable fixed point time-sharing architecture for the adapted algorithm to reduce resource
utilization, utilize parallel and unfolding architectures of solver, gradient, denoising and in-
terpolation modules to maximize the throughput. It also introduces three different memory
banking schemes with customized access pattern for the pyramid, warping and flow resiz-
ing stage to improve the system throughput while minimizing the storage requirement.

3.2 Related work

This section discusses the existing hardware implementation of the original and multi-scale
architectures of variational and non-variational methods along with their characteristics and
limitations. Diaz et.al [85] proposes a superpipelined and fully parallelized architecture of
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Lucas Kanade (LK)OF on a Xilinx Virtex 2 device. It utilizes 70 pipeline stages to process
170 fps at a resolution of 800× 600 pixels. [41] propose an efficient VLSI architecture LK
OF . The architecture is based on a fixed-point version utilizing an optimal bit width with-
out much loss in accuracy. It can process 640× 480 frames at 30 fps on Xilinx Virtex 2 Pro
FPGA device. In the work [86], a novel customizable architecture based on multichannel
gradient model is proposed. Based on inspiration from the properties of cortical motion
pathway, complex bioinspired real-time systems with high computational complexity is in-
troduced. It has a higher complexity than other local differential methods. It is appropriate
for scenarios containing varying luminance, noisy environments. The implementation of
the architecture on Virtex 2000E FPGA can process 16 frames of resolution 128× 96 in a
second.

Tomasi et al. [87] proposed a phase-basedOF in FPGA device as the phase-information
provide more stability as well as sub-pixel accuracy. The architecture is extended to imple-
ment a multi-resolution and multi-orientation to enhance the accuracy and coverage over
a wide range of detected velocities. The implementation utilizes 1750 parallel processing
units for the single scale OF and consumes more than 2000 basic elements for multi-
scale implementation. The multi-scale architecture can process VGA frames up to 31 fps
with 4 scales whereas the original phase-based approach can compute OF for up to 81

fps. Barranco et al [88] presented an efficient architecture for LK approach along with its
multi-scale implementation on a Virtex 4 FPGA device. The LK implementation is used as
a valid alternative when using high frame-rate cameras is able to achieve a throughput of
270 frames per second. Instead, a more accurate multi-scale version is able to capture 32

frames per second for a frame resolution of 640×480. The LK implementation corresponds
to 10%-15% of the available resources while the multi-scale takes about 60%. The warping
stage consumes 23% of the total resources and reduce the maximum working frequency of
83 MHz for the LK core to 44 MHz for the multi-scale system.

The work [89] introduces an energy-efficient time-sharing pyramid pipeline architec-
ture for multi-resolution LK. The work compares segment and linear pyramid architecture,
in which segment pyramid [90] architecture utilizes a single Processing Element (PE) in a
sequential manner to compute OF at every pyramid levels. Instead, a linear pyramid [91]
uses as many processing elements as the number of pyramid levels to operate simultane-
ously and the intermediate data is buffered internally at each pyramid level to improve the
throughput. The linear pyramid architecture is inefficient due to the unbalanced workload
in different pyramid levels and has high resource utilization while a segment pipeline takes
large computation time. Hence time-sharing pyramid pipeline achieves about 50% of hard-
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ware savings in terms of area and power consumption compared to the traditional linear
pyramid implementation. Also, the time-sharing pyramid efficiently reduces the off-chip
memory traffic by re-organizing the data storage and processing order of an image pyramid.
Detailed analysis on the number of scales, frame resolutions and frame rate is missing in
the work.

An efficient hardware implementation of the variational HS algorithm is presented in
[92]. It achieves a throughput of 175 MPixels/s and process Full HD (1920× 1080) frames
at 60 fps on Virtex 7 FPGA device. The fixed-point architecture achieves a performance of
418 GOPS with power efficiency of 34 GOPS/W whereas floating-point module achieves
103 GFLOPS, with power efficiency of 24 GFLOPS/W. The proposed module does not
require external RAM memory in order to store intermediate flow vectors between the
iterations. It utilizes a separate hardware submodule for each iteration leading to large
resource usage.

Syed et.al [93] proposed a hierarchical block matching (HBM) based OF algorithm for
real-time hardware implementation. It utilizes block matching to generate initial optical
flow and refines the flow vectors at each level using local smoothness constraints. The
proposed system utilizes a two-dimensional reconfigurable systolic array for real-time im-
plementation of the Sum of Absolute Difference (SAD) based block matching algorithm.
The architecture is capable of computing OF with half-pixel precision utilizing a block
size of 4 × 4. It can process 640 × 480 resolution frames at 39 fps on Virtex 7 FPGA
device. In [94], a dense multi-scale implementation of LK is implemented on Xilinx Zynq
Ultrascale+ FPGA device. The design can compute OF of UHD (3840× 2160) resolution
with 60 frames per second.

The existing literature lacks the design of high throughput and low power variational
multi-scale architecture for computing dense and accurate OF for fast moving objects.
This serves as the major motivation behind the adaptation of multi-scale variational OF
algorithm to implement a dedicated high throughput time-sharing architecture with efficient
memory banking schemes.

3.3 Proposed algorithm adaptation

This section discusses various hardware adaptations present in variational multi-scale OF
algorithm along with pseudo code in the Algorithm 3.1. The OF computation starts from
the coarsest layer of the pyramid, where the problem is usually easier to be solved. For
each pyramid level L, the algorithm sub-samples the input image by a factor η and apply
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Gaussian smoothing to create a stack of downsampled images given in line 4 of the Al-
gorithm 3.1. The flow values are initialized to zero at the starting of pyramid operation.
The second iterative loop corresponds to the flow refinement present in each pyramid level
which involves warping, gradient computation, solver, flow merging and filtering stages.
The second image is warped with initial flow values to compensate for Taylor approxima-
tion of the solver equations 2.17, except at the fine level. The spatiotemporal gradient is
implemented based on the work [95].

Algorithm 3.1: Non-linear Multi-scale variational OF
1 Multiscale_OF (inputs (I1, I2,), levels (L), warping (Nwarp) & solver iterations

(Nsolv))
2 for k ← L to 1 // Pyramid Iteration Step
3 do
4 I1(I2) = Downsamp(η · I1(I2)) // Image Decimation
5 Initialize hL ← 0
6 for i← 1 to Nwarp // Flow Refinement Step
7 do
8 Ik2w = Ik2 +∇I2 · hk // Image Warping Step
9 Ikz = (Ik2w − Ik1 ) // Gradient Compute

10 Ikx(Iky ) = [Ik2wx(I
k
2wy) + Ik1x(I

k
1y)]/2

11 a = 1/((Ikx)2 + α2) // Compute Reduction
12 b = IkxI

k
y

13 d = 1/((Iky )2 + α2)
14 Initialize duk, dvk ← 0
15 for l← 1 to Nsolv // Solver Iteration
16 do
17 c = α2(uk,l − uk,l)− Ikx · Ikz
18 e = α2(vk,l − vk,l)− Iky · Ikz
19 Compute Flow Increment:

20 duk,l = a(c+ α2 · duk,l − b · dvk,l)
21 dvk,l = d(e+ α2 · dvk,l − b · duk,l)
22 end
23 hk = hk+ < duk, dvk > // Flow Merging
24 MedFilt(hk) // Flow Filtering Step
25 end
26 if k > 1 then
27 hk = Upsamp(h

(k−1)

η
) // Flow Resizing

28 end
29 end
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The flow refinement loop is the major time-consuming part of the software implemen-
tation as it involves complex operations like warping, solver, flow merging and so on. The
parallel implementation of the flow refinement loop scales the resource utilization by a fac-
tor ofO(Nwarp×Nsolv). Also, the serial data dependency restricts parallel implementation.
Hence the first hardware adaptation provides a direct inclusion of the flow increments at
every pyramid level which is same as restricting the flow refinement loop (given in the lines
5-22 of the Algorithm 3.1) to a single iteration (Nwarp=1). This avoids the use of large data
caches and eliminates the multi-cycle execution, resulting in improved throughput perfor-
mance. This leads to a slight reduction in the convergence rate, which is compensated
by increasing the number of solver iterations. Another hardware adaptation is related to
the introduction of a compute reduction stage. This helps to move many of the redundant
compute-intensive operations in the solver iterations to before the solver stage as given in
line number 11 to 13 in the Algorithm 3.1. The computed results are then forwarded to
all the solver iterations using suitable line buffers, thus effectively reducing the number of
hardware operations involved in the solver stage.

The third adaptation is replacement of the SOR solver architecture with a hardware-
friendly Jacobi solver, as the SOR solver provides faster convergence at the cost of in-
creased processing time and memory requirement. Since the computation of the current
iteration in the Jacobi solver depends only on the previous iteration values, it leads to a
simple and regular design with low cache requirement trading off the increased number of
solver iterations. Whereas the SOR solver nearly requires only half the number of iterations
as compared to Jacobi solver for achieving the same accuracy [96]. Hence the flow com-
putation stage evaluates the line numbers 20-21 in the Algorithm 3.1 using Jacobi solvers.
The computed flow increment at each level is merged with the previous flow and filtered to
remove the random flow values. The flow field is upsampled and scaled by a factor of η to
compute next fine level flow. This process is repeated for each pyramid layer until the fine
level is reached. The number of pyramid levels is dependent on the image resolution and
expected motion range presented in the scene.

3.4 Proposed time-sharing architecture

The work proposes a time-sharing architecture combining the advantages of the segment
and linear pyramid approaches for computing variational multi-scale OF . In the Linear
Pyramid (LP) architecture, for each pyramid level there exists a dedicated Processing ele-
ment (PE) for flow computation. The basic stages of the PE include pre-processing, warp-
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Figure 3.2: Processing element with different modules.

ing, gradient computation, OF solver and flow filter as shown in Fig. 3.2.
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Level 

1
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3
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4

Figure 3.3: Linear pyramid architecture for 4 pyramid level.

A 4-level LP architecture has 4 different PEs to estimate flow. From the Fig. 3.3, it
can be observed that the level-1 PE computes flow at pyramid level-1 using the initial flow
vector h0=0, level-2 PE computes flow at pyramid level-2 using the previously computed
flow h1 and so on.

h0

h(k+1)

hk

Level

Intermediate 

storage

Figure 3.4: Segment pyramid architecture for 4 pyramid level.

Here, the input image is read from external memory, the intermediate flow values (h1,
h2 and h3) are buffered internally and the final computed flow h4 is sent to the external
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memory. The LP architecture is inefficient due to the unequal number of computations in
different pyramid levels and has high resource utilization. In contrary to LP architecture,
in the Segment Pyramid (SP) architecture, a single set of PE is shared among each pyramid
level for flow computation. So for the multi-scale variational method with 4 pyramid level
have a single set of PE, used to compute flow in all the levels as shown in Fig. 3.4. Since
the PEs are shared among the pyramid levels, the computation of flow at every pyramid
level begins only after the completion of computation in the previous level. This leads to
the storage of intermediate flow vectors into the external memory until the beginning of the
next computation level, which results in high computational cost due to the large amount
of slow external memory accesses.

Since the PE are not shared among the pyramid levels in case of LP architecture, it
can be fully pipelined to maximize the performance. Hence the LP architecture involves
less processing time as compared to the SP architecture. Also, the power dissipation in
LP architecture is high as compared to SP, as every component is operational at any in-
stant of time due to fully pipelined operation. Hence LP architecture is better in terms of
computational cost and SP architecture is better in terms of power dissipation and resource
utilization.
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Figure 3.5: Proposed time sharing architecture.

The proposed work integrates the advantages of LP and SP architectures to introduce
a time-sharing approach as shown in Fig. 3.5. It takes advantage of SP architecture with
single resource sharing PE performing the computation of different image pyramids to min-
imize resource utilization with a negligible time overhead. Also, it achieves parallelism in
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the pyramid construction and PE computation for different pyramid levels as in the case LP
architecture. This is made possible with the design of dedicated pyramid memory bank-
ing scheme consisting of a single large memory composed of various dual port memories.
A scheduler and pixel grouper are in charge of generating downsample images accord-
ing to the pyramid level. The simultaneous availability of downsampled images helps to
parallelize the execution of PE in the different pyramid levels. The modules in PE’s are
also computed in a parallel fashion. The architecture details of the pyramid generation
are explained in the below Section 3.5.1. The proposed architecture further improves the
memory bandwidth by buffering the intermediate flow vectors instead of external memory.
The details of the parallel execution of the modules and PE’s are discussed in the below
Section 3.6.5.

3.5 Proposed Hardware Architecture
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Figure 3.6: Block diagram of variational multi-scale OF architecture.

The block diagram of the proposed Time Sharing Multi-scale variationalOF (TSMOF)
architecture with all subsystems is shown in Fig. 3.6. The design is based on stream pro-
cessing, hence the operation on a single pixel depends on the neighbouring pixels which
are cached using line buffers. It consists of six modules including pyramid creation, image
warping, gradient computation, solver, flow resize and scheduler module. The pyramid
creation module uses a single large memory and simultaneously downsamples input im-
age to each pyramid level, the warping module transforms the second image at the current
pyramid level using the estimated flow at the previous level, the Gradient module computes
the spatial and temporal gradients of the input images. In the coarsest level, image warp-
ing is not performed as the initial flow value is assumed to be zero. Hence a multiplexer
is utilized by the Gradient module to choose between the downsampled or warped image.
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Further, the Solver module solves the system of equations using Jacobi solver and the Flow
resize module upsamples the estimated flow at the current level to the next finer level based
on the nearest neighbour interpolation scheme. Since the architecture is time-sharing, the
scheduler logic plays an important role in sharing data appropriately among these mod-
ules at different pyramid levels. The scheduler logic is formed of several counters and
conditional statements for coordinating the time-sharing control signals among all pyramid
levels. The number of clock cycles required for each stage and level is precomputed and
stored in registers for controlling start and stop of each module. It utilizes multiple counters
and multiplexers to control the start and end of each pyramid level and the modules in it.
For each pyramid level, the scheduler also controls the storage of the incoming pixels into
a memory bank based on bank selection and memory address.

The block diagram contains three Feed Back (FB) loops and the count on each of the
box corresponds to the number of pipeline stages. The FB-1 is based on the number of
pyramid levels L, FB-2 represents the flow refinement operation and FB-3 implements the
solver iterations. The design considers hardware optimization like deep data path pipelining
and unfolding of the solver iteration, data parallelism in gradient, filtering and interpolation
modules to maximize the throughput. The pipelining helps the designer to divide a complex
task into smaller and more manageable pieces and makes the design occupied for all the
cycle. The fine and coarse-grained pipelines are considered for maximizing throughput
performance.

3.5.1 Pyramid Generation Stage: S1

Pyramid generation stage parallelizes the image stack creation, by down-sampling fine level
images I1

1 (I1
2 ) to coarse level images I1+k

1 (I1+k
2 ) based on η as shown in Fig. 3.7. The

computation of the coarse level IL1 (IL2 ) starts either after W1 × H1 − WL × HL cycles
or after internally caching macro-block of size P1 × Q1 pixels of the fine level. A pixel
grouper logic generates the address of memory bank to store the incoming pixel stream
in the macro-block. It provides a two-way pixel grouping, i.e. memory bank selection
followed by memory element identification.

The macro-block retriever block enables simultaneous access to multiple pixels in the
pyramid memory bank to compute each pixel in the coarse level IL1 (IL2 ) by averaging the
macro-block of size P1 × Q1 of the fine level I1

1 (I1
2 ). An anti-aliasing filter based on

3 × 3 Gaussian mask is applied before the downsampling to suppress the high-frequency
components to improve the accuracy of the first order image derivatives. The details of
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the Gaussian filter implementation is discussed in the previous work [97]. The pyramid
controller co-ordinates the pixel generation by identifying the pyramid level and generating
control signals to read and write macro-blocks from the pyramid memory bank.

The pyramid generation stage is the first step in the variational multi-scale OF archi-
tecture to down-sample the fine level images I1

1 (I1
2 ) to coarse level images I1+k

1 (I1+k
2 )

based on η as shown in Fig. 3.7. It utilizes a pixel grouper logic to generate the address of
memory bank to store the incoming pixel stream in the macro-block. It provides a two-way
pixel grouping, i.e. memory bank selection followed by memory element identification.
The computation of the coarse level IL1 (IL2 ) starts after internally caching macro-block of
size P1×Q1 pixels of the fine level. The macro-block retriever block enables simultaneous
access to multiple pixels in the pyramid memory bank to compute each pixel in the coarse
level IL1 (IL2 ). It is achieved by downsampling the macro-block of size P1 × Q1 of the
fine level I1

1 (I1
2 ). The downsampling is preceded by an antialiasing filter based on 3 × 3

Gaussian low pass kernel to suppress the high-frequency components [98]. The scheduler
coordinates the pixel generation by identifying the pyramid level and generating control
signals to read and write macro-blocks from the pyramid memory bank.

Consider a 4 stage pyramid with a downsampling factor of η =0.5, a single pixel gen-
eration at the coarsest level pyramid (level-4) needs at least 8 × 8 pixels (η =0.125) from
the finest level (level-1). For instance, with a 8 × 8 macro-block the simultaneous access
to 64 pixels is achieved by storing these 64 pixels in an interleaved pattern into 64 different
internal dual port RAMs such that every pixel of the original image is written only once
to one of these memories. Therefore each memory will be storing only 1

64

th of the entire
image. Thus the entire image is stored efficiently into 64 RAMs to achieve simultaneous
read from different locations. Similarly, for the creation of a single pixel in the pyramid
level-3, a patch of 4 × 4 pixels is needed which in turn requires 16 pixels from the finest
level.

Pyramid Memory Bank

A conventional 4 level pyramid architecture, either utilizes separate memory elements to
store images at different pyramid levels (W1 × H1 + W2 × H2 + W3 × H3 +W4 × H4)
or buffers the entire image into a single large memory (W1 × H1) and uses separate line
buffers for each pyramid levels leading to large memory consumption. Instead, this work
devises a dedicated pyramid memory bank and access scheme to store the incoming pixel
stream without pixel duplication while allowing simultaneous pixel transactions using a
pixel grouper. The dedicated pyramid memory banking scheme uses P1 memory banks
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with Q1 dual-port RAM allowing simultaneous pixel read, without any pixel duplication.
So instead of a typical pyramid implementation, the proposed banking scheme only utilize
W1 ×H1 memory.

A special access pattern provides simultaneous access to the whole macro-blocks in the
images. It is achieved by storing P1×Q1 pixels into different internal dual port RAMs in a
specific pattern as illustrated in Fig. 3.8. This is done with the help of pixel grouper which
selects the memory address to store the incoming stream of pixels of the original image.
The pixels in the first image column is stored into the first memory bank, second column
pixels into the second memory bank and so on up to the eighth image column. This pattern
of storing the pixels is repeated for rest of the columns, i.e. pixels in the 9th column is
stored again in the first memory bank, 10th column to the second memory bank and so on.
Similarly, other memories banks are filled, with a period of 8. The 8 consecutive pixels
in a column are written into 8 different memory locations in the same bank with a similar
address.

For instance, the pixel a1,1 (macroblock-1) is written to the first location of the first
memory present in the bank 1, second pixel to the first location of the second memory in
the same bank and so on till the 8th pixel. Further, the pixel a9,1 (macroblock-2) is written
into the second location of the first memory in the bank 1, a10,1 pixel to the second location
of the second memory in the bank 1, which continues till the end of the column. Since
the image pixels are written in a specific pattern, the address of memory location has to
be generated accordingly i.e. each pair of row and column indices are converted to a one-
dimensional index. Thus the pyramid memory bank stores the two incoming frames I1 and
I2 while achieving a memory saving of more than 24% in case of a non-banking scheme.

3.5.2 Image Warping Stage: S2

The internal architecture of the image warping stage is shown in Fig. 3.9. The two major
challenges limiting the high throughput architecture for warping stage are the large mem-
ory consumption and the high computational delay. The large memory consumption is
optimized by utilizing a warping memory bank discussed in Section 3.5.2 to improve the
throughput by providing parallel data access. The scheduler coordinates the interleaved
memory accesses. The image warping transforms the coordinates of the destination image
to the coordinates of the source image using the computed flow. This avoids the image
holes during the transformation but leads to the generation of non-integer co-ordinates or
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addresses given by equation (3.1).

(l, k) = (x+ u, y + v) (3.1)

The non-integer addresses are discretized using bilinear interpolation techniques to get
the nearest integer addresses as given in equation (3.2).

(tx, ty) = (l − blc, k − bkc) (3.2)

For a high throughput implementation, the bilinear interpolation needs to access four
neighbouring pixels simultaneously from random locations in the image. This lead to the
unwanted waiting delay (4 cycle latency) associated with reading the image from random
locations. A conventional method for pixel interpolation uses two methods a) storing the
entire image pixels of the second image in 4 different memories and access 4 neighbouring
pixels for bilinear interpolation from these memories b)run the memory access at 4 times
faster than rest of modules. However, in the first method, the image has to be written into
4 memories making the architecture less efficient in terms of memory usage. In the second
method, the interpolation has to run 4 times faster than rest of the system, thus leading
to an overall reduction in the system frequency by 4 times which significantly impact the
performance of the architecture.

To overcome these limitations, an efficient pixel interpolation architecture is developed.
It can be observed that all the pixels in an image can be characterized into 4 different groups
such that every adjacent pixel to a pixel falls into different groups. Hence in the proposed
architecture, the second image frame is written into 4 different dual port RAMs in the
above-interleaved pattern such that the neighbouring pixels of any non-integer coordinate
can be assessed simultaneously from these 4 dual port RAMs. So in summary, each of
the 4 dual port RAM is storing only 1

4

th of the entire image. This method reduces the
memory usage by 4 times by writing a pixel into only a single memory without creating
any duplicates. Moreover, the computational frequency of the system does not reduce as
the system is running at a single rate. Thus the warping memory consumes W1 × H1

memory to buffer the second frame thereby minimizing the memory utilization to 1/4th of
the conventional design.

The second major challenge in the warping architecture is associated with the compu-
tation delay involved in the warping stage. In a direct implementation, the interpolation
operation is started once the entire image is available in the internal memory. But this ap-
proach has the disadvantage of waiting to start interpolation until the entire image is written
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into the memory. For instance, if the resolution of the image is W1 × H1, then the wait-
ing delay involved for interpolation is W1 × H1 clock cycles which significantly reduces
the performance of the system in terms of computation time. In the proposed work the
buffering latency associated with each pyramid level is overcome by providing two novel
memory access mechanisms. First is to fix the maximum possible pixel displacement as D
based on which the number of pyramid levels L is decided. For a displacement of D, L is
calculated as L = (1 + log2D). Hence only D × HL−1 pixels need to be written into the
interleaved memory before the start of the warping stage. This modification incorporates
the buffering latency associated with each pyramid level. Hence the interpolation can be
started once 10×W1 (assumingD=10) pixels are written into the warping memory, thereby
reducing the waiting delay from W1 ×H1 clock cycles to 10×W1 clock cycles.

The second modification hides the latency for caching D × HL−1 pixels, by writing
IL−1

2 pixels of the pyramid into the interleaved memory much before the start of the cre-
ation of pyramid IL2 . This is possible, as port B of the dual port RAM remains idle during
IL2 creation. Since D ×HL−1 pixels of IL−1

2 is written into the warping memory, the IL−1
2

warping can start immediately after IL2 completion. The remaining pixels of pyramid IL−1
2

is written using port A, without affecting the simultaneous pixel read from port B. To elab-
orate, the pyramid 4 creation begins only when 63

64

th portion of the image has arrived. Till
that time, the second port of the dual port RAM used for warping remains idle. Making
use of this fact, the pyramid 3 creation can be started when the required pixels for gener-
ating D ×W1 patch in the pyramid 3 have arrived. So before completing the pyramid 4

level computation, the 10×W1 neighbourhood pixels needed for pyramid 3 operations are
written into the warping memory. Hence, after the completion of pyramid 4 computation,
the system need not wait to start reading the pyramid 3 pixels from the memory. Subse-
quently, the remaining pixels of pyramid 3 is written into the warping memory using port
A and reading of pixels continues using port B simultaneously. Thus the unwanted wait-
ing delay for reading the image from the warping memory can be avoided, improving the
performance of the system.

Warping Memory Bank

A conventional image warping operation can only be started once the entire image is
buffered internally or involves large overhead in case of external memory access [89]. Also,
the bilinear interpolation in the warping stage needs 4 simultaneous pixel accesses. The
proposed warping memory bank scheme utilizes 4 internal dual port RAMs each of size
0.25 × (W1 × H1). In order to achieve simultaneous access of 4 pixels, the image pixels
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are stored in a special pattern based on the pixel indices such that every adjacent pixel falls
into different RAMs. The address for writing the flow into the memory is generated by
using the row and column indices at each of the pyramid levels. The pixels with both row
and column indices as an odd number are stored in RAM 1, the pixels with odd row index
and even column index in RAM 2, the pixels with even row index and odd column index in
RAM 3 and those with both even indices are stored in RAM 4. This scheme avoids creating
multiple copies of the pixel data while providing simultaneous pixel access.

3.5.3 Gradient Compute Stage: S3

The gradient stage computes the spatio-temporal gradient based on the work [95]. The
spatial gradient is computed as the average of warped second image gradient and first
image gradient, where the individual gradient is derived using a 5-point derivative filter
1
12

[−1 8 0 − 8 1] as given in equation (3.3). The temporal derivative is computed by sub-
tracting the first image from the warped second image.

Ikx = [Ik2wx + Ik1x]/2 (3.3)

Iky = [Ik2wy + Ik1y]/2I
k
t = (Ik2w − Ik1 ) (3.4)

The 5 point gradient filter computation in X-direction utilize 4 line buffers of size W#

(W1, W2, W3 or W4 depending on image width at each pyramid level) to convert one-
dimensional pixel stream into a two-dimensional patch. The streams are multiplied with
the saved coefficients, accumulated and normalized to compute the 5-point image derivative
which is averaged with the warped second image derivative to get resultant gradient in X
direction.

A direct implementation of the gradient computation for all 4 pyramid levels needs
4 × (W1 + W2 + W3 + W4) line buffers, where W1,W2,W3,W4 represents the width of
image size at every pyramid levels. The number of delay caches utilized for line buffers
is optimized by sharing the resources across parallel data-paths. This is implemented by
proposing a line buffer sharing approach containing 10 line buffers, of which four corre-
sponds to W1 and two for W3, W2 and W1 levels as shown in Fig. 3.10. The channel
selection signal (sel#) is controlled by the scheduler to select the incoming channels to
datapath multiplexer based on the pyramid level. For level L4, the channels 1, 2, 3, 4, and
5 are selected similarly other details regarding the channel selection are described in the
Fig. 3.10. Similar is the case for y direction since there are three independent circuits for
computing spatiotemporal gradients which helps to operate in parallel.
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Figure 3.10: Internal architecture of X-direction gradient compute module.

3.5.4 Compute Reduction Stage: S4

The spatial (Ix, Iy) gradients from gradient module are sent to the solver stage to compute
equations (3.5) in the Algorithm. 3.1.

duk,l = a(c+ α2 · duk,l − b · dvk,l) (3.5)

dvk,l = d(e+ α2 · dvk,l − b · duk,l)

a =
1(

(Ikx)2 + α2
) (3.6)

d =
1(

(Iky )2 + α2
)

It involves the computation of reciprocal operation given in equation (3.6), which re-
sults in large resource consumption of solver iteration stage. The proposed architecture
mitigates this by moving the reciprocal computation (Nsolv ×Xres) from each solver itera-
tion to before the solver iteration (1 × Xres) where Xres represent the resource utilization
of reciprocal stage. The computed results are transmitted to the solver downstream using
separate line buffers as shown in Fig. 3.11.

The Averaging (AVG) module computes the average of flow values utilizing a 3×3 ker-
nel with a normalizing factor of 1/12 given in equation (2.6). There exist two independent
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averaging modules for u and v. It contains three one dimensional Multiply-Accumulate
(MAC) units, which multiplies the pixel with given coefficients and adds resultant values
using the adder tree. Since the coefficients are the power of 2, the multipliers are replaced
by shift operations. It utilizes 4 left shifters, 7 adders and 6 data registers. The pre-compute
module involves 51 pipeline stages. The averaging module utilizes a one-dimensional flow
vector to two-dimensional patch converter with Variable Delay Path (VDP) in accordance
with pyramid level. The amount of delay is controlled by a select signal dsel, from the
scheduler.

Output

stage

Solver 

Iteration-N

Input

stage

External 

memory

Output

stage

Solver 

iteration-1

Solver 

iteration-10

Solver

 iteration-N

Input
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I1/ I2

u/vu/v

I1/ I2

u/v

u/v

(a) (b)

Figure 3.12: Block diagram of, a) Iterative solver and b) Nsolv-Unfolded solver implemen-
tation.

3.5.5 Flow Compute Stage: S5

The precomputed values and the flow values are fed to flow compute stage to estimate non-
linear variational OF by solving the system of equations described in the Algorithm 3.1.
Since the direct solvers are inefficient for solving the sparse system of equations, an it-
erative Jacobi solver is chosen. In Jacobi solver the computation of current pixel values
depends only on the values of the previous iteration of the neighbouring pixel rather than
the latest neighbourhood pixels, thereby eliminating data dependency and makes it suitable
for parallel implementation. But eliminating the use of updated neighbourhood degrades
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the convergence rate of Jacobi solver, hence the solver implementation needs a large num-
ber of iterations. The number of iterations is kept fixed, based on experimental analysis
across different datasets.

The internal architecture of the flow compute stages is shown in Fig. 3.11. The pro-
posed scheme improves the architecture performance by unfolding the solver iteration in
Fig. 3.12 (a) followed by pipelining, which increases the throughput and energy efficiency
by reducing memory access as illustrated in Fig. 3.12 (b). The unfolding is implemented
by unrolling the solver iteration so that the data from the current iteration is directly taken
to the next iterations in a pipelined fashion. The unfolding by Nsolv creates Nsolv indepen-
dent solver iteration. The number of clock cycles per solver iteration gets divided by Nsolv,
thereby improving the throughput. The computed flow increments are fed back to the rest
of solver iterations to improve the flow accuracy. The 1st iteration consumes less resource
compared to other Nsolv − 1 iterations, as it does not involve flow averaging and utilizes an
18 stage pipeline. The solver utilizes a VDP to adjust the path delay associated with each
pyramid level.

3.5.6 Flow Merging and Post-Filter Stage: S6

The flow merging stage accumulates the flow increment from the current level hk with
previous flow increment hk−1 as shown in Fig. 3.11. It helps to reduce the flow deviation
by the incremental motion compensation towards the actual pixel location. It utilizes two
addition operations to accumulate the flow from the previous level and flow increment. The
accumulated flow field of the current level is filtered before resizing to the next fine level.
A post-filter based on the two-dimensional median filter of kernel size K × K is used to
remove uncertainties in flow estimate caused by illumination artefacts and occlusions.

The median of flow vectors u and v is computed parallelly using two independent filter
modules as shown in Fig. 3.13. It utilizesK−1 line buffers for converting one-dimensional
stream into two-dimensional patch, K ×K − 1 DFFs and (K2 × (K2 − 1))/2 number of
comparators. The three input comparators sort the incoming flow values into a minimum
(Min), maximum (Max) and middle (Mid) values using conditional operators and multi-
plexers. This module utilizes 7 stage pipelines.

3.5.7 Flow Resize Stage: S7

The upsampling of the flow field is done on moving from the coarse pyramid level to
the fine level. On the transition from one pyramid level to the next, the flow has to be
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Figure 3.13: Internal architecture of the post filter stage.

quadrupled for a scaling factor of 0.5 (η), i.e 20× 20 size of the flow has to be increased to
40 × 40. The up-sampling is implemented using an interpolation scheme, the selection of
the interpolation kernel plays an important role in controlling the accuracy and throughput
of the multi-scale OF architecture. Some of the commonly used interpolation kernels
include the nearest neighbour, bilinear interpolation, bicubic interpolation, sinc and so on.
The experimental analysis shows that the nearest neighbour interpolation method is less
complex approach and produces satisfactory results.

The flow resizing architecture up-samples the filtered flow estimate from the coarser
level hk to the next finer level hk−1 using nearest neighbour average method as shown
in Fig. 3.14. The scheduler generates write or read addresses with corresponding enable
signals to perform resizing at each pyramid level. It employs resizing memory bank to
parallelize the pixel read and thereby minimize the storage requirement. The interpolated
flow is scaled by a factor of 1/η to compensate for the level switching.

Resize Memory Bank

The flow resize stage perform nearest neighbour interpolation, which needs simultaneous
access of a maximum of 4 nearest neighbours. This is achieved by using an efficient resize
memory banking scheme which stores the flow values without duplication for all levels
except the finest level (level=1). The upsampling stores the flow values of pixels into 4
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different internal dual port RAMs in an interleaved pattern in the same way as that of the
warping stage described in the previous Section 3.5.2, such that no flow value is written
more than once into these memories.

The resizing memory bank utilizes 4 internal dual-port RAMs each of size 0.25×W2×
H2. In terms of memory usage, to upsample from 2nd level to the 1st level, only the flow
of 2nd level has to be stored which is 1

4

th size of the 1st level image. The flow resizing is
not required in the finest pyramid level. Hence, a maximum of 0.25×W1×H1 memory is
needed to store a single frame which is 1

4

th of the conventional resizing architecture.

3.5.8 Hardware Design Variants

The modular design makes it easier to develop fixed and floating point variants. The work
proposes three different hardware variants of the time sharing variational multi-scale OF
(TSMOF) architecture to study the tradeoff between area, accuracy and throughput. The
characteristics of these variants are described in Table. 3.1.

Table 3.1: Functional specification of various hardware variants.

Chara.1
Variant

HEOF TSMOF HTMOF HPMOF

Scale Singe Multi Multi Multi
Accuracy Fixed Fixed Fixed Floating
Motion Small Fast Fast Fast

Resource Minimum Medium Large Very Large
Power Minimum Medium Large Very Large

PE 1 1 4 1
1 Characteristics of the architecture.

The High Throughput Multi-scale Optical flow (HTMOF) is a fully parallel version of
the TSMOF architecture having L number of parallel PEs with separate memory banks for
each pyramid levels. This architecture achieves high throughput, but compromises on re-
source and memory utilization. The coarse level OF computation of the second image pair
(I2/I3) can start after a very small latency on completion of flow computation of the first
image pair (I1/I2), in the parallel-pipelined HTMOF architecture. The second hardware
variant is the High Precision Multi-scale Optical flow (HPMOF) architecture, which is a
floating point single precision variant of TSMOF architecture trading off resource utiliza-
tion for increased accuracy. The third variant of TSMOF architecture is High-Efficiency
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Optical Flow (HEOF), which is a single scale implementation of non-linear OF algorithm
achieving the lowest resource and power consumption but at the cost of poor flow accuracy.
The fixed-point HEOF architecture does not contain S1, S2 and S7 stages.

3.6 Hardware Implementation Results

The architecture and its variants are synthesized, placed and routed on Xilinx V C709

board using Vivado design tools (2017.2). The board is selected as the design needs high
throughput and have higher Configurable Logic Blocks (CLB) and memory utilization.
Each module is implemented separately to identify the critical path that impacts the max-
imum throughput. All arithmetic operations like multiplication, addition and division are
highly pipelined to maximize the throughput. The variable operand multiplier is imple-
mented using DSP48 slices whereas BRAM is used for constant multipliers. Performance
and Resource utilization of each submodule are computed individually and as a whole. The
power consumption of each module is analysed by Xilinx power estimator after place and
route considering the maximum implementation frequency.

3.6.1 Evaluation Metric

In this section, a general discussion on the different type of error metrics to assess the es-
timation accuracy is introduced. Most common approaches for quantitative performance
measurements calculate error in relation to a precomputed ground truth displacement field.
A qualitative measure, on the other hand, relies on visually inspecting a colour-coded ver-
sion of the computed flow field. While it may be more efficient to quantitatively compare
the performance of different algorithms, it is not always possible to compute the ground
truth of test images. The most popular metric used for quantitative evaluation is the Aver-
age Angular Error (AAE) [20] and the Average Endpoint Error (AEE) [99].

Average Angular Error

The AAE estimates the deviation of the computed OF in relation to the ground truth. This
is done by calculating the angle between the vector of the computed optical field w =
(u, v, 1) and the given ground truth flow field wgt = (ugt, vgt, 1). This is done by taking the
ratio of the dot product of the vectors by their lengths, and then taking the inverse cosine
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as given in the equation (3.7).

AAE = cos−1
( 1 + u× ugt + v × vgt
√

1 + u2 + v2
√

1 + u2
gt + v2

gt

)
(3.7)

Average Endpoint Error

AEE is another error measurement which calculates the error as the square root of the sum
of squared differenced between the computed and ground truth displacement fields as given
in the equation (3.8).

AEE =
√

(u− ugt)2 + (v − vgt)2 (3.8)
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Figure 3.15: Variation of AAE and AEE for different α values.

3.6.2 Parameter Selection

Performance of the proposed architecture is computed as a function of several design pa-
rameters. The Middlebury benchmark [76] is utilized for performing the analysis. Fig. 3.15
shows the variation of AAE and AEE for different values of α and solver iterations (Nsolv),
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where α controls the smoothness of flow. The graph is captured for each value of α varying
from 5 to 15 averaging over a large number of datasets. The AAE for most of the α values
are high for 20 or lesser number of iterations, shows a fast decreasing trend till 35 iterations
followed by a very slow converging trend for rest of the iterations. It can be inferred that
for α = 5 the AAE and AEE gets settled within 20 iterations.
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Figure 3.16: Variation of AAE and AEE for fixed and floating point implementations.

3.6.3 Numerical Representation

The selection of fixed or floating point implementation of variational multi-scale OF algo-
rithm plays an important role in the trade-off between accuracy and power consumption.
The fixed point representation opens a large space for the exploration of the suitable bit
width requirement for each of the stages. The conversion from floating point to fixed point
results in quantization effects. A comparison between the fixed-point Verilog and floating
point implementations in terms of AAE and AEE for Middlebury dataset [100] is shown in
the Fig. 3.16.

55



8 12 16 20 24 28 32

Bitwidth

0

10

20

30

40

50

60

70

80

90

100
A

A
E

S1

S2

S3

S4

S5

S6

S7

Figure 3.17: Variation of AAE and AEE for different bit-width selection.

Table 3.2: Selected bit-width for different stages.

S1 S2 S3 S4 S5 S6 S7
BWmin

1 14 18 16 22 28 18 18
1 represent the maximum number of bits utilized for each stage.

The floating point implementation shows lesser error for a fixed iteration but consumes
large resource utilization. The bit-width for each module is computed by feeding reference
images to the design and measuring the degradation in terms of AAE and AEE, by varying
the bit-width from 8 to 32 while keeping the rest of the circuit in full precision as shown in
Fig. 3.17. Here the S5 graph shows an initial reduction in the AAE (which is not significant
as the error is significantly large), attributed to the fact that there is an insufficient number
available for integer part. The design follows a variable precision signed fixed point Qm.n
representation with m and n corresponds to the integer and fractional part. The highest
bit-width used by each module or stage of the architecture is given in Table. 3.2.
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3.6.4 Performance and Resource Analysis

The hardware implementations make use of LUT for logic functions, DFF for pipelining
the critical path, BRAM for intermediate data storage and DSP48 slices for complex signal
processing tasks. The TSMOF architecture is configured to process a macro-block of size
8 × 8, the number of solver iteration Nsolv is set to 30 and α is tuned for each image
sequence to get minimum AEE.

Table 3.3: Performance comparison between software (soft) and hardware (hard) imple-
mentations of variational multi-scale OF with different pyramid levels.

Database

Level

1 2 3 4

AAE AEE AAE AEE AAE AEE AAE AEE

soft1 hard2 soft hard soft hard soft hard soft hard soft hard soft hard soft hard

Marble 20.98 21.29 0.74 0.75 18.91 18.99 0.71 0.71 7.63 7.65 0.25 0.25 7.28 7.31 0.23 0.23

Dimetrodon 39.72 40.69 1.59 1.61 28.54 29.40 1.31 1.33 12.71 13.69 0.62 0.66 9.33 10.40 0.48 0.52

Rubberwhale 33.45 33.69 0.94 0.94 27.10 27.23 0.81 0.82 10.41 10.57 0.33 0.33 6.64 6.79 0.21 0.21

Grove2 34.51 35.74 2.19 2.22 21.79 22.51 1.76 1.79 7.67 8.10 0.56 0.59 4.73 5.13 0.34 0.37

Venus 41.82 42.19 3.01 3.02 26.59 26.92 2.45 2.46 13.70 14.03 1.03 1.07 12.27 12.63 0.91 0.94

1 refers to the software implementation of variational multi-scale OF .
2 represents the hardware implementation of variational multi-scale OF .

Table. 3.3 shows the performance comparison of the TSMOF architecture with the soft-
ware implementation considering different pyramid levels using Middlebury [100] database.
From the table, it is understood that the performance of the multi-scale variational OF
architecture with a single pyramid level is the same as that of the single scale HEOF ar-
chitecture. It is noticed that the AAE and AEE reduce significantly from pyramid level
two to three, which implies that the pixel displacements of the datasets are within the filter
motion range (23). It can be inferred that the error gets settled with each additional layer,
till motion is within the considered filter range. From the table, it can be observed that the
fixed-point Verilog implementation shows a negligible loss in flow accuracy compared to
the floating-point design.

Table. 3.4 shows the performance evaluation of the TSMOF architecture on KITTI and
MIPI SINTEL dataset. Since the KITTI dataset has significant illumination artefacts, the
TSMOF architecture shows higher AEE.

Table. 3.5 shows the resource requirement and power consumption of the architecture
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Table 3.4: Performance of variational multi-scaleOF architecture on the KITTI and Sintel
dataset in nonoccluded (Nocc) and all (Occ) areas.

Error
Dataset MIPI Sintel KITTI

Final clean Nocc Occ
AEE 7.62 7.04 18.04 28.01

Table 3.5: Performance of TSMOF architecture stages.

Resource

Module
S1 S2 S3 S4 S5 S6 S7

Slice 2,931 (2.7%) 1,395 (1.28%) 439 (0.4%) 841 (0.78%) 9,307 (8.6%) 2,467 (2.28%) 638 (0.59%)

BRAM36 256 (17.4%) 256 (17.4%) 15.5 (1.05%) 0 218 (14.83%) 128(8.7%) 2(0.13%)

DSP48 0 33 (0.92%) 0 5 (0.14%) 148 (4.11%) 0 0

Fmax (MHz) 420 420 410 440 420 430 440

Power (W) 1.14 1.30 0.475 0.394 9.572 0.634 0.258

for QVGA (320 × 240) resolution. It can be inferred from the Table. 3.5 that S3 stage
uses a minimum number of slices but consumes higher power than S7 due to the large
number of BRAMs utilized for implementing line buffers. The S5 stage with 20 solver
iteration is the highest resource utilization stage, as it makes use of a large number of
DSP48 slices for implementing the complex arithmetic. Unlike other stages, S1 and S2

has higher BRAMs utilization due to large buffers required for pyramid generation and
intermediate data caching which results in consuming significantly more power than other
stages excluding S5. Individual stages of TSMOF architecture reaches up to a maximum
frequency of 410 MHz but this gets reduced to 378 MHz for the full system due to the
routing congestion and resource utilization.

Table. 3.6 shows the resource consumption of the TSMOF architecture for the different
number of solver iterations. It shows that for every 10 additional number of solver itera-
tions, the BRAMs utilization shows a slight increase as the image resolution is kept fixed.
But DSP48 usage increases by more than 2× due to more number of arithmetic computa-
tions involved in the S5 solver stage. It can be observed from Table. 3.6 that the maximum
number of solver iterations is limited by the availability of BRAMs in the current FPGA
implementation.

The design has 169 super-scalar units of which, stage S1 has 2×8×8 parallel dual port
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Table 3.6: Resource utilization and power dissipation of TSMOF architecture for different
Jacobi solver iterations.

Resource
Iteration

5 10 25 50

Slice 16,370 (15.1%) 17,519 (16.2%) 23,462 (21.6%) 36,715 (33.9%)
BRAM36 1,085 (73.8%) 1,130 (76.9%) 1,265 (86.1%) 1,452 (98.8%)

DSP48 66 (1.83%) 96 (2.7%) 186 (5.1%) 335 (9.3%)
Fmax (MHz) 432 430 410 378
Power (W) 8.44 10.1 16.1 28.5

memories for pyramid generation, S2 has 4 independent warping memories, S3 utilizes 9

parallel units for gradient computation, S4 has 9 units for computing solver coefficients,
S5 has 9 units for the solver, S6 has 6 units for filtering and S7 has 4 parallel resizing
memories. This accounts for a total of 1404 fixed-point operations of which 344 is for sub-
sampling and filtering, 19 for gradient compute stage, 791 for 30 iterations of flow compu-
tation and 182 for flow merging and resizing stage. This leads to a maximum throughput
of 395 GOPS while consuming the power of 18.42 W at 378MHz.

3.6.5 Timing Analysis

The Fig. 3.18 shows the OF computation time required by 30 iteration of TSMOF archi-
tecture for processing an HD image pair while running at 378 MHz. The time taken by
each of the modules in different pyramid levels are described in Fig. 3.18. The x-axis of
the timing diagram shows the number of cycles (scaled by 1/1000) taken for computing
different stages of the TSMOF architecture. The timing diagram depicts the parallel op-
eration of stages at every pyramid level (i.e. S1, S3, and S4 stage of level 4) as well as
between different pyramid levels (i.e. S1 of level 2 and S2-S6 of level 3). An initial latency
of 2.3 ms (≈ 900, 000 cycles) is required for buffering the first image pair. From the figure,
it is understood that level=4 and level=1 does not require the warping stage S2 and flow
resizing stage S7 respectively. As discussed in Sect. 3.5.1 and can be observed from the
diagram that the pyramid generation (S1) for level=3 starts before the pyramid generation
(S1) for the coarsest level (level=4). Also, it can be observed that the finest level (level=1)
computation takes 16× more time than the coarse level (level=4).
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3.6.6 Comparison among Hardware variants

In order to compare the performance of the proposed hardware variants, QVGA (320×240)
resolution images were considered, so that all architectures with 30 iterations fit on the ex-
isting evaluation board as shown in Table. 3.7. This reduces the resource congestion but
leads to a lower frequency of operation for HPMOF as device utilization is high. The
proposed hardware variants are implemented separately using Vivado. Each PE consists
of pyramid creation, warping, gradient compute, compute reduction, solver, flow merg-
ing, post filter and flow resizing stage. Table. 3.7 shows the implementation details of the
proposed architecture.

Table 3.7: Performance comparison with proposed variants for QVGA resolution.

Resource
Variant

HEOF TSMOF HTMOF HPMOF

Slice 14,583 (13.5%) 23,408 (21.6%) 61,637 (56.9%) 94,292(87.1%)

BRAM36 261 (17.8%) 374 (25.4%) 1137 (77.3%) 595 (40.5%)

DSP48 183 (5.1%) 216 (6%) 711 (19.8%) 3527 (97.7%)

Fmax (MHz) 410 384 360 220

FPS1 5338 2147 4571 2793

Power (W) 8.37 11.58 47.33 34.2
1 refers to frames per second.

The coarsest level does not have a warping stage and the finest level does not have a
resizing stage in the HTMOF architecture. The HTMOF architecture consumes 3.5× more
resource and power as compared to TSMOF architecture. Since HTMOF architecture has
four independent PE, it consumes 4× more resources and power than TSMOF variant with
single PE. The size of memory banks in the pyramid creation, warping and flow resizing
are different for every level in a HTMOF architecture. The level-1 pyramid creation stage
stores 2×W1 ×H1 image, whereas level-2 stage only needs to store 2×W2 ×H2 and so
on. Similar case for the warping and flow resizing banks. From the table, it is understood
that HTMOF and HPMOF variant cannot be deployed for images having resolutions higher
than QVGA as most of the BRAMs and DSP48 are utilized. The HEOF variant consumes
almost 5.6× lesser power than the HTMOF.
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3.6.7 Comparison with state-of-the-art methods

Table. 3.8 shows the comparison of TSMOF with state of the art OF architectures and
variants. The FPS is calculated as the reciprocal of the time taken for flow computation
with the inter-frame latency. The TSMOF architecture achieves a frame rate of 176 fps
for HD images which is the highest among other existing multi-scale OF architectures.
The proposed architecture also achieves the highest Compute Density per Joule of 21.5

GOPS/Watt among other state-of-the-art architectures. It also offers the smallest AAE
of 4.49 without discarding flow components for Yosemite sequence without clouds. The
single scale LK [88] consumes a minimum number of resources including slices, BRAM
and DSP48 and hence it has ≈ 17× better area efficiency than the TSMOF architecture.

A metric defined in the work [102] is utilized to compare the performance of the pro-
posed architecture among different FPGA families, vendors and operating parameters. To
simplify the comparison the number of equivalent slices used for implementing BRAM36
and DSP48 are assumed to be 250 and 200 respectively. The term speedup (S) is computed
as the ratio of the execution time (Tper) of the proposed design to the reference design, the
area is computed as the ratio of the resource utilization (DSP48, BRAM and Slices) of ref-
erence design to that of the proposed design. Area normalized speedup (SAN ) is the ratio
of the speed up to the area of the proposed design. Area-technology normalized speedup
(SADN ) is defined as the ratio of speed up to area and delay (LUT/FF ) characteristics of
a particular device family.

On observing SADN values from Table. 3.8 it can be inferred that the proposed TSMOF
architecture achieves 2.6× performance improvement over the state of art multi-scale OF
architectures. The SADN value is less than one for the single scale OF designs due to less
resource utilization and power consumption but leads to sparse flow fields. It shows that
the SADN value of TSMOF is 5.1× higher than the HPMOF variant. It can also be noticed
that the HPMOF variant provides accurate flow vectors than other proposed variants, but
have a low frequency of operation and higher DSP48 utilization.

3.6.8 Design Scalability

Unlike other multi-scale architectures, the TSMOF is directly scalable to handle a multitude
of image resolutions as shown in Table. 3.9.

It is understood from the table that, as the resolution increases DSP48 utilization re-
mains constant, but there is a significant increase in the number of BRAMs due to high
usage of line buffers and image memories. It is also noted that for a small increase in
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Table 3.9: Design scalability of TSMOF architecture.

Resource
Resol.

QVGA VGA SVGA XGA

Slice 21663 (20.0%) 23896 (22.1%) 25299 (23.4%) 27024 (24.9%)

BRAM36 381.5 (25.9%) 717.5 (48.8%) 797 (54.2%) 1310 (89.1%)

DSP48 216 (6%) 216 (6%) 216 (6%) 216 (6%)

FPS 1 3896 946 590 360
1 represents the number of frames per second.

image resolution (VGA to SVGA), the amount of BRAMs shows only a slight increase
due to the presence of unused regions in the memory bank. Since the design uses memory
banks constructed from the BRAMs, the image will not fit perfectly into the memory. Sim-
ilarly, the resource optimized implementation of the TSMOF architecture for HD image
consumes 1310 BRAMs and fewer slices compared to XGA architecture. The maximum
supported resolution of TSMOF architecture can be improved by utilizing the unused dis-
tributed memories (SLICEM ) for buffering the pixel data or can switch to a high-end
FPGA with more available memory.

3.7 Real-time Implementation

Real-time implementation of the proposed TSMOF architecture on Virtex-V C709 FPGA
board is shown in Fig. 3.19. The image sensor interfaced to the FPGA development board
captures high-resolution images and streams as one-dimensional raw data to the FPGA.
The HDMI camera is interfaced to the FPGA using an FMC-IMAGEON daughter card
producing HD frames at 30 fps. The proposed system utilizes an HDMI TX/RX, UART,
Microblaze and DDR controller from Xilinx LogiCORE IP.

The architecture needs two images, the previous and current frame. The previous frame
Nsolv-1 is stored in the external memory and read back from the memory and the current
frame Nsolv is streamed to internal memory. The image is preprocessed and stored in the
external DDR3 memory which is read by Video Direct Memory Access (VDMA) and fed
into the flow computation engine. Finally, the dense flow computation is displayed on an
HDMI monitor based on a simple pixel colouring scheme as in Fig. 3.20. The computed
flow vectors are displayed using a simple pixel colouring scheme, R = b128 + uc;G =

b128+vc;B = b255−uc. The UART interface allows configuring architecture parameters
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Figure 3.20: Colour coded optical flow

from the Host PC.

Table 3.10: Resource utilization of real-time variational multi-scale OF system.

Resource
Util.1

Used Available Percentage

Slice 44,147 108,300 40.7%
BRAM36 1412 1470 96.1%

DSP48 222 3600 6.2%
1 Resource utilization of the design.

Table. 3.10 shows the resource utilization of real-time implementation of the proposed
TSMOF architecture utilizing Xilinx image processing pipeline. Even though the TSMOF
architecture alone achieves 378 MHz, a real-time implementation of TSMOF architecture
utilizing the existing Xilinx image processing pipeline runs at a lower operating frequency
of 160 MHz.

3.8 Summary

This chapter discussed the hardware adaptation and design of the high throughput time-
sharing architecture of variational multi-scaleOF algorithm. The dedicated memory banks
and the special access schemes helps to achieve superior area and energy efficiency while
attaining massive parallelism and accuracy. The design is scalable to fit in an embedded
device with different image resolution in real-time while consuming low-power. This is
the first work on deeply pipelined time-sharing architecture for variational multi-scale OF
to capture dense and accurate OF of fast-moving objects from HD frames in real-time
(176 fps). The architecture makes use of 169 super-scalar units with 702 deep pipelines
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to achieve a throughput of 395 Giga Operations Per Second (GOPS) with a computation
density of 21.5 GOPS/Watt. This architecture achieves an effective speed-up of 2.6× com-
pared to state of the art multi-scale OF implementations. The work also analyses three
architecture variants to evaluate the trade-off between accuracy, resource utilization and
throughput.

Table 3.5 shows the resource utilization of S5 stage with 20 solver iteration, consuming
3× higher number of slices than other stages in the variational multi-scaleOF architecture.
This lead to a higher resource consumption which needs to be analysed for improved area
efficiency. The selection of edge-preserving flow filter at each pyramid level also plays
an important role in improving the flow accuracy of the variational multi-scale OF archi-
tecture. Since the direct implementation of BF is complex and have low throughput, the
proposed architecture utilizes a two-dimensional median filter. Hence the design of a high
throughput architecture for BF is also analysed to improve the flow accuracy.
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Chapter 4

High Throughput Architecture forOF Sub-
systems

This chapter focuses on the design of a high throughput and resource optimized architec-

ture for the internal subsystems of the proposed variational multi-scale OF architecture

discussed in the previous chapter 3. The work starts with the design of a high throughput

RBSOR solver architecture and its integration into the variational High Throughput Opti-

cal Flow (HTOF) architecture to analyse the reduction in resource utilization. The chapter

concludes with design of a high throughput BF architecture to denoise the flow field while

preserving edges.

4.1 Proposed RBSOR Solver architecture

4.1.1 Introduction

The selection of solver is a critical design consideration made during the implementation
of variational HSOF architecture. Since the linear system of equations for all input pixels
forms a sparse system, the direct methods are not efficient to solve it. The numerical or
iterative solvers are commonly used for solving such type of sparse systems. The iterative
solver starts with an approximation of the true solution and finds a closer approximation
in each iteration until the required accuracy is obtained. This means that for an iterative
solver the number of iteration depends on the accuracy required.

A conventional variational HSOF architecture utilize some form of an iterative solver
to compute the OF with the intermediate flow vectors buffered in external memory. Each
solver iteration is evaluated by retrieving the input image and intermediate flow values
using two independent data ports leading to low throughput performance. Even with the



use of high-performance data port, this scheme leads to a significant delay in the flow
computation. This can be improved by unfolding the solver iteration and buffering the
intermediate data. But this results in the solver stage consuming the highest resource among
other modules in the OF architecture.

Considering these facts, the research work analyses different types of iterative solvers
such as Jacobi, Gauss-Siedel, SOR, Conjugate Gradients and Multi-grid approaches [103,
104] in terms of the number of iterations and convergence rate to achieve faster convergence
and less resource utilization. For instance, consider a system of n linear equations in n
unknowns represented by the given equation (4.1).

a11 · q1 + a12 · q2 + ....a1n · qn = b1 (4.1)

a21 · q1 + a22 · q2 + ....a2n · qn = b2

.................................

an1 · q1 + an2 · q2 + ....ann · qn = bn

The matrix notation of the equation (4.1) is given in equation (4.2),

A×Q = B (4.2)

The substitution of initial guess q0
1 , q0

2 , q0
3 . . . q0

n for all the unknowns into equa-
tions (4.2), leads to the computation of an updated guess q1

1 , q1
2 , q1

3 . . . q
1
n.

Jacobi solver

The Jacobi solver forms a diagonally dominant system utilizing a linear system of equa-
tions. The diagonal elements are solved iteratively by plugging in an approximate value
until it converges. With the Jacobi method, the values of qki obtained in the kth iteration
remain unchanged until the entire (k + 1)th iteration is completed. It starts with the initial
guess q0

1 , q0
2 , q0

3 . . . q
0
n and compute the next approximation of the solution as given in the

equation (4.3).

qi
k+1 =

1

aii
(bi −

∑
i6=j

aij · qjk) (4.3)
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Gauss Seidel solver

In Gauss-Seidel method, the new values qk+1
i will be used as soon as they are available by

the equation (4.4). It can be observed that once qk+1
1 is computed from the first equation,

this is used in the second equation to compute new value for qk+1
2 and so on.

qi
k+1 =

1

aii
(bi −

∑
j<i

aij · qjk+1 −
∑
j>i

aij · qjk) with i 6= j (4.4)

Successive over-relaxation solver

The Successive Over Relaxation (SOR) solver is computed as an extrapolation of the
Gauss-Seidel method. It provides the highest convergence rate by introducing a weighted
average (ω) of the current flow vector from nth iteration in addition to the computed Gauss-
Seidel flow as given in the equation (4.5).

qi
k+1 = (1− ω) · qik +

ω

aii
(bi −

∑
j<i

aij · qjk+1 −
∑
j>i

aij · qjk) (4.5)

where ω is the convergence factor. The value of ω varies in the range of ω ∈ (0, 2)

and will control the rate of convergence. The SOR method simplifies to the Gauss-Seidel
method, when ω =1. The variational OF solver equation (2.8) described in the Section 2.3
is evaluated using SOR iterative scheme given in equation (4.6).

a11 a12 a13 a14 a15

a21

a31

a41

a51

a23 a24 a25

a32 a33 a34 a35

a42 a43 a44 a45

a52 a53 a54 a55

a22

a11 a12 a13 a14 a15

a21

a31

a41

a51

a23 a24 a25

a32 a33 a34 a35

a42 a43 a44 a45

a52 a53 a54 a55

a22

(a) SOR solver

a11 a12 a13 a14 a15
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a51

a23 a24 a25

a32 a33 a34 a35

a42 a43 a44 a45

a52 a53 a54 a55

a22

a11 a12 a13 a14 a15
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a31

a41

a51

a23 a24 a25

a32 a33 a34 a35

a42 a43 a44 a45

a52 a53 a54 a55

a22

(b) Red Black SOR solver

Figure 4.1: Data dependency in the pixel computation across different solver iterations.
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un+1 = w.un + [1− w].

(
un+1 − Ix

(Ix.u
n+1 + Iy.v

n + Iz)

(α2 + I2
x + I2

y )

)
(4.6)

vn+1 = w.vn + [1− w].

(
vn+1 − Iy

(Ix.u
n+1 + Iy.v

n + Iz)

(α2 + I2
x + I2

y )

)
A SOR solver needs approximately half the number of iterations as compared to Jacobi

for achieving the same accuracy [96]. Fig.4.1 (a) shows the data dependency of the SOR
solver in computing the given pixel value. For example, the computation of the pixel value
a22 in the (n + 1)th iteration requires a12, a21, a23 and a32 pixels from the same iteration.
Among which the (n + 1)th iteration of top pixel (a12) is already computed and available.
While the right (a23) and the bottom (a32) pixels are not available as they are not yet com-
puted. The (n + 1)th iteration value of the left pixel (a21) is also required to compute a22

pixel. But the processing and pipelining latency involved in the computation of the left
pixel (a21) adds delay to the pixel computation. This further limits the parallelism and
pipelining achieved with the hardware implementation.

The data dependency of the original SOR is eliminated using a two-pass Red-Black
SOR scheme [104] by dividing the incoming pixel stream into red and black pixels; with
the red being surrounded by black pixels and vice versa as illustrated in the Fig.4.1 (b).
The red pixels values are computed in the first pass, the remaining black pixel values are
evaluated in the second pass while keeping red pixels untouched. In the second pass, the
black pixel (a22) is computed using the neighbouring values of the red pixels (a12, a21, a23

and a32) from the first pass. Thus the computation of black pixels and their adjacent red
pixels in different passes leads to parallel operation. Also, since all the neighbouring pixels
are available during the flow computation, all elements can be processed in parallel and the
system can be pipelined to achieve better operational frequency. Hence this work focuses
on the design of a high throughput hardware architecture of RBSOR solver to provide
higher accuracy with a lesser number of solver iterations as compared to other solvers.

4.1.2 Related work

The RBSOR solver architecture can be used as a replacement for existing slow conver-
gence and large area consuming solvers in numerous signal processing applications. Since
the literature lacks information about the hardware implementation of RBSOR solver ar-
chitecture, the work explores the OF architecture utilizing the RBSOR solver. Most of the
existing variational HSOF architectures are based on parallel and slow converging Jacobi
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solver. Martin et al.[105] implemented an HSOF algorithm on the Altera APEX20K device.
It can process 256× 256 images at 60 fps. In [106], a high-performance FPGA implemen-
tation of HSOF algorithm is proposed. It is implemented on the Cyclone II FPGA device
and reaches a throughput of 734.3 Kpixel/s which is appropriate for real-time motion de-
tection. It can process 240×320 frames at 1030 fps. An efficient hardware implementation
of the variational HSOF algorithm is presented in [92]. It achieves a throughput of 175

MPixels/s and process Full HD (1920 × 1080) frames at 60 fps on Virtex 7 FPGA device.
The fixed-point architecture achieves the performance of 418 GOPS with power efficiency
of 34 GOPS/W whereas as floating-point module achieves 103 GFLOPS, with power effi-
ciency of 24 GFLOPS/W. The proposed module does not require external memory to store
intermediate flow vectors between the iterations. It utilizes a separate hardware submodule
for each iteration leading to large resource usage. The HSOF implementation with Jacobi
solver uses a large number of iterations to get sufficient accuracy. This leads to increased
resource utilization and hence more power consumption, thereby limiting the applicability
for embedded platforms.

Chen et.al [107] proposed the FPGA implementation of dense OF based on classical
Combine-Brightness-Gradient (CBG) model with RBSOR solver. The design is imple-
mented using C rather than HDLs for rapid prototyping. It takes two passes to complete
the flow computation. The intermediate flow field from the first pass is buffered in external
memory and retrieved during the second pass to complete the flow computation. The opti-
mized implementation Xilinx ZYNQ FPGA-SoC can only process 640×480 images at 1.72

fps while consuming 1.84 watt power. It achieves a 32× improvement in the computation
speed as compared to CPU implementation which takes around 2.6s and consumes 35 watt
power. This motivated to the design of a high throughput RBSOR solver architecture and
its integration in variational HTOF architecture to compute accurate and dense OF with
less number of iterations in real-time.

4.1.3 RBSOR Solver Architecture

This section focuses on the design of a novel two-pass hardware architecture of RBSOR
solver with a pixel selection unit to maximize the throughput. The conventional RBSOR
solver architecture [107] waits until the completion of the red pass to start the black pass,
degrading the throughput performance. Instead, the red pass and black pass of the proposed
architecture operates simultaneously after a small buffering latency.

The internal architecture of the proposed RBSOR solver for computing the system of
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equations (4.6) is shown in Fig. 4.2. The design utilizes superscalar and deep pipelined
structures for implementing the most efficient architecture [108]. The RBSOR is a two-
pass solver architecture with the red pass processing the odd set of pixels while the black
pass processes the flow of even pixel as selected by pixel selection architecture. The Red
and Black pass modules share the same circuitry. A pixel selection architecture is used
to choose between odd and even pixels in the incoming stream, while the synchronization
buffers help to cache intermediate flow values across the two passes to eliminate the need
for external data buffering. The proposed scheme uses all four neighbouring pixels for the
flow computation by internally caching the intermediate optical flow vectors. From the
figure, it can be observed that the input gradients and denominator values are delayed by a
line buffer of size 2×(W+S) (W+S delay cycles for each pass) and fed to the next solver
iteration, where S is the processing time of Red/Black pass block and W is the width of
the input frame.

For the initial Red pass, the flow values are assumed to be zero. Each of the pass
involves a flow averaging operation utilizing 3 × 3 kernel [1] with a normalizing factor of
1/12. It uses three daisy-chained line buffers (W − 1, W + 1 and 2) and a register bank to
provide simultaneous access to four adjacent flow values. Once the line buffers are full, the
stored values are simultaneously made available at the output of register banks. The tuned
value of ω is pre-loaded and used in the constant multiplier. The pixel selection block at
the output of each pass decides whether to forward the incoming data or processed values
from the pass using two multiplexers (Mux) for two different flow component. The output
of the first pass needs to be stored in a red line buffer (buffred) so that the next pass at least
gets one full line (W ) and a pixel to start the black pass computation. Once the buffers are
full, the black pass computation is started and the stored values are sent through a pixel
selection block and buffered into the black buffer (buffblk). Thus intermediate line buffers
(buffred, buffblk) help to provide data synchronization between the red and black passes.

4.1.3.1 Pixel selection architecture

The internal architecture of the pixel selection unit is shown in Fig. 4.3. It determines the
incoming data to be processed in the red pass or black pass of the solver iteration. The
start of the image frame is used to find the pixel indices of the input data in the streaming
architecture. This is propagated to each of the solver iterations and is compared with the
solver start value to enable the local counter (En[++]) in pixel selection architecture. The
start value for each solver iteration is pre-computed and stored based on the processing
time and pipelining latency of the previous modules.
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Figure 4.3: Pixel selection architecture.

The modulo operation on the local counter value using input data width (W ) generates
the row data index which is then fed to a modulo two operator to classify the index into
odd or even. The eps is a small positive value accumulated with the local counter to avoid
divide by zero condition. The output from the modulo two operation is sent as selection line
to the multiplexer to select either the solver result or delayed input values from the previous
iteration. If the input data index is even, then that data is labelled as red and during the red
pass, this data is updated with the newly computed value. Otherwise, the data is labelled
as black and during the red pass, it is kept as the previous value. The solver stage accounts
for a total of 16 coarse pipelines, with the average block having a total of 3 coarse and 2

fine grain pipelines.
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Figure 4.4: Block diagram of HTOF architecture based on RBSOR solver
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4.1.4 Proposed High Throughput Optical Flow (HTOF) architecture
using RBSOR solver

The block diagram of variational HTOF based on RBSOR solver is shown in Fig. 4.4. The
design considers hardware optimization like deep data path pipelining and unfolding of the
solver iteration to provide better accuracy with less number of iteration as compared to
other iterative solvers. It implements data parallelism in gradient, filtering and reliability
checker modules to maximize the throughput. The architecture preserves image bound-
aries by selectively computing the flow vectors at every location. It also minimizes the
resource utilization of entire architecture by moving the complex arithmetic operation in
the unfolded solver iterations to the preceding block before the solver iteration. The num-
ber in the box corresponds to the depth of pipeline applied to each module in the HTOF
architecture.
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Figure 4.5: Gaussian smoothing architecture.

4.1.4.1 Pre-smoothing module: M1

The input images are pre-smoothed to suppress the high-frequency distortions caused by
external environmental effects and internal thermal noise of the sensor. It also helps to
reduce the noise sensitivity of the first order spatial gradients. Fig. 4.5 shows the image
smoothing architecture of a 3× 3 Gaussian filter [109].

It utilizes an image patch converter to convert the one-dimensional input stream into a
two-dimensional patch using 2 line buffers of width (W ). The two-dimensional streams
are fed to averaging unit consisting of 8 adders, 6 shifters and 6 flipflops to get the smooth
response. The filter architecture utilizes 4 feed forward cutsets to perform pipelining.
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Figure 4.6: X-direction gradient computation architecture.

4.1.4.2 Gradient compute module: M2

The gradient module utilizes three parallel spatiotemporal gradient units to compute x, y
and t gradients of the input data streams as shown in Fig. 4.6. It utilizes six line buffers
(two for each gradient direction) of widthW to perform gradient computation. The gradient
architecture utilizes 21 addition/subtraction blocks along with 3 shift registers to implement
gradient model based on Robert mask [1]. The architecture is deeply pipelined with 2

coarse and 2 fine cutsets.

4.1.4.3 Arithmetic reduction module: M3

A direct implementation of the unfolded solver architecture needs to compute reciprocal
of the equation (4.6) in every solver iteration, which leads to high resource utilization.
To mitigate this, the proposed design isolates the reciprocal computation present in every
unfolded solver iteration to an arithmetic reduction module prior to solver computation
stage. The reciprocal values are forwarded to all the solver iterations using dedicated line
buffers as illustrated in Fig. 4.7. The architecture utilizes 4 coarse grain cutsets to perform
44 stage deep pipelines.
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Figure 4.7: Arithmetic compute reduction architecture.

4.1.4.4 Boundary handling architecture: M4

The computation of the gradient in the HTOF architecture is corrupted in the two outer
image boundary layers due to boundary effects. Since the corrupted gradient value is used
in the Nsolv iteration of the solver stage, this leads to corruption of Nsolv-1 outer layers of
the flow field. This can be prevented by padding the incoming stream based on the size of
the gradient mask but leads to an additional processing latency. Instead, the proposed ar-
chitecture utilizes an additional control logic to identify the image boundaries and employs
a separate set of multiplexer arrays to either bypass the input stream or send a pre-defined
value as shown in Fig. 4.8.

4.1.4.5 Solver module: M5

The RBSOR solver architecture described in the previous Section 4.1.3 is utilized for im-
plementing the solver stage. The solver needs to computeOF by solving the equation (4.6)
described in the Section 4.1.1. The 1st iteration does not involve flow averaging compared
to remaining Nsolv-1 iterations.

4.1.4.6 Flow filter module: M6

The computed flow values contain outliers due to illumination artefacts, occlusions and
other discrepancies due to the approximation error in the cost functional 2.4. A two-
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Figure 4.8: Boundary handling architecture.

dimensional median filter of kernel size K × K described in the previous Section 3.5.6
is utilized to eliminate the randomness in computed flow vectors.

4.1.4.7 Reliability checker module: M7

The reliability checker module performs an additional check on the local flow smoothness
by computing the flow variance. If the flow variance of the input patch is higher than the
threshold, then the corresponding flow value is truncated. The variance is computed as
given in the equation (4.7),

σ2 =
1

W ×H

W∑
i=1

H∑
j=1

(u(i, j)− ū)2 (4.7)

where m,n corresponds to indices of flow values, u(m,n) represents pixel values and
ū indicates mean of the pixel values over the entire image region. Since the direct compu-
tation of equation (4.7) is complex in the hardware, a hardware-friendly flow variance is
implemented by subtracting the individual flow from the mean of neighbouring flow values.
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Figure 4.9: Reliability checker architecture.

It replaces the complex standard deviation operation requiring division and multiplication
with simple addition and subtraction operation. Fig. 4.9 shows a hardware-friendly ar-
chitecture of the reliability checker module. It utilizes a stream converter using two line
buffers of width W . The mean block computes the average of the neighbours in the two-
dimensional patch, subtract from the centre pixel value and is compared with a pre-saved
threshold to generate the selection line for the multiplexer. The architecture uses 5 cutsets
for performing the pipelining.

4.1.4.8 Vector to Colour (V2C) converter module: M8

The V2C module encodes the flow values into RGB data which is used to display in an
HDMI monitor. The flow is converted to RGB components using a simpler formula, with
the red (green) component is computed by adding u(v) with 128 and the blue component is
obtained by subtracting u values from 255. The computed values should lie in the consid-
ered range [−128 : 127], for any values above or below the chosen threshold are saturated.

4.1.4.9 Hardware Design Variants

The work proposes a High Precision Optical Flow (HPOF) architecture of HTOF algorithm.
This variant is single precision floating point architecture providing high accuracy but at
the cost of increased resource utilization.

4.1.5 Hardware implementation Results

The proposed architecture is synthesised and implemented on Xilinx Virtex-V C707 board
using Vivado design tools (2017.2). An unoptimized version of the variational HSOF algo-
rithm with 10 RBSOR solver iteration on a single core Intel CPU i5-M460 running at 2.53
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GHz with 4 GB RAM takes 3.26 sec for a 512× 512 resolution image. Fig. 4.10 (a) illus-
trates the amount of time spent on each of the processing stage by profiling the algorithm,
of which solver is the most time-consuming part. Fig. 4.10 (b) shows the computation time
of the HSOF algorithm for different image resolutions.

4.1.5.1 Parameter analysis

The design is analysed to find the dependencies and effects of various parameters such
as computation time, iterations and accuracy on throughput performance and quality of the
HSOF architecture. The parameterNsolv controls the accuracy of the algorithm. SinceNsolv

is inversely proportional to the AAE or AEE, the computational accuracy improves with
Nsolv. Another parameter α controls the smoothness of flow vectors, whereas ω controls
the rate of convergence. In order to analyze the effect of α on AAE or AEE and number of
iterations, a graph is plotted between AAE and Nsolv, with different alpha while keeping ω
as constant depicted in Fig. 4.11. For different α values, the AAE/AEE reaches a constant
minimum value within 10 to 15 iterations as observed from the graph.
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Figure 4.12: Variation of AAE for different convergence factor (ω).

Similarly Fig. 4.12 shows the rate of convergence of the proposed HTOF architecture
for different ω values with tuned α value for each dataset. It can be observed that for most
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cases the AAE/AEE settles to a minimum value for ω = 1.7.
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Figure 4.13: Performance comparison between software and hardware error performance.

4.1.5.2 Impact of Numerical representation

The selection of fixed or floating point implementation of HSOF algorithm plays an im-
portant role in the trade-off between accuracy and power consumption. The floating point
algorithm shows lesser error for a fixed number of iteration but is high on resource utiliza-
tion. The fixed point representation opens a large space for the exploration of the suitable
bit width requirement for each of the stages. The conversion from floating point to fixed
point results in quantization effects. The software algorithm with these inferred parameters
is converted to a fixed point Verilog architecture with the quantization error as depicted in
Fig. 4.13. The highest bit width required in each submodules of the architecture is given in
the Table. 4.1.

4.1.5.3 Resource and performance analysis

Table. 4.2 shows the resource utilization, maximum operating frequency and power dissi-
pation of architecture variants at the submodule level while processing FHD (1920× 1080)
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Table 4.1: Selected bit-width for different modules.

M1 M2 M3 M4 M5 M6 M7
BWmin

1 8 14 22 14 28 18 18
1 represent the maximum number of bits utilized for each stage.

sequence. It can be inferred from the table that, M7 stage uses a minimum number of
slices but consumes higher power than M3 due to the more number of BRAMs utilized for
implementing line buffers. In the HTOF variant, the M5 stage with 1 solver iteration has
the highest resource utilization stage, as it makes use of a large number of DSP48 slices for
implementing the complex arithmetic. Unlike other stages, M5 has high BRAMs utiliza-
tion due to large buffers required for intermediate data caching which results in consuming
significantly more power than other stages.

Table 4.2: Resource utilization of the proposed hardware variants.

Resource

Modules
M1 M2 M3 M4 M51 M6 M7

HPOF HTOF HPOF HTOF HPOF HTOF HPOF HTOF HPOF HTOF HPOF HTOF HPOF HTOF

FlipFlop 2123 255 1806 374 622 254 2061 2250 7953 2310 2260 880 1065 71

LUT 5448 68 8452 192 1887 178 3483 1024 22054 1415 2088 790 3714 19

Slice 1657 48 2914 104 563 67 1131 461 7055 639 642 256 1265 18

BRAM36 4 0.5 8 1 0 0 0 0 40 10.5 4 1 4 0.5

DSP48 0 0 0 0 0 0 6 2 36 16 0 0 0 0

Fmax (MHz) 102 480 110 470 120 480 110 480 105 460 310 490 102 490

Power (W) 0.300 0.308 0.428 0.459 0.229 0.270 0.290 0.558 0.691 0.948 0.284 0.356 0.295 0.314

1 represents the resource utilization of M5 stage with one solver iteration.

Further, the resource utilization of proposed HTOF architecture with different iterations
is shown in Table. 4.3, ignoring the HPOF due to the resource unavailability for a higher
number of iterations. From the table 4.2 and 4.3, it can be observed that each stage of
HTOF can operate to a maximum frequency of 490 MHz but gets reduced to 350 MHz
due to large utilization and interconnection. The unavailability of DSP and BRAM limits
the maximum possible iterations. The critical path in RBSOR solver iteration loop limits
the overall performance. Even though a large number of iterations will slightly improve
architecture accuracy, fewer numbers of iterations are sufficient for achieving reasonable
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Table 4.3: Resource utilization of HTOF architecture for different number of iterations.

Resource
Iteration

10 15 25 35 50

FlipFlop 26184 37821 58959 80809 111398
LUT 18378 27197 42373 58932 81536
Slices 7529 11123 17259 23756 33338

BRAM36 209.5 314.5 524.5 734.5 1028.5
DSP48 157 237 394 557 781

Fmax (MHz) 430 426 417 400 350
Latency (µs) 95 142 238 346 560
Power (W) 6.471 9.45 15.15 20.99 30.24

accuracy.

Table 4.4: Performance comparison of variational OF architecture on different FPGA
devices.

Resource
FPGA

V6-Util Avail V7-Util Avail

HPOF-5 HTOF-10 - HPOF-10 HTOF-15 -

FlipFlop 50994 39803 301440 90764 37821 607200

LUT 125642 34343 150720 228385 27197 303600

Slice 34241 11977 37680 63558 11123 75900

BRAM36 212 304 416 412 314.5 1030

DSP48 177 237 768 357 237 2800

Fmax (MHz) 70 240 - 90 426 -

Latency (µs) 306 170 - 455 142 -

Power (W) 15.14 10.13 - 19.32 9.45 -

A Virtex-6 FPGA based implementation shown in Table. 4.4 helps to study variation
in the resource, power and operating frequency when choosing a lower FPGA device fam-
ily. The highly pipelined HTOF architecture achieves 426 MHz in Virtex-7 FPGA, this
corresponds to a reduction of maximum operating frequency by 44% as compared to the
Virtex-6 implementation. The HPOF implementation also shows a similar pattern as in the
case of Virtex-7.

The performance of HTOF architecture is compared with HPOF in Table. 4.5. The
implementation utilizes 10 iterations of RBSOR solver with each iteration containing a
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Table 4.5: Accuracy of the variational OF architecture on Middlebury database.

Rubberwhale (D1) Dimetrodon (D2) Venus (D3) Hydrangea (D4) Grove 2 (D5) Grove 3 (D6)

HPOF HTOF HPOF HTOF HPOF HTOF HPOF HTOF HPOF HTOF HPOF HTOF

AAE 8.54 8.79 10.67 10.99 26.12 26.68 25.23 25.56 26.88 27.08 26.64 26.89

AEE 0.28 0.29 0.63 0.65 2.34 2.43 2.23 2.34 1.56 1.66 2.53 2.62

red pass and a black pass. The parameters of the architecture are tuned to minimize the
AAE/AEE errors. The smoothing parameter α was set to 3 and the convergence factor w
was set to 1.75. It can also be inferred from the table that a fixed-point HTOF design shows
negligible accuracy loss as compared to HPOF architecture having high resource utilization
due to a large number of float/fixed conversions. As observed from Table 4.5, the HPOF
variant provides slightly better flow accuracy than HTOF, it’s high resource utilization and
low throughput makes it less preferable for embedded and portable applications. Hence
HTOF architecture is used for further analysis.

4.1.5.4 Power analysis

The architecture complexity is evaluated in terms of the number of fixed or floating point
operations performed in unit time. The design has several super-scalar units across different
stages to improve throughput of which, stage M1 has two parallel smoothing filters, M2

utilizes 9 parallel units for gradient computation, M3 has 9 units for computing solver
coefficients, M4 has 9 units for the solver, M5 has 6 units for flow filtering and M6 has 3

parallel units for reliability computation. In addition, some of the internal operations and
data paths are computed in parallel to improve the throughput.

The M1 stage reads two pixel information and performs 14 operation which include 8

addition and 6 shift operations, gradient computation stage M2 involves 24 operations, the
arithmetic reduction stageM3 include 2 multiplication, one addition and a single reciprocal
operation, boundary handling stage M4 involve 13 operations, 15 iterations of RBSOR
solver M5 stage includes 1080 arithmetic operations, median filter stage M6 involves 30

logical operation and 55 multiplexers, and the reliability checker stage M7 constitutes 13

operations.
Thus the HTOF architecture accounts for a total of 1234 fixed-point operations. The

processing of HTOF architecture on a UHD sequence reaches a maximum throughput of
491 Giga Operations Per Second (GOPS) while consuming 11.27 watts at 412 MHz. This
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leads to a power efficiency of 43 GOPS/Watt. The major source of power dissipation is
the solver module containing 15 iterative pipeline stages. The increased number of BRAM
accounts for the major part of the dynamic power of HTOF architecture. The static power
remains the same and is dependent on resource utilization and the operating frequency.
Since the processing time of the HTOF is drastically reduced, net energy consumption also
reduces significantly.

Table 4.6: Performance of the HTOF architecture for various image resolutions.

Resource
Resolution

QVGA VGA SVGA HD FHD UHD

FlipFlop 35598 36395 36979 37114 37821 37823
LUT 25848 26278 26644 26409 27197 26891
Slices 9712 9860 9938 10825 11123 11384

BRAM36 166 180.5 180.5 314.5 314.5 467
DSP48 237 237 237 237 237 237

Fmax (MHz) 442 440 438 430 430 412
Latency (µs) 26 47 58 94 140 291
Power (W) 6.16 7.714 7.77 9.34 9.45 11.27

4.1.5.5 Design scalability

The design is directly scalable to support a multitude of resolutions as shown in Table. 4.6.
As the resolution increases DSP48 utilization remains constant but leads to an increase in
BRAMs for internal buffering. For a small increase in image resolution, the BRAMs show
a slight increase due to the presence of unused regions in the memory bank.

4.1.6 Comparison with other state-of-the-art architectures

Table. 4.7 shows the performance improvement of the HTOF with RBSOR solver archi-
tecture over state of the art methods. The proposed architecture with several adders and
multipliers using structural code, utilize deep pipelines (fine and coarse grain) to minimize
the critical path to achieve a Fmax � 400MHz. A high-speed interface like PCIe, HDMI
or Display Port (DP) with a bandwidth of more than 6.5Gbps can feed data to the proposed
architecture. Due to the streaming nature of the architecture, a similar high-speed interface
is required in the output to transmit the computed flow to the external devices. Among the
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existing methods, the proposed HTOF architecture achieves highest frame-rate of 48 fps
for UHD frames with minimal inter-frame latency. Also, it shows the computation accu-
racy of different OF algorithms with flow density on standard Yosemite sequence without
clouds. The proposed HTOF architecture achieve reasonable accuracy with 100% density
while utilizing a lesser number of iterations in comparison with other architectures. The
proposed HTOF architecture shows a peak improvement of 8.64× for SAN and 5.1× for
SADN as compared to HSOF implementation based on Jacobi solver [92]. Since the LK al-
gorithm is sparse and non-iterative, the area utilization is quite less compared to the HSOF
architectures. Hence the SAN and SADN doesn’t show the significance of HTOF over LK
methods. In comparison with the existing HSOF architectures, the HTOF achieves at least
3.06× and 1.5× improvement in SAN and SADN respectively. The real-time evaluation
system based on the proposed architecture is implemented using a Xilinx sample video
processing pipeline, which results in a much lower speed of operation. The implemented
system operating at 110 MHz is capable of processing FHD frames at more than 45 fps
meeting the real-time requirement.

4.2 Proposed Bilateral filter architecture

4.2.1 Introduction

Type of intermediate flow filter in the variational multi-scale OF algorithm with a less
number of solver iteration is an important design consideration to improve the accuracy of
the computed flow [110]. Since errors in the flow field are generated due to edges, outliers
and occlusions, it is necessary to develop smoothing techniques that would preserve the
motion boundaries in the calculated displacement field. Using a suitable filter such as
the median filter to post-filter the intermediate flow field during incremental estimation
and warping is an effective way to remove outliers [95]. The median filter is not good at
handling occlusions, instead a BF [111] with the edge-preserving properties [112, 113] is
effective in treating occlusions [114].

The integration of the BF in the variational multi-scale OF algorithm [115] helps to
improve the accuracy of the computed flow field by denoising the displacements fields at
each pyramid layer. It ensures the removal of outliers that may appear during the calculation
of the flow field. The high computational complexity is a well-known limitation of the BF
[116]. This motivates the design of a high throughput parallel-pipelined architecture of
original BF.
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4.2.2 Related Work

The existing literature for BF is classified mainly in two directions. The first set of ap-
proaches try to improve the performance of true or original BF by incorporating advanced
optimization strategies. The second approach implements an approximated variant of BF
which has higher performance but deviates from the original BF solution. Durand et al.
[113] uses a piecewise linear approximated spatio-tonal BF, suitable for large kernel size
but suffers from large memory requirement. A modified BF in [117] makes use of the sep-
arability property to fasten up the execution. The work in [118] proposes a Bilateral grid,
which has a compact three-dimensional data structure that combines the two-dimensional
position of the image spatial domain with the intensity of the reference image. The spatial
sampling controls the amount of smoothing, while the range controls the degree of edge
preservation. The CPU implementation of Bilateral grid using fewer input data points help
to achieve performance in the order of one second, while modern graphics hardware can
achieve in order of few milliseconds. In [119, 120], the BF is implemented using trigono-
metric range kernels which allows to linearise the BF. A recursive approximation of BF is
proposed in [121] decomposes the range filter into recursive products and adopt any spatial
filter that can be implemented recursively.

A Xilinx system generator implementation of BF with varying kernel size up to 15×15

with minimal reduction in picture sharpness is proposed in [122]. An FPGA implementa-
tion of BF for real-time stereo background subtraction processing 320 × 240 at 30 fps is
proposed in the work [123]. A fully parallel modified BF architecture operating at 159 MHz
based on photometric filter alone is proposed in [124]. The work in [125, 126] discusses the
importance of choosing the optimal parameters for the standard deviation of the range filter
which need to be in agreement with the noise in the input image. The work [127] propose
a BF architecture using a kernel size of 5 × 5, operating four times faster than the input
sampling rate but leads to poor performance for high-resolution images in real-time. In
[128], a BF for real-world interactive medical application is implemented using high-level
synthesis tools and shows the superiority of design over GPGPU implementation.

Tseng et al. [129] show an efficient and scalable design of BF using integral histogram-
based and joint BF by memory reduction and architecture design techniques. This de-
sign can process FHD frames at 60 fps using 356 K gates and 23 KB memory. The work
proposed in [130] implements a heavily parallel and deeply pipelined stereo computation
co-processing system, stores the data locally in shift registers thereby achieving a faster
throughput of 1024×768 at 15 fps. The work [131] discusses the importance of a software-
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hardware co-design of the modified BF utilizing trigonometric range kernel. Another ap-
proximated BF architecture is proposed in [132], operates at a maximum frequency of 450

MHz with one pixel per clock cycle.

From the aforementioned work, it is observed that most of the high throughput im-
plementation of BF architecture is based on some form of approximation to the original
BF algorithm. Also, the performance of the existing BF architectures will get affected by
varying noise level in the input data. This motivated to the design of a high throughput
architecture for true BF which can adapt to varying noise density of the incoming data.
Further, the work proposes several hardware architecture variants in accordance with the
varying application requirements.

4.2.3 Algorithm formulation

Consider an input flow field u(x, y), corrupted by additive white Gaussian noise of zero
mean and standard deviation σ2 to generate a noisy field f(x, y) as given in equation (4.8).

f(x, y) = u(x, y) + AWGN(0, σ2) (4.8)

The bilateral filter denoises f(m,n) while preserving edges to get the denoised flow
field ĝ(x, y), based on the equation (4.9).

ĝ(x, y) =
1

r(x, y)

∑
iεΩ

∑
jεΩ

[φrang(x, y)× φdom(x, y)× f(i, j)] (4.9)

Where m, n represents the input data coordinates, i, j are the coordinates of the flow
values in the filter neighbourhood Ω. σr and σd denotes the standard deviation of range
and domain filters respectively. BF suppresses the uncorrelated noise in a uniform region
by enforcing photometric and geometric variability of range φrang(x, y) and domain filter
φdom(x, y) stages as given in equation (4.10) and (4.11) respectively.

φrang(x, y) = exp(−(‖f(x, y)− f(i, j)‖)2

2σ2
r

) (4.10)

φdom(x, y) = exp(−(‖x− i‖)2 + (‖y − j‖)2

2σ2
d

) (4.11)

Weight estimation of the range filter is based on the amount of dissimilarity between the
centre and its neighbouring values in the considered data patch. The domain filter performs
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weighted averaging of nearby values based on a geometric separation between the central
and neighbouring pixels. A regularizer r(x, y) preserves the dynamic range of the output to
be same as input by computing the sum of products of range and domain filter coefficients
as in equation (4.12).

r(x, y) =
∑∑

[exp(−(‖x− i‖)2 + (‖y − j‖)2

2σ2
d

) · exp(−(‖f(x, y)− f(i, j)‖)2

2σ2
r

)]

(4.12)

4.2.4 System Overview

The high-level view of the proposed true BF architecture is shown in Fig. 4.14. The archi-
tecture is modularized into five sub-blocks: a) Segment creator, b) Range filter, c) Domain
filter, d) Regularizer and e) Running variance. The input stream buffer converts the one-
dimensional flow vectors into two-dimensional patch of size K ×K. This is achieved by
internally caching the flow values using line buffers of depth 2×W . The number of stream
buffers depends on the size of the kernel (K − 1). The segment creator groups the K input
streams into P parallel segments S0, S1..SP−1.

W
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5

Patch: pat(m,n)

Noisy flow 
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Regularizer
Domain 

Filter

Range 

Filter

Denoised flow
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Figure 4.14: Block Diagram of BF denoising system

The P parallel segments are fed to the range filter inNcyc clock cycles, which is required
to denoise the complete patch. The range filter has P parallel path to compute the absolute
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difference between flow values of the centre and neighbouring locations. The flow differ-
ences are Gaussian weighted and fed to a domain filter. It performs a geometric separation
aware Gaussian smoothing on range read-outs. The separability and symmetric property of
Gaussian coefficients provide a cost-effective implementation of the edge-aware smooth-
ing. A regularization stage at the output of BF normalizes the filter response to be the same
as the input dynamic range by finding the ratio between accumulated filter responses and
sum of coefficients. The proposed system has very low latency in the order of few input
data lines (2×W ) along with latency due to pipelining.
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Figure 4.15: Segment Creator Architecture

4.2.4.1 Segment Creator

Fig. 4.15 shows the internal architecture of the segment creator module. For every in-
put value, the segment creator generates K × K output values which is grouped into P
(S0, S1..SP−1) parallel segments by operating the multiplexer (Mux) at a lower internal
clock frequency fint = fsamp

Ncyc
than the input sampling clock frequency fsamp, where P is

given by K2−1
Ncyc

. This results in reduction of throughput by a factor of 1
Ncyc

.
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Figure 4.16: Range Filter Architecture

4.2.4.2 Range filter

The range filter computes the similarity between the centre and neighbouring flow values.
The range filter coefficient is a function of input flow values and hence needs to be com-
puted dynamically. Since the hardware cost for the coefficient computation of range filter is
high, a look-up table initialized with all the possible range coefficients values is utilized for
exponential and square operations. The range filter contains P parallel paths for computing
average similarity as shown in Fig. 4.16.

The input flow values are subtracted from centre flow value and fed to an absolute
operator block (|abs|) to compute the magnitude of difference. It is then upscaled by a post
scaling factor (2n) to map to the address range of filter coefficient memory. Since each
path requires independent access to the coefficient lookup table, a single dual port memory
is shared across two parallel paths to allow simultaneous access and thereby reducing the
memory requirement. The depth of the lookup table is kept minimum, as most of the other
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coefficients are zeros or negligible.

The centre value drives P parallel subtraction (SUB) loads to compute the absolute
difference. This leads to high fanout as shown in Fig. 4.17 (a), resulting in the reduction of
the maximum frequency of operation. Hence a delay tree structure is utilized to overcome
this issue as shown in Fig. 4.17 (b). Delay blocks are placed extensively to ensure that fan
out of each block is less than 2. The net delay of each path is balanced to ensure the proper
working of the modules. These additional delay elements in each path are re-timed across
the preceding blocks for better performance. The Fig. 4.18 shows the 10 stage data-path
pipelining of the Range filter. The design utilizes five cut-sets (1 coarse and 5 fine-grained)
to break the critical path and thereby improving the sampling frequency fsamp at cost of 9
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additional latency.

4.2.4.3 Domain Filter

The domain filter denoises the flow values by selective averaging. The complexity of the
two dimensional convolution with K ×K kernel is reduced by utilizing two separable one
dimensional convolutions, using K × 1 and 1 × K kernels. The separable coefficients of
the domain filter are denoted by c0, c1, c2, c3, c4 for a kernel size (K = 5) as shown in
equation (4.13).

y =
[
c0 c1 c2 c3 c4

]
1×K

(4.13)

The filter is symmetric with the centre value (c2) as unity. The flow values which are
symmetric can be added before multiplication. The segments from the middle column or
middle row are multiplied only once because the coefficient c2 will be 1 in the column
and row section. Thus symmetry and separability help in reducing the total number of
constant multiplication (implemented using ROM) in column and row sections from 2K

to K − 1 but at an additional cost of two adder units as shown in the Fig. 4.19. All the
parallel data-paths converges into a single path operating at higher clock frequency fint =
4×fsamp. The output rate is scaled to the input sampling rate by interleaving every D = 4th

sample using down sampler block (↓ D) which is effectively a DFF with enable signal. The
Fig. 4.20 shows a 24 stage data-path pipelining of the Domain filter. The design utilizes
7 fine-grained cut-set to break the critical path at the cost of an additional 23 clock cycle
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Figure 4.19: Domain Filter Architecture

initial latency.

4.2.4.4 Regularizer

A regularizer normalizes the dynamic range of the output response by finding the ratio be-
tween accumulated filter response (kern) to the sum of the product of domain and range
filter coefficients (coef ). The coefficients of the range and domain stages are read simulta-
neously utilizing parallel delay buffers. The division is implemented as a product of kern
values with the computed reciprocal coef based on iterative Newton Raphson (LUT-NR)
method. The Fig. 4.21 shows the implementation of the division unit using two iterations
of the Newton Raphson method and additional multiplier.

regi+1 = regi(2− in ∗ regi) (4.14)

The initial value (reg0) of the reciprocal function as given in the equation (4.14) is
stored in the lookup table. It lies in the range of 0 < reg0 <

2
in

.

4.2.4.5 Running variance

A BF provide optimal denoising of the input data when the noise variance of the input data
is known. The estimation of noise variance from the input flow field is not trivial. The
running variance module estimates the noise variance of the input data in each sampling
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clock cycle fsamp. It helps in handling varying noise levels by updating the range filter
coefficients at regular frame intervals. This is done by reloading new range coefficients
(pre-computed and stored) in response to the amount of noise present in the input flow
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The conventional formulation estimates mean and variance of the input data after a
latency of one frame. This problem is solved using a running variance compute module
[133] as approximated in equation (4.15).

σ2
ri =

1

Oi − 1

O∑
i=1

(Fi)
2 − µ2

i (4.15)

Where F represents vectorized notation of two-dimensional noisy flow field f(x, y),
total number of values is denoted by O. The internal architecture of the running vari-
ance module is shown in Fig. 4.22. The estimated variance settles to valid value with 2%

tolerance after 2 ×W cycles and gets updated in every clock cycle. The Acc in the run-
ning variance block performs the accumulation operation. It is a highly compute-intensive
block containing two divider blocks and two 32 bit accumulators. The divider block is
implemented using LUT-NR method.

4.2.5 Hardware Variants

The work proposes four different hardware variants of true BF architecture utilizing the
above-discussed modules to study the tradeoff between area, throughput and power. The
variants are 1) High Efficiency Bilateral Filter (HEBF), 2) High throughput Bilateral Filter
(HTBF), 3) Mid Range Bilateral Filter (MRBF) and 4) Self adaptable High throughput
Bilateral Filter (SAHTBF).
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Figure 4.23: P-Parallel Segments of HEBF and MRBF.

Table 4.8: Performance characteristics of BF hardware variants.

Perf.3
Variant HEBF MRBF HTBF (SAHTBF)

Segments1 6 12 24
Throughput2 0.25 0.5 1
fsamp (cycles) 1 1 1
fint (cycles) 4 2 1

1 denotes the number of parallel compute elements.
2 refers to the maximum number flow values denoised per second by BF.
3 represents the performance characteristics of the architecture.

The HEBF variant divides the input data stream into P=6 segments, which leads to the
reduction of flow denoising toNcyc =4 cycles. Whereas an MRBF variant divides the input
stream into P=12 segments, results in the flow denoising atNcyc=2 cycles. Instead, a HTBF
architecture eliminates the grouping of flow values into segments to improve the denoising
throughput to one flow value at every clock cycle. The number of parallel segments present
in HEBF and MRBF variants is given in Fig. 4.23. Table 4.8 highlights the summary of the
performance and throughput of the above-proposed architectures.
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4.2.5.1 High Efficiency Bilateral Filter Architecture (HEBF)

Fig. 4.24 shows the internal architecture of the HEBF. It achieves the lowest resource uti-
lization and highest power efficiency among other BF architecture variants by trading off
throughput. The throughput is reduced by one fourth as the number of considered paral-
lel segments is P=6 (Ncyc equals to 4). The rest of the modules are utilized directly to
implement HEBF architecture.

Stream 
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Segment

Creator 

Range

Filter
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Buffer
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Domain Filter

Col.

Filter

Row

Filter

Figure 4.24: HEBF architecture.

4.2.5.2 High Throughput Bilateral Filter Architecture (HTBF)

The HTBF architecture aims at improving the throughput while trading off an increased
resource and power consumption. The submodules of HTBF architecture operates at same
frequency as that of the input sampling frequency (fint = fsamp). The segment creator
block is modified to eliminate the grouping of flow values into segments. The new segment
creator block sends out P=24 flow values simultaneously to the range filter at the input
sampling rate. The range filter is modified to contain P=24 parallel processing elements
instead of P=6 to compute the similarity between the centre and neighbouring flow val-
ues. This results in quadrupling the resources of the range filter, which includes 18 MUL,
18 SUB and 12 RAM as compared to HEBF. The Combiner block is a new submodule
considered in HTBF architecture which is basically an adder tree. The combiner module
makes use of symmetry property to accumulate range filter response and coefficients, thus
reducing the number of multipliers used in domain filtering. Another issue is with the fan
out of the centre value (P= 24), which is solved as described in Sect. 4.2.4.2.

4.2.5.3 Mid Range Bilateral Filter Architecture (MRBF)

The goal of a MRBF architecture is to simultaneously optimize throughput (increase by
at-least 100%) and power (reduction by at least 30%) compared to HEBF and HTBF archi-
tectures respectively. This is different from the two above proposed architecture variants,
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which either concentrates on maximizing power efficiency or throughput but not simulta-
neously. This section discusses only the modified and new submodules, the rest of which
are the same as that of HEBF. The internal operating frequency of MRBF is half of the in-
put sampling rate (fint = fsamp/2). The modified segment creator module operating at fint
groups the input patch into P=12 parallel segments each containing 2 values. These val-
ues are fed simultaneously to a modified range filter containing P=12 parallel processing
elements to compute flow similarity between the centre and neighbouring flow values. The
range filter includes additional resources like 6 MUL, 6 SUB and 3 RAM as compared to
HEBF. The combiner module containing 12 ADD blocks make use of symmetry to merge
the range module outputs and feed it to the domain filter.

4.2.5.4 Self Adaptable High Throughput Bilateral filter Architecture (SAHTBF)

The internal architecture of the SAHTBF is shown in Fig. 4.25. The main difference from
the HTBF variant is the presence of a running variance module. The minimum variance
among all the input data patches in the current frame is compared with the variance of
the previously stored frame, assuming there is no sudden change in the flow values. The
deviation in the running variance is thresholded to five different ranges which are computed
empirically. The five sets of coefficients are stored in 5 separate ROM blocks. An address
selector block helps in reloading the range filter coefficients. The address of the memory
(RAM) block is multiplexed between the absolute block output and the re-loadable counter
data. Each ROM has a depth of 256 locations. When one of the ROM blocks is selected,
the control circuitry waits for the end of the current frame being denoised and changes the
multiplexer state from 1 to 0. The address port of all even RAMs is connected to the 8 bit
counter synchronized with the filter coefficient port. The BF blocks the input stream until
the reloading of the coefficients is finished. The address selection unit switches back to the
incoming flow difference after the coefficient update. The rest of the blocks is the same as
that of a HTBF architecture.

4.2.6 Hardware Implementation and Results

The proposed design is simulated, synthesized and implemented in Verilog on Xilinx V C707

evaluation kit and Xilinx XUPV 5 board.
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4.2.6.1 Evaluation Metric

There exists several metric to measure the performance of BF. The first among them is Peak
Signal to Noise Ratio (PSNR) given in the equation (4.16), which evaluates the accuracy
of the estimate rather than the quality of denoising.

PSNR = 20log(
max(u(i, j))

1
m×n

∑m
i=1

∑n
j=1(g(i, j)− u(i, j))2

) (4.16)

Mean Structural Similarity (MSSIM) is another metric considered which is based on
human perception rather than just mere accuracy. It measures correlation between the
original and distorted field in-terms the object structure, contrast and luminance as given in
the equation (4.18).

SSIM(ui, gi) =
(2µuiµgi + C1)(2σuiσgi + C2)

(µ2
ui

+ µ2
gi

+ C1)(σ2
ui

+ σ2
gi

+ C2)
(4.17)

MSSIM =
1

n

n−1∑
i=0

SSIM(ui, gi) (4.18)

Here µu, σu and µg, σg represent the mean and standard deviation of the original and
denoised flow values respectively. C1 and C2 are employed to eliminate instability and
is computed according to (K1 × L)2 and (K2 × L)2, were K1 << 1 and K2 << 1, L
represents the dynamic range.

4.2.6.2 Impact of Numerical Representation

A variable fixed point representation is followed in the design of the BF architectures. The
conversion from floating point to fixed point results in quantization effects. The input flow
values are normalized to the range 0 to 1 before feeding to stream buffer. The highest bit-
width required for each stage in the BF architecture is shown in Table. 4.9. The bit-width
for each module is computed by feeding reference data to the design and measuring the
degradation in terms of PSNR, by varying the bit-width from 10 to 30 while keeping the
rest of the circuit in full precision as shown in Fig. 4.26.

4.2.6.3 Filter parameter analysis

The performance of the BF architecture depends on the selection of suitable design pa-
rameters which include kernel size and standard deviation of the domain and range filter
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Figure 4.26: Bit-width chosen for BF modules.

Table 4.9: Selected bit-width for different modules.

Segment Range Domain Regularize
BWmin

1 8 10 12 14
1 represent the maximum number of bits utilized for each stage.

modules. A trade-off between the computational complexity and blurring effect imposes
an optimal choice of 5 × 5 as the filter kernel size for our experiments. The scalability
of architecture for different kernel sizes are discussed in section 4.2.6.5. A trade-off be-
tween noise reduction and fine detail preservation is made while choosing the final values.
The standard deviation (σrange) of the range filter depends on the amount of noise density
present in the input flow field. The filter parameters are chosen by analysing the denois-
ing performance by varying the amount of Additive White Gaussian Noise (AWGN) noise
added to the input field. The value of σrange is chosen to be k×σnoise. The Fig. 4.27 shows
the selected value of k for a range of varying noise density satisfying the maximum PSNR.

It can be observed that the k varies in the range 0 to 10 for noise densities 0 to 60. Sim-
ilarly, the standard deviation of the domain filter σdom is estimated as shown in Fig. 4.28.
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Figure 4.27: Selection of σrange for Range filter

From the above graph for varying noise densities (has least dependency), the σdom value is
chosen to be 1. The Fig. 4.29 (a, c) shows the noisy flow field generated by adding AWGN
noise with noise density 50 dB and Fig. 4.29 (b, d) shows the denoised flow using BF.

4.2.6.4 FPGA Resource Analysis

The resource utilization is estimated for all the five proposed hardware designs as a whole
as well as submodules. This helps in identifying the critical path that limits the maximum
frequency of operation. A fully pipelined design divides the critical path to improve the
performance trading off additional resources. The Tables 4.10, 4.11, 4.12 and 4.13 shows
detailed breakdown of the resource utilization, maximum operating frequency and power
dissipation of the various proposed architectures HEBF, MRBF, HTBF and SAHTBF in
both fixed point and floating point representations respectively. The floating point imple-
mentation of exponential operator uses a 6th order Taylor series to get higher accuracy
trading off additional resources. This results in increased resource utilization for the range
module, which impacts all the FLP architectures.

The unoptimized floating point implementation of HEBF shows 27.8× increase in over-
all resource utilization, 5.4× higher power consumption, and 1.8× slower frequency of op-
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Figure 4.28: Selection of σdomian for Domain filter

eration compared to fixed point implementation. The critical path of the design is identified
in the range filtering stage. The number of parallel processing elements in the range filter
module for MRBF and HTBF architecture is 2× and 4× as compared to HEBF. This re-
sults in increased resource utilization (1.9×, 4.2×) and dynamic power consumption (1.2×,
1.8×) for the range module which is shown in the Table. 4.11 and Table. 4.12 respectively.

The Table 4.13 demonstrates a higher resource requirement for SAHTBF architecture
due to presence running variance compute module. The dividers are implemented using
LUT-NR method as described in the Sect. 4.2.4.4.

A comparative analysis of the proposed architectures on a Virtex-5 FPGA is also per-
formed as shown in Table 4.14. This helps in getting a clear understanding of the variation
in resource, power and operating frequency when switching to a different FPGA family.
Among the proposed architectures, HEBF shows the highest efficiency and is found suit-
able for low power embedded applications. The HEBF architecture shows a 1.9× reduction
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(a) Noisy (b) Denoised

(c) Noisy (d) Denoised

Figure 4.29: Noisy and denoised version of Rubberwhale and Alley 1 flow values from
Middlebury and Sintel database.

in dynamic power and resource consumption as compared to HTBF. The proposed archi-
tectures are highly pipelined to achieve an average operating frequency of 340 MHz. The
Virtex-5 architectures suffer from 27% reduction in the maximum frequency of operation
due to the difference in FPGA technology. The single precision (FLP) implementation
follows a similar trend as in the case of Virtex-7.

4.2.6.5 Scaling up the BF architecture

The kernel size of the proposed BF architecture be can extended from small (3 × 3) to
large(15 × 15). For a K × K kernel, a total of K2 samples need to denoised at one
fsamp clock cycle. The number of BRAMs utilized in the design of streaming buffer (K)
varies with the chosen kernel size. The streaming module reads out K number of flow
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Table 4.10: Resource utilization of HEBF architecture.

Resource

Module
SEG RANG DOM REG HEBF

FLP1 FXP2 FLP FXP FLP FXP FLP FXP FLP FXP

FF 2249 370 46027 479 7692 943 1370 50 68456 2254

LUT 802 163 49311 363 11596 654 933 68 66647 1337

Slice 583 174 16013 179 3625 261 342 31 22267 748

BRAM18 4 4 0 0 0 8 0 1 4 12

DSP48 0 0 144 6 0 0 0 4 144 10

Fmax (MHz) 472 477 260 445 305 514 487 508 254 457

Dynamic (W) 0.080 0.365 2.598 0.135 0.601 0.205 0.165 0.135 1.396 0.258

Static (W) 0.207 0.207 0.210 0.207 0.245 0.208 0.207 0.207 0.217 0.209
1 represent the floating point BF architecture.
2 denotes the fixed point BF architecture.

Table 4.11: Resource utilization of MRBF architecture.

Resource

Module
SEG RANG DOM REG MRBF

FLP FXP FLP FXP FLP FXP FLP FXP FLP FXP

FF 2238 381 91218 770 15912 706 1370 125 129433 2609

LUT 1057 122 87117 634 15287 466 933 112 126502 1653

Slice 548 183 31145 354 5404 190 342 65 42129 903

BRAM18 4 4 0 0 0 11 0 14 4 25

DSP48 0 0 288 12 0 0 0 4 288 12

Fmax (MHz) 475 477 230 569 318 458 487 556 302 437

Dynamic (W) 0.103 0.376 2.782 0.165 1.214 0.226 0.165 0.145 3.391 0.362

Static(W) 0.207 0.207 0.211 0.207 0.215 0.208 0.207 0.207 0.233 0.209

values every clock cycle. The segment creator modules divides the incoming stream into
(K2− 1)/fint number of segments with one additional centre value, K2 flow values will be
denoised in every fint=4 clock cycles (fint=1 for HTBF). The number of multiplexers in the
segment creator module also gets increased to (K2 − 1)/fint. The ordering of input values
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Table 4.12: Resource utilization of HTBF architecture.

Resource

Module
SEG RANG DOM REG HTBF

FLP FXP FLP FXP FLP FXP FLP FXP FLP FXP

FF 1368 321 121983 2005 13719 1072 1370 125 198608 4048

LUT 784 72 111069 1879 18357 805 933 112 21136 3136

Slice 325 201 37145 760 6616 347 342 65 63520 1307

BRAM18 4 4 0 0 0 14 0 14 4 27

DSP48 0 0 488 24 70 0 4 0 694 24

Fmax (MHz) 437 446 210 445 240 467 487 502 190 467

Dynamic(W) 0.113 0.410 3.948 0.242 1.130 0.288 0.165 0.145 5.495 0.510

Static(W) 0.207 0.209 0.233 0.207 0.214 0.208 0.207 0.207 0.251 0.210

Table 4.13: Resource utilization of SAHTBF architecture.

Resource

Module
SEG RANG DOM REG VAR SAHTBF

FLP FXP FLP FXP FLP FXP FLP FXP FLP FXP FLP FXP

FF 1368 321 125212 8631 13719 1072 1370 125 86217 5617 248163 10198

LUT 784 72 111713 5528 18357 805 933 112 82072 2783 276141 7083

Slice 325 201 38211 2785 6616 347 342 65 22185 1320 65117 2304

BRAM18 4 4 0 9 0 14 0 14 0 2 4 32

DSP48 0 210 488 28 70 0 0 4 225 4 740 28

Fmax (MHz) 437 446 210 370 210 467 487 502 190 380 180 335

Dynamic (W) 0.113 0.410 3.978 0.715 1.130 0.288 0.165 0.145 2.543 0.429 5.982 0.860

Static (W) 0.207 0.209 0.238 0.211 0.214 0.208 0.207 0.207 0.210 0.209 0.268 0.211

remains the same and depends on the symmetry of the kernel. The photometric modules
are replicated (K2 − 1)/fint times without disturbing the functionality of internal blocks.
Similar is the case with the geometric filter. Even though the number of pipeline stages (L)
for a scaled up version remains the same, the pipelining registers got increased by a factor
of L ∗ (K2 − 1)/fint; depending on the available number of parallel channels. The size of
the internal buffer stages (K) of the domain filter module increases based on the size of the
kernel. Rest of the modules are similar to the original design.

The throughput of the extended architectures will remain the same as the original design
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Table 4.14: Comparison of proposed BF architectures on Virtex-5 FPGA.

Resource
Variants HTBF MRBF HEBF

Used Util. Used Util. Used Util.
FF 4227 14% 2598 9% 2347 7%

LUT 3249 11% 1682 5% 1286 4%
Slices 1562 21% 927 12% 807 10%

BRAM18 22 45% 18 37% 8 25%
DSP48 24 50% 12 25% 6 12%

Fmax (MHz) 333 343 343
Dynamic (W) 0.597 0.424 0.317

Static (W) 0.425 0.424 0.423

Table 4.15: Scalability of BF architecture for a variable kernel size.

Resource
Kernel

5× 5 9× 9 15× 15

HEBF HTBF HEBF HTBF HEBF HTBF
FF 2254 4048 7748 10544 18251 30241

LUT 1337 3136 5940 8552 14464 24892
Slices 748 1307 2123 3569 5961 10055

BRAM18 12 27 14 29 29 77
DSP48 10 24 18 72 72 216

Fmax (MHz) 450 467 251 310 254 277
Dynamic (W) 0.258 0.510 0.262 1.228 1.802 3.075

Static (W) 0.209 0.210 0.208 0.216 0.218 0.232

while trading off the increased resource utilization. The Table. 4.15 shows the comparison
of the performance and resource utilization of the proposed BF architectures on Virtex-7
(V C707) FPGA, with varying kernel sizes 9×9 and 15×15. The resource utilization of the
HEBF, as well as HTBF, shows an increasing trend for higher kernel size as compared to
5× 5 implementation, a slight decrease in the throughput is also observed which accounts
for the routing congestion and unoptimized architecture. A similar trend is observed in
the case of other architectures. The modularity in the proposed architecture allows the
implementation of BF with any larger kernel size. But the current implementation on a
Virtex-7 (V C707) FPGA restricts the kernel size to 81 × 81, limited by the availability of
DSP48 multipliers used in photometric module and the pipelining registers. The optimal
value of σrange and σdom will remain the same for different kernel sizes.
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4.2.6.6 Power and Computation time Analysis

The analysis of static and dynamic power based on Power efficiency metric (Compute
Density /Joule) is performed to estimate the advantage of FPGA’s over other solutions. Ta-
ble. 4.15 compares the power dissipation of a BF architecture with varying kernel size. The
total power consumption of BF architecture varies from 0.72 W to 1.44 W to 3.31 W for
kernels of size 5 × 5 to 9 × 9 to 15 × 15 respectively, showing a linearly increasing trend
while operating at an average frequency of 250 MHz. A high throughput BF operating at
high frequency constitutes, most of the dynamic power in the total power consumption. A
large number of DSP48 and BRAM blocks accounts for the surge in the dynamic power.
A larger kernel size implies an increased number of RAM blocks for buffering, additional
multiplexers in the segment creator module, P number of parallel photometric modules
with dedicated multiplier blocks, additional pipelining registers for P parallel paths and
large internal buffers for the domain filter. A higher bit-width is required for a BF architec-
ture with the scalable kernel, which constitutes for increased power consumption.

The complexity of proposed fixed-point architectures in terms of the number of re-
quired operations is expressed in terms of Giga Operations Per Second (GOPS) whereas
for floating point architecture its represented in Giga Floating-point Operations Per Second
(GFLOPS). Consider an input flow field of size 1920× 1080 de-noised by BF on Virtex-7
FPGA. The I/O and buffer stage are in-charge of receiving and transmitting the I/O stream.
It involves 1 noisy input read, 1 denoised output values and (4) parallel read operations.
The next is a computationally intensive range filter, which has (P=24) parallel processing
elements, each containing 1SUB, 1 absolute, 1 Look-Up, 1 Shift and 1MUL, which adds
up to (5P=120) operations. The domain filter stage performs 48 additions and 10MUL,
which adds up to 58 operations. The last stage is a regularizer stage which consists of
5MUL, 2 Look-Up and 2SUB operations, which corresponds to 9 operations. In total, the
proposed HTBF architecture contains a total of 193 operations. Since the HTBFFXP im-
plementation is operating at 470 MHz, each frame needs ≈ 2.6 ms, which corresponds to a
maximum frame rate of ≈ 373 frames. Similarly, a single precision HTBF implementation
involves a total of 668 operations. It corresponds to 6th order Taylor series approximation
of exponential operator involving 7ADD and 14MUL operation in each of the (P=24)
parallel elements. This adds to a total of 504 operations. Similarly, a HTBFFLP imple-
mentation operating at 190 MHz on an FHD frame needs ≈ 5.3 ms which corresponds to a
maximum frame rate of≈ 152 frames. The total compute performance for any architecture
is given by,

Perf = Nops ∗Resolutionframe ∗Ratefps (4.19)

112



Table 4.16: Comparison of energy efficiency across different implementation platforms.

Type
Chara.

Platform FPS1 Perf2 TPW3

BF CPU 0.04 0.018 0.005

BF GPGPU 5 2.3 0.069

BF Grid[118] CPU 2.5 1.16 0.018

BF Grid[118] GPGPU 111 153 1.1

HTBFFLP FPGA 152 210 37

HTBFFXP FPGA 373 149 318
1 represents the number of frames per second achieved for a fixed resolution 1920× 1080.
2 denotes the all values in GFLOPS/Sec except HTBFFXP which is represented in GOPS/Sec.
3 refers to throughput obtained per watt.
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Figure 4.30: Comparison of power efficiency among proposed architectures

Table. 4.16 shows the comparison of proposed architecture with state of the art CPU/GPGPU
solutions. Since the total number of operations performed in CPU/GPGPU platforms
are not given, it is assumed that the same number of operation is present in the case of
HTBFFLP . The energy efficiency per Joule is much higher in FPGA designs than CPU
or GPGPU platforms. It is clear from the table the Performance or Throughput Per Watt
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(TPW) for the proposed fixed-point HTBF (HTBFFXP ) implementation on FPGA is 289×
higher than GPGPU [118] and 17000× higher than CPU [118] implementation. Along
the same line, an FPGA implementation of floating point HTBF (HTBFFLP ) shows 34×
improved efficiency than GPGPU [118]. Finally the Fig. 4.30 shows saving in the power
consumption of a HEBF implementation compared to other proposed architectures. HEBF
shows saving of 52% in dynamic power as compared to SAHTBF architecture.

4.2.7 Comparison with other state-of-the art architectures

Table. 4.17 shows a comparison of the proposed architectures with other states of the art
BF architectures. The HTBF architecture provides highest frame-rate of 1024 × 1024p
@ 445 fps, lowest system latency in the order of twice the width (2 × W ) and system
pipelining latency is best among state of the art methods. The table shows that our proposed
design achieves a minimum improvement of 5.8×, 3.4× for SAN and SADN respectively
as compared to the prior art on true and modified BF architectures.

4.2.8 Summary

This chapter dealt with the modifications of the internal subsystems of the multi-scale varia-
tionalOF architecture. The first part of the chapter described the design of high throughput
RBSOR solver architecture and its integration into variational OF architecture. The pro-
posed HTOF architecture is able to compute OF for UHD images at 48 fps. The design
achieves the highest throughput of 491 GOPS with a power efficiency of 43 GOPS/W at
412 MHz, compared to the state of art architectures.

The second part of the chapter explained about the design of HTBF architecture. The
proposed HTBF is tuned to achieve the highest throughput at the cost of a peak power
envelope of 510 mW. Experimental results show the highest performance of HTBF ar-
chitecture in terms of area normalized speedup (5.8×) and area-technology normalized
speedup (3.4×) compared to other existing architectures. The proposed architecture can
adapt to varying noise level (η) in the input flow field by updating the range filter coeffi-
cients. In order to validate the proposed variational multi-scale OF architecture with its
improved subsystems, the next chapter 5 discusses the design of a high throughput ac-
celerator framework for cloud/cyclone tracking from satellite images. It helps in taking
necessary precaution to mitigate the impact on life and property.
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Chapter 5

Hardware Accelerator for Cloud/Cyclone
Tracking

This chapter focuses on the application of proposed variational multi-scale OF architec-

ture with improved subsystems for cloud/cyclone analysis and tracking. The analysis frame-

work is effective for studying the cloud systems interactions inside cyclones, nowcasting

using near real-time satellite data to take necessary precaution to mitigate the impact on

life and property. The software implementation of the cloud analysis framework is complex

and needs huge computation time to process the large satellite image database. Hence the

chapter focuses on the design of high throughput hardware accelerator for cloud/cyclone

analysis and tracking based on a selective choice of various computer vision algorithms

and the aforementioned OF architectures with the improved subsystems.

5.1 Introduction

Cloud analysis plays an important role in understanding extreme climatic events. Meteorol-
ogists use satellite images to investigate cloud patterns, clouds propagation characteristics
to study their evolution process and life cycle. Recent advancements in the image cap-
turing technologies, lead to increased availability of high-resolution satellite data in near
real-time. The satellite images are commonly available in Visible (VIS), Infra Red (IR) and
Water Vapour (WV) channel. An IR satellite image uses a channel recorded from infrared
energy (10.5-12.5 um). IR images have the advantage that they can also detect clouds dur-
ing the night as opposed to visible images. The continuous availability of high-resolution
IR images helps to study the cloud system interactions which is effective for now-casting.
These interactions are then used to estimate the wind speed, the area covered by the clouds,
forecasting their path and development of storms, climate prediction and analysis.



The design of a cloud analysis framework involves a series of operations like pre-
processing, Cloud Motion Computation (CMC), cloud segmentation, cloud labelling and
tracking. Among them, the cloud motion computation based on variational multi-scale OF
is the most computationally intensive task. The selection of each stage of the cloud analysis
framework is based on a selective choice of different computer vision techniques, except
the CMC stage to achieve high throughput while trading off accuracy. The cloud analysis
framework can operate on high-resolution IR images with a temporal resolution less than
or equal to 30 minutes. Hence the amount of data that is to be processed even when a short
time period such as a day is considered is large. The software implementation of the frame-
work on CPU and GPGPU platforms leads to poor performance per watt, this restricts the
applicability of the cloud analysis on huge satellite database.

Hence this section focuses on the design of a high throughput hardware accelerator for
speeding up the cloud/cyclone analysis from a large IR image database. The design of the
hardware accelerator involves several hardware adaptations to the framework and utilizes
the proposed variational multi-scale OF architecture and improved subsystems to achieve
a high throughput performance.

5.2 Related work

Until 1980, the tracking of the cloud systems was a time-consuming process as it involves
the manual intervention of a field expert [136]. This gives accurate tracks results, but the
tracking performance is completely dependent on the user’s expertise. In recent literature,
there have been many works proposed for the extraction of cloud information and track-
ing from the satellite imagery. Many authors proposed automatized methods for tracking
clouds starting with pioneer work by Woodley et.al in [137]. Cloud motion extraction
from Meteosat images using cross-correlation and height assignment is presented in [138].
Cross correlation-based tracking is proposed in [139], [140], [141], [142]. Another work
[143] fuses the multilevel thresholding, vector median regularization and block matching
algorithm to perform cloud tracking.

In feature-based methods, the clouds are initially segmented based on thresholding or
active contours or clustering techniques [144, 145]. Followed by the motion estimation
across consecutive image sequence using cross-correlation or pattern matching techniques.
The major drawback of the feature based methods is that they don’t capture movement
within the object. Also in [146], a hierarchical method using local analysis and global
analysis is introduced to track non-rigid motion and structure from two-dimensional satel-
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lite cloud images. In [147], the authors have proposed a novel strategy to track clouds
by extracting cloud information using computer vision techniques. Similar and modified
methods for cloud tracking are also been proposed in [148]. For airborne weather radar and
ground primary surveillance radar, an advanced cloud tracking algorithm using greyscale
skeleton model of the clouds is introduced in [149]. And in [150], a genetic algorithm is
applied to track convective cloud images from Chinese FY-2C satellite.

A framework to explore and visualize the cloud system movements is proposed in the
work [151]. It helps to analyse the cloud motion at various spatial and temporal scales and
study the multi-scale interactions between clouds and cloud systems inside TC. The motion
of clouds is computed based on OF technique. The user can provide various queries to the
framework to analyse the cloud systems without knowing about the underlying framework.
Further, in [8], the authors propose a strategy to track clouds using ground-based omni-
directional camera images to ensure greater efficiency in the supply of renewable energy.
The proposed tracking procedure is composed of segmentation, localization and detection
of interest points of clouds, followed by tracking cloud motions using OF methods. This
technique can track displacement of each interest point in different speeds and directions
to follow the cloud path. The velocity computation of the cloud vectors helps to provide
greater accuracy in the automatic control of solar power plants in any cloud conditions.

An OF algorithm based on polynomial expansion is utilized in the work [152], to com-
pute atmospheric motion vectors (AMVs) from geostationary satellite images. In order to
identify the semitransparent cloud pixels with their actual temperatures/ heights informa-
tion, a two-dimensional histogram between infrared brightness temperatures formed from
a long time series of cloud images. The OF computation keeps the spatial consistency of
wind fields while deriving AMVs over the traditional cross-correlation method. An image-
pyramid scheme based on multiscale iteration is used to avoid the loss of large velocities.
The validation results show that deriving dense AMVs based on OF is better suitable for
fast-tracking with rapid-scan imagery and the newest geostationary imagers in quasi-real-
time applications.

A framework to analyse and explore the temporal evolution of cyclones is proposed in
the work [9]. It improves the tracking robustness by combining the well-established topo-
logical approaches and the track information from OF analysis. These tracks are analysed
in a specific time interval to preserve the significant coherent cyclone movements. Most of
the existing implementations focus on the design of an accurate framework for analysing
clouds/cyclones [151] but have not considered improving the throughput performance with
less power consumption. This serves as a motivation behind the design of a high through-
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put accelerator for cloud/cyclone analysis from a large historical satellite image database
utilizing proposed multi-scale variational OF architecture and improved subsystems.

5.3 Proposed hardware accelerator for cloud analysis frame-
work

The work proposes a hardware accelerator for cloud analysis framework. An overview of
the entire system is shown in Fig. 5.1. The satellite images are mostly available in a sci-
entific format such as Hierarchical Data Format (HDF)/ Network Common Data Format
(NetCDF), where the heterogeneity of underlying data formats is a significant hurdle. The
cloud analysis software (CAS) utilizes the standard libraries provided by the vendor to con-
vert raw satellite data into 10 bit image intensities. The images are sent out as a Transaction
Layer Packet (TLP) over the Peripheral Component Interconnect Express (PCIe) interface
to the FPGA accelerator. The hardware architecture involves several modules like a) Pre-
processing, b) OF computation, c) Segmentation, d) Cloud labelling and e) Tracking. The
CMC is implemented using a multi-scale variational OF architecture utilizing RBSOR
Solver and BF architecture. The architecture exploits pipelining and parallel processing to
accelerate throughput. The complex arithmetic operations are approximated to a simpli-
fied version without much accuracy loss. The computed flow values u,v and metadata are
sent back to the host PC for monitoring and is stored in host memory for post analysis.
The metadata contains the characteristics of all cloud segments and their track information,
which is transferred at the end of every frame computation.

5.3.1 Cloud Pre-Processing:S0

The input image stream has illumination artefacts due to the variation in sun’s reflectance
from day to night, low contrast and contain random noise generated from external source
or the operation of sensors and so on. Hence the preprocessing stage employs a two di-
mensional median filter of kernel size K × K as discussed in the previous Section 3.5.6.

The denoised image is fed to the histogram equalization module. It enhances the re-
gion of interests for improving the velocity estimation in the presence of noise and elimi-
nate temporal aliasing and quantization effects. The internal architecture of the histogram
equalization module is shown in Fig. 5.2. For an image of resolutionW ×H havingG grey
levels, the architecture utilizes G counters initialized with 0. It scans every pixel in the im-
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Figure 5.2: Histogram equalization architecture.

age stream and increments the counter (cnt1,cnt2...cntG) based on the number of pixel
matches. The current counter (cnt2) value is accumulated with the previous counter (cnt1)
value to create a cumulative histogram. The cumulative histogram values are normalized
with a constant factor based on the maximum grey level to create a uniform histogram. The
remapping stage utilizes conditional statements and multiplexers to transform the buffered
input image to a new image based on the equalized histogram. The histogram equalization
stage consumes G+4 coarse grain pipelines.

RBSOR 

Solver

pyramid levels

Image 

Pyramid
Bilateral 

Filter
Warping

Gradient

Compute u/v

Merge and 

ResizeI1/I2 du/

dvIx/Iy/ItI2w

I1

Figure 5.3: Block diagram of cloud motion computation module.
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5.3.2 Cloud Motion Computation:S1

The pre-processed image is sent to the CMC module, which utilizes the proposed varia-
tional multi-scale OF architecture discussed in the previous Chapter 3 to accurately com-
pute large displacement of the dense cloud motion field. The images are downsampled to
create image pyramid, and the coarsest level image is fed to OF module to compute the
flow field using 30 RBSOR Solver iteration and denoised using BF architecture as shown in
the Fig. 5.3. The image rescaling block upsamples the computed flow at a coarser level to
the next higher resolution and warps the first frame with the upsampled flow. The warped
image is fed to OF computation engine till the flow is scaled to the original image di-
mension. The proposed architecture avoids the internal storage of input image and caches
the intermediate flow vectors to remove the memory dependency and hence the memory
bandwidth bottleneck. The internal architecture of the variational multi-scale OF , RBSOR
solver and BF have been detailed in the previous Chapters.

5.3.3 Cloud Segmentation:S2

The pre-processed image and cloud motion fields from the CMC module are synchronized
and fed simultaneously to the cloud segmentation module. The cloud is segmented us-
ing multi-level thresholding. A multilevel thresholding utilizes more than two thresholds
(thresh1, thresh2) to segment the image into three classes. The empirical threshold ob-
tained from histogram analysis helps in extracting the cyclone region given by the equa-
tion (5.1).

Ithresh(x, y) =


background if(I(x, y) ≤ thresh1)

cyclone if(thresh1 < I(x, y) ≤ thresh2)

others if(thresh2 < I(x, y) ≤ G)

(5.1)

Since the thresholding based on brightness temperature is inaccurate, the temporal in-
formation from the computed motion field is also used for distinguishing between back-
ground and moving pixel. The internal architecture of cloud segmentation module is shown
in Fig. 5.4. The architecture utilizes a conditional statement to identify if the pixel in-
tensity of the input stream is within the selected threshold range to create a binary im-
age (im1bin/im2bin). The binary images are later compared with the velocity threshold
(thresh3) to generate the final cloud segment mask. An important challenge in perform-
ing the segmentation based on thresholding is the choice of the threshold value. Instead
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Figure 5.4: Cloud segmentation architecture.

of choosing a fixed value, a scale analysis [151] is performed with a large set of available
images to find the optimum value of the threshold used for finding the maximum number
of cloud segments.

The segmented images are enhanced by morphological filtering [153] to eliminate small
objects from the image foreground by placing them in the background and removing small
holes in the foreground by changing small islands of background into the foreground. This
helps to strengthen the segmented clouds with irregular and thin shapes. The structuring el-
ements are chosen in a way to preserve the shape characteristics and eliminate irrelevances.
This gives a better visual representation of cloud patterns. The hardware architecture for
the morphological dilation and erosion operators is implemented using basic logic gates.
For a structuring element of size 2× 2, the dilation and erosion are implemented as shown
in Fig. 5.5. The image opening is simply the direct combination of erosion and dilation
operation. Similarly, image closing is a direct combination of dilation and erosion. Thus
the morphological operation is performed by image opening followed by image closing
operation to get the binary images.

5.3.4 Cloud labelling and Parameter extraction:S3

In the cloud labelling module, each of the cloud segments is given a unique number which
is useful to separate it from other cloud segments. It helps in computing life cycle char-
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acteristics of each cloud segments including generation, dissipation, continuity, splitting
and merging. The cloud labelling is performed on a streaming architecture based on the
assumption that, if the pixel under consideration has an intensity 1, then all its P×Q neigh-
bourhood pixels with intensity 1 should be given the same label as that of the considered
pixel. Fig. 5.6 shows P×Q overlapping box inside the image, if the intensity of considered
pixel A is 1, then all the pixels in the neighbourhood box with intensity 1 is given the same
label as that of A. As the overlapping box scans the entire image stream, if it encounters a
pixel with intensity 1 such that the previous pixels in the overlapping box have an intensity
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Figure 5.6: Labelling of cloud with the neighbourhood box (a) if the previous pixels inside
the box is having intensity 1, then the same label is given to the new pixel (b) else a new
label is given to the new pixel.

other than 1, then the selected pixel forms part of another cloud segment and a new label is
given to that pixel.

The internal architecture of the cloud parameter extraction is given in Fig. 5.7. The
design utilizes a Q-1 line buffers of width W to convert the input pixel stream into two-
dimensional patch of size P × Q and sends it to cloud label retrieval block. It utilizes the
overlapping box criteria, to identify if the incoming pixels are related to the same cloud
segment or not. Based on which different labels are assigned, which are then fed to the
segment boundary retrieval block (LN ).

This module utilizes separate counters to hold the number of non-zero pixels present in
each cloud segment, which in turn helps in computing the cloud area in terms of the number
of pixels. If the input pixel P has a label 2, then the counter corresponding to the second
cloud segment is incremented. So once the entire pixels of the image is scanned, each
counter holds the total number of pixels present in each cloud segment. The image index
generation block generates the pixel indices for each incoming pixel stream. These indices
are utilized to identify the boundaries of a rectangular box enclosing the cloud segment. It
is compared with the previously stored indices to update the cloud segment boundaries.

Once the entire image is streamed, each segment block holds the information about the
area and boundaries of each cloud segments with different labels. An area thresholding
based on the recorded counter values helps to discard cloud segments which are not meet-
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ing the minimum selected area. The number of cloud segment estimation blocks are chosen
based on several experimental analysis. Similarly, the area threshold is also selected exper-
imentally. It is implemented using conditional statements and multiplexers. The final step
is to extract the relevant parameters of each cloud segment. The area and other parameters
like width, height, aspect ratio and the centroid of the cloud segments are computed about
the rectangular box which encloses the cloud segment as given in the Fig. 5.7.

5.3.5 Cloud Tracking: S4

After extracting the parameters of each cloud segments, all the cloud segments present in
the first frame is matched with cloud segments in the second frame. If the parameters of
the considered segment in the first frame show a close agreement with the parameter of the
cloud segment in the second frame, then there is a high possibility that these two segments
correspond to the same cloud. The work utilizes a matching cost based on region overlap
based method introduced in the work [154].

The region overlap methods holds valid for satellite images having a high temporal
resolution, and hence assume there is no drastic changes in cloud shape. It is based on
a simple assumption that there are a set of common pixels in consecutive images with a
particular size and temperature. It formulates a tracking cost given in equation (5.2) as a
linear combination of the overlap, centroid and size term. The weights w# represent the
importance of each term in the computation of cost function and are chosen wisely based
on domain knowledge.

J(cti, c
t+1
j ) = w0 ∗O(cti, c

t+1
j )+

w1 ∗ C(cti, c
t+1
j ) + w2 ∗ S(cti, c

t+1
j )

(5.2)

The Overlap term given in equation (5.3) determines the number of pixels in common
for cloud segment in consecutive frames. If the cloud segments show slow movement, the
chances of overlaps will be more which leads to the selection of higher weight to overlap-
ping metric. If cloud overlap is above the minimum threshold then the tracker identifies
there is a possibility of splitting. The new segment with maximum overlap will keep the
same name as the parent segment whereas the less overlapping ones get a new segment
name.

O(cti, c
t+1
j ) = 1− {

Ncomm(cti, c
t+1
j )

2
∗ [

1

Ati
+

1

At+1
j

]} (5.3)
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Here Ncomm represents the number of common pixels between two consecutive frames,
Ati and At+1

j represents the size/area of each cloud segments in consecutive frames. The
Centroid Separation term in equation (5.4) gives the Euclidean distance between the cen-
troids of the source and target cloud segments. This parameter is useful to when there is
less overlap between the cloud segments due to splitting or merging conditions. In another
situation when cloud segments do not overlap or their amount of overlap between differ-
ent clusters are almost similar, the centroid distance metric will play a major role. The
maximum centroid distance in pixels represents the farthest cloud segment which can be
matched together.

C(c
t
i, c

t+1
j ) =

√
(X t

i −X t+1
j )2 + (Y t

i − Y t+1
j )2

√
W 2 +H2

(5.4)

Where (X t
i , Y

t
i ) represents the centroids of each cloud segment in the current frame. W

and H gives the cross-sectional information about the tracking images. The Size term in
equation (5.5) defines the similarity in the cloud segments size between consecutive frames.
Size metric will take low weight, if there exists more number of cloud splitting or merging
cases.

S(c
t
i, c

t+1
j ) =

|Ati − At+1
j |

max(Ati, A
t+1
j )

(5.5)

The internal architecture of the cloud tracking module is given in Fig. 5.8 to find the
best match to generate a continuous track of the cloud segment. The input cloud segments
from the two consecutive image frames are sent to the segment matching block. It utilizes
M1 to MN number of cloud matching blocks. Each block M# utilize Ncost number of
cost computation block (C1 to CN ) to match one cloud segment in the first frame with
all cloud segments in the second frame. The cost is computed simultaneously utilizing
a weighted average of the overlap, size and centroid metrics. The metrics computations
involve complex division, square root operations which are implemented using second-
order approximation by Newton-Raphson [155] method.

The computed cost for all the cloud matches is augmented in a cost matrix. The archi-
tecture sort the cost values along the row of the cost matrix to identify the highest value
which corresponds to the best match. If the highest cost is less than the chosen threshold
(thresh4), then the segment parameters are sent to split/merge block to further analyse the
split, merge, creation and dissipation of cloud segments. The cloud segment lineage, the
cost matrix and each segment information are stored in the register bank formed of a dual
port memory. A scheduler inside the metadata retrieval block coordinates the read/write
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access from the register bank and conversion into PCIe packets. This metadata is sent to
the host PC after the completion of transmission of cloud motion vectors.

(a) Frame 1 (b) Frame 2

Figure 5.9: IR image pair taken on 22 May 2009 at (a) 0000 UTC and (b) 0030 UTC.

5.4 Results and Discussion

The hardware accelerator is designed in Verilog and implemented in Xilinx Virtex Ultra-
Scale + V CU118 development board. The framework is tested on a half-hourly Near Infra
Red (NIR) satellite images from Meteosat 7 having 5km×5km spatial resolution is shown
in Fig. 5.9. The computation time of cloud analysis framework on HD image sequence in
Matlab running on a single core on Intel XenonX5560 3.07 GHz PC takes around 1.5 min-
utes, whereas the proposed hardware accelerator running on the FPGA takes only 14 msec,
excluding the time taken for exchanging data between PC and FPGA via PCIe interface.

The CAS utilizes PCIe driver to transmit two 10 bit wide input pixels between host
PC and FPGA. After the flow computation the two 16 bit wide output flow values u,v are
sent back to the host for further tracking procedures. The data transfer rate is within the
available bandwidth of the PCIe Gen3 × 8, assuming that cloud analysis software is the
only process running in the host PC. The PCIe controller at the input side of FPGA transfer
the received pixels to the pre-processing module using two separate Direct Memory Access
(DMA) channels. The PCIe core provides split transmit (TX)/receive (RX) interface, solves
the problems of high-speed Direct Memory Access (DMA) by providing an interface which

130



is generic and adaptable. The data is decoded considering the packet formation rules like
addressing, packet sizing. The performance and resource utilization of the submodules and
the entire hardware part of the cloud analysis framework are estimated using Xilinx Place
and Route stage.

Table 5.1: Selected parameters for cloud analysis framework.

Satellite
Chara.1 Resolution Threshold

Spatial Radiometric Intensitythresh2 Areathresh3 Motionthresh4

Kalpana 8 km×8 km 10 bit 540 - 880 125 2
Meteosat-7 5 km×5 km 8 bit 130 - 220 200 2
INSAT-3D 4 km×4 km 10 bit 540 - 880 250 2

1 represents the parameters used by the cloud analysis framework.
2 represents the pixel intensities used for multi-level thresholding.
3 denotes the minimum number of pixels present in a given cloud segment.
4 refers to the minimum displacement required by a foreground pixel.

5.4.1 Performance Analysis

A generic set of parameters are discussed for providing a robust analysis of clouds from
satellites with varying spatial and radiometric resolutions. The threshold and other pa-
rameters are statistically estimated from a set of 2000 IR images per satellite as stated in
Table. 5.1.

Table 5.2: Selected bit-width for different modules.

S0 S1 S2 S3 S4
BWmin

1 20 28 20 20 32
1 represent the maximum number of bits utilized for each stage.

The median filter employs a 5 × 5 kernel to pre-process the IR imagery. The opening
and closing operation employs a disc with 12 and 10 pixel diameter respectively. The
variational multi-scale optical flow employs L=4 number of pyramid levels, with Nsolv=30

number of iterations at each pyramid level. The maximum number of cloud segments that
can be processed in each frame is limited to 15. This is achieved by selecting top 15

cloud segments with the highest area. This limits the number of matching unit utilized
in the S4 stage. The cloud accelerator utilizes a variable precision design based on Qm.n

representation of the fixed point number with integer and fractional part. The highest bit-
width utilized for each stages is given in Table. 5.2.
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(a) Uniform (b) Vortex

(c) Lamb-Oseen (d) Sink

Figure 5.10: Vector format representation of PIV images.

The performance of the CMC module of the cloud accelerator framework is tested using
synthetic fluid Particle Image Velocimetry (PIV) images obtained from the FLUID Project
[156] contains different sequences. Fig. 5.10 shows the computed flow vectors obtained
from the fluid sequence, which shows close agreement to the ground truth. The red arrows
show the magnitude and direction of the estimated motion.

Fig. 5.11 shows the input image after the histogram equalization whereas the Fig. 5.12
shows the computed cloud motion vectors.

The output of the segmentation module of the cloud analysis framework retrieves 5
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(a) Frame 1 (b) Frame 2

Figure 5.11: Cloud images after histogram equalisation.

Figure 5.12: Vector format representation of cloud motion field.

cloud segments from the first image and 4 cloud segments from the subsequent image. Each
segment is then labelled accordingly to get Fig. 5.13. The cloud segments are displayed
with closed boundary lines and represented using a unique cloud number computed during
the tracking stage.

Further, these labelled segments are matched with the segments in the subsequent image
based on the matching cost given in equation (5.2) as depicted in Table 5.3. The cloud
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(a) Frame 1 (b) Frame 2

Figure 5.13: Cloud image after labelling.

Table 5.3: Cloud tracking results.

Frame 1 A B C D E
Frame 2 A B C C D

parameters of each cloud segments in frame 1 is shown in Table. 5.4.

Table 5.4: Characteristics of the cloud segments in Frame 1.

Segment
Chara.1 Height2 Width2 Centroid Area2

A 75 96 (147,624) 3402
B 126 98 (406,488) 7500
C 109 106 (527,517) 7708
D 144 137 (653,530) 10990
E 65 58 (780,220) 2624

1 represents the cloud segment characteristics.
2 denotes that the cloud segment parameters in terms of number of pixels.

5.4.2 Resource and Timing Analysis

The device utilization of the proposed hardware accelerator for cloud analysis is shown in
Table. 5.5. It can be inferred from the Table that S2 stage uses a minimum number of slices,
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Table 5.5: Resource utilization of cloud analysis framework with 30 RBSOR solver itera-
tion.

Resource
Module

S0 S1 S2 S3 S4 System1

LUT 35544 1,37597 151 62741 1,01223 3,35285
FF 46882 1,66485 496 50864 1,13166 3,77241

BRAM36 451 1327 9 76 0 1863
URAM 0 960 0 0 0 960
DSP48 0 544 0 0 1620 2166

1 represent the resource utilization of the entire cloud accelerator framework including the PCIe-
DMA subsystem.

while the S1 stage with 30 solver iterations consumes the highest resource. The S1 and
S4 stage consumes a large number of DSP48 slices for implementing the cost function for
cloud motion computation and matching the cloud segments respectively. Most of the Ultra
RAMs are utilized to construct Pyramid, Flow resize and Warping memory banks. It also
consumes a large amount of BRAMs for implementing the line buffers for intermediate
data storage in OF , RBSOR and BF stages.

Table 5.6: Performance of cloud accelerator framework for different RBSOR solver itera-
tions.

Resource
Iteration

10 20 30

LUT 3,04489 (25.7%) 3,26884 (27.6%) 3,47130 (29.4%)
FF 3,24260 (13.7%) 3,59618 (15.2%) 3,91758 (16.5%)

BRAM36 1225 (56.7%) 1577 (73%) 1897 (87.8%)
URAM 960 (100%) 960 (100%) 960 (100%)
DSP48 1830 (26.8%) 2006 (29.3%) 2166 (31.7%)
CLB 63431 (42.9%) 68576 (46.4%) 73351 (49.6%)

Dynamic(W) 21.45 27.8 40.7
Fmax (MHz) 230 235 220

The resource utilization and performance of the cloud analysis framework for a varying
number of RBSOR solver iteration is computed in Table. 5.6. From the table, it can be
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observed that resource utilization is not constant for a different number of solver iterations.
The cloud analysis framework with 30 RBSOR solver iterations shows 36% increase in the
BRAMs utilization and 15% increase in the DSP48 usage. A slight reduction in the maxi-
mum frequency of operation of the accelerator can be observed with an increasing number
of iteration due to the additional routing delay. The cloud accelerator with 30 solver iter-
ations is running at a maximum frequency of 220 MHz, consuming a dynamic power of
40.7 W. The major part of the dynamic power is consumed by DSP48 and BRAM/URAM
blocks. The implementation of the cloud accelerator framework achieves a real-time per-
formance of 71 fps for HD resolution images. The proposed accelerator framework is more
than 100× faster than the existing CPU implementation.

Table 5.7: Performance of cloud analysis framework for various image resolution.

Format Resolution Latency (ms) FPS1

nHD 640*360 3.5 286
qHD 960*540 7.8 127
HD 1280*720 13.9 71

HD+ 1600*900 21.8 45
1 represent the number of frames processed per second.

The cloud accelerator framework is directly scalable to handle a multitude of image
resolutions as shown in Table 5.7. The latency of the cloud accelerator framework increase
with the image resolution due to a large amount of pixel operation and degradation in the
maximum frequency of operation. It also has a significant impact on the memory banks and
intermediate data flow buffering. The number of RBSOR solver iterations and the maxi-
mum supported frame resolution is limited by the amount of DSP48s and BRAMs available
in the current FPGA. Moving to another FPGA device with higher resource utilization or
switching to a multi-FPGA platform helps to solve the issue.

5.5 Validation

Since the framework is novel, a direct comparison is not possible, instead, the performance
of the framework is analysed based on several use cases.
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5.5.1 Case 1: Tracking of long and short term cloud patterns

One of the important application of the cloud analysis framework is to study the variation
of the cloud cover in a particular region by detecting and tracking of short and long term
cloud pattern changes, the change in the direction of wind flow and surface area of the
cloud mass by analysing large historical image database.

Figure 5.14: (a)Trajectories of cloud segments over a period of one month. The cloud clus-
ters which persists for a minimum of 50 frames are only displayed. Green blob indicates
the birth, the red cross represents the death and the small black dot shows each frame in-
stance,(b) Variation of the cloud cluster’s velocity at different locations(Interpolated using
blue lines)

The cloud analysis framework is used to analyse cloud pattern formation from a large
satellite database. The Fig.5.14 represents the track of the cloud system on top of the
Indian region during the month of June to September 2014. The estimated track shows a
close match to the true path on visual inspection. Similarly, other cloud parameters like
size, speed, life-cycle etc are computed for making several scientific conclusions about the
cloud propagation characteristics.

5.5.2 Case 2: Tropical Cyclone Tracking

The Tropical cyclones (TC) are an intense low-pressure area with organized circulating
storms formed over warm tropical oceans [157], circulating either anti-clockwise or clock-
wise direction. It is considered as one of the major sources of disaster resulting in a huge
catastrophe in the affected regions. The life cycle of a tropical cyclone can be characterized
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Figure 5.15: Proposed modified cloud analysis framework to track cyclones.

into formation, maturity and dissipation phases. An accurate analysis of the satellite data
greatly helps the forecasters for a better prediction of the track and the potential landfall
of the TC. The TC centre detection and tracking involve various computations stages such
as pre-processing, CMC, segmentation, vortex detection and tracking. Since most of the
processing stages are similar to the cloud accelerator framework, it is modified to add the
support for TC centre detection and tracking. The modification involves an extension to
cloud analysis software to incorporate spatiotemporal and spatial gradient scheme. The
modified framework is shown in Fig. 5.15.

5.5.2.1 CAS extension

The CAS software retrieves the input pixel intensity from the raw image data. Due to
the seasonal variability i.e. the time during which sun falls in the field of view of the
satellite and infrequent glitches in the capturing or transmission system leads to missing
or noisy frames. Hence the input frames are a) checked for highly uniform regions or
subregions by computing the image variance, b) checked for the minimum threshold of
the gradient magnitude in horizontal and vertical directions and c) checked for a minimum
number of non zero pixel intensities. If the frames are consecutive and have less distortion,
spatiotemporal gradient scheme is selected and in the case of missing or noisy frames,
spatial gradient scheme is used as shown in the Fig. 5.16.
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Figure 5.16: Proposed cloud analysis framework with CAS extension.

Spatio-temporal gradient scheme

If the spatiotemporal gradient scheme is selected, the input images are fed to the cloud
analysis framework using a PCIe interface. The image is pre-processed and fed to the
CMC module to extracts the motion vectors. The output flow field along with the intensity
values are fed to the cloud segmentation unit to generate a threshold mask. The computed
cloud mask along with the motion vectors is sent back to host PC.

The CAS extension software extracts the highest cloud segment in the frame to identify
the cyclone region. The computed flow field contains spurious vectors due to the regis-
tration error and the inaccuracy in modelling the highly nonlinear dynamics of the cloud
motion. A Navier-Stokes based smoothing [158] is adopted to impose fluid specific con-
straints on the flow field. It avoids the presence of noisy vectors and forces the flow vector
to account for divergence and curl of the fluid motion, followed by smoothing in the fre-
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quency domain. The histogram-based compensation method proposed in the work [159]
is employed to remove the global motion in the retrieved field, caused by the limitation in
the registration accuracy. It is based on an assumption that any IR image contains fewer
cyclone-related pixels than background pixel and they have zero motion. But the motion
field histograms have a non zero offset, signifying the presence of random motion in the
background pixels. This offset is computed and utilized for flow compensation, to get a
clearer and less noisy field.

The variance of cloud motion field in the cyclonic region is extracted from the vorticity
of the rotated spatiotemporal flow structures estimated to find the phase of the cyclone.
The vortex centre of the cyclonic region is determined by identifying the location where
the vorticity component of the flow is dominating. The computed optical flow contains
translational, divergence and vorticity components. Among them, the divergence and the
vorticity are the two key parameters of the TC motion which is used for the identification
of TC centre. The deformation tensor of the flow vector ~U is created as,

∇~U =

[
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

]

The deformation tensor is then decomposed into a symmetric part (S) and an asymmet-
ric part (Ω) expressed as,

S =
1

2
(∇~U +∇~UT ) (5.6)

Ω =
1

2
(∇~U −∇~UT ) (5.7)

Symmetric and asymmetric parts of the deformation tensor represents the strain and the
rotation of the flow respectively. From the symmetric and the asymmetric parts, the vortex
core is identified based on the Q-criterion.

Q =
1

2
(‖Ω‖2 − ‖S‖2) (5.8)

where ‖.‖ is the Hilbert-Schmidt norm of the matrix. The Q value measures the domi-
nance of vorticity in the flow field. When Q > 0, the vorticity part dominates the flow and
the corresponding location is considered as the vortex core or initial estimate of TC centre
TCinit. The post-processing stage fuses the information from weather models and previous
extrapolated locations to improve the initial TC centre estimate in case of noisy images. A
small two-dimensional patch of sizeR×S surrounding the initial estimate of the TC centre
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is extracted from the model output. The TC centre is characterized by 15% lower pressure
compared to the nearby positions in the mean sea level (MSL) pressure profile. Also, the
vortex centre estimated from 10 m wind field is utilized to compute TCmod.

TCmod = α1 ∗ TCmsl + α2 ∗ TCvel (5.9)

The parameters α1, α2 signifies the importance of pressure and velocity based center
estimates. The MSL based TC center retrieval is given more weight as compared to the
vortex estimate. A polynomial extrapolation based on the previously stored TC center
locations are used for TCfit predictions.

TCfit =
1

Nstore

Nstore∑
i=1

ai ∗ TCfinal(i) (5.10)

The predictor coefficients ai are computed based on parallel discrete Kalman filter im-
plemented in the work [160]. The model forecast TCmod is given more weight than extrap-
olated data TCfit.

TCfinal = wfit ∗ TCfit + wmod ∗ TCmod + wvort ∗ TCinit (5.11)

where wfit, wmod represents the weights for the polynomial extrapolations and model
forecasts. The final TC centre TCfinal is estimated by the weighted average of TC centre
estimate from the vortex, extrapolation and model forecasts.

Spatial gradient scheme

If the images are partial or missing and contain large noise a spatial gradient scheme is
utilized. The cloud accelerator framework is not utilized in this case for CMC computation.
The CAS software is modified to compute the TC from the noisy image. It computes the
variance image V as the difference of the input pixel intensity from the mean intensity, for
a small pixel neighbourhood Ω. A low value of variance is a characteristic feature near the
vortex centre, corresponding to high axisymmetric about the neighbouring pixels.

An accumulator matrix is constructed by augmenting the gradient vector orientations.
It holds the number of times the gradient vectors have passed through a particular location
in the image frame. For this, each gradient vector is extended and the score of locations
where these lines pass is accumulated as shown in Fig. 5.17. The location with the highest
score corresponds to the point where the maximum number of gradient vector intersects.
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Figure 5.17: TC centre corresponding to the point where four gradient vectors in the accu-
mulator matrix intersects.

This location is identified from the accumulator matrix and is considered as the initial
estimate TCinit of the TC centre, this is then fed to the post-processing stage to eliminate
the ambiguity in the estimated TC centre.

(a) (b) (c)

Figure 5.18: The blue, red star pointer denotes the estimated and true center of the TC
Hudhud during its entire life-cycle respectively (a) Formation phase (1030 UTC 8th October
2014) (b) Maturity phase (0430 UTC 12th October 2014) (c) Dissipation phase (2130 UTC
12th October 2014)

5.5.2.2 Experimental Analysis

The variance of the image patch is computed for 350 km radius around the cyclonic region,
with most of the circulation features concentrating near to TC centre. The post-processing
extracts a small patch of 30 km radius from the model output based on the initial TC centre.
The polynomial extrapolation needs 10 previously stored TC centres to obtain TCfinal. The
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TC considered being mainly concentrated on the Indian region to show the applicability
of the framework for missing and noisy frames from Kalpana and INSAT satellites. The
estimated and true centre of the TC Hudhud along with their deviation is shown in Fig. 5.18.
An approximate of 200 images per satellite is employed for estimating the TC centre.

The accuracy of the proposed methodology is tested with several TCs that formed dur-
ing the period of 2009 to 2014 in the Northern Indian oceans. Table. 5.8 shows the com-
parison of the mean track error of the proposed TC centre with other existing algorithms in
terms of kilometres.

 60°E  90°E

 1
5

° N
  

JTWC
Aila
Laila
Phet
Hudhud

Figure 5.19: Comparison of the Original (JTWC) and Estimated Track for Different TCs

The mean track error for different algorithms in the presence of noisy image frames
is shown in Table. 5.9. The table highlights the applicability of the proposed method in
the presence of significant noisy density. Even though the mean track error increases with
noise density, the proposed methodology is still able to handle images with significant noise
without affecting the performance. The testing of the methodology in a real scenario with
missing frames is not possible as the accuracy cannot be computed. Hence the testing is
done with a continuous sequence of TC images with selectively discarding multiple frames.
The Fig. 5.19 shows the computed cyclone centre track in comparison with Joint Typhoon
Warning Centre (JTWC) tracks which are assumed to be true. It shows a reduction of mean
track error by 11% as compared to the other state of the art methods.
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5.6 Summary

The chapter described about the design of a high throughput hardware accelerator for
cloud/cyclone analysis and tracking. The design involves several algorithm adaptations in-
cluding the cost function and utilization of the aforementioned variational multi-scale OF
and other supporting architectures. The proposed cloud accelerator framework is tested
with real-world satellite images achieving a maximum throughput of 71 fps for HD im-
ages. The proposed framework is modified to detect and track TC centre during its entire
life-cycle with a reduction in mean track error by 11% as compared to the other state of the
art methods.
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Chapter 6

Conclusion with Future scope

6.1 Conclusions

In recent years, high-throughput implementations become a major requirement in the field
of VLSI design of embedded and mobile applications. The computation of dense OF of
fast moving objects finds a wide range of applications ranging from vision aided-robots
to unmanned areal vehicles. The work explores different OF implementations and comes
up with a high throughput multi-scale non-linear HSOF architecture for tracking the fast-
moving object in real-time without much loss in accuracy. To improve the area efficiency
of the slow converging Gauss-Jacobi solver in the multi-scale non-linear HSOF implemen-
tations, the work proposes a high throughput architecture for RBSOR solver. The research
work also focuses on the design of a cloud/cyclone tracking framework for tracking the
fast moving cloud segments from infrared satellite images. The throughput performance
of the tracking framework is improved by proposing a high throughput VLSI architecture
utilizing proposed multi-scale non-linear HSOF, flow filtering architectures and supporting
architectures.

6.1.1 Contributions

The contributions of this research work are summarized as follows.

The first part of the research work focuses on the hardware adaptation and design of the
time-sharing architecture of variational multi-scale OF algorithm for real-time large-scale
motion computation. The dedicated memory banks and the special access schemes achieve
superior area and energy efficiency while attaining high parallelism and accuracy. The de-
sign is scalable to fit in an embedded device with different image resolution in real-time
while consuming low-power. This is the first work on deeply pipelined time-sharing ar-



chitecture for variational multi-scale OF to capture dense and accurate OF of fast-moving
objects from HD frames in real-time (176 fps). The architecture makes use of 169 super-
scalar units with 702 deep pipelines to achieve a throughput of 395 Giga Operations Per
Second (GOPS) with a computation density of 21.5 GOPS/Watt.

The work also proposes two major improvements in internal subsystems of the multi-
scale variational OF architecture to improve the throughput and resource utilization. It
involves the design of high throughput Red-Black SOR solver architecture for variational
HTOF computation. The proposed variational HTOF based architecture is capable of com-
puting OF for UHD images at 48 fps. The design achieves the highest throughput of 491

GOPS with a power efficiency of 43 GOPS/W at 412 MHz compared to the state of art
architectures. The FPGA implementation consumes 2.5× low power and 30% fewer re-
sources in comparison with state of the art architectures and is scalable to process variable
size flow values. Another improvement is the design of high throughput BF architecture for
flow denoising. The proposed HTBF architecture is tuned to achieve the highest through-
put at the cost of a peak power consumption of 510 mW while operating at 467 MHz.
Experimental results show the highest performance of HTBF architecture in terms of area
normalized speedup (5.8×) and area-technology normalized speedup (3.4×) compared to
other existing architectures. It also modifies HTBF architecture, to adapt the range filter
coefficients by varying noise level (η) in the input flow field.

The second part of the research focuses on the design of a general framework based on
a selective choice and application of different computer vision techniques for cloud/cyclone
analysis and tracking. The software implementation of the framework is complex and re-
quire huge computational time for processing high-resolution data of which variational
multi-scale OF computation is one of the major contributors. Hence the proposed varia-
tional multi-scale OF architecture with its improved subsystems are integrated to design
a high-speed accelerator for cloud analysis. The design involves several algorithm adap-
tations including the cost function and utilization of the aforementioned variational multi-
scale OF and other supporting architectures. The proposed cloud analysis framework is
tested with real-world satellite images achieving a maximum throughput of 71 fps for HD
images. The accelerator framework is modified to track cyclones from near real-time satel-
lite data. The modified framework is tested with different TCs from various Geostationary
satellites such as the Meteosat-7, INSAT-3D, Kalpana-1 etc. The computed track is com-
pared with the actual track data obtained from Joint Typhoon Warning Centre (JTWC), and
it shows a reduction of mean track error by 11% as compared to the other state of the art
methods.
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6.2 Future work

There are several areas in which this work can be further explored: exploring the architec-
ture design of complex cost functional to consider non-linear and higher order data and
smoothness terms to handle complex non-linear motions, exploring the feasibility of a
multi-FPGA platform or hybrid systems to implement more complex vision applications
based on the proposed architectures for high resolution image sequence, modification of
the proposed architecture for a low power on-board cyclone tracking in high frame rate
satellites to provide online tracking of hazardous climatic situations.

The research work shows the feasibility of implementing the high throughput architec-
tures for computing OF of fast moving objects. The motion model used in the algorithm
might be violated in complex non-linear motions. With the availability of high computa-
tional resources, more general motion models can be developed to accommodate for more
general environments. This can be analysed by modifying the cost functional to implement
dense and accurate high throughput fluid flow / biological cell trackers in aerospace and
biomedical industries respectively.

When more complex and computationally intensive non-linear model needs to be im-
plemented, the current single FPGA platform may not be able to offer enough capacity.
Hence the architectural modification required for enabling multi-FPGA operation can be
explored, with the hardware pipelines divided into separate partitions that can be realized on
different FPGAs. Data flow and control signals are communicated between FPGAs through
normal or high speed I/Os. Data flow control and synchronization pose new challenges in
algorithm development, FPGA implementation, simulation and verification. Another pos-
sibility is to design heterogeneous/hybrid systems and partition the compute intensive and
control operation to appropriate platforms.
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Appendix A

Appendix A

A.1 Histogram equalization

For an image I(m,n) having intensity ranging from 0 to (L − 1). The input histogram is
approximated by probability distribution function (PDF) pr(r) with pixel value r, pz(r) is
the PDF of the specified histogram with z being the resultant pixel value given by,

T (rk) = (L− 1)
k∑
i=0

pr(ri) (A.1)

G(zq) = (L− 1)

q∑
i=0

pz(ri) (A.2)

zq = G−1(T (rk)) (A.3)

Since the histogram of the image is concentrated on a particular region, in order to
distribute histogram across entire intensity and thereby enhancing the hidden details. For
a N ×M image of G grey levels, create an array H of length G initialized with 0 values.
Form the image histogram, scan every pixel and increment the relevant number of H if
pixel p has intensity gp, i.e perform

H[gp] = H[gp] + 1 (A.4)

Form the cumulative histogram Hc :

Hc[0] = H[0] (A.5)

Hc[p] = Hc[p− 1] +H[p] (A.6)
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Substituting the values:

T [p] = round

(
G− 1

N ×M
×Hc[p]

)
(A.7)

Rescan the image and write an output image with grey-levels gq:

gq = T [gp] (A.8)

A.2 Morphological Operation

Dilation adds pixels to the boundaries of objects while erosion removes pixels on object
boundaries. It depends on the size and shape of the SE. Dilation operation is represented
as the maximum value of all the pixels in the input whereas erosion the output is mini-
mum value of all the pixels. The dilation and erosion operators can be implemented in
the hardware using basic logic gates. For a structuring element of size 2 × 2, the dilation
and erosion are implemented. Mathematically, the opening of set A by structuring element
B, denoted by A ◦ B is defined as where 	 is the erosion operator and ⊕ is the dilation
operator. Thus, the opening A by B is the erosion of A by B, followed by dilation of the
result by B.Similarly, the closing of set A by structuring element B, denoted by A • B.So
closing of A by B is simply the dilation of A by B followed by the erosion of the result by
B.

A ◦B = (A	B)⊕B (A.9)

A •B = (A⊕B)	B (A.10)

The irregular and thin shapes in the segmented region is enhanced by morphological
operations employing a structuring element S1. The images are opened by a disk-shaped
STREL (S1) in the equ. A.11 to remove small objects and break weak connections between
the structures. It is followed by closing operation with a disc S2 in the equ. A.12 to fill the
holes, while preserving small cloud segments other than the background.

I ◦ S1 = (I 	 S1)⊕ S1 (A.11)

I • S2 = (I ⊕ S2)	 S2 (A.12)
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where ⊕ and 	 represents the dilation and erosion operation respectively and given by,

(I ⊕ S1)(m,n) = max{I(m+ x, n+ y) + S1(x, y)}, (A.13)

∀(x, y) ∈ S

(I 	 S1)(m,n) = min{I(m+ x, n+ y) + S1(x, y)}, (A.14)

∀(x, y) ∈ S
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