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ABSTRACT	

	 In	 an	 interplanetary	 transfer,	 the	 spacecraft	experiences	 the	 gravitational	

pull	of	many	celestial	bodies.	The	motion	of	the	spacecraft	is	studied	by	solving	the	

n­body	 equations	 of	motion	 using	 numerical	 techniques.	 As	 the	 interplanetary	

transfer	is	a	two­point	boundary	value	problem,	there	is	no	complete	information	

on	the	initial	or	departure	states.	To	find	the	initial	states,	exorbitantly	large	number	

of	trajectory	propagations	under	high	fidelity	force	models	are	required	making	the	

process	computationally	 intensive.	Usually	analytic	 techniques	 that	are	based	on	

simple	force	models	are	used	to	generate	an	initial	guess	of	the	transfer	trajectory	

design.	The	current	research	focuses	on	developing	efficient	analytical	techniques	

that	generate	improved	trajectory	designs	for	an	interplanetary	orbiter	mission.		

	 The	 analytical	 techniques	 proposed	 are	 based	 on	 the	 patched	 conic	 and	

pseudostate	concepts.	These	techniques	are	iterative	in	nature	and	identify	the	four	

distinct	trajectory	design	options	for	an	opportunity	which	the	conventional	design	

techniques	fail	to	do.	The	gravity	perturbations	of	the	non­spherical	Earth	and	third	

body	effects	of	the	Moon	and	the	Sun	are	included	in	the	analytical	design	process.	

The	numerical	propagation	of	the	proposed	analytical	designs,	under	a	force	model	

that	includes	major	perturbations,	achieves	the	arrival	target	parameters	with	good	

accuracies.	The	numerical	refinement	of	these	analytical	designs	require	very	less	

computation	time	as	compared to	that	of	the	conventional	designs.	An	analysis	of	

the	MOM	and	MAVEN	mission	designs	generated	using	the	proposed	technique	is	

presented.	Also,	trajectory	designs	are	generated	for	direct	transfers	from	Earth	to	

Venus	and	Earth	to	Jupiter	for	the	minimum	energy	opportunities	of	2023	and	2022	

respectively.	 The	 use	 of	 the	 proposed	 analytical	 techniques	 as	 a	 quick	mission	

design	and	analysis	is	demonstrated	using	an	Earth	to	Mars	orbiter	mission	for	Type	

I	(2018)	and	Type	II	(2022)	minimum	energy	transfers.	Fortran	95	codes	have	been	

developed	based	on	the	proposed	analytical	techniques	and	used	to	analyze	realistic	

mission	scenarios.	
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CHAPTER	1	

INTRODUCTION	
 

“The infinite! No other question has ever moved so profoundly the spirit of man.” 
-David Hilbert 

 

1.1  Introduction 

From time immemorial, the vast expanse of the universe and the stars have been a source 

of wonder. Ancient men have worked tirelessly to decipher the mysteries of the universe 

and to understand the patterns of the stars. Starting from Newton’s formulation of the law 

of gravity, scientists sought continuously to develop analytical theories to describe the 

motion of the Earth’s only natural satellite, the Moon. October 4, 1957, marked the 

beginning of space age when the Soviet Union successfully launched Sputnik I, the 

world's first artificial satellite. Several spacecraft have been launched beyond Earth orbit 

since 1959. On July 20, 1969, the Apollo 11 crew landed on the Moon and returned safely 

to Earth. NASA's Galileo mission (launch date: 0ctober 18, 1989) became notable for 

discoveries during its journey to the gas giant Jupiter. It was the first spacecraft to visit 

two asteroids, Gaspra and Ida. India's first mission to Moon, Chandrayaan-1, was 

launched successfully on October 22, 2008 (Chandrayaan-1, 2008). On November 5, 

2013, the Indian Space Research Organization launched the Mars Orbiter 

Mission (MOM) which was its first venture into the interplanetary space (Mars 

Orbiter Mission, 2018). Historians marked 2014 as a pivotal year in the space age when 

the scientists and engineers of the European Space Agency landed a tiny probe onto 

a 4 km wide comet traveling at 37.5 km/s at a distance of 500 million km. The 

Rosetta mission didn’t end when the Philae probe landed on Comet 

67P/Churyumov-Gerasimenko, sent back volumes of data and went dormant. The 

spacecraft is functioning optimally and has settled into the ‘comet escort phase’ of 

the operation. It will continue returning images and data of the comet as it 

approaches the Sun (Clark, 2016). In Earth orbit, the International Space Station 

continues to soar around the planet with a continually staffed crew of astronauts. There 
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are spacecraft currently on the way to Venus, Mars, asteroids, Jupiter, Saturn, the Kuiper 

Belt and even exploring the interstellar space (NASA Solar system exploration, n.d.). 

Today, modern spacecraft continue to explore the nature of the solar system and 

return invaluable data from exotic satellites of gas giants, drifting asteroids and other 

untapped sources of knowledge to the universe. For all these scientific missions, scientists 

endeavor to investigate as much about a celestial body as possible with a single spacecraft. 

However, the limitations on mass restrict the number of instruments that can be carried 

across the solar system. Though launch vehicles are ever improving, the most efficient 

way of sending more useful mass outside the influence of Earth’s gravity is to reduce the 

fuel mass of the spacecraft and accommodate more scientific instruments. Most 

interplanetary missions require a large quantity of fuel for the spacecraft to achieve the 

required heliocentric trajectory and arrive at the destination celestial body. The amount 

of propellant required to complete the mission objectives can be significantly reduced by 

utilizing efficient trajectory designs. Thus, designing a preliminary trajectory is an

important step in the mission design process. In general, the design process involves 

two steps, (i) identifying the launch opportunity and (ii) designing the optimal 

transfer trajectory that minimizes the V-infinity vector. An interplanetary mission 

requires selection of suitable launch opportunity, parking orbit characteristics etc. which 

are decided based on an extensive mission analysis. Therefore, a mission design and 

analysis tool that is quick and capable of handling a wide range of mission scenarios is 

essential.  

In an interplanetary transfer, the spacecraft experiences the gravitational pull of 

many celestial bodies and hence, to obtain an accurate trajectory design, it is essential that 

the mission design and analysis tool includes a realistic force model in the design process. 

Also, the interplanetary transfer is a two-point boundary value problem and so, there is 

no complete information on the initial or starting conditions. In general, an accurate 

trajectory design is generated using numerical techniques. The numerical technique 

includes numerical search for the initial condition and numerical integration of the n-body 

equations of motion. Therefore, executing the two steps of the design process using a 

numerical technique is computationally intensive and takes exorbitantly large time. Thus, 

for design analysis purposes, numerical technique is not suitable. Usually, the numerical 

design process uses the launch opportunity which is identified using some quick 

alternative methods (Escobal, 1965; Cornelisse, 1978). The number of numerical 

propagations of the n-body equations of motion in the numerical technique can be reduced 
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with a reasonably good guess of the trajectory parameters at the initial condition i.e., the 

initial guess. The complexity of finding the initial guess increases when the objective is 

to obtain the trajectory design for a minimum-energy interplanetary transfer. Usually, 

analytic techniques that generate quick solutions that are close to the numerical solutions 

are used for finding the initial guess. The current research focusses on developing 

efficient analytical techniques that provide improved transfer trajectory design for an 

interplanetary orbiter mission and can be used as a quick mission design and analysis tool. 

This chapter is organized as follows. In section 1.2, the literature review that 

includes an exhaustive list of the currently available trajectory design and optimization 

techniques is presented. This section encompasses various numerical, and analytical 

trajectory design techniques and also optimization techniques used for finding the launch 

opportunity for interplanetary and lunar missions. Section 1.3 outlines the limitations of 

the conventional analytical trajectory design techniques which is the motivation for the 

current research. The objectives of the research are presented in section 1.4. Section 1.5

provides a summary of the research. Section 1.6 provides the thesis architecture. 

1.2  Literature Review 

The preliminary design of interplanetary trajectory is obtained by exploring numerous 

sets of transfer trajectories. Each set is numerically propagated under the n-body force 

model to verify the accuracy in achieving the target parameters. With the advent of high 

speed computers, several numerical techniques are used for optimal trajectory design 

under the n-body force model. Betts (1998) presented a survey of the numerical methods 

used for trajectory optimization. The application of optimal control theory to space flight 

has led to the development of several useful computer programs. One such program is 

Mission Design and Analysis Software (MIDAS) which is designed to obtain complex 

ballistic heliocentric transfer trajectories for interplanetary space flight missions [Sauer, 

1989]. Laura M. B., et al. (2010) used MIDAS to generate Earth to Mars transfer 

trajectories for the years of 2026 through 2045. Another tool that has been widely used is 

COPERNICUS [Ocampo, 2003]. A recent tool that has been developed by NASA is the 

Generalized Mission Analysis Tool (GMAT) [Hughes, 2008]. A commercial tool kit STK 

(currently known as Systems Tool Kit) also provides numerical solution [STK user’s 

manual, 1997]. All these high accuracy trajectory optimization tools account for realistic 

force models. These trajectory optimization softwares use gradient methods and so, they 

can find an optimal trajectory design only if the initial guess/design is close to the optimal 
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design. As pointed out earlier, even when the launch opportunity is known apriori, the 

numerical design requires good initial guess to obtain the other unknown design 

parameters. In the context of interplanetary transfer, studies on the numerical trajectory 

design under the full force model is scarce. In the context of lunar transfer, Ramanan et 

al. (2005) generated a numerical trajectory design under the full force model. A random 

search method, genetic algorithm, was used to obtain the initial guess of the transfer 

trajectory.  

As we know, the numerical process is computationally intensive and so, 

alternative analytical techniques have been explored to substitute the numerical 

integration process. These techniques have been conceived independently by several 

investigators [Stumpff and Weiss, 1968; Wilson, 1970; Byrnes and Hooper, 1970] and 

are closely related. Because these analytical techniques use a larger step size, the 

computation time required for propagation is less. The analytical design techniques are 

used to obtain the initial guess of the transfer trajectory quickly. Unlike the numerical

integration formulas which depend on polynomials, these analytical techniques are based 

on two-body conics. The general design approach is to solve the simplified two-body or 

three-body problems analytically and obtain the initial trajectory set. These initial or 

coarse set is numerically refined under the full-body force model to obtain the realistic 

transfer trajectory design. The equations of motion are numerically integrated using the 

initial design under the n-body framework.  

The research on the trajectory design for interplanetary mission started with the 

simple two-body models. Gobetz and Doll (1969) gives a survey of the design methods 

of two-body impulsive trajectories. These techniques operate under simplified force 

models by introducing suitable assumptions. The analytical computation of interplanetary 

trajectory design was triggered by Walter Hohmann through his publication “The 

Accessibility of Celestial Bodies” in 1925. Though the technique gives a rough idea of 

the launch opportunity, flight duration and the velocity impulses for the interplanetary 

transfer, the transfer trajectory was a two-dimensional heliocentric ellipse. Thus, the 

Hohmann technique is not directly applicable for actual mission planning. With the 

introduction of patched conic concept [Clarke et al., 1963], a three-dimensional transfer 

trajectory design applicable for actual mission planning became possible as this technique 

considers the actual positions of the target planets. NASA’s spectacular multiple flyby 

missions such as Voyager and Galileo are based on patched conic designs [Marsden and 

Ross, 2006]. Unlike the Hohmann transfer, this technique takes into account the 
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gravitational forces of the target planets using the concept of the sphere of influence 

(SOI). The patched conic approximations offer an efficient and easy means for generating 

interplanetary trajectories for direct and gravity-assist transfers [Carlson K. M., 1970; 

Bate et al., 1971; Battin, 1987; Brown, 1992; Prussing and Conway, 1993; Bell et al., 

1995; Chobotov, 2002; Heaton et al., 2002; Bessette C. R. and Spencer D. B., 2007; 

Conway, 2010; Armellin R., 2011; Spreen et al., 2011; Englander, 2012; Campagnola et 

al., 2014] and is the most commonly used trajectory design technique. Brennan (2011) 

developed a tool for the design of interplanetary transfer trajectories using the patched 

conic approach. However, because of the patched conic assumptions, there are 

discontinuities in the position and velocity vectors at the boundary of the SOI. Many 

numerical techniques are used to patch these discontinuities. Clarke et al. (1966) 

described an analytical model based on the conventional patched conic concept to 

generate one-way transfer trajectories from a circular Earth parking orbit to both Mercury 

and Jupiter. Here, the differential correction technique is used to modify the departure V-

infinity vectors such that the desired arrival B-plane coordinates (Jah M., n.d.) are 

achieved. Note that B-plane is a plane passing through the center of the arrival planet and 

normal to the V-infinity vector. Many variants of the patched conic technique are 

available in the literature [Cornelisse, 1978]. A hybrid patched conic technique is 

discussed for lunar transfer by Escobal (1965) wherein the perturbing accelerations in the 

equations of motion are averaged over a larger time step. Here, the velocity discontinuity 

is removed by using the differential correction technique. Another variant of the patched 

conic technique is the Linked conic technique [Olds et al., 2007], where the planetocentric 

and heliocentric trajectories are patched at the SOI through iterations using different 

strategies to ensure continuity. Bayliss (1970) described the perturbed conic technique 

taking into account the perturbing effects of the Sun on the planetocentric legs, and of the 

planets on the heliocentric legs. Lancaster (1973) developed the matched asymptotic 

technique for lunar and interplanetary transfers. Cornelisse (1978) synchronized the 

velocity vector at the SOI using the Newton-Raphson method. Park and Wright (2007) 

presented a comparison of the patched conic trajectory code to the commercially available 

softwares - STK and swing-by calculator and concluded that STK took the largest 

computation time (about a day) as compared to the swing-by calculator and the patched 

conic trajectory code. Bradley and Russell (2014) proposed a method to convert the 

patched conic trajectories for gravity assist and rendezvous missions from low fidelity 

patched conics models to full-ephemeris n-body dynamics. Jin Li (2018) developed an 
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iterative technique based on the patched conic concept which reduces the discontinuities 

at the SOI using the assumption that the direction of the asymptote and the velocity vector 

at SOI are the same. 

In 1970, an improved analytical technique known as the overlapped 

approximation technique was proposed by Wilson S. W for lunar transfer cases. The 

deviations in the achieved arrival parameters were largely reduced for the pseudostate 

design as compared to the conventional patched conic design. The improvement in the 

trajectory design is due to the inclusion of Earth (primary body) even in the neighborhood 

of Moon (secondary body) using the concept of Moon’s sphere of action. Wilson 

presented this technique for analytical trajectory simulation and also demonstrated its use 

as a state vector propagation technique with step size larger than that used in the numerical 

technique. He observed that, when the step size is reasonably small, the pseudostate 

technique can be used as an alternative to the numerical propagation technique. The 

discontinuities at the arbitrary boundaries of the target planets are removed under iterative

schemes using Regula-Falsi method. Byrnes and Hooper (1970) formulated a multi-step 

pseudostate technique, named as multiconic technique, for lunar transfer considering the 

gravity perturbations due to the non-spherical Earth and the third body effect of the Sun. 

Byrnes (1989) modified the multi-step pseudostate technique into a one-step pseudostate 

technique for gravity-assist missions. The modified pseudostate technique has been 

applied for trajectory determination between two massive bodies, which he named as the 

three-body Lambert problem. He reported good improvement in the design as 

compared to the conventional patched conic design. To achieve the time of periapsis of 

the flyby trajectory, Byrnes used the State Transition Matrix (STM) introduced by 

Goodyear (1966). Sergeyevsky et al. (1983) applied the one-step pseudostate technique 

to design a direct Earth to Jupiter transfer trajectory with additional assumptions on the 

departure and arrival trajectories. He assumed rectilinear hyperbolas for the 

planetocentric conics of the departure and arrival legs which removed the complicated 

computations involving STM. Since for a rectilinear hyperbola, the position and velocity 

vectors are parallel, there arises difficulty in fixing the orientation of the hyperbolic 

orbital plane. This design results in vertical impact with the target planets which is not 

desirable in actual mission scenario. Sergeyevsky (1983) consolidated the design charts 

for Earth to Mars transfers using the one-step impact pseudostate technique. Sweetser 

(1989) compiled the analytical techniques for the transfer trajectory design with special 

emphasis on the importance of size of the pseudostate transformation 
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sphere/pseudosphere. He derived an empirical relation to find the size of the 

pseudosphere. Kledron and Sweetser (1988) compared various techniques based on the 

pseudostate concept for the transfer trajectory design. Ramanan (2002) used the one-step 

impact pseudostate technique in the arrival phase of the lunar transfer trajectory. Ramanan 

and Adimurthy (2005) presented a one-step non-impact pseudostate algorithm to obtain 

the transfer trajectory for lunar orbiter mission. The arrival V-infinity vector is achieved 

using an analytical tuning strategy and used to determine the pseudostate/pseudo target 

aiming point of the Moon. The analytical tuning strategy was an effective and simple 

alternative to the use of STM. The lunar transfer trajectory design was used as the initial 

guess for the numerical refinement process and the numerical design thus obtained was 

close to the one-step non-impact pseudostate design [Adimurthy and Ramanan, 2005]. 

The numerical search was regulated using an optimization technique. It is to be noted 

that, in an interplanetary transfer context, an analytical technique that can provide the 

departure parking orbit characteristics is not available in the literature. The departure 

parking orbit characteristics is very important as the angles, Right Ascension of 

Ascending Node (RAAN) and Argument of Periapsis (AoP) of the departure parking 

orbit decides the direction of the departure V-infinity vector which in turn forms a 

crucial parameter to help arrive at the desired target planet. 

  For all the analytical trajectory design techniques, the Lambert problem is the 

lifeline. Gauss (1857) developed an orbit determination method using the observations on 

three different time instances, instead of two which is used in a classical Lambert 

problem. With his method, Gauss was able to correctly determine the orbit of the newly-

discovered Ceres. Many great mathematicians like Euler and Lagrange solved the 

classical orbit determination problem [Escobal, 1965]. As there is no closed form solution 

of Lambert’s problem, iterative methods and series expansions became the accepted 

approaches of solutions. Escobal (1965) consolidated six methodologies for orbit 

determination and discussed the merits and demerits of each method. Prussing (2000) 

presents the classical Lambert solution by iterating on the semi-major axis. Other Lambert 

solutions are based on iterations on the orbital elements such as the semi-latus rectum 

[Boltz, 1984], true anomaly [Bate, 1971], and eccentricity [Avanzini, 2008]. Each of these 

solutions has different advantages and disadvantages. Mainly, these methods have 

different formulations for different type of conics: circular, elliptic, parabolic or 

hyperbolic. They also encounter mathematical singularities. Thorne (1995) derived a 

series solution to Lambert’s problem that works for hyperbolic and elliptic orbits. Battin 
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and Vaughan (1984) developed a technique for solving the Lambert’s problem in terms 

of the universal variables [Bate, 1971] wherein all types of conics can be handled. This 

technique is widely used because of its elegance and robustness. Later, the universal 

variables solution have been developed by several authors independently [Lancaster, 

1969; Gooding, 1990; Luo et al., 2011; Thompson, 2011; Izzo, 2015]. The universal 

variables methodology discussed by Vallado (1997) is computationally simple and it is a 

secant method that iterates on the universal variable until the desired flight duration is 

achieved. 

The analytical design techniques generate the transfer trajectory for a given 

transfer opportunity viz. departure epoch and flight duration. Generally the minimum-

energy opportunity is computed using some gradient-based optimization technique under 

the patched conic force model. For Galileo mission, the trajectory optimization was 

carried out using the Newton algorithm and the trajectory propagation was carried out 

using the multiconic (pseudostate) technique [D’Amario et al., 1982]. D'Amario (1989)

gives the details of the softwares, MOSES and PLATO, which generate the optimal 

trajectory design. Many authors have used the differential correction technique for 

various purposes in the interplanetary mission design. Byrnes (1970) used the differential 

correction, as pointed out earlier, to match the incoming and outgoing V-infinity vectors 

in the context of gravity assist transfers. D’Amario et al. (1981) used this technique for 

multiple flyby trajectories. As already mentioned, Clarke et al. (1966) used the differential 

correction process to refine the outgoing V-infinity vector to achieve the target B-plane 

coordinates for direct interplanetary missions. For direct interplanetary transfers, in 

general, the minimum energy opportunity is found using a simple grid search 

[Sergeyevsky, 1953]. A large number of global search methods have also been employed 

for the selection of minimum-energy opportunity. For the direct interplanetary mission, 

genetic algorithm [Gage et. al., 1995] was used for trajectory optimization under the 

patched conic framework. An ant colony algorithm was applied to design the trajectory 

for a simple, two-impulse Earth–Mars transfer [Radice and Olmo, 2006]. Many authors 

have used optimization techniques to explore solutions for several space trajectory 

problems such as low-thrust and impulsive transfers [Pamadi, 1995; Rauwolf et al., 1996; 

Rauwolf and Coverstone-Caroll, 1996; Hartmann et al., 1998; Coverstone-Caroll et al., 

2000; Hughes and McInnes, 2001; Gurfil and Kasdin, 2002; Betts and Orb, 2003; 

Dachwald, 2004; Becerra et al., 2005; Izzo, 2006; Woo et al., 2006; Izzo et al., 2006; 

Addis et al., 2011; Vasile and DePascale, 2006; Vasile et al., 2006; Sentinella and 
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Casalino, 2009; Vasile et al., 2010; Vasile and Zuiani, 2010]. Vasile et al. (2005) used an 

evolutionary optimization technique to design the optimal gravity assist transfers based 

on the Lambert conic force model. Other optimization techniques that are used to find the 

minimum energy opportunity for gravity-assist missions under the patched conic 

assumptions are hybrid global-local search (Crain et al., 2000) and differential evolution 

(Olds et al., 2007) techniques. 

The analytical trajectory design obtained using the patched conic model, in 

general, is used as the initial guess and later refined in the precision mode (numerical 

design process). It is desirable to obtain an analytical solution that is close to the 

numerical design under the full-force model. A close initial guess reduces the 

computational time for numerical refinement and also aids in converging to the precise 

design which is discussed in section 3.2. In the absence of a good initial guess, there is a 

possibility that the numerical refinement process does not converge to the desired solution 

or does not converge at all. The close initial guess is obtained by including the effect of 

perturbations in the analytical trajectory design process. There are numerous studies on 

lunisolar perturbations i.e., the third body perturbations of the Sun and the Moon, on an 

Earth orbiting satellites. Also, there are studies on the perturbing effect of the non-

spherical gravity of Earth on an Earth orbiting satellite. King-Hele (1958), the pioneer in 

this area, developed analytical theories to study the effect of Earth's oblateness on an 

Earth-orbiting satellite. The closed form solution is obtained using a perturbation 

technique and is applicable to satellite orbits with eccentricity less than 0.05. Kozai (1959) 

derived the closed-form expressions to account for the principal secular and long-periodic 

terms of the lunisolar perturbations by expressing the disturbing function in terms of the 

orbital elements of the Sun and the Moon. Musen (1961) included the parallactic term in 

addition to the lunisolar perturbations in the disturbing function and developed the Fourier 

series expressions. Blitzer (1959) computed the precession of satellite orbits due to the 

lunisolar perturbations using the closed form expressions obtained with secular terms 

only.  Later, Kozai (1962) derived the closed form expressions to account for the secular 

perturbations of Jupiter on asteroids with high inclination and eccentricity. Many authors 

studied the effect of perturbations using the Lagrange planetary equations and numerical 

approximations. Cook (1962) used the Lagrange’s planetary equations to obtain 

expressions for the variation of the orbital elements averaged over one revolution of the 

satellite. Kaula (1962) developed the lunar and solar disturbing function for a close 

satellite and developed a quasi-potential for the radiation pressure effects that were 
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included in the equations of motion. Kozai (1963) introduced the disturbing function 

accounting for the Sun and the Moon by including both secular and long periodic terms 

and formulated the equations of motion. Roy (1969) presented a study on the lunisolar 

perturbations on an Earth satellite. Giacaglia (1973) derived the disturbing function 

accounting for the disturbance of the Moon. He derived the closed form expressions for 

secular, long and short periodic terms separately using the disturbing function. Kozai 

(1973) developed another method to calculate the effect of lunisolar perturbations by 

expressing the disturbing function in a novel way. The term that represents the central 

body (Earth) force in the disturbing function is expressed in terms of the orbital elements 

and the terms that represent the Sun and the Moon are expressed in terms of polar 

geocentric coordinates. This representation eliminated the short-periodic terms by 

averaging over the mean anomaly of the satellite and aided to calculate the secular and 

long periodic effects with a larger step size for numerical integration. Lane (1989) 

developed analytical expressions for modeling the effect of lunar perturbations on Earth-

orbiting satellites. Montenbruck and Gill (2000) consolidated the expressions for 

lunisolar and non-spherical Earth gravity perturbations on Earth satellites. Solórzano et 

al. (2004) studied the effect of the third body perturbation in the spacecraft motion. They 

developed a semi-analytical study of the perturbation by a single averaged model. One of 

the most important applications is to calculate the effect of lunar and solar perturbations 

on high-altitude Earth satellites. Hough (1981) studied the effects of the lunisolar 

disturbance in orbits. Hough (1981) studied the effects of the lunisolar disturbance in 

orbits close to the inclinations 63.4 deg and 116.6 deg (critical inclinations with respect 

to the Geopotential of Earth) and concluded that the effects are significant in high 

altitudes. Narumi and Hanada (2007) presented new expressions for the rate of change of 

orbital elements to account for the gravitational forces of the Sun and the Moon. They 

analyzed the long-term effects of orbital perturbations based on the analytic models of 

third-body forces and conventional analytical models of atmospheric drag, solar radiation 

pressure and zonal harmonics. Domingos et al. (2008) presented a semi-analytical and 

numerical study of the perturbation effected on a spacecraft by a third-body using a 

double averaged analytical model with the disturbing function expanded in Legendre 

polynomials up to the second order. All these studies deal with the lunisolar and non-

spherical Earth gravity perturbations on Earth orbiting satellites or closed orbits. In the 

context of lunar transfer, Byrnes and Hooper (1970) discussed an analytical design 

technique that included the third-body effects of the Sun and the Moon, and also the non-
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spherical gravity effect of Earth. They accounted the third-body perturbation effects 

averaged over a specified time step used for multiconic propagation. The non-spherical 

gravity of Earth was accounted using the analytical expressions obtained from Penzo 

(1970). Recently, Zhang et al. (2014) developed a linear approximation (LA) based fast 

prediction algorithm to generate the transfer trajectory for lunar transfer including the 

effects of the non-spherical gravity perturbation of the Earth and the third-body effects of 

the Moon. Specifically, there is no study available in the literature to the best of 

knowledge of the author that deals with perturbations for analytical trajectory design 

in the context of interplanetary transfers.  

1.3  Motivation of the Research 

There are noticeable limitations with the conventional analytical techniques that are used 

for transfer trajectory design. These techniques generate trajectory designs under certain 

assumptions on the force models. These assumptions lead to the generation of only 

notional and approximate designs. The conventional analytical designs result in large 

deviations in the arrival target parameters on numerical propagation under the design 

force model. These are mainly due to the following reasons. 

1) Discontinuities in position and velocity vectors at the SOI due to certain 

assumptions.  

2) Non-inclusion of the perturbations such as the non-spherical gravity of Earth and 

the third-body effects of the Moon and the Sun in the analytical trajectory design 

process. 

These factors make the conventional analytical design a poor initial guess for the 

trajectory design process and as such cannot be used for actual mission planning. 

  Also, for any opportunity, there are two geometries for the departure/arrival 

hyperbolic orbit that contains the corresponding V-infinity vector in its plane. These are 

the ascending and the descending geometries of the hyperbolic orbit with respect to the 

planet equatorial plane. Connecting these orbits at the departure and the arrival phases 

result in four distinct design options for transfer trajectories. Note that the conventional 

analytical techniques provide only notional designs of the transfer trajectories and does 

not identify the four distinct design options for an opportunity (Ramanan and 

Adimurthy, 2005). With the conventional designs as initial guess, the numerical 

refinement process takes about a day and requires manual intervention for convergence 

to the desired design option. 
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  Further, the conventional analytical techniques do not provide the parking orbit 

characteristics accurately. For an interplanetary orbiter mission, such parameters are of 

great interest. Even a small deviation in the orbit characteristics will lead to missing the

target. So, the conventional analytical techniques do not serve as a mission analysis tool. 

For example, how much the departure design will have to vary, in order to achieve 

different inclinations of the arrival parking orbit, cannot be assessed using the 

conventional techniques. So, the current research focuses on developing analytical design 

techniques for the trajectory design of direct interplanetary orbiter missions removing the 

limitations of the conventional design techniques. 

1.4  Objectives of the Research 

The aim of the current research is to develop analytical design techniques that serve the 

following objectives,  

1) Remove the position and velocity discontinuities at the boundary of SOI of the 

target planets 

In the existing literature, in general, these discontinuities are removed using 

numerical/brute force methods. There is one analytical technique that already 

exists in the literature called one-step pseudostate technique (Sergeyevsky, 1983). 

But it deals with only rectilinear hyperbolas that lead to impact. The current 

research aims to relax the assumption of rectilinear hyperbola and develop 

improved analytical techniques. 

2) Include the gravity perturbations due to the non-spherical Earth and the third 

body effects of the Moon and the Sun in the analytical trajectory design process 

In the existing literature, there is no analytical model that considers all the 

aforementioned perturbations together in the trajectory design process. 

3) Identify the distinct design options for an opportunity 

In the current literature, the analytical design techniques generate only one option 

of the trajectory design for a given opportunity. 

4) Generate good initial guess for numerical refinement  

The conventional analytical techniques provide poor initial guess for numerical 

refinement and the numerical process require additional information on the 

arrival condition for convergence to the desired design option. So, the current 

research essentially aims to develop analytical techniques that generate quick 
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initial guess for the desired design option as close as possible to the numerical 

design. 

5) Serve as a quick mission design and analysis tool 

The objective is to develop analytical techniques that can be used to quickly 

generate accurate designs for the large number of mission scenarios in the design 

analysis process. 

1.5  Research Summary 

With the goal of achieving the aforementioned objectives, the current research explores 

both the patched conic and pseudostate concepts for the analytical trajectory design. 

Initially, the four notional design options for an opportunity are obtained using the 

conventional patched conic technique which is the most commonly used analytical 

technique. These design options result in large deviations in the arrival target parameters 

such as the closest approach altitude, inclination of hyperbolic orbit and time of periapsis, 

on numerical propagation under the design force model. By ‘design force model’, we 

mean the force model that is used to generate the analytical trajectory design. The 

conventional patched conic design options must be modified/tuned to achieve the V-

infinity vector at the SOI. This is carried out using an analytical tuning strategy adopted 

from Ramanan (2002). The patched conic technique that uses the analytical tuning 

strategy is named as V-infinity tuned patched conic (VPC) technique. This technique 

generates design options which on numerical propagation under the design force model 

result in improved achievable accuracies in the arrival target parameters, but the 

deviations from the desired values are still large. Moreover, the VPC technique fails to 

identify the distinct design options for an opportunity.  

To improve the design, the research initially focused on developing a trajectory 

design technique based on the pseudostate concept for direct interplanetary orbiter 

missions. The inherent advantage of the pseudostate concept is the inclusion of the Sun’s 

gravity even in the vicinity of the target planets (within the pseudosphere/extended SOI). 

An iterative method based on the one-step pseudostate concept, named as iterative 

pseudostate (ITR-PS) technique, is developed. The iterative nature of this technique 

helps identify the four distinct design options for an opportunity. The analytical tuning 

strategy is used to tune the departure/arrival hyperbolic orbit characteristics to achieve 

the departure/arrival V-infinity vectors at the pseudosphere. The ITR-PS technique 

provides improved design in terms of the achieved target parameters as compared to the 
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conventional techniques. However, numerical propagation of the ITR-PS design under 

the design force model results in large deviation in the arrival hyperbolic inclination. This 

can be reduced by using the multi-step pseudostate technique, instead of the one-step 

pseudostate technique, in the departure and arrival phases. The analytical tuning strategy 

is not suitable for the multi-step technique and so an optimization technique, differential 

evolution, is used to search for the departure/arrival hyperbolic orbit characteristics to 

achieve the departure/arrival V-infinity vector at the SOI. This technique, named as 

multiconic differential evolution (MCDE) technique refines the ITR-PS design. The 

numerical propagation of the MCDE design under the design force model results in only 

small deviations in the target parameters. However, in both of these techniques, the 

trajectory design is heliocentric even in the neighborhood of Earth and so inclusion of 

gravity perturbations of the non-spherical Earth is not straight forward. These techniques 

derive the merit in identifying the four design options for an opportunity distinctly. 

To overcome the difficulties of the pseudostate technique, the patched conic 

concept which considers one gravity body at a time is used. An iterative technique based 

on the patched conic concept, named as iterative patched conic (ITR-PC) technique, is 

developed. This iterative technique clearly identifies the four distinct design options for 

an opportunity. The computation time required for numerical refinement of the ITR-PC 

design is less and so, this technique is efficiently used to analyze various departure and 

arrival scenarios for the four design options. The numerical propagation of the ITR-PC 

design options under the design force model results in very small deviations in the target 

parameters. However, when the ITR-PC design is numerically propagated under a force 

model that includes perturbations, the achieved arrival target parameters result in large 

deviations from the desired values. Because of this, if the ITR-PC design is used as the 

initial guess, the numerical refinement under the force model including perturbations can 

converge to any of the four possible design options. To arrive at the desired option, 

additional information on the arrival geometries must be provided. Thus, it is desirable to 

generate a better initial guess which is attempted by including the perturbations in the 

analytical design process. The technique thus developed is named as biased-iterative 

patched conic (B-ITRPC) technique.  

The B-ITRPC technique generates the transfer trajectory design close to the 

numerical design. The computation time required for generating the B-ITRPC design is 

about 25 s. The numerical refinement process of the B-ITRPC design takes about 5 s to 

converge to the desired design option without the help of any additional information. Note 
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that the same process using the numerical technique will require a computation time of 

about a day and requires manual intervention to converge to the desired design option. 

Therefore, the B-ITRPC technique can be used as a powerful design analysis tool without 

resorting to numerical technique. Further advantage of the B-ITRPC technique is that the 

total velocity impulse (sum of transplanetary injection (TPI) and parking orbit insertion 

(POI)) required by the B-ITRPC design is less (by about 56 m/s) as compared to that 

required by the conventional patched conic design. 

1.6  Thesis Architecture 

The current thesis includes seven chapters, each of which are outlined below. 

 Chapter 1: This chapter outlines an introduction on the research topic. A brief 

literature review of the available data on the research topic is presented. The 

limitations of the existing techniques which motivated the current research is 

discussed. The objectives of the research and a brief summary is presented. The thesis 

architecture is explained in this chapter. 

 Chapter 2: The conventional analytical techniques used for trajectory design are 

discussed in detail. These include the interplanetary Hohmann transfer, conventional 

patched conic technique and its variants, and the conventional pseudostate technique. 

The Lambert problem which is central to all analytical design techniques is also 

discussed in this chapter. 

 Chapter 3: This chapter discusses the analytical tuning strategy that generates the 

hyperbolic orbit characteristics to achieve the V-infinity vector at the planet 

SOI/pseudosphere. For the transfer to occur with a minimum velocity impulse, the 

parking orbit (PO) and the hyperbolic orbit must be coplanar. Using this concept, a 

technique to obtain the parking orbit characteristics is presented. Also, the V-infinity 

tuned patched conic technique (VPC) is discussed in detail. 

 Chapter 4:  The analytical trajectory design techniques developed based on the 

pseudostate concept are discussed. The first part of the chapter presents the iterative 

pseudostate technique (ITR-PS) which results in four distinct design options for an 

opportunity. The second part of the chapter presents the multiconic differential 

evolution technique (MCDE) that refines the ITR-PS design. 

 Chapter 5: In this chapter, the iterative patched conic technique (ITR-PC) is 

described. This technique exploits the simplicity of the conventional patched conic 

technique and identifies the four distinct design options in very short span of time. 
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The use of this technique for quick mission design and analysis of all the four design 

options is demonstrated using an Earth to Mars orbiter mission (Type I transfer). 

 Chapter 6: This chapter deals with the biased-iterative patched conic technique (B-

ITRPC). This technique generates the analytical design accounting for the non-

spherical gravity perturbations of the Earth and the third-body effects of the Moon 

and the Sun in the departure phase of the interplanetary transfer trajectory. The 

analytical propagation is carried out using the linear approximation technique and the 

states are updated using the closed form solution obtained from the generalized 

spectral decomposition theorem. The B-ITRPC technique yields design very close to 

the numerical design. The use of this technique as a powerful mission design and 

analysis tool is demonstrated using an Earth to Mars orbiter mission (Type II transfer). 

The trends and tradeoffs of various realistic mission scenarios can be understood from 

this analysis. The B-ITRPC technique is used to analysis the trajectory designs of the 

MOM and MAVEN missions. Also, the B-ITRPC designs are generated and 

presented for direct transfers from Earth to Jupiter and Earth to Venus for the 

minimum energy opportunities of 2022 and 2023 respectively. A comparison of the 

performance of different analytical trajectory design techniques based on the patched 

conic concept is provided in this chapter. 

 Chapter 7: This chapter summarizes the merits of the proposed analytical techniques 

and consolidates the major inferences drawn from the analysis. The future scope of 

this research is also presented. 
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CHAPTER	2	

CONVENTIONAL	ANALYTICAL	TECHNIQUES		

FOR	TRANSFER	TRAJECTORY	DESIGN	

2.1 Chapter Summary 

This chapter gives an account of the conventional analytical techniques available in the 

literature for transfer trajectory design. These techniques provide quick solutions that are 

used as the initial guess for numerical refinement under high-fidelity force models. First, 

the Hohmann interplanetary transfer which gives a two-dimensional transfer trajectory is 

discussed. The central part of all the analytical trajectory design techniques is the Lambert

problem. This chapter includes a discussion on the Lambert problem and a comparison 

of two solution methods that are based on universal variables. Then, the conventional 

patched conic technique which is the most commonly used analytical design technique is 

presented. Another conventional design technique based on the pseudostate concept, the 

one-step pseudostate technique, which provides improved trajectory design is also 

discussed. These conventional techniques generate the V-infinity vector which is the main 

design parameter for an interplanetary transfer. This chapter brings out the assumptions, 

merits and demerits of the conventional analytical techniques. 

2.2 Introduction 

“the probability of finding there (Venus) an atmosphere and consequently 

conditions for life, similar to those on Earth, is so great, and the difficulties 

of the one-way trip there - having once established the station on Moon - 

so small that presumably Venus must be primarily considered as a goal for 

immigration, Mars on -the other hand a goal for scientific investigation 

trips”. 

-Walter Hohmann 
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Fig. 2.1a. Geometry of a typical Hohmann (coplanar) transfer  

Fig. 2.1b. Geometry of a Hohmann interplanetary transfer 

The pioneer in the field of astrodynamics who had serious thoughts for interplanetary 

travel is Walter Hohmann. In 1925, he introduced the first analytical method for trajectory 

design in his book “The Accessibility of Celestial Bodies” (NASA technical translation, 

1960). The Hohmann transfer is essentially a heliocentric transfer between the orbits of 

the target planets i.e. the departure and arrival planets. The planetary orbits are assumed 

as circular and coplanar. Fig. 2.1a shows the typical Hohmann transfer from an inner orbit 

to an outer orbit. The periapsis (PTO) of the Hohmann transfer orbit is at the initial circular 
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orbit (radius, R1) and apoapsis (ATO) is at the final circular orbit (radius, R2). The 

Hohmann transfer orbit is tangential to both the inner and outer orbits and elliptic with 

respect to the Sun. This transfer is a minimum-energy, two-impulse transfer between two 

coplanar circular orbits.  

The Vis-Viva equation yields the magnitude of the heliocentric velocity vectors 

at the periapsis (𝑉𝑃𝑇𝑂) and apoapsis (𝑉𝐴𝑇𝑂) of the Hohmann Transfer Orbit, 

𝑉𝑃
2
𝑇𝑂 = 𝜇𝑠 (

2

𝑅1
−

1

𝑎𝑇𝑂
)                                            (2.1) 

𝑉𝐴
2
𝑇𝑂 = 𝜇𝑠 (

2

𝑅2
−

1

𝑎𝑇𝑂
)                                            (2.2) 

where the subscript ‘P/A’ denotes periapsis/apoapsis, parameter ‘𝜇𝑠’ is the gravitational 

constant of the Sun and ‘𝑎𝑇𝑂’ is the semi-major axis of the elliptic (heliocentric) transfer 

trajectory which is given by, 

 𝑎𝑇𝑂 =
𝑅1+𝑅2

2
                                                            (2.3) 

The velocity impulses (∆𝑉) for the two-impulse transfer are easily computed as follows. 

The departure velocity impulse (∆𝑉𝐷) for departure from a circular orbit of radius 𝑅1 is, 

∆𝑉𝐷 = 𝑉𝑃𝑇𝑂 − √
𝜇𝑠
𝑅1

                                                       (2.4) 

The arrival velocity impulse (∆𝑉𝐴) upon arrival at the circular orbit of radius 𝑅2 is, 

∆𝑉𝐴 = √
𝜇𝑠
𝑅2
− 𝑉𝐴𝑇𝑂                                                      (2.5) 

The total velocity impulse required for the transfer is given by, 

∆𝑉𝑡𝑜𝑡𝑎𝑙 = ∆𝑉𝐷 + ∆𝑉𝐴                                                  (2.6) 

In practice, Hohmann transfers provide an approximate quick estimate of the velocity 

impulses required for a particular mission.  

2.3 Hohmann Interplanetary Transfer 

The interplanetary transfer trajectory is obtained by connecting the heliocentric orbits of 

the target planets. The gravitational influences of the target planets are superimposed over 
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the Sun’s gravity field using the concept of the sphere of influence (SOI). The assumption 

used here is the patched conic assumption, i.e. the heliocentric velocity vector at the SOI 

and the departure/arrival are same. Fig. 2.1b shows the Hohmann interplanetary transfer 

from an inner orbit to an outer orbit. The departure and arrival velocity impulses, given 

by the Eqs. 2.4 and 2.5, are used as the magnitude of the departure and arrival V-infinity 

vectors i.e.  𝑣∞𝐷 and 𝑣∞𝐴 respectively, for the interplanetary transfer. 

 𝑣∞𝐷 = ∆𝑉𝐷
 𝑣∞𝐴 = ∆𝑉𝐴 }                                                       (2.7) 

The Hohmann interplanetary transfer provides only the magnitude of the V-infinity vector 

and not the direction. However, this method is helpful to determine the region in which 

the minimum-energy opportunity occurs for an interplanetary mission. This is because 

the actual transfer geometry for an interplanetary mission occurs near the Hohmann 

geometry. 

2.4 Selection of solution method for Lambert problem 

The Hohmann transfer does not consider the actual positions of the target planets. This 

lead to the development of various other analytical trajectory design techniques. When 

the actual positions are considered, the connecting arc is determined as the solution to the 

Lambert problem. All the analytical design techniques use the Lambert problem solution 

as the baseline solution. So, in this section, Lambert problem and two of its solution 

methods are discussed. 

The Lambert problem determines the trajectory connecting two position vectors 

with a known transfer time. A typical interplanetary transfer involves connecting the 

departure and arrival planetary positions. This results in an elliptical (heliocentric) 

trajectory between the target planets. The solution to the Lambert problem is obtained 

using the Lambert’s theorem. The Lambert’s theorem states that, in an elliptic orbit, the 

transfer time between two points depends only on the semi-major axis, sum of the 

distances from the primary focus to each of the two points, and the chord length between  
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Fig. 2.2. Geometry of Lambert problem 

them. The solution of the Lambert problem is the heliocentric departure velocity vector 

in the transfer orbit. With the initial position and velocity vectors of the spacecraft fully 

known, the transfer trajectory is obtained.  

Several methods are available in the literature to solve the Lambert problem. Some 

methods iterate on one of the orbital parameters and obtain the solution. While some of 

these methods have singularities for large transfer angle, some others are applicable only 

for specific type of conics. The solution methods developed based on the universal 

variables (Bate et al., 1971) are widely used because of their elegance and robustness. 

The universal methods developed by Battin (1987) and Vallado (1997) can be applied to 

all types of conics and have shown robustness to most of the singularity conditions. So, 

these methods have been implemented in the current research. All these methods fail as 

the transfer angle between the departure and arrival position vectors of the trajectory 

segment approaches 180 deg (collinear). This is because an infinite number of transfer 

planes exist connecting the collinear position vectors. 

For performance comparison, some cases have been solved using the universal 

methods. These cases have been generated using some reference orbits and they cover all 

types of conics. The geometry for the Lambert problem is shown in Fig. 2.2. The two 

points considered are 𝑃1 and 𝑃2. The position vectors are given in terms of Cartesian 

coordinates (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2), and the flight duration connecting them is fixed. 

The solution of the Lambert problem is the velocity vector at 𝑃1. The initial state is 
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propagated for the transfer time to obtain the velocity vector at 𝑃2. For the reference orbit, 

a geocentric coordinate frame with Earth equator and Equinox of J2000 is used. From the 

reference orbit, the points 𝑃1 and 𝑃2 are obtained at two time instances. The inputs to the 

Lambert problem are the position vectors of these points and the transfer time (𝑡𝑓 − 𝑡𝑖).  

Tables 2.1 to 2.4 present the solution of the Lambert problem, for some of the 

cases, obtained using the two universal methods. These cases include different type of 

conics: elliptic posigrade, elliptic retrograde, circular and hyperbolic. The difference 

between the reference and determined velocity vectors at 𝑃1  is presented. Also, the 

position vector and the determined velocity vector at 𝑃1  are used to obtain the transfer 

trajectory which is given in the table. The transfer trajectory is represented in terms of the 

orbital elements (𝑎, 𝑒, 𝑖,𝛺,𝜔, 𝜈) where 𝑎 is the semi-major axis, 𝑒 is the eccentricity, 𝑖 is 

the inclination, 𝛺 is the right ascension of ascending node, 𝜔 is the argument of periapsis 

and 𝜈 is the true anomaly. It is evident that the transfer trajectory determined using 

Vallado’s method has higher accuracy as compared to Battin’s method. It has been 

observed that, compared to Battin’s method, Vallado’s method takes very less 

computation time even though the number of iterations to converge to the solution is more 

(cf. Table 2.1). 

Both the methods perform in a similar fashion for all the cases except for those 

with transfer angles approaching 180 deg. Some such cases are solved using both the 

universal methods. An elliptical posigrade orbit is taken as the reference orbit. Table 2.5 

shows the determined transfer trajectory for two cases with: (i) transfer angle: 180.001 

deg and (ii) transfer angle: 180.0001 deg. It can be noted that the deviations in the orbital 

elements are large for the solution obtained using Battin’s method as compared to that 

from Vallado’s method. Table 2.6 gives the deviation in velocity vector for many cases 

when the transfer angle approaches180 deg with higher precision. Note that for the 

solution obtained using Battin’s universal method, the deviation in the velocity vector 

increases by one order as the precision of the 180 deg transfer increases. With Vallado’s 

solution, although the deviation increases by two order, the magnitude of deviation is 

very small. Hence, it is concluded that Battin’s universal method suffer more in the 180 

deg transfer regime as compared to Vallado’s universal method. Thus, Vallado’s 

universal method is found to be efficient for all types of conics and also near 180 deg 

transfer cases. Therefore, this solution method is adopted in the current research.  

 



Chapter 2   23 
 

Table 2.1 Elliptic posigrade orbit (transfer angle = 100 deg, transfer time = 7.342 h) 

Orbital elements Reference orbit Battin’s method Vallado’s method 

𝑎 (km) 50000.0000 50000.0039 50000.0000 

𝑒 0.20000000 0.20000006 0.20000000 
𝑖 (deg) 40.0000000 39.9999999 39.9999999 
Ω (deg) 30.0000000 30.0000000 29.9999999 
𝜔 (deg) 140.000000 139.999999 140.000000 

𝜈𝑡𝑖 (deg) 20.0000000 20.0000003 19.9999999 

∆𝑣 (m/s) - 1.076654E-04 8.22847E-8 

No. of iterations/ 
computation time (ms) 

- 3 / 0.20 32 / 0.05 

Initial time 𝑡𝑖: 𝑥1 = -38175.67 km, 𝑦1 = -9816.48 km, 𝑧1 = 8883.13 km  
Final time 𝑡𝑓: 𝑥2 = 12097.04 km, 𝑦2 = -39475.16 km, 𝑧2 = -33761.18 km  

 

Table 2.2 Elliptic retrograde orbit (transfer angle = 100 deg, transfer time = 7.342 h) 

Orbital elements Reference orbit Battin’s method Vallado’s method 

𝑎 (km) 50000.0000 50000.0039 50000.0000 

𝑒 0.20000000 0.20000006 0.20000000 

𝑖 (deg) 100.000000 100.000000 100.000000 

Ω (deg) 30.0000000 29.9999999 29.9999999 

𝜔 (deg) 140.000000 139.999999 140.000000 

𝜈𝑡𝑖 (deg) 20.0000000 20.0000003 19.9999999 

∆𝑣 (m/s) - 1.076654E-04 1.13567E-7 

𝑥1 = -31682.53 km; 𝑦1 = -21062.93 km; 𝑧1 = 13609.75 km at 𝑡𝑖 
𝑥2 = -12580.73 km; 𝑦2 = 3267.99 km; 𝑧2 = -51725.13 km at 𝑡𝑓 

Table 2.3 Circular orbit (transfer angle = 100 deg, transfer time = 8.585 h) 

Orbital elements Reference orbit Battin’s method Vallado’s method 

𝑎 (km) 50000.0000 50000.0026 49999.9999 

𝑒 0.00000000 5.67004E-08 2.23727E-11 

𝑖 (deg) 40.0000000 40.000000 40.000000 

Ω (deg) 30.0000000 29.999999 29.999999 

𝜔 (deg) 140.000000 140.491316 30.000204 

𝜈𝑡𝑖 (deg) 20.0000000 19.5086834 129.999795 

∆𝑣 (m/s) - 9.24719E-5 4.40366E-9 

𝑥1 = -47239.94 km; 𝑦1 = -12147.26 km; 𝑧1 = 10992.31 km at 𝑡𝑖 
𝑥2 = 11340.97 km; 𝑦2 = -37007.96 km; 𝑧2 = -31651.11 km at 𝑡𝑓 
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Table 2.4 Hyperbolic orbit (transfer angle = 50 deg, transfer time = 0.3940 h) 

Orbital elements Reference orbit Battin’s method Vallado’s method 

𝑎 (km) -50000.0000 -49999.9936 -49999.9993 

𝑒 1.20000000 1.2000000 1.2000000 

𝑖 (deg) 40.0000000 40.000000 39.999999 

Ω (deg) 30.0000000 29.999999 29.999999 

𝜔 (deg) 10.0000000 9.9999993 10.000000 

𝜈𝑡𝑖 (deg) 20.0000000 20.000006 19.999999 

∆𝑣 (m/s) - 9.20040E-5 7.78215E-7 

𝑥1 = 5774.85 km; 𝑦1 = 7907.30 km; 𝑧1 = 3323.25 km at 𝑡𝑖 
𝑥2 = -3537.96 km; 𝑦2 = 11545.11 km; 𝑧2 = 9873.97 km at 𝑡𝑓 

 

Table 2.5 Elliptic posigrade orbit for transfer angles approaching180 deg 

Orbital elements 
Transfer angle = 180.001 deg Transfer angle = 180.0001 deg 

Battin’s 
method 

Vallado’s 
method 

Battin’s 
method 

Vallado’s method 

𝑎 (km) 49704.512 49999.994 47264.826 49998.655 
𝑒 0.195411 0.199999 0.15586 0.19997 
𝑖 (deg) 39.9999 39.9999 39.9999 39.9999 
Ω (deg) 30.0000 30.0000 30.0000 30.0000 
𝜔 (deg) 139.5957 139.9999 135.0606 139.9980 
𝜈𝑡𝑖 (deg) 20.4042 20.0000 24.9393 20.0019 

𝑃2 (km) 
𝑥2 = 55845.81 
𝑦2 = 14361.01 
𝑧2 = -12994.21 

𝑥2 = 55845.94 
𝑦2 = 14360.29 
𝑧2 = -12994.79 

Reference orbit: 𝑎 = 50000 km; 𝑒 = 0.2; 𝑖 = 40 deg; Ω = 30 deg; 𝜔 = 140 deg; 𝜈𝑡𝑖 = 20 deg 
𝑃1: 𝑥1 = -38175.67, 𝑦1 = -9816.48, 𝑧1 = 8883.13 

 

Table 2.6 Deviation in velocity vector for transfer angles approaching 180 deg  

(Elliptic posigrade orbit, cf. Table 2.5) 

Transfer angle 
(deg) 

∆𝑣 (m/s) 
Battin’s method Vallado’s method 

180.010000 0.69 5.93E-6 
180.001000 6.91 1.26E-4 
180.000100 67.26 3.12E-2 
180.000010 576.55 2.34 
180.000001 2294.10 586.30 
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2.5 Conventional Analytical Techniques 

The main aim of these conventional analytical techniques is to determine the V-infinity 

vector which is the primary design parameter for any interplanetary transfer. Some of the 

conventional analytical techniques are briefly described below. 

1) Patched conic technique: In the patched conic technique, the target planet is the 

primary attracting body within its SOI, elsewhere Sun is the primary attracting 

body. Thus, the primary bodies act one-at-a-time basis and the interplanetary 

trajectory is split into three two-body trajectories. The departure/arrival V-infinity 

vector is computed by using the assumption that the heliocentric velocity vectors 

at the departure and the SOI are the same. The zero-sphere-of-influence patched 

conic technique is called the point conic/Lambert conic technique [Battin R.H., 

1987] and is discussed in detail in section 2.5.1. 

2) Linked conic technique: The patched conic technique results in velocity 

mismatches between the two-body trajectories. In Cornelisse (1978), the linked 

conic technique is described as an iterative procedure that drives these mismatches 

to zero. In general, the discontinuities in the velocity vectors are driven to zero 

using some gradient based methods such as Newton-Raphson method. 

3) Perturbed conic technique: Bayliss (1970) described this technique taking into 

account the perturbing effects of the Sun in the planetocentric legs, and of the 

planets in the heliocentric legs. The reference trajectory is obtained from the 

linked conic technique. Starting at the mid-point of each trajectory leg, the 

position and velocity deviations at the end points due to third-body perturbations 

are calculated by solving quadratures. The requisite mid-point position and 

velocity offsets are determined analytically such as to nullify the position offsets 

at end points. The process is repeated to drive the velocity discontinuities to zero. 

4) Pseudostate technique: Wilson Jr. (1970) introduced this concept wherein the 

position of the departure and arrival pseudostates are used for Lambert conic 

determination instead of the actual position of the target planets. The transfer 

trajectory is considered heliocentric even in the vicinity of the target planet 

(pseudosphere). This technique superimposes the gravitational force of the target 

planet over that of the Sun within the pseudosphere and generates the pseudostate. 

Thus, we have the 3-body force model, Sun-planet-spacecraft, within the 

pseudosphere. This technique is discussed in detail in section 2.5.2. 
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Fig. 2.3. Illustration of Patched conic technique [adopted from Brennan M.J. (2011)] 

There are many variants of the patched conic technique like the matched asymptotes 

[Lancaster, 1973] and the pseudostate technique like the multiconic technique [Byrnes 

and Hooper, 1970]. These techniques differ mainly on their force models. 

2.5.1 Conventional Patched Conic Technique 

The conventional patched conic (PC) technique is based on two-body assumptions and 

generates a reasonably good approximation of the transfer trajectory. The patched conic 

procedure is used for preliminary mission planning. Brennan (2011) developed a software 

tool for trajectory design using the patched conic technique. The patched conic approach 

considers the multiple gravity fields acting on the spacecraft one-at-a-time. Accordingly, 

the trajectory is divided into heliocentric and planetocentric phases. As stated earlier, 

these phases are; (i) the geocentric departure hyperbola, (ii) the heliocentric ellipse and, 

(iii) the planetocentric arrival hyperbola.  The region surrounding a planet where its 

gravity is predominant over the Sun’s is defined as the sphere of influence (SOI) of that 

planet. The patched conic methodology is illustrated in Fig. 2.3.  

2.5.1.1 Assumptions 

1) Within the SOI, the spacecraft is influenced solely by the planet which is the 

central body of attraction. 

2) Sun influences the spacecraft outside the SOI of the target planets. 

3) The heliocentric velocity vector at the departure point and SOI are the same. 
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2.5.1.2 Methodology 

The conventional patched conic (PC) methodology is described as follows. The velocity 

vectors of the target planets at the departure and arrival epochs are obtained from the 

ephemeris. Let the heliocentric velocity vector of the departure and arrival planets be 𝑽𝟏 

and 𝑽𝟐 respectively. The heliocentric phase of the transfer trajectory is determined by 

solving the Lambert problem connecting the position vectors of the target planets at the 

departure and arrival epochs. The heliocentric velocity vector at the departure epoch is 

obtained as the solution to the Lambert problem. The departure states are used to find the 

arrival heliocentric velocity vector. Let the heliocentric velocity vectors be 𝑽𝑫𝑷𝑪 at the 

departure and 𝑽𝑨𝑷𝑪 at the arrival. It is to be noted that the difference between the 

heliocentric velocity vectors at the departure and the SOI is less than 1 m/s and so, 

neglected. Thus, from the patched conic assumptions,   

 𝐕𝑫𝑺𝑶𝑰 ≅ 𝑽𝑫𝑷𝑪
 𝐕𝑨𝑺𝑶𝑰 ≅ 𝑽𝑨𝑷𝑪

}                                                        (2.8) 

The V-infinity vector (𝒗∞) at the departure and arrival phases are computed as,  

 𝒗∞𝑫 = 𝑽𝑫𝑺𝑶𝑰 − 𝑽𝟏
 𝒗∞𝑨 = 𝑽𝑨𝑺𝑶𝑰 − 𝑽𝟐

}                                                    (2.9) 

The heliocentric vector is transformed to the planetocentric reference frame. 

2.5.1.3 Illustrative Results 

The conventional patched conic technique is applied for an Earth to Mars transfer. 

The minimum energy opportunity which corresponds to the opportunity having the least 

value of V-infinity is obtained through grid search. The V-infinity vector is computed 

using the conventional PC technique. The minimum energy opportunity includes the 

departure epoch and the flight duration. There are two types of interplanetary transfers, 

(i) Type I transfer which has a transfer angle less than 180 deg and hence, short flight 

duration, and (ii) Type II transfer which has a transfer angle greater than 180 deg and 

hence, long flight duration. For the Earth to Mars transfer, a type I and type II minimum 

energy opportunity are presented in Table 2.7. The departure and arrival V-infinity 

vectors for these opportunities obtained using the conventional PC technique are 

presented in Table 2.8a. The V-infinity vector is represented in terms of its 

magnitude (𝑣∞) (km/s) and the orientation angles, right ascension 𝛼∞(deg) and 
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declination 𝛿∞(deg). The subscript ‘D’ or ‘A’ in these parameters denote the ‘departure’ 

or ‘arrival’ phases. The departure V-infinity is in geocentric coordinate frame with Earth 

equator and Equinox of J2000. The arrival V-infinity vector is in a Marscentric coordinate 

frame with Mars equator and IAU vector of J2000. The heliocentric transfer trajectories 

obtained for the minimum energy opportunities are presented in terms of the heliocentric 

orbital elements in Table 2.8b. 

Table 2.7 Details of minimum energy opportunity for Earth to Mars direct transfer 

Departure epoch (TDB) 
DD/MM/YYYY HH:MM:SS 

Flight duration 
(days) 

Transfer angle 
(deg) 

Total velocity 
impulse (m/s) 

12/05/2018 00:00:00 
(Type I transfer) 

204 152.8 3603.4 

30/08/2022 00:00:00 
(Type II transfer) 

348 212.5 3743.6 

Table 2.8a V-infinity vectors from conventional PC technique 
 

Opportunity Departure V-infinity vector 
{ 𝑣∞𝐷 ;𝛼∞𝐷

;  𝛿∞𝐷
} 

Arrival V-infinity vector 
{ 𝑣∞𝐴 ;𝛼∞𝐴

;  𝛿∞𝐴
} 

2018 {2.7891; 321.4262; -36.8551} {2.9621; 245.6645; 9.2562} 

2022 {3.8810; 80.3386; 3.2164} {2.6041; 39.7271; 31.7927} 

 

Table 2.8b Heliocentric transfer trajectory from conventional PC technique 

Orbital elements 2018 opportunity 2022 opportunity 

𝑎 (km) 182,714,816.6 200,701,313.90 

𝑒 0.174735 0.249984 

𝑖 (deg) 24.57 21.36 

Ω (deg) 3.27 2.52 

𝜔 (deg) 218.24 344.85 

𝜈𝑡𝑖 (deg) 9.74 349.13 

 

For the 2018 opportunity, design charts are obtained based on the data generated 

using conventional PC technique. The design charts of the magnitude (km/s) and 

declination (deg) of the departure V-infinity vector are shown in Figs. 2.4 and 2.5. Note 

that, in Fig. 2.4, the minimum value of the departure V-infinity vector (2.78 km/s) occurs 

on 17th May 2018 and the corresponding flight duration is 234 days. This opportunity can 

be chosen for minimum energy flyby or gravity assist missions. Also, the minimum value 
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of the total V-infinity vector (5.74 km/s) occurs on 12th May 2018 and the corresponding 

flight duration is 204 days. 

 

Fig. 2.4. Design chart: Magnitude of departure V-infinity vector (2018) 

 

Fig. 2.5. Design chart: Declination of departure V-infinity vector (2018) 
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Fig. 2.6. Design chart: Magnitude of arrival V-infinity vector (2018) 

 

Fig.2.7. Design chart: Declination of arrival V-infinity vector (2018) 
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Fig. 2.8. Design chart: Magnitude of departure V-infinity vector (2022) 

 

Fig. 2.9. Design chart: Declination of departure V-infinity vector (2022) 
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Fig. 2.10. Design chart: Magnitude of arrival V-infinity vector (2022) 

 

Fig. 2.11. Design chart: Declination of arrival V-infinity vector (2022) 

This minimum energy opportunity can be used for direct interplanetary transfer. The 

declination contours are important for any mission. This is because, the inclination (deg) 
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of the departure and arrival hyperbolic orbits must be greater than the declination (deg) 

of the corresponding V-infinity vector. Similarly, the design charts of the magnitude 

(km/s) and declination (deg) of the arrival V-infinity vector are shown in Figs. 2.6 and 

2.7.  

The design charts of the magnitude (km/s) and declination (deg) of the departure 

V-infinity vector for the minimum energy opportunity of 2022 are presented in Figs. 2.8 

and 2.9.  The design charts of the magnitude (km/s) and declination (deg) of the arrival 

V-infinity vector for the minimum energy opportunity of the same opportunity are 

presented in Figs. 2.10 and 2.11. Note that the minimum value of the total V-infinity 

vector (6.48 km/s) occurs on 30 Aug 2022 and the flight duration is 347 days. 

2.5.1.4 Disadvantages 

The conventional patched conic design technique considers only one primary gravity field 

at a time. This results in the following limitations, 

1) Position and velocity discontinuities at the exit and entry locations of the SOIs. 

2) Approximate design of the transfer trajectory. 

If an interplanetary mission is executed using the patched conic design, the trajectory 

correction maneuvers (TCM) required for the transfer will be large to compensate for the 

approximate design.  

2.5.2 Pseudostate Technique 

In the patched conic force model, the gravity field of Sun is not accounted within the SOI 

of the target planets. This deficiency is overcome in the pseudostate technique. Within 

the pseudosphere of the departure and arrival planets, this technique is used to solve the 

three-body problem analytically. An underlying assumption in the pseudostate theory 

is that the mass of the secondary body is sufficiently small relative to the mass of the 

primary body. As such, within the pseudosphere (extended SOI) of the target planets, the 

Sun is the primary body and the departure/arrival planets are the secondary bodies.  

In the pseudostate technique, the pseudostates are used as target points for 

determining the Lambert conic instead of the actual positions of the planets. These 

pseudostates are generated by superimposing the gravity field of the target planet over 

that of the Sun which forms a three-body problem within the pseudosphere. The analytical  
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Fig. 2.12. Illustration of pseudostate propagation technique at departure 

three-body trajectory within the pseudosphere is obtained using the following two-body 

trajectory phases,  

(i) the planetocentric hyperbola,  

(ii) the linear/straight line motion and  

(iii) the heliocentric ellipse.  

All these conics has the same duration. The straight line represents the zero-gravity linear 

motion. Outside the pseudosphere, the spacecraft experiences only the Sun’s gravity. The  

pseudostate concept is illustrated in Fig. 2.12 for the departure phase of an Earth-

departing spacecraft. Within the pseudosphere, the analytical propagation of the 3-body 

problem is carried out using the pseudostate concept. The steps of the pseudostate 

propagation technique for a prefixed duration are discussed here. 

1) From the periapsis of the DPO, the trajectory is propagated forward under the 

Earth’s gravity for a small duration. This analytical propagation is carried out by 

solving the Kepler equation. Clearly, the resultant trajectory is a geocentric

hyperbola.  

2) The geocentric position vector, thus obtained, is propagated linearly backward 

along a straight line with the geocentric velocity vector for the same small 

duration. This is labeled as ‘no-gravity linear sweepback’ in Fig. 2.12. The 

geocentric state is transformed to the heliocentric state and is referred to as the 

pseudostate. The pseudostate represents the state from which the heliocentric 

transfer trajectory would have started in the absence of Earth gravity. 
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3) The heliocentric pseudostate is analytically propagated forward under the Sun’s 

gravity for the same duration.  

4) The heliocentric orbital elements obtained from step (3) are transformed to the 

geocentric frame.  

Repeat the steps (1) to (4) for the prefixed duration or until the pseudosphere is reached. 

The heliocentric state, thus obtained, is equivalent to the heliocentric state obtained on 

numerical propagation of the initial state from DPO periapsis under the technique for 3-

body force model (Sun, target planet and spacecraft).Note that the analytical propagation 

is carried out in small durations and this duration is referred as the sweep-back duration 

in the departure phase, and sweep-forward duration in the arrival phase. 

2.5.2.1 One-step Impact Pseudostate Technique 

The one-step impact pseudostate technique was used for the trajectory design of a direct 

transfer from Earth to Jupiter by Sergeyevsky (1983). He compared this technique with 

the Lambert/Zero-SOI patched conic technique and concluded that there is significant 

improvement in accuracy. This one-step algorithm based on pseudostate technique, as 

developed by Sergeyevsky in the interplanetary context, assumes rectilinear hyperbola 

for the departure and arrival phases. This assumption eases the computational effort as 

the eccentricity of the rectilinear hyperbola is one and hence, one of the unknowns is 

fixed. However, the conic passes through the center of the target planet, thus resulting in 

impact. The one-step pseudostate technique considers the step size for analytical 

propagation that spans the entire pseudosphere. That means, the sweep-back/sweep-

forward duration, in this case, is the duration to reach the departure/arrival pseudosphere.  

The representing diagram of the one-step impact pseudostate technique is given in Fig. 

2.13. The steps of the one-step impact pseudostate technique [Sergeyevsky, 1983] is 

briefly described here. 

The departure epoch, flight duration (𝑡𝐹𝐷), sweep-back duration (𝑡𝐷) for departure phase 

and sweep-forward duration (𝑡𝐴) for the arrival phase are fixed. 

1) Obtain the heliocentric states of the departure planet on the departure epoch 

(𝑹𝟏,𝑽𝟏) and the arrival planet on the arrival epoch (𝑹𝟐,𝑽𝟐). Set (𝑹𝟏,𝑹𝟐) as the 

position vectors of the initial pseudostates i.e., 𝑹𝑫𝑷𝑺 = 𝑹𝟏 at the departure phase 

and  𝑹𝑨𝑷𝑺 = 𝑹𝟐 at the arrival phase. These states are in Earth mean equator and 

Equinox of J2000 frame. 
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Fig.2.13. Illustration of one-step impact pseudostate technique 

2) Determine the heliocentric Lambert conic connecting the pseudostates 

(𝑹𝑫𝑷𝑺,𝑹𝑨𝑷𝑺) for the prefixed flight duration (𝑡𝐹𝐷). Let the heliocentric velocity 

vector at 𝑹𝑫𝑷𝑺 be 𝑽𝑫𝑷𝑺 and 𝑹𝑨𝑷𝑺 be 𝑽𝑨𝑷𝑺. 

3) Compute the planetocentric V-infinity vectors at the departure and arrival phases 

i.e. 𝒗∞𝑫 and 𝒗∞𝑨 respectively, by using the assumption that the heliocentric 

velocity vectors at the departure/arrival and the pseudosphere are the same.  

𝒗∞𝑫 = 𝑽𝑫𝑷𝑺 − 𝑽𝟏
𝒗∞𝑨 = 𝑽𝑨𝑷𝑺 − 𝑽𝟐

}                                                   (2.10) 

The heliocentric vector is now transformed to the planetocentric vector. 

4) Compute the fictitious planetocentric rectilinear hyperbolic distance (𝑟𝑎) and 

velocity (𝑣𝑎) using the V-infinity vectors. These represent the high point of the 

rectilinear trajectory at the end of sweep-back and sweep-forward durations. 

i) Compute the semi-major axis from the current V-infinity vector (𝑣∞𝐷 𝑜𝑟 𝐴), 

mean motion, mean anomaly and eccentric anomaly at 𝑡𝐷 𝑜𝑟 𝐴. Use this 

eccentric anomaly to find 𝑟𝑎 and 𝑣𝑎 at 𝑡𝐷 𝑜𝑟 𝐴. 

5) Compute the corresponding vectors 𝒓𝒂 and 𝒗𝒂 with respect to the target planets. 

These vectors are obtained by treating them parallel to the V-infinity vector (𝒗∞). 
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6) Propagate the planetocentric position vectors in a gravity-free, straight line 

motion, backward for the sweep-back duration (𝑡𝐷) in the departure phase and 

forward for the sweep-forward duration (𝑡𝐴) in the arrival phase. The resulting 

states are the updated pseudostates. 

𝒓𝑫 𝒐𝒓 𝑨𝑷𝑺 =  𝒓𝒂𝑫 𝒐𝒓 𝑨
+  𝑞(𝒗𝒂𝑫 𝒐𝒓 𝑨

𝑡𝐷 𝑜𝑟 𝐴)                        (2.11) 

𝑞 = {
-1 for departure (D)
+1 for arrival (A)  

The planetocentric pseudostates are transformed to heliocentric pseudostates, 

𝑹𝑫 𝒐𝒓 𝑨𝑷𝑺
𝒏𝒆𝒘 =  𝒓𝑫 𝒐𝒓 𝑨𝑷𝑺 + 𝑹𝟏 𝑜𝑟 𝟐                                     (2.12) 

7) For the first pass, the new heliocentric pseudostates are used to determine the 

new Lambert conic and the steps (2) to (7) are repeated.  

If not, compute the duration to reach the high point (𝑡ℎ𝑃𝐷 𝑜𝑟 𝐴) on the rectilinear 

conic i.e., from 𝒓𝒂𝑫 𝒐𝒓 𝑨
to 𝒓𝑫 𝒐𝒓 𝑨𝑷𝑺  [Sergeyevsky, 1983]. 

i) Compute the semi-major axis from 𝑟𝑎 and 𝑣𝑎 . Find the eccentric anomaly, 

mean anomaly, mean motion and then the duration to reach the high point on

the rectilinear conic. 

8) If the difference between the prefixed pseudosphere duration and the computed 

high-point duration (∆𝑡𝐷 𝑜𝑟 𝐴) is less than a threshold value, the procedure for 

finding the V-infinity vector is terminated and the iteration process is considered 

to be converged.  

∆𝑡𝐷 𝑜𝑟 𝐴 = |𝑡𝐷 𝑜𝑟 𝐴 − 𝑡ℎ𝑃𝐷 𝑜𝑟 𝐴|                                         (2.13) 

The transfer trajectory thus obtained is the required design. 

9) If not, the iteration is continued by correcting the value of the fictitious 

planetocentric position at the high point (𝑟𝑎𝐷 𝑜𝑟 𝐴
). The iteration is to nullify the 

differences in durations and it is done using a sensitivity partial, PARTIAL𝐷 𝑜𝑟 𝐴. 

For the second pass, the partial is set as:  

PARTIAL𝐷 𝑜𝑟 𝐴 =  𝑣𝑎𝐷 𝑜𝑟 𝐴 

From third pass onwards, PARTIAL𝐷 𝑜𝑟 𝐴 is found as; 

PARTIAL𝐷 𝑜𝑟 𝐴 =
(𝑟𝑎𝐷 𝑜𝑟 𝐴−𝑟𝑎0𝐷 𝑜𝑟 𝐴)

(∆𝑡𝐷 𝑜𝑟 𝐴−∆𝑡0𝐷 𝑜𝑟 𝐴)
                            (2.14) 

where subscript ‘0’ refers to the value obtained in the previous iteration. The 

position of the high point  𝑟𝑎𝐷 𝑜𝑟 𝐴
 is updated as; 
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𝑟𝑎𝐷 𝑜𝑟 𝐴
𝑛𝑒𝑤 = 𝑟𝑎𝐷 𝑜𝑟 𝐴

+ ∆𝑡𝐷 𝑜𝑟 𝐴PARTIAL𝐷 𝑜𝑟 𝐴                (2.15) 

The current values are set as old values; 

𝑟𝑎0𝐷 𝑜𝑟 𝐴
= 𝑟𝑎𝐷 𝑜𝑟 𝐴

 

∆𝑡0𝐷 𝑜𝑟 𝐴 = ∆𝑡𝐷 𝑜𝑟 𝐴                                      (2.16) 

10) Repeat the steps (5) to (10) till the iterative process converges. 

2.5.2.2 Illustrative Results 

The one-step impact pseudostate technique is used for a direct Earth to Mars orbiter 

mission. The minimum energy opportunities presented in Table 2.7 are used. The 

departure and arrival V-infinity vectors obtained using the one-step impact pseudostate 

technique for these minimum energy opportunities are presented in the Table 2.9a and the 

corresponding heliocentric transfer trajectories are presented in Table 2.9b. Note that the 

parameters are different from those of conventional patched conic technique. 

Table 2.9a V-infinity vectors from pseudostate technique 

Opportunity 
Departure V-infinity vector 

{ 𝑣∞𝐷 ;𝛼∞𝐷
;  𝛿∞𝐷

} 
Arrival V-infinity vector 

{ 𝑣∞𝐴 ;𝛼∞𝐴
;  𝛿∞𝐴

} 

2018 {2.7894; 321.892; -37.024} {2.962; 245.512; 9.409} 

2022 {3.8827; 80.478; 3.389} {2.6030; 39.600; 31.680} 

Table 2.9b Heliocentric transfer trajectories obtained using pseudostate technique 

Orbital elements 2018 opportunity 2022 opportunity 

𝑎 (km) 182,717,574.26 200,702,636.07 

𝑒 0.174692 0.250052 
𝑖 (deg) 24.60 21.38 
Ω (deg) 3.30 2.52 
𝜔 (deg) 218.21 344.85 

𝜈𝑡𝑖 (deg) 9.80 349.17 

2.5.2.3 Disadvantages 

The limitations of the one-step impact pseudostate technique are, 

1) The use of one step for analytical propagation reduces the accuracy of the V-

infinity vector obtained. 

2) Both the planetocentric trajectories pass through the center of the target planets 

which results in impact. So, this technique cannot be used for orbiter missions. 
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2.6 Conclusions 

In this chapter, the conventional analytical techniques used for the trajectory design of 

interplanetary missions are discussed. The Lambert problem and two of its solution 

methods (Battin and Vallado) using the universal variables formulation are discussed. 

The Universal algorithm developed by Vallado performed better than Battin’s method 

and so this method is adopted for the current research. For a typical Earth to Mars 

orbiter mission, design charts of the V-infinity vector for a type I and type II 

interplanetary transfers are presented. The steps for computing the V-infinity vector 

using the conventional patched conic and the one-step pseudostate concepts are explained 

in detail. The limitations of these techniques for designing the transfer trajectory are 

brought out in this chapter. 

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠ 
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CHAPTER	3	
DETERMINATION	OF	ORBIT	CHARACTERISTICS	AND	
THE	V-INFINITY	TUNED	PATCHED	CONIC	TECHNIQUE	

3.1 Chapter Summary 

The V-infinity vector using the conventional analytical techniques is asymptotic in nature 

with respect to the planet. For practical design purposes, the asymptotic distance is 

generally quantified as the radius of the sphere of influence (SOI). In this chapter, the 

departure/arrival hyperbolic orbit characteristics are computed from the V-infinity vector 

using spherical trigonometric relations. The hyperbolic orbit characteristics of the 

departure and arrival phases must be obtained such that the V-infinity vector is achieved 

at the boundary of the planet SOI. An analytical tuning strategy adopted from Ramanan 

(2002) is used to find the suitable hyperbolic orbit characteristics that achieves the V-

infinity vector. The trajectory design technique that uses the analytical tuning strategy in 

the patched conic technique is named as V-infinity tuned patched conic (VPC) 

technique. This technique results in improved trajectory design. Further, the link between 

the hyperbolic orbit characteristics and the parking orbit characteristics which ensures 

minimum energy transfer is discussed. Also, the mathematical model to compute the 

velocity impulses required for the interplanetary transfer is provided. 

3.2 Determination of Hyperbolic Orbit Characteristics 

For minimum energy transfer, the hyperbolic trajectory must be designed such that its 

plane contains the V-infinity vector. To ensure this, the inclination of the hyperbolic orbit 

(𝑖∞ ) must be greater than the declination of the V-infinity vector (𝛿∞), i.e. 𝑖∞ ≥ |𝛿∞|. 

For coplanar transfer, the inclinations of the hyperbolic orbit (𝑖∞ ) and the parking orbit 

(𝑖𝑃𝑂  ) must be same. 

Let the hyperbolic orbit characteristics be represented in terms of orbital elements 

(𝑎∞, 𝑒∞, 𝑖∞,𝛺∞,𝜔∞) and 𝜈. These orbital elements are obtained using the V-infinity 

vector. The following equations are used to calculate the semi-major axis (𝑎∞) and 

eccentiricty (𝑒∞) of the hyperbolic orbit. 
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𝑎∞ =
−𝜇

 𝑣∞2                                                            (3.1) 

𝑒∞ = 1 −
𝑟𝑃∞

𝑎∞
                                                       (3.2) 

where 𝜇 is the gravitational constant of the primary attracting body (target planet) and 

𝑟𝑃∞is the periapsis distance of the hyperbolic orbit. The periapsis altitude (ℎ∞𝐷) and 

inclination (𝑖∞𝐷) of the hyperbolic orbit are prefixed. The true anomaly of the hyperbolic 

orbit is assumed to be zero (discussed in the next section). The other two angles (RAAN, 

𝛺∞ and AoP, 𝜔∞) at the departure and arrival phases are derived using the geometry of 

TPI and POI injections respectively. 

 

Fig.3.1. Geometry of transplanetary injection (departure phase) 

The major assumptions used in the derivation are: (i) the planets are spherical 

masses, (ii) only the planet’s gravity influences the spacecraft within the respective SOI. 

In a departure hyperbola, the asymptotic radius vector (𝑟∞𝐷) and the asymptotic V-

infinity vector (𝑣∞𝐷) are in the same direction (cf. Fig. 3.1). The geometry of the 

transplanetary injection (TPI) at the departure phase is given in Fig. 3.1. From the 

geometry, the departure RAAN and AoP are obtained using the trigonometric relations in 

the spherical triangle NSP [Tolson, 1963; Ramanan, 2002]. They are, 

𝑠𝑖𝑛(𝛼∞𝐷 −  𝛺∞𝐷) = 𝑡𝑎𝑛 𝛿∞𝐷 / 𝑡𝑎𝑛 𝑖∞𝐷                                (3.3) 

𝑠𝑖𝑛(𝜔∞𝐷 + 𝜃∞𝐷) =  𝑠𝑖𝑛 𝛿∞𝐷 / 𝑠𝑖𝑛 𝑖∞𝐷                                  (3.4) 

where 𝜃∞𝐷 is given by, 

𝜃∞𝐷 = 𝑐𝑜𝑠−1(−1/𝑒∞𝐷)                                          (3.5) 
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The Eqs. 3.3 and 3.4 give two sets of angles viz. 

𝛺∞𝐷|1 = 𝛼∞𝐷 − 𝑠𝑖𝑛−1(𝑡𝑎𝑛 𝛿∞𝐷 /𝑡𝑎𝑛 𝑖∞𝐷)                                   (3.6) 

𝛺∞𝐷|2 = 180 − 𝛼∞𝐷 + 𝑠𝑖𝑛−1(𝑡𝑎𝑛 𝛿∞𝐷 /𝑡𝑎𝑛 𝑖∞𝐷)                       (3.7) 

𝜔∞𝐷|1 = 𝑠𝑖𝑛−1(𝑠𝑖𝑛 𝛿∞𝐷/𝑠𝑖𝑛 𝑖∞𝐷) − 𝜃∞𝐷                                   (3.8) 

 𝜔∞𝐷|2 = 180 − 𝑠𝑖𝑛−1(𝑠𝑖𝑛 𝛿∞𝐷/𝑠𝑖𝑛 𝑖∞𝐷) + 𝜃∞𝐷                        (3.9) 

The two sets are (𝛺∞𝐷|1,𝜔∞𝐷|1) and (𝛺∞𝐷|2,𝜔∞𝐷|2) and these correspond to the two 

possible geometries of the hyperbolic orbit containing the V-infinity vector, i.e. while 

ascending and descending. The Eqs. 3.6 to 3.9 have mathematical singularity for 

inclinations of 0 deg and 90 deg. For 𝑖∞𝐷 = 0 deg, the declination of the V-infinity vector 

(𝛿∞𝐷) must be zero because 𝑖∞𝐷 ≥ 𝛿∞𝐷. For 𝑖∞𝐷 = 90 deg, the values of RAAN and 

AoP are: 𝛺∞ = 𝛼∞ and 𝜔∞ = 𝛿∞ − 𝜃∞. The above procedure is used to find the arrival 

hyperbolic orbital elements that achieves the desired arrival V-infinity vector. The arrival 

hyperbolic orbit also has two possible geometries that correspond to (𝛺∞𝐴|1,𝜔∞𝐴|1) and 

(𝛺∞𝐴|2,𝜔∞𝐴|2). In an arrival hyperbola, the asymptotic radius vector and the asymptotic 

V-infinity vector are in opposite direction. So, for the computation of the arrival 

hyperbolic orbital elements, the parameters of the arrival V-infinity vector are set as, 

𝛼∞𝐴 ⟹ 𝜋 + 𝛼∞𝐴                                                 (3.10a) 

𝛿∞𝐴 ⟹ −𝛿∞𝐴                                                     (3.10b) 

Each of the departure hyperbolic orbit can be mapped to each of the arrival hyperbolic 

orbit and this results in four transfer trajectory design options (cf. Table 3.1). 

Table 3.1 Trajectory design options 

Transfer trajectory options Departure phase Arrival phase 

option 11 (𝛺∞𝐷|1,𝜔∞𝐷|1) (𝛺∞𝐴|1,𝜔∞𝐴|1) 

option 12 (𝛺∞𝐷|1,𝜔∞𝐷|1) (𝛺∞𝐴|2,𝜔∞𝐴|2) 

option 21 (𝛺∞𝐷|2,𝜔∞𝐷|2) (𝛺∞𝐴|1,𝜔∞𝐴|1) 

option 22 (𝛺∞𝐷|2,𝜔∞𝐷|2) (𝛺∞𝐴|2,𝜔∞𝐴|2) 

3.3 Analytical Tuning Strategy 

Using the procedure described in the previous section, the initial estimate of the 

hyperbolic orbital elements are obtained from the asymptotic V-infinity vector. But for a 

practical design, the hyperbolic orbital elements must be such that the desired V-infinity 

vector is achieved at the boundary of the SOI. In the current research, the SOI is 
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represented in terms of the number of days required to reach the boundary of the SOI 

from the periapsis of the parking orbit. The initial estimate of the hyperbolic orbital 

elements is propagated under Keplerian force model from the periapsis for the SOI 

duration. The resulting velocity vector at the SOI is referred to as the propagated V-

infinity vector. This need not be the same as the desired V-infinity vector obtained from 

the Lambert conic. In order to achieve the desired V-infinity vector at the SOI, the 

hyperbolic orbital elements must be tuned. In this section, an analytical tuning strategy 

adopted from Ramanan (2002) is presented.  

 

Fig. 3.2. Analytical tuning strategy at the departure phase 

  The philosophy of the analytical tuning strategy is as follows. The periapsis 

altitude and the inclination of the hyperbola are prefixed. Let the difference in direction 

(angle) between the desired and propagated V-infinity vectors be 𝜓. The propagated V-

infinity vector at the SOI is rotated by the angle 𝜓 about the angular momentum vector 

in the hyperbolic orbital plane to match the direction of the desired V-infinity vector. This 

rotation causes a shift in the location of periapsis of the hyperbola. Using this concept, a 

new location for the periapsis is computed. The magnitude of the desired V-infinity vector 

is achieved by changing the semi-major axis of the hyperbola. This process is repeated 

till the propagated V-infinity vector matches the desired V-infinity vector.  

The analytical tuning strategy for the departure phase is illustrated in Fig. 3.2 and the 

steps of the procedure are given below. 

The periapsis altitude (ℎ∞𝑃𝐷), inclination (𝑖∞𝐷) of the departure hyperbola and the SOI-

duration at the departure phase are fixed. 

1) Compute the semi-major axis (𝑎∞𝐷) and the related eccentricity (𝑒∞𝐷) of the 

departure hyperbola using Eqs. (3.3) and (3.4) respectively. 
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2) Compute both the values of RAAN (𝛺∞𝐷) and AOP (𝜔∞𝐷) from Eqs. (3.6) to 

(3.9) respectively and choose one of the transfer trajectory options (cf. Table 3.1). 

3) Find the departure hyperbolic orbital elements 

(𝑎∞𝐷, 𝑒∞𝐷 , 𝑖∞𝐷 ,Ω∞𝐷 ,𝜔∞𝐷, 𝜈∞𝐷 = 𝜈𝑃∞𝐷 = 0) at the departure SOI by solving 

the Kepler equation. Compute the propagated position vector (𝒓𝒉𝑫) and V-infinity 

vector (𝒗𝒉𝑫). 

4) Compute the difference between the desired and propagated V-infinity vectors,  

𝜖 = |𝒗𝒉𝑫 − 𝒗∞𝑫|. If 𝜖 is less than a prefixed threshold value, the hyperbolic 

orbital elements are obtained. Otherwise the following steps are continued. 

5) Find the angle (𝜓) between the desired V-infinity vector (𝒗∞𝑫) and the 

propagated V-infinity vector (𝒗𝒉𝑫). 

6) The shift in AOP location is computed as, 

∆𝜔 = 𝜓                                      (3.11) 

Update the new location of the periapsis of the departure hyperbolic orbit as, 

𝜔∞𝐷 = 𝜔∞𝐷 ± 𝛥𝜔                     (3.12) 

7) Update the semi-major axis of the rotated departure hyperbolic trajectory, 

𝑎∞𝐷 = − 𝜇𝐷/ (𝑣∞𝐷
2  −  

2𝜇𝐷

𝑟ℎ𝐷
)                                    (3.13) 

              and the related eccentricity using Eq. 3.4. Note that in Eq. 3.13, for velocity, the 

value of 𝑣∞𝐷 is used and not 𝑣ℎ𝐷. 

8) Repeat the steps (3) to (8) till the threshold value is achieved. 

The above steps can be used for tuning the arrival hyperbolic orbit characteristics also by 

simply replacing the subscript ‘D’ by ‘A’. 

3.4 Parking Orbit Characteristics 

In the previous section, the hyperbolic orbit that contains the V-infinity vector at the 

boundary of the SOI is determined. The next step is to achieve this hyperbolic orbit from 

a parking orbit (PO). To achieve the departure hyperbolic orbit, a velocity impulse is to 

be imparted from the departure parking orbit (DPO), which is known as the transplanetary 

injection (TPI). Similarly, a velocity impulse is to be imparted at an appropriate location 

of the arrival hyperbolic orbit to enter the arrival parking orbit (APO), which is known as 

the parking orbit insertion (POI). The imparting of the velocity impulse is assumed to be 

instantaneous. The parking orbit characteristics must be chosen such that the velocity 
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impulse required for the transfer is minimum. Clarke and Bollman (1966) determined a 

suitable launch azimuth and coasting time in a circular parking orbit, for a given launch 

site and inclination of the transfer trajectory, that minimizes the velocity impulse and 

achieves the desired departure V-infinity vector. A method to find the point of injection 

on a circular parking orbit that minimizes the departure velocity impulse was presented 

by Battin (1987). He discussed separate strategies to deal with tangential and non-

tangential injections. Bell et al. (1995) described a technique to find a suitable location 

for injection from an elliptical parking orbit that minimizes the departure velocity impulse 

by searching along the parking orbit. Jones and Ocampo (2012) used the sequential 

quadratic programming technique to find the optimal impulsive trajectories that takes a 

spacecraft from a circular parking orbit to a desired V-infinity vector. 

In the current research, the parking orbit characteristics that minimizes the 

velocity impulse are determined.  The velocity impulse is minimum when the addition of 

velocity impulse is tangential and horizontal. Such an addition is possible only when:

i) the parking orbit and the hyperbolic orbit are coplanar, ii) the location of the velocity 

impulse is at the periapsis of the parking orbit, and iii) the argument of periapsis (AOP) 

of the hyperbolic orbit and the parking orbit are the same. The conditions for horizontal, 

tangential injection at the periapsis which minimizes the velocity impulse are listed 

below. 

1) For coplanarity, 𝑖𝑃𝑂 = 𝑖∞ and  𝛺𝑃𝑂 = 𝛺∞. 

2) For impulsive addition, 𝜈𝑃𝑂 = 𝜈𝑃∞ = 0 and 𝑟𝑃𝑃𝑂
= 𝑟𝑃∞, 

where 𝜈𝑃∞ is the true anomaly, 𝑟𝑃∞ is the position vector at the periapsis of 

the hyperbolic transfer trajectory and 𝑟𝑃𝑃𝑂
 is the position vector at the 

periapsis of the parking orbit. 

3) 𝜔𝑃𝑂 = 𝜔∞ 

The above conditions are valid for both departure and arrival phases. 

In an actual mission, the size, shape and inclination of the parking orbit are dictated by 

the launch vehicle. So, the periapsis altitude and inclination of the hyperbolic orbit are 

kept same as that of the parking orbit to satisfy the above conditions (1 and 2). 

3.5 Computation of Velocity Impulses 

To transfer the spacecraft from a DPO to the departure hyperbolic orbit, a transplanetary 

injection (TPI) is required. Also, to transfer the spacecraft from an arrival hyperbolic orbit 
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to an APO, a parking orbit insertion (POI) is required. The TPI and POI velocity impulses 

are computed following the steps given below. 

1) From the V-infinity vector (𝑣∞), compute the velocity vector at the periapsis of 

the hyperbolic orbit, 

𝑣𝑃∞ = √ 𝑣∞2 +
2𝜇

𝑟𝑃∞
                                                   (3.14) 

2) Compute the velocity vector at the periapsis of the parking orbit, 

𝑣𝑃𝑃𝑂 = √𝜇(
2

𝑟𝑃𝑃𝑂
−

1

𝑎𝑃𝑂
)                                            (3.15) 

where 𝑎𝑃𝑂 is the semi-major axis and 𝑟𝑃𝑃𝑂 is the periapsis radius of the parking 

orbit. 

3) The velocity impulse is computed as; 

∆𝑉 = |𝑣𝑃∞ − 𝑣𝑃𝑂|                                              (3.16) 

In the above equations, the parameters at the departure and arrival phases are used to 

determine the TPI and POI impulses respectively. Note that, only magnitude of the 

velocity vectors are used because of the assumption that the velocity addition is tangential 

and horizontal. 

3.6 V-infinity Tuned Patched conic Technique 

An algorithm which includes the tuning process of the hyperbolic/parking orbit 

characteristics, named as V-infinity tuned patched conic (VPC) technique, is introduced 

in this section. The hyperbolic orbit characteristics are tuned to achieve the V-infinity 

vector using the analytical tuning strategy discussed in section 3.3. The parking orbit 

characteristics and the velocity impulses required for the transfer are computed using the 

procedures described in sections 3.4 and 3.5 respectively. The steps of the V-infinity 

tuned patched conic technique are as follows, 

The periapsis distance (𝑟∞) and inclination (𝑖∞) of the departure and arrival hyperbolic 

orbits are fixed. Also, the departure epoch, flight duration (𝑡𝐹𝐷) and the SOI-duration for 

the departure and arrival phases (𝑡𝐷  and 𝑡𝐴 days respectively) are fixed. 

1) Obtain the heliocentric states of the departure planet on the departure epoch 

(𝑹𝟏, 𝑽𝟏) and the arrival planet on the arrival epoch (𝑹𝟐,𝑽𝟐). These states are in 

Earth mean equator and Equinox of J2000 frame. 
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2) Determine the heliocentric Lambert conic connecting the position vectors 

(𝑹𝟏, 𝑹𝟐) for the given flight duration (𝑡𝐹𝐷). Compute the corresponding 

heliocentric velocity vectors (𝑽𝑫𝑷𝑪 and 𝑽𝑨𝑷𝑪) in the transfer trajectory. 

3) Compute the planetocentric V-infinity vectors at the departure and arrival phases 

i.e. 𝒗∞𝑫 and 𝒗∞𝑨 respectively.            

 𝒗∞𝑫 = 𝑽𝑫𝑷𝑪 − 𝑽𝟏                                         (3.17a) 

𝒗∞𝑨 = 𝑽𝑨𝑷𝑪 − 𝑽𝟐                                         (3.17b) 

Note that the steps (1) to (3) describe the conventional patched conic technique 

already discussed in chapter 2, section 2.5.1. 

4) From the V-infinity vectors, find the orbital elements (𝑎∞, 𝑒∞, 𝑖∞,𝛺∞,𝜔∞, 𝜈∞ =

𝜈𝑃∞ = 0) of departure and arrival hyperbolic orbits using the procedure described 

in section 3.2. One of the four design options is chosen for further processing.

5) Find the departure planetocentric velocity vector/propagated departure V-infinity 

vector (𝒗𝒉𝑫) from the departure hyperbolic orbital elements by solving Kepler 

equation for the prefixed SOI duration (𝑡𝐷). Similarly, find the arrival 

planetocentric velocity vector/propagated arrival V-infinity vector (𝒗𝒉𝑨).  

6) The desired and propagated V-infinity vectors, i.e. 𝒗∞𝑫 and 𝒗𝒉𝑫, are matched at 

the SOI of the departure planet using the analytical tuning strategy described in 

section 3.3. Similarly at the arrival phase also.  

The steps (1) to (6) describe the V-infinity tuned patched conic technique. The V-infinity 

tuned hyperbolic orbit characteristics are used to find the departure and arrival velocity 

impulses. 

3.6.1 Illustrative Results 

The V-infinity tuned patched conic technique (VPC) is used to generate the trajectory 

design for an Earth to Mars orbiter mission. The minimum energy opportunity that occurs 

on 12th May 2018 0 h TDB with a flight duration of 204 days is chosen for generating the 

design. The Earth parking orbit (EPO) is 300 x 25,000 km with an inclination of 75 deg 

with respect to Earth equator and Equinox of J2000. The Mars parking orbit (MPO) is 

300 km circular with an inclination of 75 deg with respect to Mars equator and IAU vector 

of J2000 [Archinal et al., 2009]. The SOI durations of Earth and Mars are 3 and 2 days 

respectively. The position vector of the target planets are obtained using JPL ephemeris 

DE 405. 
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Table 3.2 Conventional patched conic design options (𝑖∞𝐷=75 deg; 𝑖∞𝐴=75 deg) 

Parameters option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -51239.9 -51239.9 -51239.9 -51239.9 

𝑒∞𝐷 1.130332 1.130332 1.130332 1.130332 

𝛺∞𝐷 (deg) 333.0131 333.0131 129.8392 129.8392 

𝜔∞𝐷(deg) 169.3999 169.3999 64.5845 64.5845 

𝑎∞𝐴(km) -4881.1 -4881.1 -4881.1 -4881.1 

𝑒∞𝐴 1.757441 1.757441 1.757441 1.757441 

𝛺∞𝐴(deg) 68.1673 243.1616 68.1673 243.1616 

𝜔∞𝐴(deg) 115.0951 314.2668 115.0951 314.2668 

 

The departure and arrival V-infinity vectors obtained from the conventional PC 

technique (cf. Table 2.8) are used to the find the initial estimate of the departure and 

arrival hyperbolic orbital elements (conventional PC design). The conventional PC design 

for the four design options are given in Table 3.2. Note that, the departure orbital elements 

for the options 11 and 12 are exactly the same, but they result in different arrival 

hyperbolic geometries. Similar trend is seen for options 21 and 22 also. Clearly, the 

conventional patched conic technique could generate only four notional design 

options. Each of these design option is tuned to achieve the V-infinity vector using the 

analytical tuning strategy and the tuning process is illustrated in Table 3.3. The tuned 

hyperbolic orbital elements which results in the VPC design, are given in Table 3.4. Note 

that after tuning, there is drastic change in the size and shape of the departure and arrival 

hyperbolic orbital elements. However, the design options are not distinctly different. This 

is because the VPC technique could not capture the different V-infinity vectors for the 

four design options. So, it can be concluded that the V-infinity tuned patched conic 

technique fails to identify the distinct design options for an opportunity. 

The TPI and POI velocity impulses required for the Earth to Mars orbiter mission 

(opportunity: 2018) are given in Table 3.5. The difference in the total velocity impulse 

between the Hohmann design and the conventional patched conic design is about 654 m/s 

which is very large. The difference in the total velocity impulse between the conventional 

patched conic design and the V-infinity tuned patched conic design is 58 m/s. This 



Chapter 3   49 
 

difference, though comparatively smaller, is significant for an actual mission and brings 

out the necessity of tuning the hyperbolic orbital elements. 

Table 3.3 Illustration of analytical tuning strategy 

(Threshold values on: velocity direction/angle = 1E-3 deg, magnitude = 1E-6 km/s) 

Iteration Differences between desired and propagated V-infinity vectors 

Departure phase Arrival phase 

angle (𝜖,deg) magnitude (km/s) angle (𝜖,deg) magnitude (km/s) 

1 0.04896 0.163435 0.00343 0.027125 

2 1.46266 0.071678 0.31051 0.016055 

3 0.07181 0.003513 0.00274 0.000140 

4 0.00339 0.000165 0.00002 0.000023 

5 0.00016 0.000007 0.00016 0.000007 

Table 3.4 V-infinity tuned patched conic design options (𝑖∞𝐷=75 deg; 𝑖∞𝐴=75 deg) 

Parameters option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -58640.5 -58640.5 -58640.5 -58640.5 

𝑒∞𝐷 1.113882 1.113882 1.113882 1.113882 

𝛺∞𝐷 (deg) 333.0131 333.0131 129.8392 129.8392 

𝜔∞𝐷(deg) 167.8129 167.8129 64.5845 64.5845 

𝑎∞𝐴(km) -4973.4 -4973.4 -4973.4 -4973.4 

𝑒∞𝐴 1.743391 1.743391 1.743391 1.743391 

𝛺∞𝐴(deg) 68.1673 243.1616 68.1673 243.1616 

𝜔∞𝐴(deg) 115.4118 314.5835 115.4118 314.5835 

The analytical designs are numerically propagation under the design force model 

(Patched Conic Force Model: departure phase/Earth for 3 days, cruise phase/Sun for 199 

days and arrival phase/Mars for 2 days) and the resulting arrival target parameters are 

given in Table 3.6. The desired arrival target parameters are: (i) time of periapsis (𝑇𝑃), 

2nd December 2018 0 h TDB, (ii) closest approach altitude (CAA), 300 km and, (iii) 

arrival inclination, 75 deg. For the conventional PC design, there are very large deviations 

in the achieved target parameters (time of periapsis deviates by about 26 days from the 

desired value; achieved CAA: 3,011,712 km; APO inclination: 156.32 deg). For the VPC 

design, the deviation in the time of periapsis has significantly reduced to about 1.5 days. 
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There is an improvement in the achieved CAA (1,107,535 km) and inclination (141.01 

deg) also. In summary, the deviations in the arrival target parameters achieved with the 

VPC design are still large, although it offers significant improvement in the trajectory 

design over the conventional PC technique. This is because of the discontinuity in the 

position vector that still exist even after tuning the V-infinity vector. It can be concluded 

that the improvement is not sufficient for actual mission purposes. 

Table 3.5 Velocity impulses from different analytical techniques 

Technique 
Velocity impulses (m/s) 

TPI POI Total 

Hohmann  1367.65 2889.73 4257.38 

Conventional PC 1355.22 2248.21 3603.43 

VPC  1311.61 2223.38 3545.41 

Table 3.6 Achievable accuracies of different designs under PCFM 

Design 
Arrival CAA 

(km) 
APO inclination 

(deg) 
𝑇𝑃 (UTC) 

DD/MM/YYYY HH:MM:SS 
Desired value 300 75.00 02/12/2018 00:00:00 
Conventional 
PC design 

3,011,712 156.32 05/11/2018 22:16:50 

VPC design 1,107,535 141.01 29/11/2018 17:22:58 

3.7 Conclusions 

In this chapter, the procedure for determining the hyperbolic orbit characteristics from 

the V-infinity vector is discussed. It is observed that there is a drastic change in the size 

and shape of the hyperbolic orbit and also the argument of periapsis for the V-infinity 

tuned patched conic design compared to the conventional patched conic design. However, 

the right ascension of ascending node is the same. The V-infinity tuned patched conic 

technique generates only notional designs of the four options for an opportunity. On 

numerical propagation of the VPC design under the design force model, the deviations in 

the arrival target parameters are still large, although it offers significant improvement in 

the trajectory design over the conventional patched conic technique. So, the V-infinity 

tuned patched conic design needs further improvement.  

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠ 
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CHAPTER	4	

ITERATIVE	PSEUDOSTATE	TECHNIQUES	FOR	

TRANSFER	TRAJECTORY	DESIGN	

4.1 Chapter Summary 

The trajectory design can further be improved by including perturbations in the analytical 

trajectory design process. New techniques using the pseudostate concept are presented in 

this chapter. In the first part of the chapter, an iterative analytical technique based on the 

pseudostate concept, named as iterative pseudostate (ITR-PS) technique is presented. 

This technique includes the gravity effect of Sun also in the vicinity of the target planets

and thereby generates an improved trajectory design. Further, the iterative process 

connects the departure and arrival phases using the Lambert conic after tuning the V-

infinity vector. While the V-infinity tuning reduces the velocity discontinuity at the SOI, 

the iterative process reduces the position discontinuity at the SOI. Also, this process helps 

in distinctly identifying the four design options for an opportunity.  

However, the ITR-PS technique uses the one-step pseudostate concept for 

analytical propagation in the departure and arrival phases. This reduces the accuracy of 

the achieved V-infinity vector. So, the numerical propagation of ITR-PS design under the 

design force model results in deviations in the arrival target parameters especially the 

inclination.  

To improve the ITR-PS design in terms of achievable accuracies in the target 

parameters, a new technique named as multiconic differential-evolution (MCDE) 

technique is proposed. In this technique, instead of the one-step pseudostate technique, 

multiconic technique is used wherein the analytical propagation using the pseudostate 

concept is carried out in multiple steps using a smaller step size. To obtain the hyperbolic 

orbit characteristics, the analytical tuning strategy is not suitable for the multiconic 

technique and so an optimization technique, differential evolution technique, is used. The 

analytical design obtained using the MCDE technique is very close to the numerical 

design under the three-body force model. 
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4.2 One-step Pseudostate Technique 

The inherent advantage of the pseudostate concept is the inclusion of Sun’s gravity using 

the concept of pseudosphere. The pseudosphere of a target planet, as already discussed, 

is a larger SOI within which the gravity of the respective planet is also considered in 

addition to the gravity of Sun. As pointed out in section 2.5.2, the underlying assumption 

in the pseudostate theory is that the mass of the secondary body is sufficiently small 

relative to the mass of the primary body. Another assumption is that the tertiary body has 

a positive energy w.r.t the secondary body. For an interplanetary transfer, Sun is the 

primary body throughout the transfer while the gravitational forces of the target planets 

are superimposed over the heliocentric transfer trajectory within their respective 

pseudosphere. Thus, we use the pseudosphere concept to solve a three-body problem 

analytically. Outside the pseudosphere of the departure and arrival planets, we have the 

two-body problem with Sun as the primary body.  

  For Lambert conic determination, the departure and arrival pseudostates are used 

instead of the actual position vectors of the target planets. The departure and arrival 

pseudostates are the fictitious states at the beginning and end of the interplanetary 

(heliocentric) transfer trajectory, in the absence of the respective target planet’s gravity. 

In the current research, the pseudosphere is represented in terms of the number of days 

required to reach the boundary of the pseudosphere from the periapsis of the orbit. The 

steps for using the pseudostate technique for propagation are presented in section 2.5.2. 

 The one-step pseudostate technique (cf. section 2.5.2) developed by Sergeyevsky 

et al. (1983) assumed rectilinear hyperbola for the departure and arrival phases of the 

interplanetary transfer which results in impact. An analytical formulation for the transfer 

trajectory design of an interplanetary orbiter mission is not readily available in the 

literature. In this chapter, an integrated method, named as iterative pseudostate (ITR-

PS) technique, based on pseudostate technique that synchronizes the parking orbit and 

the heliocentric transfer trajectory characteristics, satisfying the arrival constraints, is 

presented.  

4.2.1 Iterative Pseudostate Technique 

The process of determining the V-infinity vector and the pseudostate along with the 

related hyperbolic orbit characteristics is given below. 
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The periapsis distance, inclination of the departure and arrival hyperbolic orbits are 

fixed. Also, the departure epoch, flight duration (𝑡𝐹𝐷), the sweep-back duration (𝑡𝐷) for 

the departure phase and the sweep-forward duration (𝑡𝐴) for the arrival phase are fixed. 

 

Fig. 4.1a. Illustration of the ITR-PS technique 

1) Obtain the heliocentric states of the departure planet on the departure epoch 

(𝑹𝟏,𝑽𝟏) and the arrival planet on the arrival epoch (𝑹𝟐,𝑽𝟐). Set (𝑹𝟏,𝑹𝟐) as the 

position vectors of the initial pseudostates i.e., 𝑹𝑫𝑷𝑺 = 𝑹𝟏 at the departure phase 

and  𝑹𝑨𝑷𝑺 = 𝑹𝟐 at the arrival phase. Note that, 𝑹𝑫 𝒐𝒓 𝑨𝑷𝑺 is not the position vector 

at the pseudosphere. 

2) Determine the heliocentric Lambert conic connecting the position vectors of the 

pseudostate points (𝑹𝑫𝑷𝑺,𝑹𝑨𝑷𝑺) for the given flight duration (𝑡𝐹𝐷). Let the 

determined heliocentric velocity vectors at respective pseudostate points be 𝑽𝑫𝑷𝑺 

and 𝑽𝑨𝑷𝑺. 

3) Compute the planetocentric V-infinity vectors at the departure and arrival phases 

i.e., 𝒗∞𝑫 and 𝒗∞𝑨 respectively. 

 𝒗∞𝑫 = 𝑽𝑫 − 𝑽𝑫𝑷𝑺                                                   (4.1a) 
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𝒗∞𝑨 = 𝑽𝑨 − 𝑽𝑨𝑷𝑺                                              (4.1b) 

4) From the V-infinity vectors, find the orbital elements (𝑎∞, 𝑒∞, 𝑖∞,𝛺∞,𝜔∞, 𝜈∞ =

𝜈𝑃∞ = 0) of the departure and arrival hyperbolic orbits using the procedure 

described in section 3.2. One of the four options is chosen for further processing. 

5) Find the departure planetocentric velocity vector (𝒗𝒉𝑫) from the departure 

hyperbolic orbital elements by solving Kepler equation for 𝑡𝐷  days. Similarly, 

find the arrival planetocentric velocity vector (𝒗𝒉𝑨).  

6) The desired and propagated V-infinity vectors i.e., 𝒗∞𝑫 and 𝒗𝒉𝑫, are matched at 

the pseudosphere of the departure planet using the analytical tuning strategy. 

Similarly at the arrival phase also. 

7) Obtain the position vectors at the pseudosphere of the departure (𝒓𝒉𝑫) and arrival 

(𝒓𝒉𝑨) phases by propagating the respective tuned hyperbolic orbital elements. 

8) The planetocentric pseudostates are obtained by a linear sweep back at the 

departure phase and linear sweep forward at the arrival phase i.e., 

𝒓𝑫𝑷𝑺 = 𝒓𝒉𝑫 − 𝒗𝒉𝑫𝑡𝐷                                               (4.2) 

 𝒓𝑨𝑷𝑺 = 𝒓𝒉𝑨 + 𝒗𝒉𝑨𝑡𝐴                                                (4.3) 

The planetocentric pseudostates are transformed into the heliocentric 

pseudostates.  

𝑹𝑫𝑷𝑺
𝒏𝒆𝒘 = 𝑹𝟏 + 𝒓𝑫𝑷𝑺                                                (4.4a) 

𝑹𝑨𝑷𝑺
𝒏𝒆𝒘 = 𝑹𝟐 + 𝒓𝑨𝑷𝑺                                                (4.4b) 

These heliocentric pseudostates form the new terminal points to be used for 

determining the next Lambert conic. 

9) Check the differences between the successive position vectors of the pseudostates 

both at the departure and arrival phases. If the differences are less than a prefixed 

threshold value, then the transfer trajectory design is obtained. Otherwise the steps 

(2) to (9) are repeated. 

At the end of these steps, the transfer trajectory design for one of the options is obtained. 

The resulting hyperbolic orbit characteristics can be used to find the TPI and POI 

velocity impulses (cf. section 3.5). We can apply these steps for the other three design 

options also. The step (6) makes the proposed technique different from the one-step 

impact technique. Note that there are two loops, (i) an inner loop for tuning the hyperbolic 

orbit characteristics to achieve the desired V-infinity vector and, (ii) an outer loop that 
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connects the pseudostates for Lambert conic determination. After updating the 

pseudostates in the outer loop, the desired V-infinity vectors at the departure and arrival 

phases are updated from the Lambert conic solutions, and matched at the pseudospheres 

using the analytical tuning strategy in the inner loop. The diagram depicting the ITR-PS 

technique is given in Fig. 4.1a and the flowchart is presented in Fig. 4.1b. 

4.2.2 Illustrative Results 

To illustrate the performance of the ITR-PS technique, the Earth to Mars orbiter mission 

is considered. The minimum energy opportunity occurring on 12 May 2018 0 h TDB for 

a flight duration of 204 days is used. The DPO is 300 x 25,000 km with an inclination of 

75 deg with respect to Earth Equator and Equinox of J2000. The APO is 300 km circular 

with an inclination of 75 deg with respect to Mars equator and IAU vector of J2000 

[Archinal et al., 2009].  

Table 4.1 V-infinity vectors from ITR-PS technique 

Parameters option 11 option 12 option 21 option 22 

𝑣∞𝐷(m/s) 2.7893 2.7906 2.7847 2.7859 

𝛼∞𝐷(deg) 321.9206 321.9437 321.7844 321.8078 

𝛿∞𝐷(deg) -37.1345 -37.2146 -36.7642 -36.8449 

𝑣∞𝐴(m/s) 2.9609 2.9605 2.9622 2.9618 

𝛼∞𝐴(deg) 245.5156 245.4841 245.5985 245.5668 

𝛿∞𝐴(deg) 9.5043 9.5446 9.2203 9.2607 

 

 The four distinct V-infinity vectors obtained using the ITR-PS technique are 

presented in Table 4.1 and the corresponding four distinct design options are given in 

Table 4.2. Each of the parameters of the four design options are distinctly different except 

the departure and arrival inclinations which are prefixed. It is observed that even small 

differences in the departure/TPI angles (RAAN, 0.23 deg; AoP 0.17 deg between the 

design options 11 and 12) result in completely different arrival geometries. Similar trend 

is seen for the other two options 21 and 22. The high sensitivity of the departure 

parameters can be understood from this observation. 

  Table 4.3 gives a comparison of different analytical trajectory designs for the 

design option 11. The ITR-PS design, VPC design and the numerical design generated 

using the design force model (Pseudostate force model: departure phase/Sun-Earth for 3 
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days, cruise phase/Sun for 199 days, and arrival phase/Mars for 2 days) are given. Note 

that the VPC technique could not capture the change in RAAN which is possible by the 

ITR-PS technique. Further, the ITR-PS design is closer to the numerical design as 

compared to the VPC design. 

Table 4.2 Design options from ITR-PS technique  

( 𝑖∞𝐷 =75 deg; 𝑖∞𝐴=75 deg) 

Parameters option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -58625.72 -58564.68 -58859.51 -58799.08 

𝑒∞𝐷 1.113911 1.114030 1.113458 1.113575 

𝛺∞𝐷 (deg) 333.6273 333.6850 130.2362 130.2252 

𝜔∞𝐷(deg) 167.5207 167.4482 64.4443 64.5418 

𝑎∞𝐴(km) -4977.4201 -4978.7431 -4973.0997 -4974.4693 

𝑒∞𝐴 1.742794 1.742597 1.743439 1.743235 

𝛺∞𝐴(deg) 68.0867 242.9018 68.0914 243.0627 

𝜔∞𝐴(deg) 115.1685 314.9005 115.4479 314.5917 

  Table 4.3 Comparison of design option 11 from different techniques 

( 𝑖∞𝐷 =75 deg; 𝑖∞𝐴=75 deg) 

Parameters Numerical design VPC design ITR-PS design 

𝑎∞𝐷 (km) -58613.9834 -58640.49 -58625.72 

𝑒∞𝐷 1.113911 1.113882 1.113911 

𝛺∞𝐷 (deg) 333.6176 333.0131 333.6273 

𝜔∞𝐷(deg) 167.5163 167.8129 167.5207 

𝑎∞𝐴(km) -4977.4480 -4973.42 -4977.42 

𝑒∞𝐴 1.742577 1.743391 1.742794 

𝛺∞𝐴(deg) 68.0835 68.1673 68.0867 

𝜔∞𝐴(deg) 115.1746 115.4118 115.1685 

  The ITR-PS design options are numerically propagated under the design force 

model and the resulting target parameters are presented in Table 4.4. The deviation in the 

achieved target parameters are significantly reduced as compared to the VPC design. The 

achieved CAA ranges from 1,916 km to 11,245 km for the four distinct ITR-PS design 
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options. The deviations in the time of periapsis are also largely reduced to about 1 to 2 

hours. This brings out the fact that, even though the differences in the departure/TPI 

angles between the VPC design and the ITR-PS design (RAAN, 0.85 deg; AoP, 0.36 deg) 

are very small, there is large improvement in the achieved CAA and the time of periapsis. 

However, there is large deviation in the achieved APO inclination from the desired value. 

This indicates that further refinement of the ITR-PS design is necessary. 

Table 4.4 Achievable accuracies on numerical propagation under design force model 

Parameters 
Achieved 
CAA (km) 

Arr. inclination 
(deg) 

𝑇𝑃 (UTC)  TCM (m/s) 

Desired value 300 75.00 2 Dec 2018 00:00:00 - 

VPC design 1,107,535 141.00 29 Nov 2018 17:22:58 ~ 165 m/s 

ITR-PS 

design 

option 11 1,916.3 32.32 2 Dec 2018 01:32:04 

< 1 m/s 
option 12 4,542.0 50.26 2 Dec 2018 01:38:16 

option 21 6,956.8 10.63 2 Dec 2018 02:32:55 

option 22 11,244.9 41.35 2 Dec 2018 02:39:40 

  To assess the implication of modelling errors, the trajectory correction maneuvers 

(TCM) required to achieve the desired target parameters under the design force model are 

estimated and given in Table 4.4. The TCM is applied after 13 days of departure from the 

DPO periapsis. The VPC design requires a TCM addition of about 200 m/s whereas the 

ITR-PS design requires less than 1 m/s. This indicates the refinement taken place in the 

design level itself. This happened because of the inclusion of Sun’s gravity within the 

pseudosphere. It is understood that the corrections in the departure hyperbolic orbital 

elements in the numerical refinement process will be minimal. Although the TCM 

requirement is less than 1 m/s, the large deviation in the arrival inclination reflects the 

high sensitivity of the departure design parameters as pointed out earlier. 

Table 4.5 Comparison of velocity impulses from different analytical techniques 

Velocity 
impulses 

VPC design 
ITR-PS design 

option 11 option 12 option 21 option 22 

TPI (m/s) 1311.61 1311.68 1311.99 1310.48 1310.79 

POI (m/s) 2223.38 2233.94 2233.15 2234.00 2233.80 

Total (m/s) 3545.41 3545.62 3545.15 3544.48 3544.59 

For completion, the velocity impulses viz. TPI and POI required for the Earth to 

Mars transfer are computed for the ITR-PS design and compared with those of the VPC 
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design in Table 4.5. It is seen that the velocity impulses are almost the same for the VPC 

design and ITR-PS design options.  

For all the above analysis, the sweep-back and sweep-forward durations of Earth 

and Mars are considered as 3 and 2 days respectively, after some trial runs. The trial runs 

indicate that lesser durations result is infeasible scenarios and the larger durations do 

not significantly improve the design in terms of the achievable accuracies of the arrival 

target parameters. So, a suitable intermediate value is chosen. The FORTRAN 95 code 

developed based on the ITR-PS technique is used for design analysis. The details are 

included in Appendix A. 

4.2.3 Disadvantages 

The one-step iterative pseudostate technique has the following disadvantages. 

1) In the one-step iterative pseudostate technique, the step size used for analytical 

propagation is large. The boundary of the pseudosphere is reached from the 

periapsis in a single step. This causes deviation in the V-infinity vector achieved 

on numerical propagation.  

2) A small deviation in the V-infinity vector results in large deviations in the arrival 

target parameters. Thus, the APO inclination is not achieved. 

3) The transfer trajectory is heliocentric even in the close vicinity of the target 

planets. 

In the next section, the problem of reducing the deviation in the V-infinity vector is 

addressed. 
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 Fig. 4.1b. Flowchart illustrating the ITR-PS technique 

Are differences in position 
vectors of pseudostates in 

successive iterations < ε 

Yes 

Yes 

Inputs; 
i) departure epoch and flight duration 
ii) departure planet SOI-duration 𝑡𝐷 
iii) arrival planet SOI-duration 𝑡𝐴 
iv) periapsis altitude and inclination of  

departure hyperbolic orbit 
v) periapsis altitude and inclination of  

arrival hyperbolic orbit 

Set the position vectors of the target points as the initial pseudostates 

Connect the pseudostates using Lambert 
conic for the fixed flight duration  

  Obtain the departure and  
arrival hyperbolic orbits 

Analytical tuning of hyperbola to 
achieve the V-infinity vector at SOI  

Obtain the position vectors at the SOI and 
sweepback/forward to obtain the new pseudostates 

 First pass? 

No 

No 

Obtain the desired V-infinity vectors at the  
departure and arrival phases 

 

ITR-PS design 

Update the pseudostate 
position vectors 

Outer loop 
Solve Kepler equation and find the 

propagated V-infinity vectors at 
departure and arrival SOI 

Are differences between the  
desired and propagated V-infinity 

vectors < ε ? 
Yes 

No 

Inner loop 
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4.3 Multiconic Differential Evolution Technique 

4.3.1 Motivation 

The analytical design generated using the one-step pseudostate technique results in 

deviations in arrival target parameters on numerical propagation under the design force 

model. Specifically, the deviation in the arrival inclination (cf. Table 4.4) is significant. 

As pointed out earlier, these deviations are mainly due to the position and velocity 

discontinuities at the pseudospheres and these discontinuities need to be minimized. This 

is possible by applying the pseudostate technique in multiple steps (referred to as 

multiconic technique in literature). It is known that the choice of departure hyperbolic 

orbital elements influences the V-infinity vector. The analytical tuning strategy which is 

used to tune the hyperbolic orbital elements in Keplerian orbit, is not suitable for the 

multiconic technique. So, the Differential Evolution technique [Storn and Price, 1997] is 

employed for the tuning purpose. The use of multiconic propagation and differential 

evolution together generates departure hyperbolic orbital elements that achieves the V-

infinity vector at the pseudosphere precisely. When the design thus obtained is 

numerically propagated, the deviations in the arrival target parameters are largely 

reduced. The small differences that still exist are due to the discontinuity in the position 

vector at the pseudosphere. These differences occur because the differential evolution 

technique targets only the velocity vector at the boundary of the pseudosphere.  So, an 

iterative technique, named as multiconic differential-evolution (MCDE) technique, is 

proposed that iterates on the position vector at the pseudosphere. Thus, the MCDE 

technique involves two loops, (i) an outer loop that connects the position vector at the 

departure and arrival pseudospheres using the Lambert conic and (ii) an inner loop to find 

the hyperbolic orbital elements using differential evolution and multiconic propagation.  

In the following sections, first the performance of multiconic technique as a 

propagation technique is demonstrated and then the use of differential evolution 

technique for tuning the hyperbolic orbital elements is discussed. Finally, the MCDE 

technique which generates the interplanetary transfer trajectory is presented. 

4.3.2 Multiconic Propagation Technique 

As pointed out earlier, when the step size used for analytical propagation of the departure 

hyperbolic orbital elements is large as in the case of the one-step pseudostate technique, 

the V-infinity vector obtained at the pseudosphere differs from the desired V-infinity 

value (obtained by numerically integrating the three-body equations of motion; Sun-
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Earth-spacecraft). This deviation can be reduced by applying the pseudostate technique 

in multiple steps (multiconic propagation). Cook et al. (1962) used the multiconic 

propagation technique to obtain the trajectory design for lunar transfer. Byrnes and 

Hooper (1970) used the multiconic technique to solve for the initial conditions of the 

optimum burn maneuver from Earth orbit for Apollo mission.  

For completion, the steps of multiconic propagation (cf. section 2.5.2) in the departure 

phase are repeated below. 

1) From the perigee, the departure hyperbolic orbital elements are propagated 

forward analytically using the Keplerian force model (Earth and spacecraft) for a 

short duration. This conic is a geocentric hyperbola. 

2) The geocentric state vector of the spacecraft obtained from step (1) is propagated 

backward for the same duration along a straight line. This represents the zero-

gravity linear sweep-back motion. 

3) After propagation, the geocentric state vector obtained from step (2) is 

transformed to the heliocentric frame. The corresponding heliocentric orbital 

elements are propagated forward analytically under the Keplerian force model 

(Sun and spacecraft) for the same duration. This conic is a heliocentric ellipse. 

4) The state vector corresponding to the heliocentric orbital elements obtained from 

step (3) is transformed to the geocentric frame.  

The steps (1) to (4) are repeated up to the pseudosphere of Earth.  

From the pseudosphere of Earth up to the pseudosphere of the arrival planet, the 

propagation is essentially Keplerian under the influence of Sun only. In the arrival phase 

of the interplanetary transfer, the aforementioned steps are reversed. The steps for 

multiconic propagation in the arrival phase are given below. 

1) From the pseudosphere of the arrival planet, the heliocentric orbital elements are 

propagated forward analytically using the Keplerian force model (Sun and 

spacecraft) for a short duration. This conic is a heliocentric ellipse. 

2) The heliocentric orbital elements (after propagation) are transformed to 

planetocentric state vector and the planetocentric states are propagated backward 

for the same duration along a straight line.  

3) The planetocentric state vector obtained from step (2) is propagated forward 

analytically under the Keplerian force model (planet and spacecraft) for the same 

duration. This conic is a planetocentric hyperbola. 
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4) The state vector corresponding to the planetocentric orbital elements obtained 

from step (3) is transformed to the heliocentric frame. 

Repeat the steps (1) to (4) up to the periapsis of the arrival planet (for the prefixed arrival 

pseudosphere duration).  

Table 4.6 Comparison of pseudostate and numerical propagation techniques 

Parameters 
*Initial state 

vector 

state vector obtained from 
One-step pseudostate 

propagation 
Multiconic 
propagation 

Numerical 
propagation 

𝑥(km) -5675.81 490426.88 490451.97 490453.30 

𝑦(km) 3231.00 -396836.83 -396802.43 -396802.34 

𝑧(km) 1393.88 -510121.95 -510091.13 -510090.49 

�̇�(km/s) -3.435537 1.738437 1.738542 1.738544 

�̇�(km/s) -1.464928 -1.375038 -1.374869 -1.374864 

�̇�(km/s) -10.593643 -1.682609 -1.682452 -1.682448 

∆𝑟 (km) - 53.64 1.47 - 

∆𝑣 (m/s) - 0.26 0.0067 - 

*Initial departure hyperbolic orbital elements 
𝑎∞𝐷= -58625.72 km; 𝑒∞𝐷=1.113911; 𝑖∞𝐷= 75 deg; 𝛺∞𝐷=333.6273 deg; 

𝜔∞𝐷=167.5207 deg; 𝜈𝑃∞𝐷=0 deg 

 

The multiconic propagation is an effective and quick alternative to the numerical 

propagation for the three-body problem (cf. Table 4.6). A typical state vector in Earth 

equator and Equinox of J2000 frame is propagated for 3 days from the DPO periapsis up 

to the departure pseudosphere under the 3-body force model (Sun, Earth and the 

spacecraft). In Table 4.6, the state vector obtained using different analytical propagation 

techniques are presented. The analytical propagation is carried out using the one-step 

pseudostate and multiconic propagation techniques. The step size used for multiconic 

propagation is 0.005 days. The state vector obtained on numerical integration (cf. Table 

4.6) of the three-body force model is used as the reference for comparison. The deviations 

in the magnitude of position vector (∆𝑟 ) and velocity vector (∆𝑣 ) are presented. It is to 

be noted that the magnitude of deviation in the position vector obtained using the one-

step pseudostate technique is 53.64 km. On multiconic propagation, this deviation reduces 

to 1.47 km. The magnitude of deviation in the velocity vector obtained using the one-step 

pseudostate technique is 0.26 m/s. This small deviation is sufficient to cause very large 
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deviation in the achieved target parameters (cf. Table 4.12). The deviation in the velocity 

vector reduces to 0.0067 m/s on multiconic propagation (cf. Table 4.6). Thus, multiconic 

propagation technique is a good alternative to numerical integration. 

4.3.3 Differential Evolution for Suitable Hyperbolic Orbital Elements 

For a given V-infinity vector at the pseudosphere, the problem is to determine suitable 

hyperbolic orbital elements that achieve the desired V-infinity vector at the pseudosphere. 

The differential evolution (DE) technique is used to solve this problem. This technique 

does not require any initial guess on the unknowns and require only a range of values 

(bound) within which the unknowns could vary. A population (say, of size NP) of 

unknowns (say, N) is generated randomly from their respective bounds and the objective 

function is evaluated for each member of the population. Each member of the population 

is updated using three operations: mutation, crossover, and selection. The DE parameters, 

(i) population size, (ii) mutation factor and (iii) cross-over frequency, are chosen suitably 

after some trial runs. The objective function of the updated member is also evaluated. 

This process is continued until the objective function satisfies the convergence criteria. 

4.3.3.1 Differential Evolution 

The steps of a basic differential evolution technique that minimizes an objective function 

are presented here. 

1) Generate the initial population (G) by randomly selecting the values of the unknown 

design variables (N)  from their respective bounds using uniform distribution. Each 

set of values for the design variables are tested for feasibility. The feasibility tests are 

problem dependent. 

2) Evaluate the objective function for each member of the population and store it as a 

(NP)  × (N+1) matrix. 

3) If the objective function satisfies the convergence criteria, the solution is obtained. 

Otherwise, update the population using the following steps. Each member of the 

population is tested whether it must be carried on to the next generation of population 

(G+1) or not. The testing process is as follows. 

i) Select the first member (𝑖 = 1) of the current population as the target vector. 

Select three distinct members (𝑟1, 𝑟2 and 𝑟3) randomly from the population using 

uniform distribution. These members must be different from the target vector. 

ii) Form the mutant vector (𝑉𝑖,𝐺+1) using the three selected members. 
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𝑉𝑖,𝐺+1 = 𝑋𝑟1,𝐺 + 𝐹(𝑋𝑟2,𝐺 − 𝑋𝑟3,𝐺)                                   (4.6) 

where 𝑋 denotes the vector containing the unknown parameters. The term ′𝐹′ is 

called the mutation scale factor and the new vector generated is called the mutant 

vector. This process is called ‘mutation’.  

iii) Use the target vector and mutant vector to generate a new vector called the trial 

vector. A crossover constant, 𝐶𝑅 ∈ [0,1] equivalent to the probability that a trial 

vector element will come from the mutant vector, is used. Select N uniform 

random numbers 𝑟𝑎𝑛𝑑(𝑗) ∈ [0,1], 𝑗 = 1 to N and compare with ′𝐶𝑅′ to determine 

if each element of the trial vector will come from the target vector or the mutant 

vector. 

If rand(j)>CR,  jth element of target vector is  jth element of trial vector 

If rand(j)<CR, jth element of mutant vector is jth element of trial vector       (4.7) 

            where  𝑗 = 1, 𝑁. 

After applying the above condition for all elements of the member, a new trial 

vector is formed. The trial vector is tested for feasibility before accepting it. 

iv) Evaluate the objective function of the trial vector. If the objective function of the 

trial vector is less than the current objective function, the trial vector replaces the 

current member. Otherwise, the current member is retained. 

v) The steps (i) to (iv) are repeated for all members of the population and the next 

generation of population is generated. 

4) Repeat step (3) until the convergence criterion is satisfied. 

 

4.3.4 Algorithm   

As discussed earlier, the MCDE technique consists of two loops. In the inner loop, 

differential evolution is used for the selection of hyperbolic orbital elements and 

multiconic technique is used for the analytical propagation within the pseudosphere of 

the target planets.  The selected departure hyperbolic orbital elements, on multiconic 

propagation, achieves the desired V-infinity vector at the pseudosphere. In the outer loop, 

the transfer trajectory design from the parking orbit of Earth to the parking orbit of the 

arrival planet is obtained by solving the Lambert problem that connects the departure and 

arrival position vectors at the respective pseudosphere. In the current problem, the 

periapsis distance (𝑟𝑃∞𝐷) and inclination (𝑖∞𝐷) of the departure hyperbolic orbit are 

fixed. Also, the departure takes place from the periapsis (𝜈𝑃∞𝐷 = 0). So, the unknowns 
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at the departure are, (i) semi-major axis (𝑎∞𝐷), (ii) right ascension of ascending node 

(RAAN, Ω∞𝐷) and (iii) argument of periapsis (AoP, 𝜔∞𝐷). The DE bounds for these 

variables are fixed in the neighborhood of the corresponding values of the ITR-PS design.  

The objective function for the departure phase is set as, 

𝐽 = minimize |𝒗∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑
− 𝒗∞𝐷𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑

|                          (4.8) 

where 𝒗∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑
 is the desired departure V-infinity vector at the pseudosphere of Earth 

(obtained on solving the Lambert problem) and 𝒗∞𝐷𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑
 is the achieved V-infinity 

vector at the pseudosphere of Earth obtained on multiconic propagation. Similarly, the 

unknowns at the arrival phase are, (i) semi-major axis (𝑎∞𝐴), (ii) RAAN (Ω∞𝐴) and (iii) 

AoP (𝜔∞𝐴).  The objective function for the arrival phase is set as, 

𝐽 = minimize |𝒗∞𝐴𝑑𝑒𝑠𝑖𝑟𝑒𝑑
− 𝒗∞𝐴𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑

|                         (4.9) 

where 𝒗∞𝐴𝑑𝑒𝑠𝑖𝑟𝑒𝑑
 is the desired arrival V-infinity vector at the pseudosphere of the arrival 

planet (obtained on solving the Lambert problem) and 𝒗∞𝐴𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑
 is the achieved V-

infinity vector at the pseudosphere of the arrival planet obtained on multiconic 

propagation. 

The algorithm of the MCDE technique is given below. 

The periapsis distance and inclination (𝑖∞𝐷) of the departure hyperbolic orbit are fixed. 

The departure epoch, flight duration (𝑡𝐹𝐷) and the durations that represent the 

pseudosphere of the departure and arrival planets (𝑡𝐷 and 𝑡𝐴 respectively) are fixed. Also, 

the arrival parameters such as the required closest approach altitude (CAA), time of 

periapsis (𝑇𝑃) and inclination (𝑖∞𝐴) are fixed.  

1) Obtain the ITR-PS design (cf. section 4.2.1) and the departure and arrival 

pseudostates (position and velocity vectors). The departure pseudostate is propagated 

forward under the Keplerian two-body force model involving the Sun and the 

spacecraft for a duration of 𝑡𝐷 days. This results in the heliocentric states (position 

vector,  𝑹𝐷𝑃𝑆 and velocity vector,  𝑽𝐷𝑃𝑆 ) at the departure pseudosphere. The 

heliocentric states are transformed to geocentric states (position vector, 𝒓𝐷𝑃𝑆 and 

velocity vector, 𝒗𝐷𝑃𝑆). Similarly, the heliocentric position and velocity vectors of the 

arrival pseudostate point are propagated backward for a duration of 𝑡𝐴days to obtain 
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the heliocentric states (position vector, 𝑹𝐴𝑃𝑆and velocity vector, 𝑽𝐴𝑃𝑆) at the arrival 

pseudosphere. The heliocentric states are transformed to planetocentric states (𝒓𝐴𝑃𝑆 

and 𝒗𝐴𝑃𝑆). 

2) Determine the Lambert conic by connecting the heliocentric position vectors at the 

departure (𝑹𝐷𝑃𝑆) and arrival (𝑹𝐴𝑃𝑆) pseudospheres for an updated flight duration 

(𝑡𝐹𝐷 − 𝑡𝐷 − 𝑡𝐴).   

3) Obtain the Lambert velocity vector at the departure pseudosphere and set this value 

as 𝑽𝐷𝑃𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑
. Compute the desired departure V-infinity vector (𝒗∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑) as 

follows, 

𝒗∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑽𝐷𝑃𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑
− 𝑽𝐸𝑎𝑟𝑡ℎ

𝑡𝐷                           (4.10) 

where 𝑽𝐸𝑎𝑟𝑡ℎ
𝑡𝐷  is the heliocentric velocity vector of Earth after 𝑡𝐷 days from the 

departure epoch. 

Similarly, obtain the Lambert velocity vector at the arrival pseudosphere and set this 

value as 𝑽𝐴𝑃𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑
. Compute the desired arrival V-infinity vector (𝒗∞𝐴𝑑𝑒𝑠𝑖𝑟𝑒𝑑) as, 

𝒗∞𝐴𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑽𝐴𝑃𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑
− 𝑽𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑝𝑙𝑎𝑛𝑒𝑡

𝑡𝐴                 (4.11) 

where 𝑽𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑝𝑙𝑎𝑛𝑒𝑡
𝑡𝐴  is the heliocentric velocity vector of the arrival planet 𝑡𝐴 days 

before the arrival epoch. 

The steps for the selection of suitable departure hyperbolic orbital elements that 

achieves 𝒗∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑 precisely at the pseudosphere of Earth are given below. In similar 

steps, suitable arrival hyperbolic orbital elements that achieves 𝒗∞𝐴𝑑𝑒𝑠𝑖𝑟𝑒𝑑 precisely 

at the pseudosphere of the arrival planet can also be obtained with some modifications. 

These modifications are discussed later.

4) Generate the members 𝑎∞𝐷, Ω∞𝐷 , 𝜔∞𝐷 of the population (first generation).  

5) Evaluate the objective function for each member of the population by multiconic 

forward propagation until the pseudosphere is reached. The geocentric velocity vector 

obtained at the Earth pseudosphere is termed as the achieved velocity vector at the 

departure pseudosphere (𝒗∞𝐷𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑). 

6) Compute the objective function  𝐽 of the departure phase using Eq. 4.8. 
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7) Update the population using the steps of differential evolution technique described in 

section (4.3.3.1) until 𝐽 is less than a threshold value. The member corresponding to 

the minimum objective function is considered for further steps. Let the converged 

departure hyperbolic orbital elements be (𝑎∞𝐷 , 𝑒∞𝐷 , 𝑖∞𝐷 , Ω∞𝐷 , 𝜔∞𝐷, 𝜈𝑃∞𝐷 = 0). 

To generate the arrival hyperbolic orbital elements, the steps (4) to (7) are executed. The 

steps for the arrival phase are obtained by replacing, (i) subscript ‘D’ by ‘A’, (ii) the terms 

‘departure’ by ‘arrival’, ‘geocentric’ by ‘arrival planetocentric’, and ‘backward’ by 

‘forward’. The objective function for the arrival phase is given in Eq. 4.9. 

8) Propagate the departure hyperbolic orbit (𝑎∞𝐷 , 𝑒∞𝐷 , 𝑖∞𝐷 , Ω∞𝐷 , 𝜔∞𝐷, 𝜈𝑃∞𝐷 = 0) 

forward up to the departure pseudosphere and obtain the heliocentric states (position 

vector, 𝑹𝐷𝑃𝑆
′  and velocity vector, 𝑽𝐷𝑃𝑆

′ ). Similarly, propagate the arrival hyperbolic 

orbit (𝑎∞𝐴, 𝑒∞𝐴, 𝑖∞𝐴, Ω∞𝐴, 𝜔∞𝐴, 𝜈𝑃∞𝐴 = 0) backward up to the arrival pseudosphere 

and obtain the heliocentric states (position vector, 𝑹𝐴𝑃𝑆
′ and velocity vector, 𝑽𝐴𝑃𝑆

′ ). 

9) Check if the following condition is satisfied. 

{
(𝑹𝐷𝑃𝑆 − 𝑹𝐷𝑃𝑆

′ )

(𝑹𝐴𝑃𝑆 − 𝑹𝐴𝑃𝑆
′ )

≤  𝜖                                            (4.12) 

where ′𝜖′ is a prefixed small threshold value. The choice of the threshold value is made 

based on an analysis which is presented later. If the condition is not satisfied, set 

𝑹𝐷𝑃𝑆 = 𝑹𝐷𝑃𝑆
′ and 𝑹𝐴𝑃𝑆 = 𝑹𝐴𝑃𝑆

′  and repeat the steps (2) to (9). 

The steps (8) and (9) constitute the outer loop that iterates on the position vectors at the 

departure and arrival pseudosphere points whereas, in the ITR-PS technique, the outer 

loop iterates on the pseudostate points. The departure orbital elements, thus obtained, 

forms the MCDE design and are used to determine the TPI and POI velocity impulses. 

The flowchart illustrating the MCDE technique is given in Fig. 4.2.
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Fig. 4.2. Flowchart illustrating the MCDE technique 

4.3.5 Illustrative Results 

The performance of the MCDE technique is illustrated for an Earth to Mars orbiter 

mission for the minimum energy opportunity occurring on 12 May 2018 0 h TDB with a 

flight duration of 204 days. The periapsis altitude and inclination of the departure 

hyperbolic orbit are considered as 300 km and 75 deg with respect to Earth equator and 

Equinox of J2000. The periapsis altitude and inclination of the arrival hyperbolic orbit 

Determine the Lambert conic connecting 𝑹𝐷𝑃𝑆 and 𝑹𝐴𝑃𝑆 for (𝑡𝐹𝐷 − 𝑡𝐷 − 𝑡𝐴) days.  
Obtain the desired V-infinity vectors: 𝒗∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑  and 𝒗∞𝐴𝑑𝑒𝑠𝑖𝑟𝑒𝑑 . 

Set, 
𝑹𝐷𝑃𝑆 = 𝑹𝐷𝑃𝑆

′  
𝑹𝐴𝑃𝑆 = 𝑹𝐴𝑃𝑆

′  

Inputs: 
i) departure epoch and flight  duration 
ii) pseudosphere duration of departure planet (𝑡𝐷) 
iii) pseudosphere duration of arrival planet  (𝑡𝐴) 
iv) departure periapsis altitude (ℎ𝑃∞𝐷) and inclination (𝑖∞𝐷) 
v) arrival periapsis altitude (ℎ𝑃∞𝐴) and inclination (𝑖∞𝐴) 

Generate the ITR-PS design. Obtain the position vectors at the  
pseudosphere:  𝑹𝐷𝑃𝑆 and 𝑹𝐴𝑃𝑆.  

 
Propagate the orbital elements using multiconic technique up to
the pseudosphere to obtain 𝒗∞𝐷𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑  and  𝒗∞𝐴𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 . 

Carry out multiconic propagation using  
the converged orbital elements and obtain 

i) position vector at departure pseudosphere 𝑹𝐷𝑃𝑆
′  

ii) position vector at arrival pseudosphere 𝑹𝐴𝑃𝑆
′  

Generate the DE population with (𝑎∞, Ω∞, 𝜔∞) as members 
for the departure and arrival phases. 

No 

Yes 

Is 
 (𝑹𝐷𝑃𝑆 − 𝑹𝐷𝑃𝑆

′ ) . 𝐴𝑁𝐷. (𝑹𝐴𝑃𝑆 − 𝑹𝐴𝑃𝑆
′ )  ≤  𝜖? 

MCDE design 

Carry out DE operations  
and modify the population. 

No 

Yes 

Is 
 |𝒗∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝒗∞𝐷𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑|  ≤  𝜖? 

. 𝐴𝑁𝐷.  |𝒗∞𝐴𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝒗∞𝐀𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑|  ≤  𝜖? 

Inner loop 

Outer loop 
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are considered as 300 km and 75 deg with respect to Mars equator and IAU vector of 

J2000. The pseudosphere durations of Earth and Mars are considered as 3 and 2 days 

respectively.  

Initially, the four transfer trajectory design options available for the minimum-

energy opportunity are obtained using the ITR-PS technique (cf.  Table 4.2). These 

designs are used to fix bounds for the unknown parameters in the differential evolution 

technique. The differential evolution parameters are set as follows: population size (NP) 

=40, cross-over frequency (CR) =0.5, mutation factor (F) =0.8.  

Table 4.7 Effect of velocity threshold values on arrival parameters 

(Position threshold value: 10 km) 

Threshold 
values 
(km/s) 

Arr. CAA 
(km) 

% deviation 
in CAA 

Arr. APO 
inclination (deg) 

% deviation 
in inclination 

𝑇𝑃 (UTC) 

1 18,964.64 - 12.54 - 2 Dec 2018 
03:41:58 

0.1 869.42 15.40 91.73 22.30 1 Dec 2018 
23:47:06 

0.01 342.39 1.14 76.08 1.44 1 Dec 2018 
23:58:35 

1.0E-05 318.15 0.48 75.28 0.33 1 Dec 2018 
23:59:15 

 

Table 4.8 Effect of position threshold values on arrival parameters 

(Velocity threshold value: 1E-05 km/s) 

Threshold 
values 
(km) 

Number of 
iterations/ 

computation 
time 

Arr. 
CAA 
(km) 

% 
deviation 
in CAA 

Arr. APO 
inclination 

(deg) 

% deviation 
in 

inclination 
𝑇𝑃 (UTC) 

100 1 / 40 s 380.4 2.16 77.6612 3.54 1 Dec 2018 
23:56:12 

10 2 / 88 s 318.15 0.48 75.2875 0.38 1 Dec 2018 
23:59:15 

1 3 / 127 s 317.77 0.47 75.3760 0.50 1 Dec 2018 
23:58:52 

 

The loops of the MCDE technique terminate based on threshold values (outer loop 

based on the difference in position vectors of successive iterations and inner loop based 

on the difference in velocity vectors of successive iterations). First, the implication of 

these threshold values on the arrival target parameters is analyzed. The desired values of 

arrival parameters are; (i) closest approach altitude (CAA) 300 km, and (ii) inclination: 
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75 deg and (iii) time of periapsis (𝑇𝑃): 2 Dec 2018 00:00:00 UTC. Table 4.7 gives the 

arrival target parameters obtained on numerical propagation of the MCDE designs, for 

different velocity thresholds (velocity threshold is the magnitude of difference between 

the desired and achieved V-infinity vectors at the pseudosphere). It is clear that, for a 

difference of 1 km/s, there are large deviations in the target arrival parameters (achieved 

CAA: 18,964 km, inclination: 12 deg and time of periapsis deviates by about 4 h). For a 

velocity threshold value of 1E-05 km/s, the arrival target parameters are very close to the 

desired values. Further reduction of threshold value results in increased computation time 

without significant improvement in the achieved target parameters. So, the velocity 

threshold is fixed as 1E-05 km/s. The relative improvement in achievable accuracies are 

better understood from the percentage deviations (computed as the ratio of the difference 

in the achieved and desired values to the desired value) given in Table 4.7. The MCDE 

design options are numerically propagated under the design force model and the resulting 

target parameters are presented in Table 4.8, for different position threshold values.  A 

position threshold of 100 km results in an achieved CAA of 380 km (deviation 2.1%), 

APO inclination of 77.66 deg (deviation 3.5%) and time of periapsis deviates by about 4 

minutes. These deviations are reduced for a position threshold value of 10 km. The 

achieved CAA is 318 km (1.6%), APO inclination is 75.2 deg (0.3%) and the deviation 

in the time of periapsis is less than 1 minute. Also, the number of iterations for 

convergence is only two (computation time: 88 s). Further reduction in position threshold 

value does not significantly improve the achieved target parameters for the corresponding 

increase in computation time. Therefore, a position threshold value of 10 km is used in 

this study. 

Table 4.9 presents the performance of the MCDE technique. The MCDE design 

is obtained after two iterations and the computation time is about 88 seconds in an Intel 

Core i5-3230 CPU 2.60 GHz processor. Note that, the hyperbolic orbital elements are 

different even after the first iteration of the MCDE technique. The deviations in the 

departure/TPI angles (RAAN and AoP) are 0.009 deg and 0.002 deg respectively. Such 

small deviations in the departure angles result in large deviations in the achieved arrival 

target parameters on numerical propagation. For example, the inclination of the arrival 

hyperbola obtained on numerical propagation of the ITR-PS design is 32 deg as compared 

to that of the MCDE design, 75.28 deg (cf. Table 4.11).  
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Table 4.9 Performance of MCDE technique  

(Thresholds on: position, 10 km; velocity magnitude/angle: 1E-05 km/s/1E-3 deg) 

Parameters ITR-PS 
design 

MCDE design 

after 1st iteration after 2nd (final) iteration 
𝑎∞𝐷 (km) -58625.72 -58613.46 -58613.83 

𝑒∞𝐷 1.113911 1.113935 1.113934 

𝛺∞𝐷 (deg) 333.6273 333.6182 333.6186 

𝜔∞𝐷(deg) 167.5207 167.5185 167.5183 

𝑎∞𝐴(km) -4977.42 -4977.42 -4977.43 

𝑒∞𝐴 1.7427944 1.742793 1.742792 

𝛺∞𝐴(deg) 68.0867 68.0867 68.0868 

𝜔∞𝐴(deg) 115.1685 115.1685 115.1684 

 

Table 4.10 MCDE design options ( 𝑖∞𝐷 =75 deg; 𝑖∞𝐴=75 deg) 

 

Parameters 

MCDE designs 

option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -58613.8 -58552.8 -58836.9 -58776.5 

𝑒∞𝐷 1.113934 1.114053 1.113502 1.113618 

𝛺∞𝐷 (deg) 333.6186 333.6763 130.2251 130.2141 

𝜔∞𝐷(deg) 167.5183 167.4459 64.4509 64.5483 

𝑎∞𝐴(km) -4977.4 -4978.7 -4973.1 -4974.4 

𝑒∞𝐴 1.742792 1.742594 1.743437 1.743232 

𝛺∞𝐴(deg) 68.0868 242.9018 68.0914 243.0627 

𝜔∞𝐴(deg) 115.1684 314.9007 115.4479 314.5919 

 

The four design options obtained using the MCDE technique are given in Table 

4.10. The MCDE design is compared with the numerical design obtained under the design 

force model (pseudostate force model) for the design option 11 in Table 4.11. It is 

observed that the MCDE design is very close to the numerical design. The computation 

time required for numerical refinement of the MCDE design under the design force model 

is less than 1 s as compared to the ITR-PS design which is about 6 s (cf. Table 4.14). So, 
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it is clear that the MCDE design serves as a better initial guess for numerical 

refinement. 

Table 4.11 Comparison of MCDE and numerical designs ( 𝑖∞𝐷 =75 deg; 𝑖∞𝐴=75 deg) 

Parameters MCDE design Numerical design 

𝑎∞𝐷 (km) -58613.8 -58613.9 

𝑒∞𝐷 1.113934 1.113911 

𝛺∞𝐷 (deg) 333.6186 333.6176 

𝜔∞𝐷(deg) 167.5183 167.5163 

𝑎∞𝐴(km) -4977.4 -4977.4 

𝑒∞𝐴 1.742792 1.742577 

𝛺∞𝐴(deg) 68.0868 68.0835 

𝜔∞𝐴(deg) 115.1684 115.1746 

 

Table 4.12 Achievable accuracies of pseudostate designs under design force model 

Parameters option 11 option 12 option 21 option 22 

ITR-PS 

CAA (Km) 1,916.3 4,540.2 6,956.8 11,244.9 

APO inclination 
(deg) 

32.32 50.26 10.63 41.35 

𝑇𝑃 (UTC) 
2 Dec 2018 

01:32:02 
2 Dec 2018 

01:38:16 
2 Dec 2018 

02:32:55 
2 Dec 2018 

02:39:40 

MCDE 

CAA (km) 318.15 286.25 317.04 308.20 

APO inclination 
(deg) 

75.28 75.31 74.91 75.00 

𝑇𝑃 (UTC) 
1 Dec 2018 

23:59:15 
1 Dec 2018 

23:59:06 
1 Dec 2018 

23:59:30 
1 Dec 2018 

23:59:25 
 

The arrival target parameters obtained on numerical propagation of the ITR-PS 

and MCDE designs under the design force model are given in Table 4.12. As mentioned 

earlier, on numerical propagation under the design force model, the ITR-PS design 

options result in CAAs varying from about 1,916 km to 11,245 km for the four design 

options. The deviations in the time of periapsis are around 1 to 2 hours. The deviations in 

the achieved inclination for all the four ITR-PS design options are significant. These large 

deviations in the arrival inclinations are corrected by the MCDE designs. The achieved 

inclinations of the arrival hyperbolic orbit range from 74.91 deg to 75.31 deg (against the 

desired value: 75 deg) and so, are very close to the desired value. Also, the MCDE design 

options result in CAAs varying from about 286 km to 318 km. The deviations in the time 

of periapsis are only few seconds. Thus, the MCDE design achieves all the arrival target 
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parameters with better accuracy. The computation time required for obtaining the ITR-

PS design is about 5 ms while the MCDE design requires 88 s (cf. Table 4.14). Though 

the computation time for MCDE design is more, there is a significant improvement in the 

trajectory design in terms of the achieved target parameters (cf. Table 4.12). 

Table 4.13 Comparison of velocity impulses from different pseudostate techniques 

Velocity impulses  ITR-PS design MCDE design 

TPI (m/s) 1311.68 1311.74 

POI (m/s) 2233.94 2233.94 

Total (m/s) 3545.62 3545.68 

Table 4.14 Comparison of computation time 

  ITR-PS design MCDE design 

Design generation 0.005 s 88 s 

Numerical refinement 6 s <1 s 

For completion, the velocity impulses, viz. TPI and POI, obtained from the MCDE 

design is compared with that from ITR-PS design for the design option 11 (cf. Table 4.13. 

The velocity impulses are almost the same. Similar result follows for the other three 

design options also and hence, not presented. 

4.3.6 Disadvantages 

The disadvantages of MCDE techniques are, 

1) The MCDE technique requires a large computation time for generating the design. 

2) The use of DE makes the technique semi-analytical.   

3) Even within the pseudosphere, the transfer trajectory is heliocentric. 

4.4 Conclusions

The iterative pseudostate (ITR-PS) technique identifies the four distinct design options 

for an opportunity by iterating on the pseudostates. This technique captures the small 

differences in departure angles, viz. RAAN and AoP which result in the completely 

different arrival geometries. The computation time required for generating the ITR-PS 

design is only 6 ms. However, the use of the one-step pseudostate technique for analytical 

propagation causes small deviation in the departure V-infinity vector achieved at the 

boundary of the pseudosphere. So, the arrival target parameters are largely deviated from 
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the desired values especially the arrival inclination. Therefore, ITR-PS design needs 

further modification in the design process. 

This modification of ITR-PS design is done by applying the pseudostate technique 

in multiple steps (multiconic propagation). A random search method, differential 

evolution (DE) is employed for the selection of hyperbolic orbital elements that achieves 

the V-infinity vector at the pseudosphere. The use of multiconic technique for analytical 

propagation and DE for searching the hyperbolic orbital elements help in targeting the V-

infinity vector more accurately. This technique, named as multiconic differential 

evolution (MCDE) technique, reduces the deviations in the arrival target parameters 

including the arrival inclination. The achieved inclinations of the arrival hyperbolic orbit 

range from 74.91 deg to 75.31 deg (against the desired value, 75 deg). Also, the MCDE 

design options result in CAAs varying from about 286 km to 318 km. The deviations in 

the time of periapsis are only few seconds. So, the MCDE design can be used as a better 

initial guess for the numerical refinement process. Also, the computation time required 

for numerical refinement of the MCDE design under the design force model is less than 

1 s as compared to the ITR-PS design which is about 6 s. Thus, MCDE technique can be 

used to analytically refine the ITR-PS design which results in significant improvement in 

the trajectory design especially in terms of the achieved arrival inclination. 

 

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠ 
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CHAPTER	5	
ITERATIVE	PATCHED	CONIC	TECHNIQUE	FOR		
TRANSFER	TRAJECTORY	DESIGN	

5.1 Chapter Summary 

The previous chapter discussed analytical techniques that are based on the 

pseudostate concept wherein the transfer trajectory is heliocentric even in the close 

vicinity of the target planets. This makes the inclusion of the non-spherical gravity of 

Earth in the trajectory design process difficult. 

 To overcome this difficulty, an iterative analytical technique that derives the 

merit from the simple patched conic assumptions as well as the iterative pseudostate 

technique is proposed in this chapter. This technique, named as iterative patched 

conic technique (ITR-PC) generates quick and improved design. The iterative nature 

help in identifying the four distinct design options for an opportunity. A sensitivity 

analysis has been carried out which justifies the need for the improved design using 

the ITR-PC technique. A comparative analysis of the ITR-PC and conventional 

patched conic designs is included. The use of the ITR-PC technique as a mission 

design and analysis tool to analyze the four design options for an Earth to Mars orbiter 

mission is demonstrated. 

5.2 Iterative Patched Conic Technique 

The working principle of the iterative patched conic technique is as follows.  

Initially, the position vectors of the departure and arrival target planets at the departure 

and arrival epochs respectively, are connected using the heliocentric Lambert conic. The 

asymptotic velocity (V-infinity) vectors at departure and arrival are calculated as the 

difference between the heliocentric velocity vectors at the respective SOI and the target 

planets. The departure and arrival hyperbolic orbit characteristics are computed and 

modified using the analytical tuning strategy to achieve the V-infinity vectors at the 

respective SOI. The modified departure and arrival hyperbolic orbits are propagated 

under Keplerian force model for the respective SOI-durations and the planetocentric state 
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vectors are obtained. The locations on the departure and arrival SOIs, thus obtained, are 

known as patch points. The planetocentric position vectors of the patch points are 

transformed to the heliocentric frame and connected using a heliocentric Lambert conic 

for the flight duration that excludes the SOI durations. The V-infinity vectors are updated 

and the hyperbolic orbit characteristics are modified to obtain the updated V-infinity 

vectors at the respective SOI. Thus, the ITR-PC technique consists of two loops, (i) an 

inner loop that modifies the departure and arrival hyperbolic orbit characteristics to 

achieve the V-infinity vector at the respective SOI, and (ii) an outer loop for determining 

the Lambert conic (that connects the position vectors of the target planets in the first 

iteration, and the patch points at the departure/arrival phases in the subsequent iterations). 

This reduces the position discontinuity at the boundary of SOI of the target planets. These 

loops determine the four distinct V-infinity vectors as well as the related hyperbolic 

orbital elements. As an example, the three segments of a typical Earth to Mars transfer 

based on patched conic assumptions are given in Fig. 5.1a. 

 

Fig.5.1a. Patched conic approximation for Earth-Mars interplanetary transfer 

The steps describing the ITR-PC technique are given below. The hyperbolic 

orbital elements are computed using the steps (1) to (4). The patch points at the sphere of 

influence (SOI) are obtained at the departure and arrival phases using the steps (5) to (7). 

Then, an updated Lambert conic is determined by connecting the patch point position 

vectors for a different flight duration that excludes the SOI durations. 

The departure epoch and flight duration (𝑡𝐹𝐷) are fixed. The periapsis distance and 

inclination of the departure hyperbolic orbit, and the SOI-durations of the departure and 

arrival phases (𝑡𝐷  and 𝑡𝐴 days respectively) are also fixed. 
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1) Obtain the heliocentric states of the departure planet on the departure epoch (𝑹𝟏,𝑽𝟏) 

and the arrival planet on the arrival epoch (𝑹𝟐,𝑽𝟐). These heliocentric states are in 

Earth mean equator and equinox of J2000 frame. 

2) Determine the heliocentric Lambert conic connecting the position vectors (𝑹𝟏,𝑹𝟐) 

for the prefixed flight duration (𝑡𝐹𝐷). Compute the corresponding heliocentric 

velocity vectors (𝑽𝑫𝑷𝑪 and 𝑽𝑨𝑷𝑪) in the transfer trajectory. 

3) Compute the planetocentric V-infinity vectors at the departure and arrival phases, i.e., 

𝒗∞𝑫 and 𝒗∞𝑨 respectively. 

          𝒗∞𝑫 = 𝑽𝑫𝑷𝑪 − 𝑽𝟏                                                  (5.1) 

𝒗∞𝑨  = 𝑽𝑨𝑷𝑪 − 𝑽𝟐                                        (5.2) 

The arrival V-infinity vector is transformed to Mars Mean Equator and IAU vector of 

J2000 (Archinal et al., 2009). 

4) From the V-infinity vectors, find the orbital elements (𝑎∞, 𝑒∞, 𝑖∞,𝛺∞,𝜔∞, 𝜈∞ =

𝜈𝑃∞ = 0) of the departure and arrival hyperbolic orbits using the procedure described 

in section 3.2.  

The steps (1) to (4) constitute the conventional patched conic technique and result in four 

notional design options which are not distinct. One of the four design options is chosen 

for further modification. 

5) Find the departure planetocentric velocity vector/propagated velocity vector (𝑽𝒉𝑫) 

from the departure hyperbolic orbital elements by solving the Kepler equation for the 

prefixed SOI duration (𝑡𝐷) and. Similarly, find the arrival planetocentric velocity 

vector (𝑽𝒉𝑨).  

This step involves the numerical solution of Kepler equation. For a threshold value of 

1E-15, each solution run takes about 4 to 5 iterations. 

6) The desired and propagated V-infinity vectors, i.e. 𝒗∞𝑫 and 𝒗𝒉𝑫, are matched at the 

SOI of the departure planet using the analytical tuning strategy described in section 

3.3. The tuning of the desired and propagated V-infinity vectors at the arrival planet 

is also carried out using the same strategy.  

7) Obtain the planetocentric position vectors of the patch points at the departure (𝒓𝒉𝑫) 

and arrival (𝒓′𝒉𝑨) phases by propagating the respective updated/tuned hyperbolic 

orbital elements under the two-body (Keplerian) force model. The planetocentric 
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position vector of the arrival patch point (𝒓′𝒉𝑨) is transformed to Earth equator and 

Equinox of J2000 frame (𝒓𝒉𝑨). 

The steps (1) to (7) constitute the V-infinity tuned patched conic technique. The 

conventional and the V-infinity tuned patched conic techniques gives only notional design 

options and fails to distinguish between them. 

The following steps of the ITR-PC technique make the departure hyperbolic orbital 

elements distinct from the other options. 

8) The planetocentric position vectors of the patch points at SOI are transformed into 

heliocentric position vectors. 

𝑹𝑫
𝑺𝑶𝑰 = 𝑹𝑫

𝒕𝑫 + 𝒓𝒉𝑫                                                     (5.3) 

𝑹𝑨
𝑺𝑶𝑰 = 𝑹𝑨

𝒕𝑨 + 𝒓𝒉𝑨                                                     (5.4) 

where  𝑹𝑫
𝒕𝑫 is the heliocentric position vector of the departure planet after 𝑡𝐷 days 

from the departure epoch and 𝑹𝑫
𝑺𝑶𝑰 is the heliocentric position vector of the departure 

patch point. Similarly in Eq. 5.4, 𝑹𝑨
𝒕𝑨  is the heliocentric position vector of the arrival 

planet before 𝑡𝐴 days from the arrival epoch and 𝑹𝑨
𝑺𝑶𝑰 is the heliocentric position 

vector of the arrival patch point. 

9) Determine the Lambert conic connecting the heliocentric position vectors of the patch 

points (𝑹𝑫
𝑺𝑶𝑰, 𝑹𝑨

𝑺𝑶𝑰) for a flight duration defined by (𝑡𝐹𝐷 − 𝑡𝐷 − 𝑡𝐴). The 

corresponding heliocentric velocity vectors are 𝑽𝑫𝑷𝑪
𝑺𝑶𝑰  and  𝑽𝑨𝑷𝑪

𝑺𝑶𝑰  . 

10) Compute the planetocentric V-infinity vectors at the patch points, i.e. 𝒗∞𝐃 and 𝒗∞𝑨, 

𝒗∞𝑫 = 𝑽𝑫𝑷𝑪
𝑺𝑶𝑰 −  𝑽𝑫

𝒕𝑫                                                (5.5) 

𝒗∞𝑨 = 𝑽𝑨𝑷𝑪
𝑺𝑶𝑰 −  𝑽𝑨

𝒕𝑨                                                 (5.6) 

where  𝑽𝑫
𝒕𝑫 is the heliocentric velocity vector of the departure planet after 𝑡𝐷 days 

from the departure epoch and  𝑽𝑨
𝒕𝑨  is the heliocentric velocity vector at the SOI of the 

arrival planet before 𝒕𝑨 days from the arrival epoch. These velocity vectors are with 

respect to Earth Equator and Equinox of J2000 frame. The arrival V-infinity vector 

is transformed to Mars Equator and IAU vector of J2000 frame. 

11) From the V-infinity vectors, find the orbital elements (𝑎∞, 𝑒∞, 𝑖∞,𝛺∞,𝜔∞, 𝜈∞ =

𝜈𝑃∞ = 0) of departure and arrival hyperbolic orbits.  
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12) Propagate the hyperbolic orbital elements for the SOI-durations. Tune the hyperbolic 

orbital elements to achieve the desired V-infinity vector at the SOI using the analytical 

tuning strategy. 

13) Find the planetocentric position vectors of the patch points at the departure (𝒓′𝒉𝑫) and 

arrival phases. The planetocentric position vector of the arrival patch point is 

transformed to Earth Equator and Equinox of J2000 frame (𝒓′𝒉𝑨).  

14) Transform the planetocentric position vectors to heliocentric position vectors (𝑹′𝑫
𝑺𝑶𝑰 

and 𝑹′𝑨
𝑺𝑶𝑰) and find the difference between successive position vectors of the patch 

points. 

15) If the differences are less than the predefined small values, then the transfer trajectory 

design is obtained. Otherwise the heliocentric position vectors of the patch points are 

reset as (𝑹′𝑫
𝑺𝑶𝑰 and 𝑹′𝑨

𝑺𝑶𝑰) and the steps (9) to (15) are repeated. 

At the end of these steps, the transfer trajectory design for one of the options is obtained. 

We can apply these steps for the other three design options as well. The hyperbolic orbital 

elements, thus obtained, are used to determine the TPI and POI velocity impulses. The 

flowchart of the ITR-PC technique is presented in Fig. 5.1b. 
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Fig.5.1b. Flowchart of the ITR-PC technique 
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5.3 Illustrative Results 

The ITR-PC technique is used to obtain the distinct design options for a typical Earth to 

Mars orbiter mission. The minimum energy opportunity of 2018 is used here. However, 

for completion, it is repeated here. The departure epoch is on 12 May 2018 0 h TDB and 

the flight duration is 204 days. The Earth parking orbit is 300 x 25,000 km and inclination 

of 75 deg with respect to Earth equator and Equinox of J2000. The Mars parking orbit is 

300 km circular and inclination of 75 deg with respect to Mars equator and IAU vector 

of J2000. The SOI duration of Earth and Mars are fixed as 3 and 2 days respectively. 

Table 5.1a Illustration of iterative process on heliocentric patch points (outer loop) 

Parameters 
Outer loop iterations (iterations on heliocentric patch points) 

1* 1** 2 3 4 5 6 

𝑥𝑃𝐶𝐷(km) -88622845 -88646825 -88648536 -88648646 -88648654 -88648655 -88648655 

𝑦𝑃𝐶𝐷(km) -112491471 -112472620 -112468234 -112468111 -112468067 -112468063 -112468062 

𝑧𝑃𝐶𝐷(km) 49111210 -49089131 -49091490 -49092057 -49092124 -49092133 -49092134 

𝑥𝑃𝐶𝐴(km) 196451122 195789253 195789620 195789592 195789590 195789590 195789590

𝑦𝑃𝐶𝐴(km) 75677142 76523208 76524043 76524168 76524182 76524184 76524185 

𝑧𝑃𝐶𝐴(km) 29099505 29831022 29828870 29828625 29828591 29828586 29828585 

∆𝑟𝑃𝐶𝐷 (km) - 8387633 5266 590 79 11 1.4 

∆𝑟𝑃𝐶𝐴 (km) - 3937777 2337 276 37 5 0.7 

1*: initial value of patch point (position of target planets) 
1**: patch point after analytical tuning 
Position threshold: 10 km 
{𝑥𝑃𝐶𝐷, 𝑦𝑃𝐶𝐷, 𝑧𝑃𝐶𝐷} position vector of the departure patch point 
{𝑥𝑃𝐶𝐴, 𝑦𝑃𝐶𝐴, 𝑧𝑃𝐶𝐴} position vector of the arrival patch point 
∆𝑟𝑃𝐶𝐷 difference in departure patch point position vectors 
∆𝑟𝑃𝐶𝐴 difference in arrival patch point position vectors 

As discussed earlier, the ITR-PC technique has two loops, an inner loop for 

analytical tuning (cf. Table 3.2) and an outer loop for lambert conic determination. Tables 

5.1a and 5.1b illustrate the outer loop iterations. It can be noted that the outer loop 

converges in six iterations. For each of the outer loop iteration, there is an inner loop (4 

to 5 iterations) for analytically tuning the departure and arrival hyperbolic orbital 

elements. For completion, the inner loop iterations for the 6th outer loop is given in Table 

5.1c. Table 5.1a shows the change in the departure and arrival patch points with each 

outer loop iteration. From Table 5.1b, it can be noted that the departure and arrival 

hyperbolic orbital elements (design) significantly changes over each iteration. The outer 

loop iteration converges on achieving the condition set on the position threshold value. 
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Thus, with the two loops, the ITR-PC technique reduces the discontinuities in the position 

and velocity vectors at the SOI. 

Table 5.1b Illustration of iterative process on departure/arrival hyperbola (outer loop) 

Outer 

loop 

iterati

ons 

Design parameters 

𝑎∞𝐷 (km) 𝑒∞𝐷 
𝛺∞𝐷 

(deg) 
𝜔∞𝐷(deg) 𝑎∞𝐴(km) 𝑒∞𝐴 𝛺∞𝐴(deg) 𝜔∞𝐴(deg) 

1* -51239.9 1.130330 333.0131 169.3999 -4881.1 1.755807 68.1673 115.1321 

1** -58640.4 1.113882 333.0131 167.8129 -4973.4 1.741783 68.1673 115.4488 

2 -59021.2 1.113147 333.3635 167.4153 -4980.2 1.740769 68.0909 115.2498 

3 -58970.0 1.113246 333.3833 167.3836 -4979.9 1.740804 68.0883 115.2197 

4 -58966.4 1.113253 333.3883 167.3788 -4980.0 1.740798 68.0879 115.2159 

5 -58965.7 1.113254 333.3888 167.3782 -4980.0 1.740798 68.0878 115.2154 

6 -58965.6 1.113254 333.3889 167.3781 -4980.0 1.740798 68.0878 115.2153 

1* : Conventional patched conic design 
1**: V-infinity tuned patched conic design 

Table 5.1c Illustration of iterative process in the inner loop (outer loop iteration: 6th) 
(Thresholds on velocity vector: direction (deg, 𝜖): 1E-3, magnitude: 1E-6 km/s) 

Iteration 

no. 

Departure phase Arrival phase 

Difference between desired and propagated V-infinity vectors 

angle (𝜖,deg) magnitude (km/s) angle (𝜖,deg) magnitude (km/s) 

1 0.049418 0.164042 0.003445 0.027158 

2 1.469073 0.071832 0.311127 0.016076 

3 0.072526 0.003540 0.002734 0.000141 

4 0.003443 0.000168 0.000023 0.000001 

5 0.000163 0.000007 0.000023 0.000001 

For comparison, the departure and arrival V-infinity vectors obtained using the 

conventional/V-infinity tuned patched conic technique and the ITR-PC technique are 

given in Table 5.2. While the conventional/V-infinity tuned patched conic technique 

generates only one set of departure and arrival V-infinity vector, the ITR-PC technique 

generates four distinct sets of V-infinity vectors. For the transfer to be feasible, in the 

conventional PC technique, the DPO inclination can vary from 36.8 deg to 143.2 deg as 

the value of declination of the departure V-infinity for the 2018 minimum energy 

opportunity is -36.8 deg (cf. Table 5.2). The feasible range of inclination can be fixed 

more accurately from the ITR-PC design options. While, with the ITR-PC technique, the 
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feasible range for option 11 is between 37.21 deg and 143.79 deg. This indicates that, we 

cannot generate the design for a coplanar transfer with a DPO inclination of 36.8 deg. 

The four distinct design options of the ITR-PC technique in terms of hyperbolic 

orbital elements are given in Table 5.3. Note that although the differences in the 

departure/TPI angles between the design options are very small (design options 11 and 

12: RAAN, 0.06 deg and AoP, 0.07 deg), the resulting arrival hyperbolas are completely 

different. This indicates the high sensitivity of the arrival geometry to the departure 

angles. Similar trend is observed for the design options 21 and 22. The different analytical 

designs for the trajectory design option 11 are compared with the numerical design 

generated under the design force model (PCFM) in Table 5.4. It can be noted that the 

ITR-PC design is very close to the numerical design.  

Table 5.2 Departure and arrival V-infinity vectors 

Parameters 

Conventional 

PC/VPC 

technique 

ITR-PC technique 

option 11 option 12 option 21 option 22 

𝑣∞𝐷(km/s) 2.7891 2.7826 2.7839 2.7779 2.7791 

𝛼∞𝐷(deg) 321.42 321.65 321.68 321.53 321.55 

𝛿∞𝐷(deg) -36.85 -37.21 -37.29 -36.84 -36.92 

𝑣∞𝐴(km/s) 2.9621 2.9602 2.9598 2.9614 2.9610 

𝛼∞𝐴(deg) 245.66 245.51 245.49 245.60 245.56 

𝛿∞𝐴(deg) 9.25 9.50 9.54 9.22 9.26 

Table 5.3 Design options using ITR-PC technique (𝑖∞𝐷
=75 deg; 𝑖∞𝐴

=75 deg) 

Parameters option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -58965.7 -58904.1 -59206.2 -59145.1 

𝑒∞𝐷 1.113254 1.113371 1.11279 1.112912 

𝛺∞𝐷 (deg) 333.3889 333.4465 129.9454 129.9341 

𝜔∞𝐷(deg) 167.3782 167.3057 64.4571 64.5547 

𝑎∞𝐴(km) -4980.0 -4981.3 -4975.7 -4977.1 

𝑒∞𝐴 1.742402 1.742202 1.743048 1.742842 

𝛺∞𝐴(deg) 68.0878 242.9041 68.0925 243.0652 

𝜔∞𝐴(deg) 115.1783 314.9085 115.4581 314.5994 
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The conventional patched conic, VPC and ITR-PC designs are used as the initial 

guess for numerical refinement under the design force model PCFM and the computation 

time required for the process are given in Table 5.5. When the ITR-PC design is used as 

the initial guess, the numerical refinement needs only about 6 s whereas the VPC design 

needs 780 s. The numerical refinement of the conventional patched conic design needs a 

computation time of more than a day. This clearly brings out the fact that the ITR-PC 

design serves as a good initial guess for numerical refinement.  

Table 5.4 Comparison of analytical designs with numerical design 
(𝑖∞𝐷=75 deg; 𝑖∞𝐴=75 deg) 

 

Parameters 
Conventional  

PC design 
VPC 

design 
ITR-PC 
design 

Numerical design 
(PCFM) 

𝑎∞𝐷 (km) -51239.9 -58640.5 -58965.7 58966.9 

𝑒∞𝐷 1.130332 1.113882 1.113254 1.11325 

𝛺∞𝐷 (deg) 333.0131 333.0131 333.3889 333.3881 

𝜔∞𝐷(deg) 169.3999 167.8129 167.3782 167.3788 

𝑎∞𝐴(km) -4881.1 -4973.4 -4980.0 -4980.0 

𝑒∞𝐴 1.757441 1.743391 1.742402 1.742170 

𝛺∞𝐴(deg) 68.1673 68.1673 68.0878 68.0824 

𝜔∞𝐴(deg) 115.0951 115.4118 115.1783 115.1852 

The achievable accuracies of the analytical designs on numerical propagation 

under the design force model PCFM are given in Table 5.6. The design obtained from the 

conventional and V-infinity tuned patched conic technique result in very large deviations 

in the achieved target parameters as pointed out in chapter 3. In the case of ITR-PC 

designs, the achieved CAA values range from 220 km to 330 km for the four design 

options. The achieved arrival inclination is very close to the desired value. Also, the 

deviation in time of periapsis is 2 to 3 minutes only. The TCM required for the 

aforementioned designs to achieve the arrival target parameters are also presented in 

Table 5.6. It can be noted that the TCM value is very high (>150 m/s) for the 

conventional and VPC designs while the ITR-PC design requires less than 0.1 m/s. 

 The TPI and POI velocity impulses required for the interplanetary transfer (Earth 

to Mars orbiter mission, 2018) for different patched conic design techniques are given in 

Table 5.7. The difference between the conventional patched conic design and the ITR-PC 

design is high (about 58 m/s). Thus, the ITR-PC design allows considerable saving in 
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fuel, roughly 20 kg. The difference between the VPC and ITR-PC designs is very small 

(< 2 m/s). The total velocity impulse for the distinct ITR-PC design options are also 

almost same. This brings out the fact that no additional velocity impulse is incurred for 

achieving the different arrival geometries. 

Table 5.5 Computation time for numerical refinement 

Parameters initial guess used 
Conventional  

PC design 
VPC design ITR-PC design 

Computation time > 1 day 780 s 6 s 

 Table 5.6 Achievable accuracies on numerical propagation under PCFM 

Designs 
Achieved 
CAA (km) 

Arrival 
inclination 

(deg) 

𝑇𝑃 (UTC) 
DD/MM/YYYY 

HH:MM:SS 

TCM 
(m/s) 

Conventional 
patched conic design 

3,011,712 156.32 05/11/2018 22:16:50 >200 

VPC design 1,107,535 141.01 29/11/2018 17:22:58 ~ 165 

ITR-PC 
design 

option 11 330 75.39 01/12/2018 23:58:19 < 0.1 

option 12 233 75.44 01/12/2018 23:58:17 < 0.1 

option 21 226 73.47 01/12/2018 23:57:40 < 0.1 

option 22 220 73.39 01/12/2018 23:56:52 < 0.1 

Table 5.7 Velocity impulses from different patched conic techniques 

Design 
Velocity impulses (m/s) 

TPI POI Total 

Conventional PC design 1355.22 2248.21 3603.43 

VPC design 1311.61 2223.38 3545.41 

ITR-PC design 

option 11 1309.93 2233.54 3543.48 
option 12 1310.25 2233.57 3543.82 
option 21 1308.71 2233.44 3542.15 
option 22 1309.02 2233.23 3542.25 

 In Table 5.8, the conventional patched conic design and the ITR-PC design 

(option 11) are given for a DPO/APO inclination of 90 deg. In this case, Eqs. (3.6) and 

(3.7) have singularities. As discussed earlier, this situation is handled by adopting the 
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values of 𝛼∞ and (180−𝛼∞) for RAAN to avoid arithmetic overflow. It is to be noted that 

even though the differences in departure RAAN (0.02 deg) between the two designs is 

small and departure AoP (2 deg) is large, there is a large improvement in the achievable 

accuracies of the arrival target parameters (achieved CAA 320 km, inclination 90.12 deg 

and the time of periapsis deviates by about 1.5 minutes) on numerical propagation under 

the force model PCFM (cf. Table 5.9). Similar trend as in Table 5.6 is seen. This clearly 

brings out the need to improve the conventional patched conic design. 

Table 5.8 Conventional patched conic and ITR-PC designs (𝒊∞𝑫
= 90 deg; 𝒊∞𝑨

= 90 deg) 

Parameters Conventional PC design ITR-PC design 

𝑎∞𝐷 (km) -51239.9 -58875.2 

𝑒∞𝐷 1.130330 1.113428 

𝛺∞𝐷 (deg) 321.6262 321.6492

𝜔∞𝐷(deg) 170.9305 168.9178 

𝑎∞𝐴(km) -4881.1 -4978.0 

𝑒∞𝐴 1.755807 1.7410 

𝛺∞𝐴(deg) 65.6645 65.4988 

𝜔∞𝐴(deg) 115.4617 115.5243 

Table 5.9 Achievable accuracies on numerical propagation under PCFM 

Designs 
Achieved 
CAA (km) 

Arrival 
inclination (deg) 

𝑇𝑃 (UTC) 
 

Desired value 300 90.0 2 Dec 2018 00:00:00 

Conventional PC design 3,054,598 156.4 6 Nov 2018 16:37:54 

ITR-PC design 320.11 90.12 1 Dec 2018 23:58:31 

5.3.1 Sensitivity Analysis 

To bring out the sensitivity of the achievable accuracies to the departure hyperbolic orbital 

elements, an analysis is carried out. Each of the departure design parameters (cf. Table 

5.3, option 11) viz. semi-major axis, eccentricity, inclination, RAAN and AoP are 

perturbed one-at-a-time and the design is numerically propagated under the design force 

model PCFM. 

 The deviations in the achievable accuracies give an indication of the sensitivity of 

the design parameters. Table 5.10 presents the achievable accuracies on perturbing the 

departure RAAN of the ITR-PC design. The target parameters undergo considerable 

deviations if the perturbation is greater than ±0.001 deg. The deviation in the departure 
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RAAN deviates 𝑇𝑃 significantly (1 deg change deviates 𝑇𝑃 by 3 days). If the departure 

RAAN is perturbed by about 0.01 deg, it results in impact. Table 5.11 gives the achievable 

accuracies on perturbing the departure AoP of the ITR-PC design. Note that the target 

parameters undergo considerable deviations if the perturbation is greater than ±0.0001 

deg. The deviation in the departure AoP deviates the arrival/APO inclination significantly 

(0.001 deg change deviates APO inclination by about 3 deg).  

Table 5.10 Sensitivity of achievable accuracies to departure RAAN 

Perturbation (deg) CAA (km) Arr. Inc. (deg) 𝑇𝑃 (UTC) 

-1 112,305 128.9 29 Nov 2018 03:00:16 

-0.1 10,280 116.3 1 Dec 2018 17:15:56 

-0.01 937 84.1 1 Dec 2018 23:18:04 

-0.001 382 76.3 1 Dec 2018 23:54:36 

-0.0001 334 75.4 1 Dec 2018 23:58:16 

0.0001 324 75.3 1 Dec 2018 23:59:05 

0.001 278 74.4 2 Dec 2018 00:02:46 

0.01 -91 (impact) 64.9 2 Dec 2018 00:39:43 

0.1 5,037 14.7 2 Dec 2018 07:17:00 

1 151,819 37.3 5 Dec 2018 01:23:47 

 

Table 5.11 Sensitivity of achievable accuracies to departure AoP 

Perturbation (deg) CAA (km) Arr. Inc. (deg) 𝑇𝑃 (UTC) 
-1 409,597 38.4 2 Dec 2018 05:51:16 

-0.1 30,709 30.3 2 Dec 2018 01:01:39 

-0.01 -80 (impact) 41.6 1 Dec 2018 23:59:16 

-0.001 201 72.3 1 Dec 2018 23:58:27 

-0.0001 316 75.1 1 Dec 2018 23:58:39 

0.0001 343 75.6 1 Dec 2018 23:58:42 

0.001 474 78.2 1 Dec 2018 23:58:56 

0.01 2,410 98.1 2 Dec 2018 00:02:45 

0.1 36,161 132.0 2 Dec 2018 00:25:15 

1 392,413 139.0 1 Dec 2018 23:10:49 

 Table 5.12 depicts the achievable accuracies on perturbing the inclination of the 

departure hyperbolic orbit (ITR-PC design). Here, the target parameters undergo 
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considerable deviations if the perturbation is greater than ±0.001 deg. Table 5.13 presents 

the achievable accuracies on perturbing the eccentricity of the departure hyperbolic orbit 

(ITR-PC design). The eccentricity is a highly sensitive parameter and so the target 

parameters undergo considerable deviations if the perturbation is > ±0.00001. Table 5.14 

gives the achievable accuracies on perturbing the semi-major axis of the departure 

hyperbolic orbit (ITR-PC design). Here, the target parameters undergo considerable 

deviations if the perturbation is greater than ±1 km. Thus, it can be concluded that the 

arrival parameters are extremely sensitive to even a small change in any one of the 

characteristics of the departure hyperbolic orbit. So, the departure design parameters 

must be obtained with a reasonably good accuracy. 

Table 5.12 Sensitivity of achievable accuracies to departure inclination 

Perturbation (deg) CAA (km) Arr. Inc. (deg) 𝑇𝑃 (UTC) 

-1 185,788 134.4 29 Nov 2018 13:31:19 

-0.1 16,464 123.5 1 Dec 2018 18:18:10 

-0.01 1319 88.8 1 Dec 2018 23:16:14 

-0.001 466 78.0 1 Dec 2018 23:55:27 

-0.0001 395 76.7 1 Dec 2018 23:58:27 

0.0001 380 76.4 1 Dec 2018 23:59:08 

0.001 314 75.1 2 Dec 2018 00:02:09 

0.01 -146 (impact) 60.6 2 Dec 2018 00:32:49 

0.1 10,775 21.9 2 Dec 2018 06:21:10 

1 208,618 37.6 4 Dec 2018 14:00:47 

Table 5.13 Sensitivity of achievable accuracies to eccentricity of 
departure hyperbolic orbit 

Perturbation CAA (km) Arr. Inc. (deg) 𝑇𝑃 (UTC) 

-0.001 38,141 132.3 2 Dec 2018 00:28:31 

-0.0001 2516 98.3 1 Dec 2018 23:45:03 

-0.00001 503 77.9 1 Dec 2018 23:40:56 

0.00001 223 71.8 1 Dec 2018 23:40:23 

0.0001 -84 41.6 1 Dec 2018 23:58:58 

0.001 32,119 30.7 2 Dec 2018 01:00:30 
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 It is to be noted that the high sensitivity of the arrival parameters to the initial 

departure conditions indicate that the perturbations in the departure phase must be 

included in the trajectory design process. In other words, an interplanetary mission 

would miss its target entirely if the perturbing forces in the departure phase were not taken 

into account in the trajectory design.  

5.3.2 Comparison of Conventional Patched conic and ITR-PC Techniques 

From section 5.3, it is clear that the conventional PC design must be improved. Also, the 

high sensititvity of the arrival target parameters to the departure design parameters are 

brought out in section 5.3.1. This section presents a comparative analysis of the 

conventional PC and ITR-PC designs generated for a range of departure epochs and flight 

durations. 

Table 5.14 Sensitivity of achievable accuracies to semi-major axis of  

departure hyperbolic orbit  

Perturbation (km) CAA (km) Arr. Inc. (deg) 𝑇𝑃 (UTC) 

-1000 510,389 21.0 4 Dec 2018 22:22:40 

-100 42,005 14.6 2 Dec 2018 07:48:39 

-10 1,377 39.4 2 Dec 2018 00:44:03 

-1 303 71.2 2 Dec 2018 00:02:49 

1 366 79.1 1 Dec 2018 23:54:35 

10 1,924 108.3 1 Dec 2018 23:21:18 

100 42,754 151.1 1 Dec 2018 17:46:21 

1000 469,412 158.1 29 Nov 2018 00:46:08 

Initially, the conventional patched conic (PC) and ITR-PC designs are generated 

for a range of departure epochs (1 April 2018 to 30 June 2018). The differences in the 

departure/TPI angles (RAAN and AoP) between the conventional patched conic and ITR-

PC designs are depicted in Fig.5.2a. For this range of departure epochs, the difference in 

departure RAAN varies from -0.8 deg to 0.2 deg. There are three random departure 

epochs for which the difference becomes almost zero. Note that, the corresponding 

designs are generated from different V-infinity vectors obtained using the conventional 

PC and ITR-PC techniques, even though for the same opportunity. Furthermore, the 

difference in departure AoP vary from 0.5 to 2.05 deg. Figure 5.2b shows the differences 
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in the arrival angles (RAAN and AoP) between the conventional patched conic (PC) and 

ITR-PC designs. The maximum difference in the arrival RAAN is about 0.13 deg and 

arrival AoP is about 0.27 deg. Figure 5.3 shows the differences in the TPI and POI 

velocity impulses between the PC and ITR-PC designs. The maximum difference in TPI 

is 45 m/s and POI is 15 m/s. Note that the total velocity impulse of the ITR-PC design is 

significantly smaller than that of the conventional patched conic design. 

 

(a) 

 

(b) 

Fig.5.2. Difference in (a) departure angles (b) arrival angles between the PC and ITRPC 

designs (option 11) for different departure epochs 
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Fig.5.3. Difference in TPI and POI velocity impulses between the PC and ITRPC 

designs (option 11) for different departure epochs 

The conventional and ITR-PC designs are generated for a range of flight durations 

(150 to 250 days). The differences in the departure/TPI angles; RAAN and AoP (deg) 

between the conventional patched conic and ITR-PC designs are depicted in Fig.5.4a. For 

this range of flight duration, the difference in the departure RAAN varies from 0 deg to 

about 0.4 deg. The difference in the departure AoP varies between -0.2 to 1.2 deg. From 

figure 5.4b, the differences in the arrival angles are vary from 0 deg to 0.2 deg. The 

difference is very large for the 180 deg transfer case. Figure 5.4c shows the differences 

in the TPI and POI velocity impulses between the PC and ITR-PC designs. The maximum 

difference is 45.5 m/s for TPI and 15.6 m/s for POI in the range of flight durations for 

which the transfer angles are less than 180 deg. The total velocity impulse of the ITR-PC 

design is significantly smaller than that of the conventional patched conic design. The 

difference increases in the neighbourhood of 250 days which corresponds to the 180 deg 

transfer regime. Thus, it can be concluded that the differences between the conventional 

PC and ITR-PC designs vary randomly for different mission scenarios. Hence, it is 

necessary to carry out the design analysis using the ITR-PC technique to comprehend 

the trends and tradeoffs for an actual mission.   
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(a) 

 

(b) 

 

(c) 

Fig.5.4. Difference in (a) departure angles (b) arrival angles (c) TPI and POI velocity 

impulses between the PC and ITRPC designs (option 11) for different flight durations 
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5.4 Design Analysis  

An analysis of all the four design options for different mission scenarios is carried out 

using ITR-PC technique. The significance of identifying the four design options available 

for any opportunity and some inferences drawn from the design analysis using the four 

design options are presented towards the end of this section (section 5.4.6). The inputs 

for the analysis are; (i) departure epoch 12 May 2018 0 h TDB and flight duration/time 

of flight 204 days, (ii) DPO periapsis altitude 300 km and apoapsis altitude 25000 km, 

(iii) DPO inclination 75 deg with respect to Earth equator and equinox of J2000, (iv) APO 

300 km circular, (v) APO inclination 75 deg with respect to Mars equator and equinox of 

J2000, and (vi) SOI-duration of the departure and arrival phases 3 and 2 days respectively.  

5.4.1 Different departure epochs 

The departure epoch is varied from 1 April 2018 to 30 June 2018 which is around the 

minimum energy opportunity. To understand the pattern in which the V-infinity vector 

(magnitude and the orientation angles: right ascension and declination) changes over this 

duration, the variation for the departure and arrival phases are shown in Figs. 5.5 and 5.6 

respectively for option 11. Similar trend follows for the other three design options and 

hence, not presented. Note that the minimum energy opportunity is computed as the 

opportunity wherein the value of V-infinity is minimum. Figure 5,5c gives the variation 

of declination of the V-infinity vector for different opportunities. For feasible transfer, 

the inclination for the corresponding opportunities much be chosen such that it is greater 

than the declination value. 

 The net variation of departure angles for the design options 11 and 21 are shown 

in Fig.5.7a. The departure angles are largely different between these two design options. 

Note that the departure RAAN varies by nearly 80 deg for option 11 and 25 deg for option 

21. Also, the departure AoP varies by nearly 50 deg for both the options 11 and 21 (cf. 

Fig.5.7b). Because, the departure angles vary by a small value between the design options 

11 and 12, Fig.5.8a presents the differences in the departure RAAN and AoP. The 

differences are small (maximum difference: RAAN, 0.11 deg and AoP, 0.075 deg) yet 

significant as the corresponding arrival angles have large differences (Fig.5.8b). Similar 

trend is seen between options 21 and 22 and hence, not presented. 
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(a) 

 

(b) 

 

(c) 

Fig.5.5.Variation of departure V-infinity vector of options 11 (from ITR-PC) for 

different departure epochs (a) magnitude (b) right ascension and (c) declination 
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(a) 

 

(b) 

 

(c) 

Fig.5.6.Variation of arrival V-infinity vector of options 11 (from ITR-PC) for different 

departure epochs (a) magnitude (b) right ascension and (c) declination 
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(a) 

 

(b) 

Fig.5.7.Variation of departure angles of options 11 and 21 (from ITR-PC) for different 

departure epochs (a) departure RAAN (b) departure AoP 
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(a) 

 

(b) 

Fig.5.8. Difference in (a) departure angles, (b) arrival angles between options 11 and 12 

(from ITR-PC) for different departure epochs. 
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(a) 

 
(b) 

Fig.5.9. (a) Variation of total velocity impulse and transfer angle, (b) difference in 

magnitude of total velocity impulse between option 11 and the other three options,  

for different departure epochs 
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Figure 5.9a gives the total velocity impulse required for the interplanetary transfer 

for all the four design options. The range of departure epochs is extended to include the 

180 deg transfer cases also. Note that the total velocity impulse is extremely high, about 

40 km/s for the 180 deg transfer case. This is because when the departure planet Sun and 

the target planet are roughly lined up, the dynamics of a single plane transfer forces the 

transfer trajectory to go over the Sun. This situation is due to the relative inclinations of 

the planets. To perform out of plane maneuver, huge velocity impulse is required. When 

the transfer angle is not in the neighborhood of 180 deg, the total velocity impulse 

required for the interplanetary transfer comes down to about 4 to 7 km/s. Similar trend is 

seen for all options. Figure 5.9b shows the differences in the total velocity impulse 

between the design option 11 and the other three design options (21, 12 and 22) for the 

range of departure epochs excluding the 180 deg transfer regime and is about 3 to 7 m/s 

only (cf. Fig.5.9b). Similar trend is expected for the differences between other options as 

well. It can be concluded that, for different departure epochs excluding the 180 deg 

transfer regime, the total velocity impulses between different design options are almost 

the same. Thus, any arrival condition can be achieved without incurring significant 

change in the total velocity impulse. The computation time required to generate the ITR-

PC designs for this range of departure epochs (5 months; step size, 24 h) and fixed flight 

duration is only 242 ms with an Intel core i5 2.5GHz processor. It is evident that the ITR-

PC technique generates data for design analysis very quickly. 

5.4.2 Different periapsis altitudes of departure hyperbolic orbit/ DPO  

The DPO periapsis altitude is varied from 200 km to 2000 km. The variation of the 

departure RAAN of design options 11 and 21 for different DPO periapsis altitudes are 

shown in Fig.5.10a. The variation for this range of DPO periapsis altitudes is only about 

0.02 deg for option 11 and 0.002 deg for option 21. The variation of the departure AoP 

of design options 11 and 21 is about 3 deg for different DPO periapsis altitudes and are 

shown in Fig.5.10b. The differences in departure angles between design options 11 and 

12 are shown in Fig.5.11a. These differences are negligibly small but result in large 

difference in arrival angles (RAAN, 174 deg and AoP, 199 deg; cf. Fig.5.11b). The total 

velocity impulse required for the interplanetary transfer with different DPO periapsis 

altitudes for option 11 is shown in Fig.5.12a and the variation is about 120 m/s. For 

interplanetary transfer, lower periapsis altitude is preferable for the departure parking 
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orbit because the total velocity impulse is less. It is well known that the launch vehicle 

can achieve more payload for lower altitudes. The differences in the total velocity 

impulse between the design option 11 and the other three design options are shown in 

Fig.5.12b. It can be noted that the differences are less than 1 m/s. 

 
(a) 

 
(b) 

Fig.5.10.Variation of (a) departure RAAN, (b) departure AoP of options 11 and 21 

(from ITR-PC) for different DPO periapsis altitudes 
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(a) 

 
(b) 

Fig.5.11. Difference in (a) departure angles, (b) arrival angles between options 11 and 

12 (from ITR-PC) for different departure epochs. 
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(a) 

 
(b) 

Fig.5.12. (a) Variation of total velocity impulse of option 11, (b) difference in the 

magnitude of total velocity impulse between option 11 and the other three options,  

for different DPO periapsis altitudes 
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5.4.3 Different inclinations of departure hyperbolic orbit/DPO  

As pointed out earlier, the feasible inclination for the design option 11 starts from –37.2 

deg to 142.8 deg (cf. Table 5.2). The variation of the departure RAAN of all the four 

distinct design options for different DPO inclinations are shown in Fig.5.13a. Note that 

the variation is symmetric about 90 deg. The net variation in departure RAAN are about 

170 deg for the design options 11 and option 12, and 150 deg for the design options 21 

and 22 for this range of DPO inclinations. The net variation in departure AoP is about 42 

deg for all the four distinct departure design options and are shown in Fig.5.13b. The 

differences in departure angles between the design options 11 and 12 are shown in 

Fig.5.14a.The maximum difference in departure RAAN is about 0.6 deg and AoP is about 

0.5 deg. These result in large differences in the arrival angles, 174 deg for RAAN and 

199 deg for AoP (cf. Fig.5.14b).  

The total velocity impulse required for the interplanetary transfer for different 

DPO inclinations is shown in Fig.5.15a and the net variation is about 4 m/s. This brings 

out the fact that all feasible DPO inclinations can be used for interplanetary transfer 

with a penalty of less than 4 m/s in total velocity impulse. The differences in the total 

velocity impulse between the design option 11 and the other three design options are 

shown in Fig.5.15b. It can be noted that the differences are less than 1 m/s. It can be 

concluded that any design option can be chosen with a marginal penalty which is less 

than 1 m/s. 

 

(a) 
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(b) 

Fig.5.13.Variation of (a) departure RAAN, (b) departure AoP of options 11 and 21 

(from ITR-PC) for different DPO inclinations 

 

(a) 
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(b)

Fig.5.14. Difference in (a) departure angles, (b) arrival angles between options 11 and 

12 (from ITR-PC) for different DPO inclinations. 

 

(a) 
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(b) 

Fig.5.15. (a) Variation of total velocity impulse of option 11, (b) difference in the 

magnitude of total velocity impulse between option 11 and the other three options,  

for different DPO inclinations 

5.4.4 Different periapsis altitudes of arrival hyperbolic orbit/ APO  

The APO periapsis altitude is varied from 200 km to 2000 km. The variation of the 

departure RAAN of design options 11 and 21 for different APO periapsis altitudes are 

shown in Fig.5.16a. The net variation in departure RAAN is only about 0.012 deg for 

option 11 and 0.0012 deg for option 21. The net variation of the departure AoP of design 

options 11 and 21 for different APO periapsis altitudes are shown in Fig.5.16b and the 

net variation is about 0.015 deg for the design option 11, and about 0.02 deg for the design 

option 21. The differences in departure angles between design options 11 and 12 are 

shown in Fig.5.17a. The maximum difference in departure RAAN for this range of APO 

periapsis altitudes is 0.074 deg and about 0.092 deg in departure AoP. These result in 

large differences in the arrival angles (RAAN, 174 deg and AoP, 199 deg; cf. Fig.5.17b).  

The total velocity impulse required for the interplanetary transfer with different 

APO periapsis altitudes for option 11 is shown in Fig.5.18a and the variation is about 115 

m/s. It is to be noted that directly targeting lower APO periapsis altitudes is beneficial 

compared to the strategy of targeting higher APO periapsis altitudes and then reducing 

to lower APO periapsis altitudes. For example, to achieve 200 km circular orbit around 
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Mars, the total velocity required is 3555 m/s and for 400 km is 3535 m/s. The difference 

is only 20 m/s whereas if the initial target is 400 km and later circularized to 200 km, the 

total velocity required is 92 m/s which is larger. The differences in the total velocity 

impulse between the design option 11 and the other three design options are shown in 

Fig.5.18b. It can be noted that the differences are less than 1 m/s. 

 
(a) 

 
(b) 

Fig.5.16.Variation of (a) departure RAAN, (b) departure AoP of options 11 and 21 

(from ITR-PC) for different APO periapsis altitudes 
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(a) 

 

(b) 

Fig.5.17. Difference in (a) departure angles, (b) arrival angles between options 11 and 

12 (from ITR-PC) for different APO periapsis altitudes 
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(a) 

 

(b) 

Fig.5.18. (a) Variation of total velocity impulse of option 11, (b) difference in the 

magnitude of total velocity impulse between option 11 and the other three options,  

for different APO periapsis altitudes 
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5.4.5 Different inclinations of arrival hyperbolic orbit/APO  

For the 2018 minimum energy opportunity, the declination of arrival V-infinity vector is 

9.25 deg. Hence, the APO inclination is varied from 10 deg to 170 deg for feasible 

transfer. The variation of the departure RAAN of the design options 11 and 21 for 

different APO inclinations are shown in Fig.5.19a. Note that the variation is symmetric 

about an inclination of 90 deg. The net variation is only about 0.065 deg for the design 

option 11 and 0.035 deg for design option 21. The variation of the departure AoP of the 

distinct departure design options 11 and 21 for different APO inclinations are shown in 

Fig.5.19b. The net variation is only about 0.05 deg for the design option 11 and 0.07 deg 

for design option 21. Thus, for different APO inclinations, the variation in departure 

angles are very small. The differences in departure angles between design options 11 and 

12 are shown in Fig.5.20a.The maximum difference in departure RAAN is about 0.06 deg 

and AoP is about 0.08 deg. These result in large differences in the arrival angles (cf. 

Fig.5.20b).  

The total velocity impulse required for the interplanetary transfer with different 

APO inclinations for the design option 11 is shown in Fig.5.21a and the variation is less 

than 1 m/s. This clearly indicates that any feasible APO inclination can be achieved 

without incurring significant additional velocity impulse. The differences in the total 

velocity impulse between the design option 11 and the other three design options are 

shown in Fig.5.21b. It can be noted that the differences are less than 1 m/s. 

 

(a) 
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(b) 

Fig.5.19.Variation of (a) departure RAAN, (b) departure AoP of options 11 and 21 

(from ITR-PC) for different APO inclinations 

 

(a) 
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(b) 

Fig.5.20. Difference in (a) departure angles, (b) arrival angles between options 11 and 

12 (from ITR-PC) for different APO inclinations 

 

(a) 



Chapter 5   113 

 

 

(b) 

Fig.5.21. (a) Variation of total velocity impulse of option 11, (b) difference in the 

magnitude of total velocity impulse between option 11 and the other three options,  

for different APO inclinations 

5.4.6 Some Important Inferences from Design Analysis 

The design analysis of all the four distinct options for different mission scenarios have 

been carried out and many important inferences are drawn such as, 

1) Any arrival geometry (corresponding to option 11 or option 12) can be achieved 

without incurring significant change in the total velocity impulse. 

2) For interplanetary transfer, lower periapsis altitude is preferable for the departure 

parking orbit, for a fixed apoapsis altitude, because the total velocity impulse 

required is less. Also, the launch vehicle can achieve more payload in this 

scenario. 

3) For the whole range of feasible DPO inclinations, the interplanetary transfer 

incurs a penalty of less than 4 m/s only.  

4) Any of the four design options can be chosen depending upon the mission 

requirement, for a given DPO inclination, with only a marginal penalty in total 

velocity impulse (less than 1 m/s). 
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5) Directly targeting lower APO periapsis altitudes is beneficial compared to the 

strategy of targeting higher APO periapsis altitudes and then reducing to lower 

APO periapsis altitudes. 

6) Any feasible APO inclination can be achieved without incurring significant 

additional velocity impulse. 

7) The feasible range of DPO inclinations for coplanar transfer are obtained more 

accurately. 

5.5 Conclusions 

The iterative patched conic technique generates analytical designs whose departure angles 

have only small differences from the corresponding values of the conventional patched 

conic designs. Yet, the achievable accuracies of the arrival target parameters on numerical 

propagation of the ITR-PC designs show huge improvement over that of the conventional 

patched conic designs. This is showcased through the sensitivity analysis which points 

out that the achievable accuracies of the arrival parameters undergo significant 

deviation for even a small perturbation in the departure hyperbolic orbit 

characteristics. The sensitivity analysis also brings out the fact that the perturbations

in the departure phase have to be included in the trajectory design process. 

 While the conventional and the V-infinity tuned patched conic techniques 

generate four notional design options for an opportunity, the ITR-PC technique 

generates four distinct transfer trajectory design options. The ITR-PC technique 

generates improved designs which can be used as initial guess for numerical refinement. 

The trajectory correction maneuver (TCM) required for the ITR-PC designs under the 

design force model to meet the desired target conditions is less than 1 m/s whereas the 

TCM required for the conventional design is more than 200 m/s. Also, the computation 

time for the generating the ITR-PC design is only about 6 ms. So, this technique can be 

used to generate quick analytical designs with improved accuracies compared to the 

conventional analytical techniques. The FORTRAN 95 code, developed based on this 

technique, is used as a design analysis tool to understand the trends and tradeoffs of 

various mission scenarios. The design analysis of all the four distinct options for 

different mission scenarios have been carried out and many important inferences are 

drawn.  
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The ITR-PC technique, while maintaining the simplicity of the patched conic 

approach, generates better initial guess for numerical refinement and also distinctly 

identifies the four design options for a given opportunity. The use of this technique for 

mission planning and analysis provides in-depth insight into the realistic trends and 

tradeoffs of various mission scenarios. 

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠ 
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CHAPTER 6 

BIASED-ITERATIVE PATCHED CONIC TECHNIQUE 
FOR TRANSFER TRAJECTORY DESIGN 

6.1 Chapter Summary 

The iterative patched conic technique achieves the target parameters with reasonably good 

accuracy under the design force model (cf. Chapter 5). However, on numerical 

propagation under a force model that includes perturbations, there are significant 

deviations in the arrival target parameters. Further, the numerical refinement of the ITR-

PC design, under the force model including perturbations, converges to any of the design 

options in the absence of additional information on the arrival parameters. So, the ITR-

PC design needs to be improved under a force model that includes perturbations. This 

chapter includes the major perturbing forces in the analytical design process and generates 

an improved trajectory design. The proposed technique, named as biased-iterative 

patched conic technique (B-ITRPC), modifies the ITR-PC design to include the major 

perturbing forces in the departure phase of the interplanetary trajectory design process. 

This technique generate analytical designs that are close to the numerical designs and 

hence, is used to develop a quick mission design and analysis tool to understand the 

realistic trends with improved accuracy. The current chapter begins with a study which 

identifies the major perturbing forces that influences the interplanetary transfer trajectory 

and proceeds to present the new technique. 

6.2 Introduction  

There are many perturbing forces apart from the primary body that influence the trajectory 

of the spacecraft. Considering perturbing forces in the departure phase is critical because 

the accuracy with which the V-infinity vector is determined influences the achieved target 

parameters on arrival. The perturbations are classified into two types: 

1) Gravitational perturbation, such as oblateness of Earth and the third-body 

attraction.  
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2) Non-gravitational perturbation, such as solar radiation pressure and atmospheric 

drag.  

A study to identify the major perturbing forces that influences the interplanetary transfer 

trajectory during the departure phase is carried out. The current chapter focuses on an 

analytical trajectory design technique that includes the identified perturbations in the 

design process. The proposed analytical technique, named as biased-iterative patched 

conic technique (B-ITRPC), generates improved trajectory design.  

In the B-ITRPC design process, the initial design is obtained using the iterative 

patched conic technique (ITR-PC) for the prefixed departure design parameters such as 

the periapsis altitude, inclination and the SOI-duration. The state vector of the patch point 

of the current ITR-PC design is propagated backward including the perturbations which 

results in different departure design parameters. The backward propagation of the state 

vector at the SOI is carried out analytically using linear approximation technique (Zhang 

et al., 2014). The differences in the departure design parameters are computed and used

to bias the input parameters at the departure epoch. These input parameters are used to 

obtain the ITR-PC design in the subsequent iterations. In this technique, the equations of 

motion are linearized about an initial point and the solutions of the linearized equations 

of motion are obtained from the closed form expressions using the generalized spectral 

decomposition theorem. Thus, the B-ITRPC technique includes two loops, (i) an inner 

loop that obtains the ITR-PC design and (ii) an outer loop that obtains the biased input 

parameters/departure design parameters. The B-ITRPC design, thus obtained, is very 

close to the numerical design. Also, the B-ITRPC design is an excellent initial guess for 

numerical refinement even under a realistic force model that includes the perturbations. 

It does not require additional information on the arrival geometry unlike the ITR-PC 

design.  

The current chapter is organized as follows. Section 6.3 identifies the major 

perturbations that are to be included in the B-ITRPC technique. The equations of motion 

that include the perturbations and the linear approximation technique are explained in 

section 6.4. The solutions of the linearized equations of motion using the generalized 

spectral decomposition theorem are discussed in section 6.5. The detailed algorithm of 

the B-ITRPC technique is provided in section 6.6. In section 6.7, the performance of the 

proposed design technique is illustrated using an Earth to Mars orbit mission for the 

minimum energy opportunity of 2018. The FORTRAN 95 code developed based on the 

B-ITRPC technique is used as a quick mission design and analysis tool in section 6.8. 
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The proposed technique is used to analyze the trajectory design of India’s maiden 

interplanetary transfer, the Mars Orbiter Mission (MOM) in section 6.9. The trajectory 

design for the MAVEN mission which utilized the same opportunity is also generated 

using the B-ITRPC technique. The B-ITRPC trajectory designs are generated for Earth to 

Jupiter and Earth to Venus direct transfers for the upcoming minimum energy 

opportunities of 2022 and 2023 respectively and presented (cf. section 6.10). In section 

6.11, the performance of different analytical techniques is consolidated. Section 6.12 

presents the chapter conclusions. 

6.3  Major Perturbations 

To identify the major perturbing forces that influence the interplanetary transfer 

trajectory, the ITR-PC design for an Earth to Mars transfer (minimum energy opportunity: 

2018) is numerically propagated under different forces models. In the force models, 

different perturbing forces are included in the departure phase. The achieved arrival 

parameters on numerical propagation under different force models are given in Table 6.1. 

It can be seen that the deviations in the arrival parameters are maximum (achieved CAA 

2,16,733 km, inclination 19.76 deg and the time of periapsis deviates by about 7.3 h) due 

to the non-spherical gravity of Earth. Also, the deviations are significantly large for the 

perturbations due to the third body gravity effects of the Moon and the Sun.  Note that, 

the inclusion of the third body effects of the other bodies such as Jupiter, Saturn, Venus, 

Mars, and Mercury etc. in the departure phase does not cause significant deviations in the 

arrival target parameters (achieved CAA 329 km, inclination 75.41 deg and the time of 

periapsis deviates by about 2 minutes). Also, the non-gravitational perturbations such as 

the solar radiation pressure and atmospheric drag are modelled for a spacecraft assuming 

a dry mass of 1000 kg and a cross-sectional area of 10 m2.  These forces cause small 

deviations in the arrival parameters and so, are not considered in the trajectory design 

process. 

The trajectory correction maneuvers (TCM) required for the ITR-PC design to 

achieve the desired target conditions under different force models are presented in Table 

6.1. The largest TCM correction is required to compensate for the non-spherical gravity 

perturbation of the Earth (15.3 m/s). The TCM requirement for the perturbations due to 

the Moon and the Sun are also significantly high (about 4 to 5 m/s). So, these perturbing 

forces are included in the departure phase of the B-ITRPC design process. Also note that, 

the TCM requirement to compensate for the third body gravity effects of the planets such 
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as Jupiter, Saturn, Venus, Mars, and Mercury etc. and the non-gravitational perturbations 

are less than 1 m/s. Based on the above analysis, it is concluded that the major 

perturbations such as the non-spherical gravity of the Earth and the third body gravity 

effects of the Sun and the Moon are to be essentially included in the trajectory design 

process. 

Table 6.1a Achievable accuracies on numerical propagation of ITR-PC design  
under different force models 

Index 
Perturbing forces in 
departure phase 

Arrival CAA 
(km) 

Arr. Inc. 
(deg) 

𝑇𝑃 (UTC) 
 

TCM 
(m/s) 

A Spherical Earth 330 75.40 
1 Dec 2018 

23:58:40 
< 1 

B A + all planets 329 75.41 
1 Dec 2018 

23:58:41 
<1 

C A + SRP 325 75.56 
1 Dec 2018 

23:57:42 
< 1 

D A + atmospheric drag 308 73.31 
2 Dec 2018 

00:00:37 
<1 

E A + Moon 1,14,852 20.03 
2 Dec 2018 

10:38:01 
5.2 

F A + Sun 1,05,317 19.88 
2 Dec 2018 

11:15:33 
4.6 

G Non-spherical Earth 2,16,733 19.76 
3 Dec 2018 

07:29:00 
15.3 

H G + Moon + Sun 4,62,978 21.52 
4 Dec 2018 

02:50:42 
18.1 

I H + all planets 4,62,979 21.52 
4 Dec 2018 

02:50:42 
18.0 

*Cruise phase: Sun; Arrival phase: Mars 
Desired values : CAA, 300 km; Inc., 75.00 deg and 𝑇𝑃, 2 Dec 2018 00:00:00 UTC 

 

6.4 Linear Approximation Technique  

The linear approximation technique (LA) is used to linearize the equations of motion 

about an initial point and the solutions of the linearized equations of motion are obtained 

in closed form using the generalized spectral decomposition theorem. This as an effective 

alternative to numerical propagation. From Table 6.1b, it is found that the LA technique 

is faster than the numerical integration of the equations of motion by about nine times for 

the same step size. A set of initial state vector (cf. Table 6.1b) is propagated using the LA 

technique and the numerical integration for the same duration (3 days) using a step size 

of 1 s. All major perturbing forces mentioned in section 6.3 are included in the force 

model. The state vector obtained from the numerical technique i.e. the numerical 
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integration of the equations of motion is taken as the reference. It is to be noted that the 

LA technique resulted in a state vector with marginal errors in the position and velocity 

vectors i.e. 2 km and 0.014 m/s respectively. The computation time required for the LA 

technique is only 4.7 s while the numerical technique required 41.8 s. So, it can be 

concluded that the LA propagation is a good alternative to obtain a reasonably accurate 

and quick result. 

Table 6.1b Comparison of analytical and numerical state vector propagation techniques 

Parameters *Initial LA propagation Numerical propagation 

𝑥(km) -5657.28 487072.49 487070.82 

𝑦(km) 3256.55 -396779.29 -396779.01 

𝑧(km) 1409.76 -507557.97 -507555.25 

�̇�(km/s) -3.4650 1.725662 1.725655 

�̇�(km/s) -1.4367 -1.372006 -1.372004 

�̇�(km/s) -10.5860 -1.670202 -1.670190

∆𝑟 (km) - 2.84 - 

∆𝑣 (m/s) - 0.014 - 

Computation 
time (s) 

- 4.7 41.8 

*corresponding initial departure hyperbolic orbital elements: 
𝑎∞𝐷= -58963.7 km; 𝑒∞𝐷=1.113258; 𝑖∞𝐷= 75 deg; 𝛺∞𝐷=333.3910 deg; 
𝜔∞𝐷=167.3762 deg; 𝜈𝑃∞𝐷=0 deg 
step size = 1 s 

6.4.1 Linearization of Equations of Motion 

The four-body geometry is shown in Fig.6.1. The geocentric equations of motion of the 

spacecraft in the EME2000 inertial frame are, 

�̇� = 𝒗                                                                    (6.1) 

𝒂 = �̇� = −𝜇𝑒 (
𝒓
𝑟3) − 𝜇𝑚 (

𝒓𝒎𝒅
𝑟𝑚𝑑3 +

𝒓𝒎
𝑟𝑚3)−𝜇𝑠 (

𝒓𝒔𝒅
𝑟𝑠𝑑3 +

𝒓𝒔
𝑟𝑠3) + 𝑭                        (6.2) 

where 𝒓, 𝒗 and 𝒂 are the geocentric position, velocity and acceleration vectors of the 

spacecraft respectively, 𝒓𝒎𝒅 is the selenocentric position vector of the spacecraft, 𝒓𝒎 is 

the geocentric position vector of the Moon, 𝒓𝒔𝒅 is the heliocentric position vector of the 

spacecraft,  𝒓𝒔 is the geocentric position vector of Sun. The disturbing function ′𝑭′ 

includes the non-spherical perturbations due to Earth and its components [Schaub, 2009] 

are as follows. 



Chapter 6   121 
 

𝐹𝑥 = −𝜇𝑒 (
𝑥

𝑟3
) [

3

2
𝐽2

𝑅𝑒
2

𝑟2
(1 − 5

𝑧2

𝑟2
) +

5

2
𝐽3

𝑅𝑒
3

𝑟3
(3 − 7

𝑧2

𝑟2
)
𝑧

𝑟
−

5

8
𝐽4

𝑅𝑒
4

𝑟4
(3 − 42

𝑧2

𝑟2
+

             63
𝑧4

𝑟4
)−

3

8
𝐽5

𝑅𝑒
5

𝑟5
(35 − 210

𝑧2

𝑟2
+ 231

𝑧4

𝑟4
)
𝑧

𝑟
+

1

16
𝐽6

𝑅𝑒
6

𝑟6
(35 − 945

𝑧2

𝑟2
+ 3465

𝑧4

𝑟4
−

             3003
𝑧6

𝑟6
)]                                            (6.3a)     

𝐹𝑦 = −𝜇𝑒 (
𝑦

𝑟3
) [

3

2
𝐽2

𝑅𝑒
2

𝑟2
(1 − 5

𝑧2

𝑟2
) +

5

2
𝐽3

𝑅𝑒
3

𝑟3
(3 − 7

𝑧2

𝑟2
)
𝑧

𝑟
−

5

8
𝐽4

𝑅𝑒
4

𝑟4
(3 − 42

𝑧2

𝑟2
+

             63
𝑧4

𝑟4
)−

3

8
𝐽5

𝑅𝑒
5

𝑟5
(35 − 210

𝑧2

𝑟2
+ 231

𝑧4

𝑟4
)
𝑧

𝑟
+

1

16
𝐽6

𝑅𝑒
6

𝑟6
(35 − 945

𝑧2

𝑟2
+ 3465

𝑧4

𝑟4
−

             3003
𝑧6

𝑟6
)]                 (6.3b) 
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where 𝑅𝑒 is the equatorial radius of Earth and 𝐽2 to 𝐽6 are the zonal harmonic coefficients 

of the non-spherical Earth. Let 𝒓𝟎 and 𝒗𝟎 be the position and velocity vectors of the 

spacecraft at the initial time, 𝑡0. Equation 6.2 models the acceleration (𝒂 = �̇�) 

experienced by the spacecraft due to the primary and perturbing gravitational forces at 

any time, 𝑡. This acceleration is expressed as a Taylor series expansion around the initial 

point (𝒓𝟎) with the radius vector (𝒓) as the independent variable. 

𝒂 =  𝒂𝟎 + {( 
𝜕𝒂

𝜕𝒓
|
𝒓𝟎
𝛿𝒓) + ( 

𝜕𝒂

𝜕𝒓𝒎
|
𝒓𝒎𝟎

𝛿𝒓𝒎) + ( 
𝜕𝒂

𝜕𝒓𝒔
|
𝒓𝒔𝟎

𝛿𝒓𝒔)} + {(
1

2!
 
𝜕2𝒂

𝜕𝒓2
|
𝒓𝟎
(𝛿𝒓)2) + ⋯  

(6.4) 

where the term ‘𝛿𝒓’is defined as, 

𝛿𝒓 = 𝒓(𝑡) − 𝒓( 𝑡0)                                                            (6.5a)      

𝛿𝒓𝒎 = 𝒓𝒎(𝑡) − 𝒓𝒎( 𝑡0)                                                   (6.5b)      

𝛿𝒓𝒔 = 𝒓𝒔(𝑡) − 𝒓𝒔( 𝑡0)                                                      (6.5c)      

Eq. 6.5a is obtained by solving  

𝛿�̇� = 𝒗                                                               (6.6) 

Eq. 6.5b is solved in the next section. Because the heliocentric position vector of the 

spacecraft varies very slowly for the prefixed step size (1 s) used for LA propagation, the 
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value of 𝛿𝒓𝒔 is very small and so, can be neglected. The current research considers the 

linearized equations of motion and so only the first order term of Eq. 6.4 is considered. 

Through linear expansion about the initial point during a finite time span from 𝑡0 to 𝑡, Eq. 

6.2 can be approximated as,    

�̇� = 𝑴𝛿𝒓 + 𝑴′𝛿𝒓𝒎 + 𝑪                                                        (6.7) 

where C includes the terms corresponding to the perturbations which do not change over 

a finite duration (𝛿𝑡 =  𝑡0 − 𝑡). Note that the terms in C are different from the one given 

in Zhang et al. (2014) wherein the formulation for LA technique is in the context of lunar 

transfer and so it considers only the third body perturbation due to the Moon. The 

formulation in the current research is in the context of interplanetary transfer wherein the 

third-body perturbations of due to the Sun and the non-spherical gravity of Earth are also 

considered in addition to the perturbation due to the Moon. The matrices 𝑴, 𝑴′ and 𝑴′′ 

in Eq. (6.7) are given as, 

𝑴 =  𝑴1 + 𝑴2 + 𝑴𝟒                                                     (6.8) 

𝑴′ =  𝑴3 −𝑴2                                                             (6.9) 

where 

 𝑴1 = −
𝜇𝑒
𝑟03 (𝐼 − 3�̂�𝟎�̂�𝟎

𝑇)                                                  (6.10) 

𝑴2 = −
𝜇𝑚
𝑟𝑚𝑑03 (𝐼 − 3�̂�𝒎𝒅𝟎�̂�𝒎𝒅𝟎

𝑇)                                   (6.11) 

𝑴3 = −
𝜇𝑚
𝑟𝑚03 (𝐼 − 3�̂�𝒎𝟎�̂�𝒎𝟎

𝑇)                                          (6.12) 

𝑴4 = −
𝜇𝑠
𝑟𝑠𝑑03 (𝐼 − 3�̂�𝒔𝒅𝟎�̂�𝒔𝒅𝟎

𝑇)                                        (6.13) 

where 𝜇𝑒, 𝜇𝑚 and 𝜇𝑠 are the gravitational constants of Earth, Moon and Sun respectively. 

The  notation ‘^’ refers  to  unit  vector  and  the  subscript ‘0’  indicates  the  initial 

condition. The components of C that includes the perturbations due to the non-spherical 

gravity of Earth upto six zonal harmonics and the lunisolar perturbations are, 

𝐶𝑥 = 𝐹𝑥 + {−𝜇𝑚 [
𝑥𝑚𝑑0
𝑟𝑚𝑑0

3 +
𝑥𝑚0

𝑟𝑚0
3] − 𝜇𝑠 [

𝑥𝑠𝑑0
𝑟𝑠𝑑0

3 +
𝑥𝑠0
𝑟𝑠0

3]}                   (6.14) 

𝐶𝑦 = 𝐹𝑦 + {−𝜇𝑚 [
𝑦𝑚𝑑0
𝑟𝑚𝑑0

3 +
𝑦𝑚0

𝑟𝑚0
3] − 𝜇𝑠 [

𝑦𝑠𝑑0
𝑟𝑠𝑑0

3 +
𝑦𝑠0
𝑟𝑠0

3]}                    (6.15) 

𝐶𝑧 = 𝐹𝑧 + {−𝜇𝑚 [
𝑧𝑚𝑑0
𝑟𝑚𝑑0

3 +
𝑧𝑚0

𝑟𝑚0
3] − 𝜇𝑠 [

𝑧𝑠𝑑0
𝑟𝑠𝑑0

3 +
𝑧𝑠0
𝑟𝑠0

3]}                     (6.16) 
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Fig.6.1. Four-body geometry 

The solutions of Eqs. (6.2) and (6.6) are obtained in closed form using the generalized 

spectral decomposition theorem which is discussed in the following section.  

6.4.2 Solution Method 

From the previous section, Eqs. 6.6 and 6.7 are expressed as, 

[𝛿�̇�
�̇�

] = [𝟎 𝑰
𝑴 𝟎

] [𝛿𝒓
𝒗

] + [
𝟎

𝑴′𝛿𝒓𝒎 + 𝑪]                            (6.17) 

Equation 6.17 can be rewritten in the following form, 

𝑿(𝒕) = 𝑨𝑿(𝒕𝟎) + 𝒇(𝒕)                                           (6.18) 

where  

𝑨 = [𝟎 𝑰
𝑴 𝟎

] 

𝑿(𝒕𝟎) = [𝛿𝒓
𝒗

] 

𝒇(𝒕) = [
𝟎

𝑴′𝛿𝒓𝒎 + 𝑪] 

The solution of Eq. 6.18 can be written as, 

𝑿 = 𝑒𝑨𝑡𝑿𝟎 + ∫ 𝑒𝑨(𝑡−𝜏)𝒇(𝜏) 𝑑𝜏
𝑡
0

                               (6.19a) 

which is 

                                              𝑿 = 𝑒𝑨𝑡𝑿𝟎 + 𝑒𝑨𝑡 ∫ 𝑒𝑨(−𝜏)𝒇(𝜏) 𝑑𝜏
𝑡
0

                          (6.19b) 

According to the generalized spectral decomposition theorem, 𝑒𝑨𝑡 = ∑ 𝑮𝑖𝑷𝑖(𝑡)

𝐻𝑖

3
𝑖=1  
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The derivation of the variables 𝑮,𝑷 and 𝐻 is given below. 

Eq. 6.8 is rewritten as, 

𝑴 = 𝑘𝑒(𝐼 − 3�̂�𝟎�̂�𝟎
𝑇) + 𝑘𝑚(𝐼 − 3�̂�𝒎𝒅𝟎�̂�𝒎𝒅𝟎

𝑇)                      (6.20) 

The eigenvalues of 𝑴 are denoted by 𝑠1, 𝑠2 and 𝑠3 and they are, 

𝑠1 = 𝑘𝑒 + 𝑘𝑚                                                   (6.21a) 

𝑠2 = −
1

2
(𝑘𝑒 + 𝑘𝑚) +

3

2
((𝑘𝑒 − 𝑘𝑚)2 + 4𝑘𝑒𝑘𝑚(�̂�𝟎 ∙ �̂�𝒎𝟎)2)

1
2          (6.21b) 

𝑠3 = −
1

2
(𝑘𝑒 + 𝑘𝑚) −

3

2
((𝑘𝑒 − 𝑘𝑚)2 + 4𝑘𝑒𝑘𝑚(�̂�𝟎 ∙ �̂�𝒎𝟎)2)

1
2           (6.21c) 

Let 𝜆1 = √|𝑠1|, 𝜆2 = √|𝑠2|, 𝜆3 = √|𝑠3|. The eigenvalues of 𝑨 in Eq. 6.19 are denoted 

by 𝜆(𝑨). 

𝜆(𝑨) = {
{𝜆1𝑖,−𝜆1𝑖, 𝜆2,−𝜆2, 𝜆3,−𝜆3}, 𝑠3 > 0
{𝜆1𝑖,−𝜆1𝑖, 𝜆2,−𝜆2, 𝜆3𝑖,−𝜆3𝑖}, 𝑠3 < 0

                      (6.22) 

Now, the variables 𝑮,𝑷 and 𝐻 are obtained as, 

𝐻1 = {
𝜆1(𝜆1

2 + 𝜆2
2)(𝜆1

2 + 𝜆3
2), 𝑠3 > 0

𝜆1(𝜆1
2 + 𝜆2

2)(𝜆1
2 − 𝜆3

2), 𝑠3 < 0
                               (6.23a) 

𝐻2 = {
𝜆2(𝜆1

2 + 𝜆2
2)(𝜆2

2 − 𝜆3
2), 𝑠3 > 0

𝜆2(𝜆1
2 + 𝜆2

2)(𝜆1
2 + 𝜆3

2), 𝑠3 < 0
                               (6.23b) 

𝐻3 = {
𝜆3(𝜆1

2 + 𝜆3
2)(𝜆3

2 − 𝜆2
2), 𝑠3 > 0

𝜆3(𝜆2
2 + 𝜆3

2)(𝜆3
2 − 𝜆1

2), 𝑠3 < 0
                                (6.23c) 

𝑮1 = {
𝑨4 − (𝜆2

2 + 𝜆3
2)𝑨2 + 𝜆2

2𝜆3
2𝑰, 𝑠3 > 0

𝑨4 − (𝜆2
2 − 𝜆3

2)𝑨2 − 𝜆2
2𝜆3

2𝑰, 𝑠3 < 0
                         (6.24a) 

𝑮2 = {
𝑨4 − (𝜆3

2 − 𝜆1
2)𝑨2 − 𝜆1

2𝜆3
2𝑰, 𝑠3 > 0

𝑨4 + (𝜆3
2 + 𝜆1

2)𝑨2 + 𝜆1
2𝜆3

2𝑰, 𝑠3 < 0
                         (6.24b) 

𝑮3 = 𝑨4 + (𝜆1
2 − 𝜆2

2)𝑨2 − 𝜆1
2𝜆2

2𝑰                                        (6.24c) 

𝑷1(𝑡) = sin(𝜆1𝑡)𝑨 + 𝜆1 cos(𝜆1𝑡) 𝑰                                            (6.25a) 

𝑷2(𝑡) = sin h(𝜆2𝑡)𝑨 + 𝜆2 cos h(𝜆2𝑡) 𝑰                                      (6.25b) 
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𝑷3 = {
sin h(𝜆3𝑡)𝑨 + 𝜆3 cos h(𝜆3𝑡) 𝑰, 𝑠3 > 0

sin(𝜆3𝑡)𝑨 + 𝜆3 cos(𝜆3𝑡) 𝑰, 𝑠3 < 0
                             (6.25c) 

Because the Moon’s orbit around Earth is nearly circular, the position of the Moon is 

approximated as follows, 

𝒓𝑚 = 𝑟𝑚0 (cos(𝜔𝜏) �̂�𝑚0 + sin(𝜔𝜏) �̂�𝑚⊥0)                              (6.26) 

⇒ 𝛿𝒓𝑚 = 𝑟𝑚0 (cos(𝜔𝜏) �̂�𝑚0 + sin(𝜔𝜏) �̂�𝑚⊥0) − 𝒓𝑚0 

where �̂�𝑚⊥0 is the unit vector perpendicular to �̂�𝑚0 which is nothing but the direction of 

the velocity vector in this case and 𝜔 is the angular velocity of the Moon around Earth. 

Thus, Eq. 6.5b is obtained. Let 

𝒇(𝜏) = [
𝟎

𝑟𝑚0𝑴′�̂�𝑚⊥0
] cos(𝜔𝜏) + [

𝟎
𝑟𝑚0𝑴′�̂�𝑚⊥0

] sin(𝜔𝜏) + [
𝟎

𝑪 −𝑴′�̂�𝑚0
]       (6.27) 

 𝒇(𝜏) = 𝑪𝟏 cos(𝜔𝜏)+ 𝑪𝟐 sin(𝜔𝜏) +𝑪𝟑                         (6.28) 

Then 

𝑒−𝑨𝜏𝒇(𝜏) = ∑ 𝑮𝑖𝑸𝑖(𝜏)

𝐻𝑖

3
𝑖=1                                         (6.29) 

and  

∫ 𝑒−𝑨𝜏𝒇(𝜏)𝑑𝜏
𝑡
0

= ∑ 𝑮𝑖𝑹𝑖(𝑡)

𝐻𝑖

3
𝑖=1                                      (6.30) 

where 

𝑸1(𝜏) = (𝜆1 cos(𝜆1𝜏) 𝑰 − sin(𝜆1𝜏)𝑨)(cos(𝜔𝜏) 𝑪𝟏 + sin(𝜔𝜏)𝑪𝟐 + 𝑪𝟑)             (6.31a) 

𝑸2(𝜏) = (𝜆2 cosh(𝜆2𝜏) 𝑰 − sinh(𝜆2𝜏) 𝑨)(cos(𝜔𝜏)𝑪𝟏 + sin(𝜔𝜏)𝑪𝟐 + 𝑪𝟑)         (6.31b) 

𝑸3(𝜏) = {
(𝜆3 cosh(𝜆3𝜏) 𝑰 − sinh(𝜆3𝜏)𝑨)(cos(𝜔𝜏)𝑪𝟏 + sin(𝜔𝜏)𝑪𝟐 + 𝑪𝟑), 𝑠3 > 0
(𝜆3 cos(𝜆3𝜏) 𝑰 − sin(𝜆3𝜏)𝑨)(cos(𝜔𝜏) 𝑪𝟏 + sin(𝜔𝜏)𝑪𝟐 + 𝑪𝟑), 𝑠3 < 0

     

(6.31c) 

𝑹1(𝑡) = −𝑨𝑪𝟏 ∫ 𝑠𝑖𝑛(𝜆1𝜏) cos(𝜔𝜏) 𝑑𝜏 + 𝜆1𝑪𝟏 ∫ cos (
𝑡
0

𝑡
0

𝜆1𝜏) cos(𝜔𝜏)𝑑𝜏 −

                   𝑨𝑪𝟐 ∫ 𝑠𝑖𝑛(𝜆1𝜏) sin(𝜔𝜏)𝑑𝜏 + 𝜆1𝑪𝟐 ∫ 𝑠𝑖𝑛(𝜔𝜏) cos(𝜆1𝜏)𝑑𝜏 −
𝑡
0

𝑡
0

                   𝑨𝑪𝟑 ∫ 𝑠𝑖𝑛(𝜆1𝜏)𝑑𝜏 + 𝜆1𝑪𝟑 ∫ 𝑐𝑜𝑠(𝜆1𝜏)𝑑𝜏
𝑡
0

𝑡
0

                                             (6.32a) 
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𝑹2(𝑡) = −𝑨𝑪𝟏 ∫ 𝑠𝑖𝑛ℎ(𝜆2𝜏) cos(𝜔𝜏) 𝑑𝜏 + 𝜆2𝑪𝟏 ∫ cosh (
𝑡
0

𝑡
0

𝜆2𝜏) cos(𝜔𝜏) 𝑑𝜏 −

                   𝑨𝑪𝟐 ∫ 𝑠𝑖𝑛ℎ(𝜆2𝜏) sin(𝜔𝜏) 𝑑𝜏 + 𝜆2𝑪𝟐 ∫ 𝑠𝑖𝑛ℎ(𝜆2𝜏) cos(𝜔𝜏)𝑑𝜏 −
𝑡
0

𝑡
0

                   𝑨𝑪𝟑 ∫ 𝑠𝑖𝑛ℎ(𝜆2𝜏)𝑑𝜏 + 𝜆2𝑪𝟑 ∫ 𝑐𝑜𝑠ℎ(𝜆2𝜏)𝑑𝜏
𝑡
0

𝑡
0

                                        (6.32b) 

𝑹3(𝑡) = {
𝑹31(𝑡), 𝑠3 > 0
𝑹32(𝑡), 𝑠3 < 0

                                                                                          (6.32c) 

where 

𝑹31(𝑡) = −𝑨𝑪𝟏 ∫ 𝑠𝑖𝑛ℎ(𝜆3𝜏) cos(𝜔𝜏) 𝑑𝜏 + 𝜆3𝑪𝟏 ∫ cosh (
𝑡
0

𝑡
0

𝜆3𝜏) cos(𝜔𝜏) 𝑑𝜏 −

                     𝑨𝑪𝟐 ∫ 𝑠𝑖𝑛ℎ(𝜆3𝜏) sin(𝜔𝜏) 𝑑𝜏 + 𝜆3𝑪𝟐 ∫ 𝑠𝑖𝑛ℎ(𝜆3𝜏) cos(𝜔𝜏)𝑑𝜏 −
𝑡
0

𝑡
0

                     𝑨𝑪𝟑 ∫ 𝑠𝑖𝑛ℎ(𝜆3𝜏)𝑑𝜏 + 𝜆3𝑪𝟑 ∫ 𝑐𝑜𝑠ℎ(𝜆3𝜏)𝑑𝜏
𝑡
0

𝑡
0

                                       (6.32d) 

𝑹32(𝑡) = −𝑨𝑪𝟏 ∫ 𝑠𝑖𝑛(𝜆3𝜏) cos(𝜔𝜏) 𝑑𝜏 + 𝜆3𝑪𝟏 ∫ cos (
𝑡
0

𝑡
0

𝜆3𝜏) cos(𝜔𝜏)𝑑𝜏 −

                      𝑨𝑪𝟐 ∫ 𝑠𝑖𝑛(𝜆3𝜏) sin(𝜔𝜏) 𝑑𝜏 + 𝜆3𝑪𝟐 ∫ 𝑠𝑖𝑛(𝜔𝜏) cos(𝜆3𝜏)𝑑𝜏 −
𝑡
0

𝑡
0

                      𝑨𝑪𝟑 ∫ 𝑠𝑖𝑛(𝜆3𝜏)𝑑𝜏 + 𝜆3𝑪𝟑 ∫ 𝑐𝑜𝑠(𝜆3𝜏)𝑑𝜏
𝑡
0

𝑡
0

                                          (6.32e) 

Thus, the states are obtained as, 

𝑿 = (∑
𝑮𝑖𝑷𝑖(𝑡)

𝐻𝑖

3
𝑖=1 ) (𝑿𝟎 + ∑ 𝑮𝑖𝑹𝑖(𝑡)

𝐻𝑖
)3

𝑖=1 )                                    (6.33) 

The position vector is updated as, 

𝒓 = 𝒓𝟎 + 𝜹𝒓                                                         (6.34) 

and the velocity vector (𝒗)  is directly obtained. 

6.5 Biased-Iterative Patched Conic Technique 

 The biased iterative patched conic technique (B-ITRPC) generates improved analytical 

trajectory design by including the perturbations in the departure phase (within the SOI of 

Earth) in the trajectory design process. The perturbations within the SOI of the arrival 

planet are not considered as their influence on the trajectory design process is only 

marginal (discussed later). The proposed technique is applicable for direct transfer to all 

planets.  

 



Chapter 6   127 
 

For a fixed epoch and flight duration, the steps of the B-ITRPC technique which 

biases the input parameters at the departure to account for the perturbations is given 

below. The input design parameters are, (i) Earth-SOI duration (𝑡𝐷), (ii) DPO periapsis 

altitude (ℎ𝑃∞𝐷), and (iii) DPO inclination (𝑖𝑃∞𝐷). 

The periapsis altitude (ℎ𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑) and inclination (𝑖𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ) of the departure 

hyperbolic orbit are fixed. Also, the desired values for the departure and arrival SOI 

durations i.e., 𝑡𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑 and 𝑡𝐴 respectively, are fixed. 

1) Set the initial values of the input design as the desired values, 

ℎ𝑃∞𝐷 = ℎ𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑                                            (6.35) 

𝑖𝑃∞𝐷 =  𝑖𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑                                             (6.36) 

𝑡𝐷 = 𝑡𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑                                                      (6.37) 

2) Obtain the iterative patched conic design (cf. chapter 5) that achieves the desired 

arrival target conditions viz. periapsis altitude and inclination of the arrival hyperbolic 

orbit expressed with respect to Mars  equator and IAU vector of J2000 frame 

[Archinal et al., 2009].  Let the departure hyperbolic orbit characteristics at the 

perigee, thus obtained be (𝑎∞𝐷, 𝑒∞𝐷, 𝑖∞𝐷 ,𝛺∞𝐷 ,𝜔∞𝐷 , 𝜈∞𝐷 = 𝜈𝑃∞𝐷
= 0). 

3) Propagate the departure hyperbolic orbit characteristics forward for a duration of 

𝑡𝐷 days by solving the Kepler equation and obtain the true anomaly at the SOI of 

Earth (𝜈ℎ∞𝐷
 ).  

4) Obtain the state vector of the patch point at the departure SOI from the departure 

hyperbolic orbit characteristics and backward by including the perturbations till the 

perigee is reached. 

The analytical propagation is carried out using the LA technique by including the 

gravity perturbations of the Sun, Moon and the non-spherical Earth.  

Let the duration required to reach the perigee be 𝑡𝐷𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 which is different from the 

prefixed Earth-SOI duration (𝑡𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑) due to the perturbing forces. Further, the perigee 

altitude and inclination of the departure hyperbolic orbit are also different from the 

desired values. First, the difference in Earth-SOI duration is removed (step 5), followed 

by that of the periapsis altitude and inclination of the departure hyperbolic orbit (step 6). 

5) The difference in Earth-SOI duration (𝑡𝜀) is removed using the following procedure. 

i) Compute the difference in Earth-SOI duration.                 
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 𝑡𝜀 =  𝑡𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝑡𝐷𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑                                    (6.38) 

If 𝑡𝜀 is less than a prefixed small threshold value, execute step (8). 

ii) Otherwise, bias the Earth-SOI duration as,  

𝑡𝐷𝑏𝑖𝑎𝑠𝑒𝑑 = 𝑡𝐷 + 𝑡𝜀                                                  (6.39) 

and repeat the steps (2) to (5) with the updated Earth-SOI duration by setting 𝑡𝐷 =

 𝑡𝐷𝑏𝑖𝑎𝑠𝑒𝑑. Note that the perigee altitude and inclination is retained as the desired 

values.  

Let the time-biased departure hyperbolic orbit characteristics, thus obtained at the 

perigee, be (𝑎∞𝐷, 𝑒∞𝐷, 𝑖∞𝐷,𝛺∞𝐷 ,𝜔∞𝐷 , 𝜈𝑃∞𝐷
= 0)|

𝑡𝑖𝑚𝑒−𝑏𝑖𝑎𝑠𝑒𝑑
.  

6) The process that introduces bias in the periapsis altitude and inclination of the 

departure hyperbolic orbit at perigee is as follows. 

i) Compute the perigee altitude of the time-biased departure hyperbolic 

orbit  (ℎ𝑃𝐷𝑡𝑖𝑚𝑒−𝑏𝑖𝑎𝑠𝑒𝑑
). 

ℎ𝑃𝐷𝑡𝑖𝑚𝑒−𝑏𝑖𝑎𝑠𝑒𝑑
=  𝑎∞𝐷𝑡𝑖𝑚𝑒−𝑏𝑖𝑎𝑠𝑒𝑑(1 − 𝑒∞𝐷𝑡𝑖𝑚𝑒−𝑏𝑖𝑎𝑠𝑒𝑑) − 𝑅𝑒           (6.40) 

ii) Compute the deviations in the periapsis altitude and inclination at 𝑡0, as follows. 

ℎ𝜀 = (ℎ𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − ℎ𝑃𝐷𝑡𝑖𝑚𝑒−𝑏𝑖𝑎𝑠𝑒𝑑)                                (6.41) 

𝑖𝜀 = (𝑖𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑖∞𝐷𝑡𝑖𝑚𝑒−𝑏𝑖𝑎𝑠𝑒𝑑)                                 (6.42) 

Now, the biased perigee altitude (ℎ𝑃∞𝐷𝑏𝑖𝑎𝑠𝑒𝑑) and inclination (𝑖𝑃∞𝐷𝑏𝑖𝑎𝑠𝑒𝑑 
) of 

the departure hyperbolic orbit at the SOI of Earth are, 

ℎ𝑃∞𝐷𝑏𝑖𝑎𝑠𝑒𝑑|
𝑆𝑂𝐼

= ℎ𝑃∞𝐷 + ℎ𝜀                                      (6.43) 

𝑖𝑃∞𝐷𝑏𝑖𝑎𝑠𝑒𝑑 
|
𝑆𝑂𝐼

=  𝑖𝑃∞𝐷 + 𝑖𝜀                                      (6.44) 

These values are used as the input design parameters to generate the subsequent 

iterative patched conic design. 
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iii) Set the values of periapsis altitude and inclination of the departure hyperbolic 

orbit,  

ℎ𝑝∞𝐷 = ℎ𝑃∞𝐷𝑏𝑖𝑎𝑠𝑒𝑑|
𝑆𝑂𝐼

                                         (6.45) 

𝑖𝑃∞𝐷 =  𝑖𝑃∞𝐷𝑏𝑖𝑎𝑠𝑒𝑑 
|
𝑆𝑂𝐼

                                      (6.46) 

Determine the iterative patched conic design by repeating the steps (4) to (8) till 

the values of  ℎ𝜀 and 𝑖𝜀 are less than the prefixed threshold values. 

The design thus obtained is the required B-ITRPC design. The B-ITRPC hyperbolic 

orbital elements are used to determine the TPI and POI velocity impulses. The flowchart 

of the B-ITRPC algorithm is given in Fig. 6.2. 
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Fig.6.2. Flowchart illustrating the B-ITRPC design technique 

Yes 

Yes 

Update  
 𝑡𝐷 =  𝑡𝐷𝑏𝑖𝑎𝑠𝑒𝑑  

Find 
𝑡𝜀 = 𝑡𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝑡𝐷𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑  

Set 
𝑡𝐷𝑏𝑖𝑎𝑠𝑒𝑑 = 𝑡𝐷 + 𝑡𝜀 

Find  
ℎ𝜀=ℎ𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − ℎ𝑃𝐷𝑡𝑖𝑚𝑒−𝑏𝑖𝑎𝑠𝑒𝑑   

𝑖𝜀 = 𝑖𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑖∞𝐷𝑡𝑖𝑚𝑒−𝑏𝑖𝑎𝑠𝑒𝑑  

Set 

𝑖𝑃∞𝐷𝑏𝑖𝑎𝑠𝑒𝑑 
|
𝑆𝑂𝐼

= 𝑖𝑃∞𝐷 + 𝑖𝜀

ℎ𝑃∞𝐷𝑏𝑖𝑎𝑠𝑒𝑑|
𝑆𝑂𝐼

= ℎ𝑃∞𝐷 + ℎ𝜀 

Update  

𝑖𝑃∞𝐷 =  𝑖𝑃∞𝐷𝑏𝑖𝑎𝑠𝑒𝑑 
|
𝑆𝑂𝐼

     

ℎ𝑝∞𝐷 = ℎ𝑃∞𝐷𝑏𝑖𝑎𝑠𝑒𝑑|
𝑆𝑂𝐼

         

Inputs; 
i) departure epoch and flight duration 
ii) departure planet SOI-duration 𝑡𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑  
iii) periapsis altitude of departure hyperbolic orbit ℎ𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑  

iv) inclination of departure hyperbolic orbit 𝑖𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑  

v) arrival periapsis altitude and inclination 
vi) arrival planet SOI-duration 𝑡𝐴 

Set the input design parameters, 
i) departure planet SOI-duration 𝑡𝐷 = 𝑡𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑  

ii) periapsis altitude of departure hyperbolic orbit ℎ𝑃∞𝐷 = ℎ𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑   

iii) inclination of departure hyperbolic orbit 𝑖𝑃∞𝐷 =  𝑖𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑  

Generate the iterative patched conic design. 
By Keplerian propagation, obtain the orbit 
characteristics at the departure SOI.  

 
From departure SOI, analytically back propagate using LA technique 
including perturbations till the departure periapsis is reached.  
Let the duration to reach periapsis be 𝑡𝐷𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 . 

Is
𝑡𝐷𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑
 𝑡𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑? 

Compute periapsis altitude; ℎ𝑃𝐷𝑡𝑖𝑚𝑒−𝑏𝑖𝑎𝑠𝑒𝑑
 

 
Is 

ℎ𝑃𝐷𝑡𝑖𝑚𝑒−𝑏𝑖𝑎𝑠𝑒𝑑
=  ℎ𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑  

𝑖∞𝐷𝑡𝑖𝑚𝑒−𝑏𝑖𝑎𝑠𝑒𝑑 =  𝑖𝑃∞𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑  ? 

No 

No 

B-ITRPC design 
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6.6  Illustrative Results 

To illustrate the proposed biased iterative patched conic (B-ITRPC) technique, the 

transfer trajectory design of an orbiter mission from Earth to Mars is considered. The 

force model included in this technique, called the B-ITRPC Force Model (BFM), includes 

(i) Spherical Earth, Earth J2 to J6, Moon and Sun for 𝑡𝐷 days, (ii) Sun for (𝑡𝐹𝐷 − 𝑡𝐷 − 𝑡𝐴) 

days and (iii) arrival planet for 𝑡𝐴 days. Both type I and type II minimum energy 

opportunities are used for demonstration. The type I opportunity occurs on 12 May 2018 

0 h TDB with a flight duration of 204 days and the type II opportunity occurs on 30 Aug 

2022 0 h TDB with a flight duration of 348 days. The DPO and APO are 300 x 25,000 

km and 300 km circular respectively. The DPO/APO inclinations are considered as 75 

deg with respect to the planet Equator.  

Table 6.2a Biased input parameters used in a typical outer loop (2018) 

Iteration no. Iteration 1 Iteration 2 Iteration 3 Iteration 4 
Earth SOI-duration 3 days 

0 minutes 
3 days  

3.38 minutes 
3 days  

3.37 minutes 
3 days  

3.24 minutes 
Periapsis radius (km) 6,678.00 6,305.46 6,306.71 6,305.26 
Inclination (deg) 75.0000 76.9464 76.9449 76.9447 

 

Table 6.2b Illustration of the outer loop iterations of B-ITRPC technique (2018) 

Iteration no. Iteration 1* Iteration 2 Iteration 3 Iteration 4 

Locations at Perigee at SOI at Perigee at SOI at Perigee at SOI at Perigee at SOI 

𝑎∞𝐷 (km) -58193.0 -58965.6 -58105.4 -58946.1 -58105.5 -58946.1 -58105.5 -58946.1 

𝑒∞𝐷 1.121748 1.113254 1.114918 1.106956 1.114931 1.106969 1.114931 1.106968 

𝑖∞𝐷 (deg) 73.1778 75.0000 75.0015 76.9464 75.0001 76.9449 74.9999 76.9447 

𝛺∞𝐷 (deg) 335.0848 333.3889 333.5513 331.7888 333.5524 331.7900 333.5526 331.7901 

𝜔∞𝐷 (deg) 167.7805 167.3781 167.4880 167.0887 167.4892 167.0898 167.4891 167.0897 

𝜈∞𝐷 (deg) 0.0000 151.9609 0.0000 152.6967 0.0000 152.6952 0.0000 152.6953 

𝑎∞𝐴 (km) -4980.0 -4980.0 -4979.7 -4979.7 -4979.7 -4979.7 -4979.7 -4979.7 

𝑒∞𝐴 1.740798 1.740798 1.740842 1.740842 1.740842 1.740842 1.740842 1.740842 

𝑖∞𝐴 (deg) 75.0000 75.0000 75.0000 75.0000 75.0000 75.0000 75.0000 75.0000 

𝛺∞𝐴 (deg) 68.0878 68.0878 68.0851 68.0851 68.0851 68.0851 68.0851 68.0851 

𝜔∞𝐴 (deg) 115.2153 115.2153 115.2142 115.2142 115.2142 115.2142 115.2142 115.2142 

𝜈∞𝐴  (deg) 0.0000 122.1109 0.0000 122.1000 0.0000 122.1002 0.0000 122.1100 

1*: ITR-PC design 
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The position and velocity vectors of the planets are obtained using JPL ephemeris DE405. 

The ITR-PC design for the Earth to Mars minimum energy opportunities are analytically 

refined by including the perturbations using the proposed technique.  

  The tolerances for the departure design parameters/ biased input parameters are 

as follows: Earth-SOI duration 0.1 s, perigee altitude 1 km and inclination 1E-5 deg. The 

outer loop is illustrated in Tables 6.2a and 6.2b. The biased input parameters that are used 

to generate the ITR-PC design are presented in Table 6.2a and the departure and arrival 

design parameters at the perigee and SOI for all the outer loop iterations are given in 

Table 6.2b. 

Table 6.3a V-infinity vectors from B-ITRPC technique 

Parameters 

2018 2022 

option 

11 

option 

12 

option 

21 

option 

22 

option 

11 

option 

12 

option 

21 

option 

22 

𝑣∞𝐷(km/s) 2.7828 2.7840 2.7781 2.7793 3.8794 3.8786 3.8845 3.8837 

𝛼∞𝐷(deg) 321.65 321.67 321.52 321.54 80.39 80.3940 80.4345 80.42 

𝛿∞𝐷(deg) -37.20 -37.28 -36.84 -36.92 3.46 3.50 3.28 3.32 

𝑣∞𝐴(km/s) 2.9603 2.9599 2.9615 2.9611 2.6005 2.5996 2.6055 2.6045 

𝛼∞𝐴(deg) 245.51 245.48 245.59 245.56 39.55 39.56 39.64 39.65 

𝛿∞𝐴(deg) 9.50 9.54 9.21 9.25 31.63 31.60 31.78 31.76 

 

Table 6.3b B-ITRPC design options: 2018 opportunity 

Parameters 
At perigee At SOI 

option 11 option 12 option 21 option 22 option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -58105.5   -58046.3   -59433.8   -59374.1   -58946.1 -58884.6 -59186.4 -59125.5 

𝑒∞𝐷 1.114931   1.115048   1.112362   1.112475   1.106968 1.107070 1.112584 1.112699 

𝑖∞𝐷 (deg)  75.0000 75.0000 75.0000 75.0000 76.9447 76.9430 77.2952 77.2946 

𝛺∞𝐷 (deg) 333.5526   333.6102   130.1202   130.1091   331.7901 331.8443 131.7993 131.7932 

𝜔∞𝐷(deg) 167.4891   167.4166   64.5445    64.6418 167.0897 167.0168 63.9902 64.0863 

𝜈∞𝐷(deg)  0.0000 0.0000 0.0000 0.0000 152.6953 152.6858 152.0303 152.0198 

𝑎∞𝐴(km) -4979.7    -4981.0    -4975.4    -4976.8    -4979.7    -4981.0    -4975.4    -4976.8    

𝑒∞𝐴 1.740842   1.740644   1.741483   1.741277   1.740842   1.740644   1.741483   1.741277   

𝑖∞𝐴 (deg)  75.0000 75.0000 75.0000 75.0000 75.0000 75.0000 75.0000 75.0000 

𝛺∞𝐴(deg) 68.0851    242.9014   68.0902    243.0631   68.0851    242.9014   68.0902    243.0631   

𝜔∞𝐴(deg) 115.2142   314.9445   115.4944   314.6351 115.2142   314.9445   115.4944   314.6351 
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For 2018 and 2022 opportunities, the V-infinity vectors at the departure and 

arrival phases are given in Table 6.3a. The four distinct design options of the trajectory 

for 2018 and 2022 opportunities are given in Tables 6.3b and 6.3c. The designs are 

generated for Earth-SOI and Mars-SOI durations of 3 and 2 days respectively. Note that, 

the B-ITRPC design at the perigee and departure SOI are different for the departure phase 

and same for the arrival phase. This is because the effect of perturbations are considered 

for the departure phase only. It is well known that the orbital elements undergo changes 

due to perturbations. For example, in design option 11 of the 2018 opportunity, the 

inclination of the departure hyperbolic orbit at perigee is 75 deg and that at SOI is 76.9447 

deg. The difference is due to the perturbing effects of the non-spherical Earth and the 

lunisolar effects within the Earth SOI. The arrival phase is considered Keplerian and so 

the orbital characteristics does not change within the Mars SOI. 

Table 6.3c B-ITRPC design options: 2022 opportunity 

Parameters 
At perigee At SOI 

option 11 option 12 option 21 option 22 option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -27851.1 -27863.5 -27737.1 -27749.1 -27866.0 -27878.2 -27787.6 -27799.8 

𝑒∞𝐷 1.239779 1.239672 1.240765 1.240661 1.244053 1.243933 1.233694 1.233605 

𝑖∞𝐷 (deg)  75.0000 75.0000 75.0000 75.0000 76.0000 75.9994 75.5598 75.5601 

𝛺∞𝐷 (deg) 79.5315 79.5162 261.3631 261.3689 79.5344 79.5199 261.2806 261.2860 

𝜔∞𝐷(deg) 219.8641 219.8982 32.9624 32.9153 220.0849 220.1180 32.4721 32.4261 

𝜈∞𝐷(deg)  0.0000 0.0000 0.0000 0.0000 142.4054 142.4125 143.0906 143.0959 

𝑎∞𝐴(km) -6509.4 -6514.5 -6483.6 -6488.6 -6509.4 -6514.5 -6483.6 -6488.6 

𝑒∞𝐴 1.566745 1.566303 1.569000 1.568558 1.566745 1.566303 1.569000 1.568558 

𝑖∞𝐴 (deg)  75.0000 75.0000 75.0000 75.0000 75.0000 75.0000 75.0000 75.0000 

𝛺∞𝐴(deg) 229.0592 30.0705 229.2085 30.1057 229.0592 30.0705 229.2085 30.1057 

𝜔∞𝐴(deg) 96.7659 342.5300 96.5381 342.6216 96.7659 342.5300 96.5381 342.6216 

 

For comparison, the B-ITRPC, ITR-PC and the numerical designs that are 

generated under the BFM force model for the design option 11 are shown in Table 6.4a. 

It can be noted that the deviations in the design parameters between the B-ITRPC design 

and the numerical design are small compared to that between the ITR-PC and numerical 

designs. Clearly, the B-ITRPC design is close to the numerical design. The computation 

time required for the numerical refinement of the ITR-PC and B-ITRPC designs (option 

11) under the BFM force model are given in Table 6.4b. The B-ITRPC design takes very 
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less computation time (5 s for 2018 design, 3 s for 2022 design) compared to the ITR-PC 

design. Also, numerical refinement under a realistic force model A is attempted. The force 

model A includes; (i) departure phase/non-spherical Earth, Sun and Moon for a fixed 

Earth-SOI duration, (ii) cruise phase/all bodies including Earth in the heliocentric phase, 

and (iii) arrival phase/Mars within the Mars-SOI duration. The computation time for 

numerical refinement of 2018 designs are 246 s (initial guess: ITR-PC design option 11) 

and 32 s (initial guess: B-ITRPC design option 11). The difference in computation time 

is significant considering that we need to repeat similar process for several cases in a 

design analysis. The numerical refinement takes very less computation time with the B-

ITRPC design because it is very close to the numerical design. Also, if the ITR-PC design 

is used as the initial guess, additional information on the arrival angles must be given as 

constraints in the numerical refinement process as it may otherwise converge to any one 

of the similar departure design options. The use of B-ITRPC design as the initial guess 

do not require any such additional information. So, it is very clear that the B-ITRPC 

design serves as a good initial guess for numerical refinement.

Table 6.4a Comparison of ITR-PC, B-ITRPC and numerical designs (option 11) 

(𝑖∞𝐷
=75 deg; 𝑖∞𝐴

=75 deg) 

Parameters 
2018 2022 

ITR-PC B-ITRPC Numerical ITR-PC B-ITRPC Numerical 

𝑎∞𝐷 (km) -58965.7 -58105.5        -58104.7 -27866.3 -27851.1 -27852.1 

𝑒∞𝐷 1.113254 1.114931        1.114934 1.239648 1.239779 1.239761 

𝛺∞𝐷 (deg) 333.3889 333.5526        333.5557 79.4710 79.5315 79.5325 

𝜔∞𝐷(deg) 167.3782 167.4891       167.4882 219.8234 219.8641 219.8643 

𝑎∞𝐴(km) -4980.0 -4979.7        -4979.7 -6509.3 -6509.4 -6509.4 

𝑒∞𝐴 1.742402 1.740842      1.742243 1.566754 1.566745 1.566732 

𝛺∞𝐴(deg) 68.0878 68.0851        68.0846 229.0607 229.0592 229.0582 

𝜔∞𝐴(deg) 115.1783 115.2142     115.1809 96.7644 96.7659 96.7643 

 

Table 6.4b Computation time for numerical refinement under force model BFM 

Design option 11 Computation time (s) TCM (m/s) 

2018 2022 2018 

ITR-PC 125 110 18 

B-ITRPC 5 3 <1 
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Table 6.5a Achievable accuracies (2018) on numerical propagation under force model 

BFM (with perturbations) 

Parameters Arrival CAA 
(km) 

Arrival 
inclination (deg) 

𝑇𝑃 (UTC) 
 

Desired values 300 75.00 02 Dec 2018 00:00:00 
ITR-PC 
design 
Options 

option 11 462,975 21.52 04 Dec 2018 02:50:41 
option 12 466,863 22.89 04 Dec 2018 02:43:09 
option 21 207,543 146.33 30 Nov 2018 12:37:16 
option 22 202,089 149.48 30 Nov 2018 12:24:57 

B-ITRPC 
design 
Options 

option 11 543 75.41 01 Dec 2018 23:51:45 
option 12 51 74.18 01 Dec 2018 23:49:42 
option 21 605 74.32 01 Dec 2018 23:47:52 
option 22 45 73.95 01 Dec 2018 23:45:34 

 

Table 6.5b Achievable accuracies (2022) on numerical propagation under force model 

BFM (with perturbations) 

Parameters Arrival CAA 
(km)

Arrival 
inclination (deg)

𝑇𝑃 (UTC) 
 

Desired values 300 75.00 12 Aug 2023 00:00:00 
B-ITRPC 
design 
options 

option 11 -161 74.70 11 Aug 2023 23:49:54 
option 12 798 77.51 11 Aug 2023 23:53:17 
option 21 -165 76.11 11 Aug 2023 23:53:26 
option 22 525 76.66 11 Aug 2023 23:57:31 

 

Table 6.6 Total velocity impulse requirement of B-ITRPC design options 

Design 

options 

2018 2022 

TPI (m/s) POI (m/s) Total (m/s) TPI (m/s) POI (m/s) Total (m/s) 

option 11 1314.3 2233.5 3547.9 1641.2 2051.5 3692.7 

option 12 1314.7 2233.3 3548.1 1640.9 2051.0 3692.0 

option 21 1307.56 2234.25 3541.82 1643.8 2053.9 3697.7 

option 22 1307.86 2234.04 3541.91 1643.5 2053.4 3696.9 

The achievable accuracies on numerical propagation of the ITR-PC and B-ITRPC 

designs (2018 opportunity) under the force model BFM are given in Table 6.5a. The ITR-

PC designs result in large deviations in the achieved arrival parameters. For example, for 

2018 design option 11, the achieved CAA is 462,975 km, inclination is 21.52 deg and the 

time of periapsis ( 𝑇𝑃) deviates by about 2 days. These large deviations in the achieved 

target parameters are because of not accounting the perturbations in the design process. 
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The numerical propagation of the B-ITRPC designs results in achieved target parameters 

with reasonably good accuracies For example, for 2018 design option 11, the achieved 

CAA is 543 km, inclination is 75.41 deg the time of periapsis deviates by about 8 minutes 

only. For the other design options also, the deviations in achieved target parameters are: 

on CAA, ± 250 km; on APO inclination, ±1 deg, on  𝑇𝑃, 9 to 15 minutes. Note that, the 

B-ITRPC design has significantly improved the achievable accuracies as compared to 

that of the ITR-PC design. The achievable accuracies on numerical propagation of the B-

ITRPC designs of 2022 opportunity under the force model BFM are given in Table 6.5b. 

The deviations in achieved target parameters are more: on CAA, ± 225 km to ± 500 km; 

on APO inclination, ± 0.3 deg to  ± 2.5 deg; on  𝑇𝑃 , 7 to 11 minutes. The larger deviations 

are due to the larger flight duration for the type II transfer. 

The total velocity impulse required for the interplanetary transfer obtained using 

the B-ITRPC technique is given in Table 6.6. There is only marginal increase in the total 

velocity impulse i.e. 1 to 2 m/s, between the ITR-PC and B-ITRPC design options (cf. 

Tables 5.7 and 6.6). Note that the difference in total velocity impulse between the four 

B-ITRPC design options vary from 1 to 7 m/s. 

Table 6.7 Influence of perturbations in arrival phase on achievable accuracies (2022) 

Parameters BFM force model 
BFM + perturbations 

within Mars-SOI 

CAA (km) 984.22 990.43 
APO inclination (deg) 84.68 84.98 
𝑇𝑃 (UTC) 
 

13 Aug 2023 
00:03:55 

13 Aug 2023 
00:03:46 

 

  To illustrate the effect of inclusion of perturbations within the SOI of the arrival 

phase, the B-ITRPC design 11 (2022 opportunity) is numerically propagated under two 

force models, (i) BFM, and (ii) BFM + perturbations of Sun and Earth within the SOI of 

Mars. The achieved accuracies are presented in Table 6.7. It can be seen that the achieved 

arrival parameters do not vary significantly. This brings out the fact that the inclusion 

of perturbations within the arrival SOI does not contribute much to the trajectory 

design. 

  The computation time required to generate the ITR-PC and B-ITRPC designs for 

2190 sample cases, by an Intel core i5 2.5GHz processor, are as follows: ITR-PC designs, 

592 ms [Parvathi and Ramanan, 2017] and B-ITRPC designs, 2254 ms. The B-ITRPC 
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technique requires more computation time, however it results in significant improvement 

in the achievable accuracies of the arrival target parameters. 

6.7 Impact of SOI duration 

The implication of SOI durations on the trajectory design is studied by varying the Earth 

and Mars SOI durations. Table 6.8a presents the B-ITRPC design option 11 for different 

Earth-SOI durations (2018 opportunity). The achieved target/arrival parameters on 

numerical propagation of these designs under the force model A are presented in Table 

6.8b. Note that, the accuracy of the achieved target parameters improves as the Earth-SOI 

duration is increased. The B-ITRPC design with an Earth-SOI duration of 3 days results 

in the achieved target parameters with maximum accuracy. However, on increasing the 

SOI-duration further, the deviations of the target parameters increases. This is because 

the linearization of the equations of motion for larger SOI duration does not represent the 

non-linear dynamics well.  

Table 6.8a B-ITRPC design option 11 (2018 opportunity) for different Earth-SOI 

durations (Mars-SOI duration = 2 days) 

Parameters 
B-ITRPC design 

tD = 1 days tD = 2 days tD = 3 days tD = 4 days 
𝑎∞𝐷(km) 
𝑒∞𝐷 
𝑖∞𝐷(deg) 
Ω∞𝐷(deg) 
𝜔∞𝐷(deg) 
𝑎∞𝐴(km) 
𝑒∞𝐴 
𝑖∞𝐴(deg) 
Ω∞𝐴(deg) 
𝜔∞𝐴(deg) 

-77710.8 
1.08593 
74.9999        
333.3966        
164.7520 
-4979.4        

1.740877        
75.0000 
68.1169        
115.2767 

-62223.5        
1.107324        
75.0000 

333.4853        
166.7829 
-4979.6 

1.740854        
75.0000 
68.0977 

115.2388 

-58105.5        
1.114931        
74.9999        

333.5526        
167.4891 
-4979.7        

1.740842        
75.0000 
68.0851        

115.2142 

-56181.2        
1.118867        
74.9999        

333.6053        
167.8477 
-4979.7 
1.7408 

75.0000 
68.0756        

115.1958 
TPI 
POI 
Total (m/s) 

1237.1        
2233.6        
3470.7 

1294.1        
2233.6 
3527.7 

1314.3 
2233.5        
3547.9 

1324.8        
2233.5        
3558.4 

 

The perturbing effect of the Moon and the Sun cannot be linearized beyond 3 days as their 

effect is significantly high in this region. Hence, from the computation point of view, the 

linear approximation technique imposes a restriction on the maximum Earth-SOI 

duration. Moreover, an Earth-SOI duration of 8 days results in a negative perigee altitude 

on biasing the departure design parameters, thereby resulting in infeasible solution. So, 

the maximum Earth-SOI duration that can be considered for B-ITRPC technique is 7 
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days. Note that, as the Earth-SOI duration is increased, the total velocity impulse 

required for the transfer also increases. For all these analysis, the Mars-SOI duration is 

fixed as 2 days. Hence, for best results, the Earth-SOI duration considered in the current 

research is 3 days. 

Table 6.8c presents the B-ITRPC design option 11 for different Mars-SOI 

durations (2018 opportunity). The achieved target/arrival parameters upon numerical 

propagation of these designs under the force model A is presented in Table 6.8d. It can 

be seen that there is no significant improvement in the achieved target parameters on 

increasing the Mars-SOI duration. 

Table 6.8b Achieved accuracies on numerical propagation under force model A 

Parameters 
Desired 
values 

tD = 1 day tD = 2 days tD = 3 days tD = 4 days 

CAA (km) 300 2,27,447 905 560 1333 
APO 
inclination 
(deg) 

75.00 19.63 90.49 75.41 93.29 

𝑇𝑃 (UTC) 
 

2 Dec 2018 
00:00:00 

3 Dec 2018 
07:09:03 

1 Dec 
2018 

22:04:09 

01 Dec 
2018 

23:51:45 

1 Dec 
2018 

21:52:44 
 

Table 6.8c B-ITRPC design option 11 (2018 opportunity) for different Mars-SOI 

durations (Earth-SOI duration = 3 days) 

Parameters 
B-ITRPC design 

tA = 1 days tA = 2 days tA =3 days 
𝑎∞𝐷(km) 
𝑒∞𝐷 
𝑖∞𝐷(deg) 
Ω∞𝐷(deg) 
𝜔∞𝐷(deg) 
𝑎∞𝐴(km) 
𝑒∞𝐴 
𝑖∞𝐴(deg) 
Ω∞𝐴(deg) 
𝜔∞𝐴(deg) 

-58105.3 
1.114931 
74.9999 
333.5489 
167.4875 
-5071.1 

1.727491 
75.00000 
68.0910 
115.5128 

-58105.5 
1.11493 
74.9999 

333.5526 
167.4891 
-4979.7 
1.74084 
75.0000 
68.0851 

115.2142 

-58105.6 
1.114930 
74.9999 

333.5547 
167.4900 
-4951.5 

1.745055 
75.00000 
68.0802 

115.1210 
TPI 
POI 
Total (m/s) 

1314.3 
2219.8 
3534.2 

1314.3 
2233.5 
3547.9 

1314.3 
2237.9 
3552.3 
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Table 6.8d Achieved accuracies on numerical propagation under force model A 

Parameters 
Desired 
values 

tA = 1 day tA = 2 days tA =3 days 

CAA (km) 300 520 560 570 
APO inclination 
(deg) 

75.0000 75.32 75.41 75.80 

𝑇𝑃 (UTC) 
 

2 Dec 2018 
00:00:00 

01 Dec 2018 
22:51:45 

01 Dec 2018 
23:51:45 

01 Dec 2018 
23:52:45 

 

6.8  Design Analysis 

The FORTRAN 95 code developed based on the B-ITRPC design technique is used as a 

quick mission design and analysis tool for orbiter missions. Because the B-ITRPC design 

is very close to the numerical design, the inferences drawn from the analysis will also be 

applicable to the numerical designs. In the previous chapter, note that ITR-PC technique 

is used for design analysis. Therein, the main focus is the analysis of four design options 

for an opportunity. Here, a large number of cases have been analyzed for the design option 

11 to examine the reliability and efficiency of this design technique. The results indicate 

that this design technique has a good balance between the accuracy and computational 

speed. Similar analysis by numerical technique will require enormous computation 

time and effort. To demonstrate, a type-II 2022 minimum energy opportunity has been 

considered. The advantage of this opportunity is the low value of the declination of V-

infinity vector which allows wide range of the parking orbit inclination for analysis 

purpose. The DPO and APO are 300 x 25,000 km and 300 km circular respectively. The 

DPO/APO inclinations are considered as 45 deg and 90 deg respectively with respect to 

the planet Equator and Equinox/IAU vector of J2000 respectively. The Earth and Mars 

SOI durations are fixed as 3 and 2 days respectively. Of the four design options, option 

11 is used for analysis purposes. The observations made for option 1-1 is valid for other 

options too.  

6.8.1 Different departure epochs 

 The departure epoch is varied from 59,806 MJD (15 Aug 2022) to 59,836 MJD (14 Sep 

2022). For different departure epochs, the departure and arrival hyperbolic/parking orbit 

angles (RAAN and AOP) are given in Figs. 6.3 and 6.4. For the range of departure epochs 

considered, the departure angles vary by about 6 and 12 deg respectively. The arrival 

angles vary by about 8 and 6 deg respectively. Note that the variation of arrival angles is 
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nearly linear. Figure 6.5 depicts the differences in the departure angles (RAAN and AOP) 

obtained from the ITR PC and B-ITRPC techniques. The maximum absolute difference 

in the departure RAAN is about 0.25 deg and departure AOP is 0.18 deg. These 

differences are substantial considering that the arrival parameters are highly sensitive to 

the departure angles. The differences in the arrival angles (cf. Fig.6.6) are marginal.  

 

Fig. 6.3. Variation of departure/TPI angles (B-ITRPC technique) for  

different departure epochs. 

 

Fig. 6.4. Variation of arrival/POI angles (B-ITRPC technique) for  

different departure epochs. 
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Fig. 6.5. Differences [B ITRPC-ITR PC] in departure angles for  

different departure epochs. 

 

Fig. 6.6. Differences [B ITRPC-ITR PC] in arrival angles for  

different departure epochs. 
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Fig. 6.7. Variation of TPI and POI velocity impulses (B-ITRPC technique) for different 

departure epochs. 

 

Fig. 6.8. Differences [B ITRPC-ITR PC] in TPI and POI velocity impulses for different 

departure epochs. 
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designs is about 6 m/s. The difference in the POI velocity impulse between the designs is 

negligible. 

6.8.2 Different flight durations 

 The flight duration is varied from 320 days to 420 days. The departure epoch is 30 August 

2022 0 hours TDB (59,821 MJD). The minimum energy opportunity occurs for a flight 

duration of 348 days. For different flight durations, the variation of departure and arrival 

hyperbolic/parking orbit angles (RAAN and AOP) are given in Figs. 6.9 and 6.10 

respectively. There is a wide variation in the departure angles. The departure RAAN 

varies by about 15 deg and the departure AOP varies by about 50 deg. The arrival RAAN 

and AoP vary by about 14 deg and 19 deg respectively. Figure 6.11 depicts the differences 

in the departure angles obtained from the ITR PC and B-ITR PC design techniques. The 

maximum absolute difference in the departure RAAN is about 0.14 deg and departure 

AOP is 0.06 deg. The differences in arrival angles (c.f. Fig.6.12) are negligible. There is 

a large variation (1620 to 1790 m/s) in the TPI velocity impulse (c.f. Fig.6.13). The POI

velocity impulse varies from 2050 to 2600 m/s for different flight durations and this is 

shown in Fig.6.13. The difference in the TPI and POI velocity impulses between the 

designs obtained from the ITR PC and B-ITRPC techniques are marginal and shown in 

Fig.6.14. Although the velocity impulses are same for both the designs, the direction of 

the velocity impulses are different.  

 

Fig. 6.9. Variation of departure/TPI angles (B-ITRPC technique) for  

different flight durations. 
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Fig. 6.10. Variation of arrival/POI angles (B-ITRPC technique) for  

different flight durations. 

 

Fig. 6.11. Differences [B ITRPC- ITR PC] in departure angles for  

different flight durations. 
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Fig. 6.12. Differences [B ITRPC- ITR PC] in arrival angles for different flight 

durations. 

 

 

Fig. 6.13. Variation of TPI and POI velocity impulses (B-ITRPC technique) for 

different flight durations. 
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Fig. 6.14. Differences [B ITRPC-ITR PC] in TPI and POI velocity impulses for 

different flight durations. 
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The variation of arrival angles with DPO inclination (cf. Fig.6.18) is marginal. Figures 

6.19 and 6.20 show the differences in departure and arrival angles respectively between 

the ITR-PC and B-ITRPC designs.  

  

Fig. 6.15. Variation of TPI and POI velocity impulses (B-ITRPC technique) for 

different DPO inclinations. 

 

Fig. 6.16. Differences [B ITRPC-ITR PC] in TPI and POI velocity impulses for 

different DPO inclinations. 
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Moon balance each other for the 2022 opportunity. It can be seen that the differences are 

minimum for polar DPOs and very large for equatorial DPOs. 

 

Fig. 6.17. Variation of departure/TPI angles for different DPO inclinations. 

 

Fig. 6.18. Variation of arrival/POI angles (B-ITRPC technique) for  

different DPO inclinations. 
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Fig. 6.19. Differences [B ITRPC-ITR PC] in departure angles for different DPO 

inclinations. 

 

Fig. 6.20. Differences [B ITRPC-ITR PC] in arrival angles for different DPO 

inclinations. 
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departure and arrival angles between the ITR-PC and B-ITRPC designs are given in Figs. 

6.23 and 6.24 respectively. While the maximum difference in departure angles is about 

0.12 and 0.067 deg respectively, the arrival angles differ marginally. Figure 6.25 shows 

that the TPI velocity impulse vary by about 80 m/s for the whole range of DPO periapsis 

altitudes. The TPI requirement increases for large values of DPO periapsis altitude. The 

POI velocity impulse varies marginally. Figure 6.26 shows that the difference in TPI 

velocity impulse between the ITR-PC and B-ITRPC designs is less than 1 m/s while the 

difference in POI velocity impulse is negligible. 

 

Fig. 6.21. Variation of departure/TPI angles (B-ITRPC technique) for different DPO 

periapsis altitudes. 

 

Fig. 6.22. Variation of arrival/POI angles (B-ITRPC technique) for different DPO 

periapsis altitudes. 
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Fig. 6.23. Differences [B ITRPC-ITR PC] in departure angles for different  

DPO periapsis altitudes. 

 

Fig. 6.24. Differences [B ITRPC-ITR PC] in arrival angles for different  

DPO periapsis altitudes. 
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Fig. 6.25. Variation of TPI and POI velocity impulses (B-ITRPC technique) for 

different DPO periapsis altitudes. 

 

Fig. 6.26. Differences [B ITRPC-ITR PC] in TPI and POI velocity impulses for  

different DPO periapsis altitudes. 
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between the ITR-PC and B-ITRPC designs. The maximum difference in departure angles 

is about 0.11 and 0.05 deg respectively. Note that, these variations in departure angles 

lead to huge improvement in the achieved CAA due to the B-ITRPC designs. The 

differences in the arrival angles between the designs are marginal. 

 

Fig. 6.27. Variation of departure/TPI angles (B-ITRPC technique) for  

different APO inclinations.  

 

Fig. 6.28. Variation of arrival/POI angles (B-ITRPC technique) for 

different APO inclinations. 
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Fig. 6.29. Differences [B ITRPC-ITR PC] in departure angles for different APO 

inclinations 

 

Fig. 6.30. Differences [B ITRPC-ITR PC] in arrival angles for different APO 

inclinations. 
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Fig. 6.31. Variation of TPI and POI velocity impulses (B-ITRPC technique) for 

different APO inclinations. 

 

Fig. 6.32. Differences [B ITRPC-ITR PC] in TPI and POI velocity impulses for 

different APO inclinations 
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6.8.6 Different periapsis altitudes of arrival hyperbolic orbit/APO  

The APO altitude is varied from 100 km to 1000 km circular orbit. The variation in 

departure RAAN is marginal while the departure AoP varies by about 4 deg and is shown 

in Fig.6.33. Figure 6.34 shows that the variations in arrival angles are marginal. The 

differences in the departure and arrival angles between the ITR PC and B-ITRPC designs 

are shown in Figs. 6.35 and 6.36. The maximum difference in departure RAAN is about 

0.11 deg and departure AoP is 0.05 deg. These differences are due to the non-spherical 

gravity perturbation effect of the Earth on the departure conditions. The differences in 

arrival angles are marginal. 

 

Fig. 6.33. Variation of departure/TPI angles (B-ITRPC technique) for  
different APO altitudes. 

 

Fig. 6.34. Variation of arrival/POI angles (B-ITRPC technique) for  
different APO altitudes. 
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Fig. 6.35. Differences [B ITRPC-ITR PC] in departure angles for different APO 

altitudes 

.  

Fig. 6.36. Differences [B ITRPC-ITR PC] in arrival angles for different APO altitudes. 
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Fig. 6.37. Variation of TPI and POI velocity impulses (B-ITRPC technique) for 

different APO altitudes. 

 

Fig. 6.38. Differences [B ITRPC-ITR PC] in TPI and POI velocity impulses for 

different APO altitudes. 
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For the MOM mission, the departure epoch was on 30 November 2013 19:30:00 

TDB and flight duration was 298 days. The Earth parking orbit and Mars parking orbit 

are 250 x 23,500 km and 300 x 80,000 km respectively. The inclinations of the departure 

and arrival parking orbits are same as the declination of the departure and arrival V-

infinity vectors respectively. That means, the declination is the naturally occurring value 

of inclination for the departure and arrival hyperbolic orbits. For any inclination lesser 

than the declination of the V-infinity vector, a minimum-energy transfer is infeasible. So, 

the inclination of the departure parking orbit is fixed as 20.8 deg with respect to Earth 

equator and Equinox of J2000. The inclination of the arrival parking orbit is considered 

same as the arrival V-infinity vector, i.e. 149.7 deg with respect to Mars equator and IAU 

vector of J2000. The departure and arrival V-infinity vectors obtained from the B-ITRPC 

technique and are presented in Table 6.9a. 

Table 6.9a V-infinity vector (option 11) for MOM opportunity 

𝑣∞𝐷 = 3.1212 m/s 𝛼∞𝐷 =  200.7496 deg 𝜹∞𝑫 =  20.5416 deg 
𝑣∞𝐴 = 3.1581 m/s 𝛼∞𝐴 = 157.5918 deg 𝜹∞𝑨 = 149.7603 deg 

Table 6.9b B-ITRPC designs (option 11) for different arrival inclinations 

Parameters 𝑖∞𝐴 = 𝛿∞𝐴 𝑖∞𝐴 = 90 deg 

𝑎∞𝐷 (km) -44570.4 -44567.8 
𝑒∞𝐷 1.148711 1.148720 

𝑖∞𝐷 (deg) 21.10 21.10 
𝛺∞𝐷 (deg) 123.81 123.4712 
𝜔∞𝐷(deg) 287.13 287.4538 
𝑎∞𝐴(km) -4361.1 -4362.8965 
𝑒∞𝐴 1.845929 1.84558502 

𝑖∞A (deg) 149.70 90.0000 

𝛺∞𝐴(deg) 73.78 157.5847 
𝜔∞𝐴(deg) 218.15 272.6374 

Velocity impulses (m/s) 
TPI 1461.13 1461.15 
POI 1032.57 1032.23 

Total 2493.70 2493.38 

Using the B-ITRPC technique, analytical trajectory designs are generated for the 

MOM opportunity for different arrival inclinations and presented in Table 6.9b. For 

comparison, the velocity impulses, viz. TPI and POI, for these designs from the B-ITRPC 

technique are also given. The velocity impulses required for both the designs are almost 
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the same. As discussed earlier, this indicates that any APO inclination (say for Polar 

orbits, 𝒊∞𝑨 = 90 deg) can be achieved without incurring additional velocity impulse by 

precisely generating the design of the initial/departure parameters 

Table 6.9c V-infinity vector (option 11) for MAVEN opportunity 

𝑣∞𝐷 = 3.4903 m/s 𝛼∞𝐷 =  198.5335 deg δ∞D= 12.8512 deg 
𝑣∞𝐴 = 3.1886 m/s 𝛼∞𝐴 = 153.1707 deg 𝛿∞𝐴 = -25.9133 deg 

Table 6.9d B-ITRPC design option 11 for MAVEN opportunity  

Parameters B-ITRPC design Horizon data 
at 19:22 UTC 

𝑎∞𝐷 (km) -35108.22 -32588.45 
𝑒∞𝐷 1.187225 1.2016476 
𝑖∞𝐷 (deg) 27.696 27.694 
𝛺∞𝐷 (deg) 172.119 172.681 
𝜔∞𝐷(deg) 241.610 242.069 
𝜈∞𝐷(deg)  0.0 45.54 
𝑎∞𝐴(km) -4288.26 47825.60 
𝑒∞𝐴 1.881054 0.853755 
𝑖∞𝐴 (deg) 74.216 74.218 
𝛺∞𝐴(deg) 325.652 325.45 
𝜔∞𝐴(deg) 149.096 150.68 
𝜈∞𝐴(deg)  0.0 360.9 

Table 6.9e Design at perigee 

Parameters At Perigee 
19:12:20.7 UTC 

𝑎∞𝐷 (km) -32546.51 

𝑒∞𝐷 1.201893 

𝑖∞𝐷 (deg) 27.69628 

𝛺∞𝐷 (deg) 172.7310 

𝜔∞𝐷(deg) 242.006 

𝜈∞𝐷(deg) 0.033 

For the MAVEN mission, the departure epoch was on 18 November 2013 

19:12:20 UTC and the arrival epoch was 22 September 2014 02:24 UTC (flight duration: 

307.29375 days). The Earth parking orbit and Mars parking orbit considered for the 

design analysis are 195 km circular and 382 x 44430 km respectively. The inclinations of 

the DPO and APO are 27.696 deg w.r.t Earth equator and Equinox of J2000, and 74.218 

deg w.r.t Mars equator and IAU vector of J2000 respectively. The departure and arrival 
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V-infinity vectors obtained from the B-ITRPC technique are presented in Table 6.9c. For 

the mission, the design parameters are available in the JPL HORIZON from 18/11/2013 

19:22 UTC onwards (cf. Table 6.9d). This data is obtained and numerically propagated 

backward to reach the perigee using the BFM force model (cf. Table 6.9e). The B-ITRPC 

trajectory design generated for the MAVEN opportunity for the design option 11 is 

presented in Table 6.9d. The difference in design is probably because the B-ITRPC design 

does not include Earth in the heliocentric (cruise) phase of the trajectory design process.  

6.10 Direct Transfers to Venus and Jupiter 

6.10.1 Earth-Venus 2023 opportunity 

For an Earth to Venus minimum energy transfer, the analytical trajectory designs are 

generated and analyzed using the conventional patched conic, ITR-PC and B-ITRPC 

techniques. The 2023 minimum energy opportunity with a departure epoch on 6 June 

2023 0 h TDB and flight duration of 129 days is considered. The Earth parking orbit and 

Venus parking orbit are 300 x 25,000 km and 500 x 60,000 km respectively. The 

inclinations of the departure and arrival parking orbits are assumed as 20 deg and 90 deg 

with respect to the planet equator and equinox of J2000. The orbit sizes and inclinations 

used in this study do not consider the launch vehicle capabilities. The SOI durations of 

both Earth and Venus are considered as 3 days. 

Table 6.10 V-infinity vectors for Earth-Venus 2023 opportunity 

Parameters 
Conventional 
patched conic 

design 

B-ITRPC designs 

option 11 option 12 option 21 option 22 

𝑣∞𝐷(km/s) 3.4741 3.4743 3.4958 3.4699 3.4915 

𝛼∞𝐷(deg) 122.3117 122.3218 122.2095 122.3439 122.2307 

𝛿∞𝐷(deg) -10.9582 -11.1263 -11.6364 -11.0704 -11.5843 

𝑣∞𝐴(km/s) 2.8814 2.8679 2.8723 2.8668 2.8712 

𝛼∞𝐴(deg) 143.0099 142.7750 142.7920 142.7867 142.8029 

𝛿∞𝐴(deg) 7.1608 7.5728 8.5643 7.4091 8.4075 

The V-infinity vectors at the departure and arrival phases obtained using the 

conventional patched conic technique and the B-ITRPC technique are given in Table 

6.10. The four notional design options of the trajectory obtained using the conventional 

patched conic technique are given in Table 6.11a. The four distinct design options of the 

trajectory obtained using the ITR-PC and B-ITRPC techniques are given in Tables 6.11b 
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and 6.11c respectively. Note that the differences in the departure angles (RAAN and AoP) 

between the design options 11 and 12 are 1.6 deg and 1.1 deg respectively. The total 

velocity impulse for the ITR-PC designs is about 75 to 78 m/s less than that for the 

conventional patched conic designs which allows significant saving in terms of fuel 

requirement, roughly 25 kg (cf. Tables 6.11a and 6.11b). The difference in total velocity 

impulse between the ITR-PC and B-ITRPC designs is only about 1.5 to 2 m/s (cf. Tables 

6.11 b and 6.11c).  

Table 6.11a Conventional patched conic designs for Earth-Venus 2023 opportunity 

Parameters option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -33024.0 -33024.0 -33024.0 -33024.0 

𝑒∞𝐷 1.202220 1.202220 1.202220 1.202220 

𝑖∞𝐷(deg) 20.0000 20.0000 20.0000 20.0000 

𝛺∞𝐷 (deg) 154.4508 154.4508 270.1726 270.1726 

𝜔∞𝐷(deg) 179.9510 179.9510 67.4819 67.4819 

𝑎∞𝐴(km) -39126.9 -39126.9 -39126.9 -39126.9 

𝑒∞𝐴 1.167449 1.162338 1.167449 1.162338 

𝑖∞𝐴(deg) 90.0000 90.0000 90.0000 90.0000 

𝛺∞𝐴(deg) 323.0099 143.0099 323.0099 143.0099 

𝜔∞𝐴(deg) 141.7725 336.5150 141.7725 336.5150 

∆V (m/s) 2412.3 2412.3 2412.3 2412.3 

Table 6.11b ITR-PC designs for Earth-Venus 2023 opportunity 

Parameters option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -35441.0 -34960.5 -35540.7 -35056.1 

𝑒∞𝐷 1.188429 1.191019 1.187900 1.190498 

𝑖∞𝐷(deg) 20.0000 20.0000 20.0000 20.0000 

𝛺∞𝐷 (deg) 155.0091 156.6479 269.8584 267.9865 

𝜔∞𝐷(deg) 178.4038 176.8057 66.8124 68.8057 

𝑎∞𝐴(km) -43719.4 -43563.8 -43757.2 -43604.9 

𝑒∞𝐴 1.149860 1.150395 1.149730 1.150253 

𝑖∞𝐴(deg) 90.0000 90.0000 90.0000 90.0000 

𝛺∞𝐴(deg) 322.7787 142.7957 322.7904 142.8065 

𝜔∞𝐴(deg) 142.8243 338.8780 143.0036 338.7288 

∆V (m/s) 2334.2 2342.2 2332.5 2340.5 
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Table 6.11c B-ITRPC designs for Earth-Venus 2023 opportunity 

Parameters option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -35352.82 -34873.09 -35511.69 -35027.37 

𝑒∞𝐷 1.188899 1.191498 1.188054 1.190654 

𝑖∞𝐷(deg)  20.0000 20.0000 20.0000 20.0000 

𝛺∞𝐷 (deg) 155.6646 157.3156 269.5085 267.6217 

𝜔∞𝐷(deg) 177.7369 176.1282 67.1821 69.1888 

𝑎∞𝐴(km) -43713.77 -43557.67 -43751.46 -43598.51 

𝑒∞𝐴 1.149879 1.150416 1.149750 1.150275 

𝑖∞𝐴(deg)  90.0000 90.0000 90.0000 90.0000 

𝛺∞𝐴(deg) 322.7750 142.7920 322.7867 142.8029 

𝜔∞𝐴(deg) 142.8040 338.8944 142.9789 338.7498 

∆V (m/s) 2335.51 2343.58 2332.99 2341.04 

Table 6.12 Achievable accuracies of analytical designs on numerical propagation  

under force model BFM 

Parameters Arrival 
CAA (km) 

APO inc. 
(deg) 

𝑇𝑃( (UTC) 
 

TCM 
(m/s) 

Desired values 500 90.00 13 Oct 2023 00:00:00 - 
Conventional PC design 421,826 132.96 1 Oct 2023 03:34:10 170 
ITR-PC 
design 
options 

option 11 15,750 138.37 12 Oct 2023 15:00:16 14 
option 12 11,736 151.51 12 Oct 2023 14:22:17 13.8 
option 21 4,203 122.04 12 Oct 2023 18:18:11 7 
option 22 3,568 126.73 12 Oct 2023 17:50:47 6.4 

B-ITRPC 
design 
options 

option 11 529 87.72 13 Oct 2023 00:20:45 <1 
option 12 459 87.66 13 Oct 2023 00:20:03 <1 
option 21 514 86.29 13 Oct 2023 00:30:03 <1 
option 22 494 86.23 13 Oct 2023 00:29:26 <1 

The achievable accuracies on numerical propagation of the analytical designs 

under the force model BFM are given in Table 6.12. The deviations in the achieved target 

parameters are significantly large for the conventional patched conic design (achieved 

CAA: 421,826 km; APO inclination: 132.96 deg and time of periapsis deviates by about 

13 days). For ITR-PC designs, the achieved CAA and time of periapsis have significantly 

improved however the APO inclination has large deviation. The B-ITRPC design 

improved the achieved accuracies and the deviation in the arrival target parameters are: 

on CAA, ± 40 km; on APO inclination, −3 deg to −4 deg; on  𝑇𝑃, 20 to 30 minutes. The 

TCM required to achieve the desired target parameters are: (i) 170 m/s for conventional 
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patched conic design, (ii) about 7 to 14 m/s for the ITR-PC design options, and (iii) less 

than 1 m/s for the B-ITRPC design options (cf. Table 6.12). 

6.10.2 Earth-Jupiter 2022 opportunity 

For an Earth to Jupiter minimum energy transfer, the analytical trajectory designs are 

generated and analyzed using the conventional patched conic, ITR-PC and B-ITRPC 

techniques. The 2022 minimum energy opportunity with a departure epoch on 15 June 

2022 0 h TDB and flight duration of 866 days is considered. The Earth parking orbit and 

Jupiter parking orbit are 300 x 25,000 km and 500 x 60,000 km. The inclinations of the 

departure and arrival parking orbits are considered as 20 deg and 90 deg with respect to 

the planet equator and Equinox of J2000. The SOI durations of Earth and Jupiter are 

considered as 3 and 12 days respectively. The SOI duration of Jupiter is large as Jupiter 

has a strong gravitational field. 

Table 6.13 V-infinity vectors for Earth-Jupiter 2022 opportunity 

Parameters 
Conventional 
patched conic 

design 

B-ITRPC designs 

option 11 option 12 option 21 option 22 

𝑣∞𝐷(km/s) 9.1302 9.0804 9.1513 9.0799 9.1510 

𝛼∞𝐷(deg) 350.8361 350.7814 351.7859 350.7709 351.7818 

𝛿∞𝐷(deg) -18.3302 -17.4129 -19.6304 -17.3877 -19.6207 

𝑣∞𝐴(km/s) 5.8344 5.8168 5.8240 5.8167 5.8240 

𝛼∞𝐴(deg) 352.6967 352.3852 352.4400 352.3845 352.4397 

𝛿∞𝐴(deg) 0.7931 0.5550 1.2760 0.5463 1.2727 

The V-infinity vectors at the departure and arrival phases obtained using the 

conventional patched conic technique and the B-ITRPC technique are given in Table 

6.13. The four notional design options of the trajectory obtained using the conventional 

patched conic technique are given in Table 6.14a. The four distinct design options of the 

trajectory obtained using the ITR-PC and B-ITRPC techniques are given in Tables 6.14b 

and 6.14c respectively. It is to be noted that, unlike the Earth-Mars and Earth-Venus 

mission scenarios, the difference in the departure angles between the design options are 

significantly large (for option 11 and 12: ΔRAAN, 20 deg; ΔAoP, 18 deg). The 

identification of distinct design options in this case is very important as the different 

departure RAAN values among the four design options lead to largely different launch 

windows. Also, the total velocity impulse between the four design options vary upto 46 
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m/s. The total velocity impulse for the ITR-PC designs is about 230 to 277 m/s less than 

that for the conventional patched conic designs which allows significant saving in terms 

of fuel requirement, roughly 90 kg (cf. Tables 6.14a and 6.14b). The difference in total 

velocity impulse between the ITR-PC and B-ITRPC designs is also significant, about 13 

to 15 m/s (cf. Tables 6.14 b and 6.14c).  

Table 6.14a Conventional patched conic designs for Earth-Jupiter 2022 opportunity 

Parameters option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -4781.5 -4781.5 -4781.5 -4781.5 

𝑒∞𝐷 2.396634 2.396634 2.396634 2.396634 

𝑖∞𝐷(deg) 20.0000 20.0000 20.0000 20.0000 

𝛺∞𝐷 (deg) 56.3759 56.3759 105.2963 105.2963 

𝜔∞𝐷(deg) 178.4833 178.4833 132.1942 132.1942 

𝑎∞𝐴(km) -3721653.3 -3721653.3 -3721653.3 -3721653.3 

𝑒∞𝐴 1.019344 1.019344 1.019344 1.019344 

𝑖∞𝐴(deg) 90.0000 90.0000 90.0000 90.0000 

𝛺∞𝐴(deg) 172.6967 352.6967 172.6967 352.6967 

𝜔∞𝐴(deg) 168.0268 349.6132 168.0268 349.6132 

∆V (m/s) 16239.2 16239.2 16239.2 16239.2 

Table 6.14b ITR-PC designs for Earth-Jupiter 2022 opportunity 

Parameters option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -4853.9 -4778.6 -4854.5 -4778.9 

𝑒∞𝐷 2.375822 2.397500 2.375658 2.397419 

𝑖∞𝐷(deg) 20.0000 20.0000 20.0000 20.0000 

𝛺∞𝐷 (deg) 50.2898 70.3070 111.4117 93.4091 

𝜔∞𝐷(deg) 184.0657 166.1519 126.0045 144.4041 

𝑎∞𝐴(km) -27184640.4 -26592543.6 -27187653.1 -26594309.2 

𝑒∞𝐴 1.002648 1.002707 1.002647 1.002707 

𝑖∞𝐴(deg) 90.0000 90.0000 90.0000 90.0000 

𝛺∞𝐴(deg) 172.3853 352.4401 172.3846 352.4399 

𝜔∞𝐴(deg) 173.0527 354.8609 173.0615 354.8576 

∆V (m/s) 15948.6 15995.0 15948.3 15994.8 

The achievable accuracies on numerical propagation of the analytical designs 

under the force model BFM are given in Table 6.15. Incidentally, the deviations in 
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achieved target parameters are larger for the ITR-PC designs than that of the conventional 

patched conic design. However, the deviations are less for the B-ITRPC design options: 

on CAA, − 105 km to 618 km; on APO inclination, −1 to 2 deg; on  𝑇𝑃, 1 to 2 hours. 

The TCM required to achieve the desired target parameters are more than 200 m/s for the 

conventional and ITR-PC design options while that for B-ITRPC design options is less 

than 1 m/s (cf. Table 6.15). 

Table 6.14c B-ITRPC designs for Earth-Jupiter 2022 opportunity 

Parameters option 11 option 12 option 21 option 22 

𝑎∞𝐷 (km) -4831.2 -4756.4 -4832.6 -4757.1 

𝑒∞𝐷 2.382285 2.404003 2.381892 2.403822 

𝑖∞𝐷(deg) 20.0000 20.0000 19.9999 19.9999 

𝛺∞𝐷 (deg) 50.3255 70.2992 111.4855 93.5245 

𝜔∞𝐷(deg) 184.0829 166.2070 125.9819 144.3416 

𝑎∞𝐴(km) -27184075.7 -26592060.7 -27187099.9 -26593841.8 

𝑒∞𝐴 1.002648 1.002707 1.002648 1.002707

𝑖∞𝐴(deg) 90.0000 90.0000 90.0000 90.0000 

𝛺∞𝐴(deg) 172.3852 352.4400 172.3845 352.4397 

𝜔∞𝐴(deg) 173.0527 354.8608 173.0615 354.8575 

∆V (m/s) 15962.2 16008.6 15961.4 16008.2 

 

Table 6.15 Achieved accuracies of analytical designs on numerical propagation  

under force model BFM 

Parameters Arrival 
CAA (km) 

Arrival 
inclination 

(deg) 

𝑇𝑃( (UTC) 
DD/MM/YYYY 

HH:MM:SS 

TCM  
(m/s) 

Desired values 500 90.00 28 Oct 2024 00:00:00 - 
Conventional PC 
design 

920,802 170.95 21 Oct 2024 19:01:07 
>200 

ITR-PC 
design 
options 

option 11 1,568,183 19.52 8 Nov 2024 13:41:49 >200 
option 12 1,413,791 2.28 8 Nov 2024 07:15:15 >200 
option 21 1,581,037 19.16 8 Nov 2024 12:07:56 >200 
option 22 1,426,949 2.35 8 Nov 2024 07:25:48 >200 

B-ITRPC 
design 
options 

option 11 395 91.02 27 Oct 2024 22:33:58 <1 
option 12 1188 91.82 27 Oct 2024 22:02:12 <1 
option 21 521 90.62 27 Oct 2024 22:51:09 <1 
option 22 624 90.72 27 Oct 2024 22:47:53 <1 
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6.11 Performance of Different Patched conic Techniques 

 This section consolidates the performance of different analytical techniques based on the 

patched conic concept. The minimum energy opportunity for an Earth to Mars transfer 

occurring on 12 May 2018 0 h TDB and flight duration 204 days is considered. 

Table 6.16 Analytical designs based on patched conic concept and the computation time 

Design 
parameters 

Numerical 
design 

Conventional 
PC design 

VPC design 
ITR-PC 
design 

B-ITRPC 
design 

𝑎∞𝐷 (km) -58103.9 -51239.9 -58640.5 -58965.7 -58105.5 

𝑒∞𝐷 1.114934 1.130332 1.113882 1.113254 1.114931 

𝛺∞𝐷 (deg) 333.5562 333.0131 333.0131 333.3889 333.5526 

𝜔∞𝐷(deg) 167.4883 169.3999 167.8129 167.3782 167.4891 

𝑎∞𝐴(km) -4979.6 -4881.1 -4973.4 -4980.0 -4979.7 

𝑒∞𝐴 1.742253 1.757441 1.743391 1.742402 1.740842 

𝛺∞𝐴(deg) 67.9590 68.1673 68.1673 68.0878 68.0851 

𝜔∞𝐴(deg) 115.2124 115.0951 115.4118 115.1783 115.2142 

∆V (m/s) - 3603.4 3545.4 3543.4 3547.9 

Computation time 

Design 
generation 

- 0.002 s 0.002 s 0.006 s 25 s 

Numerical 
refinement 

- > 1 day 180 s 125 s 5 s 

TCM (m/s) - high 165 18 <1 

  For comparison, a comprehensive view of the performance of different analytical 

designs (for option 11) and the numerical design generated using the BFM force model 

are presented in Table 6.16. It can be noted that the B-ITRPC design is very close to the 

numerical design. Also, the total velocity impulse of the B-ITRPC design is less than the 

conventional patched conic design by about 55 m/s. Also, the difference in total velocity 

impulse between the ITR-PC and B-ITRPC designs is only 5 m/s. From the computation 

point of view, the B-ITRPC technique takes about 25 s to generate the design. However, 

for numerical refinement under the design force model, when B-ITRPC design is used as 

the initial guess, the computation time is only 4.5 s. The TCM required to meet the arrival 

target parameters, if B-ITRPC design is used as the initial guess, is less than 1 m/s. This 

clearly indicates that the B-ITRPC design serves as a good initial guess for numerical 

refinement. The achievable accuracies of the different analytical designs on numerical 
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propagation under the BFM force model are given in Table 6.17. It can be noted that the 

conventional PC design results in very large deviation in the arrival parameters. The VPC 

and ITR-PC designs result in slight improvement in terms of the achieved closest 

approach altitude and time of APO periapsis. However, the deviation in APO inclination 

is significantly large. The B-ITRPC design results in good accuracies in the all the arrival 

target parameters. 

Table 6.17 Achievable accuracies on numerical propagation under force model BFM  

Achievable 
accuracies 

Arrival CAA (km) Arr. Inc. (deg) 
𝑇𝑃 (UTC) 

 
Desired 300 75.00 02 Dec 2018 00:00:00 
Conventional 
design 

28,48,031 155.84 07 Nov 2018 17:38:01 

VPC design 6,95,037 130.72 02 Dec 2018 02:25:30 

ITR-PC 4,62,975 21.53 04 Dec 2018 02:13:02 

B-ITRPC 560 75.35 01 Dec 2018 23:51:44 

 

6.12 Conclusions 

 The transfer trajectory design using the biased-iterative patched conic technique provides 

improved analytical design. The B-ITRPC design reduces the reduction in deviation in 

the achieved closest approach altitude by about 97%. The arrival inclination deviates only 

by about 1.3% from the desired value and the time of periapsis by only 3 s. However, the 

inclusion of the perturbations in the analytical design process results in an additional 

transplanetary injection (TPI) impulse of about 5 m/s as compared to the ITR-PC design. 

The computation time taken for numerical refinement using B-ITRPC design as the initial 

guess is very less (~ 3 to 5 s) as compared to the ITR-PC design (~110 to 125 s), thus 

demonstrating its use as an excellent initial guess for numerical refinement. To arrive 

at the desired numerical design, if B-ITRPC design is used as the initial guess, the 

numerical refinement process does not require any additional constraint on the arrival 

target parameters. The B-ITRPC design is very close to the numerical design and so, 

can be used for mission design and analysis purpose to understand the realistic trends.  

  The total velocity impulse between the four distinct B-ITRPC design options for 

an opportunity vary upto 7 m/s only. Hence, any arrival geometry can be achieved without 

incurring high additional velocity impulse. The departure from equatorial parking orbits 

requires a maximum additional impulse of about 3.2 m/s. If this additional impulse is 
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ignored, the trajectory correction maneuver (TCM) requirement will be more. The B-

ITRPC design options result in significantly large improvement in the achievable 

accuracies of the arrival target parameters and so, it requires very less TCM correction.  

  The observations made for direct transfers from Earth to Mars and from Earth 

to Venus are similar. The situation is very much different for a direct transfer from 

Earth to Jupiter. The differences in the departure angles between the design options are 

very large (>18 deg). The identification of distinct design options in this case is very 

important as the different departure RAAN values among the four design options lead 

to largely different launch windows. Also, in this case, the ITR-PC and conventional 

patched conic designs result in poor achievable accuracies in the target parameters. 

Furthermore, for an Earth to Jupiter direct transfer, the total velocity impulse between the 

four B-ITRPC design options vary upto 46 m/s. The total velocity impulse for the B-

ITRPC designs is about 230 to 277 m/s less than that for the conventional patched conic 

designs (this range is 57 to 61 m/s for an Earth to Mars transfer) which allows 

significant saving in terms of fuel requirement, roughly 90 kg. The difference in total 

velocity impulse between the ITR-PC and B-ITRPC designs is about 13 to 15 m/s which 

also saves about 5 kg of fuel.  

  Under a realistic force model that includes the major perturbing forces within 

the departure phase, it is found that the B-ITRPC technique generates the four distinct 

design options for an opportunity with the highest accuracy as compared to all the other 

analytical design techniques. 

 

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠ 
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CHAPTER	7	

CONCLUSIONS	AND	FUTURE	SCOPE	
The current research has developed novel analytical trajectory design techniques for 

direct interplanetary orbiter missions. The proposed iterative analytical techniques 

identify the four distinct trajectories possible for an opportunity. The major perturbations 

have been included in the analytical trajectory design process and the biased-iterative 

patched conic designs thus generated are close to the numerical designs. The B-ITRPC 

design can be used as a good initial guess for the numerical refinement process which 

ensures quick and steady convergence without any additional specification of the arrival 

target parameters. It is demonstrated that the FORTRAN 95 codes developed based on 

the proposed techniques can be used as quick mission design and analysis tool for

exploring various mission scenarios. All the computations are carried out in an Intel core 

i5 2.5GHz processor. The important inferences derived from the current research are 

summarized as follows. 

1) The arrival target parameters are extremely sensitive to even a small change in any

one of the departure hyperbolic orbit characteristics which is evident from the 

sensitivity analysis. This brings out the need for improvement of the conventional 

patched conic design. 

2) When analytical tuning is introduced in the patched conic technique, the total velocity 

impulse is reduced by about 58 m/s. This brings out the necessity of tuning the 

hyperbolic orbital elements. 

3) All the iterative analytical techniques capture the four distinct designs of the transfer 

trajectory available for an opportunity and they can handle orbiter mission design 

which requires targeting the arrival conditions. On the other hand, the conventional 

patched conic and V-infinity tuned patched conic techniques which are non-iterative 

in nature, can only generate notional designs for orbiter missions. 

4) The one-step iterative pseudostate technique (ITR-PS) includes the gravity effect of 

the Sun within the pseudosphere and thereby improves the achievable accuracies of 
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the arrival target parameters (CAA and time of arrival periapsis) except the achieved 

APO inclination. To achieve this specific APO inclination, the multiconic differential 

evolution technique (MCDE) is proposed which uses the multi-step pseudostate 

technique for analytical propagation within the pseudosphere and the differential 

evolution technique for tuning the hyperbolic orbit characteristics. However, the 

computation time for this technique is very large (88 s) as compared to the ITR-PS 

design. Further, in the pseudostate concept, the transfer trajectory is heliocentric even 

within the pseudosphere of the target planets. This complicates the inclusion of 

perturbations in the design process. So, the pseudostate concept is not recommended. 

5) The simplicity of the conventional patched conic technique and the iterative nature of 

the ITR-PS technique are combined and an iterative patched conic technique (ITR-

PC) is proposed. The inferences drawn from the four distinct ITR-PC design options 

for different interplanetary transfers are as follows. 

a) In a typical Earth to Mars transfer trajectory (2018 opportunity), the departure

RAAN values of the four ITR-PC design options are 333.3889 deg, 333.4465 

deg, 129.9454 deg, and 129.9341 deg respectively. Although the differences 

in departure RAAN values between the first two options, and between the 

other two options are only 0.06 deg and 0.01 deg respectively, the arrival 

hyperbolic orbits have completely different geometries. Also, the departure 

designs are completely different for the design options 11 and 21, and options 

12 and 22, but they result in similar arrival geometries. This clearly brings out 

the importance of identifying the distinct design options for an opportunity. 

b) In a typical Earth to Venus transfer trajectory (2023 opportunity), the 

difference in the departure RAAN between the design options are 

comparatively higher and vary from 1.6 deg to 2 deg. 

The observations made for direct transfers from Earth to Mars and from Earth to    

Venus are similar. The situation is very much different for a direct transfer from Earth 

to Jupiter. 

c) In a typical Earth to Jupiter transfer trajectory (2022 opportunity), the 

difference in the departure RAAN between the design options are very large 

and vary from 18 deg to 20 deg. The identification of distinct design options 
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in this case is very important as the largely different departure RAAN values 

(of the four design options) lead to largely different launch windows for lift-

off. 

6) The computation time required to generate designs for 2190 cases is only 592 ms and 

so, the ITR-PC design technique can be used as a quick mission design and analysis 

tool to carry out preliminary design analysis. A design analysis for the four design 

options is done for an Earth to Mars orbiter mission (2018 opportunity) using the ITR-

PC technique and some of the salient inferences are listed below. 

a) For an interplanetary transfer, lower periapsis altitude of the departure 

parking orbit is preferable for a fixed apoapsis altitude because the total 

velocity impulse, in this case, is less. Also, the launch vehicle can achieve 

more payload in this scenario. 

b) For the whole range of feasible DPO inclinations for an opportunity, an 

interplanetary transfer incurs a penalty of less than 4 m/s only. 

c) For a prefixed DPO inclination, any of the four design options can be used 

for interplanetary transfer with a marginal penalty in the total velocity 

impulse which is less than 1 m/s. 

d) Directly targeting lower APO periapsis altitudes is beneficial compared to 

the strategy of targeting higher APO periapsis altitudes and then reducing 

to lower APO periapsis altitudes. 

e) Any feasible APO inclination can be achieved without incurring 

significant additional velocity impulse (< 4 m/s). 

7) For a co-planar transfer, a realistic estimate of feasible range of DPO inclinations can 

be obtained with the ITR-PC technique. For example, for 2018 Earth-Mars transfer, 

the feasible range with the conventional PC technique is from 36.8 deg to 143.2 deg, 

whereas with the ITR-PC technique, the feasible range for option 11 is between 37.21 

deg and 143.79 deg. This indicates that, we can generate only a notional design for 

a coplanar transfer with a DPO inclination of 36.8 deg. 

8) The ITR-PC designs result in improved achievable accuracies in the arrival target 

parameters on numerical propagation under the design force model (say, for Earth-

Mars transfer of 2018 opportunity: achieved CAA is 313 km against 300 km; APO 

inclination is 75.39 deg against 75.00 deg and time of periapsis deviates by about 2 
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minutes from the desired value) as compared to the conventional and V-infinity tuned 

patched conic designs. Note that the numerical propagation of conventional patched 

conic design results in very large deviations in achieved target parameters (achieved 

CAA: 30,11,712 km; APO inclination: 156.32 deg; time of periapsis deviates by about 

26 days from the desired value). 

9) The ITR-PC designs result in poor accuracies in the arrival target parameters on 

numerical propagation under a force model that includes perturbations (for Earth-

Mars transfer of 2018 opportunity: achieved CAA: 4,62,975 km; APO inclination: 

21.52 deg and time of periapsis deviates by about 1.5 days from the desired value).

Thus, the ITR-PC technique requires further refinement under a realistic force model 

that includes perturbations. 

10) The major perturbations in the departure phase which influence the arrival parameters 

are the non-spherical Earth and the third-body effects of the Sun and the Moon. The 

perturbations due to other planets, atmospheric drag and solar radiation pressure can 

be neglected. 

11) The biased-iterative patched conic technique (B-ITRPC) which includes perturbations 

in the design process, is proposed. The B-ITRPC design options achieve the highest 

accuracies in the arrival target parameters (for Earth-Mars transfer of 2018 

opportunity: achieved CAA: 543 km; APO inclination: 75.41 deg and time of 

periapsis deviates by about 9 minutes from the desired value). 

12) The B-ITRPC design is very close to the numerical design. The trajectory correction 

maneuvers (TCM) required is less than 1 m/s under the force model that includes 

major perturbations while the TCM requirement is about 18 m/s if ITR-PC design is 

adopted for the mission.

13) The design analysis using the B-ITRPC technique provides a realistic insight into 

various mission aspects. The computation time for generating B-ITRPC design is 

more than ITR-PC design. Nevertheless, the B-ITRPC technique derives its merit 

based on the improvement in the trajectory design. 

14) For the numerical refinement process under the design force model, if the 

conventional design is used as the initial guess, the process converges randomly to 
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any of the design options. In contrast, when the ITR-PC design is used as the initial 

guess, the numerical refinement process converges to the desired design option. 

However, under a force model that includes perturbations, the numerical refinement 

process of ITR-PC design also converges randomly to any of the design options. The 

B-ITRPC design converges to the desired design option steadily even in the absence 

of additional information on the arrival parameters. 

15) The computation time for numerical refinement, if the conventional patched conic 

design is used as the initial guess, is more than a day under a force model that includes 

major perturbations. With the ITR-PC design as initial guess, the process converges 

in 125 s. The computation time required for the B-ITRPC design to converge is only 

5 s (Earth-Mars transfer: 2018 opportunity). Thus, the B-ITRPC technique serves as 

an excellent initial guess for numerical refinement.  

16) The velocity impulse requirement for the analytical designs is less by about 50-75 m/s 

than velocity impulse requirement for the conventional design (Earth-Mars transfer: 

2018 opportunity). This indicates that we get only a conservative estimate of the 

velocity impulse from the conventional design. 

FUTURE SCOPE 

The numerical propagation of the analytical trajectory design under a force model 

that includes the gravity field of Earth also in the heliocentric phase, results in large 

deviations in the arrival target parameters. So, the trajectory design can be further refined 

to include Earth in the heliocentric phase. 

♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠ 
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APPENDIX	A	

DESIGN	ANALYSIS	WITH	ITR-PS	TECHNIQUE	

 

  A FORTRAN 95 code has been developed based on the ITR-PS technique and used as 

a quick mission design and analysis tool for orbiter mission. The analysis is carried out for 

various departure and arrival scenarios. A similar analysis by numerical technique will require 

enormous computation time and effort.  

  The computation time required for obtaining the ITR-PS design is only 5 ms in an Intel 

Core i5-3230 CPU 2.60 GHz processor and so, the design analysis takes minimal computer 

time. For using the ITR-PS technique as a mission analysis tool, the following design data are 

used; (i) minimum energy opportunity: 12 May 2018 0 h TDB, (ii) flight duration/time of flight: 

204 days, (iii) periapsis altitude of DPO: 300 km, (iv) inclination of DPO: 75 deg (with respect 

to Earth equator and equinox of J2000), (v) periapsis altitude of APO: 300 km, (vi) inclination 

of APO: 75 deg (with respect to Mars equator and IAU vector of J2000), and (vii) pseudosphere 

duration at the departure and arrival phases as 3 and 2 days respectively. For the design analysis 

purpose, the parameter defined in (i) to (vi) are varied one by one. The design analysis is 

demonstrated for the ITR-PS design option 11. Similar trend is expected for other design 

options also. 

 

1. Different departure epochs 

The influence of the transfer angle on the design analysis is very significant and so, in 

Fig.A1, the variation of transfer angle for different departure epochs in the neighborhood of 

the minimum energy epoch is presented. The transfer angle varies from 130 deg to 200 deg 

over the chosen range of departure epochs (six months starting from 1 January 2018). The flight 

duration is fixed as 204 days. The sudden jump in the transfer angle happens for a transfer 

angle of 180 deg and is because of the non-coplanar orbits of the target planets. This occurs by 

the end of February 2018 (around MJD 58,175).  
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Fig. A1. Variation of transfer angle for different departure epochs 

 

Fig. A2. Variation of departure V-infinity vector (from ITR-PS technique) for different 

departure epochs 
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Fig. A3. Variation of arrival V-infinity vector (from ITR-PS technique) for different 

departure epochs 

The departure and arrival V-infinity vectors corresponding to the ITR-PS design option 1-1 are 

plotted in Figs. A2 and A3 respectively. Note that the magnitude of V-infinity vector steeply 

goes up in the vicinity of 180 deg transfer angle.  

 

Fig. A4. Variation of DPO angles (from ITR-PS technique) for different departure epochs 
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Fig. A5. Variation of APO angles (from ITR-PS technique) for different departure epochs 

 

Fig. A6. Minimal variation of departure AOP and corresponding variation of total velocity 

impulse for different departure epochs  
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Fig. A7. Variation of TPI and POI velocity impulses (from ITR-PS technique) for different 

departure epochs 

The variation of the DPO (departure RAAN and AOP) and APO (arrival RAAN and AOP) 
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increase in the velocity impulses in Fig. A7 occur in the vicinity of 180 deg transfer angle. 

  

2. Different flight durations 

For a fixed departure epoch, the variation in transfer angle for different flight durations 
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the departure velocity impulse for TPI varies by about 100 m/s with flight duration (cf. Fig. 

A13). 

 

Fig. A8. Variation of transfer angle for different flight durations 

 

Fig. A9. Variation of departure V-infinity vector (from ITR-PS technique) for different flight 

durations 
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Fig.  A10. Variation of arrival V-infinity vector (from ITR-PS technique) for different flight 

durations 

 

Fig. A11. Variation of TPI angles (from ITR-PS technique) for different flight durations 
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Fig. A12. Variation of POI angles (from ITR-PS technique) for different flight durations 

 

Fig. A13. Variation of TPI and POI velocity impulses (from ITR-PS technique) for different 

flight durations 
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departure hyperbolic orbital plane. However, the location of DPO periapsis changes drastically 

with increase in departure periapsis altitude. The variation in POI angles is insignificant.  

 

Fig. A14. Variation of DPO angles (from ITR-PS technique) for different departure periapsis

altitudes 

 

Fig. A15. Variation of APO angles (from ITR-PS technique) for different departure periapsis

altitudes 

The variation of TPI and POI velocity impulses for different periapsis altitudes are given in 
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Fig. A16. Variation of TPI and POI impulses (from ITR-PS technique) for different departure 

periapsis altitudes 

 

4. Different inclinations of departure hyperbolic orbit/DPO  
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about 90 deg inclination. The implication of departure hyperbolic orbit inclination on the APO 
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Fig. A17. Variation of DPO angles (from ITR-PS technique) for different departure 

hyperbola/parking orbit inclinations 

 

Fig. A18. Variation of APO angles (from ITR-PS technique) for different departure 

hyperbola/parking orbit inclinations 
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Fig. A19. Variation of TPI and POI velocity impulses (from ITR-PS technique) for different 

departure parking orbit inclinations
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Fig. A20. Variation of DPO angles (ITR-PS technique) for different arrival periapsis altitudes 

 

Fig. A21. Variation of APO angles (ITR-PS technique) for different arrival periapsis altitudes 
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Fig. A22. Variation of TPI and POI velocity impulses (from ITR-PS technique) for different 

arrival periapsis altitudes 

 

6. Different inclinations of arrival hyperbolic orbit/APO  

The profiles of the DPO and APO angles for different inclinations of the arrival 

hyperbolic orbit are depicted in Figs. A23 and A24. For coplanar transfer, the range of 

inclination is between 10 deg and 170 deg. The entire range of arrival hyperbolic orbit 

inclinations can be achieved by a small change in the departure RAAN (0.06 deg) and departure 

AoP (0.04 deg). This emphasises the high sensitivity of the DPO angles. There are significant 

variations in the APO angles for different target inclinations. The variation in TPI and POI 

velocity impulses for different target inclinations are insignificant as seen in Fig. A25. 

 

 

 

 

 

 

 

 

 

 

200 500 800 1100 1400 1700 2000
1311.62

1311.64

1311.66

1311.68

1311.7

Arrival periapsis altitude (km)

T
P

I 
ve

lo
ci

ty
 im

p
u

ls
e 

(m
/s

)

 

 

P
O

I 
ve

lo
ci

ty
 im

p
u

ls
e 

(m
/s

)

2100

2150

2200

2250

2300
TPI
POI

Departure 12 May 2018 0 hrs UTC
Flight duration 204 days
DPO Incl. 75 deg
APO Incl. 75 deg



Appendix A   199 
 

 

 

 

 

Fig. A23. Variation of TPI angles (ITR-PS technique) for different APO inclinations 

 

Fig. A24. Variation of POI angles (ITR-PS technique) for different APO inclinations 
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Fig. A25. Variation of TPI and POI velocity impulses (from ITR-PS technique) for different 

APO inclinations 
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