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ABSTRACT

Cytopathology is the analysis at cellular level for disease diagnosis. Every cell
has standard morphology and typical count in unit volume constituting the cell
signature. Depending on the pathological state of the individual, the signature
may change and is the subject of cytopathology. Manual microscopic examination
is the gold standard for cytopathology but is a tedious, skill demanding job and
suffers from low throughput. Automated microscopy and more recently imaging
flow cytometry (IFC) emerged to overcome these difficulties and to standardise
the result. However these systems used extensive robotic handling and/or expen-
sive fluid handling mechanisms, making them bulky, expensive and not suitable
for resource limited clinics. In our research, we strive for developing very cost-
effective point-of-care diagnostics platforms by using off-the-shelf, low-cost com-
ponents. However the low-cost instrumentation has introduced great challenges
in processing the acquired data such as dealing with the focus shift, unlabeled,
unstained data and imaging artefacts. We have overcome these challenges by
designing, developing and employing sophisticated image analysis and advanced
machine learning algorithms. We have proposed processing frameworks for both
microscopy and ITFC: a framework to automate malaria diagnosis in microscopy
and a general framework for processing and classification of cells in IFC. The
frameworks include feasible preprocessing, novel cell segmentations, feature ex-
traction as well as classification. We have explored both the possibility of using
conventional classifiers (like support vector machine and nearest neighbour) and
trending deep learning based classifiers (based on restricted Boltzmann machine
and convolutional neural network) and proposed classification techniques even
when the availability of labeled data for training is limited. The feasibility of the
[FC framework is established by classifying leukaemia cell-lines (K562, MOLT,
and HL60).
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CHAPTER 1

Introduction

1.1 Overview of the Research Work

Cytopathology is the study and diagnosis of diseases at the cellular level. The mi-
croscopic examination remains as the gold standard for cell analysis due to its low
cost and widespread acceptance. However, the manual examination is a laborious
task involving both slide preparation (fixation and staining) and analysis. It is a
time consuming, repetitive and tedious job. Above all, the results may vary for the
same sample among the clinicians depending on their level of expertise. In order
to overcome these drawbacks, several efforts have been made in the recent past
to automate the process of cytopathology. Research efforts in this direction have
mostly been constrained to two approaches: automation of slide preparation and
automation of slide analysis. Instruments which can carry-out automated slide
preparation employ extensive amount of robotic handling, rendering the commer-
cially available whole slide scanning and analysing systems bulky and expensive
(Rojo et al. (2006); Pantanowitz et al. (2011)). One of the cheaply available au-
tomated microscopy systems is PathScope (PathScope (2016)) but costs around
25000 US $ making them not that affordable in resource limited clinics especially

in low-income group countries.

The automated microscopy systems such as the PathScope (PathScope (2016))
has considerably improved the throughput (number of cells that can be processed
in unit time) when compared to manual microscopy but is still well behind flow
cytometry. Flow cytometry has become an indispensable tool for clinicians and
biologists for counting, analysing and identifying cells with typical throughput of
the order of a few thousands cells per second. It uses a flow cell architecture
where the cells are interrogated using lasers while they are in flow. A typical flow
cytometry system measures the forward as well as side scatter profiles of the lasers.

The forward scatter is a measure of the size of the cell and the side scatter is a



measure of the complexity of the cell (refer Fig. 1.1), and this knowledge is used

to identify and count different cells under study.

Small Medium Large

[
Forward scatter

Neutrophils

Monocytes

'« Complexity
1

Side scatter

Forward scatter oC Size -

Lymphocytes

Figure 1.1: Analysis of white blood cells by flow cytometry (Flow (2016))

While the acquisition speed of flow cytometry is extremely high, the amount
of information it provides per cell is usually low. The reason is that the flow
cytometry will not capture specific morphological features other than the amount
of scatter. On the other hand, traditional microscopic examination offers detailed
images with spatial localisation of sub-cellular components but has drawbacks in
terms of enumeration and speed. Imaging Flow Cytometry (IFC) (Basiji et al.
(2007); Schonbrun et al. (2012)) is a nascent technology that combines the speed
of flow cytometry and the power of digital microscopy in providing the capability
to analyse morphological features. However, the current commercially available
IFC systems are bulky and expensive. For example, the Amnis IFC by Merck
Millipore Inc (Amn (2016)) costs around 199,000 US $. These systems use bulk
fluid handling mechanisms for automating the process of sample image acquisi-
tion and employ sophisticated and expensive image acquisition schemes which use
time-delay integration detectors and multiple laser sources. The machines are
too expensive to afford in resource limited settings. The recent trend has been
to employ microfluidic sample handling in combination with different microscopy
imaging modalities to enable high-throughput imaging of cells in flow. These
systems, which we refer as microfluidics microscopy (Mf-Ms), combine the statis-

tical power of flow cytometry with spatial and quantitative morphology of digital



microscopy.

In this research, we propose processing frameworks for the data acquired
from cost-effective whole slide analysing system and a reasonably high-throughput
prototype microfluidics microscopy system (Jagannadh et al. (2016)) developed
by our collaborators. Unlike the commercially available systems, the developed
systems employ inexpensive off-the-shelf optical components and fluid handling
mechanisms. This has enabled us to set-up portable, automated disease diagnos-
tic/screening platforms for resource limited settings. Thus my research thesis has
dual objectives. i) Analysis of stained blood smear images/videos captured us-
ing custom built automated full slide scanner, thereby providing a cost-effective
solution for malaria diagnosis in conventional gold-standard microscopy. ii) Anal-
ysis and classification of cells from unstained IFC data. The common goal is to
design and develop necessary framework containing advanced image analysis and
machine learning techniques to operate on the data from very cost-effective in-
struments thereby moving in a direction to make portable diagnostic/screening

systems for resource limited settings.

In this thesis, first we put forward necessary image analysis and classification
algorithms for the custom-built automated whole slide scanner for detecting and
quantifying textitPlasmodium falciparum infected malarial cases. This is accom-
plished by cell localisation by a proposed cascaded segmentation strategy and
parasite detection using a custom-designed Convolutional Neural Network (CNN)
on focus stack of slide images. Subsequent chapters discuss about the data analysis
from a prototype Mf-Ms system. As noted, the Mf-Ms systems employ inexpen-
sive optics, as well as polymer/plastic based microfluidic devices (around 1 $).
Thus the total cost of the components of the microfluidics IFC system developed
(Jagannadh et al. (2016)) is only about 1500 $ when compared to 199,000 $, the
cost of Amnis (Amn (2016)) IFC. I have proposed, as part of this research, a gen-
eral framework capable enough to automatically analyse the cells captured using
custom-designed microfluidics microscopy systems and have also built a proto-
type for signature based as well as hand engineered feature based classification of

unstained unlabeled Leukaemia cell-lines K562, MOLT, and HLG60.

In the last chapters of this research report, we propose the use of deep learn-



ing based cell classifiers for better accuracy. The proposed framework is capable
enough to deal with limited availability of labeled data for building a supervised
classification system. The Restricted Boltzmann Machine (RBM) based deep be-
lief network makes use of all available data (both labeled as well as unlabeled)
to learn the underlying structure of the training data so that the subsequent su-
pervised training needs only very few training samples for learning the classifier.
Also, we propose to use the transfer learning capability of CNN to extract sensible
and discriminative features to produce better accuracy for the leukaemia cell-line

classification.

1.2 Motivation and Scope

There is a great demand and huge medical value for cost-effective cytopathology.
As discussed in last section, the available automated cytopathology systems are
bulky and unaffordable to many clinics especially in poor-income group countries.
This has motivated us to define the scope of our research and we set our goal to
design and develop necessary image analysis and pattern recognition techniques

for setting up low-cost, portable instruments for point-of-care diagnostics.

1.3 Contributions of the Thesis

The goal of this research work, as noted in section 1.2, is to propose necessary
image analysis and pattern recognition techniques for low-cost automation for cy-
topathology. Towards this goal, we have made the following contributions through

this research.

e A fully automated quantification system for the diagnosis of malaria due to
protozoan of type Plasmodium falciparum from focus stack of blood smear
images collected using a cost-effective, custom-built, portable whole slide
scanner is proposed. A custom designed convolutional neural network is
used to detect the malaria infected cells. Use of CNN operating on focus
stack for the detection of malaria is first of its kind, and it not only im-

proved the detection accuracy both in terms of sensitivity and specificity
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but also favoured the processing on cell patches and avoided the need for
hand-engineered features. The proposed approach (portable slide scanner
and the CNN algorithm together) is suitable for point-of-care Diagnostics
and eliminates the need for a pathologist to manually examine the slides

using a bright-field microscope.

The proof-of-concept of a diagnostic framework as well as a prototype for sig-
nature based analysis and classification of leukaemia cell lines (K562, MOLT,
HL60) imaged using custom fabricated, cost-effective microfluidics imaging
flow cytometry (mIFC) is proposed. The mIFC is an emerging technology
that combines the statistical power of flow cytometry with spatial and quan-
titative morphology of digital microscopy. We have analysed the feasibility
of a cell signature based approach for cancerous cell identification analogous
to face recognition systems implemented with help of surveillance cameras.
We have also proposed a way by which cells difficult to classify can be iden-
tified, which will open up an opportunity to clinicians to correctly identify
the true class of the cell rather than going for a wrong classification. Al-
together, such a platform would facilitate affordable mass screening camps
in the developing countries and therefore help to decrease cancer mortality

rate.

We Proposed a general framework for the processing/classification of cells in
mlIFC. The framework includes computationally feasible cell preprocessing
methods and a proposed graph based cell segmentation strategy to find the
contour of the cell. Once the cells are localised, a set of features reflecting the
size, shape, and complexity of the cells are extracted and are used to classify
the cells. The usefulness of the framework is established by performing the
classification of leukaemia cell-lines. The proposed system is a significant
development in the direction of building cell analysis platform that would
facilitate affordable mass screening camps looking cellular morphology for

disease diagnosis.

We have also explored and proposed the feasibility of using deep learning
networks for cytopathology by performing the classification of leukaemia

cell-lines. The capability of Restricted Boltzmann Machine (RBM) based



systems in learning the structure of the data rather than learning labels
is utilized to build a Deep Belief Network (DBN) for classification. The
transfer learning capability of deeply trained CNN on extensive non-medical
image database such as ImageNet is made useful to successfully classify the
leukaemia cell-lines K562, MOLT and HL60. These capabilities of both
RBM and CNN are very useful in medical image domain where often large
dataset is available for training but only a small fraction is labeled, limiting
the capability of building supervised deep learning based classifiers. In our
investigation, we have found that the proposed methods outperformed the
conventional systems in the classification of these cell lines. To the best
of our knowledge, such a reporting on cytopathology images is first of its
kind and we believe that it holds great promise in terms of enabling cancer

screening in resource-poor settings.

1.4 Organisation of the Thesis

Chapter 2 explore the cellular image diagnosis in general and microscopy as well
as microfluidic microscopy based cytopathology in particular. Chapter 3 describes
the image analysis and classification system proposed for automated quantitative
malaria diagnosis, using a custom developed whole slide scanning system. Chap-
ter 4 introduces the nascent imaging flow cytometry and covers the details of the
prototype developed for signature based leukaemia cell-line analysis. Chapter 5
provides the general framework proposed for the analysis and subsequent classi-
fication of cells captured using the custom-built microfluidic microscopy systems.
Chapter 6 proposes the use of deep learning systems for better classification ac-
curacy. It provides necessary details for using RBM and CNN for the use in
cytopathology to build deep learning based classification system even with lim-
ited labeled training data. Each chapter starts with the goal that it is trying to
accomplish, and covers necessary literature, discusses the contributions. Chapter

7 summarizes the thesis and suggests directions for future works.



CHAPTER 2

Cellular Image Analysis for Cytopathology

Cytopathology is the study and diagnosis of diseases at the cellular level. In
Cytopathology, often free cells are analysed unlike histopathology where the tissue
as a whole get analysed. Each cell under investigation has a signature constituted
by the morphology of the cells as well as their behavioural characteristics. The
cytologists look for deviation from standard cell signature to report pathological
state of the subject. The cells for analysis are either prepared as a smear on a glass
slide or as a fluid suspension. Sometimes cyto-centrifugation is used to concentrate

the cells under investigation without altering the morphology of the cells.

Often cytopathologic tests are conducted to assist cancer diagnosis/screening.
One of the most popular and successful examples is in the screening of cervical
cancer where cells are scraped from the cervix and are subjected to analysis using
a microscope. Cells from neck, thyroid and breast are also analysed to detect the
pathological state of the organ. In such cases the cells are often collected using
a needle attached to a syringe and are analysed (fine needle aspiration cytology
(FNAC)). Though the primary concern of cytopathology is to assist in the diag-
nosis of cancer, the techniques are also used to detect microbial infections : viral,

bacterial, and /or parasitic infections.

2.1 Blood Cytology

Blood cytology is cytopathology analysis of blood cells for the diagnosis of dis-
eases. A number of diseases can either be diagnosed or screened by analysing
blood cells and it includes the parasitic infections like malaria, allergic reactions
(eosinophilia) and leukaemia. The important cells in blood are red blood cells
(erythrocyte), white blood cells (leukocyte) and platelets (thrombocytes). Each
of these cells has dedicated roles : erythrocyte’s primary responsibility is trans-

porting oxygen to tissues and taking back carbon dioxide. The leukocytes fights



Table 2.1: Typical Blood Cell Count

Type Man (in pul) Woman (in pl) Child (in wl)
Erythrocyte 4.5 — 5.5 million 3.8 — 4.8 million 3.7 — 5.3 million
Leucocytes 4000 — 10000 4000 — 10000 5500 — 15000

Thrombocytes 0.15 — 0.41 million 0.15 — 0.41 million 0.15 — 0.41 million

Table 2.2: Differential Leucocyte Count (in %)

Neutrophil FEosinophil Basophil Monocyte Lymphocyte
40 - 80 % 1-6% <1-2% 2-10% 20 — 40 %

against infections and they include neutrophil, basophil, eosinophils, monocytes
and lymphocytes. The monocytes and neutrophils are bacterial phagocytes. Lym-
phocytes deal with foreign objects such as bacteria, virus and toxic substances by
producing antibodies and by triggering antigen-antibody reactions. FEosinophil
deals with the allergic reactions while basophils triggers inflammatory reactions.

.

g @@y 3

Figure 2.1: Types of blood cells : a) Leucocytes (neutrophil, monocyte,
basophil, lymphocyte & eosinophil); b) Erythrocytes

The different blood cells follow standard range in their count in unit volume
of blood and hold standard morphological characteristics. For example, one micro
litre of blood has around 5 million RBCs and 7000 WBCs in a healthy man and
the differential count of WBCs is also in standard range (Table. 2.1). Around
60% of total WBCs are neutrophils and 30% will be lymphocytes (Table. 2.2)
(Lewis et al. (2012)). Each of these cells also has standard morphology deter-
mined by features such as cell size, shape of the nucleus, amount of cytoplasm,
presence of granules and number of nuclear lobes (Fig. 2.1). For example, the
lymphocytes are small cells ("8um in diameter) having round nucleus and scarce
cytoplasm with no granules, while neutrophils are bigger cells (T15um in diame-

ter) having multi-lobular nucleus and abundant cytoplasm with granules. These



morphological characteristics and standard count in unit volume of blood form
their signatures, and any deviation may signal a pathological state. For example,
a person with fever and having high neutrophil count suffers most probably a bac-
terial infection whereas having high lymphocyte count signal viral infection. The
morphology of the cells may also undergo a change. For example, the last 3 cells
in Fig. 2.1 b are red blood cells (RBCs) of which only the middle one is healthy
and others are infected by malarial parasite. Healthy RBCs are small cells (~6um)
with rich haemoglobin content, and it can be noted that the characteristics of the

infected cell are quite different.

2.2 Microscopy

The most popular cytopathology examination is using brightfield microscope. For
brightfield microscopic examination, specimen is prepared by smearing samples on
a glass slide and is followed by fixation and staining. The fixation hardens the cells
on the glass surface but keeps them in a ‘life-like’ state. This is achieved by the
use of a fixation agent (e.g. formaldehyde) that kills micro-organisms and prevents
enzyme activities. Sufficient contrast is then introduced between the components
of interest (nucleus, cytoplasm) and the background by a process called staining.
Well established fixation and staining (Clark et al. (1981)) protocols are used for

the purpose.

The microscopic examination of cells is cost effective and it opens up the op-
portunity to closely inspect cellular details including morphology. Thus it became
the gold standard in cytopathology. However, the manual microscopic examina-
tion is a quite labour involved task. The process of slide preparation requires skill
and it typically takes about 30 minutes. Similarly the staining also takes about
30 minutes to few hours depending on the cells being analysed and stain being
used (Bancroft (2008)). Finally, the analysis of statistically significant number of
cells requires a few hours turning the manual microscopic examination tedious,
time demanding, repetitive. The results are also highly dependent on the level of
expertise of the cytopathologist and hence can lead to non-standard results across

clinicians even for the same sample.



In general, the process of cytological investigation is quite intricate and time
taking due to the manual processing involved at various stages of the test. In
the case of manual slide examination, the slide has to be manually moved using
a mechanical translation stage to visually assess different regions of the slide for
the presence of cells with abnormal morphology. This would involve several focus
and magnification readjustments, making the overall process quite tedious and
time-taking and it also reduces the throughput. The natural choice to overcome

these drawbacks is automated microscopy.

2.3 Automated Microscopy

Research efforts in automating microscopy have mostly been constrained to two
approaches: automation of slide preparation and automation of slide analysis. As
noted earlier in section 2.2, slide preparation involves both fixation and staining
and are quite involved process. A number of automated slide preparation systems
are proposed (Oud et al. (1986); Zahniser and Hurley (1996)) and are commer-
cially available (de Bitencourt et al. (2013); Tabe et al. (2014); PathScope (2016)).
However they employ extensive amount of robotic handling rendering them bulky,

expensive and inaccessible to resource limited settings.

Sophisticated image analysis algorithms are used to analyse the captured slide
images and the analysis is often performed only on the best focused image. In
order to find the best focused plane, a number of auto focus measures are avail-
able (Firestone et al. (1991); Hamm et al. (2010); Junior et al. (2010)) and are
often built-in to the hardware (He et al. (2010)). However, the images acquired
in automated microscopy tend to have cells very closely spaced (or overlapping)
increasing the computational complexity of image processing algorithms, essential
for extracting signature of different cells. Therefore the image analysis algorithms
must include preprocessing stages to improve contrast and to suppress noise, seg-
mentation techniques to localise each cell, feature extraction techniques to extract
signature specific features followed by an inference engine to make the decisions.
The inference engine often makes use of machine learning techniques to accom-

plish the intended task. Computerized methods have been rapidly evolving to
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assist pathologists by automating the segmentation of cells (and its components
such as nuclei (Di Cataldo et al. (2008)) and cytoplasm), feature extraction and
classification (Thiran and Macq (1996)). A good review on each of these tech-
niques can be found in Irshad et al. (2014).

The automated microscopy has considerably improved the throughput when
compared to manual microscopy. However, the research efforts to facilitate wider
deployment of cytopathology have mostly been constrained to automation with
very little focus on cost optimization. While robotic sample handling has been
used to automate slide preparation, image processing algorithms have been used to
automate/semi-automate slide analysis (Walts and Thomas (2002)). Despite re-
cent efforts on automation, slide based cytopathology fails to reach out to resource-
poor settings. This is mainly due to the trade-off that exists between automation

and system cost.
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Figure 2.2: Schematic of the whole slide scanner and the best focused im-

age for an arbitrary FoV

There is huge interest for automated microscopy for low-resource settings which
is essential for operability without the need for skilled labour and equipped lab
resources. Low-cost automation can be achieved by employing off-the-shelf, in-
expensive components and the schematic of one such system developed by our
collaborators is shown in Fig. 2.2. The overall cost of the components used was
less than $1500 making it an affordable platform for disease screening or diagnosis.
However the low-cost instrumentation has introduced great challenges in terms of
processing. For example, due to the vibrations of the motors, the focus may shift
across the field-of-views (FoV) and the image at right focus for each FoV has to be

decided in software (by analysing focus measure for each frame). The best focused
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image for a FoV showing malaria infected RBCs can be found in Fig. 2.2. Note
that, all parasites (infected RBCs are encircled in Red) may not appear in single
best focused image and depending on the stage of the life cycle of the parasite,
they may appear differently. Also, there can be staining and imaging artefacts.
For example, an artefact is encircled in green. This artefact is due to a tissue
strand from the paper tissue used to clean camera sensor. These facts make it
necessary to analyse a number of images at different focus level to decide between
a real parasite and an artefact. Along with parasite detection, cell counting is also
need to be addressed to produce quantitative malaria diagnosis. This necessitates
the need for cell segmentation. With the knowledge of the parasite locations (from
detection) together with the exact boundary of the cells (from segmentation), we
can determine the number of infected and healthy RBCs which in turn lead to
quantitative result. The cell segmentation becomes a difficult task particularly
when there are overlapping cells, staining and imaging artefacts. These issues

have to be dealt and we will discuss them in detail in chapter 3.

In fact, the necessity for the costlier robotics based automation is a conse-
quence of slide-based sample handling architecture inherent in conventional imag-
ing methods. Whereas there exist other flow based sample handling such as flow
cytometry (Flow (2016)) which completely avoids the slide based imaging and of-
fers higher-throughput compared to automated microscopy. High throughput is
desirable as it offers the capacity to analyse statistically significant number of cells

in reasonable amount of time before making any inference.

2.4 Flow Cytometry

Flow cytometry is a powerful technique for the analysis of individual cells within
a heterogeneous population to statistically report cellular characteristics such as
size, complexity, and phenotype. Figure 2.3 shows the important components of
a typical flow cytometry system. It includes the fluidic system which presents
samples to the interrogation point, the lasers which is the light source for the
scatter and fluorescence, the optics which gather and directs the light, the detectors

which receive the light, and the electronics and peripheral computer for converting
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Figure 2.3: Schematic of flow cytometry system (Flow (2016))

the signal from the detectors into digital data and performing necessary analysis.

The cells are injected into a flowing fluid (sheath fluid /saline water) and ensures
a laminar flow. The fluidic system takes the sample across the interrogation point
one cell at a time. This is achieved by compressing the sample stream to roughly
one cell in diameter (hydrodynamic focussing). The cells are interrogated by the
laser and as it passes through the cell, the light undergoes scatter. The width
of the forward scatter is a measure of size of the cell; the wider the scatter the
bigger the cell. Similarly the side scatter is a measure of cell complexity as the
side scatter is caused by granularity and structural complexity inside the cell. The
side scatter light is guided and is often collected by placing detectors placed right
angle to the laser path. The forward scatter as well as the side scatter thus can
be used to study heterogeneous population of cells and is usually done using 2
dimensional dot plots. For example, in the dot plot shown in Fig. 1.1, each dot
corresponding to the high forward scatter and high side scatter will be a neutrophil
which has the highest complexity and larger size among the WBC populations.
Similarly, the lymphocytes will be having low forward and side scatter profiles. In
addition to making use of forward as well as side scatter, flow cytometry systems
make use of fluorescence to get cell structure and functional characteristics of the

cells. One of the most common ways to study phenotype characteristics of a cell
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is, use fluorophore labeled antibody along with the cell samples. The antibody
then binds to a specific molecule of the cell (Fig. 2.3). When interrogated using
lasers, the fluorophore gets excited to a high energy state and then returns back
to its ground state after releasing the energy. The energy of the emitted light
depends on the energy level to which the fluorophore was excited, and hence the
emitted light will be having a particular dominant wavelength which determines
the colour of the emitted light. The fluorescent light also takes the path of the side
scatter, and by placing a number of mirrors and lenses the emitted lights can be
captured by the appropriate detector. Thus the mirror and lens assembly do a kind
of spectral decomposition to guide the right wavelength (due to side scatter and
fluorescence) to the appropriate detector. Once the forward, side scatter as well as
fluorescence profiles are captured, these are used to study the size, complexity and
phenotype of the cells with in a heterogeneous cell population. The basic principle
and clinical applications of flow cytometry can be found in Laerum and Farsund

(1981); Brown and Wittwer (2000); Henel and Schmitz (2015); Adan et al. (2017).

With flow cytometry thousands of cells per second can be analysed improving
the throughput considerably when compared to automated microscopy. But it
lacks in providing the capability to offer morphological analysis on the cells, as
it only collects the scatter/fluorescence profiles of the cells. With the advent
of advanced imaging techniques and sophisticated image analysing platforms, new

flow based imaging came into practice; the most popular is imaging flow cytometry.

2.5 Imaging Flow Cytometry

Imaging Flow Cytometry (IFC) is a nascent technology that combines the statisti-
cal power of flow cytometry and the quantitative morphology of digital microscopy.
Unlike flow cytometry, in IFC cells are imaged at higher rate and at good resolu-
tion so as to capture the morphological features while they are in flow. The cells
are flown one at a time across the interrogation point and hence the cells are iso-
lated (rarely clumps). This reduces the computational complexity of analysing the
cells as the segmentation is relatively easier compared to slide based imaging sys-

tem. One of the popular IFC systems available in market is Amnis ImageStream
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Figure 2.4: Schematic of imaging flow cytometry system (Amn (2016))

(Amn (2016)). It can produce bright-field, dark-field as well as several fluorescent
images at high speed. In dark field images, the direct beam is blocked by the aper-
ture while one or more diffracted beams are allowed to pass the objective aperture.
These diffracted beams must have strongly interacted with the specimen, and pro-
duces useful information about the intra-cellular complexity. The system shown
in Fig. 2.4 can get 6 images per cell. Just like the traditional flow cytometer, the
cells are introduced into the flow and are interrogated using both bright field and
laser illumination. The only difference is in the detector which is CCD camera in
IFC. The fluorescence and the bright field imagery are then captured using the
objective lens and collimated to the spectral decomposition element. The spectral
decomposition element is a series of long pass filters (analogous to electronic low
pass filters) set at precise angle such that the spectra is spread out so that when
sends to the CCD camera the light is captured at discrete location in the camera.

This helps to take different wavelength in different channels. The 6 channels shown
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in Fig. 2.4 respectively hold the side scatter dark image, the bright field image,
the NF-kB (Nuclear Factor Kappa B) image, orange and red wavelength surface
stain images, and the nucleus image in pink wavelength. The NF-KB image can
provide useful information as it image the changes due to NF-kB pathway which

regulates many cellular processes including proliferation and apoptosis.

Imaging flow cytometry (Basiji et al. (2007); Schonbrun et al. (2013); Gorthi
et al. (2013)) recently became the state-of-the-art technology for accurate cellu-
lar phenotyping and real-time image analysis (Ng et al. (2015, 2016); Otto et al.
(2015b); Yan et al. (2016)). However, these systems employ bulk fluid handling
mechanisms for automating the process of sample image acquisition. Further,
these systems employ sophisticated and expensive image acquisition schemes,
which employ Time-delay integration detectors and multiple lasers. Thus the
available TFC systems (7199,000 US § for Amnis IFC (Amn (2016))) are bulky

and expensive and hence are not suitable for many resource limited clinics.
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Figure 2.5: a) Schematic of developed mIFC system; b) Labelled and un-

labeled cell images

More recently microfluidic sample handling in combination with microscopy be-
came the practice; offering flow based imaging at high-throughput and at low-cost.
We refer these systems as microfluidic microscopy and have employed one such
system with inexpensive components developed by our collaborators (Jagannadh
et al. (2016)) to facilitate cost-effective point-of-care diagnostics. The schematic
of the system is shown in Fig. 2.5 a. The developed system employs microfluidic
conveyor belts (channels) to enable automated sample handling. This has signif-

icantly lowered the setup cost compared to commercially available TFCs, which
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employ an expensive image acquisition scheme and bulk fluid handling mecha-
nisms. The overall cost of the components of the system developed is around
1500 US $ making it a good choice for resource poor settings. In the context
of developing diagnostic system for poor resource settings, the most important
parameter for feasible deployment is the cost per test. While regular cytological
testing requires the usage of large sample and lower dye volumes, the presented
system uses microfluidic devices for sample handling, and thereby requires sig-
nificantly fewer sample and dye volumes, which brings down the overall cost per
test. Performing the test a single time would require simply running the sample
through the microfluidic device and analysing the acquired images. Thus, the
cost per test would include the costs of microliter volumes of reagents and a re-
placeable plastic chip. One more factor affecting the cost per test is the usage
of fluorochrome for labelling. We can highlight the components of the cell and
study phenotype by selectively labeling using fluorochrome as shown in first row
of Fig. 2.5 b. This makes the processing of images simpler when compared to
processing the gray scale unlabeled images shown in subsequent rows. However
the fluorescent labelling is costly and adds up the cost per test. There was no
existing published framework for processing unlabeled unstained images in mIFC
and we have proposed the complete framework which includes preprocessing, seg-
mentation, feature extraction and classification algorithms. We will discuss this

framework in chapter 5.

2.6 Summary

The gold standard for cytopathology is microscopy due to low-cost and wide ac-
ceptance. However, it suffers low-throughput and the process is tedious, repetitive
and time demanding. Above all, the results vary depending on the level of exper-
tise of the analyst. The natural choice to overcome these difficulties is automation.
However the automated systems available in the market are bulky and expensive,
limiting their use in resource limited settings. This has generated huge interest for
automated affordable point-of-care diagnostics systems. We have come up with
sophisticated image analysis and machine learning frameworks for recently devel-

oped low-cost microscopy/mIFC systems and will be discussed in this thesis.
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CHAPTER 3

Focus Stack based Quantitative Malaria Diagnosis

for Automated Microscopy

This chapter discusses a focus stacking based approach for automated quantitative
detection of falciparum malaria from blood smear. For the detection, a custom
designed convolutional neural network (CNN) operating on focus stack of images
is used. The cell counting problem is addressed as the segmentation problem
and we propose a cascaded segmentation strategy. Use of CNN operating on
focus stack for the detection of malaria is first of its kind, and improved the
detection accuracy (both in terms of sensitivity (97.06%) and specificity (98.50%)).
This approach also favoured the processing on cell patches and avoided the need
for hand-engineered features. The slide images are acquired with a custom-built
portable slide scanner made from low-cost, off-the-shelf components and is suitable
for point-of-care diagnostics. The proposed approach of employing sophisticated
algorithmic processing together with inexpensive instrumentation can potentially

enable disease diagnosis without manual intervention at the site of testing.

3.1 Introduction

Malaria is a deadly infectious disease transmitted by female Anopheles mosquitoes.
In 2015, 214 million malaria cases were reported worldwide causing an estimated
death toll of 438,000. Five Malarial species of the protozoan of genus Plasmodium
(W.H.O. (2010)) (falciparum, vivaz, ovale, malariae, and knowlesi) infect humans.
Among those five, Plasmodium falciparum is the most common species infecting
humans ("75%) and accounts for the majority of deaths. The next major share
(720%) of infection is by wvivaz while the knowlesi rarely infects humans. Typi-
cally the diagnosis of malaria is done by inspecting the Giemsa/Leishman stained
blood smears under a bright field microscope. Though there are other methods

(Zimmerman and Howes (2015)) such as antigen-based rapid diagnostic tests and



the use of the polymerase chain reaction to detect the parasite’s DNA, microscopic
examination remains as the gold standard for the diagnosis of malaria due to the
low cost and widespread acceptance. However, the manual examination of the
slides is cumbersome and demands highly experienced clinicians. Often the result
varies from clinician to clinician, and produces non-standardized results. Thus, it
is highly beneficial and can add great diagnostic value to have an automated sys-
tem to aid the clinician in efficient detection of malaria. Further, the development
of an affordable and automated diagnostic platform can minimise dependency on
the expert for conducting these tests and facilitate in performing these diagnostic
tests in resource limited conditions. This has generated huge interest in affordable

point-of-care (Zhu et al. (2013)) diagnostic systems.

In the direction of developing automated system for point-of-care malaria di-
agnosis, quite a large number of works have been done both from thick and thin
smear slide images(thick: Elter et al. (2011); Purnama et al. (2013); Pinkaew
et al. (2015))(thin: Ravendran et al. (2015); Makkapati and Rao (2009); Mehrjou
et al. (2013); Purwar et al. (2011)). A good review on the computer vision based
procedures towards malaria diagnosis till 2009 can be found in Tek et al. (2009).
The research work proposed in Elter et al. (2011) uses a two stage algorithm for
the automatic detection of the parasite in thick blood films. The sensitivity of
the system is maximised in the first stage and the cells identified as infected are
further processed in the second stage to reduce false positives. There are studies
that use statistical features such as mean, variance, kurtosis at the suspected lo-
cation followed by classification based on genetic programming (Purnama et al.
(2013)) and SVM (Pinkaew et al. (2015); Savkare and Narote (2015); Preedanan
et al. (2016)). The intensity level differences as well as features extracted from
morphology of the parasites are studied for its capability in detecting the pres-
ence of parasites in thin films (Anggraini et al. (2011); Kareem et al. (2012); Zou
et al. (2010)). Das et al. (2013) uses SVM and Bayesian learning on statistical
and textural features to detect 3 important life cycle stages of parasitic infection
(P. falciparum and P. vivaz). The work done in Nugroho et al. (2015) extracts
histogram based texture features and uses neural network to classify the different
stages of parasite infection while Linder et al. (2014) uses SVM classifier (Boser
et al. (1992)) on scale invariant feature transform (SIFT) (Lowe (2004)). These
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methods operate on different dataset (differ in stain & dataset size) and report
sensitivity in the range 81.7% to 95% and specificity in the range 92.59% to 100%.
For example, the work in Makkapati and Rao (2009) reports sensitivity of 83%
and specificity of 98% on a small dataset of 55 slide images that used Leishman

stain.

In this work, we address the detection as well as counting of plasmodium
falciparum infected RBCs from Leishman stained microscope slide images. The
choice of Leishman’s stain is motivated from the recent study in Sathpathi et al.
(2014) which compared the use of Leishman and Giemsa stains for malaria diag-
nosis and suggested Leishman as a good alternative. A comparative evaluation of
conventional staining methods and immunological techniques for the diagnosis of
malaria can be found in Samir et al. (2013). Though there are many attempts to
automate the malaria diagnosis, almost all of them inspect only the single best
focused image to identify the infected cells. This has not only increased the cost
of the device as they employ sophisticated methods to generate the in-focus image
but also introduced the possibility of misclassifying dark dust particles on image
as parasite (due to dust on camera/relay lens). Also, depending on the life-cycle
stages, the parasites appear differently on slides and is often hard to get all of them
in a single focus. We address these problems by capturing focus stack of images.
The additional information being acquired as part of the focal stack is not being
discarded but being made useful in the subsequent image processing. By avoiding
the sophisticated methods to generate the in-focus image, we reduced the cost of
the setup and by making use of focus stack in subsequent processing, we have
increased the overall detection efficiency. Recently our collaborators have brought
the cost of the instrument further down by making use of off-the-shelf cost-effective
components. As of now, the least price of an automated slide scanner (PathScope
(2016)) is $25,000 (US), whereas the bill of materials for the instrument employed
here is as low as $1500. For the image analysis, CNN that operates directly on
focus stack of images is employed to identify malarial infection. We compare the
results of detection of malaria infected RBCs in terms of sensitivity and specificity
obtained by three classifiers; 1) a support vector machine classifier trained on the
statistical and textural features extracted from the suspected parasite locations

(similar to Pinkaew et al. (2015); Savkare and Narote (2015); Preedanan et al.
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(2016)), and CNN classifiers trained on 2) the 32 x 32 patches surrounding the
suspected locations of the best focused image and 3) the focus stack of 32 x 32
patches surrounding the suspected locations. We have shown that the system op-
erating on focus stack produces the best results both in terms of sensitivity and
specificity and hence support the design of our custom built focus stack collecting

portable microscope.

The main contributions of this work are 1) the proposal of cost effective malaria
diagnosis using custom-built portable focus stack collecting slide scanner, 2) the
method of identifying and processing only the suspected parasite locations instead
of looking for entire slide thus saving valuable computing power, 3) the use of CNN
rather than using the conventional classifier such as SVM to exploit the ability of
the classifier to operate directly on the focus stack 4) the proposal of using focus
stack of image patches for malaria detection instead of a single focused image and
thereby reporting better accuracy,and 5) the automated cell counter making use

of a proposed erythrocyte cell segmentation strategy.

This chapter is organized such that section 3.2 gives an overview of the frame-
work, section 3.3 discusses the detection of infected locations, section 3.4 addresses
the automated counting procedure. The quantitative analysis is provided in sec-

tion 3.5 followed by the publications in section 3.6.

3.2 Overview of the Framework

This section discusses the prototype slide scanner used to collect the dataset and
outline the proposed method for detecting and counting infected RBCs. The
graphical abstract of the proposed system is shown in Fig. 3.1. As discussed in last
section, a custom designed CNN is used to analyse focus stack of images for each
field of view to identify the parasite locations. Rather than doing an exhaustive
search by CNN at all locations in the image for parasite, we only look at suspected
locations. Since parasite locations appear dark in Leishman stained image, the
suspected parasite locations are identified as regional minima of intensities in the
best focused image. A focus stack of patch around each suspected location is then

fed to the CNN to confirm whether it is really a parasite location or is due to any
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imaging artefact (improper stain or a dust on the sensor). A dust on the sensor
appears almost same in images across the focus stack whereas a parasite will come
into focus and then fades away. Thus a CNN operating on the focus stack can
differentiate between these. The cells are segmented from the best focused image
by a proposed cascaded segmentation strategy and it follows a parallel path (Fig.
3.1). With the knowledge of the parasite locations (from CNN) together with the
exact boundary of the cells (from segmentation), we can determine the number
of infected and healthy cells which in turn produce a quantitative result. Next
subsection discusses the instrumentation details which is followed by an overview

of the processing framework.
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Figure 3.1: Graphical abstract of the framework
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3.2.1 Experimental setup and Dataset generation
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Z-axis stepper motor P )
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PP LED source
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Figure 3.2: Schematic representation of the prototype slide scanner

The dataset used in this study are videos containing focus stack of multi-
ple Field-of-Views (FoV) of Leishman stained slide images prepared using WBCs
spiked cultured malarial samples. The P. falciparum malaria culture is maintained
in 5% hematocrit with O red blood cells containing Roswell Park Memorial In-
stitute (RPMI) media. For preparation of blood mimicking the patient sample,
the malaria culture is then spiked with very small amount of WBCs extracted
by partial centrifugation of blood sample. About 10 puL of the resultant sample
is pipetted onto a clean glass slides (base slides) and spread using a wedge slide,
held at an angle of 45° (approximately) with the base slide. The wedge slide is
moved horizontally over the base slide to result in a thin smear of the resultant
sample. The prepared smears are exposed to 5% Leishman stain for 10 minutes
for fixing and staining the cells. The stained slides are mounted with cover glass
after DePeX addition for proper preservation. The slides are then sequentially

imaged under the imaging setup.

A custom built focus-stack collecting bright-field transmission microscope setup

built with inexpensive, off-the-shelf optical components and a camera unit is em-
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ployed to capture the dataset for the present study. The objective behind realiza-
tion of such a slide scanner is to devise an affordable and reliable cyto-diagnostic
platform that can provide focus stack and function as an automated alternative
to traditional microscopic tests for malaria diagnosis in resource limited settings.
The optical setup of the prototype slide scanner unit consists of a white light LED
source and necessary collimating lens arrangement for uniform illumination of the
sample plane and subsequent acquisition of digital images of the slide. A low-
cost 40X objective lens (Lawrence and Mayo) is employed to magnify the sample
features. For a digital imaging system like ours, the characteristic of interest is
the digital resolution which is interplay of the magnification of the objective lens
used in the setup and the pixel size of the camera sensor used for imaging. For
clear identification of sample features from the respective FoV images, the system
should have good digital resolution. With the given setup, our objective is to
cover a larger FoV without compromising the digital resolution of the setup. To
meet these requirements, a digital colour camera (DFK22BUC03, Imaging source)
with a very fine pixel size of 6 ym and a relay lens unit is employed to capture the
videos/images of the slide. This has enabled us to get very good results in terms of
the quality of recorded images even at a lower magnification of 40X which sufficed
the diagnostic requirement. A custom-built 3-D printed motorized translational
stage integral to the developed prototype is employed to navigate the slide across
multiple FoVs. The motorized stage holds the sample slide in place and trans-
lates the slide independently along x, v and z directions. The stage was built
with the assembly of three readily available low-cost linear actuator stepper mo-
tor units (Nema 11). Three separate digital motor driver units (DM422C) supply
the required driving current to the respective motors. Each of the three axes of
the motorized translational stage can be independently controlled, enabling the
whole slide scanning. Appropriate electrical signals to enable the motors and to
control the speed & direction of the motors are supplied by two off-the-shelf micro-
controller boards (Arduino UNO). The imaging source camera was plugged into
an on-board processor (Intel NUC) to record the videos. The on-board processor
also communicates with the micro-controller boards through the Python Firmata
serial communication link to facilitate the software control of the motors. An LCD

display unit with touch-screen is attached to the prototype slide scanner for user
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interaction and display purpose.

Figure 3.2 shows the schematic representation of the developed prototype slide
scanner unit. All major electronic components of the prototype slide scanner
including the on-board processor, display and motor drivers are powered using
a regulated switching power supply with multiple voltage tappings (RT-125D,
MeanWell). The micro-controller boards are powered from USB ports of the Intel
NUC board. Motor control and simultaneous data acquisition are carried out
by executing Python (version 2.9) code on the on-board processor. The custom-
built prototype slide scanner employs z-stacking/scanning approach to acquire the
whole slide images and employs passive focusing mechanism to determine the in-
focus images from multiple FoVs. The Z stacks are recorded after translating the
slide by appropriately actuating the lateral direction motors. In the process of
z-stacking, the z-axis motor is translated in steps along the direction of optical
axis, and the focus stack videos are recorded during the entire span. The z-
stacking approach adopted in the prototype offers multiple advantages. Since a
passive focusing mechanism is employed, the system relies on commonly used opto-
mechanical components and does not require any high precision piezo positioning
units, thus reducing the overall system cost to less than 1500 $ (US). Further
additional information derived from the focus stacks can be used for examination
of very fine sample features which may not be evident from the analysis of just
the best focus image and for differentiating imaging artefact (small dark spots
in images due to dust particles on camera sensor/relay lens) from similar sample
features, thereby minimising the cases of misclassification. Further, focal stacking

is essential while examining thicker sections of the slides.

We have used 765 FoVs containing 62015 cells of which 1191 cells are infected.
The ground-truth was determined after consultation with experts working in the
field after inspecting the focus stack of images which helped them to clearly differ-
entiate the infected locations from other artefacts. The FoVs for our experiments
are selected from 2 slides. For each FoV of a slide, the z-axis motor is used to
translate in steps across the best focused frame, capturing multiple images. In this
way, all valid FoVs of the slide are captured. We use variance as the focus measure
to direct the z-axis motor and ensure that we always move across the best focused

frame. In an ideal setup, once the best focused frame location is fixed using z-axis
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motor, taking fixed number of frames on both direction about it and doing it for
all FoVs will suffice. But in our setup, due to vibrations of the motors, there was
small shift in the best focused location across the movement of different motors.
We address this problem by readjusting (automatically) between successive focus
scan by keeping track of the z-motor position that has produced the best focused
frame in the last scan. We can also use the same focus measure to decide whether
to image a FoV (i.e., whether it contains sufficient cells to image). For the present
study, image variance computed from the gray scale equivalent image is employed
as the focus measure to identify the best focus image in a given focus stack. The

variance computation can be expressed as follows (Eq. (3.1)).

M*NZZ ) — )’ (3.1)

=1 j=1
Here M and N are the number of rows and columns of the frame (M = 480,

N = 720), and p is the average intensity of the gray level image G, defined by

M <N .
= M}kN > e Zj:l G(i, ).

Fig. 3.3 plots the focus measure computed from each of the 13 adjacent FoVs
collected during a horizontal scan. As expected, for each FoV stack, the focus
measure monotonically increases and attains maximum value for the frame in the
best focus and then it decreases. In Fig. 3.3, the best focused image for each FoV
is marked in red asterisks and the one marked in green corresponds to either the

last frame of a FoV or the first frame of a new FoV.

Fig. 3.4 shows the best focused image from a FoV stack. It contains four
infected RBCs (encircled in Red) and an imaging artefact on a RBC due to dust

on the camera sensor (encircled in Black) and a WBC (encircled in Blue).

3.2.2 Framework

The flowchart for the detection of candidate parasite locations using a classifier
can be found in Fig. 3.5. The regional minima locations are identified as the
candidate locations and a 32 x 32 patch surrounding it is used to represent each

such location. Depending on the classifier, the patches as such or features extracted
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Figure 3.3: Plot showing image variance (Y Axis) across 13 focus stacks

(the best focused image for each FoV is marked in red).

from the patches are used to take appropriate decision to classify the candidate
location as infected or healthy. We have experimented with three classifiers: SVM
classifier on hand engineered features, a CNN classifier operating only on the best
focused patch and a CNN classifier operating on the focus stack of patches and
have found that the CNN working on the focus stack gave the best performance.

The detailed discussion can be found in section 3.3.

Section 3.4 discusses the problem of segmenting the cells towards taking the
count of infected RBCs. In the segmentation procedure, we make use of typical
size of an RBC to determine the number of cells in the slide particularly when
there are clumps of cells. Since the size of a WBC is typically bigger than that
of an RBC, we separate WBCs first, before deciding the number of RBCs by
subsequent segmentation. Once the infected locations are identified and the cells
are appropriately segmented out, the counting of infected RBCs is trivial. The

flowchart of the procedure is shown in Fig. 3.6.
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Figure 3.4: Best focused image from a stack. Infected RBCs are encircled

in Red, an RBC with an artefact is encircled in Black and a

WBC is encircled in Blue.

Focu Get the Best Identify Features of Parasite
_§St Focussed || Regional —» 32x32 | Classifier -
ac e Locations
Image Minima Patches

Figure 3.5: The flowchart depicting detection of parasite locations

3.3 Proposed Methodology : Detecting infected

locations

In this section, we discuss the proposed method for detecting parasite locations.
The idea is to classify identified candidate locations into either infected or healthy.
We experiment with traditional way of extracting features and feeding it to SVM
classifier. Also, we experiment the use of trending deep learning network: CNN.
Two CNNs are designed for this; the first operates on patches from the best focused

image of a FoV while the second operate on focus stack of patches.
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Figure 3.6: The flowchart depicting cell counting
3.3.1 Identifying candidate locations

The candidate locations are identified from the best focused image. The best
focused image for each FoV is identified as the one with the highest focus measure
(variance). The behaviour of focus measure across focus stack of images for 13
FoVs can be found in Fig. 3.3 and the best focused image for an arbitrary FoV
is shown in Fig. 3.4. Once the best focused image is retrieved, the next step is
to detect candidate locations. The parasites appear darker in slide images and
hence suspected candidate locations of the parasite can be identified as the local
minima intensity region of the image over a neighbourhood spanning the radius
of typical RBC size. We can refine these candidate locations by excluding a few
of them which are falling in the background region. The background image for
this purpose can easily be found by Otsu’s global thresholding (Otsu (1979)) since
there is high contrast between cell region and background. Fig. 3.7 shows the
suspected parasite locations identified (dilated version of centroids of the regional
minima (Breen and Jones (1996); Soille (2003))) and are superimposed on the
original image shown in Fig. 3.4. Though the darkness of parasite may slightly
change across staining, we are looking only for the regional minima to identify
the candidate locations (irrespective of the level of darkness). Thus every parasite
location will be identified as a candidate location and in our experiments, the
method has identified all such locations. When there is noise, its location also
qualifies as candidate location for parasite, but will be taken care of by the classifier
since noisy locations have different profile across the stack when compared to

parasite locations.
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Figure 3.7: The centroid of the regional minima superimposed on the im-

age shown in Fig. 3.4
3.3.2 Detecting infected locations

Once the candidate locations are determined, the next step is to identify the loca-
tions which are really infected by parasites. We treat this as a binary classification
problem where we need to classify each of the candidate locations into classes either
infected or healthy. We experiment both with traditional SVM classifier trained
on hand engineered statistical as well as textural features and the trending CNN
deep learning classifier. There were a total of 1400 positive patches which are the
patches around ground truth parasite locations. Note that, a cell may have more
than one parasite locations marked on it. There were 326934 negative patches
which are the patches surrounding local intensity minima where there is no par-
asite. As the number of positive candidate patches is very less compared to the
number of negative patches, we have rotated the patches at 90°, 180° and 270°

and increased the number of positive samples to 5600.
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Classification by SVM

Each of the candidate location identified is represented by selecting 32 x 32 RGB
patch surrounding it in the best focused image. Unlike using statistical features
alone for the SVM based classification (Pinkaew et al. (2015); Savkare and Narote
(2015); Preedanan et al. (2016)), we propose to use texture features as well. Al-
together, fourteen features are considered. At parasite locations, there will be
gradient difference, and the surrounding textural characteristics differ when com-
pared to a healthy patch. Widely used features to characterize the texture of a
patch are ‘Contrast’, ‘Correlation’, ‘Energy’ and ‘Homogeneity’. These features
are extracted from the gray level co-occurrence matrix (GLCM) of the region as
defined in Gopakumar et al. (2016). The mean and standard deviation (Std) of

these features computed for healthy and infected patches are shown in Table 3.1.

The parasite locations in a Lieshman’s stained slide image appears to be darker
and hence such locations can be characterized by identifying statistical features
such as the minimum, maximum, mean and variance of intensities of the patch
as well as the minimum and maximum gradient magnitude observed in 32 x 32

region. Table 3.2 shows the statics of these features in order.

In addition to global statistics, we have considered local statistics as parasite
infections are often very local, especially in case of early stage of infection. Towards
this, we have considered small (3 x 3) non-overlapping sub-regions for the 32 x 32
patch and have computed the minimum and maximum values of mean and variance
observed for all sub-regions. The statistics of these features computed over all

positive and negative patches are shown in Table 3.3.

Thus there are 4 texture features, 4 statistical features computed by taking
all pixel intensities of the patch and 2 features computed from gradient of the
patch, followed by 4 features computed by considering all 3 x 3 non-overlapping
sub-regions. These constitute set of 14 features and their statistics are provided
in Tables 3.1 through 3.3. The statistics reveal that the infected patches have low
intensity, high variance and high gradient magnitude when compared to healthy

patches.

The SVM classifier with radial basis function (RBF, o = 0.7) kernel is then
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Table 3.1: Mean (Std) of GLCM Features for 32 x 32 Patches

Contrast Correlation Energy Homogeneity
Healthy 0.5698 (0.2335) 0.9825 (0.0094) 0.1020 (0.0445) 0.8189 (0.0455)
Infected  0.8850 (0.3439) 0.9754 (0.0119) 0.0584 (0.0357) 0.7577 (0.0498)

Table 3.2: Mean (Std) of Global Statistical Features for 32 x 32 Patches

Min Int Max Int Mean Int Var Int Min GMag Max GMag

0.5023 0.8891 0.6797 0.0168 0.0007 0.6426
Healthy

(0.0615)  (0.0345) (0.0534) (0.0069) (0.0019) (0.1303)

0.2720 0.8748 0.6109 0.0195 0.0028 0.8545
Infected

(0.1057)  (0.0453) (0.0641) (0.0090) (0.0034) (0.2147)

trained by taking features of training patches. The kernel parameter o is fixed

after experimenting with a range of values between 0 and 1 in steps of 0.1.

Classification by CNN

In addition to SVM classifier on hand-engineered features, we have used custom-
built CNN for detecting the infected locations. One of the designed CNNs, directly
operates on the RGB candidate patches selected from the best focused image while
the other operate on the focus stack of patches. We compare the advantage of
using the focus stack over the best focused image for their capability in identifying

the infected cells.

The CNN is a biologically inspired feed-forward multi-layer artificial neural
network mapping an input vector X into an output vector Z. The connectivity
pattern between its neurons is inspired by the organization of the animal visual

cortex so as to respond to overlapping regions tiling the visual field. Internally it

Table 3.3: Mean (Std) of Local (3 x 3) Mean and Variance of Patches

Min_Mean Max_Mean Min_Var Max_Var
Healthy 0.5095 (0.0620) 0.8817 (0.0337) 3.4520e~° (2.7481e¢7%) 0.0061 (0.0160)
Infected 0.2903 (0.1049) 0.8669 (0.0444) 7.2392¢75 (1.2817¢7°) 0.0092 (0.0137)
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can be thought of as a composition of functions each implementing simple con-
volutions on input feature map using learned kernels interleaved with non-linear
and pooling operations followed by locally or fully connected layers (LeCun and
Bengio (1998)). With the advent of high-end computing capability, CNN has re-
cently become the de-facto standard for classification and has provided reliable
classification in medical domain. CNNs are successfully used in detecting micro
calcification on mammograms (Lo et al. (1995)), classifying interstitial lung dis-
eases (Li et al. (2014)), detecting pathologic cases in chest Xray (Bar et al. (2015))
and detecting lung nodules in chest radiographs (Lo et al. (1995)) and for detecting
mitosis in breast histology images (Ciregan et al. (2013)). Recently, Liang et al.
(2016) have studied the capability of CNN (both transfer learning capability as
well as stand alone classification capability) in deciding samples whether they are
malaria infected or not. The dataset that they have used contains 27578 RBCs
from Giemsa stained slide images. They have used a 16 layer architecture and re-
ports that CNN as a stand alone classifier has produced better classification result
(mean accuracy 97.37%) over the transfer learning based classification (91.99%).
In our experiments, we are using a relatively smaller architecture (9 layers) and a

bigger dataset.

The basic building blocks of a CNN are

Convolution block : Given a multi dimensional image X (D image instances),
the convolution block finds Y (K instances) by performing the convolution between
the image and a set of learned kernels f and by selecting only the valid part of the
convolution. Equation 3.2 depicts this operation where fT represents the flipped

kernel.

X e RHXWXD’f c RH’XW’XDXK,Y c RH”XW”XK (3.2)
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Where b, € R are biases for the nodes in the layer.

Note that the weights learned in convolutional block of the CNN forms the kernel

and biases. Intuitively, the operation on the convolution block using the learned
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kernel on an input image can be thought of extracting very local background and
foreground features such as (but not exactly) low pass and high pass filters, edges
(just like operating a Sobel kernel on the image (Sobel (2014))) and corners. Thus
we are actually learning the local feature extractors (not the actual features) just
like contrast quantifiers, edge, line, and corner detectors which when operated on

the test images extracts the needed features.

ReLU activation function : Given an input y;;;, the ReLLU suppresses the
value if it is negative. Thus the operation performs like a non-linear activation
function and it follows the convolution operation. Without ReL'U, the non-linear
activation function, the whole network would have been reduced to a simple linear
transformation. Also, unlike other non-linear activation functions such as sigmoid,
ReLU offers better resistance to slow learning (due to vanishing of gradients (Ro-

han (2016))) especially at lower layers of deep networks.

Yize = max (0, yir) (3.3)

Max pooling : The max pooling typically follows the ReLLU operation and it
produces the maximum response of each feature channel in a H x W' neighbour-
hood patch. Thus, this layer introduces small shift invariance as well as scale
invariance to the features. This is because the subsequent convolutions operate

on a scaled down version of the input.

1
ma: (yi+i'—1,j+j'—1,k> (3.4)
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3.3.3 Detecting infected locations

CNN opens up a good space for analysing the focus stack particularly in malaria
diagnosis, as it has the capability to directly deal with multi-channel images. The
basic design of the CNN used in our experiment is shown in Fig. 3.8. Here,
input is a D channel image patch of size 32 x 32. The C, R, P in the block

represents Convolution, ReLU, and Pooling operations respectively. The size of the
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Figure 3.8: The CNN designed for malaria detection

kernels used for the convolution operation is also shown under each block where the
subscript shows the number of kernels used. The size of the output map computed
is provided above the respective block. All the pooling blocks do max pooling in
2 x 2 area and use a stride of 2. We have chosen this architecture based on the
following observations. As we are dealing with patches around suspected parasite
locations, and being the typical cell size 41 x 41, the input to the CNN is decided
as 32 x 32 since it is decent enough to hold the neighbourhood in making the
decision. We have used the standard CNN building blocks: convolution, ReLU and
sub-sampling. However, sub-sampling by max pooling is preferred over average
pooling. This is because, in the case of early infection, the parasite may confine to
very small area probably looking like a dark spot, and we don’t want to average
out the details. Towards deciding size of feature detectors, we have considered the
size of kernels used in many of the well-established CNN models like imageNet pre-
trained model (Deng et al. (2009)), VGGNet (Simonyan and Zisserman (2015)),
resNet (He et al. (2016)), googleNet (Szegedy et al. (2015)) and are found to be
from the set {3,5,7,11}. A lower size is preferable in order to have good sensitivity
for the detector even for parasite in its early stage of infection, where parasitic
infections often appear just like a black spot particularly when observed using 40X
objective (used in our experiments). At the same time, there can be isolated pixel
noises in slide images masquerading as infection. Thus we decide the kernel size not
too small and not too large and is decided as 5 x 5. Being a binary classification,
the desired number of output neurons was set to 2. The output layer producing
the feature on which the decision is made is set as the convolution layer and is
motivated from one of the most successful CNN ImageNet classification models
(discussed in section 6.4). Then we have selected the intermediate layers and
the parameters. Thus the architecture contains 4 feature extraction (convolution)

layers. These make us to avoid pooling after Ry and Cy as they are already at the
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lowest possible dimension on the feature level to have the final 2 element decision
vector. However, the non-linearity of the feature from layer C) is ensured through

max pooling.

As noted, for every input patch, the CNN is designed to produces a binary
vector at the output (C4 in Fig. 3.8). Towards this goal, the CNN is trained using
back-propagation algorithm, considering the log loss (Eq. 3.5) error function. The

log loss J; for an " input patch is defined as

c
Ji = — Z Lii log Py, (3-5)
k=1

In Eq. 3.5, C is the number of output classes (number of output neurons)
which is 2 in our case and L; is the boolean vector with value 1 only at the true
class location for the input patch; i.e., output label vector is [1,0] for an infected
patch and [0, 1] for a healthy patch. Py is the model probability of assigning label
k to the i input instance. A perfect classifier should have a log loss of precisely

Z€ero.

Eq. 3.5 can also be written as

Ji = —log Pir (3.6)

Where P,r is the model probability of assigning label T' (the true class label)
to the %" input instance. We have considered T as 1 for infected patches and 2
for healthy patches. The model probability P;r can be calculated using soft-max
function and the final function that we want to minimise turns out to be the

soft-max log loss (Eq. 3.7).

expZiT

J, = —log | =P
(ZtczleXpZ“)

c
= — iT—l—logZeXpZ“ (3.7)

t=1

Note that for each of the class there is one neuron in the output layer and Z;r
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in Eq. 3.7 is the response produced at the final layer neuron corresponding to the
true class T for the specific input at the input layer. We want to minimise this
function as much as possible. However, there is an instability in evaluating this
expression for any input. It is due to the difficulty in evaluating the second term,
the log sum of exponentials. If any of the value Z; becomes sufficiently large,
its exponential becomes very large and the sum can over flow to positive infinity.
Similar is the case, if any of the Z;; value becomes sufficiently smaller, the log sum
of exponentials can underflow. However, we can get rid of this problem with little

algebraic manipulation, if we take U = max (Zit)tczl.

c c exp?
log Z exp?t = log Z 7 expZit
t=1

ex
t=1 p

c
= log <equ' Z epo“‘I'>

t=1
c
= U +log Z expZit—Y (3.8)

t=1

Thus Eq. 3.7 and Eq. 3.8 together defines soft-max log-loss (SML) function as

c
Ji=—Zi + ¥+ logZeXpZ“_\I’ (3.9)

t=1

Eq. 3.9 ensures that the largest value passed to the exponential function is 0.
If there are really tiny values after subtracting W, they will become 0 and will be
dropped out as they should be with limited precision arithmetic. This soft-max

log loss has a simple derivative . From Eq. 3.7

dJ; expZiT
-=— | 0o — ———— 3.10
dZ,L't ( t=T Zil eXpZ“> ( )

Here 0,7 is a vector which has value 1 only at the true class location Z;r and

everywhere else it is 0. As noted the CNN is learned by backpropagation algorithm,
in which the error at the final layer is computed for each input image considering
its target class. Then this error is propagated down the layers. Whenever it

crosses ReLLU layer, the derivative of ReLU (i.e., for positive values 1, else 0) is
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multiplied, and whenever it crosses the pooling layers, the error matrix gets up-
sampled, and across the convolutional layers it is proportionately multiplied by
the corresponding weight contributions from the kernel. Then the parameters to
be learned (the kernel weights and biases) are then updated by gradient descent,
for which the gradient is computed by multiplying the error and the input to the
connection for which the parameter is computed. The explicit equations and the
derivations for the weight update can be found in Vedaldi and Lenc (2014). Also

refer Appendix A for a general discussion on CNN learning.

During testing, SML layer is excluded and the label of the class that yields
maximum response is assigned to the test sample. We have used the CNN building

blocks developed for Matlab (Vedaldi and Lenc (2014)) to design our network.

CNN on the Best Focused Patches

For each of the selected candidate parasite locations for training, 32 x 32 RGB
patch is extracted from the best focused frame surrounding the suspected location.
These are then used to train the CNN classifier shown in Fig. 3.8. Note that the
dimension of input (D) is 3 since we are using only one RGB patch for each

candidate location.

CNN on 32 x 32 focus stack patches

In this section, we will start with the motivation behind using focus stack in
recognizing parasite locations. Fig. 3.9 shows 4 focus stacks (one in each row),
where the 5" image is from the best focused frame. The remaining 4 images
each on both sides are the images after skipping 4 frames away from the best
focused frame on both sides of the stack. These are actually tiled cell images
(each of size 51 x 51) cropped selectively from frames and are then scaled to fit
width of the manuscript. The cell in first row is healthy while the others are
infected by parasite. Note that, in the infected cases, the parasites are coming
into focus and then fades away unlike the dust on healthy cell which is having
almost constant appearance across the stack. Though there is a variation in case

of parasite infection across focus stack, the change is minimal especially in case of
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early stage of infection. Our intention is to capture these changes with minimum
number of images (to restrict computational complexity) and we chose a patch
from the best focused frame, and two patches far away from the best focused, one
on both sides. We have chosen 32 x 32 RGB patches for training, since this is
decent enough to capture the neighbourhood to decide the infection, being 41 x 41
the typical cell size. Thus, each focus stack taken to train the CNN will now
contain 3 RGB patches (32 x 32 x 9). A few of the focus stacks (3 in each row)
of such patches used for training CNN are provided in Fig. 3.10. Cells shown
in first row are really infected while in second and third rows are healthy. Note
that, the cells in second row have artefact due to dust and have almost the same
appearance unlike the parasite in first row which has change in appearance across
the stack. Thus, the sets that we have selected capture the change profile of the
parasite/artefact across the stack and value the main motive of the experiment:
checking whether focus stack improves the detection accuracy in malarial cases.
Thus, in the third experiment, a CNN is trained using these focus stack of patches,
in the same way using the same candidate locations used to train the CNN on the
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Figure 3.9: Focus stacks of 4 cells each containing 9 images (along

columns): Last three stacks are that of infected cells while

the first row represents a healthy cell with a dust on it
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Figure 3.10: Sample focus stacks (3 in each row) used in training CNN:

Cells in first row are infected while in second and third rows
are healthy. Note that cells in second row has artefact due to

dust and have almost the same appearance across the stack.

3.4 Automatic segmentation and counting of in-

fected RBCs

The detection of malaria infected RBCs is a sub-problem to the more general
problem of determining the parasitemia level. In order to count number of infected
RBCs, each cell has to be separately identified. We address this problem by

automatic segmentation of cells and is going to be discussed in this section.

3.4.1 Segmentation procedure

The proposed segmentation is a cascaded two step procedure : segmenting the
cells which are more or less separated and segmenting the cells from clumps. We
employ an adaptive thresholding strategy to segment cells from the background
(Fig. 3.11) followed by marker based watershed segmentation for cells that forms
clump (Fig. 3.12).

Segmenting the cells from the background

In order to segment the more or less separated cells, a combination of adaptive

as well as global threshold based strategy is proposed. Once the clear cases are
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Figure 3.11: Procedure to segment more or less separated cells

segmented from background, the next level of processing is to separate the cells
from clumps, if any. The main steps involved are shown as a flowchart in Fig.
3.11. The local thresholding schemes segment cells based on local statistics and
hence better separability can be achieved especially at slowly varying region be-
tween cells; with global threshold, this would have formed a cell clump. However,
local threshold can produce many holes/breaks in cells especially if the cell area
is of constant intensity. This would not happen in case of segmentation by global
thresholding as there is high inter class variability between cell region and back-
ground. We make use of this complementary nature to have a good segmentation.

This is accomplished by first identifying isolated cells in local thresholded image
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Figure 3.12: Procedure to segment cells from clumps

(Clear Lry) and then masking them in the global thresholded image (—~Clear Ly,
& Grp, Image) and finally looking for good cells (Clear G74,) in the remaining seg-
ments. Once isolated cells are identified from local and global thresholded images,
the objects left in global thresholded image (the Difficult Set in Fig. 3.11) are
recognized to contain multiple cells (as cell clumps) and are processed separately

(Fig. 3.12). Following subsections explain these procedures in detail.

0®

A

Figure 3.13: Comparing local adaptive and global thresholding: A) the
best focused image B) the region of interest, results for local

adaptive and global thresholding respectively.

Local Adaptive Thresholding A Leishman stained slide image appears in
good contrast and cell regions appear totally different in colour when compared
to background. Rather than using a single global threshold to segment all cells,
we find an adaptive threshold at each pixel position considering the pixel’s neigh-
bourhood (21 x 21) intensity values. Then we assign a pixel to the cell area if its
intensity is still lower than this threshold. We define a threshold little (¢) lower

than the Gaussian weighted neighbourhood pixel intensities so that smooth regions
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inside the cell are rightly assigned to the cell area and the background region as
background. It also helps to produce a good dark threshold for the pixels on cell
wall and around the cell wall. We could better separate the cells by local adaptive
threshold when compared to the segmentation obtained by using a single global
threshold. This is highlighted in Fig. 3.13 b by taking two sub-regions of interest.
The segmentation result for the full image is provided in top row of Fig. 3.14 and
are respectively, the local and global thresholded images. The size of averaging
kernel for picking local threshold is set to 21 x 21 which provided the best result,
when experimented with a range of sizes in between 3 and 27 and for the same

reason ¢ is set to 0.005.

A B

Figure 3.14: Segmentation by local adaptive as well as global thresholds:
A) local adaptive thresholding B) global (Otsu’s) threshold-
ing C) the well separated cells segmented out D) cells to be

segmented from clumps

Global Thresholding The Otsu’s (Otsu (1979)) method is used for global
thresholding. However, in order to reduce the effect of variation in brightness
(in different regions of FoV) on the threshold, Otsu’s threshold is computed for
all quarter regions and the thresholds are applied separately. The effect of global
threshold on the image in Fig. 3.4 is shown in Fig. 3.14 b. As noted, we could
isolate more cells by local thresholding (Fig. 3.14 a) when compared to the results
by global thresholding (Fig. 3.14.(b)). However, note that the cell regions are
better segmented from background with less breaks/holes when compared to the
result of local thresholding. We will make use of this to isolate more number of

cells and is going to be discussed in next subsection.
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Separating out the segmented cells and clumps The area and solidity
Gopakumar et al. (2016) are computed for each object segmented out by local
thresholding and are checked against measures for typical RBCs. The area is
computed by counting the number of pixels in the segment and solidity is measured
as the ratio of this area to the area of convex hull holding the segment. We have
set lower bound for cell area as 1400 and upper bound as 2400 pixel area. If the
segment whose area is within these bounds and if solidity is greater than (.85,
they are qualified as single cell. The bounds on cell area are set from the fact
that typical cell diameter for an RBC is in between 6 to 8 micrometers (um)
and by considering that 15 pixels corresponds to 2.19 micrometers in our imaging
setup. Thus 3um radius corresponds to ~20.6 pixels and 4um radius corresponds
to "27.4 pixels and the corresponding cell region must therefore contain 1400 pixels
and 2400 pixels (7 x r?) respectively. However, the threshold for solidity (0.85)
is set empirically. Once the qualified cells are identified from global thresholded
image, these are then masked out. By this masking, a few cells may get isolated
in global thresholded image which were earlier part of a clump. This can be seen
by analysing segmented cells in Fig. 3.14 ¢ in the regions of interest marked in
Fig. 3.13. The newly qualified cells are decided by computing ‘area’ and ‘solidity’
measures for the objects remaining in global thresholded image after the masking
operation. The cells identified by this procedure are shown in Fig. 3.14 ¢. All

other segments need to be processed separately and are shown in Fig. 3.14 d.

Segmenting the cells from clumps

The flowchart for the procedure to segment cells from clump is shown in Fig.
3.12. The number of cells contained in each segment is determined based on the
size of a typical RBC. However, being bigger, WBCs can masquerade as a clump
of RBCs. So the first step is to mask out all WBCs, if present in difficult set
produced after segmenting out the well separated RBCs (Fig. 3.11). The next
step is to decide approximate centroids of cells. Finally, we apply marker based
watershed to segment cells from clumps, where cell centroids identified are used

as cell markers. The following subsections explain this procedure in detail.

44



ﬁ

Figure 3.15: Top row : WBCs; Bottom row : infected RBCs

Mask out WBCs by Bayesian classification The Leishman stains nuclear
chromatin structures in dark blue (Fig. 3.15). Being nucleated, all WBCs are
stained in dark blue unlike the non-nucleated RBCs. Except lymphocytes, all
other WBCs are much larger cells than RBCs. Thus, we use colour and cell size
information to identify WBCs from background and RBCs. We address this as
a classification problem. We had collected 1000 pixel samples each from RBCs,
WBCs and background region. The colour components at these pixel location in
LAB colour space (A & B) (Hunter (1958)) are used to build likelihood models for
RBCs, WBCs and background. We have used Gaussian to model the distribution
since it was observed that the data spread more or less in Gaussian distribution.
These models are then used to decide whether a pixel belongs to RBC, WBC, or
background. For any test pixel, if the likelihood of WBC is greater than the like-
lihood of RBCs and background, it is identified as a candidate pixel from a WBC
cell. For any segment thus identified, if its area is less than the maximum area
considered for an RBC, it can be either a heavily infected RBC or a lymphocyte.
If the RBCs are healthy, then we can differentiate between lymphocyte and RBCs
just using the colour. However, when there is heavy infection, the infected RBCs
also stain in blue due to chromatin structures of parasites. Luckily, in such cases,
there will be dark parasite spots in infected RBCs as shown in Fig. 3.15. In order
to identify such spots, we have considered pixels whose intensity in all channels is
less than 0.4 (on a scale of 1). If sufficient such pixels (10 connected pixels, in our
experiments) are found, the cell is identified as an infected RBC else a lymphocyte.
The threshold for identifying the black spot is decided by considering 50 heavily

infected cells having dark parasite areas. With this procedure, we could correctly
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locate WBCs (47 WBCs) without any false positives from the 765 slide images
used in this study. Finally the WBCs are masked out and are excluded from the
rest of the procedure to segment cells from the clump. The WBC identified for
the slide image in Fig. 3.4 is shown in Fig. 3.16 a. The masked out image which

is to be further processed for segmenting the cells is shown in Fig. 3.16 b.
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Figure 3.16: Masking out WBCs: A) WBCs identified B) WBCs excluded

from clumps processing

Figure 3.17: Cell centroids for clumps: A) finding cell centroids for the
segment marked using bounding box in B B) cell centroids

identified for the clumps

Get the centres of the cells The centroid is the farthest lying point from
cell boundary. Thus, if we measure the distance for each point on the cell from
background, the cell center will be the farthest from background. This means
that the points on the cell which are lying on the periphery are all having zero
distance while a pixel just inside the boundary will be having unit distance and so

on with the highest value at the center. If there is only one cell, then the overall
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maximum in the distance transform occurs at centroid. However, for a cell clump,
the distance transform is supposed to have as many local maxima as the number
of cells contained in it. These local maxima are due to high distance transform
value for each of the cell which has boundary with respect to background for
majority of the portion though there is a portion which clumps them with other
cells. There are efficient algorithms that compute this distance metric (Fabbri
et al. (2008)). Therefore, we compute the distance transform of the segments and
regional maxima points are identified as initial centroids of cells in the segment.
Being the typical cell diameter in pixels is 41, the region for determining the local
maxima is fixed as a disk of diameter 41. If the number of centroids identified for
each segment does not match with the number of cells expecting from the clump
(segment area/typical cell area), the computed centroid regions are masked out
from the segment and the remaining number of centroids is picked out using the
distance transform of the masked out segment. Towards this, the centroids of
the regional maxima points from the distance transform of masked out segment
are computed but this time reducing the radius by 25% (empirically set) of the
previous value and the top qualifying regional maxima points are picked out as
centroids. The top qualifying local maxima points are identified based on how
big the distance value is, in the distance transform corresponding to the points of
interest. This process is repeated until the desired number of centroids is found
out. From our experience, the method worked quite well, once we could correctly
identify number of cells in clumps. However, if there are heavily overlapping cases,
the number of cells in the clump could not be accurately determined as the method
that we have proposed is only based on the cell area. This can be seen in case of
the clump shown immediately right to the bounding box (just above the WBC)
shown in Fig. 3.17. In this case, only two centroids are identified, even though

there are three cells.

The cell centroids identified for the clumps of cells in Fig. 3.4 is shown in
Fig. 3.17. Fig. 3.17 a shows different steps for finding the cell centroids for a
segment marked in Fig.3.17 b. The first row of Fig. 3.17 a shows, respectively,
a clump in the original image selected for processing, its binary image, distance
transform, cell centroids, and cell centroids superimposed on the clump. Since

the expected number of cell centroids for this segment is five but found only four
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as explained earlier the required centroids are determined by masking out the
computed centroids and taking maxima on the distance transform of the masked
image. This is shown in the second row of Fig. 3.17 a. The images are the
centroid region masked out binary image, its distance transform, all the centroids
identified and the centroids super imposed image. Note that all clumps in Fig.
3.4 but the one shown in Fig. 3.17 a produced the correct number of centroids as
desired right from the first level of processing (the processing shown in the first

row of Fig. 3.17. a).

Split the cells from clumps Once the centroids of cells in clumps are deter-
mined, the cells are segmented using watershed (Vincent and Soille (1991)). The
centroids found out are used as foreground marker, and the background image
generated by global (Otsu’s) threshold is used as the background marker. We use
gradient magnitude as segmentation function. That is, we impose minimum at
the marker locations and apply watershed algorithm on the gradient magnitude
image. The output of the watershed based segmentation is shown in Fig. 3.18.
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Figure 3.18: Marker Based Watershed Segmentation: A) The foreground
cell markers embedded on cells B) super-imposed cell bound-

aries on slide image shown in Fig. 3.4

3.5 Results and Discussion

In this section, we provide and analyse the results of parasite detection and seg-
mentation procedure presented in last sections. As noted earlier, the pathologist

working in the field have marked infected locations on slide images. The number
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of infected and healthy cells is then correctly identified manually by verifying the
segmentation produced by the automated counting procedure. Thus the infected
parasite locations marked by experts on slide images along with the number of
infected and healthy cells provide ground truth for the present study. We per-
form the quantitative analysis of parasite detection in terms of false positives and
false negatives. We perform the quantitative analysis of segmentation by seeing
how close the cell count identified by the automated counting procedure is when
compared to the manually verified count. We also assess the visual quality of the

proposed segmentation.

As per the WHO manual on Malaria diagnosis (W.H.O. (2010)), malaria de-
tection from blood smear requires the examination of 800 high power (100X) FoVs.
To cover the prescribed physical slide area, the developed system requires imaging
of only 128 FoVs (with 40X magnification). The focus stack acquisition from the
required number of FoVs takes about 11 minutes. This is followed by analysis
of the focus stack for identifying the infected and healthy RBCs. This analysis
is conducted in Matlab 2014a installed for Windows 7, 64 bit operating system
running on an Intel i3 machine @ 3.10 GHz with 4 GB RAM. The processing of
each FoV (i.e., slide image of dimension 480 x 720 x 3) on average took around

6.5 seconds; “5 seconds for segmentation and “1.5 seconds for parasite detection.

In order to anlalyse the effectiveness of using focus stack in accurately detect-
ing parasite locations, we have performed a 10 fold cross validation experiment
on the classifiers: FFN (Feed Forward Neural Network) & SVM on hand engi-
neered features, CNN on the best focused patches and CNN on the focus stack of
patches. Since the dimensions of feature is only 14 and since we are addressing a
binary classification task, the FFN is designed with a single hidden layer having
8 neurons. For the cross validation experiment, the 5600 positive patches along
with 5600 negative patches, selected at random from the available 326934 negative
patches, constitute the training dataset. The entire 11200 training patches are now
divided into 10 sets, by selecting samples at random but ensuring 560 positive and
560 negative samples in each set. Now, 9 sets are used to train the classifiers as
discussed in previous section, and used the remaining set for validation. Such 10
run has been made, where in each run, each set is used for validation of the clas-

sifiers trained with the remaining 9 sets. We measure the effectiveness of parasite
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detection in terms of sensitivity, specificity and Matthews Correlation Coefficient
(MCC). All these measures are computed from the number of true positives (TP),
false negatives (FN), false positives (FP) and true negatives (TN). The infected
cells which are correctly classified as infected fall in TP, and that are misclassified
as healthy fall in FN. Similarly, the healthy cells that are correctly classified fall in
TN while the misclassified cells fall in FP. The sensitivity (TP/(TP+FN)) mea-
sures the ability of a classifier to correctly identify an infected cell while specificity
(TN/(FP+TN)) measures the ability of a classifier to correctly identify healthy
cells. For any classification system, there is a trade-off between these two quanti-
ties. MCC takes this into consideration and it turns out to be a better measure
than the simple accuracy especially in cases where the number of positives and

negatives are quite unbalanced. The MCC is defined by

TP xTN —FP x FN
MCC = (3.11)
V(FP+TP)(TP + FN)(FN + TN)(TN + FP)

As per the definition in Eq. (3.11), MCC value can range between -1 and 1.
Value 1 corresponds to perfect classification, 0 corresponds to not better than a
random guess while -1 corresponds to the worst classifier. The average sensitivity,
specificity and MCC measures computed for each of the classifier across 10 folds
along with their standard deviation (std) is shown in Table 3.4. The results show
that the CNN working on the focus stack has an advantage in reducing false
positives, and false negatives as indicated by the highest values for all measures
in Table 3.4. The Receiver Operating Characteristics (ROC) for the first cross
validation fold is shown in Fig. 3.19, where we plot true positive rate (sensitivity)
against false positive rate (1 - specificity). The area under the curve (AUC) is a
measure of the goodness of classification, where an ideal classifier should give unit
area and a classifier that does a random guess should give 0.5. The mean area
under the curve for 10 fold cross validation experiment that we have conducted
turned out to be 0.9992 for the CNN on focus stack, 0.9987 for CNN on the best
focused image, 0.9910 for SVM on features and 0.9813 for FFN (Feed Forward
Neural Network) on features. The standard deviation reported are respectively
7.5764e7%, 9.9871e~%, 0.0037 and 0.0044. The high value for the mean AUC and

low value of standard deviation reveals that the CNN working on the focus stack

20



—  CNN on Focus Stack

0.8 —— CNN on Best Focused |-
o SVM on Features
T FFN on Features
oC
(D 0.6 i 7
=
‘»
@)
04 -
(o))
o
I_
0.2 .
O 1 1 1 1
0 0.2 04 0.6 0.8 1

False Positive Rate

Figure 3.19: The ROC for the proposed classifiers : CNN on focus stack,
CNN on the best focused image, SVM on features and FFN

on Features

offers superior performance. From this point onwards, we experiment with only

the top 3 performing classifiers.

In order to perform a detailed analysis on the capability of CNN operating
on the focus stack, in our second experiment, we have trained the classifiers us-
ing relatively few samples. The classifiers are trained by taking at random, 60%
positive samples and an equal number of negative samples. A separate 20% pos-
itive samples (+ve: samples which are really infected) and an equal number of
negative samples (-ve: samples which are really healthy) are used to validate the
network during training. The trained system is then tested for all patches in all
slide images. The number of training, testing and validation patches are explic-

itly provided in Table 3.5. All classifiers are trained with exactly the same set of
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Table 3.4: Average Sensitivity, Specificity and MCC along with their stan-
dard deviation in 10 fold cross validation: O) FFN on Features
A) SVM on Features and CNN on B) Patches C) Focus Stack

Metric Method - O Method - A Method - B Method - C

Sensitivity  92.44% (0.84)  96.38% (0.88)  98.91% (0.36)  99.14% (0.37)
Specificity  97.36% (0.73)  95.43% (0.85)  99.39% (0.31)  99.62% (0.18)
MCC 0.8991 (0.0140) 0.9181 (0.0150) 0.9831 (0.0039) 0.9877 (0.0032)

Table 3.5: Number of Samples (#) used in Training and Validation

Patches # Un-rotated # Rotated # Train # Validation # Test
1400x4  60% of 5600 20% of 5600
(5600) (3360) (1120)
-ve 326934 - 3360 1120 326934

+ve 1400

candidate parasite locations in order to facilitate a fair comparison.

Note that only 3360 negative samples out of the total 333352 negative patches
available are used for training since we have only very limited number of positive
patches. The learning behaviour of CNNs can be found in Fig. 3.20, where the
left side plot corresponds to the CNN learning only from the best focused patches
while the right side plot corresponds to the CNN learned to operate on the focus
stack of patches. We have used a set of independent samples to assess the accuracy
of the network at each epoch during training. The accuracy of the network on
this validation set can be seen in the plot (blue) shown in Fig. 3.20. In order to
avoid over-fitting on the training data, we chose the network for testing as the one
that gives minimum error on the validation set and not on the training set. These
turned out to be the trained network at iteration 36 from the set of classifiers
trained to work on the best focused patches and the network at iteration 85 from

the set of classifiers trained to work on the focus stack of patches.

For a test image, the trained classifiers can be applied at candidate locations
and the parasite locations can be marked. As noted earlier in subsection 3.3.1, the
candidate locations are found from regional minima of the intensities. Depending

on the classifier selected, the 32 x 32 RGB patch or the focus stack of patches or the
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Figure 3.20: The behaviour of CNN training A.) on patches from the best

focused image and B.) on focus stack of patches

features are extracted and are used for the classification. The parasite locations
identified by different classifiers for the test image provided in Fig. 3.4 are shown
in Fig. 3.21. The ground truth parasite locations are provided in Fig. 3.21 a and
Fig. 3.21 b provides the locations detected by the SVM classifier. Fig. 3.21 ¢ and
d are respectively the locations identified by the CNN trained on the best focused
patches and CNN trained on the focus stack. Note that the SVM trained on the
features unnecessarily identify a healthy cell as infected while the CNN working

on the best focused patch misses out one infected cell.

The confusion matrix generated for each of the classifier is shown in Table 3.6.
It can be seen from Table 3.6 (c¢) that the CNN trained on the focus stack produced
superior performance with minimum false positives and false negatives. Fig. 3.22
shows the focus stacks of 8 cell images which are resized to 40 x 40. The middle
row holds the best focused image, the first and last row hold the images which
are respectively the 16" image after skipping 15 images on either side of the focus
stack as discussed in subsection 3.3.3. The first 3 cell images (a)-(c) are the true
positives (infected) only identified by the CNN operating on the focus stack and so
as the case with the next three true negatives (d)-(f). The cells shown in Fig. 3.22

d-f are really healthy cells and the marks are due to dust on the sensor and are
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Figure 3.21: A) The ground-truth parasite locations in the slide image
shown in Fig. 3.4. The parasite locations identified by B)
SVM trained on features C) CNN trained on best focused

image and D) CNN trained on focus stack.

correctly identified as healthy only by the CNN operating on the focus stack. It
can be clearly seen that the dust area does not change considerably across the focus
stack unlike the change around the parasite locations. The last two images (g)-(h)
are the infected cells which are wrongly marked as healthy by all three classifiers.
It can be understood from the shown cell images that it is hard to go for a decision
just by looking at the cells in the best focused slide image (shown in the middle
row) and as reflected by the confusion matrix in Table 3.6, CNN operating on
focus stack gets an upper hand in taking the correct decision compared to the
classifiers working on the single best focused image. This can be observed by the
highest MCC measure in Table 3.7, for the CNN running on focus stack. The table
also reveals that the proposed system could correctly classify 1156 cells out of the
total 1191 infected cells yielding a sensitivity of 97.06% and it could correctly
classify 59912 cells out of the total 60824 healthy cells yielding a specificity of

98.50%. The sensitivity and specificity of the system using the SVM classifier
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A B C D F F G H

Figure 3.22: A - C) are the three true positives (focus stacks) only iden-

tified by CNN on focus stack D - F) are three true negatives
only identified by CNN on focus stack G - H) are two infected

cells missed out by all the classifiers

Table 3.6: Confusion Matrices : A) SVM on Features B) CNN on Patches
C) CNN on Focus Stack

Infected Healthy Infected Healthy Infected Healthy
Infected 1107 84 1151 40 1156 35
Healthy 3756 57068 1053 59771 912 59912
A B C

trained on features of the patches are 92.95% and 93.82% respectively and that of
the CNN trained on the best focused image are 96.64% and 98.27%. Note that, a
considerably infected cell can easily be identified from the best focused image itself
while the difficulty is in the case of a cell at early stage of infection as can be seen
in Fig. 3.9. In such cases of early infection, though the variation across the stack
is minimal, the CNN working on the focus stack could differentiate parasites from
artefacts like dust where the changes across the focus stack is insignificant. This
further results in the improvement of accuracy in terms of sensitivity, specificity

and MCC as observed in Table 3.7.

In order to evaluate the effectiveness of the automated procedure for counting,
the confusion matrix generated by the classification discussed in section 3.3.3 is

shown in Table 3.8. The cells are counted by the automated procedure developed
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Table 3.7: Sensitivity, Specificity and MCC: A) SVM on Features and
CNN on B) Patches C) Focus Stack

Metric Method - A Method - B Method - C
Sensitivity 92.95% 96.64% 97.06%
Specificity 93.82% 98.27% 98.50%
MCC 0.4430 0.7036 0.7305

Table 3.8: Confusion Matrices (Automated): A) SVM on Features B)
CNN on Patches C) CNN on Focus Stack

Infected Healthy Infected Healthy Infected Healthy
Infected 1107 85 1151 41 1156 36
Healthy 3741 56978 1053 59666 912 59807
A B C

in section 3.4 unlike the results produced in Table 3.6 where the cells are counted
manually. The corresponding sensitivity and specificity obtained by the completely
automated system are also provided in Table 3.9. It can be easily verified that the
results provided in Table 3.6 and Table 3.8 are comparable. Now, the parasitemia
level reported by the automated system can be computed. It is defined as the ratio
of total number of infected RBCs to the total number of RBCs considered and is
typically expressed in percentage. The actual parasitemia level is defined by the
ground truth and is 1.92% (1191/62015). The statistics in Table 3.8 shows that the
CNN on the focus stack has produced the closest prediction 3.34% (2068/61911)
compared to the CNN on the best focused patch (3.57%) as well as SVM on hand
engineered features (7.83%).

In order to assess separately the parasite detection and automated counting
procedure on the FoVs collected from the two slides that we have used in this
study, the confusion matrices are provided in Table 3.10. There were 392 FoVs
from Slide-1 and 373 from Slide-2. Table 3.10 (a) provides the statistics for first
slide while Table 3.10 (b) provides the statistics for second slide. The automated
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Table 3.9: Sensitivity, Specificity and MCC (Automated): A) SVM on
Features and CNN on B) Patches C) Focus Stack

Metric Method - A Method - B Method - C
Sensitivity 92.87% 96.56% 96.98%
Specificity 93.84% 98.27% 98.50%
MCC 0.4435 0.7033 0.7302

Table 3.10: Confusion Matrices for CNN on Focus stack for A) Slide-1 and

B) Slide-2

Infected Healthy Infected Healthy
Infected 566 (566) 21 (22) 590 (590) 14 (14)
Healthy 506 (506) 32352 (32293) 406 (406) 27560 (27514)

A B

count given by the proposed system for TP, FN, FP and TN is also provided
in Table 3.10 and are provided within brackets. The corresponding sensitivity
and specificity metrics computed for the detection procedure for both slides are

comparable and are respectively 96.42% & 97.68% and 98.46% & 98.55%.

We have seen that the number of cells identified by the automated counting
procedure comes very close to the manually verified count. Now, we will analyse
the visual quality of segmentation. The slide images used in this study had so much
variation in cell overlap, focus and in staining. Fig. 3.23 shows this variability
where Fig. 3.23 a and b show different amount of staining and Fig. 3.23 ¢ shows
that a few of the cell images are not in focus. The corresponding segmentation
result is provided in second row. Fig. 3.23 d shows a clump of two cells wrongly
identified as a single cell due to the large overlapping region between the cells and
Fig. 3.23 e shows the case where a single cell get segmented as if there are two

cells.

The result of segmentation procedure proposed is compared with the result of

a7



Figure 3.23: Segmentation results : A), B), C) Images at different staining

level and focus D) Wrong segmentation of a clump containing

two cells E) Wrong segmentation of a single cell into two cells

the method in Dimopoulos et al. (2014) where the authors used the membrane
pattern for identifying the cell boundaries. We have used the implementation
provided in the link associated to Dimopoulos et al. (2014). The parameters to
define the membrane pattern are set as explained in the manuscript Dimopoulos
et al. (2014). For this purpose, 60% of FoVs is selected at random and from each
selected FoV, one cell is used to define the parameters. The result of segmentation
on the slide image in Fig. 3.4 is shown in Fig. 3.24 a. Fig. 3.24 ¢ and (d)
show respectively the results obtained on the slide image shown in Fig.3.24 b
by the method described in Dimopoulos et al. (2014) and our method. We have
also shown in Fig. 3.25, the segmentation results on twelve more sub-images for
a comparison. The results are ordered such that the top row shows the sub-
images, second row holds the segmentation by following the membrane pattern
(Dimopoulos et al. (2014)) and third row holds the result of segmentation by the
proposed approach. It can be seen that the method (Dimopoulos et al. (2014))
missed out quite a few number of cells. This is because when there is more than
one type of cells in the slide image under study, a unique membrane pattern is
often difficult to find. In our dataset though most of the RBCs are nearly circular
and are having almost the same size, some of them take very different shape and
size. Also heavily infected RBC takes completely a different membrane profile and
so does WBCs. From the result of segmentation obtained on our dataset, we infer
that our proposed method of segmentation performed better than the method in

(Dimopoulos et al. (2014)).
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Figure 3.24: Comparing segmentation results : A) the result of segmen-
tation by CellX method (Dimopoulos et al. (2014)) for the
image in Fig. 3.4 B) Another focused image, the cells seg-
mented using C) CellX method (Dimopoulos et al. (2014))
and D) by the proposed method.

Further, by inspecting the confusion matrices in Table 3.6 and Table 3.8, it can
be seen that the number of false positives for the classification by CNN remained
the same. This means that no cells marked with more than one false positive
location is wrongly segmented into two cells such that the marked locations fall
into multiple number of segments. Also, no two adjacent cells marked as false
positive come into the same segmented region. The count difference of 15 in the
number of false positives by SVM is due to the fact that adjacent cells are identified
false positive but are counted as single cells since they fall in the same segment.
These are heavily overlapped cases and one such case is shown in Fig. 3.23 d. The
count difference of 105 in healthy cells between the manual and the automated cell
counting is due to the same reason. Also, there is a count difference of one cell in
the number of false negatives. In this case, one cell marked positive was wrongly

split into two segments. One segment was identified as infected by all the three
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Figure 3.25: Comparing segmentation results on 12 sub-images: Original
image in first row, segmentation by CellX (Dimopoulos et al.
(2014)) in second row and the result of the proposed method

in third row.

classifiers, but none of them identified the second as infected which contained the
marked ground truth location. This case is shown in Fig. 3.23 e. However the
comparable results in confusion matrices shown in Tables 3.6 and 3.8, reveal that
overall the segmentation was good and produced comparable cell count with the

manual method.

Note that, we have used the results in Table 1 to understand how good the
training is across different cross validation folds (10 fold) run by considering all
infected patches. The large value of the mean accuracy and low standard deviation
reveal that the system trains effectively well across different set of training set used
in the cross-validation experiment. Note that, we have used 90% of infected cells
for each cross validation experiment reported in Table 1 while we have used only
60% infected patches for the results reported in Tables 3 to 6. Thus, the result in
Table 1 provides how good the training is (mean accuracy and standard deviation)
across the folds in 10 fold cross validation experiment, while the tables 3 to 6 help
us in establishing the generality of approach, its robustness to classification even

with 60% data and validates segmentation & classification procedures altogether.

We have also compared the detection accuracy of our method with the accuracy
on a patch based malarial detection method reported in Linder et al. (2014).
Though the stain for the slide images used in Linder et al. (2014) was Giemsa,
we adopted the approach of using the LBP/VAR (Ojala et al. (2002)) and SIFT
features (Lowe (2004)) as reported in the manuscript (Linder et al. (2014)). The
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Table 3.11: Performance of the Method in Linder et al. (2014)

Infected Healthy Method - Linder et al. (2014)
Infected 984 208 Sensitivity 82.55
Healthy 4091 56628 Specificity 93.26

LBP/VAR feature with the given specification is computed with the source code
available at LBP (2016). The number of false positives and false negatives obtained
by this method on our dataset is shown in Table 3.11. Comparing the sensitivity
and specificity of the method with those reported in Table 3.9, it can be understood
that the CNN trained on the focus stack has produced the best performance. Note
that, the dataset used in our research experiment itself is prepared by us using
custom developed imaging setup and we have compared the proposed method with

state-of-the-art method (Linder et al. (2014)) on this dataset.

3.6 Publications

1. G. Gopakumar, M. Swetha, S.S. Gorthi, G.R.K.S. Subrahmanyam. Au-
tomatic Detection of Malaria Infected RBCs from a Focus Stack of Bright
Field Microscope Slide Images. Tenth Indian conference on computer vision,

graphics and image processing (ICVGIP’16), ACM pp.16:1-16:7, 2016.

2. G. Gopakumar, M. Swetha, S.S. Gorthi and G.R.K.S. Subrahmanyam.
“CNN based malaria diagnosis from focus-stack of blood smear images ac-
quired using custom-built slide scanner”, J. Biophotonics, 2017, DOI: jbio.
201700003.

3.7 Summary

Malaria is a deadly infectious disease affecting a few million individuals around the
globe. High degree of sensitivity and specificity are desired for any malaria diag-
nosis system. We have proposed a completely automated, custom-built, portable,

cost-effective prototype system with necessary instrumentation as well as image
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analysis/classification algorithms that can be used for quantitative malaria de-
tection. The results produced suggest to use CNN based focus stack of image
analysis in automated malaria diagnosis. We have shown better result with focus
stack of images and by using CNN directly operating on the stack. We strongly
believe that this work makes a significant step forward in the malaria eradication

programme run by many countries and organisation worldwide.
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CHAPTER 4

Automated Microfluidic Cytology for Cancer

Screening

This chapter introduces cost-effective microfluidic based imaging flow cytometry
and proposes a signature based framework for cancerous cell identification. By
automating the processes of image acquisition and cell identification, the approach
enables higher-system throughputs as well as lower overall system cost. We discuss
essential instrumentation layout for high-throughput image acquisition of cells and

demonstrate a signature based classification on leukaemia cell-lines.

4.1 Introduction

As discussed in chapter 2, there is huge interest in cytopathology automation.
However, the research efforts to facilitate wider deployment of cytopathology have
mostly been constrained to automation with very little focus on cost optimization.
The automated slide based image analysis platform such as PathScope (PathScope
(2016)), though improved the throughput and reduced the effort from clinician,
used extensive amount of robotic handling for slide preparation making the system
both bulky and costly. Similarly the flow-based image analysis platforms such as
Amnis ImageStream (Amn (2016)), though improved the throughput further, used
expensive fluid handling schemes and sophisticated sample acquisition systems
making them costlier than the costly automated microscopy system. These facts
had limited the operability and affordability of such systems in resource-poor

clinics especially in low income group countries.

An elegant and cost-effective approach to automation would be to employ
fluid based sample handling coupled with microfluidics. The use of microfluidic
microscopy (cost-effective automated image acquisition) in conjunction with au-

tomated image processing (malignant cell recognition) help to achieve low-cost



disease diagnostic/screening platforms. The use of microfluidics as opposed to
conventional robotic sample handling would ensure low system cost, miniaturiza-
tion /portability while at the same time enable high-throughput image acquisition
(Basiji et al. (2007); Schonbrun et al. (2013); Gorthi et al. (2013)). An added
advantage of microfluidic sample handling is the controllable spatial separation
between individual cells. Appropriate spatial separation would enable individ-
ual cell recognition with simpler image processing algorithms; as opposed to the
slide/smear based approaches, wherein segmentation of overlapping cells demands

the use of computationally intensive algorithms.

In this chapter, first we introduce a custom-built, portable, cost-effective mi-
crofluidics based imaging flow cytometry (mIFC) or microfluidic based microscopy
(Mf-Ms) in section 4.2. Then we address in section 4.3, the important problem of
setting up low-cost screening or diagnostic platforms for cancer. We propose a cell
signature based cancer screening in section 4.4 and the publication came thereof

in section 4.5. The summary of the chapter is provided in section 4.6.

4.2 Microfluidic Microscopy for High-throughput
Cellular Imaging

Initially proposed in the year of 1979 (Kay et al. (1979); Kachel et al. (1979)), the
concept of imaging cells in flow has evolved significantly in the recent past. Some of
the currently known techniques enable imaging throughputs from few to several
thousand cells per second (Basiji et al. (2007); Goda et al. (2012); Schonbrun
et al. (2012)). Enhanced imaging throughput is only one of the several advantages
that microfluidic microscopy offers. Different synergistic opto-fluidic arrangements
have been shown to enable quantitative phase imaging (Gorthi and Schonbrun
(2012)), 3D imaging (Wu et al. (2013); Sung et al. (2014)), cell height (Schonbrun
et al. (2013)) and fast fluorescence imaging (Gorthi et al. (2013)) to name a few.
Further, some techniques enable assessment of chemical composition of cells from
images (Schonbrun et al. (2014); Di Caprio et al. (2015)). To summarize, several
different forms of microfluidic microscopy which can enable acquisition of rich

morphological information of huge number of cells have been developed.
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Figure 4.1: Schematic of a generic microfluidic microscopy system for high-

throughput imaging.

In this section, we outline the proposed diagnostic framework and instrumenta-
tion layout of a generic microfluidics based high-throughput imaging system. The
schematic of the Mf-Ms system is shown in Fig. 4.1. As the imaging is carried out
on objects flowing at high flow velocities, it is essential to use very low exposure
times to obtain blur-free images. This makes it necessary to have a highly bright
and uniform illumination in the sample plane. In order to efficiently illuminate
the sample, the standard kohler illumination configuration has been used. A high
power LED (3W) is used to uniformly illuminate the sample plane. Using an
aspheric condenser lens, the image of the LED is focused onto an iris. A second
condenser lens is placed at a focal length distance from this iris, so as to obtain a
uniform and bright illumination at the sample plane. While the lenses L; (f = 20
mm, diameter = 25 mm), Ly (f = 20 mm, diameter = 25 mm) serve the purpose
of collector and condenser lenses of a typical microscope, the two irises (I, Io)
serve the purpose of field and condenser diaphragms respectively. A microfluidic
device fabricated using conventional soft-lithography (Xia and Whitesides (1998))
is placed in the sample plane. It consists of straight channels with appropriate
width and depth so as to nearly match the sizes of the specimen being investigated.
This helps to restrict the motion of cells within the depth of field of the chosen
imaging system. If the sample contains cells of varying sizes, 3D flow focusing
devices have to be employed. For the case of leukaemia cell lines (cells used in this
study), channels with a width of 25 pm and depth of 15 um are used. In order to

avoid clogging of the channels with cells, a spatial filter was incorporated at the
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inlet of the microfluidic device. This helps to filter out entities larger than the
dimensions of the channels. For these channel dimensions, when operated at flow
rates within the range 100-300 ulh~!, the Reynolds number is very low (R, <<1).
For such low Reynolds numbers, the flow profile falls well within the laminar flow
regime, wherein cells do not migrate across different stream lines and tend to flow
in nearly straight lines. Such a flow stream would help individual cell identification

with great ease.

The suspension of cells is flown across this microfluidic device using a syringe
pump. A microscope objective (40X, NA = 0.75) has been used to image the
sample plane onto the CMOS camera (Mikrotron MC1362) through a tube lens.
While the cells flow across the microfluidic channels, the video of the flow stream
is captured using the high-speed camera. As it can be noticed, the system consists
of only one expensive component: microscope objective. The rest of the system is
built using inexpensive off-the-shelf components making the system significantly
cost-effective as opposed to conventional microscopes and automated slide analy-

Sers.

4.3 Case Study: Classification of Leukaemia Cells

Cancer is one of the leading causes of death around the world and about 7-8 mil-
lion deaths occur due to cancer every year. About two-thirds of cancer-related
deaths are in low and middle-income group countries (Stewart and Wild (2014)).
Early detection of cancer is known to significantly improve the chances of success-
ful treatment. In general, cancer detection is carried out in multiple steps using
different diagnostic modalities like MRI, CT scanning etc, of which cytopatholog-
ical testing is quite critical. Cytopathology is the study and diagnosis of diseases
at the cellular level (Nayar (2014)). In cytopathology, samples are extracted from
the suspected location of tumour using a minimally invasive technique known as
fine needle aspiration (FNA). Using the extracted samples, slides are then pre-
pared for diagnostic assessment via microscopic observation. Due to the increased
nuclear activity, cancerous cells tend to exhibit abnormal morphological features

like a non-uniform nucleus or differently coloured nucleus (Dey (2010)). These
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morphological signatures help in identifying the cancerous cells. However, cy-
topathological testing is a skilful and considerably involved process and tends to
suffer from limitations such as high cost and low throughput. In this chapter, we
propose a cell signature based cancerous cell identification system for a low-cost,

custom-built, high-throughput microfluidic microscopy.
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Figure 4.2: Comparison of experimental work-flow for conventional cancer

cytopathology and the proposed technique

The overall comparative work-flow of the diagnostic analysis using conven-
tional cancer cytopathology and the microfluidics-based high-throughput imaging
system is shown in Fig. 4.2. In conventional methods, a smear of the collected
sample has to be prepared on slide following the FNA /biopsy. The process of slide
preparation requires skill and typically takes about 30 minutes (Bancroft (2008)).
In the case of the proposed technique, the cells have to be re-suspended in so-
lution which is far simpler and can be performed even by untrained personnel.
Also, it takes much lesser time when compared to conventional slide preparation
techniques. For re-suspension, the known protocols (Terstappen et al. (1990)) in
conventional flow cytometric analysis of bone marrow aspirate (Terstappen et al.
(1992)) can be adopted. Further, adhesive cells from tissues can be extracted for

analysis, using well established flow cytometry protocols. After the slides have
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been prepared, the cells have to be stained appropriately. In the conventional ap-
proach, the process of staining may take about 30 minutes to a few hours (Bancroft
(2008)) depending upon the tissue/cells (under investigation) and the stain being
used. In contrast, the proposed technique is a label and stain-free method. Even if
the nucleus of cell has to be stained, it can be done by simple mixing of the stain
solution at appropriate concentration with the suspension of cells. Unlike con-
ventional slide preparation which involves numerous essential steps (like fixation,
several wash steps, staining), in-suspension staining of cells is significantly sim-
pler. In some cases, the clinician may choose to repeat the test or assess additional
quantity of the biopsy sample. Such a scenario would demand the preparation of
additional slides, further increasing the burden on the clinician/technical person-
nel. Whereas, in the current framework, one would have to simply flow an added
amount of sample (through the microfluidic device) to assess further sample quan-
tities and acquire images of more cells. This, greatly alleviates clinician’s burden,
while performing a more rigorous assessment of the sample. Further, manual slide
scanning requires several hours; whereas a microfluidics based image acquisition

is automated and takes comparatively much less time.

Red Blood Cells (RBC) K562 MOLT  HL60

Figure 4.3: a) Red Blood Cells; b) Leukaemia cells in Mf-Ms channels

In this work, we investigate for the presence of principal component analy-
sis (PCA) based unique signatures of cells that are neither stained nor labeled.
Moreover, PCA based identification methods become more robust with the in-
crease in size of training data sets. As it enables fast acquisition of large image

data sets, automation enabled by microfluidic sample handling compliments the
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chosen training and classification method. We demonstrate the signature based
cell classification framework by addressing the leukaemia cell-line classification.
The cell lines of HL60, K562 and MOLT are obtained from ATCC (American
Type Culture Collection) and are separately cultured in the lab. The rationale
behind demonstrating the usefulness of the presented medical imaging approach
with the cultured cell-lines rather than the clinical blood samples is twofold: (1)
To have ground-truth and thereby in a position to evaluate the performance of
the classification (2) Classification of RBCs from WBCs/cancer cells is fairly easy,
and not of much interest in the current work while the former would contribute
to unnecessary bloating of the dataset. For the chosen wavelength of illumination
(LED having 405 nm central wavelength), Haemoglobin in RBCs absorb quite a
lot of light and appears to be darker at the front part of cells (Fig. 4.3). Thus
RBCs can easily be distinguished from that of WBCs/cancer cells based on size
(RBCs are 6-8 microns, while cancer cells are about 20 microns) and absorption
properties. A total of 618 cells are imaged; 388 HL60, 124 K562 and 106 MOLT.
Though at first it seems as a small data set, it is having significant size. Note that
there is only about 4 —11 x 102> WBCs in one microliter of blood, while the number
of RBCs is 4 — 5 x 10°. Thus even a high throughput system having the capability
to image say 10,000 cells/sec would still end-up in imaging only 10 WBCs in a
second, while rest of them would be RBCs. As we have noted, due to their simple
morphological structure differentiating RBCs from WBCs is a fairly simple task
(Fig. 4.3), whereas the identification of abnormal or cancerous cells amongst the
few hundreds of WBCs is a challenging problem; the solution of which is essen-
tial for diagnosis of the disease. In case of screening for leukaemia from blood
samples, we must rely on the WBCs having abnormal features/morphology, and
thus the total number of cells in the data-set with which one needs to perform

identification/classification is still only a few hundreds of cells.

In the following section, we discuss our signature based approach for cancer

cell identification.
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4.4 Signature Based Cancerous Cell Identification

We propose a signature based cell classification approach for the leukaemia cell-
lines captured using a custom-built, portable, low-cost microfluidics based imag-
ing flow cytometry device. The schematic of the framework is shown in Fig.
4.4. In conventional microscopy classification systems, specific morphological fea-
tures which are meaningful to expert’s perception are extracted from cell images
subsequent to dedicated segmentation process. Whereas, the proposed approach
employs cell images directly as they are and encodes 1D PCA or 2D PCA features
similar to well known face recognition systems and apply support vector machine
(SVM). As in the case of face recognition systems, the demonstrated approach is
capable of analysing and identifying cells from a large image dataset. Fvaluation
of a large image set by human experts would be significantly cumbersome, time-
consuming and possibly error-prone. Further, the presented approach allows for
generation of class (cell type) specific computational signatures, which may not
be identifiable by human experts. We demonstrate the framework by addressing

the classification of leukaemia cell-lines : K562, MOLT and HLG0.
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Figure 4.4: Overview of the proposed screening framework for cancerous

cell identification
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Figure 4.5: a) Frames in each row contain respectively K562, MOLT and

HL60 cells; b) the corresponding background subtracted en-

hanced frames.

As mentioned earlier, the images acquired from Mf-Ms are mined for possible
signatures, which are then used to classify cells. Class specific signatures are gen-
erated from the training samples. Following which, the classification is performed
based on the proximity of the test sample to these signatures. Raw videos of
flow streams containing different leukaemia cell lines K562, MOLT and HL60 are
separately acquired for this research using the setup provided in the last section.
Each frame from the acquired video is pre-processed in order to enhance cell fea-
tures and reduce the noise. The pre-processing step involves the filtering using
5 x b averaging mask in order to reduce the noise due to cell debris followed by
background subtraction to enhance cellular features. The background frame for
subtraction can easily be obtained by capturing the channel along with sheath
fluid before pumping the cells. The result of enhancement achieved through noise
reduction and background subtraction can be observed in Fig. 4.5. The rough
location of the cells is then identified via thresholding using the higher gradient
(in intensity) at the cell location. The cells from the frame are roughly localised
by identifying the rectangular bounding box enclosing the morphologically filled
binary cell image (Fig. 4.6 b). The cells are then segmented out using this bound-
ing box and are resized to m x n (In our experiment, m = 26, n = 24). The

detailed procedure for the localisation of the cells is discussed in chapter 5.

For the classification system, we need to assign a general signature describing
the samples in each class. In this study, the class specific signatures are generated
based on principal component analysis. In PCA based methods, we look for a

few directions that can capture the variability of cell population with minimum

-]

1



A

Figure 4.6: a) Roughly localised cells from the K562 frame in Fig. 4.5; b)
bounding box containing left most object of ‘a’ and left most

cells from the background subtracted frames in Fig. 4.5

Figure 4.7: Depicting principal directions (PC; and PCy) for a sample
two class 2D dataset. The signatures (Sig; and Sigy) found by

projecting the samples to PC; are also shown.

loss/distortion. If we could select sufficient such directions, the cells could be effec-
tively represented using a signature in low dimension thereby reducing the effect of
noise in the signature. We experiment with both 1D (Kirby and Sirovich (1990);
Turk and Pentland (1991)) and 2D PCA (Yang et al. (2004)) cell signatures.

4.4.1 1D PCA based Cell Signature

In 1D PCA, the cell images are reshaped as 1D vectors by stacking the columns,
and we want to find the basis directions that captures the variability of the data

with minimum distortion. Let {z;}) be the set of vectorized N images each of
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having size mn x 1, where m xn is the dimension of the cell images. We are looking
for a direction e such that the variability of the mean (u) subtracted vectorised
cell images is best captured. Thus, we look for a unit vector e that minimises the

following error function J across N images.

J = Z lake — (zx — )|* (4.1)

Where
1

k=1

Looking for ag, the best representation of the image for its feature vector x; turns
out to be ar = e'(xy, — ). This can be found by differentiating Eq. 4.1 with
respect to a; and equating to 0, as the best a; minimises the error. To find the

direction e, we can substitute the value of a; back in Eq. 4.1. This results in
J = —e'(xp — p)(zp — p)e=—e'Se (4.3)

Here in Eq. 4.3, J has to be minimised with respect to the constraint that e
is a unit vector. i.e., ele = 1. Also note that it is the same e that maximises
e'Se, where S is called the scatter matrix of the vectorised cell images. The

unconstrained form of this maximisation is due to Joseph-Louis Lagrange and is
J =elSe— \efe — 1) (4.4)

When differentiated with respect to e and equated to 0, to find the e that max-
imises J', we will get Se = Ae. Thus the best direction that we are seeking is
nothing but the Eigenvector of S. It is particularly the Eigenvector corresponding
to the largest Eigenvalue since e/Se = Ae'e = X being the function that we try to

maximize.

Fig. 4.7 explains the 1D PCA based signature generation taking a random
2D two class dataset. The class-1 samples are represented using star symbol and
class-2 samples are represented using asterisk. The directions along which the
maximum variability in data is observed along PC;. The two directions PC; and

its perpendicular direction PC, are the principal directions for the given data. In
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order to find the 1D PCA signature (for 1 dimension), the class specific samples
are projected onto PC; and the mean is computed. The respective signatures
are shown as Sig; and Sigy. In general, to generate signature based on 1D PCA,
the samples are projected onto the vectors representing ‘d’ principal directions,
along which the samples have greater variance (Fig. 4.7). As we have seen, these
principal directions turns out to be the eigenvectors corresponding to the top ‘d’
eigenvalues of the scatter matrix computed from the training vectors. Each of such
projection by a training sample yield a ‘d’ element vector, and the PCA signature
of each class is then identified as the mean of the projected vectors of the class

specific training samples.

4.4.2 2D PCA based Cell Signature

In 2D PCA, we directly deal with the 2D cell images {A4;}Y, each of dimension
m x n. We look for a n dimensional unit vector P on to which the cell images
can be projected such that the projected vectors best captures the variability
of the cell images. Yang et al. (2004) has identified that the total scatter of
the projected samples can be used to measure the discriminatory power of the
projection vectors. This is reflected by the trace of the scatter matrix Sy of the
projected output vectors, and has to be maximised. Thus the cost function that

we want to maximise is J = trace(Sy).
Sy =E[(Y —EY)(Y —EY)] (4.5)
Substituting Y = AP in Eq. 4.5 will produce
Sy = E[{(A — EA)PH(A — EA)P}] (4.6)
where E is the expectation operator.
trace(Sy) = P{E(A —EA)"(A - EA)}P = P'GP (4.7)

Thus the projection vector that best capture the variability of our cell images

can be found by finding P that maximises the cost function defined in Eq. 4.7.
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Table 4.1: NN — Average Accuracy % (std) : Label of Nearest Signature

Classifier K562 MOLT HL60
1D PCA + NN 89.23 (3.21) 78.70 (5.14) 84.66 (2.13)
2D PCA + NN 88.34 (4.08) 80.79 (4.43) 85.78 (2.38)

For the reason discussed in 1D PCA, this vector turns out to be the Eigenvector

corresponding to the largest Eigenvalue of the image scatter matrix, G.

4.4.3 Matching Test Signature with Stored Signatures

We have chosen 40 principal directions for 1D PCA signature generation and have
used 20 principal directions for 2D PCA signature generations. The Eigenvalues
of these principal directions contributed around 99% to the sum of all Eigenvalues.
When a new test sample comes, it is projected onto the same projection directions
used to generate the class signatures. The class of the test sample is decided based
on the proximity of the test signatures to the class specific signatures. Note that,
all the results discussed in this chapter are generated by taking 50% of the available
samples for training (to create signature) and the rest of the samples for testing.

Table 4.1 shows the result of assigning the label of proximal signature.

In our second experiment, the difficult cases are separated out and are given
the label ‘Ambiguous’. The cytopathologists need to examine only the ambiguous
cases rather than spending time assessing the clearly normal and abnormal cases.
This would make for efficient utilization of the expert’s time. The results are pro-
vided in Table 4.2, where the label ‘Ambiguous’ is assigned if the two proximal
signatures are not well separated. In our implementation, if the distance to the
closest signature (d;) is within 85 % of the distance to the second closest signa-
ture (dy), the test sample is considered as ambiguous (i.e, when d;/dy < 0.85).
The classification accuracy for each cell type is computed without considering the
samples assigned the ‘Ambiguous’ label. The mean accuracy as well as standard
deviation for 100 independent runs is shown in Table 4.2 and 4.3. For example,
the first row in Table 4.2 shows that among the classified K562 samples, 94.11%
are correctly classified. Similarly 81.54% MOLT and 86.16% HL60 are correctly
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Table 4.2: NN — Average Accuracy % (std) : Difficult cases as Ambiguous

Classifier K562 MOLT HL60 Ambiguous
1D PCA + NN 94.11 (2.81) 81.54 (4.90) 86.16 (2.48) 6.64 (0.98)
2D PCA + NN 94.37 (2.44) 86.82 (4.26) 87.35 (2.66) 8.87 (1.27)

classified. The overall accuracy observed among all the classified samples using
1D PCA is 86.99% while 2D PCA is 88.61%. The classification accuracy has
been increased among the classified samples, but at the cost of keeping a few as

‘Ambiguous’.

We have also explored the possibility of using SVM for reducing the false
positives by classifying difficult cases as ‘Ambiguous’. Note that, SVM finds the
best separating hyperplane that maximizes the margin while minimizing some
measure of loss on the training data. The classification of the test samples has
been done based on the side a given case falls, with respect to the hyperplane.
Fig. 4.8 shows the typical SVM for noisy class samples. It shows the separating
hyperplane for 2 classes (Star and Asterisk), the support vectors identified, as well
as the margin. The ¢ is the SVM parameter used in the design to quantify the
error of the training samples in terms of the distance from the margin boundaries.
The separating hyperplane is decided as a compromise between maximizing the
margin and minimizing the error term. In our experiment, the projected training
samples onto the principal directions are used to train SVMs. Being a three class
classification problem, three SVMs are trained by taking samples from each class
as positive and keeping all other samples as negative. A test sample is classified
based on the following strategy. If there is only one claim by the classifier, the
test sample is assigned the label of the positive class used to train the particular
classifier, provided the distance of the test sample is at least 0.8 unit (margin is
at 1 units) away from the separating hyperplane. In all other cases, the label
‘Ambiguous’ is assigned. The results are shown in Table 4.3. The overall accuracy
observed among all the classified samples using 1D PCA is 98.01% while 2D PCA
is 97.71%.

In essence, the individual methods/modules employed to demonstrate the ap-

proach are bright-field in-line transmission microscopy, PCA based feature extrac-
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Figure 4.8: Shows the data from 2 classes (Asterisk and Star), support
vectors, margin (1/vVW7TW) and the separating hyperplane.

Table 4.3: SVM — Average Accuracy % (std) : Difficult cases as Ambiguous

Classifier K562 MOLT HL60 Ambiguous
1D PCA + SVM  93.46 (3.93) 93.74 (3.71) 99.94 (0.22) 15.17 (2.35)
2D PCA + SVM  89.30 (2.44) 93.97 (4.26) 99.99 (0.05) 14.26 (1.90)

77



tion, NN/SVM based classification. While the individual modules/methods are
quite well known, the purpose is to demonstrate the realization of an exemplary
“Malignant Cell Surveillance System” (similar to surveillance cameras powered by
face recognition algorithms for the identification of criminals) suitable for cancer
screening, with the powerful combination of microfluidic microscopy and digital
cytology. Further, we have extended the standard NN and SVM classification pro-

cedures to separate out the difficult cases leading to more accurate classification.

4.5 Publications

1. V.K. Jagannadh, G. Gopakumar, G.R.K.S. Subrahmanyam, S.S. Gorthi.
“Microfluidic microscopy-assisted label-free approach for cancer screening:

automated microfluidic cytology for cancer screening”, Med. Biol. FEnyg.

Comput., 1-8, 2016.

4.6 Summary

To summarize, we have presented a novel approach for automated high-throughput
label-free cancer screening. We have presented the clinical diagnostic work flow
and the associated instrumentation framework to perform image acquisition of
cells. We envisage that the presented approach leverage and bridge independent
advances in the fields of modern microscopy, automated high-throughput imaging
and sample preparation/handling with Lab-on-a-Chip and image classification.
This would in turn give impetus to the development of affordable and automated

triaging systems for the early detection of deadly diseases such as cancer.

With the use of presented approach, an exhaustive database of various types
of cancerous cell signatures can be very easily generated for a given type of can-
cer. Analogous to a criminal database (for face recognition), this database would
help in instantaneously and automatically identifying a cancerous cell as soon as
it is imaged by microfluidic microscopy system. This high-throughput cancerous
cell identification system can also detect the presence of rare cells (like circulating

tumour cells(CTCs)). CTCs form a minuscule percentage of total cells present
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in a given volume of blood. Detection of CTCs in a given blood sample can
be an invaluable tool for early detection as well as prognosis monitoring of the
disease (Cohen et al. (2008)). In the event that this approach fails to generate
required signatures for certain types of malignant cells (necessary for unambigu-
ous identification), it would act as an efficient and automated approach for triag-
ing(primary screening). Triaging is more relevant for resource-limited settings and
when augmented with other diagnostic modalities, enables early detection of can-
cer (Solomon (2003)). The approach presented here can be easily used to carry out
triaging, wherein the cells can be classified into different categories like ‘normal’,
‘malignant /abnormal’ and ‘suspected-to-be-abnormal’. Cost-effective automation
of cancer diagnosis would potentially facilitate screening camps in the low-income
group countries and thereby help prevent a significant number of deaths due to
cancer. Further development of this technique would transform cancer screening

test into a routinely performed laboratory investigation.
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CHAPTER 5

Framework for Morphometric Classification of

Cells in Imaging Flow Cytometry

Imaging flow cytometry (IFC) is an emerging technology that combines the statis-
tical power of flow cytometry with spatial and quantitative morphology of digital
microscopy. We had provided a low-cost IFC instrumentation as well as signa-
ture based cancerous cell identification in chapter 4. However, to have a clinically
usable system, the accuracy has to be improved further and in this chapter we
propose a general framework for the processing of cells imaged using the microflu-
idics microscopy (Mf-Ms) system presented in chapter 4. The framework includes
feasible preprocessing, segmentation, feature extraction and classification stages.
Each cell is localised by finding an accurate cell contour. Then features reflect-
ing cell size, circularity, and complexity are extracted for the classification using
support vector machine. Unlike the conventional iterative, semi-automatic seg-
mentation algorithms such as active contour, we propose a non-iterative, fully
automatic graph based cell localisation. The framework is then tested for the
same leukaemia cell-line dataset (K562, MOLT and HL60) presented in chapter
4. The proposed system is a significant development in the direction of build-
ing a cost-effective cell analysis platform which would facilitate affordable mass

screening camps looking cellular morphology for disease diagnosis.

5.1 Introduction

In microfluidics based TFC, the cells in suspension are allowed to flow across the
microfluidics channel and the video of the flow stream is captured using a high
speed microscopy system. The raw data (videos) generated by microfluidics based
IFC system has to be processed so as to extract and subsequently analyse images
of cells. A highly efficient classification system, which employs different algorithms

to extract quantitative morphological features of cells, is an essential requirement



to develop a practically usable IFC system. Computerized methods have been
evolved to assist pathologists by automating the segmentation of cells (and its
components such as nuclei (Di Cataldo et al. (2008)) and cytoplasm), feature
extraction and classification (Thiran and Macq (1996)). A good review on tech-
niques used for segmentation, feature extraction, and classification of cells from
histopathology imagery can be found in Irshad et al. (2014). Tmage processing al-
gorithms for histopathology slides are thus a sufficiently explored subject whereas
IF'C is relatively new imaging modality and is yet to take the form of a diagnostic

tool.

We have introduced a low-cost microfluidic microscopy instrumentation along
with signature based framework for classifying leukaemia cell-lines in chapter 4.
However, in order for IFC to be practically usable as a diagnostic tool, the ac-
curacy has to be improved further. This requires development of a framework
to assess the raw data and extract relevant information. The framework design
would involve the development of intelligent image processing algorithms for the
pre-processing and segmentation of cells, reliable feature extraction techniques to
capture the important and discriminant features of cells, and finally the devel-
opment of high performance classification system/model. Once the classification
model is developed with a set of training images (cells), subsequent classifica-
tion and counting can be done in nearly real time, provided the pre-processing,

segmentation and feature extraction are made to be less complex in computation.

This chapter proposes a general framework for the processing of cells in a mi-
crofluidics based imaging flow cytometer. As shown in Fig. 5.2, the framework
incorporates several steps: beginning from pre-processing of the raw video frame
and culminating in extraction of different quantitative morphological parameters
and subsequent classification of cells. The first step in the proposed framework
is a rapid pre-processing stage to identify the presence of cells within the frame
and subsequently enhance the cell images. In IFC, the cells are imaged one at
a time and in most cases appear as isolated cells, with a few exceptions where
the cells may appear as a clump. The proposed framework also takes into ac-
count these few exceptions and includes a clump identification step. Following the
clump identification, a novel, accurate, fully automatic, non-iterative graph based

algorithm has been implemented to segment out individual cells from the clump.
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Once the cells are localised by identifying its contour, we present the relevant
image processing algorithms which can be used to extract morphological features
reflecting size, shape and complexity of cells. The extracted features are taken
for cell classification using SVM. The effectiveness of the proposed framework is
tested by performing the classification of label-free unstained leukaemia cell lines

K562, MOLT and HL60.

In conventional microscopy /slide based examination, the expert has to analyse
a large population of cells to identify abnormal cells. In most cases, abnormal
cells form a very small minority of the overall population. For example, in the
case of a typical malarial infection, only about 0.2% of the total population of
red blood cells is infected and in the case of cancer, there are only about 5-10
cancerous cells (circulating tumour cells) per millilitre of blood (which contains
more than a few billion normal cells). Further, it is difficult to assess some cells at
first look and have to be re-examined before taking a clinical decision. These cells
represent the suspected-to-be abnormal cases. Examining clearly normal cells or
clearly abnormal cells put an unnecessary workload on the expert. In the current
work, we have developed the classification system with a realistic clinical scenario
in mind. The system enables classification of cells as normal and abnormal. The
difficult cases are labeled as ‘Ambiguous’, which would then be closely examined

by the expert.

In a nutshell, the main contributions in this chapter are 1) the proposal of a
general framework for processing cells in microfluidics based IFC, 2) the proposal
of a novel, fully automatic, non-iterative algorithm for cell segmentation, 3) the
extraction of relevant features to perform efficient classification of leukaemia cell-
lines K562, MOLT and HL60 and 4) exploring the possibility of reducing false
positives by identifying the suspected-to-be abnormal cases. The content of this
chapter is organized such that section 5.2 introduces the proposed framework,
section 5.3 details the proposed cell localisation algorithm and section 5.4 explains
the feature extraction. The classification result for the leukaemia cell-lines is
provided in section 5.5. The publications based on the work are provided in

section 5.6 followed by the conclusion in section 5.7.
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Figure 5.1: Overview of the framework for processing cells in IFC
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Figure 5.2: Block diagram for processing cells in generic IFC system.

5.2 The Framework

The overview of the proposed system for automated image processing is shown
as a block diagram in Fig. 5.1 and is detailed in the flowchart in Fig. 5.2. The
important blocks are pre-processing, object localisation, cell contour localisation,
extraction of features and subsequent classification. Note that the entire proce-
dure, though general, is going to be explained by taking leukaemia cell-line K562,
MOLT and HL60. The video stream of these cell-lines are captured, while they

are in flow, using the mIFC technique as detailed in chapter 4. The instrument

setup and imaging details can be found in section 4.2.
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5.2.1 Pre-processing

The captured frames in the recorded raw video may contain noise, which may
affect the subsequent image processing. Background subtraction has been used to
filter out this noise. Background images can be found by imaging the channels
with sheath fluid but before pumping the cells. In order to reduce the effect of
noise in the image due to cell debris, a 5 X 5 averaging mask is applied to both

foreground and background images (Fig. 5.3) prior to background subtraction.

The effect of background subtraction is shown in Fig. 5.4 a.

Figure 5.3: a) Frames in each row contain respectively the background,

K562, MOLT and HL60; b) frames after smoothing.

Figure 5.4: a) Background subtracted frames; b) density images.

The next step is to localise the cells from the current frame. All the frames are
then processed to check for the presence of cells. Frames not containing any cells
are filtered out at this step. The detection of frames devoid of cells is done using a
pre-computed threshold, T.,. In order to find this threshold, K background sub-
tracted frames not containing any cells are chosen and their Sobel edge sensitivity
thresholds (Th!,.,) are determined (Sobel (2014)). Similarly K background sub-
tracted frames each containing only one cell are chosen and their edge sensitivity
thresholds (T'h%,,.) are also found. The final threshold, T¢, is then defined as the

average of the maximum from the set Th! ., and the minimum from the set Th’

ore’
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In our implementation, we have chosen K as 10. Any frame with edge threshold
less than T, does not contain any cell and are excluded from further processing.
Note that, the brightness of the light source would have only minimal effect on
the threshold, as background subtracted images have been used in deciding the

threshold.

T.s = = (max(Thy,y) + min(Th},,.)) ;Vi=1: K (5.1)

[\DI»—l

Where

P Q
Thi, = L@ZZ (m,n) + G2 (m,n)}

In Eq. 5.1, Gx and Gy are the X directional and Y directional gradient
components for the i image using corresponding normalised Sobel operators.
The, represents the threshold computed for the i image in the C' category. i.e.,

background or foreground category.

The set of background as well as single cell foreground frames for the com-
putation of the threshold 7., can be taken manually. It can also be identified
automatically by using first few frames. For the automatic identification, ini-
tially each frame is assumed to have cells and is processed through section 5.2.2
and 5.3.1. If there are no cells in a frame, due to small amount of noise present
throughout the frames, the morphological closing followed by the filling on the
Sobel edge image result in an almost completely filled frame. Such a frame is
taken as a candidate for background frame. On the other hand, due to the higher
gradient magnitude around the cell (and hence large Sobel sensitivity threshold
compared to the frame without containing any cells), a frame with single cell is
identified (in section 5.3.1) as a frame containing only one object and with single
centroid. The set of background and foreground frames thus identified are then
used to compute the threshold 7.5 and is used in subsequent processing in order

to avoid unnecessary computations on a frame not containing any cell.
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5.2.2 Identification of regions of interest

In a frame containing a cell, the regions of interest (in which the cell is present)
have to be identified. The background subtracted frame is first averaged with a
3 x 3 mask and is then thresholded (Otsu (1979)) to obtain the density image (Fig.
5.4 b). Whenever a cell enters into a frame, it has to be identified as an object of
interest and is roughly localised by identifying the rectangular region covering the
left most object in the current density frame. This region is then morphologically
(Najman and Ronse (2005)) closed and filled to get the object of interest (Fig. 5.5
a). Objects identified in this step are further processed only if their size is greater
than the minimum possible size of the cells under consideration. Note that, the
left most object is selected as a matter of convenience. Picking the left most object
ensures that all cells are considered, as whenever a new cell enters, it is marked

as the left most object; this being dependent on the fluid flow direction through

the micro-channels, and is left to right in these experiments.

Figure 5.5: The object of interest and their outline by filling holes on the
morphologically closed left most objects shown in Fig. 5.4.

Depending upon the velocity of the cell and the frame-rate (of acquisition),
a single cell may be imaged multiple times. Assuming cells move from left side
to right side of the frame, a cell present in the left half of the current frame
may appear in the right half of the next frame. In order to avoid unnecessary
computation on the same cell (appearing in different frames), it is essential to
check if the cell has been imaged in the previous frame. A duplicate object is
identified by comparing the region properties (area, perimeter, centroid and the
area of bounding box) of the binary object of interest (Fig. 5.5) in the current
frame with that of the object of interest in the previous frame. The centroid is
measured with respect to the bounding box of the binary object. Being the fluid
flow laminar, the cells move in nearly straight and never migrate across different

stream lines. This ensures that the region properties computed for the same cell
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but in adjacent frame to remain very close. Ideally, the Euclidean distance has to
be zero for the duplicates, and in our implementation, we have used a threshold of
0.1. If the position of the object of interest in the frame falls left to the position of
the object of interest in the previous frame, it is directly identified as a new object
without checking aforementioned region properties; as the same cell cannot move
in the opposite direction to that of fluid flow. The non-duplicate objects identified
in this step are then further processed. The threshold 0.1 was experimentally
found out by considering the region properties of 40 pairs of duplicate as well as
non-duplicate cells. The problem of duplicate imaging of a cell can be mitigated
with the use of flow focusing, so as to ensure the velocity of cells remains fairly
consistent. The FoV for image acquisition is appropriately adjusted so that image

of each cell is acquired only once, as they flow at a given velocity.

5.3 Proposed Cell Localization Algorithm

The cell localisation step involves the identification of the location of each non-
duplicate cell. It is a very important step as the subsequent feature extraction and
classification (accuracy) highly depend on the exact localisation/segmentation of
the cells. In IFC, though it is rare, a few cells can form a clump. Hence, it is
essential to detect clumps of multiple cells and localise every cells in the clump
by identifying cell contours. Following subsections explain clump detection, rough

segmentation of cells, and exact localisation of the cell by identifying its contour.

5.3.1 Clump identification and single cell localisation

The first step in clump identification is the computation of the distance transform
(Fabbri et al. (2008)) for the binary object of interest. The distance transform
compute the shortest possible distance of each object pixel from the background.
The next step is non-maxima suppression on the output of the distance transform
to produce a binary image M with all maxima points as 1 (ON) and other points
as 0 (OFF). If the corresponding distance of an ON point (obtained from the
distance transformed image) is greater than or equal to the cell radius Thr of the

smallest possible cell under consideration, then the given ON point is identified as a

87



/ Object of interest /

v

Compute distance
transform D

v

Apply non maxima
suppression to get
image M

All non-zero
points (i, j) of M
processed?

Compute clusters Output cluster
centroids

M@, j) = 1

M(@i,j)=0

v

Figure 5.6: Flowchart showing the procedure to find the centroids of the

cells in the clump.

probable centroid. These probable centroids will be close to the actual centroids,
because of the near circular (in fact, spherical) shape of the cells. The spatial
clustering of these points will give the actual cell centroids in the clump. This is
done by an adaptive version of the K-means clustering (Hartigan (1975)) (which
determines number of clusters automatically) to give the final centroid for each
cells in the clump. The entire procedure is shown as flowcharts in Fig. 5.6 and
Fig. 5.7. The flowchart in Fig. 5.6 takes the object of interest as input and
finds an intermediate image ‘M’ with suspected centroids as ON points. Note
that after the non-maxima suppression, the distance from cell boundary of each
maxima point ‘D’ is compared with a threshold Tpr to decide whether it is really
a good candidate for the cell centroid. The ‘Compute clusters’ block takes these
suspected qualified centroids as input, and clusters spatially adjacent centroids
to output only valid centroids. This clustering block is expanded and shown as

flowchart in Fig. 5.7.
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Figure 5.7: The block named ‘Compute clusters’ in Fig. 5.6 is ex-

panded for clustering the centroids.

For the spatial clustering, we assume that there are only two clusters initially
whose centroids are taken as the farthermost two probable centroids. All other
centroids are assigned to one of these clusters, provided the distance between the
representative cluster centroid and the probable centroid is less than the diameter
of the smallest possible cell (2 x Tpr). If the spatial distance from a probable
centroid to every other cluster centroids is greater than 27, a new cluster is
formed with the corresponding probable centroid as the cluster centroid. At the
end of each iteration (i.e., one pass through all the probable centroids), the cen-
troids of the clusters are updated as the average of the candidates in each cluster.
The clustering procedure is repeated until no new cluster is added. Note that the
smallest possible cell size may vary depending upon the type of the cells and based
on the imaging set up. In our implementation, for the leukaemia cell lines, we have
set Tphr = 20 pixels. However, since the centroid calculation is determined by the

non-maxima suppression on the distance transformed density image, the probable
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centroids identified will be closer to true centroids (Fig. 5.8 ¢) giving us greater

freedom in selecting this threshold.

Figure 5.8: a) Cell clump K562 (top row), and MOLT (bottom row); b)
their outline; ¢) clumps with suspected centroids; d) clump

with final cell centroids after clustering.

The result of the probable centroid identification is shown in Fig. 5.8 c. Here,
2 probable centroids are identified for the left cell and 4 probable centroids for the
right cell of the K562 clump. Similarly 3 probable centroids are identified for both
left and right cells of the MOLT cell clump.

5.3.2 Rough segmentation of cells

Figure 5.9: a) Cell clumps along with centroids; b) restricted Ls and Rs

areas (on both sides of the line connecting the centroids); c)

rough segmentation of the cells.

A rough boundary (line) which appropriately segments the clump into different

cells has to be identified. Two lines perpendicular to the line joining the centroids
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are used to divide the clump in to two segments (Left segment (Ls), Right segment
(Rs) as shown in Fig. 5.9 b). The outline points lying on these two segments form
the search space (shown as red pixels in Fig. 5.9 b) to identify the end points of
the rough boundary. In fact, the shortest line connecting the Ls and Rs segments
forms the rough segmentation boundary. Since the segmentation strategy is first
to find the correct centroids and then find rough boundary between every two
adjacent centroids, the method works even for clumps containing more than 2

cells.

5.3.3 Exact localisation of cells

Following the rough segmentation of the cell, a contour enclosing the cell has to
be identified. The Canny (Canny (1986)) edges detect the cell contour but include
edges corresponding to internal organelles as well (Fig. 5.13 b). Sometimes the
cell contour may be broken at multiple locations and hence a good cell segmen-
tation algorithm is necessary to localise the accurate contour. It is also necessary
to extract correct cellular features, since the subsequent feature extraction greatly
depends on the contour. A simple method, such as morphologically closing the
Canny edge of the cell followed by finding the boundary of the filled cell image
often results in bad segmentation (Fig. 5.10 a, c¢). Snake based segmentation is
also not a feasible option primarily because of the throughput due to the iterative
nature of the algorithm. Also, the accuracy as well as the convergence time of
the snake based algorithms greatly depends on the initial contour approximation.
We are proposing a contour detection algorithm similar to Kubota (2010, 2012).
However the proposed algorithm differs in two aspects to its original formulation.
The new algorithm is fully automatic, ruling out any manual intervention and
it uses only a reduced set of vertices in the graph formulation. The automatic
identification of the cell contour is achieved by proposing a way to identify valid
starting and finishing points on the contour and then following a shortest weighted
path surrounding the cell centroid. The result of segmentation by the proposed
algorithm on a HL60 cell and on a K562 cell are shown in Fig. 5.10. For sim-
plicity, we are going to explain the algorithm in detail by finding the contour of

an isolated K562 cell. However the method works equally well on the roughly
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localised cells from the clump. The result of cell localisation by the same method
for the clumps that we have considered earlier is shown in Fig. 5.12. In order
to get the correct closed cell contour, we define a directed, weighted graph from
the Canny edge image (Fig. 5.13 b) such that the closed cell contour lies along
the shortest weighted path from any starting point on the original curve segment
to an immediate point. Rather than making use of all edge points, only a subset
of points is used to define the graph thereby saving computing power. The steps
involved in the localisation of the cell are shown as a block diagram (Fig. 5.11)

and are detailed in the following subsections.

Figure 5.10: a), ¢) cell contours (HI60 & K562) identified by finding the

boundary of filled binary cell image; b), d) cell contour iden-
tified by the proposed algorithm

Identify edge Decide on the Define the
4}Canny points of starting and finishing weighted Get the closed *>Cell
Image | interest points of the contour directed graph cell contour | contour

Figure 5.11: Steps involved in the localisation of cell contour

Figure 5.12: The final segmented out cells from the objects of interest in

Fig. 5.4: a) K562 b) MOLT and ¢) HL60
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Identifying the edge points of interest

The search space for the actual curve segments of the contour can be limited
by selectively masking out Canny edges of the roughly segmented background
subtracted image (Fig. 5.13 a). This image is dilated, filled and then eroded
with disk structuring element of radius 3 to get an external mask. This mask is
going to be a binary image with true value at cell region and false value outside
(i.e, the image in Fig. 5.13 ¢ with its central hole filled). An internal mask is
derived by eroding the external mask with the same disk structuring element to
generate the edge filtration mask shown in Fig. 5.13 ¢. The edge filtration mask is
generated by subtracting the internal mask from the external mask (ExtMask &
—IntMask). Here ‘&’ represents logical AND operation and ‘=’ represents logical
negation. The edges corresponding to internal organelles are then eliminated by
doing logical AND operation between the edge image shown in Fig. 5.13 b and
the edge filtration mask shown in Fig. 5.13 ¢. The result is shown in Fig. 5.13 d

which now contains the edges of interest for the contour.

Figure 5.13: a) Background subtracted image of a K562 cell; b) Canny
edges; ¢) mask computed to discard unnecessary edge points;

d) candidate edges after the masking operating

Decide on the starting and finishing points of the contour

In order to get accurate cell contour, as noted, a weighted directed graph is defined
such that the closed cell contour lies along the shortest weighted path from any
good point on the curve to an immediate point along the curve. Clearly, the cor-
rectness of the contour detected will largely depend on whether the starting point
is selected from the right curve segment or not. The imaging modality employed

in our case is bright-field transmission microscopy. The regions surrounding the
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edges appear darker in this modality due to the finite numerical aperture of the
objective, and consequently the scattered light from the object edges escapes out
of the collection-cone of the imaging system. Therefore, it was observed that the
region just outside the cell wall appears darker in a background subtracted image.
Hence an edge segment in the Canny image that has sufficiently large number of
dark pixels lying just outside the edge pixels (with respect to the centroid) is a
good candidate for selecting a starting point. In this implementation, segments
with number of pixels greater than 75% of the longest segment are selected as
probable candidates. For each pixel on these probable candidate segments, two
closest pixels that are lying but after the pixel in the direction of the line connect-
ing the centroid of the cell to the pixel on the segment are considered as radially
outward pixels. The average intensity (77,) of all these radially outward pixels for
each segment is then determined. The segment with minimum 77, is selected and
any point on this segment whose outward pixel intensity less than the segment’s
Ty, is identified as the starting point (S?) of the actual contour. The radially
outward vector from the centroid of the cell to the starting point is identified as
the start vector. A neighbouring point from the same segment with the corre-
sponding vector forming almost 360 degrees with respect to the start vector in the
anticlockwise direction is identified as the finishing point (F?) (Fig. 5.13 b). The
FP? is selected by deliberately making a pixel break between FP and SP so that
they now lie in two different segments. Pseudo code in 5.2 explains how to find
radially outward pixel (X,Y") for a point (z(i),y(7)) on a cell segment, given the
centroid of the cell (z., y.).

Stope = K-t
If |Slope| < 1
Y = y(i) + Slope * (X — z(i))
Where
x(i) —1 sif (i) < x,
L [0 () o)
(i) +1 sif z(i) > x.
else
1
N i o
i) + g * (¥ = 4(0)
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Where
y(i) — 1 sif y(i) < ye
y(i) +1 5if y(i) > ye

Y —

Define the weighted directed graph

All the endpoints and the branch points of the edge image (Fig. 5.13 d) are
identified as the vertices of the graph. An endpoint is a point with less than 2
neighbours while a branch point is the one with more than 2 neighbours. We will
also include those points on different segments as potential vertices if they lie too
close (within three pixels) to the already considered vertices so that we are not
loosing the contour due to spurious projections. The vertices are placed in the
increasing order of angle that the corresponding position vector of each vertex
subtends with the position vector of the starting point. Note that the position
vectors are defined by taking the centroid of the cell as the origin. The finish point
is deliberately made at 360 degrees to keep it as the last node. Edges are defined
between every pair of vertices, if they lie within an angular closure of 6; (100°)
degrees. If two such vertices are connected, the edge between them is formed by
the curve segment connecting them. Otherwise the line connecting them defines
the edge. In order to avoid selecting a wrong path, short edges are preferred over
long edges. Hence no edges are defined if the vertices are separated by an angu-
lar closure more than 6. This is done by assigning an oo weight to those edges
during the formulation of the graph. In order to make sure that there is at least
one edge with in this 6, enclosure, single point breaks are introduced at every 65
(65 < 601). In our implementation, we have selected 6, as 100 and 0y as 90°. A
weight for each edge is then defined, which is zero if the pixels are connected else
the squared Euclidean distance between the vertices. Note that, the starting and
finishing points as well as the end points created by introducing the break at every

0y degrees are also considered as vertices in the definition of the graph.

If i <j,and 6 < 6, ; (if angular enclosure between v(i) & SP at centroid is less
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than that made by v(j) and if the enclosure between v (i) & v(j) is within 6,)

0 iAf Lv(e)| = Llv(y
W [oli), v(f)] = (@) = LR() 53
(@), o) selse

0 = cos™! (—<U1’UQ> ) :
[orl o2l )

In Eq. 5.3, W[v(i),v(j)] is the weight for the edge connecting i"* node v(i)
and j node v(j). L[v(4)] is the label assigned to the critical point v(i) such that
two critical points share the same label if and only if they are part of the same

segment.

Get the closed cell contour

A B C

Figure 5.14: a) contours of interest with critical points (White), start vec-
tor (Gray) and finish vector (White); b) shortest weighted

path; ¢) closed contour embedded on the cell image.

Once the graph is defined, the curve segments of the contour of interest lies
along the longest shortest weighted path from the starting point to the finishing
point. Dijkstra’s (Dijkstra (1959)) shortest path algorithm is used to find the

shortest weighted path. But there can be unconnected curve segments (Fig. 5.14
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b) in the path, which need to be connected using the points along the line connect-
ing them. The unconnected curve segments are characterised by an edge between
the identified curve segments having non-zero finite weights. The area inside the
connected contour is filled, eroded and then dilated with disk structuring element
of size 3 to get an intermediate image whose boundary pixels will give the final

contour. The closed contour embedded on the cell image is shown in Fig. 5.14 c.

5.4 Feature Extraction

In order to characterise the cells, we extract features that capture the size, shape,
and complexity. The features such as area, perimeter, and diameter are extracted
to reflect the size of cells. In order to quantify the deviation of the shape of cells
from circle (or ellipse), eccentricity is used as a measure. In addition to the earlier
mentioned size measures, major and minor axes lengths are also used. Solidity
is used as a measure of compactness of cells in the convex polygon. The texture

features and the number of objects inside the cell are used to infer cell complexity.

5.4.1 Area, Perimeter and Equivalent diameter

The area (AA) is measured by counting total number of pixels on the contour as
well as the pixels enclosed by the contour. The perimeter (PM) is determined by
counting the number of pixels on the contour. The equivalent diameter (ED) is

measured as the diameter of the circle having area AA.

ED — ,/M (5.4)
s

5.4.2 Major axis length, Minor axis length and Eccentricity

Major (MJ) and minor (M N) axes lengths are measured as the axes lengths of
the ellipse that has the same normalized second central moments as that of the
cell region (Haralick and Shapiro (1992)). Eccentricity (EC') measures how much

the cell deviates from being circular. Equations 5.5, 5.6 and 5.7 compute these
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measures where (z;,y;) are the pixel positions in the cell region.

MJ = 2¢§\/ Use + Uy + ) (Use — Uy )2 +4U2, (5.5)

MN = 2\/5\/ Use + Uyy — \/ (Up — Uyy)? + 402, (5.6)

BC - J1- (%)2 (5.7)
Where

D > TP > IS v 1P

T N ) yy — N ) Ty N )
=z, —X;and Y=y, —Y:;Vi=1:N

S

WE

<

1 1 <
NZ- 1xi; andY:N;yi

5.4.3 Solidity and Convex area

Solidity (SY') is a measure of the proportion of pixels in the convex hull to that of
the cell area. It is measured by taking the ratio of cell area to convex area. The

convex area is measured by counting the number of pixels in the convex hull.

A
Sy — rea

ConvezArea

(5.8)

5.4.4 Number of objects inside the cell

The number of objects bounded by the contour is determined from the equalized
background subtracted image after applying the Otsu’s threshold (Fig. 5.15 b).
Objects that do not share pixels with the outline (Fig. 5.15 ¢) and whose area
falls in between a low and high threshold, and those having nearly a circular
shape are counted as organelles (Fig. 5.15 d). Based on analysing typical sizes of
cellular components, we have taken 10 as low area threshold and 80 as high area
threshold. The ratio between the major axis length and minor axis length is used

as a measure of circularity.
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A B C D

Figure 5.15: a) cell contour superimposed image of a K562 cell; b) Otsu’s
thresholded image; ¢) objects that are not sharing pixels with

the cell contour; d) final objects of interest

5.4.5 Texture features

Texture features are extracted from the gray level co-occurrence matrix (GLCM)
(Haralick et al. (1973)) computed from the pixels in the cell area of the back-
ground subtracted image. Each element at position (7, ) in the GLCM specifies
how often a pixel with a gray level value j occurs horizontally right adjacent to a
pixel with value ¢. Rather than considering 255 gray levels, we have considered a
smaller number of gray levels (N = 32). The values in the cell area locations of
the background subtracted image is scaled such that each value is 0 to N —1, and
the N x N gray level co-occurrence matrix is computed. The computed GLCM
is normalized to have sum of its elements as 1. Then, each element at position
(i,7) in the normalized gray level co-occurrence matrix (NGLCM) can be thought
of as p(i, ), the joint probability occurrence of pixel pairs with a defined spatial
relationship having gray level values ¢, and j in the cell area. The texture prop-
erties such as contrast, correlation, energy and homogeneity are then extracted
from the NGLCM. The contrast (CT') measures the intensity contrast between a
pixel and its neighbours over the cell area. The correlation (C'R) measure gives
the amount of correlation of a pixel to its neighbours over the cell area. Energy
(EG) measures the sum of squared elements in the NGLCM. Homogeneity (HG)

is a measure of the closeness of the distribution of elements in the NGLCM and
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its diagonal.

Where

CT = > > li—jl’p(i,5)

i;U;l (0 — ) G — 1)
. 7 J ;
CR = ;; p. p(i,5)
EG = ZZPZ]
=1 j5=1
K p(ig)
ne = ;gl—l—h—j\
N N N N
:ZZ@p i,7); and MIZZJP@J);
i=1 j=1 =1 j=1
N N N N
ZZZ_MZ Z ]_,UJ
i=1 j=1 i=1 j=1

(5.9)

(5.10)

(5.11)

(5.12)

i, )

Note that, the GLCM matrices can be computed by taking any direction,

typically horizontal, vertical, along 45 degrees and 135 degrees. Also we can have

two possibilities in defining the matrix entries, one that count (1, 2) and (2, 1)

differently and the other one contributing a count of 2 to GLCM (1, 2) and GLCM

(2, 1) positions.

The latter definition leads to a symmetric GLCM. We have

computed GLCM considering only the horizontal direction and right adjacency

(i.e, just by looking what is the pixel value on right side in the region of interest,

thereby considering the non-symmetric GLCM construction). This is because the

GLCM features computed using other direction did not bring any extra advantage

in the classification task. However, the equations provided for the texture features

are general and are applicable to both symmetric and non-symmetric GLCM.
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5.5 Case Study: Classification of Leukaemia Cell-
lines K562, MOLT and HL60

The effectiveness of the framework is tested using the same leukaemia cell-line
dataset that we have considered in chapter 4. The cell lines of HL60, K562 and
MOLT were obtained from ATCC (American Type Culture Collection) and are
separately cultured in the lab. Thus, each culture contains cells from its own
category alone and hence provide the ground truth. Each cell is localised by finding
a closed cell contour and the morphological features discussed in the previous
section are extracted. Mostly, morphological features, reflecting the size and shape
of the cells have been used to classify cancerous cells (Thiran and Macq (1996)).
Once the required features are extracted, SVM is used for the classification. Note
that, for multi class classification, one against all strategy is followed. i.e., separate
SVM classifiers are trained by taking each cell line as positive class and all other
samples together as negative class. When tested, if only one of the classifiers claim
a sample as positive, the label of the corresponding positive class is assigned to
the test sample. If more than one classifier claim a sample as positive, then one
of the following two strategies can be adopted. The first strategy is to assign the
label based on the distance between the sample and separating hyper plane. The
distance from the sample to the separating hyperplane is found and the label of
the positive class that produces the maximum distance from the test sample to the
separating hyper plane is identified as the correct label. The second strategy is to
treat the sample as difficult to classify and assign the label ‘Ambiguous’. This will
open up the possibility for an expert to further closely examine these cells before
arriving at a diagnostic conclusion. The results provided in Tables 5.1 through
5.4 follow the first strategy and Table 5.5 follows the second strategy. We have
used Matlab (R2014a) for implementing the classification on a DELL machine
with Intel i-3 processor, and having 4 GB RAM. We could analyse 16 cells per
second when there was no cell clump and could process 15 cells per second when
experimented with cell clumps each containing 2 cells. This includes the time

needed for cell localisation, feature extraction and classification.

In this section, we detail the efficiency of classification with different morpho-

101



Table 5.1: Accuracy on Training Samples (Individual Features)

Accuracy (%)

Index Feature

K562 MOLT HL60
1 Area 80.65 33.02 81.96
2 Perimeter 77.50 70.60 77.60
3 Equivalent Diameter 80.65 45.28  78.35
4 Major Axis Length ~ 74.19 71.70 76.29
5 Minor Axis Length ~ 75.81 0 94.33
6 Eccentricity 62.10 39.62 57.99
7 Solidity 25.00 86.79 59.54
8 Convex Area 79.84 52.83 79.38
9 Number of Objects  82.26 0 78.09
10 Contrast 91.94 9.50  88.66
11 Correlation 9194 4245 77.32
12 Energy 59.68 1.89  80.16
13 Homogeneity 74.19  5.66  79.38

Table 5.2: Training Accuracy for Different Combinations of Features

Feature Combinations Correctly Classified Overall
(indices) K562(124) MOLT(106) HL60(388) Accuracy
Combination — I (FC
(FG) 122 99 381 97.41(%)
1,3,4,7, 0, 11, 12, 13
Combination — IT (F'C
(FC) 124 100 382 98.06(%)
1,3,5-13
Combination — III (FC!
(FGs) 124 100 382 98.06(%)
1-13
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Table 5.3: Confusion Matrices for Table 5.2

(FCy) K562 MOLT HL60  (FC,), (FCs) K562 MOLT HL60

K562 122 1 1 K562 124 0 0
MOLT 5 99 2 MOLT 5 100 1
HL60 4 3 381 HL60 3 3 382

metric features (one at a time) and also with the combinations of different features.
Table 5.1 shows the accuracy of classification, when individual features are used
to classify cells. The complete sample set was used both for training and testing
the SVM classifier. From the accuracy values obtained, it is clear that individual
features are not sufficient to classify all the three types of cells with good level of
accuracy. In order to improve the accuracy of classification, different combinations
of features are used to classify cells. Of all the different feature combinations, it is
found that the three feature combinations shown in Table 5.2 have produced the

top results (with 100% samples for training).

Table 5.3 shows the true positives, true negatives, false positives and false neg-
atives for the samples in each class when the feature combinations considered in
Table 5.2 are used for training. The diagonal entries provide the true positives.
Non-diagonal entries in each row represent the number of wrongly classified sam-
ples. For example, it can be seen from the Table 5.3 (Combination - I) that, out of
the 124 K562 cells, 122 are correctly classified and one sample each is misclassified
as MOLT and HL60. The result shows that for the K562 class there are 122 true
positives, 9 false positives (5+4), 2 false negatives (1+1), and 485 (99+2+3+381)

true negatives when tested on 618 cells from all the three classes.

Cross validation experiments are conducted on all feature combinations pro-
vided in Table 5.2 by taking 50% training samples and have found that F'C; has
produced the best result. Hence, it was further tested with different sample sets
for training. We have chosen 33.3%, 50% and 75% samples for training and for
each run the classifier is tested with the remaining set. In each given run, certain
part of the sample set (say 33.3%) from each cell-line is randomly taken for train-
ing and all other samples are used for testing. Each training and testing run are

repeated 200 times and the average level of accuracies, for different percentages of
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Table 5.4: SVM — Cross Validation Accuracy (%)

Training Samples K562 MOLT HL60 Overall
33.33% 84.47 (5.11) 91.08 (3.58) 95.28 (1.26) 92.39 (1.18)
50.00% 88.29 (4.74) 92.35 (3.27) 95.59 (1.36) 93.57 (1.25)
75.00% 90.90 (5.38) 93.48 (3.92) 95.95 (1.89) 94.52 (1.65)

training sample sets are shown in Table - 5.4. It can be seen that the accuracy has
been improved considerably when compared to the classification results shown in
Table. 4.1 which was obtained by the PCA signature based method discussed in
chapter 4. It can also be noticed from Table 5.4 that even with 33.3% training
samples, combination - I provides appreciable classification accuracy. Further in-
vestigations carried out on larger populations of different leukaemia cell lines can
provide a deeper insight into the ideal feature combination required to identify
leukaemia cell. In addition, similar investigations have to be carried out on other

cancerous cell lines to identify appropriate feature combinations.

Table 5.5 shows the classification accuracy (in %) obtained when 33% of sam-
ples from each class is used for training and tested with the remaining samples.
In this case, we have separated out the difficult cases and given the label ‘Am-
biguous’. As noted earlier, we have followed one-against-all strategy to build SVM
models. Being a three class classification problem, there are 3 SVM models each of
which is trained by keeping a specific class as positive and the rest as negative. For
a test sample, if there is only one claim, the label of the positive class is assigned
to it, provided the distance of the test sample is at least 0.8 unit (margin is at
1 units) away from the separating hyperplane. Otherwise the sample is assigned
with the label ‘Ambiguous’. The mean accuracy and standard deviation for 200
runs are shown in Table 5.5. Note that the classification accuracy is increased
considerably but at the cost of keeping the difficult cases as ‘Ambiguous’. For
example, the first row shows that 72.29% samples of K562 tested are correctly
assigned to K562, 1.44% and 1.52% respectively are placed in MOLT and HL60
while 25.17% are assigned the label ‘Ambiguous’. The last row shows that on
an average only 20.81% samples are assigned the label ‘Ambiguous’ while 96.05%
classified as K562, 98.77% classified as MOLT and 96.32% samples classified as
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Table 5.5: Labelling Difficult cases as ‘Ambiguous’

K562 MOLT HL60 Ambiguous
K562  72.29 (0.06) 1.44 (0.01) 1.52 (0.01)  25.17 (0.06)
MOLT  0.82 (0.01)  75.55 (0.07) 0.08 (0.01)  24.02 (0.07)
HL60  1.72 (0.01) 1.28 (0.01) 78.81 (0.04) 18.71 (0.03)
POSTV  96.05 (2.47) 98.77 (1.96) 96.32 (1.21) 20.81 (2.23)

HL60 are correct.
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“Framework for morphometric classification of cells in imaging flow cytome-

try”, J. Microsc., 261:307-319, 2016.

5.7 Summary

In this chapter, we have proposed a framework for automatically processing cells
in microfluidics based imaging flow cytometer. The proposed non-iterative seg-
mentation produced good results with very little false segmentation. The features
described capture information such as size, shape and complexity of cells. Using
the presented framework, we have demonstrated the classification of three types of
leukaemia cell-lines (K562, MOLT and HL60) that are cultured in the lab. The use
of cultured cell-lines have provided us with the ground truth and thereby enabled
us to evaluate the performance of the proposed framework. We could classify the
cell-lines with good accuracy and the results were quite consistent across different

cross validation experiments. We hope that imaging flow cytometers equipped
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with the proposed framework for image processing would enable cost-effective, au-
tomated and reliable disease screening in over-loaded facilities, which cannot afford
to hire skilled personnel in large numbers. Such platforms would potentially fa-
cilitate screening camps in low income group countries; thereby transforming the
current health care paradigms by enabling rapid, automated diagnosis for diseases

like cancer.
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CHAPTER 6

Cytopathological Image Analysis using Deep

Learning Networks in Microfluidic Microscopy

In Chapter 4, we have introduced a low-cost high-throughput microfluidic mi-
croscopy instrumentation together with a signature based cell classification for
point-of-care diagnosis/screening. Chapter 5 discussed a complete automated
framework for processing cells captured using the prototype device. Basically, this
framework was a hand-engineered feature based cell classification system and it
improved the classification accuracy as reported in chapter 5 for the leukaemia cell-
line classification. In this chapter, we explore the possibility of using deep learning
networks for cytopathology to improve the results further. We demonstrate that
without any conventional fine segmentation and explicit feature extraction, the
proposed deep learning algorithms effectively classify the coarsely localised cell
lines. The designed deep belief network as well as the deeply pre-trained CNN
outperforms the conventionally used decision systems and are important in medi-
cal domain where the availability of labeled data is limited for training. We hope
that our work enables the development of a clinically significant high-throughput
microfluidic microscopy based tool for disease screening/triaging especially in re-

source limited settings.

6.1 Introduction

Biologists have identified that the power of human brain comes from large number
of massively interconnected neurons capable of parallel computation (Deco et al.
(2008)). Several Artificial Neural Network (ANN) architectures were studied (SHI
and He (2011)) to provide the expertise to the machines, some of them bypassing
the need for hand engineered features. A review on the use of artificial neural

network in cytopathology can be found in Pouliakis et al. (2016). Traditional



classification systems are typically modelled to contain steps such as cell segmen-
tation, feature extraction, and classification using SVM (Irshad et al. (2014)). For
large datasets, SVM takes more time for learning and results in large number of
support vectors, particularly when the decision problem is hard. Fully connected
normal artificial neural network is also not that feasible to learn such complex
decision problems from big dataset. Such problems often requires large number
of layers and neurons and hence large number of parameters need to be learned
making the learning process slower. Also, the problem of vanishing of gradients in
lower layers of ANN using back propagation makes the learning problem further
difficult, if not impossible. Another difficulty with ANNs and SVMs is that they
need labeled data and the amount of information that the system can learn is
restricted by labels. Recently deep learning systems are emerging as reliable and
de-facto model for image analysis and many groups across the globe are quickly
entering the field and applying these techniques to variety of applications. A re-
cent review on deep learning in medical domain can be found in Greenspan et al.

(2016).

As discussed in earlier chapters, mIFC (Barteneva et al. (2012); Lisa et al.
(2014); Beers et al. (2014)) is a nascent technology that combines the statistical
power of flow cytometry with spatial and quantitative morphology of digital mi-
croscopy. We have a low-cost, high-throughput prototype microfluic microscopy
system suitable for disease screening in resource limited settings and the proof of
concept of the system is presented in chapter 4, where we have used advanced
PCA signatures for the classification of leukaemia cell-lines. Further in chapter
5, a general framework for processing cells in mIFC is developed and cell classi-
fication based on hand-engineered morphological features of the cells have been
carried out. Though the system offered high-throughput at low cost, the reported
accuracy had to be improved so as to make it clinically usable. In this chapter,
we explore and propose the possibility of using deep learning for cytopathology
for a reliable classification system. Though we demonstrate the performance of
mIFC based classification system only on three important leukaemia cell lines
K562, MOLT and HL60, the approach is quite general as it does not require ex-
plicit segmentation and feature extraction. When augmented with other diagnostic

modalities, such systems enable early detection of diseases such as cancer.
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In real scenarios, more often we will be having large amount of data for training
but having a small percentage of them labeled. In order to overcome the difficulty
of learning both from labeled as well as unlabeled data, a system that model the
structure of the data is needed. We introduce one such model where the idea is
to tune the weights to learn a general abstract representation of the structure of
the data without considering the labels. This is done by building a Deep Belief
Network (DBN) using Restricted Boltzmann Machines (RBM) and capturing the
distribution of the training vectors using the parameters of the RBM; the weights
and biases. The model keeps the efficiency and simplicity of the gradient method
for learning. Also we discuss the use of CNN for cytopathology analysis using a
network deeply trained on the popular imaging database ImageNet (Deng et al.
(2009); Chatfield et al. (2014)). This also overcomes the need for large labeled

data and produce discriminative features for an accurate classification.

The major contributions of this chapter are 1) the proposal of a highly ac-
curate classification framework based on deep learning for unstained, unlabeled
[FC data for the first time and is an improvement over the methods/frameworks
proposed in chapters 4 and 5, there by moving in a direction one step ahead for
a reliable screening/triaging tool for cost-effective disease diagnosis. The classi-
fication framework proposed in this chapter does not require fine segmentation
and explicit feature extraction unlike the method described in earlier chapters,
still producing better classification accuracy. 2) the proposal of a DBN based cell
classifier for better accuracy and faster response particularly when the availability
of labeled medical data is limited and 3) the finding that the CNN pre-trained
on ImageNet database can generate discriminant features leading to very good
classification accuracy for the leukaemia cell-lines K562, MOLT and HL60. Just
like the DBN based classifier, CNN pre-trained on ImageNet is also very useful in
medical field when there is only limited labeled medical data for training (to come

up with a trained deep CNN classifier).

This chapter is organised such that section 6.2 proposes a new and simple
framework for cytopathological analysis and classification of IFC data using deep
learning. Section 6.3 discusses the designed DBN for learning the structure of
the data and section 6.4 introduces the CNN ImageNet model to extract discrim-

inative features for classification. Results and discussion are provided in section
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6.5 followed by publications in section 6.6. The chapter is concluded with the

summary report in section 6.7.

6.2 Framework for Analysis of Cells in Microflu-
idics based IFC

The image dataset employed for the proposed deep learning based classification is
the leukaemia cell-line dataset, and is the one and the same that we had presented
in chapter 4. The dataset was captured using the relatively new flow imaging
modality microfluidic microscopy (Mf-Ms). As opposed to conventional IFCs, the
method leverages unconventional optics and microuidics based sample handling to
meet the required imaging throughput and fidelity specifications for cytopathology.
As noted in earlier chapters, the dataset contains 618 cells and are localised from

the raw video stream of the leukaemia cell lines K562, MOLT and HL60.

The basic steps in proposed framework for making cytopathology decision are
pre-processing, rough localisation and classification and are shown in the block di-
agram in Fig. 6.1. The first major step in automating the cytopathology analysis
is segmentation of the cells. Often, segmentation is difficult and computationally
intensive. In the proposed approach rather than going for an accurate segmenta-
tion, we look for good classification with the features extracted using deep learning
networks from the roughly localised cells. The rough segmentation is achieved by

finding a rectangular bounding box containing the cell.

Current Enhanced . Bounding Box| Deep Learning
Ly u » Localize Cells > .
Frame R Frame with Cell Based Classifier

Figure 6.1: Block diagram showing overview of the system.

In order to enhance features of cells, a simple preprocessing is done by sub-
tracting the background. A background frame for this purpose can be readily
captured by keeping only the sheath fluid in the channel but before pumping the
cells. Before subtracting the background both foreground and background frames

are filtered using an average mask of size 5 x 5 to reduce the effect of noise. The
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Figure 6.2: a) Frames containing K562 cells (first row), MOLT cells (sec-
ond row) and HL60 cells (third row); b) the corresponding

background subtracted enhanced frames.

___® & |ejcje) ]
B

Figure 6.3: a) Roughly localised cells from K562 frame in Fig. 6.2; b)

A

bounding box containing left most object from (a), and left

most cells from background subtracted frames in Fig. 6.2

effect of the operation is shown in Fig. 6.2. We have roughly localised the cells as
discussed in section 5.3 and identified the cell region constrained by a rectangular
bounding box. The roughly localised, left most cells from the frames in Fig. 6.2
are shown in Fig. 6.3 b.

Recently, deep learning networks based on RBM and CNN are found to be
effective in learning complex features for higher level visual recognition task. In
subsequent sections we introduce these networks that operate on cell images. The
effectiveness in cell classification by these networks is going to be demonstrated
with the good results achieved in classifying the leukaemia cell lines HL60, K562
and MOLT. Note that, unlike the framework discussed in chapter 5, the updated
framework shown in Fig. 6.1 does not need the fine segmentation and explicit

feature extraction and it uses deep learning based classifiers.

6.3 Deep Belief Network for Classification

We design a Deep Belief Network (DBN) for the classification of leukaemia cell

lines. A DBN can be thought of as multiple layers of hidden units with connections
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between the layers but not between the units within each layer. In DBN, every two
adjacent layers except at the fully connected final layer can be treated as Restricted
Boltzmann Machine (RBM). Typically DBN is trained in greedy way by training
each of the RBM (Hinton (2012)), one at a time starting from the lowest layer.
This is an unsupervised training and is going to be discussed in the following
subsection. Finally, the weights learned are fine tuned by back-propagation using

the available labeled data.

6.3.1 Restricted Boltzmann Machine

Restricted Boltzmann Machine is a popular generative model. A pictorial rep-
resentation of typical RBM architecture is shown in Fig. 6.4. Note that the
connections are undirected and hence bidirectional. In RBM, no connections are
made between the hidden units in the hidden layer and no connections are made
between the visible units in the visible layer. This helps to reasonably assume that
i) for a given input at the visible layer, the output at different hidden units are
independent and i) for a given output observed at the hidden layer, the output
that can be induced at different visible units are also independent. Though RBM
can be used as a stand alone classifier (Larochelle et al. (2012)), typically they are
used in DBN where a discriminative fine tuning is applied on top of the structure
of the data learned by the RBM. It has been shown that generative model learn-
ing with RBM improved the discriminative classification result in studying fMRI
images of patients recovering from stroke (Schmah et al. (2009)). In Nayak et al.
(2013), a variant of RBM is used to classify tumour histopathology images. In
Hinton and Salakhutdinov (2006), RBM is used to learn low dimensional effective
features and in Brosch and Tam (2013), RBM is used to learn low dimensional
effective features in manifold learning of brain MRI. The applicability of RBM in
medical data is discussed in Aalto (2014).

Consider the architecture provided in Fig. 6.4. In this particular configuration,
there are m visible nodes (v;) and n hidden nodes (h;). The visible node biases
are labeled as {b;};”, while the hidden node biases are {c;}7_,. The energy of this

network at any instant can be defined as
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Figure 6.4: Architecture of Restricted Boltzmann Machine

E(v,h) = — [W"Wv +b"v+c"h]; (6.1)
Where,
Wi Wim
W = : (6.2)
Wnl an
by 1 U1 hy
b= ic= IS ih = (6.3)

With a given configuration (of parameters), the RBM can be thought of rep-
resenting a joint probability distribution for observing v and h together.

eprE(v,h)

%y oxp B

p(v,h) = (6.4)

If there is an algorithm to train a RBM to capture (different aspects of) the
probability distribution of the training data (Eq. 6.5), it can be very useful in
classification (Fischer and Igel (2014)). With training vectors v and target labels
w to predict, a subset of the factors explaining the distribution of the training
vectors explain much of w, given v. Hence representations that are useful for p(v)

tend to be useful when learning p(w|v). Learning RBM corresponds to fitting
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its parameters such that the distribution represented by the RBM models the
distribution underlying the training data, p(v). More specifically, the aim is to
find weights and biases that define a Boltzmann distribution (Hinton (2007)) in
which the training vectors have high probability.

Ehexpr(v,h)

%y exp B

p(v) = (6.5)

As noted, the visible units constitute the first layer of RBM and correspond to
the components of an observation (e.g., one visible unit for each pixel of a digital
input image). The hidden units model dependencies between the components of
observations (e.g., dependencies between the pixels in the images) and can be
viewed as non-linear feature detectors (Hinton (2007)). Several such RBM layers
can be then stacked up by treating the hidden layer of the lower RBM as input
layer to the RBM in the immediate upper layer and can be trained one after the
other starting from the lower RBM. By stacking RBMs in this way, one can learn
features from features in the hope of arriving at a high-level representation. It was
empirically shown that this has produced better feature representations both in
terms of classification error (Larochelle et al. (2009)) and in terms of the invariance

properties of the learned features (Goodfellow et al. (2009)).

In order to train RBM, we need to maximise the chance of observing the train-
ing vectors in the underlying data distribution. This can be done by maximising
p(v) which is equivalent to minimising the average negative log likelihood using
gradient descent. Let the parameter that we want to learn is #. The parameter
6 can be the weight of the connections W;;, bias of visible nodes b; or bias of the

hidden nodes ¢; of RBM.

It turns out that (Bengio (2009))
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Where E is the expectation operator. It directly follows from Eq. 6.1 that

OE(v,h)
8W,~j

OE(v, h OE(v, h)

D —_— (6.8)

The two unknown quantities left out in computing the gradient using Eq. 6.6 are

p(h|v) and p(v, h).
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Considering stochastic binary inputs and outputs,
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Similarly,
1
ploy =1Jh) = (6.12)

1+ exp*(ijrhTWj)
= Sigmoid(b; + h" W)

Where W; and W; denote the i row and j* column of the weight matrix respec-

tively. Note that based on Eq. 6.11, the first term of Eq. 6.6 can be computed
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Figure 6.5: Contrastive divergence (CD-1) depiction

analytically. The only term left out in computing the gradient in Eq. 6.6 is the
expectation of E (v, h)/06 over the model distribution p(v,h). Though samples
from the model distribution can be generated using Gibbs sampling (Geman and
Geman (1984)), computing p(v, h) is intractable due to the partition function at
the denominator in Eq. 6.4. Geoffrey Hinton has shown that contrastive diver-
gence (CD) (Hinton (2002)) algorithm can be used to replace this expectation with
a point estimate at p(h’[v"). Such an estimate captures the direction of the gradi-
ent in Eq. 6.6 and works well for all practical applications. A pictorial depiction
of the CD algorithm is shown in Fig. 6.5. For every training vector v, compute
p(hlv) and get b’ by sampling (i.e., For each node in the hidden layer, compute
p(h; = 1|v) using Eq. 6.11 and turn on the node with the computed probabil-
ity. If the computed probability is greater than a random number selected from
a uniformly distributed random variable in the range 0 and 1, make the output
value at the corresponding node as 1. Otherwise, set the value as 0. Now compute
the value at visible layer and sample v' using the Eq. 6.12. Finally, recompute
p(h' = 1|v') using Eq. 6.11). These steps are repeated multiple times (K) and
use the final point estimate to replace the model probability p(v,h) in Eq. 6.6.
This is K contrastive divergence (CD-K) and Fig. 6.5 shows the depiction of CD
for K = 1 (CD-1). Thus the main term in computing the gradient in Eq. 6.6
has reduced to ), p(h|v)OE /00, since the p(h,v) in the second term can now be

replaced by the point estimate p(h'[v").
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6.3.2 Summary of RBM learning procedure

In the last subsection we have made the necessary derivation needed to train
RBM. It turns out from Eq. 6.13 — 6.15 that the gradient for weight (W;;) update
is —[v; P(h;lv) — U;P(h;’@l)], the gradient for bias update b; is —[v; — v;] and the
gradient for bias ¢; is —[P(hs|v) — P(hy|v")]. The second term in each of these
expressions is due to the expectation over p(h'|v'), the point estimate for p(h,v).
Also, note that v" is computed using Eq. 6.12 taking vector h computed from Eq.
6.11, for the given input vector v (CD-1). Now, we can use gradient descent to
train RBM, where for each epoch we will update based on the average gradient

for all training samples. Thus the steps involved in learning RBM are

1. Initialise WW;; from samples randomly selected from normal distribution. Also
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initialise bias terms (b;, ¢;) to zero.

. Start with a training vector on the visible units. i.e, the input image of size
m x n is normalised and vectorised. Each component (v;) is treated as the

chance of turning the corresponding visible node ON (set to 1).
. Update all the hidden units in parallel using Eq. 6.11.

. Update all the visible units in parallel using Eq. 6.12 to get the reconstruc-

tion.

If the computed probability is greater than a threshold selected from a uni-
formly distributed random variable which takes values in the range [0, 1],
the corresponding node is turned ON. i.e., the nodes are turned ON (set to

1) with the computed probability.

. Now, try to reproduce h from the reconstructed input v;-s using Eq. 6.11.

Let h;s denote these reconstructed nodes.

. Update the weights and biases (W;;, b;, ¢;) as shown below.

t+1 . t t+1
VVij = VVij + nAWij
t+1 gt t+1
bj = b +nAb;
At = 4 pAdt! (6.16)

)

AWEY = pAWE + alv; P(hilv) — v, P(hi]o)

!

AT = pAY, + Blo; — v)
A = pAck + 4 (P(hiv) — P(hi|v'))

7

Here 7 is the learning parameter, p is the momentum term and «, 8, are the

parameters that decide the weights on the corresponding gradient. In our im-

plementation the parameters are set by empirical estimation and are u = 0.5,

a=pF=v=0.1

6.3.3 Design and implementation of DBN

The designed DBN for classification of Leukaemia cell lines is shown in Fig. 6.6.

The system is trained by considering 3 RBMs and a final fully connected layer.
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Figure 6.6: The DBN for classification : Depicting the back propagation

based fine tuning across the layers

Thus, it has a visible layer, three hidden layers and an output layer. The number
of neurons in the visible layer is made same as the number of pixels in the image.
Assuming that the input image is of size m X n, the number of neurons is made
as mn. In our implementation all roughly segmented cells are made to standard
size m x n. The parameters m = 52 and n = 48 are selected (These are the mean
number of rows and columns observed for the roughly segmented cell images).
Being a three class classification problem, there are 3 neurons in the output layer.
The number of neurons in the hidden layer are ng; = 100, ngo, = 300, and
nys = 1000. The number of RBMs in DBN is fixed as 3 for our cell-line dataset
after experimenting with 1, 2, 3, and 4 layers of RBMs in the stack. The number of
hidden neurons are also fixed in a similar way. This configuration is then trained

by choosing different percentage of input data.

Each of the first 3 RBMs are trained independently starting from the first
RBM considering all the data (labeled as well as unlabeled) available for training.
The algorithm explained in section 6.3.2 is used to train the RBMs. Finally with
the labeled data available for training, the parameters are fine tuned. This is
done by back propagation algorithm, treating the architecture as a feed forward
neural network with 5 layers. As noted earlier, the hidden layer of RBM produces
non-linear features and since the subsequent layers operate on these features, they
in turn produce high-level feature representations. All the training data is used to
learn these features irrespective of whether the samples are labeled or not. It is on
top of this pre-trained network, we apply the discriminative fine tuning using the

target labels. Since the network parameters are already set during pre-training,
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using RBMs in this way overcome some of the problems (such as undesired local
minima and slow learning) in learning multi-layer feed forward neural network with
backpropagation (Hinton and Salakhutdinov (2006)). The implemented model is
tested for classification accuracy, training and testing time. The DBN is also tested
for its effectiveness in learning from a mixture of labeled and unlabeled data. The

results are discussed in section 6.5.

6.4 CNN as Feature Extractor

As discussed in section 3.3.2, a CNN is a feed-forward artificial neural network
mapping an input vector X into an output vector Y. These types of neural networks
has proved their greater ability to surpass the skilled human in certain classification
task (He et al. (2015)). The discriminative power of CNN is used in a number of
medical cases such as in classifying breast tissues (Sahiner et al. (1996); Xu et al.
(2014)) and detecting micro calcifications on mammograms (Lo et al. (1995)),
classifying interstitial lung disease (Li et al. (2014)), detecting pathologic cases in
chest Xrays (Bar et al. (2015)), in thyroid cytopathology (Kim et al. (2016)) and
detecting lung nodules in chest radiographs (Lo et al. (1995)). Ciresan has reported
the use of deep max-pooling CNN for detecting mitosis in breast histology images
(Ciregan et al. (2013)). In all these cases CNN is used as a classifier. We have
already discussed about the building blocks of CNN and used it as a classifier in
Chapter 3. One of the difficulties in training a CNN for a classification task is that
it needs a large dataset. The problem that we are going to address is the Leukemia
cell-line classification for which we have only a small dataset. It has only 618 cells
(124 K562, 106 MOLT & 388 HL60) which is insufficient to train a CNN classifier.
In this section, we discuss the transfer learning capability of the CNN. In transfer
learning setting, the knowledge that a CNN has learned for a relatively complex
classification task using a large dataset is effectively transferred to a completely
different setting. In such setting, CNN is used as a feature extractor and not as
a classifier. These features are then used to train a classifier like SVM that needs
only training data of moderate size. The transfer learning capability of CNN is
studied in Zhang et al. (2015) and utilized in Zeng et al. (2015) to annotate the

gene expression patterns in mouse brain.
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As noted in section 3.3.2, the main building blocks of a CNN are i) Convolution
ii) ReLU and iii) Sub sampling. We will revisit each of these blocks with an

emphasis to give intuitive idea on the transfer learning capability of CNN.

Convolutional Layer : For every convolution layer, a number of Kernels are
learned during training. A general discussion on CNN learning can be found in
Appendix A. Normal convolution is performed between the learned kernels and
the input instance but select only valid part of the convolution. This procedure is
depicted in Fig. 6.7. We know that the kernels can extract features by convolu-
tions. For example, Sobel kernel find edges, Laplacian kernel detect blobs. Each
of these kernel is applied only locally and extract features. Thus depending on
the kernel, convolution can extract features like edges, blobs, corners, etc. and
are valid features for any images. In CNN, the only learned parameters are the
kernel weights and biases, and hence we are learning very local feature detectors
rather than the actual features. Suppose that we are learning a CNN for a com-
plex classification task and we have millions of images to learn the classification
problem. If we have effectively learned the CNN from such a large training set,
it is reasonable to believe that the learned kernels have the capability to extract
an exhaustive set of features even to capture the small inter class variability on
the original classification problem. Since the kernels learned acts very locally, we
can believe that these exhaustive sets of feature detectors are valid for any images
irrespective of the classification problem that we are addressing. This fact is the

corner stone of transfer learning capability of CNN.

Rectified Linear Unit : ReLU as explained in section 3.3.2 acts as a non linear
activation function and it usually follows the convolution block. This will introduce
the non-linearity on the output map. Since the subsequent convolutions operate
on this non-linear output map, ReLU in turn help to generate non-linear features.
It will also enable faster learning by avoiding the problem of vanishing gradients

during backpropagation especially at lower layers of CNN (Rohan (2016)).

Sub-sampling : The sub sampling layer helps to learn relevant feature detectors

by ignoring small amount of intra class variability in noise, shift and distortion of
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Figure 6.7: Convolution operation: 3 x 3 kernel on 5 x 6 image producing

an output map of size 3 x 4

the training samples. The operation is depicted in Fig. 6.8 where sub-sampling by
two is shown. It can be seen that the distortion between the two ‘A’s has reduced
as we move for sub-sampling which has reduced the intra class variability between
them. Note that these sub-sampling can be done either by taking average of the
neighbourhood (average pooling), or by picking max value from the neighbourhood

(max pooling).

In a nutshell, a heavily trained CNN for a complex classification task using a
large image data set, must have learned an exhaustive set of feature detectors that
can capture very local features valid for any images, and have the capability to
introduce non-linearity in the detected features due to the architecture involving
intermediate RelLU and sub-sampling layers. This enables us to use such a CNN
as a feature extractor for our leukaemia cell-line classification problem, and then
use these features to build a suitable classifier using the available small training

set that we have.

Trained CNN can outperform human in certain classification tasks (He et al.
(2015)). Asnoted, the only bottleneck in using CNN is the need for large amount of
labeled data for training, which is often limited in medical domain. In this section,
we explore the possibility of doing medical image analysis using a CNN pre-trained

on a large scale non medical image database, ImageNet; i.e., we wish to investigate
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Figure 6.8: Sub Sampling to reduce the output map size by half to reduce
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Figure 6.9: CNN architecture pre-trained with ImageNet, used to extract

the features for leukaemia cell-line classification

124



the transfer learning capability of CNN for cell analysis. The ImageNet CNN deep
model readily available (Chatfield et al. (2014); Vedaldi and Lenc (2014)) is heavily
trained with several hundreds of non medical images (Deng et al. (2009)) for each
of the 1000 classes (such as birds, cars, tools, etc.). It has 37 layers. First 36
layers used to generate the cell features for our experiment are shown in Fig. 6.9.
The last 3 blocks represent the convolution and ReLLU operation in fully connected
(represented using the subscript FC) layers (Vedaldi and Lenc (2014)). Note that,
the operations in these 36 layers are grouped into 8 blocks where in each block
the layer is represented by O;;. The O stands for the operation (Convolution (C),
ReLU (R), Max Pooling (MP)), i stands for the block id, and the j stands for the
5" instance of the operation O in the block. For each input image, the output
of the 36" layer which is a 4096 element vector is taken as the feature. As noted
earlier, it is reasonable to believe that these features are generated by an exhaustive
set of feature detectors each looking for valid features like edges, blobs, corners etc.
very locally in the image. These features are then used to train a classifier that
does not require a large training set to determine the decision boundary. We have
experimented with Support Vector Machine (SVM), Feed Forward Neural Network
(FFN), Naive Bayes (NBS) and K-Nearest Neighbour (KNN) and has shown that
the features generated have good discriminative power for the classification of

leukaemia cell-lines.

6.4.1 Pre-trained CNN for classification of leukaemia cells

We use the CNN (Fig. 6.9) deeply trained on ImageNet (Deng et al. (2009);
Chatfield et al. (2014)) to classify the leukaemia cell-lines. The roughly localised
cell image is given as input to the network which will give a 4096 element feature
vector at the output. The dimensionality of these vectors is reduced from 4096 to
20 using PCA (Jolliffe (2002)). The feature vectors of the reduced dimensions are
used to train the classifiers. The use of CNN which was deeply trained on a specific
data set and its use as a general feature extractor in a completely different setting
is an example of transfer learning (Bar et al. (2015); Zhang et al. (2015); Zeng
et al. (2015)) capability. This can be attributed to be following. The CNN model

used was trained on a few million challenging images of 1000 broad categories. In
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CNN, the kernel maps are learned by observing local image patches and hence
the learned detectors (kernels) look for very local features such as curves, edges,
corners and blobs. As most of these features are intrinsic for any image dataset,
we can transfer this knowledge for other classification settings. This capability
helps us to use deep CNN in classification task even if there is only limited labeled
data for training. In such cases CNN is used as a deep feature extractor to find
discriminant features. These features are then used with a classifier that does not

require large training set in deciding the classification boundary.

6.5 Results and Discussion

In this section we discuss the classification of unlabeled unstained leukaemia cell-
lines K562, MOLT and HL60 imaged using the low-cost, high-throughput micro-
scopic imaging paradigm: the microfluidics based imaging flow cytometer. Alto-
gether 618 cells (124 K562, 106 MOLT, and 388 HLG60) were used in the experi-
ment. The classification of these cell lines by deep learning networks (DBN and
CNN) is compared for training time, testing time, and accuracy. The ability of
the system for semi supervised learning is also considered. The classification ac-
curacy achieved is compared with the the SVM based system in chapter 5 where
the features reflecting size, shape, texture and complexity of the finely segmented

cells are used for classification.

6.5.1 DBN classifier on roughly segmented cell images

In our experiment, we have normalized pixel intensities and treated them as the
probability with which the visible nodes are turned ON in RBM. In order to
assess the quality of training achieved, cross validation experiments are conducted
at different folds (K = 2,3,4,5,10). In one cross validation experiment, training
data from each class is randomly divided into K parts, each containing almost
the same number of samples. Now, a cross validation test set is constructed by
selecting one part from each class. The system is trained by all other samples and
tested with this test set. The cross validation testing is repeated K times so that

all samples are used for testing in some step. The entire experiment is repeated
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Figure 6.10: Effectiveness of RBM classification on raw cell images

100 times, each time selecting different combinations of samples for training as well
as testing. The mean classification accuracy (mean) and standard deviation (std)
are computed. The same set of experiments are conducted using SVM with linear
kernel and feed forward neural network with back propagation (FFN). Being a
three class classification problem, the majority voting based classification strategy
is adopted to decide the class label in SVM. The results are shown in Table 6.1.
It can be seen that the highest accuracy (with minimum standard deviation) in
classifying cell images is achieved by RBM and is shown in Fig. 6.10. For FFN,
we have used only one hidden layer. When the number of hidden neurons is
varied (H, = 5,10,25,50, 100, 250), the average cross validation accuracy did not
improve significantly for H,, > 10. So, number of hidden neurons in FFN is fixed

as 10 in our implementation.

6.5.2 DBN classifier : ability to learn from unlabeled data

In order to check the effectiveness of RBM based classifier in learning structure
of the data rather than learning the labels, the following testing strategy has
been adopted. Entire data is divided into 3 sets. (Case 1) holding 50%, 30%,
and 20% samples respectively and (Case 2) holding 67%, 13% and 20% samples
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Figure 6.11: Training error of DBN during discriminative fine-tuning

respectively. The first set along with class labels and the second set without class
labels are used for training and the system is tested with samples from second and
third set. Note that, we have used samples from second set for testing since we did
not use their labels during the training process. For both the cases (Case 1 and
Case 2), the experiment is repeated for 100 times (each time re-initialising the
weights) and average classification accuracy (mean) as well as standard deviation
(std) is computed. The results are shown in Table 6.2. Note that RBM makes
use of samples from set-1 and set-2 for training but uses labeled data (set-1) only
during back propagation to fine tune the system. The training error for every pass
through the entire training data (an epoch) is computed and the average error for
each epoch over 100 iterations is plotted in Fig. 6.11 for Case 1. The training
error profile is similar to that of the normal feed forward network, and in our case
the training converges close to 80 epochs. The result of classification is shown in
Table 6.2. The accuracies are slightly better than the results shown in Table 6.1
(2 and 3 fold (i.e., 50% and 67% training data)). Note that the unlabeled data
cannot be used for learning FFN and SVM.
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Table 6.1: Cross Validation Accuracy in % (mean (std)) - FFN, SVM and
RBM on Cell Images

Kfold 10 5 4 3 2

FFN 9556 (2.57)  95.31 (1.92)  95.18 (1.73)  95.14 (1.49)  94.50 (1.38)
SVM  94.75 (2.71)  94.65 (1.73)  94.48 (1.64)  94.44 (1.47)  93.96 (1.16)
RBM 97.60 (0.48) 97.11 (0.62) 96.50 (0.60) 95.52 (0.20) 94.51 (0.17)

Table 6.2: Classification Accuracy — Learn Structure from Data

Training Accuracy Testing Accuracy

Cases
mean std mean std

1 99.98 0.08 95.22 0.71
2 99.99 0.05 95.93 0.86

6.5.3 Classification on features from pre-trained CNN

The architecture of the CNN used to generate discriminative features from the
cell images is shown in Fig. 6.9. As noted earlier in section 6.4, output of 36"
layer which is a 4096 element feature vector is used for CNN based classification.
Before making use of these features, their dimension is reduced to 20 using PCA
(Jolliffe (2002)). We have selected the number of principal components starting
from 13 (this being the number of features used in chapter 5) and set at 20 since
there was no considerable increase in the mean accuracy beyond 20. Once the
feature descriptors are generated, the classifiers SVM, FFN, Naive Bayes (NBS),
and K nearest neighbour (KNN, K = 5) are applied on top of it for 3 class
classification. The cross validation experiments are conducted as explained earlier
and the results are shown in Table 6.3. These results show that the accuracy
is better and consistent across different cross validation experiments by different
classifiers. Note that the CNN ImageNet model that we had used to extract
features was never trained on the cell images, still producing high classification
accuracy. This is a supporting result for the CNN transfer learning capability that

we had discussed in section 6.4.
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Table 6.3: Cross Validation Accuracy in % (mean (std)) on CNN Features

Kfold 10 5 4 3

SVM  97.80 (1.82) 97.69 (1.38) 97.62 (1.20) 97.47 (1.02) 97.19 (0.87
FFN  98.26 (1.57) 98.18 (1.16) 98.16 (1.02) 98.05 (0.93) 97.96 (0.72
NBS  98.40 (1.51) 98.37 (1.08) 98.36 (0.90) 98.40 (0.78) 98.38 (0.53
KNN 9842 (1.49) 98.40 (1.04) 98.37 (0.94) 98.35 (0.81) 98.36 (0.59

Table 6.4: Cross Validation Accuracy in % (mean (std)) on Morphological

Features (Chapter 5)
Kfold 10 51 4 3 2
SVM  95.22 (2.83) 94.47 (1.85) 94.63 (1.52) 94.20 (1.40) 93.57 (1.16)
FFN  92.92 (3.48) 92.74 (2.63) 92.57 (2.35) 92.47 (2.23) 91.76 (3.00)
NBS  90.89 (3.60) 90.77 (2.34) 90.70 (2.18) 90.67 (1.74) 90.35 (1.44)
KNN  80.40 (4.81) 79.93 (3.13) 79.48 (2.90) 78.94 (2.63) 77.75 (0.59)
6.5.4 Comparison with the classification on morphometric

features discussed in chapter 5

Table 6.4 shows the result of cross validation experiments performed using cellular

features, discussed in chapter 5, by different classifiers. The roughly segmented

cells used as input to the RBM are processed further. The cells are localised by

finding the cell contour, extracted features and are classified using SVM. The re-

Table 6.5: Run Time Analysis

Rough Fine Loclzn  Simple Features =~ CNN Features Total
Method Loclzn  chapter 5 chapter 5 Chatfield(2014) Classifier Time
(18ms) (42 ms) (14 ms) (324 ms) (ms)
Segment & classify SVM 75
v v
(chapter 5) (1 ms) (ms)
CNN ImageNet SVM 342
v v
(Chatfield(2014)) (1 ms) (ms)
DBN / RBM 18.05
Classifier (0.05 ms)  (ms)
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sults in Tables 6.1, 6.3 and 6.4 show that the deep learning methods work superior
to this method.

Table 6.5 shows the time taken for different processing steps involved in the
classification method provided in chapter 5, the ImageNet CNN model (Chatfield
et al. (2014)) and the DBN classifier model. It can be seen that the DBN model not
only gives good classification accuracy but also a faster response when compared

to the other methods.

6.5.5 Performance with small percentage of training data

In order to check the effectiveness of deep learning networks in classification, ex-
periments are carried out, even with less amount of training data and the results
are shown in Table 6.6. The entire data set is divided into (S1, S2, S3) such that
S1 and S2 together hold the training data (50% of the dataset) while S3 holds the
testing data (remaining 50% of the dataset). We assume that the class labels of
data contained in S2 are unavailable, and cannot be used for supervised training.
Still the data from S2 can be used to train the individual RBMs for initialising the
weights. The results of classification i.e., the classification by DBN, SVM (linear)
on CNN-ImageNet features, and SVM on morphological features are shown for
different training cases; 5%, 10%, 20%, 30%, and 40% labeled training data in S1.
The results shown are the mean and standard deviation for 100 runs each time
selecting random samples from the set for training. The mean accuracy achieved
for the said 100 runs, when used 5, 10, 20, 30, 40, 50, and 75% of the available
data for training, is provided in the graph in Fig. 6.12. It can be seen that the
classification by deep learning method is effective even for small number of train-
ing samples in the case of RBM. Also note that, though the CNN-ImageNet model
was heavily pre-trained on non-medical images, the generated features are very
good in a classification point of view. These are reflected by the high average

accuracy as well as low standard deviation for RBM and CNN in Table 6.6.
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Table 6.6: Classification Accuracy: Training with less than 50% Samples

Labelled Data (%) Morph. Features (chapter 5) RBM CNN Features
5 78.29 (3.72) 90.88 (1.18)  91.43 (3.33)
10 85.00 (2.74) 91.40 (1.06)  95.00 (1.40)
20 90.23 (1.49) 93.15 (0.85)  96.36 (0.97)
30 92.06 (1.26) 93.55 (0.61)  96.77 (0.76)
40 93.09 (1.13) 94.01 (0.49)  96.93 (0.90)

6.5.6 Comparison of class-specific accuracy

In order to show that the classification is not too much biased to any class, we
report, in Table 6.7, the confusion matrix for each of the system developed. The
results shown here are for the 10 fold (K = 10) cross validation experiment. As
explained in section 6.5.1, 90% of samples are used for training and remaining
10% of data is used for testing. Such experiment is repeated 10 times such that
every samples are used for testing exactly once. Note that Table 6.7 (A) reports
the result from SVM running on morphological features (discussed in chapter 5),
Table 6.7 (B) reports the results from the classification by RBM and Table 6.7
(C) reports the result from SVM running on CNN features. For example, the
first row of 6.7 (A) shows that out of the total 388 (373 + 8 + 7) HL60 cells,
373 are correctly classified as HLL60, 8 are wrongly classified as K562, and 7 are
wrongly classified as MOLT. We have also presented in Table 6.8, the associated
precision and Recall. These measures are based on the number of True Positives
(TP), number of False Positives (FP), and number of False Negatives (FN). The
precision is defined as T'P/(T' P+ F P) and recall is defined as TP/(TP+ FN). As
these measures are primarily meant for binary classification, we have considered
one-versus-all strategy. Thus we have three cases. In Case - 1, HL60 constitute
positive class and K562&MOLT together forms negative class. Similarly, Case - 2
is K562 Vs HL60&MOLT, and Case - 3 is MOLT Vs HL60&K562. These measures
tell us how much the system has learned to pick a particular class. The result in
Table 6.8 shows that there is significant improvement in both measures with deep

networks when compared to the method discussed in chapter 5.
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Table 6.7: Comparison of Class Specific Accuracy

A. Morphologic Features (chapter 5) B. Classification by RBM C. CNN Features
HL60 K562 MOLT HL60 K562 MOLT HL60 K562 MOLT
HL60 373 8 7 382 2 4 385 1 2
K562 4 116 4 1 120 3 1 119 4
MOLT 2 5 99 3 2 101 1 5 100

Table 6.8: Comparison of Precision and Recall in % (One Against All)

Case - 1 Case - 2 Case - 3

Precision Recall Precision Recall Precision Recall
Method (chapter 5) 98.42 96.13 89.92 93.55 90.00 93.40
RBM 98.96 98.45 96.77 96.77 93.52 95.28
CNN Features 99.48 99.23 95.20 95.97 94.34 94.34

From the results shown so far, it is understood that RBM and CNN bypass the
step of extracting hand-engineered features and performs better job than using a
few important features (discussed in chapter 5). RBM based classifier not only
classify the data but also extract the structure of the data while CNN extract
discriminative features of the data. Further, the proposed deep learning based
methods are quite general that it can be used for cell classification studies in
microfluidic microscopic setup without the need for precise segmentation as well
as explicit feature extraction, still producing an improved level of accuracy. The
system could better capture the inter class variability of the cancerous cell-lines
compared to the morphometric and textural features explored in chapter 5 and has
significantly improved the precision as well as recall of the system when compared
to the PCA signature based methods (Jagannadh et al. (2016)) and the SVM

trained on morphometric features.

The leukaemia dataset used in this research is prepared by a custom-built, cost-
effective microfluidic microscopy system and the accuracy reported on this dataset
in this chapter set the benchmark for future studies. The central idea of the pro-
posed method is to employ inexpensive optofluidic instrumentation for automated
image acquisition and subsequent deep learning based cell recognition. While the
opto-fluidic architecture enables cost-effective automation of image acquisition,

the proposed deep learning based system enables implementation of effective de-
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Figure 6.12: Classification accuracy of RBM, and SVM on features gener-
ated by CNN-ImgeNet as well as on the morphometric fea-
tures (chapter 5).

cision making even in resource limited settings, where personnel trained in the
art of diagnostic decision making are scarce/unavailable. As demonstrated, the
image extraction and identification perform with fair level of accuracy thereby

moving a promising step towards implementation of good quality health care even

in resource-limited settings.

6.6 Publications

1. G. Gopakumar, K. Haribabu, Deepak Mishra, S.S. Gorthi, G.R.K.S. Sub-
rahmanyam. “Cytopathological image analysis using deep learning networks

in microfluidic microscopy”, J. Opt. Soc. Am. A, 34(1):111-121, 2017.

6.7 Summary

In this chapter, we have proposed an approach for automatic cytopathologic anal-

ysis using deep learning methods. The DBN is found effective compared to the
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classifier system proposed in chapter 5. The RBM model not only improved the
classification accuracy but also avoided the more demanding accurate segmenta-
tion of cells. We have also noted the capability of RBM based system for learning
structure of the data rather than learning labels which will be very helpful in
medical image domain where often large dataset is available for training but only
a small fraction labeled. We have also studied the applicability of CNN for cell
analysis and found that a readily available CNN extensively trained on non medi-
cal image database ImageNet produces good discriminative features for classifying
the leukaemia cell lines K562, MOLT, and HL60. In our investigation, we have
found that deep learning methods outperformed the conventional systems in the
classification of these cell lines. To the best of our knowledge, such a reporting on
cytopathology images is first of its kind and we believe that it holds great promise

in terms of enabling cost-effective cancer screening in resource-limited settings.
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CHAPTER 7

Thesis Summary and Future Scope

In this research report, we have proposed suitable image processing algorithms
for cytopthological analysis with recently developed/custom built portable, low-
cost high-throughput microscopy, and microfluidics based imaging flow cytometry.
We have presented a framework for focus stack patch based cell analysis using
a custom designed convolutional neural network for malarial parasite detection
due to protozoan of type falciparum and have shown that the detection accuracy
outperformed the methods without using the focus stack. As part of the system, we
have proposed a cascaded segmentation strategy to facilitate quantitative analysis
moving in a direction to facilitate automated malaria diagnostic platforms for

resource-poor settings.

We have also presented a completely automated cell analysis platform for a
very cost-effective high-throughput microfluidic based imaging flow cytometry.
The cell analysis platform includes feasible pre-processing methods, non-iterative,
graph-based accurate cell segmentation strategy, hand-engineered feature extrac-
tion and a classification framework. We have explored cell signature (advanced
PCA signature) based classification, hand-engineered morphologic feature based
classification as well as deep learning based classification for leukaemia cell-lines;
K562, MOLT and HL60. In our investigation, we have found that deep learn-
ing methods outperformed the conventional systems in the classification of these
cell lines. We hope that imaging flow cytometers equipped with the proposed
frameworks for image processing would enable cost-effective, automated and reli-
able disease screening in over-loaded facilities, which cannot afford to hire skilled
personnel in large numbers. Such platforms would potentially facilitate screening
camps in low income group countries; thereby transforming the current health

care paradigms by enabling rapid, automated diagnosis for diseases like cancer.

However, all the works presented in this research report have used cultured
cells. This includes both the malaria samples used in focus stack based classi-

fication and the leukaemia cell-lines used in the microfluidic microscopy setup.



The cultured cell-line helped us to generate the correct ground truth enabling
quantitative analysis. A natural extension to this work could be testing the pro-
posed methods on samples from real patients. Also, the proposed cell classification
method in mIFC could naturally be extended for differential WBC counting. The
method can be extended for a 3 part classification of WBCs. However, the 5 part
differential classification requires the usage of an appropriate stain. Thus, for dif-
ferential cell counting, one interesting work could be to bring up with a suitable

stain at right concentration so that it can be used in flow.

We have addressed the leukemia cell-line classification mainly using the mor-
phological features extracted from cell images. However, there are methods that
address the problem based on the biomechanical properties of cells (Otto et al.
(2015a)). These properties such as cell‘s deformability, cytoadherance, and time-
dependent response to an applied stress change on the onset and progression of
cancer (Suresh (2007)). There are quite a few design modifications in microflu-
idics channels (Yavuz (2009)) to study these parameters. One straight forward
approach could be to include tiny constriction in the channel allowing the cells to
squeeze through. The collected images can be used to extract required deforma-
bility parameters. For example, Kim et al. (2015) uses a node-pore sensor and a
contraction channel to measure a deformability index of the cells thereby enabling
differentiation of particular cancer-cell types within a heterogeneous cell popula-
tion. There is also the concept of pinched flow microfluidics (J.S. Dudani (2013))
which uses flow channels to pinch and release the cells. Cells having different
elasticity and viscosity might have separate lateral dynamic equilibrium position
when they pass through the pinch. This fact is used to selectively mark cancer
cells against healthy cells (Hur et al. (2011)). More recently Gangadhar et al.
(2015) has studied extraction of deformability index of cells even with a straight
channel microfluidic device and has validated the method by studying the change
in deformability index of healthy, diabetic and sphered red blood cells. Thus, the
study on the changes of biomechanical properties of leukemia cells for cell differ-
entiation could be an important extension to the research problem that we were
addressing. Also note that, we have addressed leukaemia cell-line classification
problem from cultured cell-lines. For its applicability to end goal, leukaemia has

to be identified from naive blood samples containing WBCs, RBCs, platelets, etc.
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The methods discussed need to be extended/adapted for other types of dis-
eases such as cervical cancer (Du et al. (2006)). This includes the modification
that has to be brought on both microfluidics channel construction and on the
processing framework. First, the modifications required to be brought in the de-
sign of microfluidics channels. Herein, the channel widths and depths have to be
modified appropriately to incorporate the largest possible cervical cells (squamous
cell can be as big as 1618 pum). Also, it would be essential for incorporating other
strategies like micro-pillar arrays(Kim et al. (2017); Kaminaga et al. (2015)) or
obstacle based methods (Huang et al. (2004)) to ensure that the cells are isolated
without forming clumps in microfluidic channels. Further, in accordance with the
modifications made to the channels, the optics have to be modified. Like the mag-
nification might have to be increased or decreased and the depth of field of imaging
has to be extended if the channel depth is increased. Coming to the question of
image processing, in order to identify duplicate cells, we can make use of image
processing algorithms like digital image correlation (McCormick and Lord (2010)).
Further downstream processing might remain fairly the same, except for the pa-
rameters like circularity, which will have minimal relevance in case of cervical cells
as they are largely irregular. Other measures of internal complexity like texture,
variance etc., would still remain relevant and the developed framework would be
directly applicable with minimal modifications. Also, the mIFC experiments that
we had conducted could be tried for a larger dataset unlike the relatively smaller

dataset (618 cells) used in this study.

Note that, the parameters used in the algorithm for processing cells used in
this research work are explicitly defined. Most of these parameters as explained
in relevant sections are defined based on the size of cell in image plane. When
we are using the same processing framework for the analysis of different type
of cell images, these hard-wired parameters need to be changed taking the cell
image size into consideration. The size of cell in image plane is decided by the
parameters of optics & hardware components used (Wayne (2014)). These include
resolution of microscope objectives, magnification employed, and pixel size of the
sensor. Given that the hardware components are standardized in the final design
iteration and their arrangement remains fairly constant, the algorithms may not

need any modifications for the type of cells analysed in this research. However, the
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changes in the implementation may lead to changes in the illumination intensity,
which affects the hard-wired parameters such as intensity thresholds used in focus
stack slide scanner. In such a case, one can include an intensity calibration step to
decide these parameters. This calibration can be performed, when no microfluidic
device is placed, using the Gray level intensity recorded at the sensor. Coming to
the case of pixel to real distance (magnification), the channel width is a known
dimension, which can be used to assess this parameter from the video itself and
set all the relevant parameters which are defined based on the cell size in image
plane. The prototypes developed as part of this research work are still in the final
stages of commercialization. At this point in time, the beta prototype is soon to
go into clinical evaluation and would be brought to market soon after that. The
bill of materials of both the microfluidics system and the focus stack collecting
microscope as discussed in Chapter 1 is around 1500 US $. In general, the cost of
the final prototype tends to be 4 - 5 times the bill of materials (Chaturvedi (2016)).
So, even with that into consideration, this would still be a cheaper alternative,
when compared to the current industry standards like Amnis 199,000 US $ (Amn
(2016)).
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APPENDIX A

BackPropagation in Deep Neural Networks

The backpropagation, is a widely used method in training artificial feed forward
neural networks (FFN). Training ANN has two steps : error backward propaga-
tion and weight update. When an input vector is presented to the network, it
is propagated forward through the network, layer by layer, until it reaches the
output layer. The output of the network is then compared to the desired output,
using a loss function, and an error value is calculated for each of the neurons in the
output layer. The error values are then propagated backwards (hence the name
backpropagation), starting from the output, until each neuron has an associated
error value which roughly represents its contribution to the original output. Once
the error at each neuron is determined, the weights are updated using an optimiza-
tion method like gradient descent so as to minimize the loss function. we show
that the error back propagation can be conveniently done in matrix notion in al-
most similar manner from layer to layer. Further, it will be shown that the weight
update term in gradient descent can be easily computed based on the back propa-
gated error at the rear end of the connection (carrying the weight) and the input
of it. This process thus gives a simpler interpretation and derivation for weight
update in deep networks. In this section, we discuss a generalized formulation of

deep neural network training using back propagation.

A.1 Notations and Meaning

T, Target or desired output at node z in the final layer

0, Output produced at some arbitrary node z in some layer

AFE; Error computed or backpropagated at layer L

AFEF], Error weighted by the derivative of activation function at layer L
US, The operation up-sampling by 2

oo

The convolution operator



® The correlation operator

Element by element multiplication

A.2 Training FFN using backpropagation

z=1:Z desired

OZ TZ

d, output
L=4

Figure A.1: Typical feed forward 4 layer neural network

Figure A.1 shows an arbitrary 4 layer feed forward neural network. There are
D neurons in the input layer, M neurons in 2" layer, N neurons in 3" layer and Z
neurons in the output layer. There is a weighted connection between each neuron
in a layer to every other neurons in the layer immediately following it. Also there
is a bias to every neurons in all layers except at the input layer. During training
these parameters (weights and biases) need to be updated so as to minimise the

loss function. A typical loss function could be the half of the sum of squared

difference defined by

B=3Y (T Oby (A1)

Here T, and OF are the desired output and actual output produced at node z of
the output layer L for any specific input X = {X;}2,. Note that the notion of
input to the normal feed forward neural network is a column vector. If the input

is an image, it has to be vectorised to form the input vector. {X;}2, forms the
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column vector X with D elements as X;.

All nodes, except at the input layer, compute the weighted sum of inputs from
the previous layer to produce an intermediate output Net. The activation function
is applied to each of this Net to produce the final output at each neuron. We will

consider the popular Sigmoid activation function defined by

1
Of = f(Nth) = m (AQ)

where Netl is the intermediate output produced by node z in layer L and is

defined by

Netl = W.,0f ™' +d. (A.3)
k

Here O,I;’l is the output at node k in L — 1*" layer and W, is the weights of the

connections from node £ in layer L — 1 to node z in layer L.

We use gradient descent to update the parameters. Each parameter is updated
in the negative direction of the gradient of the loss function (Eq. A.1) computed
with respect to the parameter to be updated. The procedure is going to be ex-
plained in two steps. In the first step we will compute the contribution of the
error to the over all loss function at each node. The error at each node in the
output layer is first computed. Then the contribution by each node of the layers
lower in the hierarchy is computed by backpropagating the error. In the second
step, we will compute the gradient and update the parameters. Subsection A.2.1
discusses the error back propagation procedure while subsection A.2.2 discusses
the parameter updating procedure. In all these discussion, we refer the final layer
as L, pre-final layer as L — 1, the next lower layer as L — 2 and so on. The main
theme of the presented formulation is that either error back propagation or the
weight update based on it can be extended to any number of layers (on similar

steps).
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A.2.1 Backpropagating the Error across the layers

We will compute the error at each node in the output layer and is backpropgated
to the layers lower in the hierarchy to determine the contribution of this error by

each node in the network.

Finding Error at Output Layer L

Each node in the output layer contribute to the total error E. The contribution

of Error by a node z at Layer L is due to its output OL. Let AEL denote this

quantity and can be measured by computing ;g;L. By the definition of the error

function (Eq. A.1), this turns out to be

AEL = % =0T, (A.4)

Propagating the error from Layer L to layer L — 1
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Figure A.2: Error backpropagation from nodes in layer L to node k in

layer L — 1.

First, we will give an intuitive idea behind the backpropagation of error and

159



then we will derive explicit expressions. In order to find the contribution of the
final error E at layer L due to the output of a node k in layer L—1, the error that we
have found out at each node in L has to be backpropagated. Once the error AE*
at all nodes z in an arbitrary layer L is computed, it has to cross these neurons
during backpropagation of the error to compute the error at all nodes in the lower
layer L — 1. This is done by weighing AE® by the corresponding derivative of the
sigmoid function f'(Net?), and then accumulating the shares through the weighted
connections at each node £ in layer L — 1. The procedure can be explained better
by referring to Fig A.2. It shows the relationship to each of AE* from the node k
in layer L — 1. It can be seen that node k in layer L — 1 influences the output at all
nodes in L through the respective weight connections. Thus the error computed
at each neuron in layer L contributes through the respective weight connection to
each node £ in layer L — 1 and it has to cross each neuron z in layer L. Thus the

Error at a node k in layer L — 1 can be computed as

_ OEL OEL
AEF! = SOLT = SO f(Net!YW (A.5)

Where f'(Net? represents the derivative of the activation function with respect
to Net value at node z in layer L. By its definition (Eq A.2), this turns out to be

OL(1 — OF). In matrix form, this can be written as

AEFT = WT « |AEL & f/(Neth) (A.6)

“* represents the

Where “.* represents the element by element multiplication,
matrix multiplication, and T represents the matrix transpose. The Eq. A.6 re-
mains same for back propagation of error through any number of layers. The
weight matrix W changes from layer to layer. The f  of the corresponding acti-

vation function (with associated outputs) and error at current layer are used to

backpropagate the error to its previous layer.

The expression in Eq. A.5 can also be explicitly computed using the normal

chain rule for gradient computation and is shown below.

EL EL L N L
OF! :Za L 9OF ONetl (A7)

o0} 00L ONetL gOL 1
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Where gg—ft_% can be computed as
k
ONeth 0
== W4OF =W (A.8)

When substituted Eq. A.8 in Eq. A.7, it turns out that

OBk OEL 90F
g0 2 JOL ONetE (A-9)

which is exactly the same equation provided in Eq. A.5. The consequence of Eq.
A.6 is that the error backpropagation can be done independent of gradient update,
and can be propagated back in each layers lower in the hierarchy one by one by

simple matrix multiplication.

A.2.2 Updating the parameters

As noted earlier, the optimisation method used to minimise the loss function
defined in Eq. A.1 could be gradient descent. The parameters are updated in the
negative direction of the gradient of the error function computed with respect to

the parameter to be updated.

Updating the weights

The update rule based on the gradient descent is

OF
Wzk

W =Wat = (A.10)

Here n is the learning parameter and g/—i is the gradient of the loss function F

oF
Wzk

with respect to the parameter W,,. The can be computed using chain rule

OE  OE 00,
oW, 00, 0w,

(A.11)

Here, the first term 8%3 for all nodes in all layers is already computed by error

backpropagation as discussed in the last section. The second term can be com-
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puted by chain rule as
00, 00, ONet,

= A12
8W2k 8Netz 8W2k ( )
Where a?voefez is the derivative of sigmoid function and is defined by

00

= =0,(1-0, A3

INel, ( ) (A.13)
ONet 0

£ = W.,OL=1 = OF1 A4

W, is the weight connecting node k in layer L — 1 to node z in layer L, %];f‘f:

turns out to be the output at the node k at layer L — 1. Thus gv?,i turns out to

be the output of the neuron k at layer L — 1 weighted by the derivative of the

sigmoid with respect to NetZ at node z in layer L.

Updating the weights for the network shown in Fig. A.1

Let Wg,, Wpg, and Wy, be the weight matrices of the network holding respec-
tively the weights between layer 1 & 2, 2 & 3 and 3 & 4.

(W W Wi . .. Wip
Wao=| . . . w,

Wi Wi Wi . - . Wi

W W Wi . .. Wi
Wa, = | . .. Wy

Wi Wae Was -« . W)
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WZl WZ2 Wzg . .. WZN

Let O' = {0.}72_,, 0® = {Ox};L, and O? = {O;}}L, be the output produced
at each node in layers 4", 3% and 2" respectively when an input X = {X;}2,
is fed to the network. The output at layer 1 is same as the input and hence
O = {0}, = {X;}2,. Also let T = {T.}2_, is the target or desired output at

each node in the output layer. Now the error vector at layer [, A; can be computed

by error backpropagation.

A4 == [04 - T] [2x1] (A15)
As = Wiy, *[0hx(1=0%. A4, (A.16)
Ny = Wil un * [0 x(1=0%).xAg] | (A.17)

Note that Eq. A.16 and Eq. A.17 follows from the Eq. A.6.

Now the gradient at each neuron with respect to the parameter to be updated

can be found and the final update rule in matrix form will be

T

Wi = Wot —n [0* « (1 —0Y. % Ay],  * [0y (A.18)
W?gw = W%g -7 [03 * (1 - 03> * A3]N><1 * [OQ}TXM (A19)
W?Iiw = W%il -1 [02- * (1 - 02)' * A2]M><1 * [Ol}TxD (A'QO)

Thus to update the weight (W};) between neuron j in layer L — 2 and neuron k
in layer L — 1, the gradient of the error function at the final layer with respect to
Wi; need to be computed. It can be seen from the above set of equations that
this gradient can be interpreted as the product of two terms. The first term is the
error computed at node k in layer L — 1 multiplied by the derivative of the sigmoid

activation function with respect to the output at node k. This can be treated as
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the error at the rear end of the connection holding the weight Wj,;. The second
term is the output at the node j in layer L — 2, and can be considered as the input
to the connection holding the weight Wj;. Thus, the change for updating the
weight for a connection between any layers can be simply obtained by computing
the product of error at rear end of the connection and input at front end of the
connection. This is then weighted by the learning parameter n and the weight of

the connection is updated by gradient descent.

A.3 Training CNN using backpropagation

Output Map (24 x 24), (12x12), (8x8)y, (4x4), (10x1)
Input Image
(28 x 28)
Input C, P, C, P, FC,
Kernel (5x5), (2x2) (5x5x%6),, (2x2)

Figure A.3: LeNet architecture for digit recognition

The same backpropagation algorithm that we had discussed in last section is
used to train convolutional neural networks as well. In this section, we will discuss
this procedure taking the popular LeNet CNN architecture as an example. The
LeNet architecture for digit recognition is shown in Fig. A.3. It has two convo-
lution layers (C4, Cy), two average pooling layers (P;, P;) and one fully connected
layer (F'Cy). There are 6 kernels in C each of size 5 x 5 and 12 kernels in C; each
of size 5 x 5 x 6. The average pooling does a 2 x 2 pooling (thus the kernel weights
are fixed as 0.25). The architecture was originally designed for digit recognition
for input images of dimension 28 x 28. The corresponding output maps gener-
ated at each layer is shown above the individual blocks. Note that the output
dimension is 10 x 1 since each input has to be mapped to one of the 10 digits.
Note that the parameters to be learned in this CNN are 1) the weights of the

kernels and their biases at the convolutional layers (5 x 5 X 6 + 6 = 156 in C}
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Table A.1: Parameters for Weight Initialisation for CNN in A.3

i Cy FCy
Fan;, 1x(5x5)=25 6x(bx5)=150 12x (4x4)=192
Fangs 6x (5x5) =150 12 x (5% 5) = 300 10
¢ 0.0756 0.0471 0.0704

and 5 X 5 x 6 x 12+ 12 = 1812 in Cy) and 2) the weights and biases at the fully
connected layer (4 x 4 x 12 x 10 + 10 = 1930).

A.3.1 Parameter Initialization

The parameters for each layer are initialised based on the number of input and
output connections at that layer. Specifically these are initialised with random
numbers selected from uniform distribution between U[—(, (], where the bound ¢

is determined by the fan;, and fan,,; of the layer.

1
C N \/fanzn + fanout (A21)

Here, for convolutional layers fan;, is defined as the product of number of input

maps and kernel size and fan,, is defined as the number of output maps and
kernel size. For fully connected layer, fan;, is the product of number of input
maps and size of the input map while fan,,, is the number output nodes. Table
A.1 shows the parameters for weight initialisation for the CNN architecture shown

in Fig. A.3.

A.3.2 Forward Propagation

The respective operations are performed on the input maps at each layer. At
convolutional layers, each kernel is used to convolve with the input map, then
kernel bias is used to offset the result, and then the sigmoid activation function

is applied to produce an output map. Note that as discussed in section 6.4, only
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valid part of result of convolution is used to generate the output map.

Oli] = !

_ A.22
1+ exp_(Zﬁ’:l[1(:7:7d)*Kz'(t#dHB(m) ( )

In Eq. A.22, * represents the convolution operation and B(i) represents the bias
of it" kernel. O[i] is the output map generated for i’ kernel when applied on the
d" input map. For convolutional layer 1, D = 1 and i varies from 1 to 6. For
convolutional layer 2, D = 6 and ¢ varies from 1 to 12. At the pooling layers, each
2 x 2 block is averaged to form a single pixel thereby reducing the output map size
by 2 along each dimension. At the fully connected layer, the output is computed
just like normal feed forward neural network as defined by the set of equations

Eq. A.3 and Eq. A.2.

A.3.3 Backward Error Propagation
We use the same loss function defined in Eq. A.1. For any input image, we

compute the result at the output layer which will be the 10 x 1 vector, and now

we can compute g—gk using Eq. A.4. Now this error has to be backpropagated

across different layers.

Error backpropagation across fully connected layer F ()

The derivative of the loss function with respect to the output at any node £ in the
final layer é%i is Oy — T. Thus the error in fully connected layer F'C} is a 10 x 1

vector holding (O — Tx):2,.
AEpo, =0 —T (A.23)

The error at nodes in the F'C} has to be backpropagated to the pooling layer 2
(P,). As per the Eq. A.9, this turns out to be AFj,

AEP2 =W.*x 0. % (1 - O) * AEFCH (A24)
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Here in Eq. A.24, “.* represents the element by element multiplication. Here W is
the weight matrix connecting 192 x 1 output map at P to the 10 x 1 output vector.
The 192 x 1 output map at Ps is actually the vectorised representation of 12 maps
each of size 4 x 4. Thus AFg, is of dimension ([192,10] x [10, 1] — [192,1]). This
is reshaped into (4 x 4);5 for representational convenience in propagating the error

further down the layers.

Error backpropagation across pooling layer P,

Since the pooling operation does an average pooling in 2 x 2 neighbourhood, the

error backpropagation across this layer is just an up-sampling by 2.

AEg, = USy(AEp,) (A.25)

Where U S, represents the operation, upsampling by 2. This leads to AE¢, of size
(8 X 8)12.

Error backpropagation across convolutional layer (5

The error backpropagation across the convolution layer is also governed by the
same equation Eq. A.9. But by the special construction of the convolution opera-
tion, the weights are related in a special way while propagating the error. It turns
out to be the correlation of the kernel with the error to be backpropagated after
weighted by the derivative of the activation function. First, we will show the corre-
spondence between the correlation operation and the weighted error propagation
by taking an example. Then we will give explicit equation for error backpropga-
tion across Cy. Consider the following convolution operation (only valid part of
convolution is considered) in Eq. A.26 and the correlation operation in Eq. A.27
(Note that there is adequate padding by zero to reconstruct the dimension of the

input).
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Ty T2 XT3 X4
wp wp ws

x x x T

’ ’ ! i *lwy ws wgl| = nov (A26)
Tg T10 T11 T12 Ys Ya

w7 wWg W9

T13 Tia Ti5 Tie

Here
Y1 = W9y + w2 + Wr T3 + WeTs + WrTg + WyT7 + W3Tg + WaX10 + w1T11
Yo = W92 + WsT3 + Wrky + WeTe + W5T7 + WeTg + W3T10 + Wal11 + WiT12
Ys = W9Ts + weTg + Wy X7 + WeT9g + WrT10 + W4T11 + W3T13 + WX 14 + W1T15
Ys = W9Tg + W7 + Wrxg + W19 + WsT11 + WeL12 + W3T14 + W2k15 + W1T1g

00 0 0 00

0 0 0 0 00 ASCl A.Z'Q Ailj'g A$4
w; W2 W3

0 0 Ayl Ayg 0 0 Al‘5 AZL’(; AI7 Al’g

© wqg Wy We| —

0 0 A’yg Ay4 0 0 AZEQ Al’lo AZL’H Al‘lg
W7 wWg Wo

0 0 0 0 0 0 A.I'lg A.’L’14 ALE15 Al’lﬁ

00 0 0 00

(A.27)

Axry = woAyr; Axe = woAys +wsAyr;  Axg = wsAys + wrAyy;

Azy = wriAyy; Axs = woAys +wsAy; Azg = wrAys + wiAy;

Axis = wsAys;  Azg = weAys +wsAyr; Axig = wiAys + wiAys;

Arig = wiAyy; Az = wsAys, +weAys Axs = waAyy + wiAys;

Axg = woAys + wsAys + weAys + wsAyr;  Axy = wsAys + wrAys + ws Ays + wiAyy;

Azig = weAys + wsAys + wsAyz + waAyr; Az = wsAys + waAys + wiAys + w1 Ay

By analysing the above equations, it can be seen that the relationship between the

weights and the output during convolution is reproduced during correlation and

168



hence can be used in backpropagating the error. For example, input zg at layer L
influences all the output neurons (y1,¥2,ys, y4) at layer L + 1 during convolution
operation through weights ws, wg, wg and wy respectively. Therefore, when back-
propagating the error Ay computed at layer L + 1, the error contribution at node
corresponding to xg should be the aggregate sum of the error at Ay;, Ays, Ays and
Ay, weighted exactly by the same weights ws, wg, ws and wg. By analysing the
expression for Azg obtained after the correlation operation, it can be seen that this
relationship is preserved. Thus back propagating the error across the convolution
layers is equivalent to performing the correlation operation on the weighted error
computed for the layer after weighting the derivative of the activation function.

Thus AEp, can be computed as

AE?’—'C2 = AEC2. * OC2. * (1 - 002) (A28)
L
AEp,(;,5,i) = Y [AEF,(541) © Ki(:, 1)) (A.29)

=1

Where © represent the correlation operation, ¢ varies from 1 to 6 and L = 12.

This will result in backpropagated error dimension as (12 x 12)g.

Error backpropagation across pooling layer P,

As discussed earlier, the back propagated error is just an up-sampled version.

AE¢, = USy(AEp,) (A.30)

A.3.4 Learning the Parameters by Gradient Descend

Once the error is propagated for all the neurons, the gradient is computed with
respect to the parameter to be updated. The same set of equations provided in
Eq. A.11 is used to compute the gradient. The parameters are then updated in

the negative direction of the gradient to minimise the loss function.

Derivative of gradient with respect to weights at fully connected layer

(AW)FCl = AEFCI. x 0. % (1 - O) * IF01 (A?)l)
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In Eq. A.31, Ir¢, represent the vectorized output map at the pooling layer 2 ().
Thus the dimension of the gradient is [10, 1] x [1,192] — [10, 192]

Derivative of gradient with respect to kernel weights at convolution

layers

AEFCZ = AECI- * OCZ' * (1 — Ocl) (A32)
(AK), = AEFq *1 (A.33)

In Eq. A.33, “¥ is the convolution operation. [ = 1 for convolution layer 1 and
[ = 2 for convolution layer 2. I is the corresponding input map to the layer. Since
we are taking only valid part of convolution, for ', the gradient dimension will be
5,56 ([24, 24]¢ * [28, 28] — [5,5]¢). Similarly for convolution layer 2, the gradient
dimension will be [5,5, 6]12 ([8,8]12 * [12,12]¢ — [5, 5, 6]12)

Updating the kernel weights

Once the gradient is determined with respect to each parameter, we can use gra-

dient descent so as to minimise the loss function.

K" = K _ nAK (A.34)

The gradient for the bias term for any node in the output layer, turns out to
be the cumulative weight change computed for all the connections to that neuron.
Similarly, the gradient for the bias of the kernels turns out to be the cumulative

weight change computed for the weights in the respective kernel.
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