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ABSTRACT

The main objective of this thesis is to study the various geometric structures

on a statistical manifold and the geometry of parameter estimation. This study comes

under the area of Information Geometry which is the geometric study of a statistical

model of probability distributions. A statistical model equipped with a Riemannian

metric and a pair of dual affine connections is called a statistical manifold. Amari’s

α-geometry is an important geometric structure on a statistical manifold which plays a

major role in the asymptotic theory of estimation.

In Chapter 2 we introduce a generalized class of geometric structures on a

statistical manifold called the (F,G)-geometry using a general embedding function F

and a positive smooth function G. In Section 2.2 the Fisher information metric and the

α-connections are computed for a statistical manifold defined on finite sets. In Theorem

2.3.5 we prove a necessary and sufficient condition for two (F,G)-connections to be

dual with respect to the G-metric. In Theorem 2.3.6 we show that the α-geometry is a

special case of the (F,G)-geometry. Thus we obtain a generalized dualistic structure

on a statistical manifold which includes the α-geometry as a special case. Further the

G-metric and the (F,G)-connections are computed for statistical manifold defined on

finite sets in Section 2.3.

In Chapter 3 we study the invariance properties of various geometric struc-

tures on a statistical manifold and classify them into invariant and non-invariant classes.

The covariance under reparametrization of the (F,G)-geometric structures are shown in

Theorems 3.2.3 and 3.2.4. Then in Theorem 3.2.5 we prove that the (F,G)-geometry is

not invariant under smooth one to one transformations of the random variable in general.

In Corollary 3.2.6 we prove that the α-geometry is the only (F,G)-geometry which is

invariant under smooth one to one transformations of the random variable. In Theorems

3.2.7 and 3.2.8 we show that the (α, ρ, τ)-geometry is covariant under reparametrization

and is not invariant under smooth one to one transformations of the random variable in

general. Also the α-geometry is the only (α, ρ, τ)-geometry which is invariant under

smooth one to one transformations of the random variable. Further the relation between
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the (F,G) and (α, ρ, τ)-geometries are given in Theorem 3.2.11.

In Chapter 4 first we give the (±1)-conformal equivalence of the α-geometry

and the geometry induced from the conformal transformation of the α-divergence in

Propositions 4.2.3 and 4.2.4. In Corollary 4.2.6 we prove that the q-structure is the con-

formal flattening of the α-geometry. Then we discuss the importance of non-invariant

(F,G)-geometry in the study of the dually flat geometries of the deformed exponential

family. There are two dually flat geometries on a deformed exponential family, the U-

geometry and the χ-geometry. In Theorem 4.3.4 we show that the U-geometry is the

(F,G)-geometry for suitable choices of F and G. Further we prove that the χ-geometry

is the conformal flattening of the (F,G)-geometry for suitable choices of F and G in

Theorems 4.3.16, 4.3.17 and 4.3.18.

In Chapter 5 we consider the parameter estimation problem based on a mis-

matched model. In Theorems 5.3.1 and 5.3.2 we prove a necessary and sufficient condi-

tion for the estimator based on a mismatched model to be consistent and first order effi-

cient. Further a theoretical formulation of the maximum likelihood estimation problem

based on a mismatched model in an exponential family is given. We prove a necessary

and sufficient condition for an MLE based on a mismatched model to be consistent and

efficient in Theorems 5.3.8 and 5.3.9.

In Chapter 6 we define certain generalized notions likeF -product, F - indepen-

dence of random variables and maximum F -likelihood estimator (F -MLE) in Section

6.1. In Theorem 6.1.6 we show that the F -MLE is a MAP estimator with a prior. Then

using the F -escort probability distribution we define two generalized notions of MLE,

the xN -based F -escort MLE and the F -escort MLE based on the product of F -escort

distribution of the marginal probability density of single observations in Section 6.2.

In Theorem 6.2.3 we give a characterization of the q-escort MLE among the xN based

F -escort MLE as a Bayesian MAP estimator with a prior. Further an analytic proof

of the F -version of the maximum entropy theorem is given in Theorem 6.2.5. In The-

orem 6.3.2 a proof of the generalized Cramer-Rao bound defined by Naudts is given.

Further we show that the U-estimator for the dual coordinate in the U-geometry of the

deformed exponential family is optimal with respect to this bound in Theorem 6.3.3.

This chapter ends with an open problem regarding the properties of the F -MLE in a

deformed exponential family.

xii



TABLE OF CONTENTS

CERTIFICATE v

DECLARATION vii

ACKNOWLEDGEMENTS ix

ABSTRACT xi

1 Introduction 1

2 Geometric Structures on a Statistical Manifold 11

2.1 Statistical Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Affine structure of the family of measures . . . . . . . . . . 12

2.1.2 Statistical manifold . . . . . . . . . . . . . . . . . . . . . . 13

2.2 α-Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 α-affine manifold and α-family . . . . . . . . . . . . . . . 20

2.3 (F,G)-Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 F -affine manifold and F -family . . . . . . . . . . . . . . . 35

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Invariant and Non-invariant Geometric Structures 41

3.1 Divergence and the Induced Geometry . . . . . . . . . . . . . . . . 42

3.1.1 f -divergence . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Bregman divergence . . . . . . . . . . . . . . . . . . . . . 43

xiii



3.1.3 (α, ρ, τ)-divergence . . . . . . . . . . . . . . . . . . . . . . 44

3.1.4 U-divergence . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Invariant and Non-invariant Geometries on a Statistical Manifold . 47

3.2.1 Invariance of the (F,G)-geometry . . . . . . . . . . . . . . 49

3.2.2 Invariance of the (α, ρ, τ)-geometry . . . . . . . . . . . . . 53

3.2.3 (F,G) and (α, ρ, τ)-geometries . . . . . . . . . . . . . . . 59

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Deformed Exponential Family 63

4.1 Dually Flat Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Exponential Family and q-Exponential Family . . . . . . . . . . . . 66

4.2.1 Dually flat structure of the exponential family . . . . . . . . 66

4.2.2 q-Exponential family and the q-structure . . . . . . . . . . . 68

4.3 Dually Flat Geometries on a Deformed Exponential Family . . . . . 74

4.3.1 Dually flat U-geometry of the F -exponential family . . . . 76

4.3.2 Dually flat χ-geometry of the deformed exponential family . 79

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Geometry of Estimation 89

5.1 Parameter Estimation in a Statistical Manifold . . . . . . . . . . . . 89

5.2 Estimation in Exponential Family . . . . . . . . . . . . . . . . . . 92

5.2.1 Estimation in a curved exponential family . . . . . . . . . . 94

5.3 Mismatched Estimation in a Curved Exponential

Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 MLE based on a mismatched model . . . . . . . . . . . . . 105

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xiv



6 Generalized Estimators 113

6.1 Maximum F -Likelihood Estimator . . . . . . . . . . . . . . . . . . 114

6.2 F -Escort Maximum Likelihood Estimator . . . . . . . . . . . . . . 118

6.2.1 F -Maximum entropy theorem . . . . . . . . . . . . . . . . 121

6.3 Estimation in F -Exponential Family . . . . . . . . . . . . . . . . . 124

6.3.1 U-estimator in F -exponential family . . . . . . . . . . . . . 124

6.3.2 F -MLE in a F -exponential family . . . . . . . . . . . . . . 130

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Concluding Remarks 133

REFERENCES 135

LIST OF PUBLICATIONS 141

xv



CHAPTER 1

Introduction

Information geometry emerged from the geometric study of a statistical model of proba-

bility distributions. The information geometric tools are widely applied to various fields

such as statistics, information theory, stochastic processes, neural networks, statistical

physics, neuroscience etc. The importance of the differential geometric approach to the

field of statistics was first noticed by Rao [1]. On a statistical model of probability dis-

tributions he introduced a Riemannian metric defined by the Fisher information known

as the Fisher information metric, see also [2], [3].

One of the major developments in the history of information geometry was the sem-

inal work by Chentsov [4] in which he introduced a family of affine connections on a

statistical model defined on finite sets. Efron [5], [6] introduced the notion of statistical

curvature of a statistical manifold and mentioned the role of statistical curvature in the

asymptotic theory of statistical estimation. His theory used a new affine connection (ex-

ponential connection) implicitly. Dawid [7] as a continuation of Efron’s work defined

another affine connection (mixture connection), see also [8], [9].

Motivated by the works of Efron and Dawid, Amari [10], [11] introduced a one pa-

rameter family of affine connections called the α-connections indexed by a real param-

eter α. These connections are equivalent to the connections introduced by Chentsov [4]

on finite sets. This family has a property that the α-connection and the (−α)-connection

are dual connections with respect to the Fisher information metric. A statistical model

of probability distributions endowed with a Riemannian metric and a pair of dual affine

connections is called a statistical manifold. A theoretical formulation of information ge-

ometry was initially given by Amari [12] and further enriched by Murray and Rice [13],

Amari and Nagaoka [14].

The α-geometry consisting of the Fisher information metric and the (±α)- con-

nections is a significant tool in the higher order asymptotic theory of inference [12].

Amari [12] defined the α-geometry using a particular family of functions called the
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α-embedding. Burbea [15] introduced the concept of weighted Fisher information met-

ric using a positive continuous function. Motivated by these works, we considered a

general embedding function F and a positive smooth function G to define a more gen-

eralized geometric structure on a statistical manifold called the (F,G)-geometry which

is an extension of the α-geometry [16].

In Chapter 2 first we describe the manifold structure of a statistical model and the

α-geometry. Then the Fisher information metric and the α-connections are computed

for statistical manifold defined on finite sets. We define the (F,G)-geometric structures,

the G-metric and the dual (F,G)-connections, on a statistical manifold. Then we prove

a necessary and sufficient condition for two (F,G)-connections to be dual with respect

to the G-metric. We show that the α-geometry is a special case of (F,G)-geometry,

thus obtained a generalized class of geometric structures on a statistical manifold which

extends the α-geometry. Further the G-metric and the (F,G)-connections are computed

for statistical manifold defined on finite sets.

Eguchi [17] introduced a method to define geometric structures on a statistical man-

ifold using a divergence function. The f -divergence and the Bregman divergence are

two important classes of divergence functions [18–20]. A more general family of di-

vergences called the (α, ρ, τ)-divergence was introduced by Zhang [21] using a real

parameter α and two representations ρ and τ of densities which are conjugate with re-

spect to a strictly convex function. Another class of divergence called the U-divergence

was introduced by Murata et al. [22] using a generator function U .

On a statistical manifold one can consider two kinds of invariance of the geomet-

ric structures, covariance under reparametrization of the parameter of the manifold

and the invariance under the smooth one to one transformations of the random vari-

able [12], [14]. Chentsov [4] proved that the Fisher information metric and the α-

connections are unique in the family of probability distributions defined on finite sets

with respect to the categorical invariance, see also [23], [24]. Amari [12] conjectured

that the Fisher information metric and the α-connections are the only metric and affine

connections which are invariant under any coordinate transformations of the sample

space and of the parameter. These works motivated us to study the invariance prop-

erties of the (F,G)-geometry in which the α-geometry is a special case. We gave a

partial answer to Amari’s conjecture by proving that the α-geometry is the only geom-
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etry among (F,G)-geometries which is both covariant under reparametrization of the

parameter and invariant under the smooth one to one transformations of the random

variable [16]. Ay et al. [25] studied this problem in the infinite dimensional case also.

Chapter 3 provides an overview of various divergence functions on a statistical man-

ifold and the geometric structures induced by them. We study the invariance properties

of the geometric structures on a statistical manifold and classify them into two cate-

gories, invariant and non-invariant. We prove that the (F,G)-geometry and the (α, ρ, τ)-

geometry are non-invariant geometries on a statistical manifold. First we show that

these geometries are covariant under reparametrization of the parameter of the man-

ifold. Then prove that both the (F,G)-geometry and the (α, ρ, τ)-geometry are not

invariant under smooth one to one transformations of the random variable in general.

Also we show that the α-geometry is the only invariant geometry in the category of both

(F,G) and (α, ρ, τ)-geometries. Further the relation between these two geometries are

discussed in detail. We show that the (α, ρ, τ)-geometry can always be expressed as

(F,G)-geometry and the converse is true only under certain conditions. Some exam-

ples are given to illustrate this point.

An exponential family is an important statistical model which is attracted by many

of the researchers from Physics, Mathematics and Statistics. Many of the phenomena

in the statistical mechanics are modeled by an exponential class of distributions. It is

relevant in the context of the Boltzmann-Gibbs entropy maximization problem. It is

also equally important from the information geometric point of view. A finite dimen-

sional exponential family has a dually flat structure with respect to (±1)-connection de-

fined by Amari [12]. Tsallis [26] introduced the notion of non-extensive entropy called

the q-entropy or Tsallis entropy which is a generalization of the Botlzmann-Gibbs en-

tropy. This led to the non-extensive statistical mechanics which uses power functions

instead of the exponential functions. This motivated many researchers to consider a

generalized exponential family called the q-exponential family which is relevant in the

q-entropy maximization problem. An information geometric foundation is given to the

q-exponential family by Amari and Ohara [27]. A q-exponential family has a dually flat

structure called the q-structure which is the conformal flattening of the α-geometry [27].

Naudts [28] introduced a more generalized notion of exponential family called the

deformed exponential family and defined a dually flat structure on it, the U-geometry.
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Many authors studied the geometry of the deformed exponential family, [29–36]. Amari

et al. [37] also considered this family and defined a dually flat structure called the χ-

geometry, which is different from the U-geometry. In the case of exponential family the

invariant α-geometry gives a dually flat structure. For the deformed exponential family

one has to look at the geometric structures other than the invariant α-geometry. In our

work we present the role of the non-invariant (F,G)-geometry in the study of dually

flat structures of the deformed exponential family [38].

In Chapter 4 first we describe the general structure of a dually flat space. Then

the dually flat geometries of the exponential family and the q-exponential family are

described in detail. The geometry induced by the conformal transformation of the α-

divergence is considered and prove that it is (±1)-conformally equivalent to the α-

geometry. As a corollary to this we obtain that the q-geometry on a q-exponential

family is the conformal flattening of the α-geometry. Then we investigate the dually

flat structures of a deformed exponential family in detail and provide a clear picture

of the state of the art. A description of the two dually flat structures, the U-geometry

by Naudts [28] and the χ-geometry by Amari et al. [37], are given. We show that the

U-geometry is the (F,G)-geometry and the χ-geometry is the conformal flattening of

the (F,G)-geometry for suitable choices of F and G [38]. Thus our study validates

the role of non-invariant (F,G)-geometry in the dually flat structures of the deformed

exponential family.

Amari [12] demonstrated the significance of α-connection, α-curvature and the du-

ality of connections in the higher order asymptotic theory of inference. He gave a dif-

ferential geometric framework for the estimation theory. Many researchers have studied

the importance of geometric approach in the theory of inference [14], [39–46]. In mis-

matched neural decoding problem one uses a mismatched model or an unfaithful model

instead of the original model [47, 48]. This may be the case when the true model is

not observable or may be a simpler model is preferred over the original model for the

computational convenience. In Ozumi et al. [48] an information geometric approach to

the maximum likelihood estimation based on a mismatched model is described. Moti-

vated by this we construct an information geometric framework for a general estimation

problem based on a mismatched model in an exponential family.

In Chapter 5 we discuss the geometric theory of parameter estimation problem in
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an exponential family and in a curved exponential family. We detail Amari’s differ-

ential geometric formulation of the asymptotic properties of an estimator in a curved

exponential family [12]. Then we describe parameter estimation problem based on a

mismatched model in an exponential family. We prove a necessary and sufficient con-

dition for an estimator based on a mismatched model to be consistent and first order

efficient. Ozumi et al. [48] stated certain conditions for the maximum likelihood esti-

mator (MLE) based on a mismatched model to be consistent and efficient. We give a

theoretical formulation of these results in a curved exponential family and a detailed

proof of the same.

The statistical estimation in an exponential family is well studied and the role of the

invariant α-geometry in this context is also well established. Naturally, one may think

of the estimation problem in a deformed exponential family. What is the role of the

non-invariant (F,G)-geometry in the theory of estimation in a deformed exponential

family? Recall the theorem by Amari and Nagaoka [14] which states that an estimator

on a statistical model S = {p(x; θ)} is finite sample efficient iff S is an exponential

family and θ is a m-affine coordinate system. Therefore it is natural to expect that

the deformed exponential family may not have a finite sample efficient estimator in

general. So for the estimation in a deformed exponential family one has to consider

certain generalized notions of independence of random variables, MLE, Cramer-Rao

lower bound etc.

In the context of the nonextensive thermostatistics Umarov et al. [49] defined the

q-independence and the q-central limit theorem using a generalized product called the

q-product, see also [50], [51]. Ferrari and Yang [52] defined a maximum Lq-estimator

(MLqE) based on the q-entropy and studied its asymptotic behavior in the case of an

exponential family. Matsuzoe and Ohara [53] also considered a generalized q-likelihood

estimator and studied its geometry in a q-exponential family. Fujimoto and Murata [54]

defined a more generalized notion of independence called the U-independence using a

smooth strictly convex function U .

Eguchi et al. [36] defined the U-estimator which is a generalization of the MLE and

showed that it is consistent and asymptotically normal. They studied the U-estimator in

a deformed exponential family also. In general, the U-estimator is not asymptotically

efficient. Naudts [28] defined a generalized Cramer-Rao bound using an escort proba-
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bility distribution and gave sufficient condition for the optimality. He showed that this

bound is optimal in a deformed exponential family. That is, a deformed exponential

family naturally has an estimator which attains equality in the generalized Cramer-Rao

lower bound. It is well known that the MLE for an exponential family is closely re-

lated to the dually flat structure. Motivated by this, we explore the relation between an

estimator and the two dually flat structures, the U-geometry and the χ-geometry, of a

deformed exponential family.

In Chapter 6 first we define F -product, F -independence using a function F and its

inverse function Z. Then a generalized MLE called the maximum F -likelihood esti-

mator (F -MLE) is defined and discussed its property as a MAP estimator with a prior.

Further using the F -escort probability distribution we define two generalized notions

of MLE, the xN based F -escort MLE and the F -escort MLE based on the product of

F -escort distribution of the marginal probability density of single observations. Also

we give a characterization of the q-escort MLE among the xN based F -escort MLE

as a Bayesian MAP estimator with a prior. Then an analytic proof of the F -version

of the maximum entropy theorem is given. Next we give a proof of the generalized

Cramer-Rao bound defined by Naudts. Then we show that the U-estimator for the dual

coordinate in the U-geometry of a deformed exponential family is optimal with respect

to this bound. Further we consider the F -MLE in a deformed exponential family which

is given in terms of the dual coordinate in the χ-geometry. To analyze the properties of

the F -MLE one need to have certain generalized notions of consistency and efficiency,

which is an open problem.

Preliminaries

Here we give the necessary differential geometric tools for the geometric study of statis-

tics [13], [14].

Definition 1.0.1. An n-dimensional topological manifold M is a second countable

Hausdorff topological space which is locally Euclidean. So for every point p ∈ M ,

there exist an open set U ⊂ M containing p and a homeomorphism φ : U −→ U ′,

where U ′ is an open subset of Rn.

(U,φ) is called a coordinate chart on M around p and φ = (xi), i = 1, · · · , n are
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called local coordinates on U . When U = M , (U,φ) is called a global chart and we

obtain a global coordinate system on M .

If we have two charts (U,ϕ) and (V,ψ) on M such that U ∩ V �= ∅, the composite

map ψ ◦ ϕ−1 : ϕ(U ∩ V ) −→ ψ(U ∩ V ) is called the transition map. The two charts

(U,ϕ) and (V,ψ) are said to be smoothly compatible if either U ∩ V = ∅ or the

transition map ψ ◦ ϕ−1 is a diffeomorphism.

An atlas A for M is the collection of charts whose domain cover M and A is said

to be a smooth atlas if any two charts in A are smoothly compatible with each other.

A is a maximal atlas if any chart that is smoothly compatible with every charts in A is

in A. A smooth structure on any topological manifold is a maximal smooth atlas on

M . A smooth manifold is a pair (M,A), where M is a topological manifold and A is

a smooth structure on M .

Definition 1.0.2. Let M be a smooth manifold. A function f : M −→ R is said to be

smooth if f ◦ϕ−1 is smooth for some smooth chart (U,ϕ) around each point. The set of

all smooth functions from M to R is denoted by C∞(M) which is a vector space over

R.

Definition 1.0.3. A linear map X : C∞(M) −→ R is called a derivation of C∞(M) at

p if it satisfies the following

X(fg) = f(p)Xg + g(p)Xf, ∀ f, g ∈ C∞(M) (1.1)

Let M be a smooth manifold and let p ∈ M . The tangent space to M at p, denoted by

TpM , is defined as the set of all derivations of C∞(M) at p.

Let (U,φ = (xi)) be a smooth chart on M around p. Then TpM is a vector space of

dimension n with basis { ∂
∂xi |p, i = 1, · · · , n}. Each element in TpM is called a tangent

vector at p. Let T ∗
pM denote the dual space of TpM which is also an n-dimensional

vector space and {dxi|p, i = 1, · · · , n} forms a basis. Elements of T ∗
pM are called

cotangent vectors at p.

A tangent bundle TM on M is the disjoint union of tangent spaces at all points of M .

TM =
�

p∈M
TpM (1.2)
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A cotangent bundle T ∗M on M is the disjoint union of cotangent spaces at all points

of M

T ∗M =
�

p∈M
T ∗
pM (1.3)

A vector field X on a smooth manifold M is a map X : M −→ TM which associates

to each point p ∈ M a tangent vector Xp ∈ TpM . X is said to be a smooth vector field

if it is smooth as a map from M to TM . Let Γ(TM) denote the set of all smooth vector

fields on M .

Definition 1.0.4. Let M be an n-dimensional smooth manifold. A Riemannian metric

g =<,> on M is a smooth symmetric 2-tensor field which is positive definite at each

point. So for every p ∈ M , gp =<,>p : TpM ×TpM −→ R is bilinear, symmetric and

positive definite.

A Riemannian manifold is a manifold equipped with a Riemannian metric.

Definition 1.0.5. Let M be an n-dimensional smooth manifold. A linear or an affine

connection on M is defined as a map ∇ : Γ(TM) × Γ(TM) −→ Γ(TM) which

satisfies the following

1. ∇X(Y + Z) = ∇XY +∇XZ

2. ∇(X+Y )Z = ∇XZ +∇Y Z

3. ∇X(fY ) = f∇XY + (Xf)Y

4. ∇fXY = f∇XY

for all f ∈ C∞(M) and X, Y, Z ∈ Γ(TM).

Let (U,φ = (xi)) be a smooth chart in M . Then {∂i = ∂
∂xi , i = 1, · · · , n} are smooth

vector fields on U called coordinate vector fields on U . The affine connection ∇ can

be locally determined by n3 functions Γk
ij given by

∇∂i∂j =
�

k

Γk
ij∂k (1.4)

where Γk
ij are called the Christoffel symbols of the affine connection ∇ with respect to

the coordinates (xi), i = 1, · · · , n.
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If ∇ is an affine connection on a Riemannian manifold M with a Riemannian metric

g =<,>

< ∇∂i∂j , ∂m >=
�

k

Γk
ij < ∂k, ∂m >=

�

k

Γk
ijgkm (1.5)

where gkm =< ∂k, ∂m >.

It is often convenient to express the Christoffel symbols of the affine connection ∇ by

Γijm =
�

k

Γk
ijgkm =< ∇∂i∂j , ∂m > (1.6)

The n3 functions Γijm are called the components of the affine connection with respect

to the coordinate (xi).

Definition 1.0.6. Let M be a Riemannian manifold with a Riemannian metric g. A

connection ∇ is said to be a metric connection if it satisfies

d(g(X, Y )) = g(∇X, Y ) + g(X,∇Y ) (1.7)

where d is the differential operator.

Definition 1.0.7. A connection is said to be symmetric or torsion free if the torsion

tensor T (X, Y ) = ∇XY −∇YX − [X, Y ] vanishes. That is, Γk
ij = Γk

ji.

An affine connection which is both symmetric and metric is called the Riemannian

connection or Levi-Civita connection with respect to g. Given a metric g, there exist

a unique Levi-Civita connection ∇ with respect to g given by

Γijk =
1

2
(∂igjk + ∂jgki + ∂kgij) (1.8)

Definition 1.0.8. Let M be a smooth manifold and let ∇ be an affine connection on M .

If there exists a coordinate system θ = (θi) such that ∇∂i∂j = 0 then we say that the

connection ∇ is a flat connection or M is flat with respect to ∇. Then the coordinate

system θ is called an affine coordinate system for M or we say that θ is ∇-affine.

Definition 1.0.9. Let (M, g) be a Riemannian manifold with a Riemannian metric g

and a coordinate system (x1, · · · , xn). Let γ : [a, b] −→ S be a curve in M . Define
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γi(t) = xi(γ(t)). Then the tangent vector (velocity vector) to γ is

γ̇(t) =
n

�

i=1

γ̇i(t) ∂i, where γ̇i(t) =
d

dt
γi(t) (1.9)

A curve γ in M is said to be a geodesic for an affine connection ∇ if its velocity is

constant according to ∇. That is,

∇γ̇ γ̇ = 0. (1.10)
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CHAPTER 2

Geometric Structures on a Statistical Manifold

In this chapter a generalized geometric structure called the (F,G)-geometry is intro-

duced on a statistical manifold which includes Amari’s α-geometry as a special case

[16]. A statistical manifold of probability distributions is equipped with a Riemannian

metric and a pair of dual affine connections [1], [4], [12–14]. It was Rao [1] who first

explicitly introduced a Riemannian metric on a statistical manifold called the Fisher in-

formation metric. Chentsov [4] introduced a family of affine connections in a statistical

manifold defined on finite sets. Amari [12] introduced a family of affine connections

called α-connections using a one parameter family of functions, the α-embeddings, see

also [5–7], [14]. These α-connections are equivalent to those defined by Chentsov [4].

Burbea [15] introduced the concept of weighted Fisher information metric using a pos-

itive continuous function. Motivated by these works, to define more general geometric

structures on a statistical manifold, we considered a general embedding function F and

a positive smooth function G and defined a geometry called the (F,G)-geometry [16].

The α-geometry turned out to be a special case of (F,G)-geometry.

In Section 2.1 we describe the affine structure of the family of measures and the

manifold structure of a statistical model of probability distributions. In Section 2.2 a

short account of Amari’s α-geometric structure is presented and the Fisher informa-

tion metric and the α-connections are computed for the statistical manifold defined on

finite sets. Then in Section 2.3 we give a detailed description of the dualistic (F,G)-

geometry on a statistical manifold and prove the necessary and sufficient conditions

for two (F,G)-connections to be dual with respect to the G-metric. Also prove that

the α-geometry is a special case of the (F,G)-geometry. Further the G-metric and the

(F,G)-connections are computed for statistical manifold defined on finite sets.
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2.1 Statistical Manifold

In this section we first discuss about the affine structure of the family of measures de-

fined on a measurable space under certain regularity conditions (refer [13] for more

details). Then we consider the family of probability measures and describe the mani-

fold structure of a statistical model of probability distributions.

2.1.1 Affine structure of the family of measures

Definition 2.1.1. Let V be an n-dimensional real vector space. An n-dimensional

affine space over the vector space V is a non-empty set E together with a translation

map + : V × E −→ E , (v, p) �−→ v + p which satisfies

1. v + (w + p) = (v + w) + p, ∀ v, w ∈ V, ∀ p ∈ E .

2. For any two points p, q ∈ E , ∃ a unique vector v ∈ V such that q = p+ v.

An affine space can be thought of as a set which becomes a vector space by selecting a

point to be the origin.

Let (X ,B) be a measurable space, where X is a non-empty set and B is the σ-field

of subsets of X . Consider the family A of non-negative σ-finite measures on (X ,B).
Define an equivalence relation ∼ on A by two measures in A are equivalent if they are

absolutely continuous with respect to each other. Let M denote one of the equivalence

classes of A.

Let RX be the set of all real valued measurable functions defined on (X ,B). In

general, RX is an infinite dimensional vector space. Then M is an affine space over the

vector space RX under the translation map defined by

ν + f = efν, ∀ f ∈ RX , ν ∈ M. (2.1)

1. For any µ ∈ M and f ∈ RX , ν = efµ is a non-negative σ-finite measure.

Whenever µ(E) = 0 for E ∈ B, ν(E) =
�

E

efdµ = 0 and hence efµ ∈ M.

Hence the translation map is well defined.
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2. For any two measures ν, µ ∈ M, ∃ a unique function f = dν
dµ

∈ RX ( f is

the Radon-Nikodym derivative ) which translates µ to ν. We often call ef as the

density function with respect to the measure µ.

3. ∀ f, g ∈ RX , ∀µ ∈ M, (µ + f) + g = efµ + g = egefµ = ef+gµ =

µ + (f + g) (Note that the same symbol + is used for vector addition and affine

space translation map).

Remark 2.1.2. Since M is an affine space over RX , by choosing an origin µ, M can

be identified with the vector space RX . It is equivalent to saying that any measure in

M can be expressed as densities with respect to a base measure.

2.1.2 Statistical manifold

Let Ω be the sample space associated with some random experiment and F be the σ-

field of subsets of Ω. Then a probability measure P on (Ω,F) is a measure satisfying

P (Ω) = 1 and (Ω,F , P ) is called a probability space.

Now consider a measurable space (X ,B), where B is the σ-field of subsets of X .

The (X ,B)-valued random variable X is defined as a (F ,B)-measurable function from

Ω −→ X . The probability measure P on (Ω,F) induces a probability measure X∗P on

(X ,B) defined by

X∗P (B) = P (X−1(B)), ∀ B ∈ B. (2.2)

Assume that X∗P is absolutely continuous with respect to a σ-finite measure µ on

(X ,B). Then the density of X with respect to µ is the Radon-Nikodym derivative p

given by

p =
dX∗P

dµ
. (2.3)

That is p : X −→ [0,∞) is a measurable function such that

X∗P (B) =

�

X−1(B)

dP =

�

B

p dµ. (2.4)

In most of the applications X = R
n and B = B(Rn) is the σ-algebra of Borel subsets

of Rn. We know that measures can be expressed as densities with respect to some base

measure. In this case the base measure can be taken as the Lebesgue measure on R
n.

So any probability measure on X can be represented in terms of density function with
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respect to Lebesgue measure.

A probability distribution on X is a function p : X −→ R satisfying

p(x) ≥ 0, ∀ x ∈ X and (2.5)

�

x∈X p(x) = 1 if X is a discrete set (finite or countably infinite) and
�

X
p(x)dx = 1

(Note that if n ≥ 2, then
�

denotes a multiple integral) if X = R
n.

Definition 2.1.3. Consider a family S of probability distributions on X . Suppose each

element of S can be parametrized using n real-valued variables (θ1, · · · , θn) so that

S = {pθ = p(x; θ) / θ = (θ1, · · · , θn) ∈ E} (2.6)

where E is a subset of Rn and the mapping θ �→ pθ is injective. Such a family S is

called an n-dimensional statistical model or a parametric model or simply a model on

θ. We often write it as S = {pθ}.

Now we state certain regularity conditions regarding the statistical model S = {pθ}
which are required for our geometric theory [12], [14].

Regularity conditions

1. E is an open subset of Rn and for each x ∈ X , the function θ �→ p(x; θ) is of

class c∞.

2. Let ℓ(x; θ) = log p(x; θ) and ∂i = ∂
∂θi

. For every fixed θ, n functions in x

{∂iℓ(x; θ), i = 1, · · · , n} are linearly independent and are known as scores.

3. The order of integration and differentiation may be freely rearranged.

4. The moments of scores exists upto necessary orders.

5. The supp(pθ) does not vary with respect to θ, where supp(pθ) := {x / p(x; θ) >

0}. Then we can redefine X to be supp(pθ). This is equivalent to p(x; θ) > 0

holds for all θ ∈ E and all x ∈ X . So the model S is a subset of

P(X ) := {p : X −→ R / p(x) > 0 (∀ x ∈ X ),

�

X

p(x)dx = 1} (2.7)
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Definition 2.1.4. For a model S = {pθ / θ ∈ E}, the mapping ϕ : S −→ R
n defined by

ϕ(pθ) = θ allows us to consider ϕ = (θi) as a coordinate system for S. Suppose there

is a c
∞ diffeomorphism ψ : E −→ ψ(E), where ψ(E) is an open subset of Rn. Then if

we use ρ = ψ(θ) instead of θ as the parameter we obtain S = {pψ−1(ρ) | ρ ∈ ψ(E)}.

This expresses the same family of probability distributions S = {pθ}. Then S is a c
∞

differentiable manifold by considering parametrizations which are c
∞ diffeomorphic

to each other to be equivalent and is called a statistical manifold. Note that (θi) is a

global coordinate system on S.

Example 2.1.5. (Normal Distribution)

X = R, n = 2, θ = (µ, σ), E = {(µ, σ) / −∞ < µ < ∞, 0 < σ < ∞}

N(µ, σ) = {p(x; θ) = 1√
2πσ

exp

�

−(x− µ)2

2σ2

�

/ θ = (µ, σ) ∈ E}. (2.8)

This is a 2-dimensional manifold which can be identified with the upper half plane.

Note 2.1.6. In this thesis we will be considering only finite dimensional statistical man-

ifolds.

2.2 α-Geometry

A statistical manifold naturally has a Riemannian metric called the Fisher information

metric introduced by Rao [1]. Amari [12] defined a one parameter family of affine

connections on a statistical manifold called the α-connection using a family of func-

tions called the α-embedding. This family of connections has a property that the α-

connection and the (−α)-connection are dual connections with respect to the Fisher

information metric. The α-geometry consisting of the (±α)-connections together with

the Fisher information metric is an important tool in the geometric theory of statistical

estimation [12]. Here we present a short description of the α-geometry on a statistical

manifold.

Let S = {pθ / θ ∈ E ⊆ R
n} be a statistical manifold. The tangent space Tθ(S) to S at

a point pθ is given by

Tθ(S) = {
n

�

i=1

αi∂i / αi ∈ R}. (2.9)
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There is a more convenient way of representing the tangent space to a statistical man-

ifold. The set of scores {∂iℓ(x; θ), i = 1, · · · , n} is linearly independent by the as-

sumption, so define an n-dimensional vector space spanned by the scores as

T 1
θ (S) = {A(x) / A(x) =

n
�

i=1

Ai∂iℓ(x; θ), A
i ∈ R}. (2.10)

Then there is a natural isomorphism between the two vector spaces Tθ(S) and T 1
θ (S)

given by

∂i ∈ Tθ(S) ←→ ∂iℓ(x; θ) ∈ T 1
θ (S). (2.11)

Any tangent vector A =
�n

i=1 A
i∂i ∈ Tθ(S) corresponds to a random variable A(x) =

�n
i=1 A

i∂iℓ(x; θ) ∈ T 1
θ (S) having the same coefficients Ai. Note that Tθ(S) is the

differentiation operator representation of the tangent space, while T 1
θ (S) is the random

variable representation of the same tangent space. The space T 1
θ (S) is called the 1-

representation of the tangent space.

Define expectation with respect to the distribution p(x; θ) as

Eθ(f) =

�

f(x)p(x; θ)dx. (2.12)

Note that Eθ[∂iℓ(x; θ)] = 0 since
�

p(x; θ)dx = 1. Hence for any random variable

A(x) ∈ T 1
θ (S), Eθ[A(x)] = 0.

This expectation induces an inner product on TθS in a natural way. Let A and B be two

tangent vectors in Tθ(S) and A(x) and B(x) be the corresponding 1-representations.

Then the inner product g =<,> is defined as

g(A,B)(θ) =< A,B >θ = Eθ[A(x)B(x)]. (2.13)

Denote the inner product of the basis vectors ∂i and ∂j by gij(θ) which is given by

gij(θ) =< ∂i, ∂j >θ = Eθ[∂iℓ(x; θ)∂jℓ(x; θ)] =

�

∂iℓ(x; θ)∂jℓ(x; θ)p(x; θ)dx (2.14)

Here we assume that the integral in Equation (2.14) exists for all θ ∈ E.

It is clear that the matrix G(θ) = (gij(θ)) is symmetric.
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For any n-dimensional vector c = [c1, · · · , cn]t

ctG(θ)c =

�

{
n

�

i=1

ci∂iℓ(x; θ)}2p(x; θ)dx � 0. (2.15)

Since {∂iℓ, i = 1, · · · , n} is linearly independent, from Equation (2.15) it follows

that G(θ) is positive definite for all θ. Hence g =<,> defined in Equation (2.14) is a

Riemannian metric on the statistical manifold S, called the Fisher information metric.

The matrix G(θ) is called the Fisher information matrix of S at the point pθ [12].

Example 2.2.1. Normal distribution

For the normal family

S = N(µ, σ) = {p(x; θ) = 1√
2πσ

exp

�

−(x− µ)2

2σ2

�

/ θ = (µ, σ) ∈ E} (2.16)

with parameters θ = (µ, σ), the log-likelihood function is given by

ℓ(x, θ) = −(x− µ)2

2σ2
− log

√
2πσ. (2.17)

Let ∂1 =
∂
∂µ

and ∂2 =
∂
∂σ

. The tangent space T 1
θ S is spanned by

∂1ℓ =
(x− µ)

σ2
, ∂2ℓ = −(x− µ)2

σ3
− 1

σ
. (2.18)

Then the Fisher information matrix G(θ) = (gij(θ)) is

G(θ) =







1

σ2
0

0
2

σ2






(2.19)

Definition 2.2.2. Let S = {p(x; θ) / θ ∈ E} be an n-dimensional statistical manifold

with the Fisher information metric g =<,>. Define n3 functions Γ1
ijk by

Γ1
ijk(θ) = Eθ[(∂i∂jℓ(x; θ))∂kℓ(x; θ)] (2.20)

which uniquely determine an affine connection ∇1 on the statistical manifold S called

the 1-connection or the exponential connection given by

Γ1
ijk(θ) =< ∇1

∂i
∂j , ∂k >θ . (2.21)
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For defining the 1-connection Amari [12] used ℓ(x; θ), the logarithm of the density

function p(x; θ). To obtain more general geometric structures on S Amari [12] used a

one parameter family of functions called the α-embedding instead of ℓ(x; θ).

Definition 2.2.3. The α-embedding Lα(p) is a one parameter family of functions de-

fined by

Lα(p) =







2
1−α

p
1−α
2 , α �= 1

log p, α = 1
(2.22)

called the α-representation of the density function p(x; θ).

Let ℓα(x; θ) = Lα(p(x; θ)). Note that the 1-representation ℓ1(x; θ) is the log-likelihood

function ℓ(x; θ) and the (−1)-representation ℓ−1(x; θ) is the density function p(x; θ) it-

self.

Let T α
θ (S) be an n-dimensional vector space spanned by n linearly independent func-

tions {∂iℓα(x; θ), i = 1, · · · , n} in x,

T α
θ (S) = {Aα(x) / Aα(x) =

n
�

i=1

Ai∂iℓα(x; θ), A
i ∈ R}. (2.23)

There is a natural isomorphism between the two vector spaces Tθ(S) and T α
θ (S) given

by

∂i ∈ Tθ(S) ←→ ∂iℓα(x; θ) ∈ T α
θ (S). (2.24)

The vector space T α
θ (S) is called the α-representation of the tangent space Tθ(S).

The α-representation of a vector A =
�n

i=1 A
i∂i ∈ Tθ(S) is the random variable

Aα(x) =

n
�

i=1

Ai∂iℓα(x; θ). (2.25)

We have the relations

∂iℓα = p
(1−α)

2 ∂iℓ (2.26)

∂i∂jℓα = p
(1−α)

2 (∂i∂jℓ+
1− α

2
∂iℓ∂jℓ) (2.27)

Define the α-expectation of a random variable f with respect to the density p(x; θ) as

Eα
θ (f) =

�

f(x)(p(x; θ))αdx. (2.28)
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This induces an inner product on S given by

< A,B >α
θ = Eα

θ [Aα(x)Bα(x)] (2.29)

where Aα(x), Bα(x) are the α-representations of A,B ∈ Tθ(S).
Using Equation (2.26), the inner product of the basis vectors is given by

< ∂i, ∂j >
α
θ =

�

∂iℓα ∂jℓα pα dx =

�

∂iℓα ∂jℓ−α dx (2.30)

=

�

∂iℓ ∂jℓ p dx = gij(θ) (2.31)

which is the Fisher information metric g.

That is, the α-expectation induces the Fisher information metric on S.

Definition 2.2.4. Let S = {p(x; θ) / θ ∈ E} be a statistical manifold with the Fisher

information metric g =<,>. Using the α-representation of the density function define

n3 functions Γα
ijk for each α ∈ R as

Γα
ijk =

�

∂i∂jℓα(x; θ)∂kℓ−α(x; θ)dx (2.32)

=

�

(∂i∂jℓ+
1− α

2
∂iℓ ∂jℓ) ∂kℓ p dx (2.33)

where the last equation follows from Equations (2.26) and (2.27).

These Γα
ijk uniquely determine an affine connection ∇α on the statistical manifold S

called the α-connection given by

Γα
ijk = < ∇α

∂i
∂j , ∂k > . (2.34)

Thus the one parameter family of functions Lα(p) defines a family of connections ∇α,

α ∈ R on the statistical manifold S.

Definition 2.2.5. Let M be a Riemannian manifold with a Riemannian metric g =<,>.

Two affine connections ∇ and ∇∗ on M are said to be dual connections with respect

to the metric g if

d(g(X, Y ))(Z) = g(∇ZX, Y ) + g(X,∇∗
ZY ) (2.35)
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for all X, Y, Z ∈ Γ(TM), where d is the differential operator.

Then the triple (g,∇,∇∗) is called a dualistic structure on M .

Letting Γijk = < ∇∂i∂j , ∂k >, Γ∗
ijk = < ∇∗

∂i
∂j , ∂k >, Equation (2.35) can be written

in terms of the basis vectors as

∂igjk = Γijk + Γ∗
ikj. (2.36)

Note that every affine connection has a unique dual with respect to a Riemannian metric

and if the affine connection is metric, then it is self dual.

Amari [12] proved the following theorem,

Theorem 2.2.6. The α-connection ∇α and the (−α)-connection ∇−α are dual with

respect to the Fisher information metric g. In particular, the 0-connection is the Levi-

Civita connection with respect to g.

Remark 2.2.7. On a statistical manifold S, the triple (g,∇α,∇−α) consisting of (±α)-

connections ∇±α with the Fisher information metric g defines a dualistic structure.

2.2.1 α-affine manifold and α-family

Amari [12] defined the notions of α-affine manifold and α-family and described them

on a statistical manifold defined on finite sets. Here first we give an overview of his

work and then compute the Fisher information metric and α-connections on a statistical

manifold defined on finite sets.

Let RX be the set of all real valued measurable functions on X . Consider the set of all

finite positive measures P̃(X ) on X given by

P̃(X ) := {p : X −→ R / p(x) > 0 (∀ x ∈ X );

�

X

p(x)dx < ∞} ⊂ RX . (2.37)

The set of all probability distributions P(X ) on X is a subset of P̃(X ) determined as

P(X ) := {p(x) ∈ P̃(X );

�

X

p(x)dx = 1}. (2.38)

For an n-dimensional statistical manifold S = {p(x; ξ) / ξ = (ξ1, · · · , ξn) ∈ E ⊆
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R
n} ⊆ P(X ) define the denormalization S̃ of S by

S̃ = {c p(x; ξ) / c > 0, p(x; ξ) ∈ S} ⊆ P̃(X ). (2.39)

Note that S̃ is an (n+ 1)-dimensional manifold and S is a submanifold of S̃.

Definition 2.2.8. Let S = {p(x; ξ) / ξ = (ξ1, · · · , ξn) ∈ E ⊆ R
n} be an n-dimensional

statistical manifold. If for some coordinate system θ = (θi), i = 1, · · · , n

∂i∂jℓα(x; θ) = 0 (2.40)

then from Equation (2.32) θ is a ∇α-affine coordinate system (referred as α-affine co-

ordinate system) and that S = {pθ} is ∇α-flat (referred as α-flat). Then S is said to be

an α-affine manifold.

The above condition is equivalent to the existence of the functions C, F1, · · · , Fn on X
such that

ℓα(x; θ) = C(x) +
n

�

i=1

θiFi(x). (2.41)

Definition 2.2.9. A statistical manifold S = {p(x; ξ) / ξ = (ξ1, · · · , ξn) ∈ E ⊆ R
n} is

said to be an α-family if its denormalization S̃ is an α-affine manifold.

For an n-dimensional α-family S, there exists a coordinate system θ = (θi) and func-

tions C1(x), · · · , Cn(x),ψ(θ) such that

ℓα(x; θ) =

n
�

i=1

θiCi(x)− ψ(θ) (2.42)

where ψ(θ) is obtained from the normalization condition
�

X p(x; θ)dx = 1.

Remark 2.2.10. When X is infinite, P̃(X ) and P(X ) are infinite dimensional spaces.

Hence the manifold structure of these spaces cannot be described in the usual way.

Here we consider P̃(X ) and P(X ) for finite X .

Let X = {x1, · · · , xn} be a finite set with cardinality n. Now consider the measur-

able space (X ,℘(X )), where ℘(X ) be the power set of X . Let RX be the space of all

real valued measurable functions defined on (X ,℘(X )). Any real valued measurable

function m on X can be specified by n-real numbers m1 = m(x1), · · · , mn = m(xn).
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Hence RX can be identified with R
n with coordinates (m1, · · · , mn). Then the set

P̃(X ) can be identified with the first orthant in R
n. That is. P̃(X ) can be identified

with the subset {(m1, · · · , mn) / mi > 0, ∀ i = 1, · · · , n } of Rn.

Theorem 2.2.11. For a finite set X of cardinality n, P̃(X ) is an α-affine manifold for

any α ∈ R.

Proof. Let X = {x1, · · · , xn} be a finite set constituting n elements. Let Fi : X −→ R

be the functions defined by Fi(xj) = δij for i, j = 1, · · · , n. Then any p(x) ∈ P̃(X )

can be written as

p(x) =
n

�

i=1

p(xi)Fi(x) (2.43)

Define n coordinates θi = Lα(p(xi)). Then

Lα(p(x)) =

n
�

i=1

θiFi(x) (2.44)

Therefore P̃(X ) is an α-affine manifold for any α.

Remark 2.2.12. Note that for any α ∈ R, P(X ) is an α-family since its denormaliza-

tion P̃(X ) is an α-affine manifold for any α.

For computational purpose let us restrict ourselves to a finite set X with three el-

ements. Let X = {x1, x2, x3}. Then P̃(X ) can be identified with the first octant

{(m1, m2, m3) / mi > 0, ∀ i = 1, 2, 3 } of R3 . Hence P̃(X ) is a 3-dimensional

manifold with global coordinates (m1, m2, m3).

α-Geometry on P̃(X ) and P(X )

Since P̃(X ) is an α-affine manifold for any α, any measure m(x) ∈ P̃(X ) can be

expressed as

Lα(m(x)) =
3

�

i=1

uiFi(x) (2.45)

where Fi(xj) = δij for i, j = 1, 2, 3 and ui = Lα(m(xi)) are α-affine coordinates.

Now we calculate the Fisher information metric and the α-connection on P̃(X ) and

P(X ).
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Case 1: α = 1

Consider α = 1 embedding which takes m �−→ logm, ∀ m ∈ P̃(X ). Since P̃(X ) is a

1-affine manifold,

L1(m(x)) = logm(x) =

3
�

i=1

uiFi(x) (2.46)

where ui = logm(xi).

Let ∂i =
∂
∂ui

and ∂ij =
∂2

∂ui∂uj
. The 1-connection on P̃(X )

Γ1
ijk =

�

X
∂i∂jL1(m(x))∂kL−1(m(x)), i, j, k = 1, 2, 3 (2.47)

From Equation (3.70) it follows that P̃(X ) is flat with respect to ∇1-connection, that is

Γ1
ijk = 0 and the coordinate (ui) is 1-affine.

Denote the components of the Fisher information metric g̃ on P̃(X ) with respect to the

coordinates ui by g̃ij .

g̃ij =
�

X
∂iL1(m(x))∂jL1(m(x))m(x) (2.48)

=
�

X
Fi(x)Fj(x)m(x) (2.49)

Thus

g̃ij =







exp(ui), i = j

0, i �= j
(2.50)

The Fisher information matrix for P̃(X ) is

G̃ =











exp(u1) 0 0

0 exp(u2) 0

0 0 exp(u3)











Remark 2.2.13. It is easy to see that this metric can be suitably transformed to the

Euclidean metric via a coordinate transformation ui �−→ 2 exp (ui/2). Then we get

g̃ij = δij .

Now consider P(X ). We can identify

P(X ) ∼ {(u1, u2, u3) / exp(u1) + exp(u2) + exp(u3) = 1}.
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Then for p(x) ∈ P(X )

log p(x) = u1F1(x) + u2F2(x) + u3F3(x) (2.51)

where u3 = log(1− exp(u1)− exp(u2)).

Take v1 = u1, v2 = u2. Note that (v1, v2) is a coordinate system for P(X ) and hence

P(X ) is a two dimensional submanifold of P̃(X ). Hence

log p(x) = v1F1(x) + v2F2(x) + log(1− exp(v1)− exp(v2))F3(x). (2.52)

Denote the components of the Fisher information metric on P(X ) by gij . Let ∂i =
∂
∂vi

.

gij =
�

X
∂i log p(x)∂j log p(x)p(x). (2.53)

Let w = 1− exp(v1)− exp(v2), then

∂1 log p(x) = F1(x)−
exp(v1)F3(x)

w
(2.54)

∂2 log p(x) = F2(x)−
exp(v2)F3(x)

w
. (2.55)

From Equation (2.53)

g11 =
exp(v1)(1− exp(v2))

w
; g22 =

exp(v2)(1− exp(v1))

w
. (2.56)

g12 = g21 =
exp(v1 + v2)

w
. (2.57)

The Fisher information matrix G for P(X ) is

G =





exp(v1)(1−exp(v2))
w

exp(v1+v2)
w

exp(v1+v2)
w

exp(v2)(1−exp(v1))
w



 (2.58)
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Let ∂ij =
∂2

∂vi∂vj
. Then the 1-connection on P(X ) is

Γ1
ijk =

�

X
∂ijL1(p(x))∂kL−1(p(x)) (2.59)

=
�

X
∂ij log(p(x))∂k(p(x)) (2.60)

where i, j, k = 1, 2.

∂11 log p(x) = −F3(x)

�

exp(2v1)

w2
+

exp(v1)

w

�

(2.61)

∂22 log p(x) = −F3(x)

�

exp(2v2)

w2
+

exp(v2)

w

�

(2.62)

∂12 log p(x) = ∂21 log p(x) = −F3(x)
exp(v1 + v2)

w2
. (2.63)

Also

∂1p(x) = p(x)

�

F1(x)−
exp(v1)F3(x)

w

�

(2.64)

∂2p(x) = p(x)

�

F2(x)−
exp(v2)F3(x)

w

�

. (2.65)

Thus we get the components of 1-connection as

Γ1
111 =

�

exp(3v1)

w2
+

exp(2v1)

w

�

; Γ1
222 =

�

exp(3v2)

w2
+

exp(2v2)

w

�

(2.66)

Γ1
112 =

�

exp(2v1 + v2)

w2
+

exp(2v1 + v2)

w

�

(2.67)

Γ1
221 =

�

exp(2v2 + v1)

w2
+

exp(2v1 + v2)

w

�

(2.68)

Γ1
121 = Γ1

211 =
exp(2v1 + v2)

w2
; Γ1

122 = Γ1
212 =

exp(2v2 + v1)

w2
. (2.69)
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For any α �= 1

Consider the α-embedding which takes m �−→ 2
1−α

m
1−α
2 , ∀ m ∈ P̃(X). Since P̃(X )

is an α-affine manifold, for any measure m ∈ P̃(X )

Lα(m(x)) =
2

1− α
m

1−α
2 =

3
�

i=1

uiFi(x). (2.70)

where ui =
2

1−α
m

1−α
2

i .

Let ∂i =
∂
∂ui

and ∂ij =
∂2

∂ui∂uj
. Then the α-connection on P̃(X ) is

Γα
ijk =

�

X
∂i∂jLα(m(x))∂kL−α(m(x)), i, j, k = 1, 2, 3. (2.71)

From Equation (2.70) it follows that P̃(X ) is flat with respect to ∇α-connection, that is

Γα
ijk = 0 and the coordinate (ui) is α-affine.

Denote the components of the Fisher information metric g̃ on P̃(X ) with respect to the

coordinates ui by g̃ij .

g̃ij =
�

X
∂iLα(m(x))∂jLα(m(x))m(x)α (2.72)

=
�

X
Fi(x)Fj(x)m(x)α. (2.73)

Thus

g̃ij =







(1−α
2
ui)

2α
1−α , i = j

0, i �= j
(2.74)

The Fisher information matrix for P̃(X ) is

G̃ =











(1−α
2
u1)

2α
1−α 0 0

0 (1−α
2
u2)

2α
1−α 0

0 0 (1−α
2
u3)

2α
1−α











(2.75)

Remark 2.2.14. This metric can be transformed to Euclidean metric via the coordinate

transformation ui �−→ 2(1−α
2
ui)

1
1−α . Then we get g̃ij = δij .

Now consider P(X ). Under the α-embedding, we can identify

P(X ) ∼ {(u1, u2, u3) / u
2

1−α

1 + u
2

1−α

2 + u
2

1−α

3 = (1−α
2
)

2
α−1}.
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For any p(x) ∈ P(X ),

Lα(p(x)) =
2

1− α
m(x)

1−α
2 = u1F1(x) + u2F2(x) + u3F3(x) (2.76)

where u3 =

�

(1−α
2
)

2
α−1 − u

2
1−α

1 − u
2

1−α

2

�
1−α
2

.

Take v1 = u1, v2 = u2. Then P(X ) is a two dimensional submanifold of P̃(X ) with a

coordinate system (v1, v2). We have

Lα(p(x)) = v1F1(x) + v2F2(x) +

�

(
1− α

2
)

2
α−1 − v

2
1−α

1 − v
2

1−α

2

�
1−α
2

F3(x). (2.77)

Denote the components of the Fisher information metric on P(X ) with respect to

(v1, v2) by gij . Denote ∂i =
∂
∂vi

.

gij =
�

X
∂iLα(p(x))∂jLα(p(x))p(x)

α. (2.78)

Let w = (1−α
2
)

2
α−1 − u

2
1−α

1 − u
2

1−α

2 . Then

∂1Lα(p(x)) = F1(x)− F3(x) v
1+α
1−α

1 w−( 1+α
2

) (2.79)

∂2Lα(p(x)) = F2(x)− F3(x) v
1+α
1−α

2 w−( 1+α
2

) (2.80)

g11 = w−1 v
2α
1−α

1

�

(
1− α

2
)−2 − (

1− α

2
)

2α
1−α v

2
1−α

2

�

(2.81)

g22 = w−1 v
2α
1−α

2

�

(
1− α

2
)−2 − (

1− α

2
)

2α
1−α v

2
1−α

1

�

(2.82)

g12 = g21 = w−1(
1− α

2
)

2α
1−α v

1+α
1−α

1 v
1+α
1−α

2 (2.83)

Let ∂ij =
∂2

∂vi∂vj
. Then the α-connection on P(X ) is

Γα
ijk =

�

X
∂ijLα(p(x))∂kL−α(p(x)) (2.84)
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where i, j, k = 1, 2.

∂11Lα(p(x)) =
1 + α

α− 1
w− (α+3)

2 v
2(1+α)
1−α

1 F3(x) (2.85)

∂22Lα(p(x)) =
1 + α

α− 1
w− (α+3)

2 v
2(1+α)
1−α

2 F3(x) (2.86)

∂12Lα(p(x)) = ∂21Lα(p(x)) (2.87)

=
1 + α

α− 1
w− (α+3)

2 v
2(1+α)
1−α

2 F3(x) (2.88)

Also

∂1L−α(p(x)) = p(x)α
�

F1(x)− F3(x) w
− (α+1)

2 v
1+α
1−α

1

�

(2.89)

∂2L−α(p(x)) = p(x)α
�

F2(x)− F3(x) w
− (α+1)

2 v
1+α
1−α

2

�

(2.90)

Thus we get the components of α-connection as

Γα
111 =

1 + α

2
(
1− α

2
)
3α−1
1−α w−2 v

3(1+α)
1−α

1 (2.91)

Γα
222 =

1 + α

2
(
1− α

2
)
3α−1
1−α w−2 v

3(1+α)
1−α

2 (2.92)

Γα
112 =

1 + α

2
(
1− α

2
)
3α−1
1−α w−2 v

2(1+α)
1−α

1 v
1+α
1−α

2 (2.93)

Γα
221 =

1 + α

2
(
1− α

2
)
3α−1
1−α w−2 v

2(1+α)
1−α

2 v
1+α
1−α

1 (2.94)

and

Γα
211 = Γα

121 = Γα
112 (2.95)

Γα
212 = Γα

122 = Γα
221 (2.96)

2.3 (F,G)-Geometry

Amari [12] defined the α-geometry using a particular family of functions called the α-

embedding. We considered a general embedding functionF instead of the α-embedding

and also a positive smooth function G to obtain more general geometric structures on a

statistical manifold called the (F,G)-geometry [16]. The α-geometry is a special case

of the (F,G)-geometry. Now we describe the (F,G)-geometric structure in detail.
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Let F : (0,∞) −→ R be a function which is atleast twice differentiable. Assume that

F ′(u) �= 0 ∀ u ∈ (0,∞). Then F is an embedding of S into RX which takes each

p(x; θ) �−→ F (p(x; θ)). Denote F (p(x; θ)) by F (x; θ). ∂iF (x; θ) can be written as

∂iF (x; θ) = p(x; θ)F ′(p(x; θ))∂iℓ(x; θ) (2.97)

It is clear that for every θ, the set of n functions {∂iF (x; θ), i = 1, · · · , n} in x is

linearly independent since {∂iℓ(x; θ), i = 1, · · · , n} is linearly independent.

Let TF (pθ)F (S) be the n-dimensional vector space spanned by {∂iF (x; θ), i = 1, · · · , n}.

TF (pθ)F (S) = {AF (x) / AF (x) =

n
�

i=1

Ai∂iF (x; θ), Ai ∈ R}. (2.98)

Let the tangent space TF (pθ)(F (S)) to F (S) at the point F (pθ) be denoted by T F
θ (S).

There is a natural isomorphism between the two vector spaces Tθ(S) and T F
θ (S) given

by

∂i ∈ Tθ(S) ←→ ∂iF (x; θ) ∈ T F
θ (S). (2.99)

The vector space T F
θ (S) is called the F -representation of the tangent space Tθ(S). The

F -representation of the tangent vector A =
�n

i=1 A
i∂i ∈ Tθ(S) is the random variable

AF (x) =
n

�

i=1

Ai∂iF ∈ T F
θ (S). (2.100)

Remark 2.3.1. Burbea [15] introduced the concept of weighted Fisher information

metric which is a generalized notion of Fisher information metric. He used a posi-

tive continuous function to define the weighted metric. We consider a positive smooth

function G together with an embedding function F to define more general geometric

structures on a statistical manifold called the (F,G)-geometry.

Definition 2.3.2. Let G : (0,∞) −→ R be a positive smooth function and F be the

embedding function. Then the (F,G)-expectation of a random variable f with respect

to the distribution p(x; θ) is defined as

EF,G
θ (f) =

�

f(x)
1

p(F ′(p))2
G(p) dx. (2.101)

(here we assume that the above integral exists.)
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We can use this (F,G)-expectation to define an inner product in RX by

< f, g >F,G
θ = EF,G

θ [f(x)g(x)]. (2.102)

which induces a Riemannian metric on S given by

< A,B >F,G
θ = EF,G

θ [AF (x)BF (x)], quadA,B ∈ Tθ(S). (2.103)

In terms of the basis vectors

< ∂i, ∂j >
F,G
θ =

�

∂iF ∂jF
G(p)

p(F ′(p))2
dx (2.104)

=

�

∂iℓ ∂jℓ G(p) p dx (2.105)

Since this metric do not depend on F , let us call this metric as G-metric. Denote it by

gG =<,>G and its components by gGij .

gGij(θ) =< ∂i, ∂j >
G
θ =

�

∂iℓ ∂jℓ G(p) p dx. (2.106)

The matrix [gGij(θ)] is called the G-matrix.

Definition 2.3.3. Let πF,G

|pθ : RX −→ T F
θ (S) be the projection map. The affine connec-

tion induced by this map on S, the (F,G)-connection ∇F,G, is defined as

∇F,G
∂i

∂j = πF,G

|pθ (
∂2F

∂θi∂θj
) (2.107)

=
�

n

�

m

gG(mn) <
∂2F

∂θi∂θj
,
∂F

∂θm
>F,G

θ ∂n (2.108)

where [gG(mn)(θ)] is the inverse of the G-matrix [gGmn(θ)].

Note that the (F,G)-connections are symmetric.

Lemma 2.3.4. The (F,G)-connection and its components can be written in terms of

scores as

∇F,G
∂i

∂j =
�

n

�

m

gG(mn)Eθ

��

∂i∂jℓ+ (1 +
pF ′′(p)

F ′(p)
)∂iℓ ∂jℓ

�

∂mℓ G(p)

�

∂n

(2.109)
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and

ΓF,G
ijk (θ) =

�
�

∂i∂jℓ + (1 +
pF ′′(p)

F ′(p)
)∂iℓ ∂jℓ

�

∂kℓ G(p) p dx. (2.110)

Proof. From Equation (2.97),

∂i∂jF = pF ′(p)∂i∂jℓ+ [pF ′(p) + p2F ′′(p)] ∂iℓ ∂jℓ. (2.111)

Therefore

< ∂i∂jF, ∂mF >F,G
θ =

�

∂i∂jF ∂mF
G(p)

p(F ′(p))2
dx (2.112)

=

�

[pF ′(p) + p2F ′′(p)] ∂iℓ ∂jℓ ∂mℓ
G(p)

F ′(p)
dx

+

�

∂i∂jℓ G(p) p dx (2.113)

= Eθ

�

(∂i∂jℓ+ (1 +
pF ′′(p)

F ′(p)
)∂iℓ ∂jℓ)∂mℓ G(p)

�

(2.114)

Hence

∇F,G
∂i

∂j = πF,G

|pθ (∂i∂jF ) (2.115)

=
�

n

�

m

gG(mn)Eθ

��

∂i∂jℓ + (1 +
pF ′′(p)

F ′(p)
)∂iℓ ∂jℓ

�

∂mℓ G(p)

�

∂n

(2.116)

Then the Christoffel symbols of the (F,G)-connection are

Γn
ij =

�

m

gG(mn)Eθ

�

(∂i∂jℓ+ (1 +
pF ′′(p)

F ′(p)
)∂iℓ ∂jℓ)∂mℓ G(p)

�

(2.117)

and components of the (F,G)-connection are

ΓF,G
ijk (θ) = < ∇F,G

∂i
∂j , ∂k >G

θ (2.118)

=

�
�

∂i∂jℓ+ (1 +
pF ′′(p)

F ′(p)
)∂iℓ ∂jℓ

�

∂kℓ G(p) p dx (2.119)

Theorem 2.3.5. Let F and H be two embeddings of S into RX and G be a posi-

tive smooth function on (0,∞). Then the (F,G)-connection ∇F,G and the (H,G)-
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connection ∇H,G are dual connections with respect to the G-metric iff the functions F

and H satisfy

H ′(p) =
G(p)

pF ′(p)
. (2.120)

We call such an embedding H as a G-dual embedding of F .

The components of the dual connection ∇H,G can be written as

ΓH,G
ijk (θ) =

�
�

∂i∂jℓ+ (1 +
pH ′′(p)

H ′(p)
)∂iℓ ∂jℓ

�

∂kℓ G(p) p dx (2.121)

=

�
�

∂i∂jℓ+ (
pG′(p)

G(p)
− pF ′′(p)

F ′(p)
)∂iℓ ∂jℓ

�

∂kℓ G(p) p dx. (2.122)

Proof. ∇F,G and ∇H,G are dual connections with respect to the G-metric means

∂k < ∂i, ∂j >
G=< ∇F,G

∂k
∂i, ∂j >

G + < ∂i,∇H,G
∂k

∂j >
G . (2.123)

for any basis vectors ∂i, ∂j , ∂k ∈ Tθ(S).

∂k < ∂i, ∂j >
G =

�

∂k∂jℓ ∂iℓ pG(p)dx+

�

∂k∂iℓ ∂jℓ pG(p)dx

+

�

(1 +
pG′(p)

G(p)
)∂iℓ ∂jℓ ∂kℓ pG(p)dx. (2.124)

< ∇F,G
∂k

∂i, ∂j >
G + < ∂i,∇H,G

∂k
∂j >

G =

�

∂k∂iℓ ∂jℓ pG(p)dx

+

�

1 +
pF ′′(p)

F ′(p)
∂iℓ ∂jℓ ∂kℓ pG(p)dx

+

�

1 +
pH ′′(p)

H ′(p)
∂iℓ ∂jℓ ∂kℓ pG(p)dx

+

�

∂k∂jℓ ∂iℓ pG(p)dx (2.125)

Then Equation (2.123) holds iff

�

[2 +
pF ′′(p)

F ′(p)
+

pH ′′(p)

H ′(p)
]∂iℓ ∂jℓ ∂kℓ pG(p)dx =

�

[1 +
pG′(p)

G(p)
]∂iℓ ∂jℓ ∂kℓ pG(p)dx (2.126)

⇐⇒ [2 +
pF ′′(p)

F ′(p)
+

pH ′′(p)

H ′(p)
] = 1 +

pG′(p)

G(p)
. (2.127)
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⇐⇒ 1 +
pH ′′(p)

H ′(p)
=

pG′(p)

G(p)
− pF ′′(p)

F ′(p)
(2.128)

⇐⇒ H ′′(p)

H ′(p)
=

G′(p)

G(p)
− F ′′(p)

F ′(p)
− 1

p
⇐⇒ H ′(p) =

G(p)

pF ′(p)
. (2.129)

Hence ∇F,G and ∇H,G are dual connections with respect to the G-metric iff Equation

(2.120) holds.

From Equation (2.128) we can rewrite the components of dual connection ∇H,G as

ΓH,G
ijk (θ) =

�
�

∂i∂jℓ+ (1 +
pH ′′(p)

H ′(p)
)∂iℓ ∂jℓ

�

∂kℓ G(p) p dx (2.130)

=

�
�

∂i∂jℓ+ (
pG′(p)

G(p)
− pF ′′(p)

F ′(p)
)∂iℓ ∂jℓ

�

∂kℓ G(p)p dx. (2.131)

Theorem 2.3.6. Amari’s α-geometry is a special case of the (F,G)-geometry.

Proof. Let F (p) = Lα(p), the α-embedding of Amari and G(p) = 1. Then

F ′(p) = L′
α(p) = p−(

1+α
2 ) (2.132)

F ′′(p) = L′′
α(p) = −1 + α

2
p−(

3+α
2 ) (2.133)

1 +
pF ′′(p)

F ′(p)
= 1 +

pL′′
α(p)

L′
α(p)

=
1− α

2
(2.134)

Then from Equation (2.120), the G-dual embedding of F is obtained as H(p) = L−α(p).

Also

1 +
pH ′′(p)

H ′(p)
=

1 + α

2
(2.135)

Thus

ΓF,G
ijk (θ) = Eθ

�

(∂i∂jℓ+ (1 +
pF ′′(p)

F ′(p)
)∂iℓ ∂jℓ)∂kℓ G(p)

�

(2.136)

= Eθ

�

(∂i∂jℓ+
1− α

2
∂iℓ ∂jℓ)(∂kℓ)

�

(2.137)

= Γα
ijk(θ) (2.138)
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and

ΓH,G
ijk (θ) = Eθ

�

(∂i∂jℓ+ (1 +
pH ′′(p)

H ′(p)
)∂iℓ ∂jℓ)∂kℓ G(p)

�

(2.139)

= Eθ

�

(∂i∂jℓ+
1 + α

2
∂iℓ ∂jℓ)(∂kℓ)

�

(2.140)

= Γ−α
ijk(θ) (2.141)

Hence (F,G)-connection reduces to the α-connection and the (H,G)-connection re-

duces to the (−α)-connection.

Also the G-metric is

gGij(θ) =

�

∂iℓ ∂jℓ G(p) p dx (2.142)

=

�

∂iℓ ∂jℓ p dx (2.143)

which is the Fisher information metric g.

Thus the α-geometry is a special case of the (F,G)-geometry.

Remark 2.3.7. The Levi-Civita connection ∇G with respect to the G-metric is given by

ΓG
ijk(θ) =

1

2

�

∂ig
G
jk + ∂jg

G
ki + ∂kg

G
ij

�

(2.144)

=

�
�

∂i∂jℓ+
1

2
(1 +

pG′(p)

G(p)
) ∂iℓ ∂jℓ

�

∂kℓ G(p) p dx. (2.145)

∇G is a (F,G)-connection ∇F,G with the embedding function F given by

F ′(p) =

�

G(p)
√
p

. (2.146)

When G(p) = 1 the connection ∇G reduces to Amar’s 0-connection ∇(0), which is the

Levi-Civita connection with respect to the Fisher information metric.

Example 2.3.8. Let F (x) = x ln x−x and let G(x) = ln x. Then from equation (2.120)

the G-dual embedding H of F is defined by

H ′(x) =
G(x)

xF ′(x)
=

ln x

x ln x
=

1

x
. (2.147)

Thus H(x) = lnx. Then from Equations (2.106), (2.110), (2.122) the G-metric and
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dual (F,G) and (H,G)-connections are given by

gGij(θ) =

�

∂iℓ ∂jℓ ln p p dx. (2.148)

ΓF,G
ijk (θ) =

�
�

∂i∂jℓ+ (1 +
1

ln p
)∂iℓ ∂jℓ

�

∂kℓ ln p p dx. (2.149)

ΓH,G
ijk (θ) =

�

∂i∂jℓ ∂kℓ ln p p dx. (2.150)

Remark 2.3.9. Zhang [21] considered a generalized α-representation of density func-

tion called ρ-representation and defined a divergence function called the (α, ρ, τ)- di-

vergence. Using this divergence he obtained a geometry on a statistical manifold called

the (α, ρ, τ)-geometry which is a generalization of α-geometry. In Chapter 3 we will

detail his work and discuss the relation between the (F,G)-geometry and the (α, ρ, τ)-

geometry.

2.3.1 F -affine manifold and F -family

Using the α-representation of density function, Amari [12] defined the notion of α-

affine manifold and α-family. Using a generalized ρ-representation of density function

Zhang [21] considered a ρ-affine family which is a generalization of α-affine manifold.

We consider the same family using the embedding function F and compute the G-

metric and the (F,G)-connections in the finite case.

Definition 2.3.10. Let S = {p(x; ξ) / ξ = (ξ1, · · · , ξn) ∈ E ⊆ R
n} be an n-

dimensional statistical manifold. If for some coordinate system θ = (θi), i = 1, · · · , n

∂i∂jF (x; θ) = 0 (2.151)

then from Equation (2.107) θ is an ∇F,G-affine coordinate system and that S = {pθ} is

∇F,G-flat. We call such an S as an F -affine manifold.

The above condition is equivalent to the existence of the functions C, F1, · · · , Fn on

X such that

F (x; θ) = C(x) +
n

�

i=1

θiFi(x). (2.152)

Definition 2.3.11. A statistical manifold S = {p(x; ξ) / ξ = (ξ1, · · · , ξn) ∈ E ⊆ R
n}

is said to an F -family if its denormalization S̃ is an F -affine manifold.
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For an n-dimensional F -family S there exists a coordinate system θ = (θi) and func-

tions C1(x), · · · , Cn(x),ψ(θ) such that

F (x; θ) =

n
�

i=1

θiCi(x)− ψ(θ) (2.153)

where ψ(θ) is obtained from the normalization condition
�

X p(x; θ)dx = 1.

Theorem 2.3.12. For any embedding F , P̃(X ) is an F -affine manifold for finite X .

Proof. Let X = {x1, · · · , xn}. Let Fi : X −→ R be functions defined by Fi(xj) = δij

for i, j = 1, · · · , n. Then any p(x) ∈ P̃(X ) can be written as

p(x) =

n
�

i=1

p(xi)Fi(x) (2.154)

Define n coordinates θi = F (p(xi)). Then

F (p(x)) =

n
�

i=1

θiFi(x) (2.155)

Therefore P̃(X ) is an F -affine manifold for any F .

Remark 2.3.13. P(X ) is a F -family for any F since P̃(X ) is an F -affine manifold for

any F . The F -family is a generalization of the exponential family. Hence it would be

appropriate to call it as F -exponential family instead of F -family. The geometry of the

F -exponential family will be discussed in Chapter 4.

(F,G)-Geometry on P̃(X ) and P(X )

Let X = {x1, x2, x3}. Since P̃(X ) is an F -affine manifold for any F , any measure

m(x) ∈ P̃(X ) can be expressed as

F (m(x)) =

3
�

i=1

uiFi(x) (2.156)

where Fi(xj) = δij for i, j = 1, 2, 3 and ui = F (m(xi)) = F (mi).

Let Z be the inverse function of F and then mi = Z(ui).
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Let ∂i =
∂
∂ui

and ∂ij =
∂2

∂ui∂uj
. The (F,G)-connection on P̃(X ) is

ΓF,G
ijk =

�

X
∂i∂jF (m(x)) ∂kH(m(x)), i, j, k = 1, 2, 3 (2.157)

where H is the G-dual embedding of F .

From Equation (2.156) it follows that P̃(X ) is flat with respect to ∇F,G-connection.

Thai is, ΓF,G
ijk = 0 and the coordinate (ui) is ∇F,G-affine.

Denote the components of the G-metric g̃G on P̃(X ) with respect to the coordinates ui

by g̃Gij .

g̃Gij =
�

X
∂iF (m(x)) ∂jH(m(x)) (2.158)

=
�

X

G(m(x))

m(x)(F ′(m(x)))2
Fi(x) Fj(x) (2.159)

g̃Gij =







G(mi)
mi(F ′(mi))2

i = j ; where mi = Z(ui)

0 i �= j
(2.160)

Now consider P(X ). We can identifyP(X ) ∼ {(u1, u2, u3) / Z(u1)+Z(u2)+Z(u3) =

1}. Then for p(x) ∈ P(X ),

F (p(x)) = u1F1(x) + u2F2(x) + u3F3(x) (2.161)

where u3 = F (1− Z(u1)− Z(u2)).

Take v1 = u1, v2 = u2. Note that (v1, v2) is a coordinate system for P(X ) and hence

P(X ) is a two dimensional submanifold of P̃(X ). Hence

F (p(x)) = v1F1(x) + v2F2(x) + F (1− Z(v1)− Z(v2))F3(x) (2.162)

Denote the components of the G-metric on P(X ) by gGij . Let ∂i =
∂
∂vi

.

gGij =
�

X
∂iF (p(x)) ∂jH(p(x)) (2.163)
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Let w = 1− Z(v1)− Z(v2). Then

∂1F (p(x)) = F1(x)− F3(x) F
′(w) Z ′(v1) (2.164)

∂2F (p(x)) = F2(x)− F3(x) F
′(w) Z ′(v2) (2.165)

and

∂1H(p(x)) = H ′(p(x)) Z ′(F (p(x))) [F1(x)− F3(x) F
′(w) Z ′(v1)] (2.166)

∂2H(p(x)) = H ′(p(x)) Z ′(F (p(x))) [F2(x)− F3(x) F
′(w) Z ′(v2)] (2.167)

Then

gG11 = H ′(Z(v1)) Z
′(v1) +

G(w)

w
(Z ′(v1))

2 (2.168)

gG22 = H ′(Z(v2)) Z
′(v2) +

G(w)

w
(Z ′(v2))

2 (2.169)

gG12 = gG21 =
G(w)

w
Z ′(v1) Z

′(v2) (2.170)

Let ∂ij =
∂2

∂vi∂vj
. Then the (F,G)-connection on P(X ) is

ΓF,G
ijk =

�

X
∂ijF (p(x)) ∂kH(p(x)) (2.171)

where i, j, k = 1, 2.

∂11F (p(x)) = −F3(x)
�

F ′(w) Z ′′(v1)− F ′′(w) (Z ′(v1))
2
�

(2.172)

∂22F (p(x)) = −F3(x)
�

F ′(w) Z ′′(v2)− F ′′(w) (Z ′(v2))
2
�

(2.173)

∂12F (p(x)) = ∂21F (p(x)) = F3(x) F
′′(w) Z ′(v1) Z

′(v2) (2.174)

Thus we get the components of (F,G)-connection as

ΓF,G
111 =

G(w)

w
Z ′′(v1) Z

′(v1)−
G(w)F ′′(w)

wF ′(w)
(Z ′(v1))

3 (2.175)

ΓF,G
222 =

G(w)

w
Z ′′(v2) Z

′(v2)−
G(w)F ′′(w)

wF ′(w)
(Z ′(v2))

3 (2.176)

ΓF,G
112 =

G(w)Z ′(v2)

wF ′(w)

�

F ′(w) Z ′′(v1)− F ′′(w) (Z ′(v1))
2
�

(2.177)

ΓF,G
221 =

G(w)Z ′(v1)

wF ′(w)

�

F ′(w) Z ′′(v2)− F ′′(w) (Z ′(v2))
2
�

(2.178)
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ΓF,G
121 =

−G(w)F ′′(w)

wF ′(w)
(Z ′(v1))

2 Z ′(v2) (2.179)

ΓF,G
122 =

−G(w)F ′′(w)

wF ′(w)
(Z ′(v2))

2 Z ′(v1) (2.180)

and ΓF,G
211 = ΓF,G

121 ; Γ
F,G
212 = ΓF,G

122 .

2.4 Summary

In this chapter we described the affine structure of family of measures, the manifold

structure of a statistical model and the α-geometry on a statistical manifold. Then the

Fisher information metric and the α-connections are computed for statistical manifold

defined on finite sets. Further a detailed description of the (F,G)-geometry on a sta-

tistical manifold is presented. We proved a necessary and sufficient condition for two

(F,G)-connections to be dual with respect to the G-metric. Also we showed that the

α-geometry is a special case of the (F,G)-geometry. Further the G-metric and the

(F,G)-connections are computed for statistical manifold defined on finite sets.
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CHAPTER 3

Invariant and Non-invariant Geometric Structures

In this chapter we study the invariance properties of a statistical manifold. First we

discuss about various geometric structures on a statistical manifold induced from a

two point function called divergence function. A divergence function measures the

amount of discrepancy or asymmetric distance between two probability distributions.

Eguchi [17] introduced a method of obtaining geometric structures on a statistical man-

ifold using the divergence function, see also [12], [14]. There are various classes

of divergence functions; f -divergence, Bregman divergence, (α, ρ, τ)-divergence, U-

divergence etc. These divergence functions give rise to various geometries on a statisti-

cal manifold [18–22], [55]

Chentsov [4] proved the uniqueness of the Fisher information metric and the α-

connections on a statistical manifold defined on finite sets with respect to the categori-

cal invariance, see also [23], [24]. Amari [12] conjectured that the Fisher information

metric and the α-connections are the only metric and affine connections which are in-

variant under any coordinate transformations of the sample space and of the parameter.

Recently, Ay et al. [25] addressed the invariance problem in the infinite dimensional

case also. The (F,G)-geometry is a generalized geometric structure on a statistical

manifold which includes the α-geometry as a special case. In this chapter we study the

invariance properties of the geometric structures and show that the α-geometry is the

only invariant geometry among the (F,G)-geometries [16].

Section 3.1 gives an overview of various divergence functions on a statistical man-

ifold and their induced geometric structures. In section 3.2 we describe the invari-

ance properties of the α-geometry, the (F,G)-geometry and the (α, ρ, τ)-geometry on

a statistical manifold. First we show that all these geometries are co-variant under

reparametrization of the parameter of the manifold. Then prove that both the (F,G)-

geometry and the (α, ρ, τ)-geometry and are not invariant under smooth one to one

transformations of the random variable in general. Also prove that the α-geometry is

the only invariant geometry in the category of both (F,G) and (α, ρ, τ)-geometries.

Further the relation between these two geometries is discussed.
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3.1 Divergence and the Induced Geometry

In this section Eguchi’s method of defining geometric structures using a divergence

function is given. Then various classes of divergence functions and the geometric struc-

tures induced by them are discussed.

Definition 3.1.1. Let S be an n-dimensional manifold with coordinate system θ =

(θ1, · · · , θn) = (θi). Let the coordinates of the points p, q be (θi), (θ′i) respectively.

A divergence function D : S × S −→ R is a smooth function satisfying the following

conditions

1. D(p, q) ≥ 0 for any p, q ∈ S with equality holding iff p = q

2. ∂i∂j′D(p, q)|p=q is negative definite.

where ∂i =
∂
∂θi

and ∂j′ =
∂

∂θ′j
.

Eguchi [17] defined a unique Riemannian metric gD and an affine connection ∇D from

a divergence D as

gDij (θ) = < ∂i, ∂j >
D
θ = −∂i∂j′D(p, q)|p=q (3.1)

ΓD
ijk(θ) = < ∇D

∂i
∂j , ∂k >

D
θ = −∂i∂j∂k′D(p, q)|p=q (3.2)

Dual of the divergence D∗ of D is defined as D∗(p, q) = D(q, p). The metric and the

affine connection induced from D∗ are given by

gD
∗

= gD (3.3)

ΓD∗

ijk = −∂i′∂j′∂kD(p, q)|p=q (3.4)

Note that the connections ∇D and ∇D∗

are dual with respect to the metric gD [17].

Hence a divergence function D induces a dualistic structure (gD,∇D,∇D∗

) on a statis-

tical manifold.

Now we describe various classes of divergence functions and the geometric structures

induced by them.
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3.1.1 f -divergence

The most commonly used class of divergence is the f -divergence introduced by Csiszar

[18]. Ali and Silvey [19] independently studied the f -divergence class. Let f : (0,∞) →
R be any convex function satisfying f(1) = 0 and f ′(1) = 0.

Df (p, q) =

�

f(
q

p
) p dx. (3.5)

An important example of the f -divergence is the α-divergence introduced by Amari

[12] which is generated by the function fα given by

fα(u) =



















4
1−α2{1− u

1+α
2 }, α �= ±1

u log u, α = 1

− log u, α = −1.

(3.6)

For α �= ±1,

Dα(p, q) =
4

1− α2

�

1−
�

p
1−α
2 q

1+α
2 dx

�

. (3.7)

and for α = ±1,

D−1(p, q) = D1(q, p) =

�

p log
p

q
dx. (3.8)

D−1 is the Kullback-Leibler divergence or relative entropy.

On a statistical manifold the f -divergence induces a Riemannian metric proportional to

the Fisher information metric with constant of proportionality f ′′(1) and affine connec-

tion equal to the α-connection with

α = 3 + 2
f ′′′(1)

f ′′(1)
. (3.9)

3.1.2 Bregman divergence

Bregman [20] introduced another class of divergences called the Bregman divergence.

Let φ : Ω ⊆ R
n → R be a smooth real valued and strictly convex function defined on a

closed convex set Ω. The Bregman divergence associated with the function φ is defined
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as

Dφ(x, y) = φ(y)− φ(x)−∇φ(x).(y − x), ∀ x, y ∈ Ω. (3.10)

Let S = {p(x; θ) / θ ∈ E ⊆ R
n} be an n-dimensional statistical manifold. Let

φ : Ω ⊆ R
n → R be a smooth real valued and strictly convex function defined on a

closed convex set Ω ⊆ E ⊆ R
n. The Bregman divergence associated with φ is given by

Dφ(pθ, pθ′) = Dφ(θ, θ
′) = φ(θ′)− φ(θ)−∇φ(θ).(θ′ − θ), ∀ θ, θ′ ∈ Ω. (3.11)

The metric and dual affine connections induced from the Bregman divergence are

gij(θ) = ∂i∂jφ(θ) (3.12)

Γijk(θ) = ∂i∂j∂kφ(θ) (3.13)

Γ∗
ijk(θ) = 0. (3.14)

The Bregman divergence is important in the study of dually flat spaces and in turn in

the asymptotic theory of statistical inference which will be discussed in the subsequent

chapters.

3.1.3 (α, ρ, τ)-divergence

Zhang [21] introduced a divergence function (or a functional) called the (α, ρ, τ)- di-

vergence using a real parameter α and a conjugate ρ, τ -representations of the density

function with respect to a convex function f . This ρ-representation is a generalized

notion of the α-representation.

Let ρ : (0,∞) → R be a strictly monotone increasing function and let f : R → R

be a smooth strictly convex function. A τ -representation of the density function is said

to be conjugate to the ρ-representation with respect to f if

τ(p) = f ′(ρ(p)) = ((f ′)∗)−1(ρ(p)) (3.15)

ρ(p) = (f ′)−1(τ(p)) = (f ∗)′(τ(p)). (3.16)

Using the ρ-representation of densities and using a real parameter α, a divergence func-
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tional D
(α)
f,ρ is defined as

D
(α)
f,ρ (p, q) =

4

1− α2

�
�

1− α

2
f(ρ(p)) +

1 + α

2
f(ρ(q)) (3.17)

−f

�

1− α

2
ρ(p) +

1 + α

2
ρ(q)

��

dx (3.18)

with

D
(1)
f,ρ(p, q) = D

(−1)
f,ρ (q, p) = D

(1)
f∗,τ (q, p) = D

(−1)
f∗,τ (p, q) (3.19)

=

�

[f(ρ(p)) + f ∗(τ(q))− ρ(p)τ(q)] dx. (3.20)

For a parametric model S, this can be written as

Dα
f,ρ(θp, θq) =

4

1− α2

�
�

1− α

2
f(ρ(θp)) +

1 + α

2
f(ρ(θq)) (3.21)

−f

�

1− α

2
ρ(θp) +

1 + α

2
ρ(θq)

��

dx. (3.22)

This induces a metric g′ and dual connections ∇′(α), ∇′∗(α) on a statistical model S
given by

g′ij(θ) =

�

∂τ

∂θi
∂ρ

∂θj
dx. (3.23)

Γ
′(α)
ijk (θ) =

�
�

1− α

2

∂2τ

∂θi∂θj
∂ρ

∂θk
+

1 + α

2

∂2ρ

∂θi∂θj
∂τ

∂θk

�

dx. (3.24)

Γ
′∗(α)
ijk (θ) =

�
�

1 + α

2

∂2τ

∂θi∂θj
∂ρ

∂θk
+

1− α

2

∂2ρ

∂θi∂θj
∂τ

∂θk

�

dx. (3.25)

3.1.4 U -divergence

Murata et al. [22] introduced a generalized class of divergence function called the U-

divergence. Eguchi et al. [36] discussed the geometry induced from the U-divergence

and its applications. U-divergence is a generalization of Kullback-Leibler divergence

and is defined using a generator function U .

Let U : R → R+ be an increasing convex function and let U∗ be the convex conjugate of

U given by U∗(t) = tξ(t)−U(ξ(t)), where ξ(t) is the inverse function of the derivative

of U(t), i.e. d
dt
U∗(t) = ξ(t).
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The U-divergence is defined as

DU (p, q) =

�

[U∗(p)− pξ(q) + U(ξ(q))] dx (3.26)

=

�

[U∗(p)− U∗(q)− ξ(q)(p− q)] dx. (3.27)

The geometry induced from the U-divergence, the U-geometry, is given by [36]

gUij(θ) =

�

∂ip(x; θ) ∂jξ(p(x; θ)) dx (3.28)

ΓU
ijk(θ) =

�

∂i∂jp(x; θ) ∂kξ(p(x; θ)) dx (3.29)

∗ΓU
ijk(θ) =

�

∂kp(x; θ) ∂i∂jξ(p(x; θ)) dx. (3.30)

Proposition 3.1.2. The U-geometry is a special case of both the (F,G) and (α, ρ, τ)-

geometries.

Proof. Let us take F (p) = ξ(p) = (U∗)′(p), H(p) = p and G(p) = p ξ ′(p). Then from

Equations (3.28), (3.29) and (3.30), the U-geometric structures can be written as

gUij(θ) =

�

∂iℓ ∂jℓ p ξ ′(p) p dx = gG(θ) (3.31)

ΓU
ijk(θ) =

�

(∂i∂jℓ+ ∂iℓ ∂jℓ) ∂kℓ p ξ′(p) p dx = ΓH,G
ijk (θ) (3.32)

∗ΓU
ijk(θ) =

�
�

∂i∂jℓ+ (1 +
pξ ′′(p)

ξ′(p)
)∂iℓ ∂jℓ

�

∂kℓ p ξ′(p) p dx (3.33)

= ΓF,G
ijk (θ) (3.34)

Thus the U-geometry is a special case of the (F,G)-geometry.

The U-geometry is a (α, ρ, τ)-geometry with f = U , ρ(p) = ξ(p), τ(p) = p and the

parameter α = ±1.

gUij(θ) =

�

∂ip(x; θ) ∂jξ(p(x; θ)) dx = g′ij(θ) (3.35)

ΓU
ijk(θ) =

�

∂i∂jp(x; θ) ∂kξ(p(x; θ)) dx = Γ
′(−1)
ijk (θ) = Γ

′∗(1)
ijk (θ) (3.36)

∗ΓU
ijk(θ) =

�

∂kp(x; θ) ∂i∂jξ(p(x; θ)) dx = Γ
′(1)
ijk (θ) = Γ

′∗(−1)
ijk (θ). (3.37)
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3.2 Invariant and Non-invariant Geometries on a Sta-

tistical Manifold

For a statistical manifold S = {p(x; θ) / θ ∈ E ⊆ R
n} the parameters are merely

labels attached to each point p ∈ S. So the intrinsic geometric properties should be

independent of these labels. Hence it is natural to consider the invariance properties of

the geometric structures under suitable transformations of the variables in a statistical

manifold. There are two kinds of invariance of the geometric structures, covariance un-

der reparametrization of the parameter of the manifold and invariance under the smooth

one to one transformations of the random variable [12], [14].

On a statistical manifold defined on finite sets, Chentsov [4] proved that the α-

geometry can be characterized by the invariance with respect to the sufficient statistic,

see also [23], [24]. Amari [12] conjectured that the Fisher information metric and the

α-connections are the only metric and affine connections which are invariant under any

coordinate transformations of the sample space and of the parameter. In this section we

show that the α-geometry is the only invariant geometry among the generalized (F,G)-

geometry class. Picard [56] also studied statistical morphisms and related invariance

properties. Ay et al. [25] studied this problem in the infinite dimensional case also.

In the previous section we described various classes of divergence functions and

their induced geometries. The f -divergence induces the α-geometry and the (α, ρ, τ)-

divergence induces the (α, ρ, τ)-geometry. The U-geometry comes under both the

(F,G)-geometry and the (α, ρ, τ)-geometry. In this section we discuss the invariance

properties of the α-geometry, the (F,G)-geometry and the (α, ρ, τ)-geometry. All these

geometries are covariant under reparametrization. But the (F,G) and the (α, ρ, τ)-

geometries are in general not invariant under smooth one to one transformations of the

random variable. The α-geometry is the only geometry among these geometries which

is both covariant under reparametrization and invariant under smooth one to one trans-

formations of the random variable.

Definition 3.2.1. Let (θi) and (ηj) be two coordinate systems on S which are related by

an invertible transformation η = η(θ). Let the coordinate expressions of the metric g

with respect to θi and ηi be given by gij =< ∂i, ∂j > and g̃ij =< ∂i, ∂j > respectively,

where ∂i =
∂
∂θi

and ∂j = ∂
∂ηj

. Let the components of the connection ∇ with respect to
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the coordinates (θi) and (ηj) be given by Γijk, Γ̃ijk respectively.

Then the covariance under the reparametrization of the metric and the connection is

defined as [14]

g̃ij =
�

m

�

n

∂θm

∂ηi

∂θn

∂ηj
gmn (3.38)

Γ̃ijk =
�

m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk
Γmnh +

�

m,h

∂θh

∂ηk

∂2θm

∂ηi∂ηj
gmh. (3.39)

The covariance under reparametrization actually means that the metric and connec-

tions are coordinate independent.

Definition 3.2.2. Let S = {p(x; θ) / θ ∈ E ⊆ R
n} be a statistical manifold defined

on a sample space X . Let x, y be random variables defined on sample spaces X ,Y
respectively and φ be a smooth one to one transformation of x to y. Assume that this

transformation induces a model S̄ = {q(y; θ) / θ ∈ E ⊆ R
n} on Y . Let λ : S −→ S̄

be a diffeomorphism defined as

λ(pθ) = qθ. (3.40)

Let g, ḡ be Riemannian metrics and ∇, ∇̄ be affine connections on S and S̄ respectively.

The invariance under smooth one to one transformation of the random variable is

defined as [14]

g(X, Y )p = ḡ(λ∗(X), λ∗(Y ))λ(p) (3.41)

λ∗(∇XY ) = ∇̄λ∗(X)λ∗(Y ), ∀ X, Y ∈ Tθ(S) (3.42)

where λ∗ is the push forward map associated with the map λ defined by

λ∗(X)λ(p) = (dλ)p(X). (3.43)

Invariant α-geometry

The Fisher information metric and the α-connections are invariant under smooth one to

one transformations of random variable and covariant under reparametrization [4], [12],

[23–25].
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3.2.1 Invariance of the (F,G)-geometry

Here the invariance property of the (F,G)-geometric structure is discussed.

Theorem 3.2.3. The G-metric gG is covariant under reparametrization.

Proof. The components of the G-metric gG with respect to the coordinate system (θi)

are

gGij(θ) = < ∂i, ∂j >θ =

�

∂ip(x; θ)∂jp(x; θ)
G(p)

p(x; θ)
dx. (3.44)

Let p̃(x; η) = p(x; θ(η)). Then the components of the Fisher information metric with

respect to the coordinate system (ηj) are given by

g̃ij(η) = < ∂i, ∂j >η =

�

∂ip̃(x; η)∂j p̃(x; η)
G(p̃)

p̃(x; η)
dx. (3.45)

Since

∂ip̃(x; η) =
�

m

∂θm

∂ηi

∂p(x; θ(η))

∂θm
(3.46)

the components of the metric are

g̃ij(η) =

�

∂ip̃(x; η)∂j p̃(x; η)
G(p̃)

p̃(x; η)
dx (3.47)

=

�

�

m

∂θm

∂ηi

∂p(x; θ)

∂θm

�

n

∂θn

∂ηj

∂p(x; θ)

∂θn
G(p)

p(x; θ)
dx (3.48)

=
�

m

�

n

∂θm

∂ηi

∂θn

∂ηj

�

∂mp(x; θ)∂np(x; θ)
G(p)

p(x; θ)
dx. (3.49)

=

�

�

m

�

n

∂θm

∂ηi

∂θn

∂ηj
gGmn(θ)

�

θ=θ(η)

(3.50)

Hence the G-metric gG is covariant under reparametrization.

Theorem 3.2.4. The (F,G)-connection ∇F,G is covariant under reparametrization.

Proof. Let the components of ∇F,G with respect to the coordinates (θi) and (ηj) be

given by ΓF,G
ijk , Γ̃F,G

ijk respectively.

Let p̃(x; η) = p(x; θ(η)). Denote log p(x; θ) by ℓθ, log p̃(x; η) by ℓ̃η, p(x; θ) by pθ and

p̃(x; η) by p̃η.

The components of the (F,G)-connection ∇F,G with respect to the coordinate system
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(θi) are

ΓF,G
ijk =

�
�

∂i∂jℓθ + (1 +
pF ′′(p)

F ′(p)
)∂iℓθ ∂jℓθ

�

∂kℓθ G(pθ) pθ dx (3.51)

The components of ∇F,G with respect to the coordinate system (ηj) are

Γ̃F,G
ijk =

�
�

∂i∂j ℓ̃η + (1 +
p̃F ′′(p̃)

F ′(p̃)
)∂iℓ̃η ∂

j ℓ̃η

�

∂k ℓ̃η G(p̃η) p̃η dx (3.52)

Since,

∂iℓ̃η =
�

m

∂θm

∂ηi

∂ℓθ(η)
∂θm

(3.53)

then

∂i∂j ℓ̃η =
�

m,n

∂θm

∂ηi

∂θn

∂ηj

∂2ℓθ(η)
∂θm∂θn

+
�

m

∂2θm

∂ηi∂ηj

∂ℓθ(η)
∂θm

(3.54)

∂iℓ̃η ∂
j ℓ̃η =

�

m,n

∂θm

∂ηi

∂θn

∂ηj

∂ℓθ(η)
∂θm

∂ℓθ(η)
∂θn

(3.55)

∂k ℓ̃η =
�

h

∂θh

∂ηk

∂ℓθ(η)
∂θh

(3.56)

Hence

Γ̃F,G
ijk =

�

(1 +
pF ′′(p)

F ′(p)
)
�

m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk

∂ℓθ(η)
∂θm

∂ℓθ(η)
∂θn

∂ℓθ(η)
∂θh

G(pθ(η)) pθ(η) dx

+

�

�

m,h

∂2θm

∂ηi∂ηj

∂θh

∂ηk

∂ℓθ(η)
∂θm

∂ℓθ(η)
∂θh

G(pθ(η)) pθ(η) dx

+

�

�

m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk

∂2ℓθ(η)
∂θm∂θn

∂ℓθ(η)
∂θh

G(pθ(η)) pθ(η) dx (3.57)

=
�

m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk

�

(1 +
pF ′′(p)

F ′(p)
)
∂ℓθ(η)
∂θm

∂ℓθ(η)
∂θn

∂ℓθ(η)
∂θh

G(pθ(η)) pθ(η) dx

+
�

m,h

∂2θm

∂ηi∂ηj

∂θh

∂ηk

�

∂ℓθ(η)
∂θm

∂ℓθ(η)
∂θh

G(pθ(η)) pθ(η) dx

+
�

m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk

�

∂2ℓθ(η)
∂θm∂θn

∂ℓθ(η)
∂θh

G(pθ(η)) pθ(η) dx (3.58)

=
�

m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk
ΓF,G
mnh +

�

m,h

∂θh

∂ηk

∂2θm

∂ηi∂ηj
gGmh (3.59)

Thus the (F,G)-connection is covariant under reparametrization of the parameter.
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Now we prove that the (F,G)-geometry is not invariant under smooth one to one

transformations of the random variable in general and the α-geometry is the only in-

variant geometry among the (F,G)-geometries.

Theorem 3.2.5. The (F,G)-geometric structures, the G-metric and the (F,G)- connec-

tion, are not invariant under smooth one to one transformations of the random variable

in general.

Proof. Consider a statistical manifold S = {p(x; θ) / θ ∈ E ⊆ R
n} defined on a

sample space X . Let φ be a smooth one to one transformation of the random variable x

to y. This induces a model S̄ = {q(y; θ) / θ ∈ E ⊆ R
n} on the sample space Y . Then

q(y : θ) = p(w(y); θ)w′(y) (3.60)

p(x; θ) = q(φ(x); θ)φ′(x) (3.61)

∂iℓ(x; θ) = ∂iℓ(φ(x); θ) (3.62)

where w is a function such that x = w(y) and φ′(x) = 1
w′(φ(x))

.

For convenience, denote p(x; θ) by px, q(y; θ) by qy, log(p(x; θ)) by ℓ(px) and log(q(y; θ))

by ℓ(qy). For any function h, h(p(x; θ)) be denoted by h(px) and h(q(y; θ)) be denoted

by h(qy).

Let gG, ḡG be the G-metrics defined on S and S̄ respectively. Then

gGij(θ) =

�

∂iℓ(px) ∂jℓ(px) G(px) px dx (3.63)

ḡGij(θ) =

�

∂iℓ(qy) ∂jℓ(qy) G(qy) qy dy (3.64)

=

�

∂iℓ(px) ∂jℓ(px) G(qφ(x)) px dx.

The condition for invariance of the G-metric is

�

∂iℓ(px) ∂jℓ(px) G(qφ(x)) px dx =

�

∂iℓ(px) ∂jℓ(px) G(px) px dx (3.65)

This implies that G(p) = c, where c is a constant. Thus the G-metric is not invariant in

general. It is invariant only if G(p) is a constant.

Now let us look at the invariance of the (F,G)-connection.

Let ΓF,G
ijk and Γ̄F,G

ijk be the components of the of (F,G)-connection in S and S̄ respec-
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tively. Then

ΓF,G
ijk (θ) =

�

(1 +
pxF

′′(px)

F ′(px)
)∂iℓ(px) ∂jℓ(px) ∂kℓ(px) G(px) px dx

+

�

∂i∂jℓ(px) ∂kℓ(px) G(px) px dx (3.66)

Γ̄F,G
ijk (θ) =

�

(1 +
qyF

′′(qy)

F ′(qy)
)∂iℓ(qy) ∂jℓ(qy) ∂kℓ(qy) G(qy) qy dy

+

�

∂i∂jℓ(qy) ∂kℓ(qy) G(qy) qy dy (3.67)

=

�

(1 +
qφ(x)F

′′(qφ(x))

F ′(qφ(x))
)∂iℓ(px) ∂jℓ(px) ∂kℓ(px) G(qφ(x)) px dx

+

�

∂i∂jℓ(px) ∂kℓ(px) G(px) px dx (3.68)

The condition for invariance of the (F,G)-connection is

�

(1 +
qφ(x)F

′′(qφ(x))

F ′(qφ(x))
)∂iℓ(px) ∂jℓ(px) ∂kℓ(px) G(qφ(x)) px dx

+

�

∂i∂jℓ(px) ∂kℓ(px) G(px) px dx =

�

(1 +
pxF

′′(px)

F ′(px)
)∂iℓ(px) ∂jℓ(px) ∂kℓ(px) G(px) px dx

+

�

∂i∂jℓ(px) ∂kℓ(px) G(px) px dx (3.69)

Then

pF ′′(p)

F ′(p)
= k; G(p) = k1 (3.70)

where k, k1 are real constants.

Thus in general, the (F,G)-connection ∇F,G is not invariant. It is invariant if only if

Equation (3.70) holds.

Hence the (F,G)-geometry is not invariant under smooth one to one transformations of

the random variable in general.

Corollary 3.2.6. The only (F,G)-geometry which is invariant under smooth one to one

transformations of the random variable is the α-geometry.

Proof. Using Euler’s homogeneous function theorem, it follows from equation (3.70)

that the function F ′ is a positive homogeneous function in p of degree k. Hence

F ′(λp) = λkF ′(p), for λ > 0. (3.71)
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Since F ′ is a positive homogeneous function in the single variable p, without loss of

generality take

F ′(p) = pk. (3.72)

Therefore

F (p) =







pk+1

k+1
, k �= −1

log p, k = −1
(3.73)

Let

k =
−(1 + α)

2
, α ∈ R. (3.74)

Then

F (p) =







2
1−α

p
1−α
2 , α �= 1

log p, α = 1
(3.75)

which is Amari’s α-embeddings Lα(p).

Also without loss of generality take k1 = 1. Then G(p) = 1. Thus the (F,G)-

connection reduces to the α-connection and the G-metric reduces to the Fisher infor-

mation metric.

Hence we obtain that the α-geometry is the only (F,G)-geometry which is invariant

under smooth one to one transformations of the random variable.

3.2.2 Invariance of the (α, ρ, τ)-geometry

Zhang [21] introduced the (α, ρ, τ)-divergence which induces a dualistic structure called

the (α, ρ, τ)-geometry.

g′ij(θ) =

�

∂iτ ∂jρ dx. (3.76)

Γ
′(α)
ijk (θ) =

�
�

1− α

2
∂i∂jτ ∂kρ+

1 + α

2
∂i∂jρ ∂kτ

�

dx. (3.77)

Γ
′∗(α)
ijk (θ) =

�
�

1 + α

2
∂i∂jτ ∂kρ+

1− α

2
∂i∂jρ ∂kτ

�

dx. (3.78)

where ∂i =
∂
∂θi

.

Now we show that the (α, ρ, τ)-geometry is covariant under reparametrization and not

invariant under smooth one to one transformations of the random variable in general.

Theorem 3.2.7. The (α, ρ, τ)-geometric structures, the metric g′ and the affine connec-

tion ∇′(α), are covariant under reparametrization.
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Proof. Let the components of g′ with respect to the coordinates (θi) and (ηj) be given

by g′ij , g̃
′
ij respectively.

Let p̃(x; η) = p(x; θ(η)). Denote τ(p(x; θ)) by τ(x; θ), τ(p̃(x; η)) by τ̃(x; η), ρ(p(x; θ))

by ρ(x; θ) and ρ(p̃(x; η)) by ρ̃(x; η).

We have

∂iτ̃(x; η) =
�

m

∂θm

∂ηi

∂τ(x; θ(η))

∂θm
(3.79)

∂iρ̃(x; η) =
�

m

∂θm

∂ηi

∂ρ(x; θ(η))

∂θm
(3.80)

∂i∂j τ̃(x; η) =
�

m,n

∂θm

∂ηi

∂θn

∂ηj

∂2τ(x; θ(η))

∂θm∂θn
+
�

m

∂2θm

∂ηi∂ηj

∂τ(x; θ(η))

∂θm
(3.81)

∂i∂j ρ̃(x; η) =
�

m,n

∂θm

∂ηi

∂θn

∂ηj

∂2ρ(x; θ(η))

∂θm∂θn
+
�

m

∂2θm

∂ηi∂ηj

∂ρ(x; θ(η))

∂θm
. (3.82)

The components of g′ with respect to θ are

g′ij(θ) =

�

∂iτ(x; θ) ∂jρ(x; θ) dx. (3.83)

The components of g′ with respect to η can be written as

g̃′ij(η) =

�

∂iτ̃ (x; η) ∂j ρ̃(x; η) dx. (3.84)

=

�

�

m

∂θm

∂ηi

∂τ(x; θ)

∂θm

�

n

∂θn

∂ηj

∂ρ(x; θ)

∂θn
dx (3.85)

=
�

m

�

n

∂θm

∂ηi

∂θn

∂ηj

�

∂mτ(x; θ)∂nρ(x; θ)dx. (3.86)

=

�

�

m

�

n

∂θm

∂ηi

∂θn

∂ηj
g′mn(θ)

�

θ=θ(η)

(3.87)

Thus the metric g′ is covariant under reparametrization.

Let the components of ∇′(α) with respect to the coordinates (θi) and (ηj) be Γ
′(α)
ijk , Γ̃

′(α)
ijk

54



respectively.

Γ
′(α)
ijk (θ) =

1− α

2

�

∂i∂j τ̃ (x; θ) ∂kρ̃(x; θ) dx

+
1 + α

2

�

∂i∂j ρ̃(x; θ) ∂kτ̃ (x; θ) dx. (3.88)

=
1− α

2

�

�

�

m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk

∂2τ(x; θ(η))

∂θm∂θn
∂ρ(x; θ(η))

∂θh
dx

+

�

�

m,h

∂2θm

∂ηi∂ηj

∂θh

∂ηk

∂τ(x; θ(η))

∂θm
∂ρ(x; θ(η))

∂θh
dx

�

1 + α

2

�

�

�

m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk

∂2ρ(x; θ(η))

∂θm∂θn
∂τ(x; θ(η))

∂θh
dx

+

�

�

m,h

∂2θm

∂ηi∂ηj

∂θh

∂ηk

∂ρ(x; θ(η))

∂θm
∂τ(x; θ(η))

∂θh
dx

�

(3.89)

=
�

m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk
Γ

′α
mnh +

�

m,h

∂θh

∂ηk

∂2θm

∂ηi∂ηj
g′mh. (3.90)

Thus the connection ∇′(α) is covariant under reparametrization. Hence the (α, ρ, τ)-

geometry is covariant under reparametrization.

Theorem 3.2.8. The (α, ρ, τ)-geometric structures g′ and ∇′(α) are not invariant under

smooth one to one transformations of the random variable in general.

Proof. Consider a statistical manifold S = {p(x; θ) / θ ∈ E ⊆ R
n} defined on a

sample space X . Let φ be a smooth one to one transformation of the random variable x

to y. This induces a model S̄ = {q(y; θ) / θ ∈ E ⊆ R
n} on Y . Then

q(y : θ) = p(w(y); θ)w′(y) (3.91)

p(x; θ) = q(φ(x); θ)φ′(x) (3.92)

∂iℓ(x; θ) = ∂iℓ(φ(x); θ) (3.93)

where w is a function such that x = w(y) and φ′(x) = 1
w′(φ(x))

.

For convenience, denote p(x; θ) by px, q(y; θ) by qy, log(q(y; θ)) by ℓ(qy) and log(q(y; θ))

by ℓ(qy). Also for any function h, h(p(x; θ)) be denoted by h(px) and h(q(y; θ)) be de-

noted by h(qy).
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Let g′, ḡ′ be the metrics defined on S and S̄ respectively. Then

g′ij(θ) =

�

∂iτ(px) ∂jρ(px) dx (3.94)

=

�

px τ ′(px) ρ
′(px) ∂iℓ(px) ∂jℓ(px) px dx (3.95)

ḡ′ij(θ) =

�

∂iτ(qy) ∂jρ(qy) dy (3.96)

=

�

qy τ
′(qy) ρ

′(qy) ∂iℓ(qy) ∂jℓ(qy) qy dy (3.97)

=

�

qφ(x) τ
′(qφ(x)) ρ

′(qφ(x)) ∂iℓ(px) ∂jℓ(px) px dx. (3.98)

The condition for invariance of the metric is

�

qφ(x) τ
′(qφ(x)) ρ

′(qφ(x)) ∂iℓ(px) ∂jℓ(px) px dx = (3.99)

�

px τ ′(px) ρ
′(px) ∂iℓ(px) ∂jℓ(px) px dx. (3.100)

This implies that

p τ ′(p) ρ′(p) = c (3.101)

where c is a constant.

That is the metric g′ is not invariant in general. It is invariant if only if p τ ′(p) ρ′(p) is

a constant.

Now let us look at the invarinace of the connection.

Let Γ
′(α)
ijk and Γ̄

′(α)
ijk be the components of the connection in S and S̄ respectively.

Γ
′(α)
ijk (θ) =

1− α

2

�
�

(1 +
pxτ

′′(px)

τ ′(px)
)∂iℓ(px)∂jℓ(px)∂kℓ(px)τ

′(px)ρ
′(px)p

2
x dx

+

�

∂i∂jℓ(px)∂kℓ(px)τ
′(px)ρ

′(px)p
2
xdx

�

+
1 + α

2

�
�

(1 +
pxρ

′′(px)

ρ′(px)
)∂iℓ(px)∂jℓ(px)∂kℓ(px)τ

′(px)ρ
′(px)p

2
x dx

+

�

∂i∂jℓ(px)∂kℓ(px)τ
′(px)ρ

′(px)p
2
xdx

�

. (3.102)
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Γ̄
′(α)
ijk (θ) =

1− α

2

�
�

(1 +
qyτ

′′(qy)

τ ′(qy)
)∂iℓ(qy)∂jℓ(qy)∂kℓ(qy)τ

′(qy)ρ
′(qy)q

2
y dy

+

�

∂i∂jℓ(qy)∂kℓ(qy)τ
′(qy)ρ

′(qy)q
2
ydy

�

+
1 + α

2

�
�

(1 +
qyρ

′′(qy)

ρ′(qy)
)∂iℓ(qy)∂jℓ(qy)∂kℓ(qy)τ

′(qy)ρ
′(qy)q

2
y dy

+

�

∂i∂jℓ(qy)∂kℓ(qy)τ
′(qy)ρ

′(qy)q
2
ydy

�

(3.103)

=
1− α

2

�
�

∂iℓ(px)∂jℓ(px)∂kℓ(px)τ
′(qφ(x))ρ

′(qφ(x))qφ(x)px dx

+
qφ(x)τ

′′(qφ(x))

τ ′(qφ(x))
∂iℓ(px)∂jℓ(px)∂kℓ(px)τ

′(qφ(x))ρ
′(qφ(x))qφ(x)px dx

1 + α

2

�
�

∂iℓ(px)∂jℓ(px)∂kℓ(px)τ
′(qφ(x))ρ

′(qφ(x))qφ(x)px dx

+
qφ(x)ρ

′′(qφ(x))

ρ′(qφ(x))
∂iℓ(px)∂jℓ(px)∂kℓ(px)τ

′(qφ(x))ρ
′(qφ(x))qφ(x)px dx

+

�

∂i∂jℓ(px)∂kℓ(px)τ
′(qφ(x))ρ

′(qφ(x))qφ(x)pxdx

�

. (3.104)

From the condition for invariance of the connection we get

pτ ′′(p)

τ ′(p)
= c1;

pρ′′(p)

ρ′(p)
= c2, (3.105)

p τ ′(p) ρ′(p) = c3 (3.106)

where c1, c2, c3 are real constants.

Thus in general, the connection ∇′(α) is not invariant. It is invariant if and only if the

Equations (3.105) and (3.106) hold.

Hence the (α, ρ, τ)-geometry is not invariant under smooth one to one transformations

of the random variable in general.

Corollary 3.2.9. The only (α, ρ, τ)-geometry which is invariant under smooth one to

one transformations of the random variable is the α-geometry.

Proof. Using the homogeneous function theorem, it follows from the Equation (3.105)

that

τ ′(p) = pc1, ρ′(p) = pc2 (3.107)

From the Equation (3.106) it follows that

c1 + c2 + 1 = 0 or c2 = 1− c1. (3.108)
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Hence

τ(p) =
pc1+1

c1 + 1
, ρ(p) =

p−c1

−c1
(3.109)

Now let

c1 = −(1− β)

2
, β ∈ R (3.110)

τ(p) =
2

1 + β
p

1+β

2 , ρ(p) =
2

1− β
p

1−β

2 (3.111)

Thus the connection ∇′(α) reduces to

Γ
′(α)(θ) =

�
�

∂i∂jℓ+
1− αβ

2
∂iℓ ∂jℓ

�

∂kℓ p dx (3.112)

= Γ(αβ)(θ). (3.113)

This is Amari’s α-connection with parameter αβ.

From Equations (3.95) and (3.106)

g′ij(θ) = c3

�

∂iℓ(x; θ) ∂jℓ(x; θ) p(x; θ) dx

= c3 gij(θ). (3.114)

That is the metric g′ reduces to a constant times the Fisher information metric g.

Thus the only (α, ρ, τ)-geometry which is invariant under smooth one to one transfor-

mations of the random variable is the α-geometry.

Remark 3.2.10. Zhang [21] showed that the only measure invariant divergence func-

tion associated with quasi-linear mean operator which is scale invariant is a two pa-

rameter family of divergence Dα,β given by

Dα,β(p, q) =
4

1− α2

2

1 + β

�
�

1− α

2
p+

1 + α

2
q

−
�

1− α

2
p

1−β

2 +
1 + α

2
q

1−β

2

�
2

1−β

�

dx (3.115)

where α, β ∈ [−1, 1].

This divergence function induces Fisher information metric and Amari’s α-connection

with parameter αβ.
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3.2.3 (F,G) and (α, ρ, τ)-geometries

The (F,G)-geometry and the (α, ρ, τ)-geometry come under the category of general-

ized geometries on a statistical manifold which are non-invariant. The (F,G)- geometry

is derived naturally by embedding the manifold into the space of random variables RX

and suitably defining the inner product on RX . This is done using an embedding func-

tion F and a positive smooth function G. The α-geometry is a special case of this

(F,G)-geometry and is the only invariant geometry in that category.

The (α, ρ, τ)-geometry is induced from a divergence function ((α, ρ, τ)-divergence).

This divergence function is defined using the conjugate representations ρ and τ of densi-

ties with respect to a convex function f . The α-geometry is the only invariant geometry

among the (α, ρ, τ)-geometries. Zhang [57] claimed that the (F,G)-geometry and the

(α, ρ, τ)-geometry are the same. But in the definition of (α, ρ, τ)-geometry the two

representations used are conjugate with respect to a strictly convex function f , which is

indeed a strong condition. In this context we have the following theorem and examples.

Theorem 3.2.11. The (α, ρ, τ)-geometry can always be expressed as (F,G)-geometry.

Conversely, if the function

f(x) =

� x

a

�

� F−1(t)

b

G(u)

uF ′(u)
du

�

dt (3.116)

exists then the (F,G)-geometry can be expressed as (α, ρ, τ)-geometry.

Proof. For the (α, ρ, τ)-geometry the conjugate representations ρ and τ with respect to

a convex function f are given by

τ(p) = f ′(ρ(p)) = ((f ′)∗)−1(ρ(p)) (3.117)

ρ(p) = (f ′)−1(τ(p)) = (f ∗)′(τ(p)). (3.118)

Now take F (p) = ρ(p) and H(p) = τ(p). Then G is determined as follows

G(p) = pF ′(p)H ′(p) (3.119)

= pf ′′(F (p))(F ′(p))2. (3.120)

Since ρ and τ are smooth strictly increasing functions the function G is well defined and
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positive. Thus the (α, ρ, τ)-geometry can always be expressed as the (F,G)-geometry.

Conversely, for the dualistic (F,G)-geometry (gG,∇F,G,∇H,G) the dual embedding

relation is given by

H ′(p) =
G(p)

pF ′(p)
. (3.121)

Take ρ(p) = F (p) and τ(p) = H(p) and define a convex function f as

f(x) =

� x

a

�

� F−1(t)

b

G(u)

uF ′(u)
du

�

dt =

� x

a

H(F−1(t)) dt (3.122)

This integral need not exist in general. So the function f need not exist in general

even if the functions F,H,G exist. Thus the (F,G)-geometry can not be expressed as

(α, ρ, τ)-geometry in general.

If the function f exists then the (F,G)-geometry can be expressed as (α, ρ, τ)-geometry.

Remark 3.2.12. Thus the (α, ρ, τ)-geometry can always be expressed as (F,G)-geometry.

Further, if we assume that the (F,G)-geometry can be expressed as (α, ρ, τ)-geometry

(that is, the convex function f exist) then we have from Equation (3.24)

∇′(α) =
1− α

2
∇H,G +

1 + α

2
∇F,H . (3.123)

Example 3.2.13. Let F (x) = ln x and G(x) = ln x, Then the G-dual embedding of F

is H(x) = x ln x− x.

Now let ρ(x) = F (x) = ln x, τ(x) = H(x) = x ln x−x . Then from Equation (3.117),

f is defined by

f ′(ln x) = x ln x− x (3.124)

Let y = ln x. Then f ′(y) = ey(y − 1). Thus

f(y) =

� y

0

et(t− 1) dt (3.125)

= ey(y − 2) + 2. (3.126)

In this example, since the function f is well defined, the duality of F and H with respect

to G can be interpreted in terms of the conjugacy of ρ, τ with respect to f . Thus the

(F,G)-geometry can be expressed as (α, ρ, τ)-geometry.
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Example 3.2.14. Let F (x) = x ln x− x and

G(x) =
x(ln x− 1)

ln x
(3.127)

The G-dual embedding of F is

H(x) =
x

ln x
(3.128)

Let us try to find a convex function f to obtain a (α, ρ, τ)-representation.

Take ρ(x) = F (x) and τ(x) = H(x). The function f is defined by

f ′(ρ(x)) = τ(x) (3.129)

That is,

f ′(x ln x− x) =
x

ln x
(3.130)

Note that in this case we cannot find an explicit expression of f with respect to which

the ρ and τ are conjugate and thus elucidating the Theorem 3.2.11.

3.3 Summary

In this chapter first we described various classes of divergence functions and the ge-

ometry induced by them. Then we obtained the U-geometry is a special case of both

the (F,G) and (α, ρ, τ)-geometries. We studied the invariance properties of the α-

geometry, (F,G)-geometry and (α, ρ, τ)-geometry on a statistical manifold and clas-

sified them into two categories; invariant and non-invariant. We showed that all these

geometries are covariant under reparametrization. Further we showed that both the

(F,G)-geometry and the (ρ, τ)-geometry are not invariant in general. As a partial an-

swer to Amari’s conjecture we showed that the α-geometry is the only invariant ge-

ometry in the category of the generalized (F,G)-geometry. The (α, ρ, τ)-geometry

can be expressed as the (F,G)-geometry and the (F,G)-geometry can be expressed as

(α, ρ, τ)-geometry provided the convex function f with respect to which ρ and τ are

conjugate exists. Also examples are given to make this point clear.
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CHAPTER 4

Deformed Exponential Family

In this chapter we present a clear picture of the state of the art in the study of the

dually flat geometries of the deformed exponential family. A dually flat space is an

important tool in the geometric study of statistical estimation [12], [14]. An exponential

family is an important statistical model which has a dually flat structure with respect to

(±1)-connections [12], [14]. A q-exponential family is generalization of an exponential

family which is used in non-extensive statistical mechanics [26], [28]. A q-exponential

family has a dually flat structure called the q-structure which is the conformal flattening

of the α-geometry [27], [53].

Naudts [28] introduced a more generalized notion of exponential family called the

deformed exponential family and defined a dually flat structure on it, the U-geometry.

The geometry of the deformed exponential family was extensively studied by many

authors [31–36] . Amari et al. [37] also studied this deformed exponential family and

obtained a dually flat structure on it called the χ-geometry, which is different from the

U-geometry.

In this chapter we discuss the importance of the (F,G)-geometry in the study of the

dually flat geometries of the deformed exponential family. In Section 4.1 the general

structure of a dually flat space is described. In Section 4.2 a short description of the

dually flat geometry of the exponential family and q-exponential family are given. In

Section 4.3 the two dually flat geometries, the U-geometry and the χ-geometry, on

the deformed exponential family are described. Then the role of non-invariant (F,G)-

geometry in the study of a deformed exponential family is presented. We show that

the U-geometry is the (F,G)-geometry and χ-geometry is the conformal flattening of

(F,G)-geometry for suitable choices of F and G.
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4.1 Dually Flat Spaces

On a statistical manifold a divergence function always induces a unique torsion free

dualistic structure. Matumoto [58] proved that every torsion-free dualistic structure

is induced from a globally defined divergence. But there may be many divergence

functions which induces the same dualistic structure. In the case of a dually flat space

there exist a unique divergence which generates its geometric structure. Now we give a

brief description of a dually flat space.

Let S be a statistical manifold and (g,∇,∇∗) be a dualistic structure on S. Assume

that the affine connection ∇ is flat. By duality ∇∗ is also flat. Then (g,∇,∇∗) is a

dually flat structure on S and (S, g,∇,∇∗) is called a dually flat space.

Consider a dually flat space (S, g,∇,∇∗). By the definition of flat connection, there

exists a ∇-affine coordinate system θ for S. Then by the duality of ∇ and ∇∗, one can

choose a ∇∗-affine coordinate system η such that

< ∂i, ∂
j >= δij, where ∂i =

∂

∂θi
, ∂j =

∂

∂ηj
. (4.1)

Let the components of the Riemannian metric g with respect to θ and η be

gij =< ∂i, ∂j > and gij =< ∂i, ∂j > (4.2)

From Equations (4.1) and (4.2)

∂ηj
∂θi

= gij and
∂θi

∂ηj
= gij (4.3)

Since

∂iηj = gij = ∂jηi and ∂jθi = gij = ∂iθj (4.4)

there exist functions ψ(θ) and φ(η) corresponding to θ and η such that

ηi = ∂iψ(θ) and θi = ∂iφ(η) (4.5)

Since (∂i∂jψ(θ)) = (gij) and (∂i∂jφ(η)) = (gij) are positive definite matrices, ψ is a
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strictly convex function of θ and φ is a strictly convex function of η. Also it follows that

φ(q) = max
p∈S

{θ(p).η(q)− ψ(p)} , ∀ q ∈ S (4.6)

and

ψ(p) = max
q∈S

{θ(p).η(q)− φ(q)} , ∀ p ∈ S (4.7)

This is the Legendre transformation. The convex functions ψ and φ are called the

potential functions corresponding to θ and η respectively.

Then the components of ∇ and ∇∗ with respect to θ and η are

Γijk =< ∇∂i∂j , ∂k >= 0 and Γ∗
ijk =< ∇∗

∂i
∂j , ∂k >= ∂i∂j∂kψ (4.8)

Γ∗ijk =< ∇∗
∂i∂j , ∂k >= 0 and Γijk =< ∇∂i∂j , ∂k >= ∂i∂j∂kφ (4.9)

Definition 4.1.1. Let (M, g) be a Riemannian manifold and let ∇ be a flat connection on

M . The pair (M, g) is a Hessian structure on M or (M, g,∇) is a Hessian manifold

if there exist a function ψ such that g = ∇dψ. Let ∇∗ be the dual connection of ∇
with respect to the metric g. Then (M, g,∇) is a Hessian manifold is equivalent to

(M, g,∇,∇∗) is a dually flat space.

For a dually flat space (S, g,∇,∇∗) there exists a unique divergence called the

canonical divergence given by

D(p, q) = ψ(p) + φ(q)−
�

θi(p)ηi(q). (4.10)

The canonical divergence D is also called (g,∇)-divergence on S. The dual divergence

or the (g,∇∗)-divergence is given by

D∗(p, q) = D(q, p) (4.11)

See Amari and Nagaoka [14] for more details. Note that the Bregman divergence always

induces a dually flat structure. For a dually flat space the canonical divergence is the

Bregman divergence.

Also for a dually flat space one can have the generalized Pythagorean theorem and the
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projection theorem [12], [14].

Definition 4.1.2. Let S be an n-dimensional manifold and let M be an m-dimensional

submanifold of S. Let ∇ be an affine connection on S. Then M is said to be ∇-

autoparallel if

∇XY ∈ Γ(TM), ∀ X, Y ∈ Γ(TM) (4.12)

where Γ(TM) is the family of smooth vector fields on M .

Theorem 4.1.3. (Pythagorean theorem) Let (S, g,∇,∇∗) be a dually flat space and D

be the canonical divergence. Given three points p, q, r ∈ S. Let γ1 be the ∇-geodesic

connecting p and q and let γ2 be the ∇∗-geodesic connecting q and r. If the curves γ1

and γ2 are orthogonal with respect to g at the intersecting point q then

D(p, r) = D(p, q) +D(q, r). (4.13)

Theorem 4.1.4. (Projection theorem) Let (S, g,∇,∇∗) be a dually flat space and let M

be a ∇∗-autoparallel submanifold of S. Let D be the canonical divergence of S. Given

p ∈ S, a necessary and sufficient condition for a point q ∈ M to satisfy D(p, q) =

minr∈M D(p, r) is that the ∇-geodesic connecting p and q is orthogonal to M at q.

4.2 Exponential Family and q-Exponential Family

Exponential family and q-exponential family are examples of dually flat spaces. In this

section we describe the dually flat structure of exponential family and q-exponential

family.

4.2.1 Dually flat structure of the exponential family

Exponential family is an important class of probability distributions and most of the

common distributions like normal, gamma, exponential, beta, Poisson etc. belong to

the exponential class. It is known that a finite dimensional exponential family has a flat

structure with respect to 1-connection defined by Amari [12].
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An n-dimensional statistical model S = {p(x; θ) / θ ∈ E ⊆ R
n} is called an

exponential family if

p(x; θ) = exp{C(x) +
n

�

i=1

θiCi(x)− ψ(θ)} (4.14)

where C1, · · · , Cn, C are functions on X and ψ is a function on E. By renaming random

variables Ci(x) as xi, without loss of generality we can rewrite the above equation in a

convenient form (usually called the standard form) with respect to a suitable dominating

measure as

p(x; θ) = exp{
n

�

i=1

θixi − ψ(θ)} or log(p(x; θ)) =
n

�

i=1

θixi − ψ(θ) (4.15)

where x = (x1, · · · , xn) is a set of random variables, θ = (θ1, · · · , θn) are the canonical

parameters and ψ(θ) is determined from the normalization condition.

The exponential family (S, g,∇1,∇(−1)) is a dually flat space, where g is the Fisher

information metric, ∇1 is the 1-connection (exponential connection) and ∇−1 is the

(−1)-connection (mixture connection).

gij(θ) =

�

∂iℓ ∂jℓ p dx = ∂i∂jψ(θ) (4.16)

Γ−1
ijk(θ) =

�

(∂i∂jℓ+ ∂iℓ ∂jℓ)∂kℓ p dx = ∂i∂j∂kψ(θ) (4.17)

Γ1
ijk(θ) = 0 (4.18)

where ℓ(x; θ) = log p(x; θ) and ∂i =
∂
∂θi

.

The dual coordinate η and the dual potential function φ(η) are

ηi = ∂iψ(θ) = E(xi) (4.19)

φ(η) = Ep[log p] = −H(p) (4.20)

where H(p) = −
�

p log p dx is the Shannon entropy.
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The (−1)-divergence D−1 on S is the Kullback-Leibler divergence given by

D−1(p, q) = ψ(θ(p)) + φ(η(q))−
n

�

i=1

θi(p)ηi(q) (4.21)

=

�

(log p− log q) p dx (4.22)

4.2.2 q-Exponential family and the q-structure

For any α ∈ R, Amari [12] defined an α-family of probability density functions.

S = {p(x; θ) / θ ∈ E ⊆ R
n} is said to be an α-family if

Lα(p(x; θ)) =

n
�

i=1

θixi − ψ(θ) (4.23)

where Lα(p) is the α-embedding.

When α = 1, the α-family is the exponential family and exponential family is ∇1-flat.

But for α �= 1, α-family is not flat with respect to theα-connection. So how to get dually

flat connections on a α-family? q-exponential family originated from the statistical

physics gave an answer to this. Amari and Ohara [27] showed that a q-exponential

family, which is an α-family with α = 1 − 2q, has a dually flat structure called the

q-structure. Moreover the q-geometry is the conformal flattening of α-geometry [27].

Definition 4.2.1. [59], [60] Two statistical manifolds (M,∇, g) and (M, ∇̃, g̃) are said

to be β-conformally equivalent if there exist a positive function φ on M such that

g̃(X, Y ) = φ g(X, Y ) (4.24)

g̃(∇̃XY, Z) = φ g(∇XY, Z) +
1− β

2
{g(Y, Z)dφ(X) + g(X,Z)dφ(Y )}

−1 + β

2
g(X, Y )dφ(Z) (4.25)

In terms of the basis vectors the above expressions can be written as

g̃(∂i, ∂j) = g̃ij = φ g(∂i, ∂j) = φ gij (4.26)
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Γ̃β
ijk = φ Γijk +

1− β

2
{gjk∂iφ+ gik∂jφ}−

1 + β

2
gij∂kφ (4.27)

Now let us describe the q-geometry of the q-exponential family.

Define the q-logarithm and its inverse the q-exponential by

logq(u) =
1

1− q
(u1−q − 1), q > 0 (4.28)

expq(u) = {1 + (1− q)u}
1

1−q , u >
−1

1− q
(4.29)

in the limiting case q → 1,

logq(u) = log u; expq(u) = exp u (4.30)

Definition 4.2.2. A statistical manifold S = {p(x; θ) / θ ∈ E ⊆ R
n} is said to be a

q-exponential family if

logq p(x; θ) =

n
�

i=1

θixi − ψq(θ) (4.31)

where ψq(θ) is obtained from the normalization
�

p(x; θ)dx = 1.

Define a functional

hq(θ) =

�

(p(x; θ))qdx (4.32)

From the definition of the q-exponential family S

∂i∂jψq(θ) =
q

hq(θ)

�

(xi − ∂iψq(θ)) (xj − ∂iψq(θ))p(x; θ)
2q−1 dx (4.33)

Amari et al. [27] proved that ψq is a convex function and further assumed that it is

strictly convex to define a divergence of Bregman type called the q-divergence,

Dq(p(x; θ1), p(x; θ2)) = ψq(θ2)− ψq(θ1)−∇ψq(θ1).(θ2 − θ1) (4.34)

=
1

hq(θ)

�

(logq(p)− logq(r)) p
q dx (4.35)

On the q-exponential family S the q-divergence Dq induces a dually flat structure called
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the q-structure (gDq ,∇Dq ,∇D∗

q ) given by

g
Dq

ij = ∂i∂jψq(θ) (4.36)

Γ
Dq

ijk = ∂i∂j∂kψq(θ) (4.37)

Γ
D∗

q

ijk = 0 (4.38)

Let

D̃q(p, r) =

�

(logq(p)− logq(r)) p
q dx (4.39)

Then D̃q is a constant multiple of the well known α-divergence [14] with α = 1 − 2q.

Note that

Dq(p, r) =
1

hq(θ)
D̃q(p, r) (4.40)

which is the conformal transformation of α-divergence, α = 1−2q, by a gauge function

1
hq(θ)

. Hence the q-structure is the conformal flattening of the α-geometry (α = 1− 2q)

by a gauge function 1
hq(θ)

.

Geometry induced from the conformal transformation of α-divergence

Let us now look at the geometry obtained by the conformal transformation of the α-

divergence by a gauge function K(θ) [59], [60]. This geometry is (±1)-conformally

equivalent to the α-geometry. Then as a corollary we show that the q-geometry on the

q-exponential family is the conformal flattening of the α-geometry.

S = {p(x; θ) / θ ∈ E ⊆ R
n} be a statistical manifold. The α-divergence Dα is

Dα(p, r) =
4

1− α2

�

1−
�

p
1−α
2 r

1+α
2 dx

�

(4.41)

Let K(θ) be a positive smooth function of θ. Define a divergence function DK on S as

DK(p(x; θ1), p(x; θ2)) = K(θ1)Dα(p(x; θ1), p(x; θ2)) (4.42)

Proposition 4.2.3. The metric and the affine connection ∇DK induced by the divergence

70



DK are given by

gDK

ij (θ) = K(θ)gij(θ) (4.43)

ΓDK

ijk (θ) = K(θ)Γα
ijk + ∂iK(θ)gjk + ∂jK(θ)gik (4.44)

where g is the Fisher information metric and Γα
ijk are the components of α-connection.

Proof. We have

∂iDK(p, r) = ∂i [K(θ1)Dα(p, r)] (4.45)

= K(θ1)
4

1− α2

�

−1 − α

2

�

p
−(1+α)

2 r
1+α
2 ∂ip dx

�

+ ∂iK(θ1)
4

1− α2

�

1−
�

p
1−α
2 r

1+α
2 dx

�

(4.46)

∂j′∂iDK(p, r) = −K(θ1)

�
�

p
−(1+α)

2 r
α−1
2 ∂ip ∂j′r dx

�

+ −∂iK(θ1)
2

1− α

�
�

p
1−α
2 r

α−1
2 ∂j′r dx

�

(4.47)

Hence

gDK

ij (θ) = −∂i∂j′DK(p, r) |p=r (4.48)

= K(θ)

�

∂jℓ ∂iℓ p dx (4.49)

= K(θ)gij(θ) (4.50)

Also

∂j∂iDK(p, r) = −K(θ1)
4

1− α2

�

1− α

2

�

p
−(1+α)

2 r
1+α
2 ∂i∂jp dx

�

+ −K(θ1)
4

1− α2

�

1− α

2

�

p
−(3+α)

2 r
1+α
2 ∂ip ∂jp dx

�

+ −∂jK(θ1)
4

1− α2

�
�

1− α

2
p

−(1+α)
2 r

1+α
2 ∂ip dx

�

+
4

1− α2

�

1−
�

p
1−α
2 r

1+α
2 dx

�

∂i∂jK(θ1)

+ −∂iK(θ1)
4

1− α2

�
�

1− α

2
p

−(1+α)
2 r

1+α
2 ∂jp dx

�

(4.51)
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∂k′∂j∂iDK(p, r) = −K(θ1)

�
�

p
−(1+α)

2 r
α−1
2 ∂i∂jp ∂k′r dx

�

+ K(θ1)

�

1 + α

2

�

p
−(3+α)

2 r
α−1
2 ∂ip ∂jp ∂k′r dx

�

+ −∂jK(θ1)

�
�

p
−(1+α)

2 r
α−1
2 ∂ip ∂k′r dx

�

+ − 2

1 − α

�
�

p
1−α
2 r

α−1
2 ∂k′r dx

�

∂i∂jK(θ1)

+ −∂iK(θ1)

�
�

p
−(1+α)

2 r
α−1
2 ∂jp ∂k′r dx

�

(4.52)

Hence

ΓDK

ijk (θ) = −∂i∂j∂k′DK(p, r) |p=r (4.53)

= K(θ)

�
�

∂i∂jℓ +
1− α

2
∂iℓ ∂jℓ

�

∂kℓ p dx

+ ∂iK(θ)gjk + ∂jK(θ)gik (4.54)

= K(θ)Γα
ijk + ∂iK(θ)gjk + ∂jK(θ)gik (4.55)

where Γα
ijk are the components of the α-connection.

Proposition 4.2.4. The affine connection ∇D∗

K induced by the dual D∗
K of the diver-

gence DK is given by

Γ
D∗

K

ijk (θ) = K(θ)Γ−α
ijk − ∂kK(θ)gij (4.56)

where Γ−α
ijk are the components of the (−α)-connection.

Proof.

D∗
K(p, r) = DK(r, p) = K(θ2)

4

1− α2

�

1−
�

r
1−α
2 p

1+α
2 dx

�

(4.57)

∂iD
∗
K(p, r) = ∂i

�

K(θ2)
4

1− α2

�

1−
�

r
1−α
2 p

1+α
2

�

dx

�

(4.58)

= −K(θ2)
4

1− α2

�

1 + α

2

�

p
α−1
2 r

1−α
2 ∂ip dx

�

(4.59)

∂j∂iD
∗
K(p, r) = −K(θ2)

4

1− α2

�

1 + α

2

�

p
α−1
2 r

1−α
2 ∂i∂jp dx

�

+ K(θ2)

�
�

p
α−3
2 r

1−α
2 ∂ip ∂jp dx

�

(4.60)
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∂k′∂j∂iD
∗
K(p, r) = −K(θ2)

�
�

p
α−1
2 r

−(1+α)
2 ∂i∂jp ∂k′r dx

�

+ −∂kK(θ2)

�

2

1− α

�

p
α−1
2 r

1−α
2 ∂i∂jp dx

�

+ K(θ2)

�

1− α

2

�

p
α−3
2 r

−(1+α)
2 ∂ip ∂jp ∂k′r dx

�

+ ∂kK(θ2)

�
�

p
α−3
2 r

1−α
2 ∂ip ∂jp dx

�

(4.61)

Hence

Γ
D∗

K

ijk (θ) = −∂i∂j∂k′D
∗
K(p, r) |p=r (4.62)

= K(θ)

�
�

∂i∂jℓ +
1 + α

2
∂iℓ ∂jℓ

�

∂kℓ p dx− ∂kK(θ)gij (4.63)

= K(θ)Γ−α
ijk + ∂kK(θ)gij (4.64)

where Γ−α
ijk are the components of the (−α)-connection.

In summary, we proved the following theorem.

Theorem 4.2.5. (S, g,∇α) and (S, gDK ,∇DK ) are (−1)-conformally equivalent, where

g is the Fisher information metric and ∇α is the α-connection. Also (S, g,∇−α) and

(S, gDK ,∇D∗

K ) are 1-conformally equivalent.

Corollary 4.2.6. The q-geometry on the q-exponential family is the conformal flattening

of the α-geometry by a gauge function K(θ) = q

hq(θ)
.

Proof. Take K(θ) = q

hq(θ)
, then the divergence DK reduces to q-divergence. Then for

the q-exponential family from Equations (4.36) and (4.43)

gDK

ij (θ) = ∂i∂jψq(θ) =
q

hq(θ)
gij(θ) (4.65)

Let α = 1− 2q. Then

K(θ)Γ1−2q
ijk =

q

hq(θ)

�
�

∂i∂jℓ ∂kℓ p dx+ q

�

∂iℓ ∂jℓ ∂kℓ p dx

�

(4.66)

∂iK(θ)gjk + ∂jK(θ)gik =
q

hq(θ)

�

∂k∂jℓ ∂iℓ p dx+

�

∂i∂kℓ ∂jℓ p dx

+ (2− 2q)

�

∂iℓ ∂jℓ ∂kℓ p dx (4.67)
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Now from Equation (4.33)

∂i∂j∂kψq(θ) =
q

hq(θ)

�
�

∂i∂jℓ ∂kℓ p dx+ (2− q)

�

∂iℓ ∂jℓ ∂kℓ p dx

�

+
q

hq(θ)

�
�

∂k∂jℓ ∂iℓ p dx+

�

∂i∂kℓ ∂jℓ p dx

�

(4.68)

Hence from Equations (4.44) and (4.68)

ΓDK

ijk (θ) = ∂i∂j∂kψq(θ) (4.69)

(4.70)

Hence the result.

A similar proof holds for ∇D∗

K .

4.3 Dually Flat Geometries on a Deformed Exponential

Family

Naudts [28] introduced a generalized notion of exponential family called the deformed

exponential family. This is done by replacing the exponential function in the stan-

dard exponential family by a deformed exponential function expφ, where φ is an in-

creasing positive function on [0,∞). This deformed exponential family is called the

φ-exponential family. He defined a φ-logarithm by

lnφ(u) =

� u

1

1

φ(v)
dv, u > 0 (4.71)

expφ is the inverse of the φ-logarithm. For φ(u) = u, lnφ(u) = log(u) and expφ(u) =

exp u. For φ(u) = uq with q > 0

lnφ(u) =







u1−q−1
1−q

, q �= 1

log u, q = 1
(4.72)
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which is the q-logarithm. A family of probability distributions S = {p(x; θ)} is said to

be a φ-exponential family if

p(x; θ) = expφ(ψ(θ)−
n

�

i=1

θixi) (4.73)

On a φ-exponential family Naudts [28] defined a dually flat structure, the U-geometry,

using a divergence function. Amari et al. [37] also considered this deformed exponential

family formulated as χ-family and defined a dually flat structure called the χ-geometry

using an escort probability distribution. The κ-exponential family by Kaniadakis et

al. [37], U-model by Eguchi et al. [36] are similar formulations of this deformed expo-

nential family.

In this section we describe the two dually flat structures on the deformed exponential

family, the U-geometry and the χ-geometry. Then we show that how these two dually

flat structures are related to the (F,G)-geometry.

For the sake of notational convenience, deformed exponential family is formulated

using the function F and we call it as F -exponential family.

Remark 4.3.1. Note that φ-exponential family, χ-family and F -exponential family are

essentially the same family of probability distributions with a generic name deformed

exponential family. We may interchangeably use the term deformed exponential family

or F -exponential family.

Definition 4.3.2. Let F : (0,∞) −→ R be any smooth function satisfying F ′(x) > 0

and F ′′(x) < 0. Let Z be the inverse function of F . Define the standard form of an

n-dimensional F -exponential family S = {p(x; θ)} of probability distributions as

p(x; θ) = Z(

n
�

i=1

θixi − ψF (θ)) or F (p(x; θ)) =

n
�

i=1

θixi − ψF (θ) (4.74)

where x = (x1, · · · , xn) is a set of random variables, θ = (θ1, · · · , θn) are the param-

eters and ψF (θ) is determined from the normalization condition.

Remark 4.3.3. When F (p) = log p the F -exponential family is the exponential family

and when F (p) = logq p the F -exponential family is the q-exponential family.
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4.3.1 Dually flat U -geometry of the F -exponential family

In this section we describe the dually flat U-geometry on the F exponential family

[28, 36]. Further we show that the U-geometry on the F -exponential family is the

(F,G)-geometry for suitable choices of F and G [38].

Let S = {p(x; θ) / θ ∈ E ⊆ R
n} be an n-dimensional F -exponential family. The

divergence of Bregman type given by Naudts [28] is

DF (p, q) =

�
�
� p

q

(F (u)− F (q))du

�

dx (4.75)

This divergence is a U-divergence defined by Murata et al. [22], where U is an increas-

ing convex function and

DF (p, q) = DU (p, q) =

�

[U∗(p)− pξ(q) + U(ξ(q))] dx (4.76)

with U∗(t) =
� t

1
F (u) du and ξ(t) = dU∗

dt
(t).

Now consider the dualistic structure (gD
F

,∇DF

,∇D∗F

) induced from the divergence

DF called the U-geometry (Eguchi et al. [36]).

gD
F

ij (θ) =

�

∂ip ∂jF (p) dx (4.77)

ΓDF

ijk (θ) =

�

∂kp ∂i∂jF (p) dx (4.78)

ΓD∗F

ijk (θ) =

�

∂i∂jp ∂kF (p) dx (4.79)

From the definition of S, ΓDF

ijk (θ) = 0. Hence the connection ∇DF

is flat. Moreover

(gD
F

,∇DF

,∇D∗F

) is a dually flat structure on S.

The dual coordinate (ηi) of the canonical coordinate θi are

ηi = Ep[xi] =

�

xi p(x; θ) dx. (4.80)

Define a function

v(t) =

� t

1

F (s) ds t > 0. (4.81)

Assume that v(o) := limt→+0 v(t) is finite.
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The generalized entropy functional I and generalized Massieu potential Ψ are defined

as

I(pθ) := −
�

[v(p(x; θ)) + (p(x; θ)− 1)v(o)] dx. (4.82)

ΨF (θ) :=

�

p(x; θ)F (p(x; θ)) dx+ I(pθ) + ψF (θ). (4.83)

Note that ΨF is the potential function corresponding to the canonical coordinate θ and

ηi = Ep[xi] = ∂iΨF (θ). The dual potential function Φ of the dual coordinate η is given

by

Φ(η) = −I(pθ). (4.84)

See [28], [34], for more details.

Next to show that the U-geometry is the (F,G)-geometry for suitable choices of F and

G.

Theorem 4.3.4. For the F -exponential family S the dually flat U-geometry obtained

from the U-divergence is the (F,G)-geometry (gG,∇F,G,∇H,G) with G(p) = pF ′(p)

and H is the G-dual embedding of F given by H(p) = p.

Proof. For the F -exponential family S

∂iF = p F ′(p) ∂iℓ (4.85)

∂i∂jF = p F ′(p) ∂i∂jℓ+ [pF ′(p) + p2F ′′(p)] ∂iℓ ∂jℓ. (4.86)

Then the Equations (4.77), (4.78) and (4.79) can be written as

gD
F

ij (θ) =

�

∂ip ∂jF (p) dx (4.87)

=

�

pF ′(p) ∂iℓ ∂jℓ p dx (4.88)

= gG(θ) (4.89)
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which is the G-metric with G(p) = pF ′(p) from Equation (2.106).

ΓDF

ijk (θ) =

�

∂kp ∂i∂jF (p) dx (4.90)

=

�
�

∂i∂jℓ+ (1 +
pF ′′(p)

F ′(p)
)∂iℓ ∂jℓ

�

∂kℓ pF
′(p) p dx (4.91)

= ΓF,G
ijk (θ) (4.92)

which is the (F,G)-connection with G(p) = pF ′(p) from Equation (2.110)

ΓD∗F

ijk (θ) =

�

∂i∂jp ∂kF (p) dx (4.93)

=

�

(∂i∂jℓ+ ∂iℓ ∂jℓ) ∂kℓ pF
′(p) p dx (4.94)

= ΓH,G
ijk (θ) (4.95)

From Equation (2.122), this is the (H,G)-connection, where G(p) = pF ′(p), H is the

G-dual embedding of F

1 +
pH ′′(p)

H ′(p)
= 1 ⇒ H(p) = p. (4.96)

Hence the U-geometry induced from the divergence DF is the (F,G)-geometry for

suitable choices of F and G.

Remark 4.3.5. Hence on F -exponential family the dually flat U-geometry obtained

from the U-Bregman divergence DF is the (F,G)-geometry for suitable choices of

F and G. The U-geometry on a q-exponential family is the (F,G)-geometry, where

F (p) = logq p and G(p) = p1−q and H(p) = p. Thus

gD
F

ij (θ) =

�

∂iℓ ∂jℓ p
2−q dx (4.97)

ΓDF

ijk (θ) =

�

(∂i∂jℓ+ (1− q)∂iℓ ∂jℓ) ∂kℓ p
2−q dx (4.98)

ΓD∗F

ijk (θ) =

�

(∂i∂jℓ+ ∂iℓ ∂jℓ) ∂kℓ p
2−q dx (4.99)

In summary

Theorem 4.3.6. For a F -exponential family S

1. (gDF ,∇DF ) and (gDF ,∇D∗

F ) are mutually dual Hessian structures on S equiva-
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lently, (S, gDF ,∇DF ,∇D∗

F ) is a dually flat space.

2. The canonical coordinate θ is ∇D∗

F -affine and ψF is the potential function corre-

sponding to θ.

3. The metric gDF

ij (θ) = ∂i∂jψF (θ).

4. The dual coordinate η is ηi = ∂iψF (θ) = Ep̂F [xi] and it is ∇DF -affine.

5. The dual potential function φF corresponding to the dual coordinate η is φF (η) =

Ep̂F (F (p)).

6. (gDF ,∇DF ,∇D∗

F ) is the (F,G)-geometry (gG,∇F,G,∇H,G) with G(p) = pF ′(p)

and H(p) = p.

4.3.2 Dually flat χ-geometry of the deformed exponential family

Amari et al. [37] also considered deformed exponential family called the χ-exponential

family and defined a dually flat geometry called the χ-geometry. This χ-geometry

is different from the U-geometry given by Naudts. In this section we show that this

dually flat χ-geometry is the conformal flattening of the (F,G)-geometry for suitable

F and G(p) = −pF ′′(p)
F ′(p)

. Here also we follow our previous formulation of the deformed

exponential family called the F -exponential family.

χ-Geometry of the F -exponential family

Let S = {p(x; θ) / θ ∈ E ⊆ R
n} be a F -exponential family. Then

∂iF (p(x; θ)) = xi − ∂iψF (θ) (4.100)

∂i∂jF (p(x; θ)) = −∂i∂jψF (θ) (4.101)

Define a functional hF (θ) as

hF (θ) =

�

1

F ′(p(x; θ))
dx (4.102)

Theorem 4.3.7. F -potential function ψ(θ) is a convex function of θ.
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Proof. We have

∂iF (p(x; θ)) = F ′(p)∂ip(x; θ) (4.103)

From Equation (4.100)

∂ip =
1

F ′(p)
∂iF =

1

F ′(p)
(xi − ∂iψF (θ)) (4.104)

By differentiating Equation (4.103) with respect to θj

∂i∂jF = F ′(p)∂i∂jp+
F ′′(p)

(F ′(p))2
∂iF∂jF (4.105)

Hence

∂i∂jp =
1

F ′(p)
∂i∂jF − F ′′(p)

(F ′(p))3
∂iF∂jF (4.106)

∂i∂jp =
−∂i∂jψF (θ)

F ′(p)
− F ′′(p)

(F ′(p))3
(xi − ∂iψF (θ)) (xj − ∂jψF (θ)) (4.107)

Since
�

∂ipdx = 0, we have
�

∂i∂jpdx = 0. Hence from Equations (4.104) and (4.107)

∂iψF (θ) =
1

hF (θ)

�

xi

1

F ′(p)
dx (4.108)

∂i∂jψF (θ) =
1

hF (θ)

� −F ′′(p)

(F ′(p))3
(xi − ∂iψF (θ)) (xj − ∂jψF (θ)) (4.109)

Since F is a concave function F ′′(p) < 0. Thus from Equation (4.109) it follows that

∂i∂jψF (θ) is positive semidefinite. Hence ψF is a convex function of θ.

Note 4.3.8. Note that ∂i∂jψF (θ) in Equation (4.109) is positive semidefinite. Further

we assume that it is positive definite. Then ψF (θ) is a strictly convex function of θ.

Definition 4.3.9. For a probability distribution p parametrized by θ define a probability

distribution

p̂F (x) =
1

hF (θ)F ′(p)
, where hF (θ) =

�

1

F ′(p)
dx (4.110)

80



called the F -escort probability distribution related to p, see [28], [62] for more details.

Definition 4.3.10. Using the escort probability distribution p̂F , the F̂ -expectation of a

random variable is defined as

Ep̂F (f(x)) =
1

hF (θ)

�

1

F ′(p)
f(x)dx (4.111)

Now using the strictly convex function ψF (θ) define a divergence function which

induces a dually flat structure on S.

Definition 4.3.11. A divergence of Bregman type (χ-divergence in [37]) is defined using

ψF (θ) as

DF (p(x; θ1), p(x; θ2)) = ψF (θ2)− ψF (θ1)−∇ψF (θ1).(θ2 − θ1) (4.112)

Take two distributions p and r which are parametrized by θ1 and θ2 respectively.

Then the divergence DF can be rewritten as

DF (p, r) =
1

hF (θ1)

�

(F (p)− F (r))
1

F ′(p)
dx (4.113)

= Ep̂F (F (p)− F (r)) (4.114)

Amari et al. [37] showed that the divergence DF induces a dually flat structure on the

F -exponential family.

Theorem 4.3.12. The metric gDF

ij and the affine connection ∇DF induced by the diver-

gence DF are given by

gDF

ij (θ) = ∂i∂jψF (θ); ΓDF

ijk = ∂i∂j∂kψF (θ). (4.115)

The dual D∗
F of DF induces an affine connection ∇D∗

F defined by Γ
D∗

F

ijk = 0.

The dual coordinate η is given by

ηi = ∂iψF (θ) = Ep̂F (xi) (4.116)
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Lemma 4.3.13. The dual potential function φF (η) is given by

φF (η) = Ep̂F (F (p)) =
1

hF (θ)

�

F (p)

F ′(p)
dx (4.117)

Proof. The dual potential function satisfies

φF (η) + ψF (θ)− θ.η = 0 (4.118)

Hence

φF (η) = θ.η − ψF (θ) (4.119)

=

n
�

i=1

θi∂iψ(θ)− ψF (θ) (4.120)

=
n

�

i=1

θi
1

hF (θ)

�

xi

1

F ′(p)
dx− ψF (θ)

hF (θ)

�

1

F ′(p)
dx (4.121)

=
1

hF (θ)

�

(
n

�

i=1

θixi − ψF (θ))
1

F ′(p)
dx (4.122)

=
1

hF (θ)

�

F (p)

F ′(p)
dx (4.123)

= Ep̂F (F (p)) (4.124)

The potential function ψF of the canonical parameter (θi) is a generalized free energy

called the F -free energy. The negative of the Legendre dual of the F -free energy

HF (p) = −Ep̂F (F (p)) =
1

hF (θ)

� −F (p)

F ′(p)
dx (4.125)

is a generalized notion of entropy called the F -entropy (χ-entropy in [37]).

Remark 4.3.14. On the F -exponential family S the divergence DF induces a dually

flat structure (gDF ,∇DF , ∇D∗

F ) which is the χ-geometry defined by Amari et al. [37].

Example 4.3.15. Consider a finite set X = {x0, · · ·xn}. In Chapter 2 we proved

that the set P(X ) of all probability distributions defined on X is an n-dimensional F -

exponential family (F -family) for any F . Letting pi = p(x = xi), any p(x) ∈ P(X )

can be written as

p(x) =
n

�

i=0

piδi(x), where δ0(x) = 1−
n

�

i=1

δi(x), p0 = 1−
n

�

i=1

pi (4.126)
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Then

F (p(x)) =

n
�

i=0

F (pi)δi(x) (4.127)

=
n

�

i=1

(F (pi)− F (p0))δi(x) + F (p0) (4.128)

=

n
�

i=1

θixi − ψF (θ) (4.129)

where the canonical coordinate θi = F (pi)− F (p0), xi = δi(x) and the F -free energy

ψF (θ) = −F (p0).

1

hF (θ)
=

�

x∈X

1

F ′(p(x))
=

n
�

i=0

1

F ′(pi)
(4.130)

The dual coordinate η and the dual potential function φ(η) are

ηi =
1

hF (θ)

1

F ′(pi)
(4.131)

φ(η) =
1

hF (θ)

n
�

i=0

F (pi)

F ′(pi)
= −HF (p) (4.132)

χ-Geometry as a conformal flattening of the (F,G)-geometry

Here we show that the dually flat χ-geometry on a deformed exponential family is the

conformal flattening of the (F,G)-geometry for suitable choices of F and G [38], [61],

[63]. Matsuzoe and Henmi [34] described the conformal equivalence of the generalized

Fisher information metrics on a deformed exponential family.

Next to show that on the F -exponential family S = {p(x; θ) / θ ∈ E ⊆ R
n} the metric

gDF induced from the divergence DF is a conformal transformation of the G-metric gG.

Theorem 4.3.16. The metric gDF induced by the divergence DF is the conformal trans-

formation of the G-metric gG, with G(p) = −pF ′′(p)
F ′(p)

, by a gauge function K(θ) = 1
hF (θ)

.

That is,

gDF

ij (θ) = K(θ)gGij (4.133)

where G(p) = −pF ′′(p)
F ′(p)

and K(θ) = 1
hF (θ)

.
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Proof. The metric is

gDF

ij (θ) = ∂i∂jψF (θ) (4.134)

=
1

hF (θ)

� −F ′′(p)

(F ′(p))3
∂iF ∂jFdx (4.135)

=
1

hF (θ)

� −pF ′′(p)

F ′(p)
∂ip ∂jp

1

p
dx (4.136)

The term
� −pF ′′(p)

F ′(p)
∂ip ∂jp

1
p
dx is actually G-metric with G(p) = −pF ′′(p)

F ′(p)
. Thus

gDF

ij (θ) can be written as

gDF

ij (θ) = K(θ)gGij (4.137)

with K(θ) = 1
hF (θ)

and G(p) = −pF ′′(p)
F ′(p)

. Thus the new metric is obtained as a conformal

transformation of the G-metric by a gauge function K(θ).

Next to show that the connection ∇DF induced by the divergence DF is the (−1)-

conformal transformation of the (H,G)-connection ∇H,G.

Theorem 4.3.17. The affine connection ∇DF induced by the divergence DF is the

(−1)-conformal transformation of the (H,G)-connection ∇H,G by the gauge function

K(θ) = 1
hF (θ)

, where G(p) = −pF ′′(p)
F ′(p)

and H is the G-dual embedding of F . That is,

ΓDF

ijk = K(θ)ΓH,G
ijk + ∂jK(θ)gGik(θ) + ∂iK(θ)gGjk(θ) (4.138)

with G(p) = −pF ′′(p)
F ′(p)

and K(θ) = 1
hF (θ)

.

Proof. The components ΓDF

ijk of the connection are

ΓDF

ijk = ∂i∂j∂kψF (θ) (4.139)

=
1

hF (θ)

�
�−pF ′′(p)

F ′(p)
− p2F ′′′(p)

F ′(p)
+

2p2(F ′′(p))2

(F ′(p))2

�

∂iℓ ∂jℓ ∂kℓ pdx

+
1

hF (θ)

�

(
−pF ′′(p)

F ′(p)
)∂i∂jℓ ∂kℓ pdx

+
1

hF (θ)

�

∂j∂kψF (θ)
pF ′′(p)

(F ′(p))2
∂iℓ dx

+
1

hF (θ)

�

∂i∂kψF (θ)
pF ′′(p)

(F ′(p))2
∂jℓ dx (4.140)
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For any F -embedding the G-dual embedding H of F is

H ′(p) =
G(p)

pF ′(p)
(4.141)

Then the term

1 +
pH ′′(p)

H ′(p)
=

pG′(p)

G(p)
− pF ′′(p)

F ′(p)
(4.142)

When G(p) = −pF ′′(p)
F ′(p)

, the above term reduces

1 +
pH ′′(p)

H ′(p)
= 1− 2pF ′′(p)

F ′(p)
+

pF ′′′(p)

F ′(p)
(4.143)

Then the components of the connection ∇(H,G) are

Γ
(H,G)
ijk (θ) =

�
�

∂i∂jℓ ∂kℓ + (1 +
pH ′′(p)

H ′(p)
)∂iℓ ∂jℓ ∂kℓ

�

G(p) p dx (4.144)

=
1

hF (θ)

�
�−pF ′′(p)

F ′(p)
− p2F ′′′(p)

F ′(p)
+

2p2(F ′′(p))2

(F ′(p))2

�

∂iℓ ∂jℓ ∂kℓ pdx

+
1

hF (θ)

�

(
−pF ′′(p)

F ′(p)
)∂i∂jℓ ∂kℓ pdx (4.145)

Now for K(θ) = 1
hF (θ)

and G(p) = −pF ′′(p)
F ′(p)

,

∂iK(θ)gGjk(θ) =
−1

(hF (θ))2

�
�

pF ′′(p)

(F ′(p))2
∂iℓ dx

�
�

pF ′′(p)

F ′(p)
∂jℓ ∂kℓ p dx (4.146)

Then the components of the connection ∇DF can be rewritten as

ΓDF

ijk (θ) = K(θ)

�
�

∂i∂jℓ ∂kℓ + (1 +
pH ′′(p)

H ′(p)
)∂iℓ ∂jℓ ∂kℓ

�

G(p) p dx

+ ∂jK(θ)gGik(θ) + ∂iK(θ)gGjk(θ) (4.147)

= K(θ)ΓH,G
ijk + ∂jK(θ)gGik(θ) + ∂iK(θ)gGjk(θ) (4.148)

with G(p) = −pF ′′(p)
F ′(p)

and K(θ) = 1
hF (θ)

.

Hence the connection induced by the divergence function DF is the (−1)-conformal

transformation of the (H,G)-connection ∇H,G by a gauge function K(θ).

Also the connection ∇D∗

F induced by the dual D∗
F is the 1-conformal transformation

of the (F,G)-connection ∇F,G.
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Theorem 4.3.18. The affine connection ∇D∗

F induced by the dual D∗
F is the 1-conformal

transformation of the (F,G)-connection ∇F,G by a gauge functionK(θ) = 1
hF (θ)

, where

G(p) = −pF ′′(p)
F ′(p)

. That is,

Γ
D∗

F

ijk (θ) = K(θ)ΓF,G
ijk − ∂kK(θ)gGij(θ) (4.149)

with G(p) = −pF ′′(p)
F ′(p)

and K(θ) = 1
hF (θ)

.

Proof. The components of Γ
D∗

F

ijk of the connection are

Γ
D∗

F

ijk (θ) =
−1

(hF (θ))2

�
�

∂i∂jF (p)

F ′(p)
dx

��
� −F ′′(p)

(F ′(p))2
∂kp dx

�

+
−1

hF (θ)

�

∂i∂jF (p)
F ′′(p)

(F ′(p))2
∂kp dx (4.150)

=
−1

hF (θ)
∂i∂jψF (θ)

�

F ′′(p)

(F ′(p))2
∂kp dx

+
1

hF (θ)
∂i∂jψF (θ)

�

F ′′(p)

(F ′(p))2
∂kp dx (4.151)

= 0 (4.152)

We have

∂i∂jF = pF ′(p)∂i∂jℓ+ [pF ′(p) + p2F ′′(p)] ∂iℓ ∂jℓ. (4.153)

From Equation (4.150) the term

−1

hF (θ)

�

∂i∂jF (p)
F ′′(p)

(F ′(p))2
∂kp dx = (4.154)

=
1

hF (θ)

�
�

∂i∂jℓ+ [1 +
pF ′′(p)

F ′(p)
] ∂iℓ ∂jℓ

� −pF ′′(p)

(F ′(p))2
p ∂kℓ dx (4.155)

= K(θ)ΓF,G
ijk (4.156)

where G(p) = −pF ′′(p)
F ′(p)

and K(θ) = 1
hF (θ)

.

Since ∂i∂jF (p) = −∂i∂jψF (θ)

−1

(hF (θ))2

�
�

∂i∂jF (p)

F ′(p)
dx

��
� −F ′′(p)

(F ′(p))2
∂kp dx

�

=
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=
−1

hF (θ)
∂i∂jψF (θ)

�

F ′′(p)

(F ′(p))2
∂kp dx (4.157)

=
−1

(hF (θ))2

�
�

pF ′′(p)

(F ′(p))2
∂kℓ dx

�
�

pF ′′(p)

F ′(p)
∂iℓ ∂jℓ p dx (4.158)

= −∂kK(θ)gGik(θ) (4.159)

Then

Γ
D∗

F

ijk (θ) = K(θ)ΓF,G
ijk − ∂kK(θ)gGij(θ) (4.160)

with G(p) = −pF ′′(p)
F ′(p)

and K(θ) = 1
hF (θ)

.

Hence the connection induced by the divergence function D∗
F is the 1-conformal

transformation of the (F,G)-connection ∇F,G by a gauge function K(θ).

In summary we proved the

Theorem 4.3.19. (S, gG,∇H,G) and (S, gDF ,∇DF ) are (−1)-conformally equivalent.

Also (S, gG,∇F,H) and (S, gDF ,∇D∗

F ) are 1-conformally equivalent, with G(p) =

−pF ′′(p)
F ′(p)

and H is the G-dual embedding of F .

Remark 4.3.20. The dually flat χ-geometry on the F -exponential family induced by the

divergence DF is the conformal flattening of the (F,G)-geometry. When F (p) = lnq(p)

and G(p) = constant, the F -exponential family is the q-exponential family and the q-

geometry is the conformal flattening of the α-geometry.

Thus, we have

Theorem 4.3.21. For a F -exponential family S, let G(p) = −pF ′′(p)
F ′(p)

and H is the G-

dual embedding of F . Then

1. (gDF ,∇DF ) and (gDF ,∇D∗

F ) are mutually dual Hessian structures on S equiva-

lently, (S, gDF ,∇DF ,∇D∗

F ) is a dually flat space.

2. The canonical coordinate θ is ∇D∗

F -affine and ψF is the potential function corre-

sponding to θ.

3. The metric gDF

ij (θ) = ∂i∂jψF (θ).

4. The dual coordinate η is ηi = ∂iψF (θ) = Ep̂F [xi] and it is ∇DF -affine.
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5. The dual potential function φF corresponding to η is φF (η) = Ep̂F (F (p)).

6. (S, gDF ,∇DF ) and (S, gG,∇H,G) are (−1)-conformally equivalent.

7. (S, gDF ,∇D∗

F ) and (S, gG,∇F,H) are 1-conformally equivalent.

4.4 Summary

In this chapter starting with the description of a dually flat space an overview of the

dually flat geometry of the exponential family and the q-exponential family is given.

Then we described the two dually flat structures on a deformed exponential family,

the U-geometry and the χ-geometry. Further the relation between these two dually

flat structures and the non-invariant (F,G)-geometry is explored. We showed that U-

geometry is the (F,G)-geometry and χ-geometry is the conformal flattening of the

(F,G)-geometry for suitable choices of F and G.
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CHAPTER 5

Geometry of Estimation

In this chapter we focus on the geometric theory of parameter estimation problem in a

statistical model, especially in an exponential family and in a curved exponential family.

Amari [12], [11] elucidated the significance of the geometric tools such as the Fisher

information metric and the α-connections in the asymptotic theory of estimation. He

interpreted the asymptotic properties of an estimator in a curved exponential family in

terms of the ancillary manifold, see also [5], [14], [42, 43], [46].

In certain areas of neuroscience a mismatched model or an unfaithful model is often

used for statistical inference instead of the original model [47], [48]. Ozumi et al. [48]

described the maximum likelihood estimation based on a mismatched model from the

information geometric point of view. Here we describe an information geometric ap-

proach to a general estimation problem based on a mismatched model in an exponential

family.

In Section 5.1 a short account of the statistical properties of an estimator is given.

Amari [11], [12] interpreted the consistency and efficiency of an estimator in a curved

exponential family in terms of the ancillary manifold. In Section 5.2 we describe his

work in detail. In Section 5.3 the parameter estimation problem based on a mismatched

model is discussed. We give a necessary and sufficient condition for the estimator based

on a mismatched model to be consistent and first order efficient. Further a theoretical

formulation of the maximum likelihood estimation problem based on a mismatched

model in an exponential family is given with a detailed proof of the same.

5.1 Parameter Estimation in a Statistical Manifold

Consider an n-dimensional statistical manifold S = {p(x; θ) / θ ∈ E ⊆ R
n}. Let

xN = (x1, · · · , xN ) be N independent observations from the random variable X dis-

tributed according to p(x; θ) ∈ S. The joint probability density function pN(xN ; θ)
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is

pN (xN ; θ) =
N
�

i=1

p(xi; θ) (5.1)

Then the log-likelihood of the density is

ℓN(xN ; θ) = log pN(xN ; θ) =

N
�

i=1

log p(xi; θ) (5.2)

Let SN = {pN(xN ; θ) / θ ∈ E ⊆ R
n}. Then SN is an n-dimensional manifold with a

coordinate system θ. The Fisher information metric on SN is

gNij (θ) =

�

∂iℓ
N (xN ; θ) ∂jℓ

N (xN ; θ) pN (xN ; θ) dxN (5.3)

= Ngij(θ) (5.4)

where ∂i = ∂
∂θi

and dxN = dx1 · · ·dxN and gij(θ) is the components of the Fisher

information metric on S.

In parameter estimation one need to estimate the value of an unknown parameter θ based

on the observations taken from a random variable x distributed according to p(x; θ). An

estimator θ̂N is defined as a function of the N observations of x given by

θ̂N = θ̂N(x
1, · · · , xN ) = θ̂N (xN) (5.5)

Note 5.1.1. Note that the estimator θ̂N depends on the number of observations N . But

for the notational convenience we denote θ̂N by θ̂.

There are certain desired properties that an estimator should possess which reflects

the closeness of the estimator to the actual parameter of the distribution in some sense.

Unbiasedness is one of such conditions which is stated as

Eθ[θ̂] = θ, ∀ θ ∈ E (5.6)

where Eθ is the expectation with respect to the distribution pN(xN ; θ).

The mean square error of an estimator is expressed as a matrix

MSE(θ̂) =
�

Eθ[(θ̂
i − θi)(θ̂j − θj)]

�

(5.7)
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The variance-covariance matrix Vθ(θ̂) = [vijθ (θ̂)] for θ̂ is

vijθ (θ̂) = Eθ

�

(θ̂i − E[θ̂])(θ̂j − E[θ̂])
�

(5.8)

When the estimator θ̂ is unbiased then the mean square error is the variance of the esti-

mator. That is, MSE(θ̂) = Vθ(θ̂).

The Cramer-Rao inequality gives a lower bound on the variance of an unbiased esti-

mator and is given by

Vθ(θ̂) ≥ G−1
N (θ) or [vijθ (θ̂)] ≥

1

N
[gij(θ)] (5.9)

where G−1
N (θ) = 1

N
[gij(θ)] is the inverse of the Fisher information metric on SN and

[gij(θ)] is the inverse of the Fisher information metric on S.

An unbiased estimator θ̂ which achieves Cramer-Rao equality ([vijθ (θ̂)] =
1
N
[gij(θ)] )is

called the finite sample efficient estimator.

The properties of an estimator in the case of fixed number of observations N are

described above. In the asymptotic theory of estimation main focus is given to the

behavior of an estimator in the limiting case N → ∞. In this case instead of the

unbiasedness one has the consistency.

Note 5.1.2. Note that when describing the finite sample theory, θ̂ is used for θ̂N . In the

case of asymptotic analysis {θ̂N , N = 1, 2, · · · } is used for the estimator.

An estimator {θ̂N , N = 1, 2, · · · } is said to be consistent if for all θ the estimator

θ̂N (xN) converges in probability to θ as N → ∞. That is, for all θ and for every ǫ > 0,

lim
N→∞

Prθ{|θ̂N − θ| > ǫ} = 0 (5.10)

The notion of mean consistency is a much more stronger condition than the usual no-

tion of consistency. Under certain regularity conditions, the expectation of θ̂N(xN )

converges to θ uniformly which is the mean consistency. That is,

lim
N→∞

Eθ[θ̂N ] = θ, lim
N→∞

∂jEθ[θ̂
i
N ] = ∂jθ

i = δij. (5.11)

Such an estimator is often called an asymptotically unbiased estimator.

The mean square error of an asymptotically unbiased estimator satisfies the asymptotic

91



Cramer-Rao inequality

lim
N→∞

N [vijθ (θ̂N )] ≥ [gij(θ)] (5.12)

A consistent estimator which attains equality in the above equation is called an asymp-

totically efficient estimator or a first order efficient estimator [14].

Definition 5.1.3. Let S = {p(x; θ) / θ ∈ E ⊆ R
n} be an n-dimensional statistical

manifold. For N independent observations xN = (x1, · · · , xN) from p(x; θ) ∈ S the

likelihood function LN (θ) is given by

LN (θ) = pN(xN ; θ) =
N
�

i=1

p(xi; θ) (5.13)

Since log function is a strictly increasing function, maximizing the likelihood function

LN (θ) is equivalent to maximizing the log-likelihood function log(LN(θ)).

We say that θ̂ is the Maximum Likelihood Estimator (MLE) if

θ̂ = argmax
θ∈E

LN(θ) = argmax
θ∈E

log(LN (θ)) = argmax
θ∈E

N
�

i=1

log(p(xi; θ)) (5.14)

Remark 5.1.4. For an arbitrary model S = {pθ} there need not exist a finite sample

efficient estimator. Amari and Nagaoka [14] showed that a necessary and sufficient

condition for a coordinate system θ of a model S = {pθ} to have an efficient estimator

is that S is an exponential family and θ is m-affine. But there always exists an asymp-

totically efficient estimator for an arbitrary statistical model unlike in the finite case. In

fact MLE is an asymptotically efficient estimator [14].

5.2 Estimation in Exponential Family

Amari [12] constructed a differential geometric framework for the statistical estimation

problem in an exponential family and in a curved exponential family, see also [14]. In

this section we discuss his work in detail.
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Consider an n-dimensional exponential family S = {p(x; θ) / θ ∈ E ⊆ R
n}

p(x; θ) = exp{
n

�

i=1

θixi − ψ(θ)}. (5.15)

where x = (x1, · · · , xn) is a set of random variables and θ is the canonical coordinate.

We have seen that S is a dually flat space and the dual coordinate η = (ηi) is ηi =

Eθ[xi].

Now consider an estimator η̂ = x for η. Then

Eθ[x] = η (5.16)

Eθ[(xi − ηi)(xj − ηj)] = Eθ[∂iℓ∂jℓ] = gij(θ) (5.17)

where gij(θ) are the components of the Fisher information metric with respect to the θ

coordinate. This implies that variance Vη(η̂) of η̂ is the Fisher information matrix G(θ)

and by duality, G(θ) = G−1(η). So Vη(η̂) = G−1(η).

Let xN = (x1, · · · , xN) be N independent observations from p(x; θ) ∈ S. Then the

joint probability density function is

pN (xN ; θ) =

N
�

j=1

exp{
n

�

i=1

θixj
i − ψ(θ)} (5.18)

or the log-likelihood function is

ℓN(xN ; θ) = N

�

n
�

i=1

θix̄i − ψ(θ)

�

(5.19)

where x̄ = (x̄1, · · · , x̄n) is the arithmetic mean given by

x̄i =
x1
i + · · ·+ xN

i

N
, i = 1, · · · , n (5.20)

That is the joint probability density pN(xN ; θ) depends on the N observations x1, · · · , xN

through x̄. Thus the statistic x̄ is a sufficient statistic for the parameter θ and is called

the observed point.
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Now consider the estimator η̂N = x̄ for η. Then

Eθ[x̄] = η (5.21)

Eθ[(x̄i − ηi)(x̄j − ηj)] =
1

N
gij(θ) (5.22)

That is, η̂N = x̄ is an unbiased estimator and a finite sample efficient estimator for η.

Thus a finite dimensional standard exponential family naturally has a sufficient statistic

and a finite sample efficient estimate [12], [14].

5.2.1 Estimation in a curved exponential family

Consider an m-dimensional smooth submanifold M = {q(x; u) / u = (ua) ∈ R
m} in

an n-dimensional exponential family S. Then M is called an (n,m)-curved exponen-

tial family and

q(x, u) = p(x; θ(u)). (5.23)

Let xN = (x1, · · · , xN ) be N independent observations from q(x; u) ∈ M . Then the

observed point x̄ = (x̄1, · · · , x̄n) defines a distribution in S whose η coordinate is given

by η̂N = x̄. But this point need not be in the submanifold M . Since x̄ is a sufficient

statistic for M an estimator ûN for u ∈ M can be regarded as a function of the observed

point η̂N . That is, the estimator ûN is represented as a mapping fN from S to M

fN : S −→ M where η̂ �→ ûN = fN(η̂N) (5.24)

An ancillary manifold or an estimating submanifold AN(u) corresponding to the

point u ∈ M associated with an estimator fN is defined as

AN(u) = f−1
N (u) = {η = (ηi) ∈ S / fN (η) = u} (5.25)

That is, AN(u) is the set of all points η in S which are mapped to u ∈ M by the

estimator fN [11], [12], [14].

Remark 5.2.1. Amari [11], [12] studied the statistical properties of an estimator and

interpreted them geometrically in terms of the estimating submanifold. He first consid-

ered an estimator function f : S −→ M which does not depend upon the number of
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observations N explicitly and thus the ancillary manifold A(u) at each point u ∈ M

is also independent of N . Then gave geometric interpretations for the consistency and

efficiency of an estimator in terms of the estimating submanifold A(u) [11], [12], [14].

In general, the estimator function depends upon the number of observations N explic-

itly. In that case we have AN (u) instead of A(u) and we take A(u) to be the limit of

AN(u) as N → ∞. Amari and Nagaoka [14] considered this case also. We detail their

work for a better understanding of the mismatched estimation problem discussed in the

subsequent sections.

Let

A(u) = lim
N→∞

AN(u) (5.26)

Note that the estimator fN is assumed to be a continuous function from S to M for

each N . Also let f be the limiting estimator function which determines the limiting

estimating submanifold A(u).

Then the consistency and efficiency of {ûN , N = 1, 2, · · · } can be interpreted as [11],

[12], [14]

Theorem 5.2.2. Let M = {q(x; u) / u = (ua) ∈ R
m} ⊂ S be a curved exponential

family. An estimator {ûN , N = 1, 2, · · · } for u ∈ M is consistent if and only if

η(u) ∈ M ⊂ S is in the estimating submanifold A(u).

Proof. Let xN = (x1, · · · , xN) be N independent observations from q(x; u) ∈ M .

Then

E[x] = η(u). (5.27)

By the law of large numbers the observed point η̂N = x̄ = (x̄1, · · · , x̄n) defined in

Equation (5.20), converges in probability (we denote it by
p−→ ) to η(u) as N → ∞.

That is,

η̂N = x̄
p−→ η(u) as N → ∞ (5.28)

Then

ûN = fN(η̂N )
p→ f(η(u)) as N → ∞ (5.29)

For the estimator {ûN , N = 1, 2, · · · } to be consistent

ûN
p−→ u as N → ∞ (5.30)
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Thus the estimator {ûN , N = 1, 2, · · · } is consistent iff

f(η(u)) = u (5.31)

iff

η(u) ∈ A(u). (5.32)

In the proof of the following theorem we use the Einstein summation convention for

the sake of convenience (that is,
�

i xiy
i is denoted by xiy

i).

Theorem 5.2.3. Let M = {q(x; u) / u = (ua) ∈ R
m} ⊂ S be a curved exponential

family. A consistent estimator {ûN , N = 1, 2, · · · } for u ∈ M is first order efficient if

and only if A(u) is orthogonal to M at the intersecting point η(u) ∈ M .

Proof. Let xN = (x1, · · · , xN) be N independent observations from q(x; u) ∈ M .

Note that q(x; u) = p(x; η(u)). By the law of large numbers the observed point x̄

converges to η(u) as N → ∞. From Equations (5.16) and (5.17) E[x] = η(u) and

covariance matrix V (x) = [gij(η(u))] = [gij(u)], where gij are the components of the

Fisher information metric with respect to the θ-coordinate.

Now consider the random variable

x̃ =
√
N(x̄− η(u)) (5.33)

Then by the central limit theorem x̃ asymptotically follows the normal distribution with

mean 0 and covariance [gij(u)].

Given the estimator {ûN , N = 1, 2, · · · } is consistent. Then from Theorem 5.2.2

the (n−m)-dimensional estimating manifold A(u) passes through the point η(u) ∈ M .

Now introduce a coordinate system v = (vκ), κ = m + 1, · · · , n on A(u) with u as

origin. Then w = (u, v) forms another coordinate system for S. Here we use indices

such as α, β for the coordinate system w, indices such as a, b for the coordinate system

u and indices such as κ,λ for the coordinate system v.

w = (wα) = (u, v) = (ua, vκ) (5.34)
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where α = 1, · · · , n, a = 1, · · · , m and κ = m+ 1, · · · , n.

The η-coordinate for S can be written in terms of w as

η(w) = η(u, v) (5.35)

The w-coordinate of points in M are given by w = (u, 0) or η(u) = η(u, 0).

The bases of the tangent space Tη(u)S of S at η(u) with respect to η-coordinate and

w-coordinate are given by

∂i =
∂

∂ηi
, ∂α =

∂

∂wα
. (5.36)

Note that we can decompose {∂α} into {∂a} ∪ {∂κ}, where

∂a =
∂

∂ua
, ∂κ =

∂

∂vκ
. (5.37)

The tangent space Tη(u)M of M is spanned by {∂a} and the tangent space Tη(u)A(u) of

A(u) is spanned by {∂κ}. Also

∂α = Bi
α∂

i, ∂a = Bi
a∂

i and ∂κ = Bi
κ∂

i (5.38)

where

Bi
α =

∂ηi
∂wα

, Bi
a =

∂ηi
∂ua

, Bi
k =

∂ηi
∂vk

(5.39)

Let the components of the Fisher information metric with respect to the two bases {∂i}
and {∂α} be

gij =< ∂i, ∂j >; gαβ =< ∂α, ∂β >= Bi
αB

j
βg

ij (5.40)

The matrix [gαβ] can be decomposed as

[gαβ ] =





gab gaλ

gκb gκλ



 (5.41)
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where

gab =< ∂a, ∂b >= Bi
aB

j
bg

ij (5.42)

gaκ =< ∂a, ∂κ >= Bi
aB

j
κg

ij (5.43)

gκλ =< ∂κ, ∂λ >= Bi
κB

j
λg

ij (5.44)

Now let ŵN = (ûN , v̂N) be the (u, v)-coordinate of the observed point η̂N = x̄.

η̂N = η(ŵN) = η(ûN , v̂N) (5.45)

Since ûN and v̂N are close to u and 0 respectively, consider

ũN =
√
N(ûN − u), ṽN =

√
Nv̂N , w̃N = (ũN , ṽN) (5.46)

Then

ŵN = w +
1√
N
w̃N with w = (u, 0). (5.47)

By taking the Taylor series expansion of Equation (5.45) around the point w = (u, 0)

the ith coordinate of η̂N is

x̄i = ηi(u, 0) +
1√
N
∂αηi(u, 0)w̃

α
N +

1

2N
∂α∂βηi(u, 0)w̃

α
Nw̃

β
N +O(

1

N
√
N
) (5.48)

This can be rewritten using Equation (5.33) as

x̃i = Bi
α(u, 0)w̃

α
N +

1

2
√
N
∂α∂βηi(u, 0)w̃

α
Nw̃

β
N +O(

1

N
) (5.49)

By neglecting the terms smaller than or equal to the order of 1√
N

in the above equation

we obtain the linear equation

x̃i = Bi
αw̃

α
N (5.50)

Let [Dα
i ] be the inverse matrix of [Bi

α]. Then from Equation (5.40)

Dα
i =

∂wα

∂ηi
= gαβgijBj

β (5.51)
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where [gαβ] is the inverse of the matrix [gαβ].

Then w̃α
N = Dα

i x̃i. Since x̃ asymptotically follows normal distribution with 0 mean and

covariance [gij] then w̃N is also normally distributed with 0 mean and covariance [gαβ].

That is,

lim
N→∞

V (w̃N) = [gαβ] (5.52)

where V (w̃N) is the covariance matrix of w̃N .

That is,

lim
N→∞

V (w̃N) = lim
N→∞

NV (ŵN) = [gαβ] (5.53)

Let the asymptotic mean square error of {ûN , N = 1, 2, · · · } be

lim
N→∞

NE[(ûa
N − ua)(ûb

N − ub)] (5.54)

is the (a, b)th component of [gαβ] from Equation (5.53) and is denoted by ḡab.

Taking the inverse of the matrix [gαβ] in Equation (5.41) and also from Equation (5.53)

[ḡab] = [gab − gaκg
κλgbλ]

−1 ⇒ [ḡab] ≥ [gab] (5.55)

which is the asymptotic Cramer-Rao inequality, where [gab] is the inverse of [gab].

Then the consistent estimator {ûN , N = 1, 2, · · · } is first order efficient iff

[ḡab] = [gab] (5.56)

which is iff gaκ = 0, ∀ a,κ.

Note that gak =< ∂a, ∂k > is the inner product of the tangent vector ∂a ∈ Tη(u)M and

the tangent vector ∂k ∈ Tη(u)A(u). Hence the consistent estimator {ûN , N = 1, 2, · · · }
is first order efficient iff A(u) is orthogonal to M at η(u).

Note 5.2.4. For a statistical manifold S = {p(x; θ)} the maximum likelihood estima-

tor θ̂ is an asymptotically efficient estimator. More precisely, the MLE θ̂ asymptoti-

cally follows a normal distribution with mean θ and covarinace [ 1
N
gij(θ)]. Amari and

Nagaoka [14] gave a geometric proof of the same in an exponential family using the

ancillary manifold and the canonical divergence, see also [11], [12].
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5.3 Mismatched Estimation in a Curved Exponential

Family

In the area of population coding in neuroscience a mismatched model or an unfaithful

decoding model is often used in place of the original model to quantify the significance

of the correlated activities of neurons or for saving the computational cost, see [47],

[48] for more details. Oizumi et al. [48] described maximum likelihood inference in

a curved exponential family based on a mismatched model and interpreted it from the

information geometric point of view. Motivated by their work we consider the problem

of mismatched estimation in a curved exponential family for any estimator, not only for

the MLE. First we interpret the consistency and efficiency of an estimator based on a

mismatched model in terms of the associated ancillary family.

Let S be an exponential family and M = {q(x; u) / u = (ua) ∈ R
m} be a curved

exponential family. Suppose that we have a mismatched model M∗ = {q′(x; u) / u =

(ua) ∈ R
m} corresponding to the original model M . M∗ is a submanifold of S. Let the

embedding functions of M and M∗ in S be θ(u) and θ′(u) respectively. Let η(u) and

η′(u) be the corresponding dual representations.

Let xN = (x1, · · · , xN) be N independent observations from q(x; u) ∈ M . Then

the observed point x̄ = (x̄1, · · · , x̄n) defines a distribution in S whose η-coordinate is

given by η̂N = x̄. For the inference we are using the mismatched model M∗ instead of

the original model M . Since x̄ is a sufficient statistic for S, it is a sufficient statistic for

the submanifold M∗ also. Then an estimator û′
N for M∗ can be regarded as a function

of the observed point η̂N . Thus the estimator û′
N is represented as a mapping f ′

N from

S to M∗

f ′
N : S −→ M∗ where η̂N �→ û′

N = f ′
N (η̂N) (5.57)

The ancillary manifold or the estimating submanifold A′
N(u) corresponding to the

point u ∈ M∗ associated with f ′
N is defined as

A′
N (u) = f ′−1

N (u) = {η = (ηi) ∈ S / f ′
N(η) = u} (5.58)

That is, A′
N(u) is the set of all points η in S which are mapped to u ∈ M∗ by the

estimator f ′
N .
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Now we analyze the characteristics of an estimator {û′
N , N = 1, 2, · · · } in M∗ using

the geometric properties of the ancillary submanifold A′
N (u). Let

A′(u) = lim
N→∞

A′
N (u) (5.59)

Note that the estimator f ′
N is assumed to be a continuous function from S to M∗ for

each N . Also let f ′ be the limiting estimator function which determines the limiting

estimating submanifold A′(u).

Theorem 5.3.1. An estimator {û′
N , N = 1, 2, · · · } for u ∈ M∗ is consistent if and only

if η(u) ∈ M ⊂ S is in the estimating submanifold A′(u) attached to the point u ∈ M∗.

Proof. Let xN = (x1, · · · , xN) be N independent observations from q(x; u) ∈ M . We

have

E[x] = η(u). (5.60)

By the law of large numbers the observed point η̂N = x̄ = (x̄1, · · · , x̄n) converges in

probability (we denote it by
p−→ ) to η(u) as N → ∞. That is,

η̂N = x̄
p−→ η(u) as N → ∞ (5.61)

Then

û′
N = f ′

N (η̂N)
p→ f ′(η(u)) as N → ∞ (5.62)

For the estimator {û′
N , N = 1, 2, · · · } to be consistent

û′
N

p−→ u as N → ∞ (5.63)

Thus the estimator {û′
N , N = 1, 2, · · · } is consistent iff

f ′(η(u)) = u (5.64)

iff

η(u) ∈ A′(u). (5.65)

In the proof of the following theorem we use the Einstein summation convention for
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the sake of convenience (that is,
�

i xiy
i is denoted by xiy

i).

Theorem 5.3.2. A consistent estimator {û′
N , N = 1, 2, · · · } for u ∈ M∗ is first order

efficient if and only if A′(u) is orthogonal to M at the intersecting point η(u) ∈ M .

Proof. Let xN = (x1, · · · , xN) be N independent observations from q(x; u) ∈ M .

Note that q(x; u) = p(x; η(u)). By the law of large numbers the observed point x̄

converges to η(u) as N → ∞. From Equations (5.16) and (5.17) E[x] = η(u) and

covariance matrix V (x) = [gij(η(u))] = [gij(u)], where gij is the components of the

Fisher information metric with respect to the θ-coordinate.

Now consider the random variable

x̃ =
√
N(x̄− η(u)) (5.66)

By the central limit theorem x̃ asymptotically follows the normal distribution with mean

0 and covariance [gij(u)].

Given the estimator {û′
N , N = 1, 2, · · · } is consistent. Thus from Theorem 5.3.1

the (n−m)-dimensional estimating manifold A′(u) passes through the point η(u) ∈ M .

Now introduce a coordinate system v = (vκ), κ = m+1, · · · , n on A′(u) with u as the

origin. Then w = (u, v) forms another coordinate system for S. Here we use indices

such as α, β for the coordinate system w, indices such as a, b for the coordinate system

u and indices such as κ,λ for the coordinate system v.

w = (wα) = (u, v) = (ua, vκ) (5.67)

where α = 1, · · · , n, a = 1, · · · , m and κ = m+ 1, · · · , n.

The η-coordinate for S can be written in terms of w as

η(w) = η(u, v) (5.68)

The w-coordinate of points in M∗ are given by w = (u, 0) or η′(u) = η′(u, 0). The

w-coordinate of points in M are given by w = (u, v′) or η(u) = η(u, v′)

The bases of the tangent space Tη(u)S of S at η(u) ∈ M with respect to η-coordinate
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and w-coordinate are given by

∂i =
∂

∂ηi
, ∂α =

∂

∂wα
. (5.69)

Note that we can decompose {∂α} into {∂a} ∪ {∂κ}, where

∂a =
∂

∂ua
, ∂κ =

∂

∂vκ
. (5.70)

The tangent space Tη(u)M of M is spanned by {∂a} and the tangent space Tη(u)A
′(u)

of A′(u) is spanned by {∂κ}. Also

∂α = Bi
α∂

i, ∂a = Bi
a∂

i and ∂κ = Bi
κ∂

i (5.71)

where

Bi
α =

∂ηi
∂wα

, Bi
a =

∂ηi
∂ua

, Bi
k =

∂ηi
∂vk

(5.72)

Let the components of the Fisher information metric with respect to the two bases {∂i}
and {∂α} be

gij =< ∂i, ∂j >, gαβ =< ∂α, ∂β >= Bi
αB

j
βg

ij (5.73)

The matrix [gαβ] can be decomposed as

[gαβ ] =





gab gaλ

gκb gκλ



 (5.74)

where

gab =< ∂a, ∂b >= Bi
aB

j
bg

ij (5.75)

gaκ =< ∂a, ∂κ >= Bi
aB

j
κg

ij (5.76)

gκλ =< ∂κ, ∂λ >= Bi
κB

j
λg

ij (5.77)

Let ŵ′
N = (û′

N , v̂
′
N) be the (u, v)-coordinate of the observed point η̂N = x̄.

η̂N = η(ŵ′
N) = η(û′

N , v̂
′
N) (5.78)
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Since û′
N and v̂′N are close to u and v′ respectively, consider

ũ′
N =

√
N(û′

N − u), ṽ′N =
√
N(v̂N − v′), w̃′

N = (ũ′
N , ṽ

′
N) (5.79)

Then

ŵ′
N = w +

1√
N
w̃′

N with w = (u, v′). (5.80)

By taking the Taylor series expansion of Equation (5.78) around the point w = (u, v′)

the ith-coordinate of η̂N is

x̄i = ηi(u, v
′) +

1√
N
∂αηi(u, v

′)w̃′α
N +

1

2N
∂α∂βηi(u, v

′)w̃′α
N w̃′β

N +O(
1

N
√
N
) (5.81)

This can be rewritten using Equation (5.66) as

x̃i = Bi
α(u, v

′)w̃′α
N +

1

2
√
N
∂α∂βηi(u, v

′)w̃′α
N w̃′β

N +O(
1

N
) (5.82)

By neglecting the terms smaller than or equal to the order of 1√
N

in the above equation

we obtain the linear equation

x̃i = Bi
αw̃

′α
N (5.83)

Let [Dα
i ] be the inverse matrix of [Bi

α]. Then

Dα
i =

∂wα

∂ηi
= gαβgijBj

β (5.84)

where [gαβ] is the inverse of the matrix [gαβ].

Then w̃′α
N = Dα

i x̃i. Since x̃ asymptotically follows normal distribution with 0 mean and

covariance [gij] then w̃′
N is also normally distributed with 0 mean and covariance [gαβ].

That is,

lim
N→∞

V (w̃′
N) = [gαβ] (5.85)

where V (w̃N) is the covariance matrix of w̃N . That is,

lim
N→∞

V (w̃′
N) = lim

N→∞
NV (ŵ′

N) = [gαβ] (5.86)
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Let the asymptotic mean square error of {û′
N , N = 1, 2, · · · } be

lim
N→∞

NE[(û′a
N − ua)(û′b

N − ub)] (5.87)

is the (a, b)th component of [gαβ] from Equation (5.86) and is denoted by ḡ′ab.

Taking the inverse of the matrix [gαβ] in Equation (5.74) and also from Equation(5.86)

we get

[ḡ′ab] = [gab − gaκg
κλgbλ]

−1 ⇒ [ḡ′ab] ≥ [gab] (5.88)

which is the asymptotic Cramer-Rao inequality, where [gab] is the inverse of [gab].

Then the consistent estimator {û′
N , N = 1, 2, · · · } is first order efficient iff

[ḡ′ab] = [gab] (5.89)

which is iff gaκ = 0, ∀ a,κ.

Note that gak =< ∂a, ∂k > is the inner product of the tangent vector ∂a ∈ Tη(u)M and

the tangent vector ∂k ∈ Tη(u)A
′(u). Hence consistent estimator {û′

N , N = 1, 2, · · · } is

first order efficient iff A′(u) is orthogonal to M at η(u).

Remark 5.3.3. Theorems 5.3.1 and 5.3.2 give the necessary and sufficient condition for

an estimator based on a mismatched model to be consistent and efficient. To achieve

this one has to choose the mismatched model suitably for each estimator.

5.3.1 MLE based on a mismatched model

Here we consider the maximum likelihood estimation based on a mismatched model.

Ozumi et al. [48] stated certain conditions for the MLE based on a mismatched model

to be consistent and efficient. We give a theoretical formulation of this mismatched

maximum likelihood estimation problem along with a detailed proof of the same.

Let S = {p(x; θ) / θ ∈ R
n} be an n-dimensional exponential family. Con-

sider a curved exponential family M = {q(x; u) / u = (ua) ∈ R
m} of S and let

M∗ = {q′(x; u) / u = (ua) ∈ R
m} be a mismatched model corresponding to the

original model M . Let the embedding functions of M and M∗ in S be θ(u) and θ′(u)

respectively. Let η(u) and η′(u) be the corresponding dual representations.
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Consider N independent observations xN = (x1, · · · , xN) from q(x; u) ∈ M . Then

the MLE û′
N for M∗ is determined from the log-likelihood function

ℓ′(x̄; u) = log p(xN ; θ
′(u)) = N

�

n
�

i=1

θ′i(u)x̄i − ψ(θ′(u))

�

(5.90)

as

∂

∂ua
log p(xN ; θ

′(u)) |û′

N
= 0, a = 1, · · · , m (5.91)

n
�

i=1

∂θ′i

∂ua
(û′

N) (x̄i − η′i(û
′
N)) = 0, a = 1, · · · , m. (5.92)

Remark 5.3.4. In general, the estimating function or the ancillary manifold of the MLE

depends upon the number of observations N explicitly. But here we consider the case

where the estimating function or ancillary manifold of the MLE does not depend upon

N explicitly. Thus at each u ∈ M∗, we have A′(u) instead of A′
N(u). Also we denote

the estimator û′
N by û′ and η̂N by η̂.

From Equation (5.92) the ancillary submanifold A′(u) associated with MLE can be

written as

A′(u) = {η = (ηi) ∈ S /

n
�

i=1

∂θ′i

∂ua
(u) (ηi − η′i(u)) = 0, a = 1, · · · , m} (5.93)

Note that η′(u) ∈ A′(u) for all u ∈ M∗.

Lemma 5.3.5. The MLE û′ inM∗ is the point u ∈ M∗ which minimizes (−1)-divergence

from the observed point η̂ to M∗.

Proof. The (−1)-divergence D−1(θ̂, θ
′(u)) from the observed point θ̂ to the submani-

fold M∗ is given by

D−1(θ̂, θ
′(u)) = D1(η

′(u), η̂) (5.94)

= ψ(θ′(u)) + φ(η̂)−
n

�

i=1

θ′i(u)η̂i (5.95)

= φ(η̂)− 1

N
ℓ′(x̄; u) (5.96)

From equation (5.96) it follows that maximizing the log-likelihood ℓ′ is same as mini-

mizing the (−1)-divergence from the observed point to M∗. Hence the MLE û′ in M∗

106



is the point u ∈ M∗ which minimizes (−1)-divergence from the observed point η̂ to

M∗.

Corollary 5.3.6. By the projection theorem the MLE û′ is the (−1)-projection from the

observed point η̂ to M∗. Thus the ancillary manifold A′(u) contains all (−1)-geodesics

which orthogonally intersects M∗ at η′(u) and A′(u) is orthogonal to M∗ at η′(u).

Then

A′(u) = {η = (ηi) ∈ S / min
v∈M∗

D−1(η, η
′(v)) = D−1(η, η

′(u))} (5.97)

Now we give an example to show that arbitrary choice of mismatched model M∗

may not make the MLE consistent.

Example 5.3.7. Let S = {p(x; θ)} be a set of normal distributions with mean µ and

variance σ2.

S = N(µ, σ) =

�

p(x; θ) =
1√
2πσ

exp

�

(x− µ)2

2σ2

�

/µ ∈ R, σ > 0

�

(5.98)

For this 2-dimensional exponential family the canonical coordinate θ = (θ1, θ2), poten-

tial function ψ(θ) and the dual coordinates η = (η1, η2) are given by

θ = (θ1, θ2) = (
µ

σ2
,
−1

2σ2
) (5.99)

η = (η1, η2) = (µ, µ2 + σ2) (5.100)

ψ(θ) =
−(θ1)2

4θ2
− 1

2
log(−θ2) +

1

2
log π. (5.101)

Let M = {q(x; u)} be the set of normal distributions with µ = u and σ = u.

M = N(u, u) =

�

q(x; u) =
1√
2πu

exp

�

(x− u)2

2u2

�

/u > 0

�

(5.102)

Then M is a smooth submanifold of S parametrized by u > 0.

The embedding functions θ(u) and η(u) of M are given by

θ(u) = (θ1(u), θ2(u)) = (
1

u
,
−1

2u2
) (5.103)

η(u) = (η1(u), η2(u)) = (u, 2u2) (5.104)
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Let M∗ = {q′(x; u)} be the set of normal distributions with µ = u and σ =
√
2u.

M∗ = N(u,
√
2u) =

�

q′(x; u) =
1

2πu
exp

�

(x− u)2

4u2

�

/u > 0

�

(5.105)

Then M∗ is a smooth submanifold of S parametrized by u > 0.

The embedding functions θ′(u) and η′(u) of M∗ are given by

θ′(u) = (θ′1(u), θ′2(u)) = (
1

2u
,
−1

4u2
) (5.106)

η′(u) = (η′1(u), η
′
2(u)) = (u, 3u2) (5.107)

The ancillary submanifolds A(u) and A′(u) associated with MLEs û, û′ in M and M∗

respectively are given by

A(u) = {η = (η1, η2) ∈ S / u2 + uη1 − η2 = 0} (5.108)

A′(u) = {η = (η1, η2) ∈ S / 2u2 + uη1 − η2 = 0} (5.109)

We can see that η(u) does not belong to A′(u) for all u > 0. Thus according to Theorem

5.3.1 the estimator û′ is not consistent. Hence the mismatched model that we selected

is not a good choice for the original model.

Now we describe the conditions for the MLE based on a mismatched model M∗ to

be consistent and first order efficient.

Theorem 5.3.8. Let û′ be the MLE in M∗. Then û′ is a consistent estimator of u iff

q′(x; u) = arg min
v∈M∗

D−1(q(x; u), q
′(x; v)) (5.110)

Proof. If

q′(x; u) = min
v∈M∗

D−1(q(x; u), q
′(x; v)) (5.111)

then the (−1)-geodesic (∇m geodesic) connecting η(u) and η′(u) are orthogonal to M∗

at the point η′(u) ∈ M∗. Since A′(u) contains all (−1)-geodesics which orthogonally

intersect M∗ at η′(u),

η(u) ∈ A′(u) (5.112)
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Then by Theorem 5.3.1 the MLE û′ is a consistent estimator.

Conversely, if the MLE û′ is consistent, η(u) ∈ A′(u). Then from Corollary 5.3.6 we

obtain Equation (5.111).

Theorem 5.3.9. Let û′ be the consistent MLE in M∗. Then û′ is first order efficient iff

q(x; u) = argmin
v∈M

D−1(q
′(x; u), q(x; v)) (5.113)

Proof. Let û′ be consistent and Equation (5.113) holds. Then η(u) ∈ A′(u) and (−1)-

geodesic connecting η(u) and η′(u) is orthogonal to M at the point η(u) ∈ M . From

Corollary 5.3.6 we have (−1)-geodesic connecting η(u) and η′(u) is orthogonal to M∗

at the point η′(u) ∈ M∗.

To show that û′ is first order efficient we show that A′(u) is orthogonal to M at the point

η(u) ∈ M .

The ancillary submanifold A′(u) associated with û′ is

A′(u) = {η = (ηi) ∈ S /

n
�

i=1

∂θ′i

∂ua
(u) (ηi − η′i(u)) = 0, a = 1, · · · , m} (5.114)

Thus A′(u) is a linear submanifold in η and hence it is (−1)-flat (∇m flat) passing

through η′(u).

Let Z = η − η(u) and B
′i
a = ∂θ′i

∂ua (u). Then

n
�

i=1

B
′i
aZi = 0, a = 1, · · · , m (5.115)

Let Zk, k = m+1, · · · , n be the n−m independent solutions of Equation (5.115) and

the ith component of the kth independent vector Zk be denoted by Zki. Then

Z = η − η(u) =

n
�

k=m+1

vkZk, for vk ∈ R (5.116)

Thus for any η = (ηi) ∈ A′(u),

ηi =

n
�

k=m+1

vkZki + ηi(u) (5.117)

109



We need to show that

<
∂

∂vk
|η(u),

∂

∂ua
|η(u)>= 0, ∀ a = 1, · · · , m and k = m+ 1, · · · , n. (5.118)

Let

∂k =
∂

∂vk
=

n
�

i=1

∂ηi
∂vk

∂i (5.119)

∂a =
∂

∂ua
=

n
�

j=1

∂θj

∂ua
∂j (5.120)

where ∂i = ∂
∂ηi

and ∂j =
∂

∂θj
. From equation (5.117),

∂ηi
∂vk

= Zki (5.121)

Then

< ∂k |η(u), ∂a |η(u)> =
n

�

i=1

n
�

j=1

ZkiB
j
a < ∂i, ∂j > (5.122)

=

n
�

i=1

ZkiB
i
a (5.123)

where Bj
a =

∂θj

∂ua (u).

Now consider the (−1)-geodesic γ connecting η′(u) ∈ M∗ and η(u) ∈ M

γ(t) = tη′(u) + (1− t)η(u), where t ∈ [0, 1]. (5.124)

Then the tangent vector to γ is given by

γ̇ =
n

�

j=1

(η′j(u)− ηj(u))∂
j (5.125)

Since γ is orthogonal to M at η(u)

La =<

n
�

j=1

(η′j(u)− ηj(u))∂
j , ∂a >= 0, ∀ a = 1, · · · , m (5.126)
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Since η(u) ∈ A′(u), from Equation (5.117)

η′i(u)− ηi(u) =
n

�

k=m+1

vk0(u)Zki, for some vk.0 (5.127)

Thus Equation (5.126) can be written as

La = <
n

�

j=1

(η′j(u)− ηj(u))∂
j,

n
�

i=1

Bi
a∂i > (5.128)

= <

n
�

j=1

(

n
�

k=m+1

vk0(u)Zkj)∂
j ,

n
�

i=1

Bi
a∂i > (5.129)

=
n

�

j=1

(
n

�

k=m+1

vk0 (u)Zkj)
n

�

i=1

Bi
a < ∂j , ∂i > (5.130)

=

n
�

i=1

n
�

k=m+1

vk0(u)ZkiB
i
a (5.131)

=

n
�

k=m+1

vk0 (u)(

n
�

i=1

ZkiB
i
a) = 0 (5.132)

Since vko (u) �= 0

n
�

i=1

ZkiB
i
a = 0, ∀ a = 1, · · · , m and k = m+ 1, · · · , n. (5.133)

Thus from Equation (5.123)

< ∂k |η(u), ∂a |η(u)> =

n
�

i=1

ZkiB
i
a = 0 (5.134)

That is, A′(u) is orthogonal to M at the point η(u) ∈ M . Then by Theorem 5.3.2 the

consistent MLE û′ is an efficient estimator.

The converse trivially holds.

Corollary 5.3.10. Let û′ be the MLE in M∗. Let γ be the (−1)-geodesic connecting

q(x; u) ∈ M and q′(x; u) ∈ M∗. Then

1. The MLE û′ is consistent iff γ is orthogonal to M∗.

2. The consistent MLE û′ is first order efficient iff γ is orthogonal to both M and

M∗.
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5.4 Summary

In this chapter we first discussed the geometric theory of parameter estimation problem

in an exponential family and in a curved exponential family given by Amari [11], [12].

Further the estimation problem based on a mismatched model in an exponential family

is considered. We proved a necessary and sufficient condition for an estimator based

on a mismatched model to be consistent and efficient. Ozumi et al. [48] stated certain

conditions for MLE based on a mismatched model to be consistent and efficient. We

gave a theoretical formulation of these results and a detailed proof of the same.
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CHAPTER 6

Generalized Estimators

In this chapter first we discuss about certain generalized notions of maximum likeli-

hood estimator. Further we look at the estimation problem in a deformed exponential

family. In the context of nonextensive thermostatistics Umarov et al. [49] defined the

notion of q-independence and q-central limit theorem using a generalized product called

q-product, see also [50], [51]. Ferrari and Yang [52] defined a maximum Lq-estimator

(MLqE) based on nonextensive entropy (q-entropy) and studied its asymptotic behavior

in the case of an exponential family. Using the q-product Matsuzoe and Ohara [53]

also considered the q-independence and the q-likelihood estimator. Fujimoto and Mu-

rata [54] defined a more generalized notion of independence called the U-independence

using a smooth strictly convex function U . Eguchi et al. [36] defined the U-estimator

and discussed its consistency and asymptotic normality. Naudts [28] defined a general-

ized Cramer-Rao bound and showed that this bound is optimal in a deformed exponen-

tial family.

In Section 6.1 we define notions like F -product, F -independence using a function F

and its inverse function Z. Then a generalized MLE called the maximum F -likelihood

estimator (F -MLE) is defined and discussed its property as a MAP estimator. In Section

6.2 using the F -escort probability distribution we define two generalized notions of

MLE, the xN -based F -escort MLE and the F -escort MLE based on the product of F -

escort distribution of the marginal probability density of single observations. Then a

characterization of the q-escort MLE among the xN based F -escort MLE as a Bayesian

MAP estimator with a prior is given. Further an analytic proof of the F -version of the

maximum entropy theorem is given. In Section 6.3 first we describe the U-estimator

in a deformed exponential family. Then a proof of the generalized Cramer-Rao bound

defined by Naudts is given. Further we show that the U-estimator attains equality in this

bound. This chapter ends with an open problem regarding the properties of the F -MLE

in a deformed exponential family.
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6.1 Maximum F -Likelihood Estimator

In this section using a function F and its inverse Z the F -product and the F - inde-

pendence of random variables are defined. Then the F -MLE is defined on a statistical

manifold and show that the F -MLE is a MAP estimator with a prior distribution.

Two random variables X and Y are said to be independent if the joint probability

density function p(x, y) is given by the product of the marginal probability density

functions p1(x) and p2(y).

p(x, y) = p1(x)p2(y) (6.1)

Using the properties of the logarithm and exponential functions the above equation can

be written as

p(x, y) = exp[log p1(x) + log p2(y)] (6.2)

for positive p1(x) and p2(y).

The q-product [49] of two positive numbers x, y using the q-logarithm logq and the

q-exponential expq is defined as

x⊗q y = expq[logq x+ logq y] = [x1−q + y1−q − 1]
1

1−q (6.3)

The q-product satisfies the following properties

expq x⊗q expq y = expq(x+ y) (6.4)

logq(x⊗q y) = logq x+ logq y (6.5)

Two random variables X and Y are said to be q-independent with normalization if the

joint probability density function p(x, y) is given by [53]

p(x, y) =
p1(x)⊗q p2(y)

Kp1,p2

(6.6)

where Kp1,p2 is the normalization defined by

Kp1,p2 =

�

X

�

Y
p1(x)⊗q p2(y)dx dy (6.7)

Now we define a notion of independence called the F -independence which extends the
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q-independence.

Definition 6.1.1. Let F : (0,∞) −→ R be a smooth function satisfying F ′(x) > 0 and

F ′′(x) < 0 and let Z be its inverse function. Define the F -product of two numbers x, y

as

x⊗F y = Z[F (x) + F (y)] (6.8)

(assume that F (x) + F (y) ∈ Domain(Z)).

The F -product satisfies the following properties

Z(x)⊗F Z(y) = Z(x+ y) (6.9)

F (x⊗F y) = F (x) + F (y) (6.10)

Define pF (x, y) as

pF (x, y) =
p1(x)⊗F p2(y)

Kp1,p2

=
Z[F (p1(x)) + F (p2(y))]

Kp1,p2

(6.11)

where Kp1,p2 is the normalization defined by

Kp1,p2 =

�

X

�

Y
p1(x)⊗F p2(y)dxdy (6.12)

Definition 6.1.2. Two random variables X and Y are said to be F -independent if the

joint probability density function p(x, y) is equal to pF (x, y).

Note 6.1.3. Fujimoto and Murata [54] defined a generalized notion of independence

called the U-independence using a smooth strictly convex function U . They first defined

generalized arithmetic operations called U-multiplication and U-division as

x⊗ y = u[ξ(x) + ξ(y)], x⊘ y = u[ξ(x)− ξ(y)] (6.13)

where u(.) = U ′(.) and ξ is the inverse of u.

Let pu(x, y) = u(ξ(p1(x)) + ξ(p2(y)) − cu), where cu is the normalization constant

determined from
�

X ,Y pu(x, y) = 1. Then two random variables X, Y are said to be

U-independent if their joint probability density function p(x, y) is equal to pu(x, y).

That is,

p(x, y) = pu(x, y) = u (ξ(p1(x)) + ξ(p2(y))− cu) (6.14)
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Note that for the F -independence we divide the F -product of the densities by a

normalizing constant, whereas in U-independence the normalizing factor is subtracted.

Definition 6.1.4. Let S = {p(x; θ) / θ ∈ E ⊆ R
n} be an n-dimensional statistical

manifold. Let xN = (x1, · · · , xN) be N independent observations from a probability

density function p(x; θ) ∈ S. Define a generalized likelihood function called the F -

likelihood function LF (θ)

LF (θ) = p(x1; θ)⊗F · · ·⊗F p(xN ; θ) = Z(
N
�

i=1

F (p(xi; θ))) (6.15)

Since F is an increasing function it is equivalent to consider F (LF (θ)).

F (LF (θ)) = F (p(x1; θ)⊗F · · ·⊗F p(xN ; θ)) =
N
�

i=1

F (p(xi; θ)) (6.16)

Estimator θ̂F is the maximum F -likelihood estimator (F -MLE) if

θ̂F = argmax
θ∈E

LF (θ) = argmax
θ∈E

F (LF (θ)) (6.17)

Definition 6.1.5. Let p(x | θ) be a distribution of the random variable x which depends

on an unobserved population parameter θ and p(θ) be a prior distribution of θ. Then

the posterior distribution p(θ | x) of θ is given by

p(θ | x) = p(x | θ)p(θ)
p(x)

(6.18)

where p(x) is the marginal density function of x given by

p(x) =

�

E

p(x | θ) p(θ) dθ (6.19)

Let xN = (x1, · · · , xN) be N independent observations. Then the maximum a posteri-

ori probability (MAP) estimator θ̂MAP for θ is given by

θ̂MAP = argmax
θ∈E

p(θ | xN) = argmax
θ∈E

p(xN | θ)p(θ) (6.20)

Theorem 6.1.6. Let xN = (x1, · · · , xN) be F -independent observations from p(x | θ),
where F is a smooth function other than logarithmic function with F ′ > 0, F ′′ < 0.
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Then the F -MLE is a MAP estimator with the prior distribution p(θ) given by

p(θ) =
K(θ)

K1
, K1 =

�

K(θ) dθ < ∞ (6.21)

where

K(θ) =

�

· · ·
�

p(x1; θ)⊗F · · ·⊗F p(xN ; θ) dxN (6.22)

=

�

· · ·
�

Z

�

N
�

i=1

F (p(xi; θ))

�

dxN (6.23)

and dxN = dx1 · · · dxN .

Proof. Since xN = (x1, · · · , xN) are F -independent, from Equations (6.11), (6.12) and

(6.15) the joint probability density function p(dxN | θ) is

p(xN | θ) = p(x1 | θ)⊗F · · ·⊗F p(xN | θ)
K(θ)

(6.24)

where

K(θ) =

�

· · ·
�

p(x1 | θ)⊗F · · ·⊗F p(xN | θ) dxN (6.25)

=

�

· · ·
�

Z

�

N
�

i=1

F (p(xi | θ))
�

dxN (6.26)

Let K1 =
�

K(θ)dθ. The F -MLE θ̂F is given by

θ̂F = argmax
θ∈E

LF (θ) = argmax
θ∈E

p(x1 | θ)⊗F · · ·⊗F p(xN | θ) (6.27)

We have

LF (θ)

K1
=

p(x1 | θ)⊗F · · ·⊗F p(xN | θ)
K1

(6.28)

=
K(θ)

K1

p(xN | θ) (6.29)
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Hence

θ̂F = argmax
θ∈E

LF (θ) = argmax
θ∈E

LF (θ)

K1
(6.30)

= argmax
θ∈E

K(θ)

K1

p(xN | θ) (6.31)

= argmax
θ∈E

p(θ) p(xN | θ) (6.32)

= θ̂MAP (6.33)

with the prior distribution p(θ) of θ given by

p(θ) =
K(θ)

K1

, K1 =

�

K(θ) dθ. (6.34)

That is, the F -MLE is a MAP estimator with p(θ) as prior distribution of θ.

6.2 F -Escort Maximum Likelihood Estimator

The escort probability distributions are studied in the context of nonextensive statistics

and related areas [28–30], [62]. In the study of the geometry of the q-exponential family

Amari and Ohara [27] considered an escort distribution called the q-escort distribution

and defined an estimator called the q-escort maximum likelihood estimator (q-escort

MLE). In Chapter 4 the F -escort probability distribution is defined and using this now

we define a generalized maximum likelihood estimator.

Consider a statistical manifold S = {p(x; θ)}. For a distribution p(x; θ) ∈ S the

F -escort probability distribution p̂F is defined by

p̂F (x; θ) =
1

hF (θ)F ′(p)
, where hF (θ) =

�

1

F ′(p)
dx (6.35)

Let S ′ be the manifold consisting of the F -escort probability distributions

S ′ = {p̂F (x; θ) / θ ∈ E ⊆ R
n} (6.36)

One can define an estimator using the F -escort probability distribution instead of the

original distribution.

Let xN = (x1, · · · , xN ) be N independent observations from S = {p(x; θ)}. Then the
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joint probability density function p(xN ; θ) is

p(xN ; θ) =
N
�

i=1

p(xi; θ) (6.37)

Consider the F -escort distribution of the joint probability density p(xN ; θ)

p̂F (xN ; θ) =
1

F ′(p(xN ; θ))

1
�

1
F ′(p(xN ;θ))

dxN

(6.38)

Definition 6.2.1. For N independent observations xN = (x1, · · · , xN ) from p(x; θ) ∈
S the xN based F -escort MLE θ̂F is defined as the maximizer of the F -escort distribu-

tion p̂F (xN ; θ) of the joint probability density p(xN ; θ). That is,

θ̂F = argmax
θ∈E

p̂F (xN ; θ). (6.39)

Remark 6.2.2. It is clear that in general the F -escort MLE θ̂F is different from the

ordinary MLE. When F (p) = log p, the F -escort MLE is the MLE.

Now for N independent observations xN = (x1, · · · , xN ) from p(x; θ) ∈ S we can con-

sider the product of F -escort distribution of the marginal probability density of single

observations xi given by
N
�

i=1

p̂F (x
i; θ) (6.40)

Note that in general

p̂F (xN ; θ) �=
N
�

i=1

p̂F (x
i; θ) (6.41)

Thus one can consider two types of F -escort MLE’s, the F -escort MLE based on xN

and the F -escort MLE based on the product of F -escort distribution of the marginal

probability density of single observations xi.

The xN -based F -escort MLE is the maximizer of

p̂F (xN ; θ). (6.42)

The F -escort MLE based on the product of F -escort distribution of the marginal
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probability density of single observations xi is the maximizer of

N
�

i=1

p̂F (x
i; θ) =

N
�

i=1

1

F ′(p(xi; θ))(hF (θ))N
. (6.43)

Note that the geometries of the two types of F -escort MLEs are different. But when

F (p) = logq p

p̂F (xN ; θ) =
N
�

i=1

p̂F (x
i; θ) =

N
�

i=1

1

F ′(p(xi; θ))(hF (θ))N
. (6.44)

Thus the two geometries coincide in this case. It will be an interesting problem to find

the relation between the two geometries for a general F and also to study the properties

of the F -MLE in a deformed exponential family.

Amari and Ohara [27] gave an interpretation of the q-escort MLE as a Bayesian

MAP with the prior distribution p(θ) = (hq(θ))
−N
q .

Now we show that this property can be used as a characterization of the q-escort MLE

among the F -escort MLE.

Theorem 6.2.3. The xN -based F -escort MLE is a Bayesian MAP with a prior distri-

bution p(θ) only when the F -escort MLE is the q-escort MLE.

Proof. A Bayesian MAP θ̂MAP satisfies

θ̂MAP = argmax
θ∈E

p(θ | xN ) = argmax
θ∈E

p(θ)p(xN | θ) (6.45)

= argmax
θ∈E

1

F ′(p(θ)p(xN , θ))
(6.46)

with prior p(θ).

(For proving Equation (6.46), let g(u) = 1
F ′(u)

, then g′(u) = −F ′′(u)
(F ′(u))2

> 0 since F ′′(u) <

0. That is, g is a monotonically increasing function.)

The F -escort MLE θ̂F is the maximizer of

p̂F (xN ; θ) =
1

F ′(p(xN ; θ))

1
�

1
F ′(p(xN ;θ))

dxN

(6.47)
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Then the two estimators are identical if

1

F ′(p(xN ; θ))

1
�

1
F ′(p(xN ;θ))

dxN

=
1

F ′(p(θ)p(xN ; θ))
. (6.48)

This implies that F ′ is a homogeneous function of some order k. Then F ′(p) = pk and

hF (θ) = hk(θ) =
�

(p(xN ; θ))
k dxN . Thus from Equation (6.48), p(θ) = (hk(θ))

−N
k .

Hence the xN -based F -escort MLE is a Bayesian MAP with a prior distribution p(θ)

only when it is the q-escort MLE.

6.2.1 F -Maximum entropy theorem

The Shannon entropy or information entropy or Boltzmann-Gibbs-Shannon entropy

plays a major role in the areas of information theory and statistical thermodynamics.

According to Boltzmann theorem probability distributions maximizing the Shannon en-

tropy under a finite number of moment constraints form a finite dimensional exponential

family. There are many generalizations of the Shannon entropy in the existing litera-

ture [22], [26], [27], [37]. One among them is the well known Tsallis entropy [26].

The maximization of Tsallis entropy under appropriate constraints leads to Tsallis dis-

tribution or the q-exponential family. Amari et al. [27] defined a χ-entropy and gave a

geometric proof of the χ-version of the maximum entropy theorem. Here we present an

analytic proof of the same using the F -formulation of the deformed exponential family.

Definition 6.2.4. For any probability density function p(x) the F -entropy is defined as

HF (p) = −Ep̂F (F (p)) =
1

hF (p)

� −F (p)

F ′(p)
dx (6.49)

if
� −F (p)

F ′(p)
dx and hF (p) =

�

1
F ′(p)

dx exist.

When F (p) = lnq p, HF (p) reduces to the q-entropy Hq(p) =
1

1−q

�

1− 1
hq(p)

�

and

when F (p) = ln p, HF (p) reduces to the Shannon entropy H(p) = −
�

p(x) ln p(x) dx.

Theorem 6.2.5. Probability distributions maximizing the F -entropy HF under the F -

linear constraints

Ep̂F [ck(x)] = ak, k = 1, · · · , m (6.50)

where ck(x) are m random variables and ak ∈ R, form an m-dimensionalF -exponential
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family

F (p(x; θ)) =
m
�

i=1

θici(x)− ψ(θ) (6.51)

where θ = (θ1, · · · , θm) is the canonical coordinate and ψ(θ) can be determined from

the normalization condition.

Proof. We use the method of Lagrange multipliers and the calculus of variation princi-

ple.

To maximize the F -entropy HF (p) =
1

hF (p)

� −F (p)
F ′(p)

dx subject to the m constraints

Ep̂F [ck(x)] =
1

hF (p)

�

ck(x)

F ′(p)
dx = ak; k = 1, · · · , m (6.52)

consider,

L(p, λ0, λ1, · · · , λm) =
1

hF (p)

� ∞

0

−F (p)

F ′(p)
dx+ λ0

�
� ∞

0

pdx− 1

�

+
m
�

i=1

λi

�

1

hF (p)

� ∞

0

ck(x)

F ′(p)
dx− ai

�

(6.53)

=
1

hF (p)

� ∞

0

−F (p)

F ′(p)
dx+ λ0

� ∞

0

pdx

+
m
�

i=1

λi

1

hF (p)

� ∞

0

ck(x)

F ′(p)
dx− λ0 −

m
�

i=1

λiai (6.54)

Then

dL
dp

=
1

hF (p)

�

F (p)F ′′(p)

(F ′(p))2
− 1

�

+
1

(hF (p))2
F ′′(p)

(F ′(p))2

� ∞

0

−F (p)

F ′(p)
dx

+ λ0 +

m
�

i=1

λi

1

hF (p)

F ′′(p)

(F ′(p))2
(ai − ci(x)) (6.55)

So at maximum F -entropy distribution

dL
dp

= 0. (6.56)

That is,

1

hF (p)

�

F (p)F ′′(p)

(F ′(p))2
− 1

�

+
1

(hF (p))2
F ′′(p)

(F ′(p))2

� ∞

0

−F (p)

F ′(p)
dx

+λ0 +
m
�

i=1

λi

1

hF (p)

F ′′(p)

(F ′(p))2
(ai − ci(x)) = 0 (6.57)
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Now dividing the Equation (6.57) by
F ′′(p)
F ′(p)

and integrating,

λ0 =
1

hF (p)
(6.58)

Thus Equation (6.57) can be written as

F (p) +
1

hF (p)

� ∞

0

−F (p)

F ′(p)
dx

+

m
�

i=1

λi(ai − ci(x)) = 0 (6.59)

Then

F (p) =
m
�

i=1

λi(ci(x)− ai) +
1

hF (p)

� ∞

0

F (p)

F ′(p)
dx (6.60)

=

m
�

i=1

λi(ci(x)− ai)−HF (p) (6.61)

Now using the m constraints we can solve for λi. Note that from the m constraints, the

probability distribution p is parametrized by a vector (a1, · · · , am).
By differentiating Equation (6.61) with respect to ai,

dF

dai
= −λi −

dHF (p)

dai
(6.62)

By multiplying with 1
F ′(p)

and integrating,

�

1

F ′(p)

dF

dai
dx = −λi

�

1

F ′(p)
dx−

�

dHF (p)

dai

1

F ′(p)
dx (6.63)

Since
�

1

F ′(p)

dF

dai
dx =

�

dp

dai
dx = 0 (6.64)

from Equation (6.63),

λi = −dHF (p)

dai
(6.65)

Note that ai’s are in one to one correspondence with the coordinates λi’s and λi’s are

the canonical coordinates. Thus F (p) takes the form of a F -exponential family

F (p(x; θ)) =
m
�

i=1

θici(x)− ψ(θ) (6.66)
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with θi = λi, i = 1, · · · , m.

6.3 Estimation in F -Exponential Family

Here first we describe the U-estimator in a F -exponential family [36]. Then we give a

proof of the generalized Cramer-Rao bound defined by Naudts [28] and show that the

U-estimator in a deformed exponential family is optimal with respect to this bound.

6.3.1 U -estimator in F -exponential family

Eguchi et al. [36] defined a generalized estimator called the U-estimator and discussed

its properties in a deformed exponential family (named as the U-model). Let us briefly

describe their work here.

Consider a statistical model S = {p(x; θ)} and N independent observations xN =

(x1, · · · , xN) from p(x; θ) ∈ S. Let U : R → R+ be an increasing convex function and

let U∗ be the convex conjugate of U given by U∗(t) = tξ(t) − U(ξ(t)), where ξ(t) is

the inverse function of the derivative of U(t). So d
dt
U∗(t) = ξ(t).

Eguchi et al. [36] defined a U-loss function LU (θ) given by

LU (θ) = − 1

N

N
�

i=1

ξ(p(xi; θ)) + bU (θ) (6.67)

where

bU (θ) =

�

U(ξ(p(x; θ)))dx (6.68)

Then the U-estimator θ̂U is defined as

θ̂U = argmin
θ∈E

LU (θ) (6.69)

They showed that the U-estimator is asymptotically consistent and also investigated the

asymptotic normality for the U-estimator. The estimating function is given by

sU (x; θ) =
∂

∂θ
ξ(p(x; θ))− Ep[

∂

∂θ
ξ(p(x; θ))] (6.70)
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They showed that
√
N(θ̂U − θ) is asymptotically normal with zero mean and variance

J(θ)−1V (θ)J(θ) where

V (θ) = Var(sU (X ; θ)), J(θ) = Ep[
∂

∂θ
sU (X ; θ)] (6.71)

In general the U-estimator is not asymptotically efficient. When U = exp, the U-

estimator is the MLE and we get that the MLE is asymptotically efficient.

Further they considered a U-model S = {p(x; θ) = u(
�n

i=1 θ
ixi − κU (θ))}, where

u = U ′. Then the U-loss function on S is given by

LU (θ) = −
n

�

i=1

θix̄i + κU (θ) + bU (θ) (6.72)

Note that the U-model is a F -exponential family S = {p(x; θ) = Z(
�n

i=1 θ
ixi −

ψF (θ)) / θ ∈ E ⊆ R
n} with U ′ = u = Z and κU (θ) = ψF (θ). Then U∗(t) =

� t

1
F (u) du and (U∗)′(p) = F (p) = ξ(p). On the F -exponential family S consider the

U-estimator θ̂U determined from

∂iLU (θ) = −x̄i + ∂iψF (θ) + ∂ibU (θ). (6.73)

Since ∂iLU (θ) |θ̂U= 0

x̄i = ∂iψF (θ̂U ) + ∂ibU (θ̂U ) (6.74)

In Chapter 4 we described the U-geometry of the F -exponential family. In U-geometry,

the dual coordinate η is given by

ηi = Ep[xi] = ∂iΨ(θ) = ∂iψF (θ) + ∂ibU (θ) (6.75)

Thus U-estimator is directly written in terms of the dual coordinate η. Hence for the

F -exponential family consider the U-estimator η̂U for the the coordinate η = Ep[x].

Then

η̂U = x̄. (6.76)

The estimator η̂U is unbiased since Ep[η̂U ] = η.

Remark 6.3.1. It is easy to see that in general the estimator η̂U is not efficient. That
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is, η̂U is not optimal with respect to the Cramer-Rao bound. More precisely, variance

of η̂U does not attain Cramer-Rao equality for a general U-estimator η̂U . But when

U(s) = exp(s) the U-estimator is the MLE and it is efficient.

In the context of the statistical mechanics Naudts [28] defined a generalized Cramer-

Rao bound using an escort probability distribution and gave sufficient conditions for an

estimator in a statistical model to be optimal with respect to this bound. He showed that

a deformed exponential family naturally has an estimator which satisfies the sufficient

conditions for optimality.

Now we give a proof of the generalized Cramer-Rao bound defined by Naudts using a

generalized score vector and an F -escort probability density function.

For the sake of computational convenience we consider a one dimensional statistical

manifold parametrized by a real parameter θ.

Let S = {p(x; θ) / θ ∈ E ⊆ R} be a statistical manifold. We have the score function

∂θ ln p(x; θ), where ∂θ =
∂

∂θ
. (6.77)

Note that the expectation of the score is zero.

Ep[∂θ ln p(x; θ)] =

�

∂θ ln p(x; θ)p(x; θ)dx = 0 (6.78)

Let F be a smooth real valued function on (0,∞) satisfying F ′(x) > 0 and F ′′(x) < 0.

Define a generalized score function called F -score as

∂θF (p(x; θ)) = F ′(p)∂θp(x; θ) (6.79)

For p ∈ S, the F -escort probability p̂F of p

p̂F =
1

hF (θ)F ′(p)
, where hF (θ) =

�

1

F ′(p)
dx (6.80)

Now we show that the expectation of the F -score function with respect to the F -escort
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distribution p̂F is zero.

Ep̂F [∂θF (p(x; θ))] =

�

∂θF (p(x; θ))p̂F (x; θ)dx (6.81)

=
1

hF (θ)

�

∂θF (p(x; θ))
1

F ′(p)
dx (6.82)

=
1

hF (θ)

�

∂θp(x; θ)dx = 0 (6.83)

The Fisher information metric I(θ) is given by

I(θ) =

�

∂θ ln p(x; θ)∂θ ln p(x; θ)p(x; θ)dx (6.84)

Using the F -score a generalized Fisher metric IF (θ) can be defined as

IF (θ) =

�

∂θF (p(x; θ))∂θF (p(x; θ))p̂F (x; θ)dx (6.85)

Naudts [28] defined a generalized metric using an escort distribution Pθ of the original

distribution pθ as

gN(θ) =

�

1

Pθ

(∂θp)
2dx (6.86)

Rewriting this metric using F -escort distribution

gN(θ) =

�

1

p̂F (θ)
(∂θp)

2dx (6.87)

= hF (θ)

�

F ′(p)(∂θp)
2dx (6.88)

= hF (θ)g
G(θ) (6.89)

where gG is the G-metric with G(p) = pF ′(p). Also

IF (θ) =
1

hF (θ)
gG =

1

(hF (θ))2
gN(θ) (6.90)

Using the F -escort probability distribution, a generalized variance VarF called F -

variance of a random variable X is defined as

VarF (X) = Ep̂F [(X − Ep̂F (X))2] (6.91)
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Theorem 6.3.2. Let X be a random variable with density p(x; θ) ∈ S. Let T = t(X)

be an unbiased estimator for ψ(θ) so that Ep[t(X)] = ψ(θ). Also let the F -expectation

of t(X) is Ep̂F [t(X)] = φ(θ). Then the F -variance satisfies the lower bound

VarF (T ) ≥
| ψ′(θ) |2
gN(θ)

(6.92)

where gN(θ) = hF (θ)g
G(θ) with G(p) = pF ′(p).

Proof. Since Ep̂F [∂θF (p(x; θ))] = 0, the F -variance of the F -score is

VarF (∂θF (p(x; θ))) = Ep̂F [(∂θF (p(x; θ)))2] (6.93)

= IF (θ) (6.94)

Let V = ∂θF (p(x; θ)). Then the F -covariance CovF (V, T ) is

CovF (V, T ) = Ep̂F [∂θF (p(x; θ)) (t(X)− Ep̂F (t(X)))] (6.95)

=
1

hF (θ)

�

∂θF (p(x; θ)) (t(x)− φ(θ))
1

F ′(p)
dx (6.96)

=
1

hF (θ)

�

∂θp(x; θ) (t(x)− φ(θ)) dx (6.97)

=
1

hF (θ)
∂θ

�

t(x) p(x; θ) dx (6.98)

=
1

hF (θ)
ψ′(θ) (6.99)

By the Cauchy-Schwarz inequality,

VarF (V )VarF (T ) ≥| CovF (V, T ) |2=
| ψ′(θ) |2
hF (θ)2

(6.100)

Thus

VarF (T ) ≥
| ψ′(θ) |2

hF (θ)2V ar(V )
=

| ψ′(θ) |2
hF (θ)2IF (θ)

(6.101)

Substituting Equation (6.90) into Equation (6.101)

VarF (T ) ≥
| ψ′(θ) |2

hF (θ)2IF (θ)
=

| ψ′(θ) |2
gN(θ)

(6.102)

128



Eguchi et al. [36] showed the asymptotic normality of the U-estimator in a deformed

exponential family. But the U-estimator in a deformed exponential family is not an

efficient estimator in general. That is the U-estimator is not optimal with respect to

the usual Cramer-Rao lower bound. Now we prove that in a F -exponential family the

U-estimator for the dual coordinate η in the U-geometry is optimal with respect to the

generalized Cramer-Rao bound defined by Naudts.

Theorem 6.3.3. Let S = {p(x; θ) = Z(θx − ψF (θ))} be a F -exponential family and

let η = Ep[x] be the dual coordinate in the U-geometry. Then U-estimator η̂U = x̄ for

η is optimal with respect to the generalized Cramer-Rao bound defined by Naudts. That

is,

VarF (η̂U ) =
1

gN(η)
. (6.103)

Proof. The U-estimator η̂U = x̄ is unbiased so that Ep[η̂U ] = η. Also from the defini-

tion of the F -exponential family

∂θF = x̄− ∂θψF (θ), Ep̂F [x] = ∂θψF (θ) (6.104)

The F -variance of η̂U is

VarF (η̂U ) = Ep̂F [(x̄− Ep̂F [x̄])
2] (6.105)

= Ep̂F [(x̄− ∂θψF (θ))
2] (6.106)

= Ep̂F [(∂θF )2] (6.107)

From Equation (6.85), it follows that

VarF (η̂U ) = IF (θ) =
gG(θ)

hF (θ)
(6.108)

In U-geometry θ and η are dual coordinates. Also the metric gG(η) = ∂θ
∂η

and gG(η) =

(gG(θ))−1. Thus

∂ηp =
∂θ

∂η
∂θp = gG(η) ∂θp (6.109)
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Then

gN(η) = hF (η)

�

F ′(p)(∂ηp)
2dx (6.110)

= hF (θ)g
G(η) =

hF (θ)

gG(θ)
(6.111)

Since η̂U is unbiased, ψ′(η) = 1 and then

| ψ′(η) |2
gN(η)

=
1

gN(η)
=

gG(θ)

hF (θ)
(6.112)

Thus from Equations (6.108) and (6.112),

VarF (η̂U ) =
1

gN(η)
(6.113)

Hence η̂U is optimal with respect to the generalized Cramer-Rao bound.

6.3.2 F -MLE in a F -exponential family

In the previous chapters we discussed the geometrical and statistical properties of an

exponential family. The standard exponential family is dually flat with respect to the

(±1)-connections. The exponential family naturally has a sufficient statistics which

is also the MLE for the dual coordinate. Also the MLE is a finite sample efficient

estimator. Thus, an exponential family has an estimator for the dual coordinate which

attains equality in the Cramer-Rao lower bound. The lower bound is given by the Fisher

information metric which is the Riemannian metric associated to the dually flat structure

of the exponential family. Hence the maximum likelihood estimation in an exponential

family is closely related to the dually flat structure of the exponential family.

In this context one may think of the estimation problem in a deformed exponential

family. As in the case of the exponential family, does a deformed exponential family

has an estimator which is closely related to its dually flat geometry? There is a theo-

rem by Amari and Nagaoka [14] which states that an estimator for a statistical model

{p(x; θ)} is finite sample efficient iff S is an exponential family and θ is a m-affine (flat

with respect to (−1)-connection) coordinate system. So there does not exist a finite

sample efficient estimator for a deformed exponential family except for the exponential
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family. Thus one may have to define some generalized notion of efficiency which in

turn requires a generalized Cramer-Rao lower bound.

In the context of nonextensive thermostatistics Naudts [28] defined a generalized

Cramer-Rao bound using an escort probability density function. Then in the deformed

experiential family he defined a dually flat structure, the U-geometry, using a Bregman

type divergence and showed that this bound is optimal. The divergence that Naudts

considered is a U-divergence defined by Murata et al. [22]. Eguchi et al. [36] studied

the geometry associated with the U-divergence and defined an estimator called the U-

estimator. In the previous section we proved that in a deformed exponential family the

U-estimator for the dual coordinate in the U-geometry is optimal with respect to the

generalized Cramer-Rao bound by Naudts.

Deformed exponential family has two dually flat structures, the U-geometry and the

χ-geometry. As the MLE in an exponential family is related to the dually flat structure

of the exponential family, the U-estimator is related to the dually flat U-geometry of the

deformed exponential family. Now is it possible to find an estimator which is closely

related to the dually flat χ-geometry of the deformed exponential family? In Section

6.1 we defined the F -MLE which is a generalized notion of MLE. Let us consider the

F -MLE for a deformed exponential family.

Let S = {p(x; θ)} be a F -exponential family and xN = (x1, · · · , xN) be N inde-

pendent observations from p(x; θ) ∈ S. The F -likelihood function is given by

F (LF (θ)) =
N
�

j=1

F (p(xj ; θ)) =
N
�

j=1

�

n
�

i=1

θixj
i − ψF (θ)

�

(6.114)

=

n
�

i=1

θi
N
�

j=1

xj
i −NψF (θ) (6.115)

The F -MLE is

x̄i =
x1
i + · · ·+ xN

i

N
= ∂iψF (θ̂F ) (6.116)

Since the dual coordinates ηi in χ-geometry is ηi = ∂iψF (θ) = Ep̂F [xi], the F -MLE

can be directly written in terms of the dual coordinate. Hence

x̄i = ∂iψF (θ̂F ) = η̂i (6.117)

131



Thus the F -MLE is given in terms of the dual coordinate in the χ-geometry. Also

note that the dual coordinate is defined in terms of the F -escort probability distribution.

In Chapter 4 we showed that the χ-geometry is the (±1)-conformal flattening of the

(F,G)-geometry. That is, the manifold S ′ of the F -escort probability distributions is

dually flat by conformally flattening the (F,G)-geometry on the original manifold S.

Thus to study the F -MLE in a deformed exponential family one has to consider both S
and S ′. Does the generalized Cramer-Rao bound by Naudts work in the case of F -MLE

or do we need to define the notions of consistency and efficiency suitably to analyze the

properties of the F -MLE? This would be an interesting problem for further study.

6.4 Summary

In this chapter the F -product of two real numbers, the F -independence of two random

variables and the F -MLE are defined. We showed that the F -MLE is a MAP estimator

with a suitable prior. Further we defined the F -escort MLE which is also a generalized

notion of MLE. Then a characterization of the q-escort MLE among the F -escort MLE

is given. Also an analytic proof of the F -version of Maximum entropy theorem is given.

Further we discussed the estimation problem in a deformed exponential family. We gave

a proof of the generalized Cramer-Rao bound defined by Naudts and showed that in a

deformed exponential family the U-estimator for the dual coordinate in the U-geometry

is optimal with respect to this bound. Finally we posed an open problem regarding the

consistency and efficiency of the F -MLE in a deformed exponential family.
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Concluding Remarks

On a statistical manifold a generalized class of geometric structures called the (F,G)-

geometry is defined in which the α-geometry is a special case. Invariance properties

of various geometric structures are studied and classified them into invariant and non-

invariant. The α-geometry is the only invariant geometry among the (F,G)-geometry.

The role of the non-invariant (F,G)-geometry in the study of the dually flat structures

of a deformed exponential family gives a clarifying picture of the state of the art. The

geometric interpretation of the estimation problem based on a mismatched model in an

exponential family is given in terms of the ancillary manifold. In an exponential family

the maximum likelihood estimation is closely related to its dually flat structure. Certain

attempts have been made in the case of estimation in a deformed exponential family

with the dually flat U-geometry (Naudts, Eguchi, Komori, Ohara), see Section 6.3 in

Chapter 6. We pose an open problem regarding the estimation in a deformed expo-

nential family with the dually flat χ-geometry. In a deformed exponential family the

generalized MLE, F -MLE, is given in terms of the dual coordinate in the χ-geometry.

To analyze the properties of the F -MLE one has to look at some generalized notions of

consistency and efficiency. Also the applications of the non-invariant (F,G)-geometry

in various fields are to be investigated in detail.
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