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ABSTRACT

Numerous scientific missions over the past few decades were sent to Moon, and planets

for studying and understanding the unknown aspects of our solar system. Orbiting vehi-

cles, landers, and exploration vehicles were used for those scientific missions. Wheeled

mobile robots or rovers are a class of mobile robots, used as exploration vehicles for

surface exploration. Rocker-bogie suspension system is so far the most used for these

exploration missions. These robotic vehicles need to negotiate rough terrain through

out their life spans. Their locomotion performance is one of the critical factors, which

decides the success of the mission.

A detailed survey of literature indicated that significant progress has been made in

performance optimization and optimal design of rocker-bogie suspension rovers. The

most popular performance parameter is coefficient of friction needed for moving without

slipping. We identified two aspects of the problem formulation which appeared possible

to improve. One is the characterization of solution as one with equal contact force ratios

for the three wheels, which we felt is not necessary for a minimax problem with non-

linear functions. The other is the implied assumption in some of the formulations that the

wheel torques have to be in the same direction. So we took up improved formulations for

both optimal performance and optimal design as our major goal. We consider structured

terrain like large steps, and stair cases.

For optimizing performance of a given rover, we were able to propose a smooth prob-

lem formulation which does not have the two lacunae mentioned above. As our formula-

tion is smooth, we were able to use a state of the art gradient based non-linear program-

ming numerical solver to obtain solutions. Some of these solutions clearly demonstrate

that equal contact force ratio is not a necessary and in some cases, not even a sufficient

condition for minimum. They also showed that all solutions need not have wheel torques

in the same direction.
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Our detailed understanding of the nature of solutions led to the proposal of two an-

alytical, non-iterative algorithms, which we show to be as effective as the powerful nu-

merical solver in finding global optima, and much faster, and is likely to be much easier

to implement in an onboard controller.

We proposed the use of an onboard manipulator to shift centre of mass, to further

improve performance. We formulated this also as a smooth optimization problem which

can be easily solved using the NLP solver. We then briefly address the cases where the

coefficient of friction between the wheels and ground are (a) known on one patch on the

ground, and (b) fully known everywhere.

The next major problem addressed is that of optimizing the design of the rover itself,

considering required friction coefficient as the objective function. We considered terrains

of (a) single large step, (b) three large steps, (c) staircase, and (d) a combination of (b)

and (c). We also considered rovers without and with manipulator for shifting centre of

mass. We were able to formulate cases (a) and (b) as smooth optimization problems and

obtain solutions which we show to be at least local minima using KKT conditions. For

cases (c) and (d) we could not obtain smooth formulation. However, we were able to

significantly reduce the problem size and obtain good solutions using genetic algorithm.

Our work has thrown up very effective mathematical formulations for performance

optimization and optimal design of rocker-bogie suspension rovers. At the end, we sug-

gest some important directions to pursue in future.
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CHAPTER 1

Introduction

1.1 Background

For several decades now, in order to explore our planetary neighbours, scientists have

been using Orbiting vehicles, Landers, and Exploration vehicles. Mobile robots or robotic

vehicles are used for surface exploration on these planets, and are hence called explo-

ration vehicles. As the name signifies, they explore the unexplored for our benefit and

can be operated autonomously or semi-autonomously. These mobile robots need to move

from one site to another carrying various scientific instruments. They play critical role in

scientific experiments, helping in sample collection and analysis. Astronauts would also

need the assistance of these vehicles, for operation and maintenance of future ground sta-

tions on planets. These vehicles would also help them to move from the landing location

to their habitat and to visit target sites.

Based on the mode of surface locomotion, robotic vehicles can be classified as legged,

tracked, wheeled and hybrid vehicles. Legged robots are walking robots, which walk like

humans or animals. Ambler [1] and LEMUR [2] are examples of legged robots. Tracked

vehicle uses continuous tracks, driven by wheels, and exemplified by Nanokhod [3] and

maXXII [4]. Wheeled rover uses independently driven wheels as the basic element for lo-

comotion, as demonstrated by Lunokhod rover missions [5] and Mars Exploration Rovers

(MER) [6]. Hybrid rovers use actuated legs in addition to wheels attached to these legs.

ATHLETE [7] and MAMMOTH [8] are examples of hybrid vehicles. Each locomotion

mode has its own pros and cons. So far only wheeled locomotion has been used for

planetary rover missions, due to its mechanical simplicity and higher reliability [5].

A wheeled rover suspension with only passive elements like unactuated kinematic

pairs, springs, etc, is called a passive suspension. Active suspension rovers use actuators



to actuate the suspension joints. By actuating suspension joints, wheel ground interac-

tion forces can be deliberately controlled to enhance mobility. Lunokhod [5], Shrimp [9],

PEGASUS [10], and Sojourner [11] are a few examples of passive rovers. Gofor [12],

ATHLETE [7], MAMMOTH [8], and VIPER [13], belong to the category of active sus-

pension rovers. For driving the wheels and steering, both passive and active rovers require

additional motors/actuators.

Various passive suspension mechanisms are used to connect the wheels of a rover to

its vehicle body. Torison bar (Lunokhod [5]), double wishbone (LRV [14]), rocker-bogie

(Sojourner [11], Spirit, Opportunity [6]), linkage mechanisms (Shrimp [9]), split and fit

trailing arm suspension [15], and 3 bogie (Rosalind Franklin [16]) are some examples of

passive suspension mechanisms.

A list of suspension systems of past, and proposed rover missions for planetary ex-

ploration is shown in Table 1.1. This table extends the list of Sanguino [27], so as to

cover the newer developments. As can be seen from the table, predominantly passive

articulated suspension rovers have been used or proposed for planetary exploration, and

among them, rocker-bogie suspension is the most popular one. An extensive review of

planetary rovers can be seen in [27].

1.2 Review of Literature

The broad aim of the thesis is to address the issue of improving mobility of six wheeled

rocker-bogie suspension rovers.

Ability of the robotic vehicle to negotiate various terrains is defined as mobility. Vari-

ous mobility metrics have been proposed. Required coefficient of friction between wheels

and ground [12], energy [28, 29], traction force [30], maximum obstacle height, and sta-

bility [31] are some of them. Among these, coefficient of friction required between the

wheels and the ground is the most popular, perhaps due to the fact that the available

coefficient of friction in unexplored terrain, is unknown. We also consider the required

coefficient of friction as the main objective function. Hence the review of literature here
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Table 1.1: Suspension system of rovers for planetary exploration (Past / Pro-

posed).

Name Agency Wheels Suspension Year

Lunokhod 1 [5] NPO Lavochkin 8 Torsion bar 1970

Apollo 15 LRV [14] NASA 4 DW 1971

Apollo 16 / 17 LRV [14] NASA 4 DW 1972

Lunokhod 2 [5] NPO Lavochkin 8 Torsion bar 1973

Sojourner [11] NASA 6 Rocker-Bogie 1997

Spirit/ Opportunity [6] NASA 6 Rocker-Bogie 2003

Curiosity [17] NASA 6 Rocker-Bogie 2011

Yutu [18] CNSA 6 Rocker-Bogie 2013

Pragyan [19] ISRO 6 Rocker-Bogie 2017

Yutu-2 [20] CNSA 6 Rocker-Bogie 2018

Tianwen-1 [21] CNSA 6 Rocker-Bogie 2020

Perseverance [22] NASA 6 Rocker-Bogie 2021

Chandrayaan-3 rover ISRO 6 Rocker-Bogie 2021

MELOS [23] JAXA 6 3 Bogie 2022

Rosalind Franklin [16] ESA 6 3 Bogie 2022

VIPER [13] NASA 4 Active 2022

Hakuto-R [24] ispace & Draper lab 4 Bogie 2023

Chang’e 7 [25] CNSA * * 2024

Rashid [26] MBRSC 4 * 2024

* - Not announced.

DW : Double Wishbone.
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is mainly confined to contributions considering this metric.

For mechanical systems, various dry friction models have been proposed (see Pennestri

et al. [32] for a detailed discussion). Benson friction model, smooth Coulomb model, ve-

locity based model, Karnopp model, etc are some of them. We use Coulomb’s friction

model.

Planetary rovers need to negotiate regolith as well as hard terrain. Interaction of

wheels with sandy terrain have been studied, and models were proposed by Bekker [33],

Wong and Reece [34], and others. Thrust, sinkage, drawbar pull, etc are some of the per-

formance parameters considered. They are calculated based on certain empirical relations

for the normal and shear stress distributions on the wheel, and certain soil parameters also

feature in these relations. We do not describe these models here, as our study is confined

to hard terrain.

The term “friction requirement” can be understood with reference to Figure 1.1. The

available coefficient of friction µ should be greater than the ratio of traction force FT and

normal force FN , to avoid slip. Hence the minimum required friction coefficient (µ) for

the wheel at any instant, is |FT/FN |.

FNFT

r

Figure 1.1: Traction and normal force acting on wheel.

Note that in 3D motion of wheels, the terms “longitudinal” and “lateral traction/force

coefficients” are used for the force ratios. As our motions are purely longitudinal, “con-

tact force ratio” which we use, stands for “longitudinal traction/force coefficient”.

In the next subsection we consider contributions to minimizing friction requirement

by providing optimal torques to rover wheels. In the subsequent subsection, we consider

optimal design of rovers.
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1.2.1 Minimizing Friction Requirement

We concentrate mainly on formulations and solution approaches. There are certain com-

mon equality and inequality constraints that a rover needs to satisfy. The forces have to

satisfy the set of equilibrium conditions (usually static, but dynamic also), which can be

mathematically written as [A] {x} = {B}, where x denotes the forces, including traction

and normal force variables. The coefficient matrices [A] and {B} are related to the pose

and contact points of the rover and gravitational forces (and inertia forces in the case of

dynamic equilibrium). As the ground can only push on the wheel, and not pull it, the

normal forces have to satisfy the non-adhesion condition, FN ≥ 0.

The problem of optimizing the mobility of a four wheeled actively articulated suspen-

sion rover, Gofor was addressed by Sreenivasan and Wilcox [12]. They considered Gofor

rover negotiating a terrain with a desired velocity and acceleration. The decision vari-

ables used were wheel torques and rover pose. The objective functionmax
i=1,2

{
(FTi

/FNi
)2
}

(where i denotes the wheel number), is minimized for maximizing mobility. An analyt-

ical method was proposed for finding the optimal torques. A single variable quadratic

equation was developed from the condition of equal force ratios. The other force vari-

ables were written in terms of this single variable. This equal friction angle approach was

adopted from the characterisation used by Mukherjee and Waldron [35] for minimizing

the maximum friction angle for a three finger grasp problem. The solution to this grasp

problem was obtained by finding the roots of a higher degree polynomial. For Gofor, as

the number of wheels is two, the equal force ratio condition reduces to that of finding

roots of a quadratic equation. The coefficients of this quadratic are functions of pose,

which is the additional decision variable.

A control strategy for six wheeled rocker-bogie suspension rover was proposed by

Iagnemma et al. [28, 29]. They minimized power for flat terrain, and friction requirement

for irregular terrain. For a given acceleration at a given pose and velocity, they defined

friction requirement as max
i=1,2,3

{FTi
/FNi
}. For minimization, they used an iterative method

proposed by Chung and Waldron [36].

The same objective function and constraints used by Iagnemma et al. [28, 29] were
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used by Lamon et al. [37, 38] for six wheeled rover. They neglected inertia forces, as-

suming slow motion, and proposed a rather elaborate algorithm for solving the problem,

after studying the nature of the objective function in detail.

Mann and Shiller [31] addressed the six wheeled rocker-bogie rover control problem

for the case where µ is known. They depicted the constraints corresponding to no slip

and non-adhesion in the velocity-acceleration space. This helped them choose torques

corresponding to feasible velocities and accelerations.

Krebs, Thueer and co-workers [39, 40, 41, 42, 43] proposed an alternative objec-

tive function
∑3

i=1

(
(FTi

/FNi
)−mean

j=1,2,3

{
FTj

/FNj

})2

. This formulation was extended

for four wheeled and various types of six wheeled rovers. It has to be noted that, if

the minimum is zero, minimizing this objective function becomes similar to solving the

characterizing equation of equal contact force ratios posed by [12].

Three analytical approaches for the problem of minimizing friction requirement was

proposed by Waldron and Abdallah [44]. Among them, the approach of minimizing

friction angle is pertinent for our study. Rovers with four or more even number of wheels

(contact points) was addressed, and 2D dynamic equations of motion were considered.

Optimal friction angle approach assumed equal contact force ratio at the two points of

contact, of a planar two wheeled rover. The optimal traction and normal forces were

obtained by solving a quadratic equation in terms of contact force ratio. For problems

with more contact points (2D), each pair of contact points were solved using optimal

friction angle algorithm keeping a minimal normal force at other contact points. The pair

of contacts with minimum friction angle was chosen as the optimal solution.

The problem of optimizing mobility of HyLoS2, a four wheeled actively articulated

suspension rover, was addressed by Jarrault et al. [45]. They considered that the available

friction coefficient is known. Maximizing the minimum margin of slip was considered

as the objective function, subject to equilibrium equations, non-adhesion constraints, and

torque limits. The margin of slip can be defined as the amount of tangential force that

can be added to the tangential component of force at the contact point, without breaking

the contact stability. An algorithm proposed by Dutta and Vidyasagar [46] was used for
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optimization.

Reina and Fogila [47], optimized the performance of a four wheeled rover, by using

the objective function
∑2

i=1

(
(FTi

)−mean
j=1,2

{
FTj

})2

, which is essentially minimizing

the differences between traction forces. The traction forces which need to be applied will

be close to each other, and equal, when the objective function attains zero value.

Labenda [48] addressed the problem of optimizing mobility of a segmented rover,

choosing as objective function the differences in normal forces between adjacent wheels

to seek a more uniform normal force distribution.

The problem of controlling multisegmented rovers addressed by Siravuru et al. [49]

considered three objective functions, subject to equilibrium equations, non-adhesion con-

straints, and limits on contact force ratios and torques. They concluded that the sum of

contact force ratio, is the most appropriate objective function for their problem.

Numerical and analytical methods were proposed for finding the optimal performance

of a four wheeled rover by Effati and Skonieczny [50, 51]. For solving the non-linear

equations, they resorted to iterative numerical methods. Equations of motion, and equal

contact force ratios condition, constituted the non-linear equations in their approach.

1.2.2 Optimal Design of Rovers

Meghdari et al. [52] appears to be the earliest contributor to optimal design of rovers.

They optimized a Shrimp [53] like rover for climbing three types of staircases. The front

four-bar, and the remaining suspension linkages of this rover were optimized. Primarily,

a smooth climb was ensured for the front four-bar, by optimizing the parameters based on

the kinematic considerations. Secondly, the remaining suspension linkage was optimized

for making CoM path as close to a straight line as possible. They defined the sum of

positive slopes of CoM path, evaluated at various points as rover climbs a staircase, as

the objective function. In this case torques need not be considered explicitly. Tip over

stability was addressed using appropriate constraints.

Optimal design and operation of a Shrimp like rover for climbing a staircase was

7



attempted by Nia et al. [54]. Accelerated motion on staircase was first obtained by sim-

ulating the rover climbing a staircase using nominal torques. They then optimized the

linkage parameters and torques simultaneously, considering the poses and corresponding

velocities and accelerations obtained in the above simulation. Contact force ratio was

minimized subject to non-adhesion constraints, with an upper bound for contact force

ratios. Solutions obtained appear to be very good. They are sensitive to terrain geometry.

For climbing a 0.25 m× 0.25 m staircase using wheels of 0.14 m diameter, the coefficient

of friction required was around 0.6.

A novel four-bar suspension mechanism for a six wheeled rover was proposed by

Woo et al., and optimized [55]. To determine the optimal link lengths, first a nominal

rover climbing the staircase was considered and four critical situations were identified.

For each of the four critical situations, slightly different problem formulations were used,

with the overall goal being equalization of contact force ratios.

Optimal design of Shrimp like rover, with feedback controller gains included as deci-

sion variables, was proposed by Sato and Ishii [56]. The rover was dynamically simulated

for climbing a hump, and two types of stairs. Total traverse, time taken, average torque,

slip, and body pitch were the five objective functions considered for the performance

evaluation. The solution appears to have a disproportionately large front four-bar.

Optimal design of an ExoMars configuration rover moving on sandy terrain was ad-

dressed by Leite and Schafer [57]. Several objectives like rover mass, power consump-

tion, wheel sinkage, and dynamic stability margin were considered. The ExoMars rover

was simulated on sandy ground with a single stone and uneven hard ground.

Alamdari and Krovi [58] considered the design of the front four-bar of a Shrimp like

six wheeled rover for climbing a single step of height equal to twice the wheel diam-

eter. They consider combinations of variable length links (with a linear spring-damper

replacing one rigid link) and linear and torsional springs. A desired path for the center

of the wheel on the four bar is specified. The objective function minimized is a linear

combination of maximum contact force ratio of the single wheel at various poses, and

the sum of squares of error in position of its center. The kinematic parameters are par-
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tially defined by precision points. The decision variables are the kinematic parameters

of the linkage, and spring parameters, and applied forces at each pose. In addition to

non-adhesion conditions, no slip conditions (assuming coefficient of friction is known)

and limits on torques are included as inequalities.

A novel multi-constraint quadrilateral suspension mechanism based on parallel spring

fork suspension was proposed by Yang et al. [59] for step climbing. The suspension link-

age parameters were chosen as variables, and the values were decided based on various

geometric constraints considered for each wheel climbing the step. The overall objec-

tive was to achieve better trafficability (ability to traverse without loss of traction [60])

for step climbing. The rover was experimentally demonstrated for climbing steps, and

slopes.

Kim and Yu [61] attempted the design of a four wheeled rover using multi disciplinary

design optimization. Wheel radius and wheel width were considered as the design pa-

rameters. Deformable terrain was considered, which is flat with inclinations in lateral

and longitudinal directions. The objective functions were tractive coefficient and power

margin, and the constraints imposed were the limits on wheel radius and wheel width.

Tractive coefficient is affected by the drawbar pull, and power margin is defined as the

difference between the power available and the power consumed.

Six wheeled rocker-bogie suspension rover was optimized by several teams [62, 63,

64, 65, 66, 67, 68]. The linkage parameters and CoM location were the decision variables

for the optimal design attempted by Li et al. [62], for climbing a single step. Energy con-

sumption, vertical displacement and body pitch were used as objective functions. Con-

straints for preventing rover body hitting the step corner, stability, and load equalization

were used.

Ullrich et al. [63] optimized the rover for motion on uneven sandy terrain and a step.

They used several objective functions, including the switchable one proposed by Iag-

nemma et al. [29], and also margin of static stability, margin of interference, wheel sink-

age, and pitch variation.

Deviation of CoM path, from the straight line with slope related to staircase, was
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considered as the objective function by Kim et al. [64] and Hong et al. [65]. In addi-

tion to this objective function, Hong et al. [65] considered maximum tilting angle of the

cart, while climbing the stair. Three types of staircases were considered for the design.

Constraints for preventing pivot interference with step, preventing interference between

wheels, limits on wheel radii, and overall size limitation were used by Hong et al. [65], to

ensure that the complex operation of climbing a staircase could be performed smoothly.

In addition to rocker-bogie parameters, wheel radii were also used as decision variables.

The rover wheels were actuated in the proposed rover by Kim et al. [64], while a manual

pull up was used by Hong et al. [65].

Optimal design of a modified rocker-bogie suspension, which allows the movement

of bogie pivot along a line, was attempted by Hong et al. [66]. Their objective was to

minimize the deviation of CoM path from the straight line with slope related to staircase,

and the backward movement of the rover (while climbing a staircase).

Power consumption and effective ground pressure were the objective functions used

by Kshirsagar et al. [67] for climbing a single step. Constraints to prevent interference of

bogie with step, and load equalization were also included.

An optimized rover for motion on an uneven terrain was attempted by Guodong et

al. [68]. They tried to minimize the fluctuation of CoM. The decision variables were the

rotation angle of the bogie with respect to the vehicle body, and the position of rocker-

bogie pivot point. Limits on rotation angles and link lengths were imposed as constraints.

1.3 Observations

From the papers on optimizing performance of a given rover, we find that friction re-

quirement is the most popular objective function.

Friction requirement is primarily defined as the maximum of the contact force ra-

tios. This makes it a non-smooth function. It is important to note that powerful gradient

based optimization solvers cannot be used to solve non-smooth optimization problems

effectively.
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Many authors [12, 39, 40, 41, 42, 43] use the condition that contact force ratios are

equal at the minimum, in order to obtain solutions. We believe that this is not a sufficient

condition. Also, as there are inequality constraints, and as the contact force ratios are

non-linear functions, these conditions may not even be necessary conditions for solution.

Some authors [28, 29, 37, 38, 39, 40, 41, 42, 43] assume that the contact force ratios

are positive. It is not clear to us that this needs to be the case in all situations.

Fairly elaborate formulations have been proposed for optimal design of rovers for

climbing different types of terrains. Most papers consider structured terrains like steps

and staircases. Several types of objective functions and constraints have been considered.

Still the most popular objective function is friction requirement.

One thing we noticed regarding optimal design papers, is that the solutions are not

checked to see whether the first order necessary conditions for constrained minima (KKT

conditions) are satisfied.

The concept of shifting center of mass, has been used by some authors for improving

performance and other aspects.

1.4 Research Objectives

Based on our survey of literature, and the observations we listed above, we can now state

the objectives of our work. The broad aim of the thesis is to optimize mobility of six

wheeled rocker-bogie suspension rovers. The specific objectives are:

• To develop smooth formulations for finding optimal torques of wheels which min-

imize friction requirement, at a given pose and contact pattern, and to solve the

problem, without posing conditions like equality of contact force ratios, and allow-

ing torques with different signs. We also propose to develop non-iterative methods

for solving this problem.

• To explore the potential of shifting CoM with an onboard manipulator, to further

reduce friction requirement.
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• To develop smooth formulations for optimal design of the rover for climbing a

single step, multiple steps, and staircases, minimizing the coefficient of friction

required.

1.5 Organization of the Thesis

The contents of the thesis, as presented in the remaining six chapters, are briefly described

below.

Chapters 2 and 3 deal with the problem of determining optimal torques (and also

manipulator CoM locations) to minimize friction requirement at given poses. Chapter 2

focuses on formulating the problem as a smooth optimization problem, and solving it us-

ing a powerful gradient based iterative numerical optimization solver for such problems.

Chapter 3 proposes analytical approaches for solving the problem.

In chapter 4 we generate minimal friction requirement and minimal torque require-

ment solutions for terrains whose coefficient of friction is partially or fully known.

In chapter 5 we formulate the problem of designing the rover optimally, as a smooth

optimization problem, and discuss solutions for climbing a single large step, and several

isolated large steps.

In chapter 6 we address the problem of optimally designing the rover for climbing

a staircase of a specified geometry, and also several isolated large steps. This could not

be posed as a smooth optimization problem, and hence solution was attempted using a

technique which is suitable for non-smooth problems.

Chapter 7 concludes the thesis, summarizing the main contributions, and indicating

directions for future work.
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CHAPTER 2

Minimizing Friction Required for Climbing

Based on the literature survey, we identified two major problems to be addressed. Of

these, the problem of optimizing the mobility of a given rover for negotiating uneven

terrain, is addressed in this and the following two chapters.

Like many other authors, we regard friction requirement as the index of mobility, and

try to minimize it. In this chapter, the emphasis is on formulating the problem as a smooth

optimization problem, without a particular restriction and a particular characterization

of solution, imposed by some of the earlier formulations. We obtain optimal solutions

numerically, for various poses of two rovers, and explain different types of solutions in

detail. We also investigate the effect of shifting the center of mass of the body-rocker

subassembly using an onboard manipulator. Finally, using a dynamic simulation of the

rover, we show that the optimal friction requirements obtained by us, are realizable by an

idealized rover.

2.1 Mathematical Model

A six wheeled rover with the rocker-bogie suspension was considered for our study. Fig-

ure 2.1 shows the rover moving over an uneven prismatic terrain.

Geometry of rocker-bogie suspension rover considered for the study is shown in Fig-

ure 2.2, and its fixed parameters shown in 2.3. Two wheels (on one side) are connected to

both ends of bogie. Their centers are ‘A’, and ‘B’. One end of rocker is connected to bogie

with a revolute joint ‘C’, while the other end is connected to the wheel with center ‘H’.

Rocker on one side is pivoted to body at ‘G’, and is connected to the rocker at the other

side through a differential mechanism. The differential mechanism makes the two rock-

ers move in opposite directions with respect to the body, leading to reduced pitching of
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Figure 2.1: Rocker-bogie suspension moving on uneven terrain of 2D type.

the body as the wheels on the two sides encounter different terrains, and pitch differently.

In the case of the motion we consider, as wheels on both sides move identically, the body

maintains the same pitch angle as the two rockers, and so does not rotate with respect to

the rockers. Thus a single CoM is sufficient for the body and the rocker together. The

weight of the body is acting at pointG2. Wheels are assumed to be of the same radius,‘r’.

The weight of each wheel is mig, and its CoM is at the centre of the wheel, where i de-

notes the wheel number, 1, 2, 3, and g acceleration due to gravity. The contact point

between ground and ith wheel is defined using angle βi measured in counter-clockwise

direction, w.r.t. the vertical line passing through the center of the wheel. Due to both con-

vex and concave nature, a single step is considered as a benchmark obstacle, like several

earlier researchers. The single step of height ‘s’ equal to wheel diameter is considered

for this problem.

Assumptions

The following assumptions are made through out this work.
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Figure 2.3: Rocker-bogie rover with dimension considered for the study.

(a) The terrain is such that when the rover moves without steering, the wheels on the

left and right sides move identically.

(b) The rover velocity and acceleration are small enough for us to neglect inertia forces.

(c) Wheels and ground are rigid.

(d) There is only one active contact point for each wheel.

(e) Bogie mass is negligible.

(f) There are no limits on wheel motor torques.

Rocker-bogie suspension is specially designed to negotiate complex 3D terrains, and

hence assuming 2D motions as we have done, is restrictive. 2D motions are valid only
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regarded as a single rigid body. Bogie and its two wheels are also regarded

as a single rigid body.

for structured features like ramps and staircases, and hence the scenarios we consider are

mainly useful for motions inside buildings. In this work we address this set of restricted

scenarios, as we see the possibility of improving upon the existing research on them.

Torque limits are not provided because, it was assumed that the maximum motor

available is greater than the torques that need to be applied on wheels, which will keep

it in equilibrium at all poses during the negotiation of the step. Torque limits can be

incorporated in our formulation. But, we thought of going ahead with no limits on wheel

torques. Later in Chapter 4, we address the problem of torque optimization, in the case

where friction coefficient is known.

Equations of Equilibrium

Half the system - the three wheels, bogie, and rocker on one side, and half the body are

considered for modeling. The bogie with two wheels is regarded as one body, and the

rocker with one wheel and half the body, is regarded as the other body.

Thus the equilibrium equations consists of three equations for the bogie, and three for

the body-rocker combination. This set of six equilibrium equations, relating eight forces,

which are the six forces at the three contact points, and two reaction forces F1 and F2 at

16



joint C, can be written as

[A] {xF} = {F} , (2.1)

where {xF} = {FN1 , FT1 , FN2 , FT2 , FN3 , FT3 , F1, F2}T .

The free body diagrams are shown in Figure 2.4, and the six equilibrium equations

are given below.

FT1x + FN1x − F1 + FT2x + FN2x = 0 (2.2)

FT1y + FN1y + F2 + FT2y + FN2y = m1g +m2g (2.3)

−(FN1x + FT1x)YP + (FN1y + FT1y)XP + F1YC − F2XC −

(FN2x + FT2x)YQ + (FN2y + FT2y)XQ = m1gXA +m2gXB (2.4)

FT3x + FN3x + F1 = 0 (2.5)

FT3y + FN3y − F2 = m3g +WV (2.6)

−(FN3x + FT3x)YR + (FN3y + FT3y)XR = WVXG +m3gXH (2.7)

where FNix
(= FNi

cos(βi+π/2)) and FNiy
(= FNi

sin(βi+π/2)) are the normal reaction

forces of ith wheel in X and Y directions respectively and FTix
(= FTi

cos(βi)) and FTiy

(= FTi
sin(βi)) are the traction forces of ith wheel in X and Y directions respectively.

XP , YP are the global coordinates of point P, etc.

Coefficients of {xF} in the six equilibrium equations (equations 2.2-2.7) constitute

[A] matrix and the right hand sides constitute {F} matrix, in equation 2.1. For a given

pose and wheel-ground contact points, these coefficients and right hand sides are known.

Non-adhesion Conditions

For every problem, in addition to equilibrium conditions, we introduce the non-adhesion

conditions FNi
≥ 0, i = 1, 2, 3, as the ground can only push the wheels, and not pull

them.
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2.2 Transforming a Non-smooth Formulation to a Smooth

Formulation

The example below demonstrates how a max objective function is a non-smooth function,

and how the non-smooth problem can be transformed to a smooth problem.

f1, f2

x

f1

f2

(a) Variation of f1(x), and f2(x).

z

x

increasing
direction
of z

(b) Smooth formulation.

Figure 2.5: Transformation from non-smooth to smooth formulation

Consider the objective functionmax {f1(x), f2(x)}, which is to be minimized (shown

in Figure 2.5a). Due to the use of “max” operator in the objective function, the gradi-

ent is not defined everywhere. In Figure 2.5a, at the point where both the component

functions are equal, the gradient is discontinuous, and hence the max function is non-

smooth or non-differentiable. When the function has several independent variables, max

functions have sharp valleys where the function is not differentiable, and gradient based

searches slow down at sharp valleys, and often fail. If this non-smooth problem can be

converted to a smooth one, powerful gradient based solvers can be employed for finding

the solution. Here, we adopt such a conversion used by [69] for a mechanism synthesis

problem.

The approach is to incorporate an additional variable z. Using this, the problem can

be transformed to

minimize z,

subject to:
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z ≥ f1, and z ≥ f2.

These constraints and objective function are shown in Figure 2.5b. We need to find the

value of x and z. Now it can be seen that the problem has become smooth, as all the

functions involved are smooth. This approach of transforming to smooth optimization

problem, is used in this thesis.

The fact that powerful gradient based optimization solvers could get stuck at non-

minimal points of a nonsmooth objective function like the max function, was actually

experienced by us when we tried to solve a friction requirement minimization problem

for a rover.

2.3 Formulation

The problem addressed here is ‘given the parameters and inertia distribution of a rover,

and its pose and contact points of wheels with the ground, determine the minimum coef-

ficient of friction needed to maintain equilibrium without slipping’.

max
{∣∣∣ FT1

FN1

∣∣∣ , ∣∣∣ FT2

FN2

∣∣∣ , ∣∣∣ FT3

FN3

∣∣∣} is the objective function which is appropriate for min-

imizing friction requirement. As previously explained, max operator introduces non-

smoothness, and in this case absolute values in the component functions also introduce

non-smoothness. Hence gradient based searches could fail. In order to overcome this,

the problem can be formulated as a smooth optimization problem using the approach

discussed in the previous section.

In our formulation, in addition to the existing eight decision variables, the available

friction coefficient µ is introduced as a variable. The full set of decision variables is

{FN1 , FT1 , FN2 , FT2 , FN3 , FT3 , F1, F2, µ}. Please refer to Figure 2.4, where the forces are

indicated on the two free body diagrams.

Our smooth optimization problem stated in words is, given the parameters and inertia

distribution of a rover, and its pose and contact points on the wheels, determine the avail-

able friction µ and the eight forces, such that the available friction is minimum, and the

rover can maintain static equilibrium without any adhesion or slip between the wheels
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and the ground. Mathematically it can be stated as:

Determine {FN1 , FT1 , FN2 , FT2 , FN3 , FT3 , F1, F2, µ} to

minimize µ,

subject to

[A] {xF} = {b} , (2.8)

FNi
≥ 0, i = 1, 2, 3, (2.9)

−µFNi
≤ FTi

≤ µFNi
, i = 1, 2, 3, and (2.10)

µ ≥ 0. (2.11)

Conditions (2.9) are the three inequalities which ensure non-adhesion between wheels

and ground, conditions (2.10) are the six inequalities which ensure no slip between the

three wheels and ground, and condition (2.11) ensures that µ is physically meaningful.

It is important to note that our formulation does not insist on either equal contact

force ratios or the same sign for traction forces. The above problem was solved at a large

number of poses occurring during step climbing. Solutions which violate the equal force

ratio criterion were obtained, and are discussed in Section 2.4.3. In that same section, we

show solutions where some force ratios can be negative and some positive.

The rocker-bogie suspension rover in [42] was chosen as the nominal rover for our

study. Parameter values are given in Table 2.1, and Figure 2.6 shows the nominal rover

to scale (Detailed explanation of rover parameters, mentioned in Table 2.1, is given in

Chapter 5). Total mass of rover is 17.6 kg, each wheel being 1 kg and the remaining 11.6

kg being associated with body. As mentioned earlier, only half the rover is considered

for static analysis (three wheels of 1 kg each and body of 5.8 kg (mbody)). Acceleration

due to gravity, g = 9.81 m/s2, Global origin is kept at ‘O’ with X and Y coordinates as

marked in Figure 2.6. The body CoM is located above the center of the middle wheel,

when the vehicle is resting on a flat horizontal terrain.

The number of poses considered for each wheel, from its first contact with step riser

to a pose where the wheel center is vertically above the step corner, is 147. 57 of these are
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Figure 2.6: Rover climbing a step.

equally separated positions of the wheel on the riser, the remaining 90 are taken at one

degree interval of wheel rotation, when climbing the corner of the step. The poses of the

three wheels climbing add up to 441 poses. In addition to this several intermediate poses

were also considered adding up to a total of 729 poses. For each pose µ was minimized

using ‘fmincon’, an NLP solver based on the SQP algorithm, in MATLAB R©. KKT

conditions, which are first order necessary conditions for constrained minimum [70],

were checked, and found to be satisfied for all solutions.

We generated solutions in two ways. First we generated solution for pose 1 from

different random starting points. All of them converged to the same solution. Then for the

next pose which is very close to pose 1, we used the solution of pose 1 as guess solution.

With this approach, we generated solutions for all the remaining 728 poses. The second

approach was to use one randomly selected starting guess for each of the 729 poses. As

random guesses, we generated uniformly distributed points in the box FN1 , FN2 , FN3 ∈

[0, 100], FT1 , FT2 , FT3 , F1, F2 ∈ [−50, 50], µ ∈ [0, 3]. Optimization searches from the 729

random guesses generated in this fashion (one for each pose) converged to the respective

earlier obtained 729 solutions. In the space of decision variables, the starting random

guesses were at a mean euclidean distance of 95.1 from their solutions. The minimum and
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Table 2.1: Dimensions of nominal rocker-bogie rover.

Parameter Dimension Unit

l1 228 mm

l2 132.30 mm

θ2 30 degrees

l4 347.80 mm

l5 118.85 mm

α 28.39 degrees

s 110 mm

r1 = r2 = r3 55 mm

maximum distances of a starting guess from its solution was 36.5 and 160.9 respectively.

This gives us some level of confidence that our solutions are likely to be global minima.

It also appears that there are no other local minima for these poses.

2.4 Results

Here we use the term “forward climbing” when the wheels on the bogie is ahead of the

wheel on the rocker. “backward climbing” means that the wheel on the rocker is ahead

of the wheels on the bogie.

2.4.1 Results for Optimal Forward Climbing

Figure 2.7 plots optimal µ for all 729 poses, while Figure 2.8 plots the corresponding

torques. It can be seen that maximum friction requirement of 0.58 occurs when the first

wheel just starts climbing the vertical step. The value reported by Thueer [42] is 0.62.

The pattern of µ variation is similar to that of Thueer [42]. The results obtained by

Thueer [42] also appear to be optimal. The differences in the two results might be due to

the fact that there may be some small differences in the parameters used in this thesis and
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Thueer [42]. The fact that the variation and values are very close to each other indicates

that the results by Thueer [42] and our results confirm each other’s validity.
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Figure 2.7: Optimal friction coefficient requirement of nominal rocker-bogie

rover for forward climbing.
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Figure 2.8: Torques of nominal rocker-bogie rover for forward climbing, corre-

sponding to minimal friction requirements.

Maximum normal force is for the middle wheel (53.14 N; 61.56% of total weight).

This force occurs when last wheel starts climbing the step. From Figure 2.8 it can be seen

that the maximum torque requirement of 1.6 Nm is also for the middle wheel. It happens
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Figure 2.9: External forces on (a) bogie, (b) rocker and body, and (c) entire rover,

for optimal solution with three equal contact force ratios, at pose 355.

when the last wheel just reaches the convex corner of the step. This peak torque is 2.6

times the average torque of 0.62 Nm on the wheels during climbing.

The discontinuities in required friction coefficient (Figure 2.7), and torques (Fig-

ure 2.8) occur because contact conditions change discontinuously. For example when

a wheel just starts climbing the vertical face of a step, contact angle switches discontinu-

ously from 0◦ to 90◦. To handle this in practice, the rover velocity can be brought to zero

at the point of contact with the step, and the torque ramped up or down in a finite time

interval, using torque/current feedback control.

We now show the equilibrium situation graphically. Figure 2.9 shows external forces

corresponding to the optimal solution where the three contact force ratios are equal in

magnitude and sign. The contact forces shown acting at the contact points P, Q, and S,

are the sum of the normal and traction forces. Force F is the force at pivot ’C’, and forces

E1, E2. and W are the weights acting through the centers of mass. The sets of external

forces on the three assemblies are in force and moment equilibrium. The rocker and body

being a three force system, the three external forces are concurrent, as can be seen in (b).

Something that surprised us is that the optimal solutions of all the 729 poses were

satisfying the equal contact force ratio condition, and all the traction forces had the same

sign, while we were expecting solutions which violated these. However, for a rover,

optimally designed for climbing a step of height twice the wheel radius (see Figure 2.10),

we did get solutions of those kind. Such special cases are discussed later in Section 2.4.3.

Optimization of rover for step climbing, and how this optimal rover was obtained, are
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Figure 2.10: Nominal rover, and optimal rover for climbing h = 2r step.

described in detail in Chapter 5.

2.4.2 Results for Optimal Backward Climbing

It is natural to ask the question, ‘can the rover climb backward?’ In one case it was

reported that a rover is not able to climb backward [42]. We determined minimum coef-

ficient of friction required for climbing backwards, at 776 poses in the sequence of back-

ward climbing. Poses were chosen in the same way as described for forward climbing

(see Section 2.3). The formulation used was the same as that used in forward climbing.

Variation of minimum µ as the rover climbs backwards is shown in Figure 2.11. The

worst µ required for backward climbing is 0.84. This happens when the last wheel just

reaches the corner of the step, as shown in Figure 2.12. Thus we can say that the rover

considered can climb the given step backwards only if the coefficient of friction is at least

0.84.

In the above set of optimal solutions, the maximum torque needed for climbing was

2.07 Nm, occurring when the first wheel just starts to climb, while the average torque for

wheels during climbing is 0.75 Nm. In the case of forward climbing, the maximum torque

was lower, at 1.6 Nm. So clearly, the rover considered is better at climbing the given step

forward than backward, if the criteria required are friction and torque. Asymmetry in

performance in forward and backward climbing is natural to expect in a rover like the

rocker-bogie suspension rover, whose configuration is asymmetric. It is preferred to

climb down backwards as it will give the same result as when climbing up forward.
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rover for backward climbing.
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Figure 2.12: Pose in which last wheel just reaches the corner of step during back-

ward climbing.

2.4.3 Special Cases from an Optimally Designed Rover

As already mentioned, optimal solutions of the nominal rover, at all the poses we consid-

ered, have equal contact force ratios for the three wheels, and same signs for the torques.

We were expecting these conditions to be violated at some poses. We obtained such cases

of violation with an optimal rover we describe in Chapter 5, where its parameters and how

it was obtained, etc, are discussed. We describe here, the cases were the conditions are

violated.

Contact force ratios of the optimal rover are given in Table 2.2 (variation also shown

26



in Figure 5.8) for the rover climbing a step of height equal to wheel diameter in the

forward direction. Only 15 poses were considered for the optimal design of the rover for

step climbing (poses are explained in Chapter 5, ‘Optimal design for step climbing’). It

can be seen from the Table 2.2 that the poses 6 and 11 have contact force ratios with the

same magnitude, but with different signs. Pose 5 has nonequal contact force ratios, and

one of its ratios is zero. All the remaining 12 poses have the same contact force ratios.

Table 2.2: Contact force ratio at 15 poses - optimal rover.

Pose no. First wheel Middle wheel Last wheel

1 0.4457 0.4457 0.4457

2 0.3230 0.3230 0.3230

3 0.2082 0.2082 0.2082

4 0.0229 0.0229 0.0229

5 0 -0.0640 0.1212

6 0.4457 -0.4457 0.4457

7 0.4457 0.4457 0.4457

8 0.3577 0.3577 0.3577

9 0.1673 0.1673 0.1673

10 0 0 0

11 0.2954 0.2954 -0.2954

12 0.3752 0.3752 0.3752

13 0.4457 0.4457 0.4457

14 0.2392 0.2392 0.2392

15 0 0 0

The three special cases which we discuss below are (a) optimal solutions with re-

versed torques, (b) optimal solution with unequal contact force ratios, and (c) nonoptimal

point with equal contact force ratio.

Case (a): Solutions with Reversed Torques

Although wheel torques are in the same direction at most poses, at poses 6 and 11, they

have different directions, though the same magnitude. In pose 6, τ1 and τ3 are cw, while
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τ2 is ccw. For pose 11, τ1 and τ2 are cw and τ3 is ccw.

It is intuitive to think that when a rover is climbing forward, all wheels should aid

that progression by providing torques in the same direction. This may be true if the rover

is accelerating substantially. In our case, were only equilibrium is demanded, the rover

may be climbing up or down. Also, in some situations like the front wheel just butting

the step during the climbing up sequence, the first two wheels of the nominal rover rotate

in one direction, while the last wheel rotates in the opposite direction (see Figure 2.13).

So the intuitive feeling could be wrong.

G

X

Y

A B H

C

YA

X
H

Figure 2.13: Locus of G, and variation of XH .

If we had solved for pose 6 using the two formulations which demand traction forces

with equal direction [28, 39], we would have got the minimum friction requirement as

0.5878, which is higher than the 0.4457 obtained using our formulation. This clearly

shows that one should discard the requirement that the three tractions should have the

same direction, unless there is some other reason for such a requirement.

We now show the equilibrium situation graphically. Figure 2.14 shows the external

forces for the optimal solution in which the three contact force ratios are equal in magni-

tude, but have different signs. The contact forces at P and S pass through the right side of

the respective wheel pivots while the force at Q passes through the left side of the wheel

pivot. Hence it is clear that the signs of the contact force ratios of the front and rear

wheels are the same, and is different from that of the middle wheel. The forces satisfy

the force and moment balance. The rocker and body being a three force system, the three
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external forces are concurrent, as can be seen in (b).
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Figure 2.14: External forces on (a) bogie, (b) rocker and body, and (c) entire

rover, for optimal solution at pose 156 with equal contact force ra-

tios, with different signs.

A small modification of the second formulation [39] would allow torques in different

directions to be considered. If we want to allow the torques to have different signs,

we suggest using
∑3

i=1

(
(FTi

/FNi
)2 −mean

{
(FTi

/FNi
)2
})2

as the objective function,

instead of the objective function
∑3

i=1 (FTi
/FNi

−mean {FTi
/FNi
})2. We used this for

pose 6, and obtained the solution we had obtained with our formulation, with optimal

friction requirement of 0.4457, and torques in different directions.

However, as shown below in case (b), seeking equal magnitude contact force ratio,

even with different signs, would make us miss certain special solutions. We also show in

case (c) that, the approach of seeking equal contact force ratio can declare non-minimum

points as solutions.

Case (b): Solution with Unequal Contact Force Ratios

At pose 5, when the first wheel has just climbed the step fully, minimization of µ gave

rise to different values for the traction to normal force ratios for the three wheels, unlike

in all the other 14 poses where the ratios are equal, at least in magnitude. As already

mentioned, several earlier formulations [12, 39, 40, 41, 42, 43], use the condition that the
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Figure 2.15: Minimax contact force ratio solution at pose 4, during forward

climbing, in FT1-FT2 space.

three force ratios are same at solution. The reason why the condition is violated in pose

5 is explained below. Before considering pose 5, we consider pose 4 where the condition

is satisfied.

In Figure 2.15 we show the minimax contact force ratio solution obtained using ‘fmin-

con’, with the three contours of µi = FTi
/FNi

= 0.0229, i=1,2,3 passing through the so-

lution point in the FT1-FT2 plane (other six forces being dependent on these two through

equilibrium conditions). The increasing directions of the contours are shown. We can

see that in all directions in which µ1 and µ2 can be decreased (indicated by the cone

of arrows), FT3/FN3 increases, proving that the solution is a local minimum. This is the

general case for solutions, while in pose 5, solution does not satisfy the condition of equal

µi’s.

In Figure 2.16, we show the minimax contact force ratio for solution obtained for

pose 5, in the FT1-FT2 plane. At the solution, the optimal µ is equal to µ3 (0.1212), while

|µ2| is less than this (0.064). µ1 is indeterminate as both numerator and denominator

are zero, but can be regarded as zero as no traction is required at wheel 1 contact point.
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Figure 2.16: Minimax contact force ratio solution at pose 5, during forward

climbing, in FT1-FT2 space.

The solution is at the boundary of the inequality constraint FN1 ≥ 0. We now ask the

question ‘can µ = µ3 be improved in any direction?’. The cone of directions in which

µ3 can be reduced without violating FN1 ≥ 0 is shown in Figure 2.16. We can take a

finite step along any of these directions to decrease µ3 without increasing |µ2| to a value

above 0.1212. However, any finite step from the solution, in any of the directions in the

cone, however small, makes µ1 jump discontinuously from zero to a value in the interval

[0.5,∞), which is above the current optimal µ of 0.1212. Thus the solution obtained at

pose 5 is a local optimum where |FT1/FN1| 6= |FT2/FN2| 6= |FT3/FN3| = µ. Optimal

solution obtained by imposing the condition of equal µ’s (|µ1| = |µ2| = |µ3|), as done

by [12, 39, 40, 41, 42, 43] would give a value of µ = 0.2010, which is not as good as

the solution obtained with our formulation (µ = 0.1212). Thus for pose 5, we see that

the solution does not satisfy the conditions |FT1/FN1| = |FT2/FN2 | = |FT3/FN3|, though

in the majority of cases these conditions are satisfied. Hence our claim, that equality of

contact force ratios is not a necessary condition.

We now show the equilibrium situation graphically. Figure 2.18 shows the external

forces for the optimal solution in which FT1 = FN1 = 0. They satisfy the force and

31



0

0.05

0.1

0.15

0.2

0.25

D
is

ta
n

c
e

 (
m

)

HB

C
GA

Figure 2.17: Pose 5.

moment balance. All three assemblies are three force systems, and hence the external

forces are concurrent. However the points of concurrency are far away.
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Figure 2.18: External forces on (a) bogie, (b) rocker and body, and (c) entire

rover, for optimal solution with FT1 = FN1 = 0, at pose 120.

In the special solution for pose 5 discussed above, the optimal solution had FN1 = 0.

Figure 2.17 shows the rover in pose 5. The front wheel has climbed over the corner of the

step and started contacting the landing. The middle wheel appears to be butting against

the step in the figure, but is actually contacting the horizontal portion of the ground. An

analysis shows that the CoM lies between contact points of wheels 2 and 3. This enables

the possibility of the normal reaction on the front wheel being zero. The danger with zero

normal force, and how it can be avoided, are discussed in Chapter 3.
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Case (c): Nonoptimal Point with Equal Contact Force Ratio

We can also show that equality of contact force ratio magnitude is not a sufficient condi-

tion for minimum. For pose 7, we obtained an optimal solution with equal contact force

ratio, equal to 0.4457. However, for the same pose, there is another point with equal con-

tact force ratio, equal to 0.4491. This is not even a local minimum of the max objective

function, as it does not satisfy KKT conditions. This situation is explained in chapter 3.

What it tells us is that, seeking just any equal contact force ratio point, may not give us

minimum friction requirement.

2.4.4 Optimal Friction Requirement for Random Poses

Hundred random poses of the optimal rover were generated, and friction requirement

minimized. The wheel contact angles of the three wheels were randomly varied between

−80◦ to 80◦, and rocker, and bogie angles were randomly varied from−30◦ to 30◦. These

hundred random combinations of the five angles are listed in Appendix C.

Friction requirement was minimized for all the hundred random poses. The mean

value of optimal contact force ratio was 0.5155, while the highest and lowest values were

2.8934, and 0.0069 respectively. 71 solutions had equal contact force ratios with torques

of same sign, 18 solutions had equal contact force ratio magnitudes, but with different

signs, and 11 poses did not have even equal contact force ratio magnitudes. These latter

11 solutions had zero as one contact force ratio. This is a clear indication that the type

of solutions we had anticipated, namely solutions with different traction force signs, and

solutions with unequal contact force ratio magnitudes, could happen on an uneven ground

with reasonable probability.

Contact force ratios of four of the solutions are shown in Table 2.3, and their poses in

Figure 2.19. In the figures, both contact normal and tangent are shown for the wheels.

Hundred combinations of the five angles mentioned in Appendix C were used to

generate hundred random poses for the nominal rover, and the friction requirement min-

imized for all of them. The mean value of optimal contact force ratio was 0.5027, while
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Figure 2.19: Examples from 100 random poses

Table 2.3: Contact force ratio of optimal rover at the four example poses selected

from 100 random poses.

Example no. First wheel Middle wheel Last wheel

a 0.4562 0.4562 0.4562

b -0.7924 -0.7924 -0.7924

c 0.4182 0.4182 -0.4182

d 0.0860 0 -0.4808

the highest and lowest values were 2.2477 and 0.0103 respectively. It was seen that 86 so-

lutions had equal contact force ratios with torques of the same sign, 5 solutions had equal

contact force ratio magnitudes, but with different signs, and 9 poses did not have even

equal contact force ratio magnitudes. These latter 9 solutions had zero as one contact

force ratio.
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2.5 Effect of Shifting Centre of Mass

Shifting the center of gravity was used in the Gofor rover [12] to reduce required friction.

In this case center of gravity shift was achieved by changing the pose of the rover. Shift-

ing center of gravity using pose change was used by Iagnemma et al. [71] to improve

tip over stability of a rover. Shifting of onboard weights to change the normal ground

forces, has been discussed by Sandin [72] as a general approach. He describes shifting

dedicated weights or payload, and reorienting an onboard manipulator, to enable a robot

to step across wide gaps, or climb steeper slopes or higher steps. He points out that the

manipulator needs to have reasonable weight for the effects to be significant. Independent

of [72], we had also thought of using an onboard manipulator to shift CoM, to reduce the

friction required further.

2.5.1 Formulation

A 2 DoF onboard manipulator is attached to the nominal rover, as shown in Figure 2.20.

One end of first segment is connected to body using a revolute joint at K, and the other

A B H

C

G

K 1

J

E

2

Figure 2.20: Nominal rover with manipulator

end connected to the second segment using a revolute joint J. The motion of the wrist
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does not usually change CoM much, and hence not considered. The two segments of the

manipulator are positioned using the angles, φ1, and φ2, measured in the ccw, as shown

in Figure 5.19. The base revolute joint K, is at a distance of 0.25 times the length of body,

measured from the bogie side of rover. The rover body is assumed to have a dimension of

350 mm × 50 mm. The two segments of manipulator have fixed lengths denoted by lm1

and lm2 , both of which we consider here as 0.2 m. Masses of the two segments, denoted

by M1 and M2 are taken as equal and as 1 kg here. Center of mass of each segment is

assumed to be at the geometric center of each segment.

It can be shown that the important parameter in a shifted CoM is its horizontal posi-

tion, and not the vertical position. This fact enabled us to use a single parameter xmanip

for representing the CoM position, instead of φ1 and φ2. Definition of xmanip, and its

associated local frame is shown in Figure 2.21. A local coordinate frame (xlo ylo) is at-

tached to the body of rover, whose origin coincides with point ‘K’, and the positive x

direction of this local frame aligned with the top surface of body, directed towards the

rocker side of rover. The position xmanip will fall between the CoMs of the two segments

(see Figure 2.21). xmanip is related to the manipulator angle φ1 and φ2 by the equation

xmanip =
M1lm1 cosφ1 +M2lm2 cos(φ1 + φ2)

M1 +M2

. (2.12)

K

xlo

xmanip

y
lo

M g2

1M g

J

E

Body

Figure 2.21: Local frame for xmanip.
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The y coordinate of the CoM of the manipulator is assumed to have zero value in this

reference frame. This assumption introduces a small error in our calculations, but this

error is small if the angle made by the body with respect to the horizontal is not very

high. The limits of xmanip can be seen to be ±(M1lm1+M2lm2)
(M1+M2)

. Note that if the body of

the rover or some feature of terrain does not interfere with the horizontally stretched out

pose of the manipulator, this limit is restrictive. Depending on the orientation of the rover

body, the limit can be increased on one side. But we do not use that here.

By using xmanip as the single manipulator CoM position variable in this fashion, we

automatically address the constraint preventing the manipulator from coming below the

rover body. Once the optimal xmanip value is obtained from solution, in most cases we can

have a range of possible corresponding combinations of φ1 and φ2, which the controller

can choose appropriately.

The decision variable set consists of xmanip in addition to the nine variables as dis-

cussed in the formulation for minimizing friction requirement given in Section 2.3. Thus

the full set of decision variables are{FN1 , FT1 , FN2 , FT2 , FN3 , FT3 , F1, F2, xmanip, µ}.

The proposed smooth optimization problem stated in words is as follows: Given a

pose of the rover and contact points on the wheels, determine the eight forces and xmanip,

to minimize required coefficient of friction, such that the rover is able to maintain static

equilibrium without any adhesion or slip between wheels and ground. Mathematically it

can be stated as:

Determine {FN1 , FT1 , FN2 , FT2 , FN3 , FT3 , F1, F2, xmanip, µ} to

minimize µ,

subject to

[A] {xF} = {b} , (2.13)

FNi
≥ 0, i = 1, 2, 3, (2.14)

−µFNi
≤ FTi

≤ µFNi
, i = 1, 2, 3, (2.15)

−(M1lm1 +M2lm2)

(M1 +M2)
≤ xmanip ≤

(M1lm1 +M2lm2)

(M1 +M2)
, and (2.16)

µ ≥ 0. (2.17)
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The three non-adhesion conditions, six no slip conditions and the condition for µ are

same as that discussed in Section 2.3.

While considering the rover with manipulator for analysis, the free body diagram

of the bogie remains same, while the two segment manipulator is also included along

with the rocker part, which also contains body and a wheel. The first four equilibrium

equations contained in Equation 2.13 are same as that given in the set of equilibrium

equations mentioned in Section 2.1. The fifth equilibrium equation will have half the

weight of the two segmented manipulator arm, and the sixth equilibrium equation should

also include the moment due to the manipulator arm weight.

The constraint Equation 2.16 denotes the range in which the CoM of manipulator arm

can be operated. Both the values are the two extreme positions to CoM of the manipulator

in the fully stretched out condition, along the top of the body.

Note that our formulation is still smooth and hence we can use gradient based opti-

mization solvers.

For each pose, µ was minimized using ‘fmincon’ solver in MATLAB R©. Randomly

selected starting guess for each of the 729 poses were generated as uniformly distributed

points in the box FN1 , FN2 , FN3 ∈ [0, 100], FT1 , FT2 , FT3 , F1, F2 ∈ [−50, 50], µ ∈ [0, 3],

xmanip ∈ [−0.5, 0.5]. The optimal solution obtained for µ was same, when the program

was run for multiple times (ten times) with different starting guess solutions.

2.5.2 Results

The effect of shifting CoM was studied on the nominal rover, negotiating a step of height

equal to twice the wheel radii. The stretched length of the two segmented manipulator,

attached to the nominal rover is about 88% of the wheel base, and its mass is around

12.5% of the rover mass. The rover along with the 2 DoF manipulator considered for

study is shown in Figure 2.20.

The variation of coefficient of minimum friction required for the nominal rover to

climb a step in forward, and backward directions with and without manipulator are shown
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in Figures 2.22 and 2.23 respectively. In the case of forward climbing, the overall peak

friction requirement came down only marginally, from 0.5823 to 0.5708, an improvement

of only 1.97%. This happened at the pose where the front wheel just buts the step. When

the last wheel is negotiating the step, the peak requirement came down more substantially,

from 0.5523 to 0.4307, an improvement of 22.02%. The improvements for backward

climbing is not substantially different.
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Figure 2.22: Optimal friction coefficient requirement of nominal rocker-bogie

rover with and without manipulator for forward climbing.
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Figure 2.23: Optimal friction coefficient requirement of nominal rocker-bogie

rover with and without manipulator for backward climbing.

We show the variation of manipulator arm configuration related parameter xmanip ,

with the sequence of poses during the climbing of a step of height equal to the wheel

diameter in the forward direction in Figure 2.24. The three figures below show the poses

of the rover with the manipulator pose at three specific poses. The manipulator arm was
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extended to the extreme rear end for all the poses from the butting of front wheel with the

riser of step, to the pose just before the starting of contact of rear wheel with the riser of

step. When rear wheel comes in contact with the step the manipulator arm gets extended

to the extreme front end. When the rear wheel is about to touch the step riser, the rover

has to be brought to rest in order to avoid impact. This rest can be for a finite interval and

used to reconfigure the manipulator, and then the rover can start moving further.
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Figure 2.24: Variation of arm configuration related parameter xmanip, with the

sequence of poses for forward climbing, and rover and manipulator

configurations at three specific poses.

We investigated the effect of (a) increasing the manipulator weight by 20%, without

changing the segments lengths, and (b) increasing the segment lengths by 20%, without

changing the manipulator weight. In case (a), the overall peak optimal requirement im-

proved from 1.97% to 2.34%, while the peak friction requirement during the climbing

sequence when the rear wheel climbs the step improved from 22.02% to 25.82%. In

case (b), the overall peak optimal requirement improved from 1.97% to 2.71%, while the

peak friction requirement during the climbing sequence when the rear wheel climbs the

step improved from 22.02% to 25.10%. This clearly shows that as expected, a manipula-

tor with greater weight and greater reach has greater influence on improving the friction

40



requirement.

There could be a question whether it is a good idea to deploy the manipulator while

the rover is moving on an uneven terrain. The manipulator may get subjected to large

inertia forces arising from unanticipated shocks and accelerations. This point needs to

be taken into account when making a decision. Perhaps in poses where the calculated

minimum friction requirement is predicted to cause slip, and the use of CoM shift using

manipulator is predicted to prevent that slip, we can think of undocking and using the

manipulator.

2.6 Validation of Solutions Using Dynamic Simulation

We could not validate our results, as we did not have access to a rover. Instead, a dynamic

analysis was carried out to check the correctness of the optimal solution we obtained

using our proposed formulation. Our approach was to apply the torques we obtained

from our optimal solution for a pose, to our dynamic model of the rover, assuming that

the rover is stationary. The resulting acceleration has to be zero if the torques provide

equilibrium, and the resulting reaction forces from the ground have to have the ratios we

obtained in our optimization. This would validate the modelling of equilibrium in the

formulation of the optimization problem.

The kinematic equations, and dynamic equations of motion (see Appendix A) were

derived for the rover, considering the three wheels, the bogie, and the body as free bodies.

Thus there are 15 dynamic equations, which contain 14 unknown reaction forces. Kine-

matic constraints were included considering the wheels to purely roll without slipping

on a flat surface, and to purely turn without slipping at the step corner. These kinematic

constraints total up to 14.

We considered six segments of motion during step climbing. Segments 1, 3, and 5

represent the front, middle and rear wheels climbing the vertical face of the step. Seg-

ments 2, 4, and 6 represent the front, middle and rear wheels climbing the corner of the

step. These six segments were required because the kinematic equations are different

41



when a wheel is on a flat face and when the wheel is at a corner.

We considered the six stationary poses of the nominal rover, numbered as 29, 103,

334, 374, 614, 688, in Section 2.3 and applied the optimal torques obtained as solutions.

The resulting accelerations, and deviations of maximum contact force ratio from the op-

timal friction requirement, are given in Table 2.4. These values can be seen to be equal

to zero as expected, within the order of the calculation precision.

Table 2.4: Angular accelerations of front wheel and deviations of maximum con-

tact force ratios from optimal friction when optimal torques are ap-

plied.

Pose No.
Angular acceleration of

front wheel (rad/s2)
Max. deviation of µ

29 4.47× 10−13 1.78× 10−15

103 −2.82× 10−14 1.67× 10−16

334 −6.05× 10−14 1.11× 10−16

374 −2.68× 10−14 −5.55× 10−17

614 1.14× 10−14 2.22× 10−16

688 5.79× 10−14 3.89× 10−16

In addition to determining acceleration and ground forces at the above poses, for

stationary rover, using forward dynamic calculation, we also simulated the motion of the

rover for climbing the step fully, by integrating the equations of motion to validate the

formulation in a different way. We describe that, and the results below.

For the six segments mentioned above, we start with the pose at the beginning of

the segment, with zero velocity, and apply the torques as functions of the wheel rotation

angle. The nominal torques, obtained and interpolated from the results of optimization in

Section 2.4.1, as functions of wheel rotation angle, are given in Appendix B. The reason

for representing torques as functions of wheel rotation angle is that from our optimal

solution, we know torques only as a function of pose. But this has the disadvantage that

torque is discontinuous at the junctions of the segments. This is the reason for considering
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six segments separately.

We now apply torques in excess of the nominal torques, by 1%, 0.1%, and 0.01%,

setting the simulation times to enable the rover to travel the full segment. Figure 2.25

shows how the angular velocity of the first wheel varies with time for 1% excess torque.

The maximum angular velocity of 2.078 rad/s with 1% excess torque, comes down to

0.207 rad/s with 0.01% excess torque. The time taken to complete the step climbing

sequence increased from 9.637 s to 98.611 s, when the excess torque applied reduced

from 1% to 0.01%. This indicates that as excess torque approaches zero, the velocity of

the simulated rover also approaches zero. Thus the dynamic aspects of our simulation

model (described in Appendix A), are likely to be correct.
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Figure 2.25: Angular velocity of first wheel vs time for 1% excess torque.

Another indication that our dynamic simulation is likely to be correct is the way the

normal contact force varies, as the excess torques are reduced. Figure 2.26 shows the

difference between normal force for segment 4 when we applied 1% excess torque, and

nominal normal force we got for the equilibrium. The fact that these normal forces are

different from the nominal normal forces indicate that our dynamic model is different

from the equilibrium model. The fact that the magnitude of the maximum difference

between actual and nominal normal force came down from 0.1822 N for 1% excess

torque to 0.0015 N for 0.01% excess torque, indicates that as excess torque decreases,

the rover’s dynamic behaviour approaches the equilibrium behaviour.
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Figure 2.26: Difference between nominal normal force and the normal force ob-

tained while simulating with 1% excess torque.

In the simulation results we used interpolation to locate the poses corresponding to

the 147×3 poses we did optimization for, and also obtained interpolated values of the

ground reaction forces. We then determined the deviation between the contact force

ratios we obtained in simulation and what we obtained in optimization for these 147×3

poses. The maximum deviation of the ratios obtained in simulation from the nominal, are

given in the Table 2.5, for the six segments. It can be clearly seen that as the excess torque

approaches zero, the deviations in the six segments also approach zero. This shows that

it will be possible to make the rover climb with small velocity and acceleration, using

torques very close to the nominal, with the friction requirements also being very close to

the minimal obtained.

2.7 Conclusion

In this chapter, minimizing the friction requirement, which is the maximum magnitude

of contact force ratio, of a six wheeled rover was formulated as a smooth optimization

problem. Our formulation yields almost the same result as that of Thueer [42], for the

nominal rover. With another rover, and for randomly selected poses for both rovers, our

formulation yielded solutions with mixed signs for contact force ratios, and solutions
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which do not even satisfy equality of magnitudes of contact force ratios. These are so-

lutions which some of the other formulations are not capable of obtaining. We examine

the nature of solutions in detail in the next chapter, and propose even more effective

non-iterative solution techniques.

The effect of shifting CoM on friction requirement by operating an existing onboard

manipulator, was also formulated. The results showed that improvement on maximum

friction required was obtained, but was not substantial.

The results obtained based on the proposed formulation were validated using dynamic

simulation of the rover.
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CHAPTER 3

Analytical Non-iterative Algorithms for Minimizing

Friction Requirement

A smooth problem formulation for minimizing friction requirement, without invoking

the equal contact force ratios characterization of solutions, was proposed in Chapter 2,

and solutions were obtained using a generic numerical solver. This chapter deals with a

detailed study of the various ways in which solution can occur, and proposes analytical

non-iterative algorithms for solving the problem. Non-iterative algorithms do not have

the disadvantage of having to start from suitable guess solutions.

Using the nonsmooth objective function, we can state the problem of minimizing

friction requirement as

Determine the six ground reaction forces and the two revolute joint reaction forces to

minimize max
{∣∣∣ FT1

FN1

∣∣∣ , ∣∣∣ FT2

FN2

∣∣∣ , ∣∣∣ FT3

FN3

∣∣∣}
subject to the equilibrium conditions (Equation 2.8), and non-adhesion conditions

(inequalities 2.9).

As already mentioned, there have been a few contributions [37, 44] which try to

understand the nonsmooth objective function in greater detail, and propose iterative and

non-iterative approaches for solution. Our attempt also is to understand the nature of

solutions in detail and propose non-iterative solution techniques. We do this for the

current version of the problem in which the normal ground reaction forces are bounded

below by zero, and also for the problem in which they are bounded below by a positive

lower limit. We propose one algorithm each for the two problems, discuss solutions,

and compare the speed of our techniques with the iterative approach we described in the

previous chapter.
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Figure 3.1: Contours of |µi|’s.

3.1 Nature of optima: Non-negative Normal Forces

Firstly, the nature of the functions |µ1|, |µ2|, and |µ3| need to be studied. In the following

discussion, we use indices i, j, and k, instead of 1, 2, and 3, in order to prevent perception

of preference to any specific wheel. So i, j, and k can be any of 1 or 2 or 3, provided they

are not the same.

As there are six equilibrium equations, with 8 unknowns, FTi
and FNi

are assumed

as independent free variables. The contours of |µi|, |µj|, |µk| can be represented in the

plane of FTi
and FNi

, as shown in Figure 3.1.

From the fact that µis are ratios of functions which are linear in FTi
and FNi

, it follows

that their contours are straight lines in the decision variable plane. Figure 3.1 shows two

ways in which this can occur. In the case of µi and µj , the contours radiate from the

point where the corresponding tangential and normal forces are zero. In the case of µk,

as there is no point where FTk
and FNk

are simultaneously zero (as FTk
= 0 and FNk

= 0

lines are parallel), the contours of µk are parallel straight lines. Thus the functions µis

are ruled surfaces. We also note that µjs are identically zero on the straight lines FTj
= 0

for j=1, 2, 3.

To understand the nature of |µi|s, we show their variations on certain straight lines
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which intersect their contours. The insets (in Figure 3.1) show the variation of |µi|s,

while we are moving on each of the lines A − A, B − B and C − C. For |µi| and |µj|,

these straight lines are A − A and B − B respectively (see Figure 3.1). Both functions

reach zero and then change slopes discontinuously. This is expected as we are plotting

|µi| and not µi. On the entire line FTi
= 0, |µi| is non-differentiable. Similar behaviour is

seen for |µk| on the line C−C which is perpendicular to the contours. An additional fact

to note in this case is that the value of |µk| blows up as the point FNk
= 0 is approached.

On the entire line FNi
= 0, |µi| has a singularity, and is indeterminate. At the point

FTi
= 0 and FNi

= 0 also, |µi| is indeterminate, but we define the value to be zero. Thus

the point FTi
= 0 and FNi

= 0 is a singularity and has discontinuity. Such points could

be in the feasible space, and could even be a solution, as we saw in the last chapter. In

our analysis, we deal with such points specifically.

Note that we do not consider cases where the normal and tangential forces are con-

stant with respect to the independent decision variables.

We now consider the possibility of occurrence of the following types of isolated local

minima. Let us call the optimum value as µ∗ = min (max {|µi|, |µj|, |µk|})

• Case 1: µ∗ = |µi| > |µj|, |µk|.

• Case 2: µ∗ = |µi| = |µj| > |µk|.

• Case 3: µ∗ = |µi| = |µj| = |µk|.

In addition to the above three cases, we examine whether the special points FTi
=

0, FNi
= 0 can be isolated local minima. This is case 4.

3.1.1 Case 1: µ∗ = |µi| > |µj|, |µk|

The way an isolated local minimum of this type can happen, is for µi (or −µi) to attain

an isolated minimum. Thus the point has to be a minimum of the function µi (Figure 3.2

shows this conceptually).
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Figure 3.2: (a) Contours of |µi| for case 1, (b) variation of |µi|, |µj|, |µk| on A−

A.

Without loss of generality, let us consider FT1 and FN1 to be the independent vari-

ables. For the pose under consideration, using the equilibrium equations, we can write

FTi
= a1FT1 + b1FN1 + c1, and FNi

= a2FT1 + b2FN1 + c2. Here a1, b1, c1, a2, b2, c2

are specific numerical values obtained from the equilibrium equations, as explained later.

Now µi can be expressed as

µi =
FTi

FNi

=
a1FT1 + b1FN1 + c1
a2FT1 + b2FN1 + c2

. (3.1)

To find where µi attains stationarity, we equate the gradient ∇µi to the null vector.

From this we find that stationarity happens at the point

FT1 =
c1b2 − c2b1
a2b1 − a1b2

, (3.2)

FN1 =
a1c2 − a2c1
a2b1 − a1b2

. (3.3)

But the above is precisely the point where FTi
= FNi

= 0. At this point µi is indetermi-

nate. However, we define µi = 0, as FTi
= 0. Hence |µi| cannot be greater than µj or µk

at this point. Hence an isolated minimum of the type in case 1 cannot occur. Note that

at the point FTi
= FNi

= 0, the gradient of µi is not defined, as it involves a division of

zero by zero.
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Figure 3.3: (a) Contours of |µi| and |µj| for case 2, (b) variation of |µi|, |µj|, |µk|

on A− A.

The fact that |µi| cannot have an isolated minimum other than perhaps at FTi
= FNi

=

0, is evident from Figure 3.1, and the associated discussion on variation of |µi|s.

3.1.2 Case 2: µ∗ = |µi| = |µj| > |µk|

Figure 3.3 visualizes how this case could occur. In Figure 3.3a we see the contours of

|µi| and |µj| on the FT1 , FN1 plane. Variation of all three contact force ratios are shown

in Figure 3.3b, on a line segment A-A which passes through the possible optimum. It can

be seen that there is a gradient discontinuity at the optimum.

Now we consider the algebraic condition for the above point to be an optimum. At a

local minimum which satisfies this case, the two gradients∇|µi| and∇|µj| have to be par-

allel and in opposite directions, as shown in Figure 3.3a. We can now write an expression

for µj . Using the equilibrium equations, treating FT1 and FN1 to be the independent vari-

ables like before, we can write FTj
= d1FT1+e1FN1+f1, and FNj

= d2FT1+e2FN1+f2.

Here d1, e1, f1, d2, e2, f2 are specific numerical values obtained from the equilibrium

equations, as explained later. Now µj can be expressed as

µj =
FTj

FNj

=
d1FT1 + e1FN1 + f1
d2FT1 + e2FN1 + f2

. (3.4)
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Now the condition of equality of µi and µj , and the condition that the gradients ∇µi and

∇µj are parallel, can be written as

a1FT1 + b1FN1 + c1
a2FT1 + b2FN1 + c2

=
d1FT1 + e1FN1 + f1
d2FT1 + e2FN1 + f2

, (3.5)

(a1b2 − a2b1)FN1 + (a1c2 − a2c1)
(a2b1 − a1b2)FT1 + (c2b1 − c1b2)

=

(d1e2 − d2e1)FN1 + (d1f2 − d2f1)
(d2e1 − d1e2)FT1 + (f2e1 − f1e2)

. (3.6)

The first of the above, when cross multiplied, is quadratic in the unknowns FT1 and FN1 ,

and we can see that the corresponding curve passes through the two points FTi
= FNi

=

0, and FTj
= FNj

= 0. The second condition reduces to the following linear equation

lFT1 +mFN1 + n = 0 (3.7)

where l = ((a1c2 − a2c1)(e1d2 − e2d1)− (d1f2 − d2f1)(b1a2 − b2a1)),

m = ((a1b2 − a2b1)(e1f2 − e2f1)− (d1e2 − d2e1)(b1c2 − b2c1)),

n = ((a1c2 − a2c1)(e1f2 − e2f1)− (b1c2 − b2c1)(d1f2 − d2f1)),

which represents a straight line through the points FTi
= FNi

= 0, and FTj
= FNj

=

0. The above two equations can be reduced to a single quadratic in either FT1 or FN1

and solved. On solving, it can be seen that the two solutions correspond to the points

FTi
= FNi

= 0 and FTj
= FNj

= 0.

It is easy to see why we got the above points as solutions. At the point FTi
= FNi

=

0, both µi and its gradient are indeterminate, involving division of zero by zero. The

cross multiplications involved in reducing the conditions makes us multiply deterministic

values of µj and its gradient by zero, and hence the conditions become satisfied at the

point FTi
= FNi

= 0. The same arguments can be made for the point FTj
= FNj

= 0.

As the two points actually do not satisfy our original conditions, and no other point also

satisfies them, we can conclude that in general, there are no points which satisfy the

conditions of case 2.
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Figure 3.4: |µi| = |µj| straight line satisfying the condition for minimum.

A special case can occur when the quadratic arising from equality of µi and µj de-

generates into a straight line. This would happen when the value of |µi| at the point

FTj
= FNj

= 0 becomes equal to the value of µj at FTi
= FNi

= 0. When this happens,

the entire straight line through the two points satisfies the two conditions. This situation

is illustrated in Figure 3.4. This is a very special situation. We do not consider such

special cases for developing our current algorithms.

3.1.3 Case 3: µ∗ = |µi| = |µj| = |µk|

As mentioned earlier, most researchers use the condition µ1 = µ2 = µ3 to characterize

optima, and have obtained solutions of this type. Hence we do not attempt to prove its

existence. As there are two independent decision variables, and as cases 1 and 2 have

been shown to not exist, the general solution can be expected to be of this type, which

satisfy two equality conditions. In fact one of the main contributions of this work is to

obtain such solutions analytically. This analytical procedure will be described later in

detail.

We now describe the conditions under which points with equal magnitudes of the

three contact force ratios are local minima. Let a point satisfying the condition of case

3 be in feasible space. The condition for such a point to be a local minimum is that

the convex hull of the subgradients of µ contains the null vector [73]. This condition is
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easily stated mathematically as follows. Let ∇|µi|, i = 1, 2, 3. Then the point is a local

minimum if

α1∇|µ1|+ α2∇|µ2|+ α3∇|µ3| = φ, (3.8)

α1 + α2 + α3 = 1, (3.9)

αi > 0, i = 1, 2, 3.

We can solve the above three equations (first equation (3.8) is a vector equation of

dimension 2) to obtain α1, α2, α3. If all of them are positive, the point is a local minimum.

If any of them is negative, the point is not a local minimum. If the three of them are non-

negative, and one or more is zero, then we need to determine the higher derivatives to

come to a conclusion.

For example, consider pose 7 of optimal rover discussed as case (c) in Subsec-

tion 2.4.3. At that pose, we stated that a point with µ = 0.4491, has equal contact

force ratio magnitudes, but is not a local minimum. By applying the condition for op-

timality, (3.8) and (3.9), the values of the multipliers are α1 = −0.0615, α2 = 0.0505,

and α3 = 1.0110. As one of them is negative, this point with equal contact force ratio

magnitudes, is not a local minimum.

3.1.4 Case 4: FTi = FNi
= 0

There are two possible ways in which this point can be a local minima.

• FTi
= FNi

= 0, µ∗ = |µj| > |µk|

• FTi
= FNi

= 0, µ∗ = |µj| = |µk|

The latter one will occur only with zero probability, and hence is not considered here.

Let us consider the first case.
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FTi
= FNi

= 0, |µj| > |µk| :

Let us call this ‘special point’. As already mentioned, µi is indeterminate at the special

point. We assign it the value zero, as the traction force required, FTi
= 0. Arbitrarily

close to the special point, |µi| can discontinuously jump to any value in [0,∞], depending

on the direction. Based on this special behaviour, how this point can be an isolated

minimum, was explained in Section 2.4.3.

We now describe a way to check whether this special point FTi
= FNi

= 0 is a local

minima or not, assuming that it is feasible for the constraints FNj
≥ 0, and FNk

≥ 0

The key idea is to check whether in some feasible descent direction of |µj|, |µi| will

be less than |µj|. In that case we can decrease |µj| at least for some distance in that

direction, with |µi| and |µk| staying below |µj|, and hence the special point is not a local

minimum. If such a direction does not exist, i.e., in all feasible descent directions for |µj|,

|µi| has a higher value than |µj| value at the special point, then it is a local minimum.

There are two cases to be considered, illustrated in Figure 3.5, as (a) and (b). The

figure shows the special point which is the intersection of straight lines FNi
= 0 and

FTi
= 0. The contour of |µj| through this point, and the gradient ∇|µj| are also shown.

In case (a), the line FTi
= 0 is in the cone of feasible descent directions of µj . In this

case, the special point is not a local minimum, as |µj| can be decreased in the direction

of the line FTi
= 0, without becoming lower than |µk|.

In case (b), the line FTi
= 0 is not in the cone of feasible descent directions. In that

case, the least value of |µi| is in the feasible direction in which |µj| is stationary. If this

lowest value of |µi| is lower than the value of |µj| at the special point, then the point

cannot be a local minimum, as |µj| can be decreased in that direction. If this lowest value

of |µi| is higher than the value of |µj|, then the special point is a local minimum.

Later we will show examples of special points which are examples of the above two

cases.

The pseudocode for an algorithm for checking whether a point with FNi
= FTi

= 0

is a local minimum or not, is given below.
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Figure 3.5: Two cases of special point. (a) the line FTi
= 0 is in the cone of

feasible descent directions, (b) the line FTi
= 0 is not in the cone of

feasible descent directions.

Without loss of generality, we assume µ∗ = |µj| > |µk|.

Let

FTi
= a1FT1 + b1FN1 + c1,

FNi
= a2FT1 + b2FN1 + c2,

5|µj| = {d, e}T ,

|µi|min : the smallest nonzero value of |µi|, arbitrarily close to the point FNi
=

FTi
= 0, in the feasible region.

Step 1: Check whether the straight line FTi
= 0 is in the cone of directions which

are feasible for FNi
> 0, and descent for |µj| (case shown in Fig. 3.5a). This is true

if ({−b1, a1} {a2, b2}T )({−b1, a1} 5 |µj|) < 0. In that case, declare that point FTi
=

FNi
= 0 is not a local minimum and stop. Else proceed.

Step 2: Calculate |µi|min=
∣∣∣∣−a1e+ b1d

−a2e+ b2d

∣∣∣∣.
Step 3: If |µi|min > µ∗, the special point is a local minimum.

If |µi|min < µ∗, the special point is not a local minimum.

Note: We have not considered the special zero probability cases, where the above

strict inequalities do not hold.
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3.2 Analytical Determination of Equal Force Ratio Points

As already discussed, there are six equilibrium equations which are linear in the eight

unknowns (normal reactions FN1 ,FN2 ,FN3 , traction forces FT1 ,FT 2,FT3 , and components

of force at joint ‘C’, F1, F2). Two free variables can be chosen from the eight unknowns,

as independent variables. The six equilibrium equations can be re-written in matrix form

with two free variables moved to the right hand side.

[A∗]{V1} = {F} − [G]{V2} (3.10)

where {V1} is a column vector of the six dependent variables, [A∗] is a 6×6 matrix

which consists of the coefficients of the six variables chosen in {V1} matrix, {F} the

column vector in Equation. 2.1, [G] the coefficients of the two free variables and {V2}

the two free variables. In our case the free variables chosen are FT1 and FN1 .

While choosing the two free variables, rank of [A∗] needs to be six. If the rank of [A∗]

is less than six, then there can be solution only if the columns of {F} and [G] are in the

subspace spanned by the columns of [A∗].

Multiplying with the inverse of [A∗] on both sides of Equation 3.10, we get

{V1} = [c] + [a b]{V2} (3.11)

where [c] = [A∗]−1{F}, [a b] = −[A∗]−1[G]

The system of Equations (3.11) can be written as
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FT2 = a1FT1 + b1FN1 + c1; FN2 = a2FT1 + b2FN1 + c2;

FT3 = a3FT1 + b3FN1 + c3; FN3 = a4FT1 + b4FN1 + c4;

F1 = a5FT1 + b5FN1 + c5; F2 = a6FT1 + b6FN1 + c6;

(3.12)

We are seeking points in space of FT1 − FN1 where the force ratio µi =
FTi

FNi

is same

in magnitude for all the wheels. In terms of equations:

±FT1

FN1

= ±FT2

FN2

= ±FT3

FN3

Positive and negative signs for traction force are possible, because the wheel torque can

be applied in forward or backward directions at any pose, to put the entire system in equi-

librium. Positive sign is assigned for torques applied in the counter-clockwise direction.

We introduce a variable t and write the above two equations as three equations.

FTi

FNi

= sit, i = 1, 2, 3 (3.13)

where si = ±1, i = 1, 2, 3.

Writing FTi
, FNi

, i = 2, 3 in terms of FT1 and FN1 , and eliminating FT1 and FN1 , we

obtain the following cubic equation in t.

P3t
3 + P2t

2 + P1t+ P0 = 0, (3.14)

where the coefficients P3, P2, P1, P0 are

P3 = s1s2s3(c4a2 − c2a4);

P2 = s1s2(c2a3 − c3a2) + s1s3(a4c1 − c4a1) + s2s3(b2c4 − b4c2);

P1 = s1(c3a1 − c1a3) + s2(c2b3 − c3b2) + s3(b4c1 − c4b1);

P0 = c3b1 − c1b3.

(3.15)
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Note that coefficients ai, bi, ci, etc are described in Equation 3.12 and are obtained from

Equation 3.11. We solve the cubic equation to obtain solutions for t. Then using two of

the equations in Equation (3.13) we obtain FN1 , and FT1 . Once the two forces (FN1 , FT1)

are known, all the remaining forces can be obtained from Equation 3.12. The roots of the

cubic polynomial were obtained explicitly by the solution procedure described in [74].

As already mentioned, traction forces can have positive or negative sign. This will

result in eight combinations of equal force ratios. Out of the eight combinations, only

four cases need to be considered (while the other four are equivalent to them). They are

listed as follows.

• Case 1: µ1 = µ2 = µ3 same as −µ1 = −µ2 = −µ3

• Case 2: µ1 = µ2 = −µ3 same as −µ1 = −µ2 = µ3

• Case 3: µ1 = −µ2 = µ3 same as −µ1 = µ2 = −µ3

• Case 4: µ1 = −µ2 = −µ3 same as −µ1 = µ2 = µ3

We can see that without loss of generality, we can assume s1 = +1, with s2 and s3

taking the four possible combinations of values. Each case can have a maximum of 3 real

solutions, and hence altogether, a maximum of 12 solutions can be obtained. Complex

solution corresponds to a situation which is not feasible. Of these, real solutions with

non-negative values for the three normal forces, are the feasible points with equal contact

force ratio magnitudes. All of them need not be local minima.

3.3 Algorithm 1 and Solutions

Based on the above discussion, we propose the following non-iterative algorithm for

finding the global minimum of µ, subject to FNi
≥ 0, i = 1, 2, 3.
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3.3.1 Algorithm 1

Step 1: Determine the 12 points of the type FT1

FN1
= s2

FT2

FN2
= s3

FT3

FN3
, s2, s3 = ±1, and

from them collect all the real solutions which are feasible (FNi
≥ 0, i = 1, 2, 3).

Step 2: Determine special points of the type FTi
= FNi

= 0, i = 1, 2, 3, and from them

collect the feasible points.

Step 3:

if feasible sets in steps 1 and 2 are empty then

declare “no feasible solution”, and stop.

else

from the feasible points identified in steps 1 and 2, declare the one with lowest µ as

global minimum, and stop.

end

Note that as we are selecting the best point from amongst the feasible equal force

ratio points and special points, there is no need to waste time in checking whether it is a

local minimum.

This algorithm does not address the special cases of solution, like that mentioned in

Case 3.1.2, where an entire line segment can be the solution.

3.3.2 Results and Discussion

544 poses of the optimal rover of Chapter 5 were solved using the proposed algorithm

1. Among the 544 poses, 100 poses are randomly selected (see Section 3.6, and Ap-

pendix C), and the remaining 444 poses correspond to the sequence of rover climbing

step equal to the diameter of wheel, mentioned in Chapter 2. Among the 544 poses

solved, equal contact force ratio solution was obtained for 500 poses, and the remaining

44 poses had special points with one wheel having FTi
= FNi

= 0, as solutions.

Two poses from the optimally designed rover were selected for discussing the so-

lutions. These poses are designated as pose numbers 225 and 120, and are shown in

Figures 3.6a, and 3.6b.
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(c) Rover pose 75.

Figure 3.6: Different poses of optimal rover considered.

These poses were chosen because, for pose 225 the global minimum is a point with

equal force ratio magnitudes, and for pose 120 the global minimum is a point where the

tangential and normal forces on one wheel are zero.

Solution for pose 225

Here the middle wheel is at the step corner (shown in Figure 3.6a). Various points ob-

tained and solution are analysed below, in detail.

• Of the 12 points obtained using equal contact force ratio condition, four are imag-

inary and four have negative normal forces. Remaining four points are real and

feasible, and out of them only one is a local minimum and is the global solution

with objective function value of 0.2660. The other three which are not local min-

ima, have objective function values close to this.

• Of the three points with FTi
= FNi

= 0, i = 1, 2, 3, one is infeasible while the

other two are not local minima.

Contour plot of max contact force ratio µ in the decision variable space FT1−FN1 for

pose 225 is shown in Figure 3.7. The right hand side of the line FN2 = 0, is the feasible

region in the window shown in figure. All four feasible equal contact force ratio points

are shown, denoted by letters, A, B, C, and D. The point A is the global minimum. Of

the two feasible points of the type FTi
= FNi

= 0, one of them, E appears on the plot.
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Figure 3.7: Contour plot of contact force ratios for pose 225.

The global minimum A, and the point E with FT2 = FN2 = 0, but not a local mini-

mum, are shown separately in Figure 3.8.

From Figure 3.8a, it is evident that point A has equal values for |µ1|, |µ2|, |µ3|. From

the directions of the gradients5|µ1|,5|µ2|,5|µ3|, it is possible to see that the null vector

is inside the convex hull of the three gradients. For the point A, all the three multipliers

in the condition for optimality, (3.8), and (3.8), are positive (α1 = 0.0267, α2 = 0.0626,

and α3 = 0.9107), and hence A is an isolated local minimum of µ.

At point E where FT2 = FN2 = 0, µ = |µ1| (Figure 3.8b). As the line FT2 = 0 is

inside the cone of feasible directions, it is evident that we can move from E along this

line for a finite distance, decreasing µ. Hence E cannot be a local minimum.

It has to be noted that apart from A, even though three more feasible equal contact

force ratios are also available (B, C, and D), none of these points are local minima. Thus,

as already demonstrated when discussing type 3 points, it is not necessary that all equal

contact force ratio points are local optima. Looking at Figure 3.7, one might think that

only two ratios are equal at points B, C, and D. Let’s consider point B. Figure 3.9 shows

a closer view of point B, along with the dominant µs at each region. We have taken

contours, which are closer than in Figure 3.7. From this it is clear that point B is an

intersection of three equal µis. Similar finer contour plots can also be taken at points C,

and D, to show that they are also intersections of three equal µis.
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Figure 3.8: Close up view of points A, and E for pose 225.

63



6.95 7 7.05 7.1 7.15 7.2 7.25

F
T
1

(N)

23.4

23.45

23.5

23.55

23.6

F
N
1

(N
)

0.304

0.306

0.308

0.31

0.312

0.314

0.316

B

1
dominant

3
dominant

-
2
dominant

Figure 3.9: Close up view of point B for pose 225.

Solution for pose 120

Here the first wheel is at the corner of the step (see Figure 3.6b). Various points obtained

and solution are analysed below, in detail.

• All the 12 points obtained with equal contact force ratios are real, but only three

are feasible. None of them are local minima. Lowest value for objective function

amongst the three is 0.3821.

• Of the three points satisfying the condition FTi
= FNi

= 0, two are feasible.

Among the two feasible points, one is a local minimum with objective function

value of 0.0288. The other is not a local minimum and has an higher value of

objective function.

• Thus we see that the best feasible point with equal contact force ratio, is not even

a local minimum, and has a µ value of 0.3821 which is much higher than 0.0288,

the µ of the global minimum.

Contour plot of objective function µ for pose 120 is shown in Figure 3.10, in FT1-FN1

space. The upper part of the line FN1 = 0, is the feasible region, within the selected

plot window. Two of the feasible equal contact force ratio points are shown in this plot
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Figure 3.10: Contour plot of contact force ratios for pose 120.
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Figure 3.11: Close up view of points A, and B for pose 120.
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as B, and C. The third feasible equal contact ratio point is not in the plot. The point

A has FT1 = FN1 = 0, and is the global minimum with µ = 0.0288. The point with

FT2 = FN2 = 0, which is also feasible, lies outside the plot.

Points A and B are shown with more detail in Figure 3.11. Figure 3.11a shows the

global minimum A, where FT1 = FN1 = 0, and µ = |µ3|. We can see that the line

FT1 = 0 is not in the cone of feasible descent directions, and hence the point can be

a local minimum. We then look at the value of |µ1| on the line perpendicular to the

gradient∇|µ3|. We find that on this line |µ1| = 2.47 > µ∗ = 0.0288. In all other feasible

directions |µ1| will be even higher. Hence A is a local minimum.

Figure 3.11b shows the point B which has equal contact force ratio magnitudes, as

can be seen from contours of µ. However, from the gradients ∇|µi|, i = 1, 2, 3 shown

in figure, we can make out that the convex hull of the gradients does not contain the null

vector. This is indicated by the fact that the multipliers in the condition for optimality,

(3.8), and (3.9), are α1 = 0.2849, α2 = −0.4719, α3 = 1.1870, with one of them being

negative. Hence B is not a local minimum. The cone of feasible descent directions is

marked on Figure 3.11b.

The two numerical examples show that global minimum of both types which we

anticipated occur. Also, several points obtained with equal force ratio magnitudes are not

local minima.

We did not get a case where there is no feasible region. In our algorithm we do not

explicitly check optimality condition for local minimum, because of the assumption that

the point with lowest µ obtained in our algorithm will be the global minimum. This

assumption was not violated in the 544 poses and contact point combinations for which

we generated solutions using algorithm 1.

When we examine the points of the type FTi
= FNi

= 0, obtained for pose 120, we

realise that if these torques are applied, either the rover could be near to toppling, or the

bogie could be near to turning over in an uncontrolled fashion. A small error in control

could make this happen, as was pointed out in [44] too. Even if the error in controlling

torques does not make the bogie or rover turn over, it will make the required µ jump
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discontinuously to a higher value than the optimum. To ensure that the rover does not

get close to such a nonrobust situation, it is useful to pose a positive lower limit to the

normal forces on all wheels. Hence we now address the problem of minimizing µ with

the condition FNi
≥ FNmin

, i = 1, 2, 3, for some specified FNmin
> 0.

3.4 Positive Lower Bounds on Normal Forces

The problem to be solved is, minimize µ = max
{∣∣∣ FT1

FN1

∣∣∣ , ∣∣∣ FT2

FN2

∣∣∣ , ∣∣∣ FT3

FN3

∣∣∣} subject to

FNi
≥ FNmin

> 0, i = 1, 2, 3. (3.16)

In the previous analytical formulation, the special points FTi
= FNi

= 0, i = 1, 2, 3

were considered as possible solutions. In this formulation, we need not consider them as

candidate solutions, as they are outside the feasible region. But we need to additionally

look for solutions on the boundaries of the inequalities (3.16).

The following observations can be made about the nature of optima for the above

problem.

(a) If global minimum occurs inside the feasible region, three contact force ratios will

be equal in magnitude, and it will be a local minimum.

(b) Even if the best equal contact force ratio point occurs inside the feasible region, it

need not be the global minimum if a point of the type FTi
= FNi

= 0, FNj
, FNk

>

0, has better µ than that.

(c) A local minimum on an edge of the boundary (not at a vertex), cannot have only

one dominant |µi|. On a boundary FNi
= FNmin

, µjs have singularity at FNj
= 0,

and on either side of the singularity, approach a specific value monotonically and

asymptotically. Hence µj has no stationary point on the lines FNi
= FNmin

. This

can be shown algebraically by equating the directions of gradient of µj and FNi
,
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and using the fact that FNi
= FNmin

. As

µj =
FTj

FNj

=
d1FT1 + e1FN1 + f1
d2FT1 + e2FN1 + f2

, and (3.17)

FNi
= a2FT1 + b2FN1 + c2 = FNmin

, (3.18)

this means that the condition

(e2d1 − e1d2) (FNmin
− c2) = f2e1a2 − f1e2a2 − f2d1b2 + f1d2b2 (3.19)

has to be satisfied.

This means that only for specific values of FNmin
, a2, b2, c2, d1, d2, e1, e2, f1, f2, can

stationary points be obtained.

A minimum point on an edge of the boundary (not at a vertex) will have typically

two equal and dominant |µi|s. Determination of points of two equal dominant µis

on boundary is easily reduced to solution of a quadratic equation.

(d) A vertex of the feasible region boundary, if a local minimum, could have a single

dominant |µi| typically.

(e) An entire line FNi
= FNmin

could be infeasible. If so, it can be ignored when

searching for minimum points.

(f) The global minimum is the one with the best µ amongst feasible points of the type

(i) with equal contact force ratio magnitudes and inside feasible region (not on

boundary), (ii) on a feasible edge of the boundary (not at a vertex) with two equal

and dominant |µi|s, and (iii) at a feasible vertex of the boundary. The best point

amongst them will also be a local minimum, and hence we need not check for local

minimum condition, if one or more points of the three types are obtained.
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3.5 Algorithm 2 and Solutions

Based on the above observations, the following non-iterative algorithm (Algorithm 2)

was proposed. The approach is to seek feasible equal force ratio points within the feasible

region, and also seek solutions on the edges and vertices of the boundaries of the feasible

space, and choose the best amongst them.

3.5.1 Algorithm 2

Step 1: Determine the three vertices FNi
= FNj

= FNmin
, i, j = 1, 2, 3, i 6= j, and

check whether they are feasible, ie., whether FNk
≥ FNmin

, k 6= i, j.

if all three are infeasible, then

declare “no feasible solution”, and stop.

else

determine µ′s of feasible vertices, and proceed to step 2.

end

Step 2: Determine all points of the type |µ1| = |µ2| = |µ3| (both feasible and infeasible),

and find their µ′s.

Step 3: Determine the three special points of the type FTi
= FNi

= 0, i,= 1, 2, 3 (both

feasible and infeasible), and find their µ′s.

if best point of step 2 is feasible and better than the best point of step 3, then

declare this point as global minimum, and stop.

else

proceed to step 4.

end

Step 4: Determine all feasible points on the boundary (not vertex) with two equal and

dominant |µi|s, and find their µs.

Step 5: Declare as global minimum, the point with lowest µ from amongst

(a) the feasible vertices found in step 1,

(b) the feasible equal |µi| points found in step 2, and

(c) the feasible points found on edges in step 4, with two equal dominant |µi|s.
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FNk=FNmin

FNi=FNmin
FNj=FNmin

B

A
C

D

E

Figure 3.12: Feasible region: Type 1

The kernel of algorithm 2 can be understood from Figure 3.12, and Figure 3.13, which

shows the ways in which the feasible region can occur for these problems. The points we

are considering can be like point ‘A’ (inside a feasible region), ‘B’ (on a feasible edge of

boundary), or ‘C’ (feasible vertex of the boundary) as shown in Figure 3.12. Point ‘D’,

and ‘E’ (shown in Figure 3.12) can be neglected as they are outside the feasible region.

The line FNi
= FNmin

, shown in Figure 3.13 need not be considered for searching the

minimum point, as it is outside the feasible region.

FNk=FNmin

FNi=FNmin

FNj=FNmin

Figure 3.13: Feasible region: Type 2

The following two points need to be noted, while implementing algorithm 2 on a
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controller.

1. Steps 2 and 3 could help us avoid the determination of candidate points on the

boundaries.

2. If two vertices are infeasible (step 1), then their common edge need not be consid-

ered in step 4.

3.5.2 Results and Discussion

The same 544 poses mentioned earlier were solved using algorithm 2, and among them

equal contact force ratio solution was obtained for 433 poses. 80 poses had the solution

on the boundary with two contact force ratio magnitudes being equal, and the remaining

31 poses had solution on a vertex, with a single dominant contact force ratio.

For illustrating different types of points and solutions, the poses mentioned earlier as

number 225 and 120 are used, and in addition, pose number 75 from the same solution

set of optimally designed rover in Chapter 5 is also used (see Figure 3.6c for the pose).

For minimum normal force, any positive non-zero value, which is reasonable, consid-

ering the rover weight can be used. Here, we used values of 20N and 60N , for obtaining

different types of solutions.

Solution for Pose 225

The Figure 3.6a shows the corresponding pose. Lower bound of normal force, FNmin
=

20N was used. Contours of µ near the solution are shown in Figure 3.14.

• Vertices: In this pose, two out of the three vertices are feasible, while the third

one is infeasible. One feasible vertex is shown as D in Figure 3.14, and it has a

µ of 0.2848. The other feasible vertex has very high µ and does not fall within

the region shown in Figure 3.14. We can also conclude that all the three edges of

boundary have feasible segments, and that the feasible region is unbounded.
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Figure 3.14: Contour plot of pose 225 for FNmin
= 20.

• Points with equal contact force ratio: The best of such points has µ of 0.2660 (point

E), but is infeasible. Hence solution is expected to lie on the boundary. Only one

equal ratio point is feasible, and is shown in Figure 3.14 as B. It has µ of 0.3037.

• Candidate points on edges: A total of only two feasible points of this type resulted

and are shown in Figure 3.14 as A, and C. Their µ′s are 0.2848, and 0.3042 respec-

tively. The point A lies on the line FN1 = 20, while C lies on the line FN2 = 20.

Thus algorithm 2 will declare two points, namely A and D as optimal, with equal

values of µ. In this problem it turned out that an entire segment, AD on edge FN1 = 20N

has the global minimum µ. This happened because the contours of the dominant |µi|

are parallel to this edge. This is a low probability situation and hence not considered

separately in our algorithm.

If the value of lower bound on normal force is reduced to 15N (FNmin
= 15N ),

the solution will be the point E shown in Figure 3.14, which is an unconstrained global

minimum of the type |µ1| = |µ2| = |µ3| with µ of 0.2660.
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Figure 3.15: Contour plot of pose 120 for FNmin
= 20.

Solution for Pose 120

A lower bound of FNmin
= 20 for normal force is used, and the corresponding pose can

be seen in Figure 3.6b . Contour plots of µ near the solution are shown in Figure 3.15.

• Vertices: In this pose, two out of the three vertices are infeasible and only one is

feasible, indicating one entire edge (FN3 = 20N ) is infeasible. The feasible vertex,

shown as G in Figure 3.15, has µ of 1.7669. Figure 3.16a shows G in greater detail,

with gradients of the two inequality constraints, and the gradients of µ. It is easy to

see that KKT conditions are not satisfied. The cone of feasible descent directions

is shown in figure.

• Points with equal contact force ratio: The best point has µ of 0.3821, but is infea-

sible. Hence solution is expected to lie on the boundary. None of the equal ratio

points are feasible.

• Candidate points on edges: A total of seven feasible points of this type were ob-

tained. Three of them lie on FN1 = 20, and are shown as A, B, and C in Fig-
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Figure 3.16: Close up of contours for pose 120.
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ure 3.15. The best point A has µ of 0.4763. The point A is shown in more detail

in Figure 3.16b, with the gradients of the two dominant µis and gradient of the

inequality constraint. We can see that the entire cone of descent direction is infea-

sible. Four of the seven points lie on the line FN2 = 20, and three of them, which

appear in the figure, are shown as points D, E, and F in Figure 3.15. The best point

of the four, F has a µ value of 0.5907.

Of all the feasible special points obtained, point A has the best µ, and is a local

minimum. It is also the global minimum.

Solution for Pose 75

The pose 75 is shown in Figure 3.6c. In order to demonstrate the occurrence of solution

at a vertex, a higher value of 60N was used for FNmin
. Contours of µ are shown near the

solution in Figure 3.17.
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Figure 3.17: Close contour of point A, pose 75 for FNmin
= 60N.

• Vertices: In this pose, two out of the three vertices are infeasible, indicating that

one entire edge (FN1 = 60) is infeasible. The feasible vertex has a µ of 1.0316 and

is the intersection of edges FN2 = 60N, and FN3 = 60N. It is marked as point A in
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Figure 3.17. It can be seen that point A is a local minimum, as there is no descent

direction into the feasible region.

• Points with equal contact force ratio: The best point has µ of 0.1142, but is infea-

sible, indicating the solution can be expected to lie on the boundary. None of the

equal ratio points are feasible, as they have FNi
, lower than 60N.

• Candidate points on edges: No feasible candidate point exists on edges.

With a high FNmin
of 60N , about 66.89% of rover weight, no feasible point of the

three or two equal force ratio type occurred. The sole vertex point A is a local minimum

and is the global solution with a high µ of 1.0316.

3.6 Comparison of Speed with a general NLP solver

The powerful SQP based NLP solver ‘fmincon’ of MATLAB R© was used in Chapter 2,

for minimizing friction requirement of the rover, after formulating it as a smooth opti-

mization problem. Here the performance of algorithms 1 and 2 were compared with that

of this solver.

Two sets of poses were considered for performance evaluation. Firstly, 444 poses of

an optimal rover climbing a single step of height equal to the diameter of wheel (Chap-

ter 5), and secondly 100 random poses with wheel contact angle varying between −80◦

to 80◦, and rocker, and bogie angles varying from −30◦ to 30◦ (see Appendix C). This

study was done on a computer with 1.60 GHz processor, and 12 GB RAM.

In the first comparison, the 444 step climbing poses were solved with FNi
≥ 0, i =

1, 2, 3. The solver ‘fmincon’ of MATLAB R© was used, with (a) randomly chosen guess

solutions, and (b) the optimal solution obtained for the just previous pose during climb-

ing. The same 444 poses were optimised using algorithm 1 proposed in this thesis. The

mean, maximum and minimum times needed for determining solution with the above

three are given in Figure 3.18, as a bar chart. Algorithm 1 clearly outperforms ‘fmincon’

from both sets of guess solutions. The mean time with algorithm 1 is only 5.87% of
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Figure 3.18: Solution time for step climbing with FNi
≥ 0.

the mean time used by ‘fmincon’ from random guesses, and 8.85% of mean time from

solution of previous pose as guess solution.

In the second comparison, the 444 poses described above were solved with the con-

straints FNi
≥ 5N , i = 1, 2, 3. In this case, algorithm 2 was used. Results are shown

in Figure 3.19. Algorithm 2 performed better than ‘fmincon’. Its mean time for solution

was 13.12% of mean time of solution with ‘fmincon’ from random guesses, and 17.55%

of mean time from solution of previous pose as guess solution.

In the third comparison, hundred randomly selected poses and wheel contact points

with constraint FNi
≥ 0, i = 1, 2, 3 were solved using ‘fmincon’, from randomly selected

guess solutions, and also using algorithm 1. The time for solving is shown in Figure 3.20.

It can be seen that algorithm 1 is much faster, taking only 2.70% of the time taken by

‘fmincon’, on the average.

In the fourth comparison, the above set of hundred random poses with constraint

FNi
≥ 5N , i = 1, 2, 3 were solved using ‘fmincon’ and algorithm 2, and time taken

shown in Figure 3.21. Algorithm 2 is much faster, taking only 8.57% of the time taken

by ‘fmincon’, on the average.

The time estimates above are not the times for solutions alone as other threads were
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.

also running. Solving the same problem at different times gives different execution times.

When we analysed the time by running the same solution search 200 times for a particular

pose, we found that the time we used for plotting the bar graphs are near but not exactly

the same as the mean time of 200 runs. But the trend is a clear indicator of the superior

speed of algorithms 1 and 2.

An important observation is that for all the 1088 problems solved, the solutions ob-

tained by algorithm 1 and algorithm 2 were identical to the solutions obtained using

‘fmincon’.

The algorithms 1 and 2, are much easier to implement in a controller than a sophis-

ticated algorithm like ‘fmincon’. These algorithms are as good as ‘fmincon’ for finding

global minima, but does it much faster than ‘fmincon’. In good processors, coded in C

or C++, the execution times are expected to be much better than the execution time for

MATLAB R© codes, which we have reported.
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3.7 Conclusion

Based on the results obtained, we can conclude that our two algorithms are capable of

obtaining global minima without failure, for the respective problems addressed by them.

Both of them take much less time than a powerful SQP based NLP solver when the latter

solves smooth versions of the two problems. Our algorithms are quite simple and easy to

code, and is likely to be more easily implementable in a rover’s controller.

We believe that our understanding of how solutions can occur, for both the categories

of problems, is quite comprehensive, and represents an advance in research on rovers of

this type.
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CHAPTER 4

Optimum Performance on Partially and Fully Known

Terrains

The context of the problem we addressed so far, is that the coefficient of friction available

from the ground is not known, and hence minimizing friction requirement in order to

minimize the possibility of slip, was relevant. Now we ask the question, suppose the

coefficient of friction is partially known, in the sense that there are some patches where

it is known. Or suppose the coefficient of friction is known everywhere on the ground.

Here we consider these two situations, and formulate the problem of optimal operation

of the rover, and solve these problems numerically.

4.1 Optimal Performance on Partially Known Terrain

For a partially known terrain, we pose the problem of optimal operation as ‘given the pose

of the rover, the contact points, and the available coefficient of friction between the wheel

and ground for one of the wheels (a patch), minimize the coefficient of friction required

at the remaining two wheels’. As already stated in Chapter 2, the motivation for choosing

required coefficient of friction as the objective function, is to minimize the possibility of

wheel slip, when the coefficient of friction on all wheels are not known. Other objective

functions could have been considered. If we are able to obtain good formulations for

required friction, we believe it would be possible to use similar approaches for other

objective functions too. Hence we do not consider other objective functions for this

situation here.

The scenario where we might know the coefficient of friction in some regions and

not others occur as follows. If the wheels have slip and force sensors, the coefficient of

friction can be estimated when there is a slip. Thus in this scenario, the lower coefficient



of friction would be known once slip happens, and then replanning of torque application

can be done.

HB

A GC

Patch 2Patch 3

Patch 1

��
��

��

Figure 4.1: Rocker-bogie rover climbing a different patch step

4.1.1 Formulation

Let the coefficient of friction available for a particular portion (patch) of terrain be de-

noted as µavlp , where p = 1 or 2 or 3 denotes the patch number. The goal of optimization

is to determine the values of wheel torques, which minimize µ required between the

terrain and the other two wheels whose friction coefficients with ground are unknown.

{FN1 , FT1 , FN2 , FT2 , FN3 , FT3 , F1, F2, µ} is the full set of decision variables which

need to be determined.

Mathematically, the problem can be stated as:

Determine {FN1 , FT1 , FN2 , FT2 , FN3 , FT3 , F1, F2, µ} to

minimize µ,

subject to

[A] {xF} = {b} , (4.1)

FNi
≥ 0, i = 1, 2, 3, (4.2)

−µavlpFNn ≤ FTn ≤ µavlpFNn , n = 1 or 2 or 3, (4.3)

−µFNi
≤ FTi

≤ µFNi
, i = 1, 2, 3, i 6= n, and (4.4)

µ ≥ 0. (4.5)
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First slip constraint shown in Equation 4.3, corresponds to the patch whose coefficient of

friction is known, and the value of n can be 1, or 2 or 3 depending on which wheel is in

contact with the patch (p in Equation 4.3 refers to patch number). While, the second set

of slip constraints (Equation 4.4), corresponds to the other two wheels.

Six wheeled nominal rover with rocker-bogie suspension, climbing a single step of

height equal to wheel diameter, is considered as the terrain for this study. Figure 4.1

shows the different patches on a step. The bottom horizontal portion of step, is named

as ‘patch 1’. The vertical rise of step along with its convex corner is named as ‘patch 2’,

and the tread (top landing) of step is named as ‘patch 3’. Every wheel will move from

patch 1 to patch 3, through patch 2. Similar to the previous sections, ‘fmincon’ is used

for finding the optimal friction requirement.

Poses Considered

The poses in the sequence of the rover climbing the step, discussed in Chapter 2, and

whose optimal solutions are shown in Figure 2.7 are considered. From amongst these

poses, those requiring zero traction forces on the three wheels, were not considered.

We can identify three regimes during the climbing of the step, where a single wheel

is on a patch with known coefficient of friction. They are as follows.

• Regime 1 (coefficient of friction of patch 1, µavl1 , is known): Rear wheel moves

on patch 1: from when middle wheel first butts against the riser, to when it reaches

the top landing.

• Regime 2 (coefficient of friction of patch 2, µavl2 , is known): First wheel, middle

wheel and the rear wheel move on patch 2: from when front wheel first butts against

the riser, to when rear wheel reaches the top landing.

• Regime 3 (coefficient of friction of patch 3, µavl3 , is known): First wheel moves on

patch 3: from when the first wheel is at the corner on the top landing, to when the

middle wheel reaches the top landing. As zero traction poses are discarded, this
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turns out to be the same set of poses as in regime 1, with only the known patch

being different.

When the coefficient of friction is known on patch 1, climbing sequences where only

one wheel is in contact with patch 1 need to be considered. So the only possibility is rear

wheel on patch 1. Thus regime 1 occurs from when the middle wheel starts climbing the

vertical face of step, to when it reaches the top landing. These are poses from 300 to 447

of Figure 2.7.

As patch 2 is the vertical face of the step including its convex corner, we need to

consider the entire climbing sequence of the rover. Initial set corresponds to the first

wheel climbing the vertical face of step, till it just reaches the top landing (poses 1 to

147 of Figure 2.7). Second set corresponds to the middle wheel going through the same

climbing sequence (pose 300 to 447 of Figure 2.7), and for the final set the rear wheel

going through the same phase (pose 585 to 732 of Figure 2.7). These sequences constitute

regime 2.

Similar to regime 1, a single set of sequences only is possible for motion of one wheel

on patch 3, which is the first wheel. This occurs, when middle wheel is moving on the

vertical face and the corner of the step (pose 300 to 447 of Figure 2.7).

4.1.2 Results

For the nominal rover climbing a step of height equal to the wheel diameter, the coef-

ficient of friction required was 0.58 (say 0.6). Based on this, for the known value of

coefficient of friction µavlp , we used 0.75 and 0.45, one being above and one being below

0.6. We studied the three climbing sequences with the two values of µavlp . Please note

that in Figures 4.2, 4.3, and 4.4, µ∗uk represents the optimal solution for a fully unknown

terrain, which was discussed in Chapter 2, and was shown in Figure 2.7.

For finding the optimum friction requirement on patches where coefficient of friction

is unknown, ‘fmincon’ of MATLAB R© was used. The solution was generated using two

sets of initial guesses. In the first set, the optimum solution obtained for minimizing
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friction requirement in Chapter 2 was given as the initial guess. For the second set,

random guesses were used for finding the solution. Both starting guesses yielded the

same solution. KKT conditions were checked, and were found to be satisfied.

In the solutions obtained, it was seen that the contact force ratios on the unknown

patches are equal in magnitude, and the contact force ratio on the known patch was equal

to the limit µavlp . This is true for all poses in which the optimum µ is greater than zero.

For poses in which optimum µ is zero, the solution becomes slack, and contact force ratio

on the known patch can be less than µavlp . This was true for all three regimes.

Figure 4.2 shows the optimal µ required for the front and middle wheels, while the

rear wheel is moving on patch 1. It can be seen that for the case where µavl1 = 0.75, the

optimal µ is very low, and nearly zero at the beginning and becomes zero very soon. It

means that the rover can be pushed up purely by the torque and traction on the rear wheel,

and the front and middle wheel can almost or purely roll without any torque. In the case

of regimes 2 and 3 (Figures 4.3 and 4.4) also, when the coefficient of friction is 0.75

on the known patch, the optimal friction requirement is lower than the optimal friction

requirement with friction unknown in all three patches. But they are not as dramatically

low as in the case of regime 1. Towards the end of these regimes too, optimal µ becomes

zero, indicating that two of the wheels which are on patches with unknown friction, can

purely roll, without any torque or traction needed.

For the case with µavlp = 0.45, in all three regimes, for the poses where µ∗uk is above

0.45, the coefficient of friction required for the other two wheels is more than µ∗uk. For

the poses where µ∗uk is below 0.45, the µ required for the other two wheels is below µ∗uk.

This behaviour is as expected. In this case too, towards the end, only the wheel on patch

with known friction coefficient needs to contribute the torque and traction needed for

climbing, and the other two wheels can purely roll.

Thus it can be concluded that when there is a patch with known coefficient of friction,

the rover can use that information to minimize the possibility of slip, and in some poses

even climb the step without any friction needed in the other patches.

We can extend our formulation to cases where coefficient of friction at two patches
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Figure 4.2: Coefficient of friction required for front and middle wheel, while rear
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Figure 4.3: Coefficient of friction required, while wheels climb patch 2.
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Figure 4.4: Coefficient of friction required, while front wheel moves on patch 3.

are known.

When we say that the coefficient of friction is known for a patch, a natural question

that arises is, how would the rover know the coefficient of friction? Estimating friction

coefficient would need slip and force sensing. If we can do that with reasonable success,

we can utilize the approach developed here. We can even develop simple analytical non-

iterative solution techniques for the problem.

4.2 Optimal Performance on Fully Known Terrain

If we assume that the coefficient of friction between wheels and ground is known every-

where, minimizing friction requirement may not be relevant. In its place, we can consider

performance related variables like energy, power, torque, etc. Here we consider the re-

quired torque of the three wheels as the objective function. We consider the simple case

of the available friction being the same everywhere. It is easy to accommodate different

known µs at different patches in our formulation. We now discuss the formulation, and
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after that, the results.

4.2.1 Formulation

Instead of minimizing the non-smooth objective function max
i=1,2,3

{|τi|}, we introduce the

upper bound variable τ and pose the problem as a smooth optimization problem, as fol-

lows.

Determine {FN1 , FT1 , FN2 , FT2 , FN3 , FT3 , F1, F2, τ} to

minimize τ ,

subject to

[A] {xF} = {b} , (4.6)

FNi
≥ 0, i = 1, 2, 3, (4.7)

−µavlFNi
≤ FTi

≤ µavlFNi
, i = 1, 2, 3, (4.8)

τ ≥ rFTi
, i = 1, 2, 3, and (4.9)

τ ≥ −rFTi
, i = 1, 2, 3. (4.10)

The last six inequalities keep τ as the upper bound of the magnitude of the three wheel

torques τi’s (Note that τi = r FTi
). As the upper bound τ is minimized, the largest τi is

minimized. The above problem is a linear programming problem (LPP).

4.2.2 Results

We use dimensions and fixed parameters of nominal rover, shown in Table 2.1. Poses

used for climbing forward (729), and backward (776) are also identical to those used in

the Section 2.3. We assume a coefficient of friction 0.65, which is approximately 13%

more than the minimal required friction coefficient of 0.58 obtained in forward climbing.

For backward climbing, we assume a coefficient of friction 0.95 which is approximately

13% more than the minimal required value of 0.84 obtained for backward climbing. A

value of 0.95 for friction coefficient is perhaps not realistic. It was used just to provide
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some leeway for reducing torque.

As the problem is a linear programming problem, it was solved numerically using

‘linprog’ of MATLAB R©. Optimum solution search started at various guess solutions.

Multiple random guesses were used for finding the solution. They yielded the same

solution.

Climbing Forward

Using a µavl of 0.65, when the torque requirement was minimized, the peak torques for

various poses decreased by about 1% to 28%, compared to the peak torques obtained

when minimizing friction requirement. The maximum torque required is 1.32 Nm (see

Figure 4.5) which is 17.5% less than the worst torque obtained when coefficient of fric-

tion was minimized. This occurs when the last wheel approaches the corner of step.

With higher values of available coefficient of friction than 0.65, lower values of torques

are possible.

Analysis of Solutions:

Figure 4.5 plots the variation of optimal torques on the three wheels (upper figure), and

the variation of corresponding force ratios of the three wheels, as the rover climbs up the

step. As we are trying to minimize the maximum torque magnitude, the solutions for

various poses would tend to have equal torque magnitudes, as indicated in Figure 4.5.

However this need not be the case at all poses, as explained below. General solution of

an LPP with nine decision variables will have nine active constraints. In our problem six

of them are equality constraints, and are always active. Hence we expect three inequality

constraints to be active for each pose. This was found to be the case for all the 729 poses

except one. Different inequalities become active at solution in different zones of poses.

These are grouped together as different zones AB, BC, CD,..., GH shown in Figure 4.5.

At each zone specific set of inequality constraints become active, as shown in Table 4.1 .

The first column of the table lists the zones (see Figure 4.5) in which a particular type of

solution occurs. The second column lists the inequality constraints which become active
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Table 4.1: Inequality constraints which become active at solutions at different

zones.

Zone Inequality constraints which become active

AB τ1 ≤ τ, τ2 ≤ τ, FT1 ≤ µavlFN1

BC, DE, GH τ1 ≤ τ, τ2 ≤ τ, τ3 ≤ τ

CD, FG τ2 ≤ τ, τ3 ≤ τ, FT1 ≤ µavlFN1

EF τ2 ≤ τ, FT1 ≤ µavlFN1 , FT3 ≤ µavlFN3

First wheel is designated as 1, middle wheel 2 and last wheel 3.

at each type of solution.

Consider a pose in zone AB. As mentioned earlier, three inequality constraints are

expected to be active. In zone AB, the three inequality constraints related to bounds on,

τ1, τ2 and µ1 are active. τ1 and τ2 become equal in magnitude to τ , and µ1 becomes equal

in magnitude to µavl. Please note that these inequality constraints were not artificially

forced to be active; they became active in the natural process of optimization.

In all zones τ2 has the maximum torque. The other two torques also reach maximum

value when each wheel nears the top corner of the step and climbs on to the top of the

step. In other regimes one or more wheels reach the slip limit.

There is a special case in zone CD where τ = τ2 = τ3 and contact force ratios

do not reach the limit (see Figure 4.5). Thus here an infinite number of equally good

optimal solutions are possible. This is the degenerate case in LPP when the solution can

lie anywhere on an edge, and not just at one vertex of the feasible convex polytope.

Climbing Backward

Maximum required torque in this case is 1.92 Nm, which is 7.25% less than the maxi-

mum torque for minimal required coefficient of friction. Torque and contact force ratio

variations are shown in Figure 4.6 and 4.7 respectively. As the coefficient of friction of

0.95 is fairly high, we do not analyze these solutions in detail.
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4.3 Conclusion

In this chapter we addressed the problem of optimizing performance of rover when the

coefficient of friction under (a) one wheel, and (b) all three wheels, are known. In the

former case, the required coefficient from the unknown terrain was used as objective

function, while in the latter case we used required torque as the objective function. Both

problems were formulated as smooth optimization problems and solved numerically. The
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latter problem is of lower level of complexity, as it is a linear programming problem.

Results obtained are intuitive. We are able to minimize objective functions more,

when the known coefficient of friction is higher. There are even cases where the wheels

on the parts of terrain with unknown friction, can just roll without traction.

The question of how coefficient of friction would be known in an unknown terrain,

is not addressed here. We presume that good sensing and estimation techniques can give

us reasonably accurate values for friction coefficient. If that is possible, then the further

improvement of performance indicated by our results, also become possible, and we can

even attempt to develop analytical and non-iterative methods of solving the optimiza-

tion problem for the partially known terrain case, as we did in Chapter 3, for the fully

unknown case.
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CHAPTER 5

Optimal Design for Step Climbing

In chapters 2 and 3, we have seen how to minimize friction requirement of a given rover,

when negotiating uneven terrain very slowly. A question of importance to designers is,

how can we “design” the rover itself, so as to maximize mobility. In this chapter we

address the optimal design problem, considering various scenarios. Rover climbing a

single step and three different steps, without and with manipulator which can be used to

shift centre of mass, with the normal force on wheel bounded by zero and bounded by a

small positive value, and climbing forward and climbing backward.

5.1 Optimal Design for Climbing Single Step

Design of the rocker bogie suspension has to be based on various types of terrain the

rover has to encounter. We focus our attention on climbing a large step and several large

steps, in this chapter. In the subsequent chapter we extend our attention to staircases. As

already mentioned in the literature survey, many objective functions have been proposed

for optimal design. We consider only friction requirement at present. Other objective

functions can be considered similarly.

5.1.1 Formulation

Our attempt is to propose a smooth formulation. We first describe the decision variables,

which can be categorized as design parameters and pose related variables.
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Figure 5.1: Geometric parameters of rocker-bogie suspension rover.

Design Parameters

Geometric parameters of the rocker-bogie suspension rover shown in Figure 5.1 are de-

fined as follows:

• l1 the distance between the first and middle wheel centers A and B;

• l2 the distance between A and pivot of rocker and bogie C;

• θ2 the angle between the lines AB and AC;

• l4 the distance between C and H;

• l5 the distance between C and body CoM G2;

• α the angle between lines CH and CG2;

• r = r1 = r2 = r3 radii of the wheels;

Location of pivot G is not a parameter because rocker does not rotate w.r.t. body, as both

wheels on both sides are moving identically, for the class of terrains we consider.

We use the assumptions which were made in Chapter 2. Wheel radii and weight, and

body weight are fixed. The bogie and rocker link masses are assumed to be zero. We

could have assigned some masses to rocker and bogie, proportional to their lengths, but

used the simpler formulation here. Thus there are six design parameters (l1, l2, θ2, l4, l5

and α).
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Figure 5.2: Wheel climbing sequence.

Pose Related Variables

We consider five poses for each wheel, as shown in Figure 5.2 when the wheel climbs the

step. First pose P1 is when the wheel just touches the vertical face of the step, the third

pose P3 when the contact point just reaches the top corner of the step, while the second

pose P2 is in the middle of first and third poses. In the fourth pose the line P3A4 from

step corner to wheel center makes 45◦ with the horizontal, while in the fifth pose the line

P3A5 makes 90◦ with the horizontal. Here Ai refers to first wheel center. For middle

and rear wheels, we would have Bi and Hi. Considering 3 wheels, we have 15 separate

poses. Once the position of the climbing wheel is known, the entire pose of the rover can

be easily determined, as explained after describing the mathematical formulation. Each

pose has eight force variables (FN1 , FT1 , FN2 , FT2 , FN3 , FT3 , F1, F2)
T associated with it,

making up a total of 120 force variables for 15 poses.

In addition to the above 6 design parameters and 120 pose related force variables, the

dummy upper bound parameter µ is also included. As before, µ can be interpreted as the

available friction between ground and wheels. The set of 127 decision variables is called

{x}. We considered a wheel diameter equal to 110 mm and step height equal to wheel

diameter, same as what we used in previous chapters.
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Problem Statement

Our proposed formulation can now be mathematically stated as follows.

Determine {x} to

minimize µ,

subject to

(a) Equilibrium equations: [Ah] {yh} = {bh}, h = 1, 2, ..., 15,

(b) Non-adhesion conditions: FNih
≥ 0, i = 1, 2, 3, h = 1, 2, ..., 15,

(c) No-slip conditions: −µFNih
≤ FTih

≤ µFNih
, i = 1, 2, 3, h = 1, 2, ..., 15,

(d) Non-negativity of coefficient of friction: µ ≥ 0,

(e) Limit on wheel base: AH∗ ≤ 500,

(f) Limits on CoM location of body:1
4
AH∗ ≤ xG2 ≤ 3

4
AH∗ and yG2 ≥ 2r + 20,

(g1) Non-interference of wheels with step in forward climbing: xBh
≥ r, h = 3, 4, 5;

xHh
≥ r, h = 6, 7, ..., 10,

(g2) Non-interference of wheels with step in backward climbing: xBh
≤ −r, h =

1, 2, ..., 5; xAh
≤ −r, h = 8, 9, 10,

(h) Non-interference of bogie with step: l2sinθ2 ≥
(
l1
2
−
√
2r
)
− 5, and

(i) Limit on height of pivot C: yC ≤ 2r.

Some of the constraints are explained below.

• In the equilibrium equations (a), {yh}R8 is the force set related to the hth pose

and [Ah]R6×8, {bh}R6 are the corresponding coefficients. Equilibrium equations

form a set of 15×6 = 90 equations. They are non-linear because elements of [Ah]

and {bh} depend on design parameters of the suspension. Note that we could have

eliminated the equality constraints and six forces of each pose, by using just two

forces as free variables. As this could have lead to singularity or near singularity

during optimization, we did not do that.

• In condition (e), AH∗ refers to the wheel base of the rover, represented by the

distance between the wheel centers A and H when the rover is on a plane surface.

In an earlier formulation, when we did not limit AH∗, the optimization search

returned a very high value for AH∗. Hence we imposed the upper limit of 500 mm
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in (e). AH∗ is calculated as

AH∗= l2cosθ2 +
√
l24 − l22sin2θ2.

• The body is mounted on the rocker, and its dimension was fixed as 350 mm in

length and 50 mm in height. Body CoMG2 is assumed to be at its geometric center.

G2 cannot be at any arbitrary location with respect to the suspension. Through

the first two constraints in (f), we limit the x position to within a certain interval

centered at the midpoint between the first and last wheels. The specific interval

chosen in this case was arbitrary. Through the third constraint in (f) we provide

sufficient ground clearance. ‘Sufficiency’ was checked by checking interference of

body with the step, from which we arrived at the value of 20 mm appearing in the

third condition in (f). As there is no relative motion between the body and rocker,

pivot G and G2 can be considered as same for motion on 2D terrain.

• In a solution for forward climbing, the middle wheel and last wheel were found to

intersect with the step in some poses when the first and middle wheels respectively

were climbing the step (see Figure 5.3). Similarly, in a solution for backward

climbing, the middle wheel and last wheel were found to intersect with the step in

some poses when the first and middle wheels respectively were climbing the step.

Hence we introduced constraints (g1) for forward climbing and (g2) for backward

climbing. The constraint functions are calculated as follows.

xBh
, h = 3, 4, 5 in (g1) was determined as (position of first wheel (xA, yA) is

known)

xB = xA +
√
l21 − (yA − r)2.

xHh
, h = 6, 7, ..., 10 in (g1) was determined as (position of middle wheel (xB, yB)

is known)

xH = xB−
√
l21 − (s+ r − yB)2+l2cos(γ+θ2)+

√
l24 − (s+ l2sin2(γ + θ2),

where γ is the inclination of bogie with horizontal.

xBh
, h = 1, 2, ..., 5; in (g2) was determined as (position of first wheel (xH , yH) is

known)

xB = xH −
√
l24 − (yH − r − l2sin2θ2)− l2cosθ2 + l1.

xAh
, h = 8, 9, 10 in (g2) was determined as (position of middle wheel (xB, yB) is
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known)

xA = xB −
√
l21 − (yB − r)2.

• Constraint (h) ensures that the pivot C of the bogie does not intersect with the

step in the worst situation (see Figure 5.4). We consider the worst situation to be

when the line AB is at 45 degrees, and demand that in that situation, the pivot C

is farther than the step corner, in a direction perpendicular to AB. The link of the

bogie can then be appropriately shaped to avoid interference of link with the step.

This constraint was found to be too conservative, and hence the RHS was lowered

to 5 mm.

• Constraint (i) ensures that pivot C is not very high. In one optimization search,

µ was reduced significantly to around 0.3, with all constraints satisfied. However,

the rover obtained, shown in Figure 5.5, had a very high location for pivot C and

center of mass G2. Hence we imposed the upper limit of 2r for height of C above

horizontal ground.
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wheel.
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Figure 5.4: Worst case situation for
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Determining Poses of the Rover

We had parametrized the pose of the rover by specifying the position of the wheel which

is climbing the step. Here we describe how the pose of the entire rover can be determined

from this single parameter, for a rover climbing the step in forward direction. We make

use of the fact that when any one wheel is climbing the step, the remaining two wheels

are on a horizontal surface, and hence the y coordinates of their centers are known.

When the first wheel is climbing the step (see Figure 5.6a), as the position of wheel

center A is known, position of wheel center B can be determined as we know its y coor-

dinate and the distance AB. As we know the positions of A and B now, position of pivot

C can be obtained from values of design parameters l2 and θ2. Once the position of C is

obtained, position of wheel center H can be obtained as we know CH and y coordinate

of H.

When the second wheel is climbing the step (see Figure 5.6b), as the position of wheel

center B is known, position of wheel center A can be determined as we know the distance

BA, and the y coordinate of A (as first wheel is on the top landing of the step). As before,

from the positions of A and B we can determine the position of pivot C. Then from the

position of pivot C, position of wheel center H can be obtained, as the y coordinate of H,

and the distance CH are known.
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Figure 5.6: Sequence of wheel climbing the step.
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Table 5.1: Lower and upper bounds imposed.

Parameters Lower bound Upper bound

FNij
0 ∞

FTij
, F1j , F2j -∞ ∞

µ 0 ∞

l1, l2, l4, l5 0 ∞

θ2, α -∞ ∞

Note: Lower bound of −∞ indicates there is no lower bound. Upper bound of∞ indicatesτ1, τ2 there is

no upper bound.

When the third wheel is climbing the step (see Figure 5.6c), as the position of wheel

center H is known, position of pivot C can be determined as we know the y coordinate of

C, because both wheels A and B are on the top landing. Having obtained the position of

C, positions of wheel centers A and B can be easily obtained as their y coordinates are

known, and the distances CA and CB are also known.

Thus all the 15 poses can be determined using climbing wheel position and values

of rover design parameters. The above calculations involve determining intersections of

circles with horizontal straight lines, which have two solutions, or may sometimes not

have any real solution. Out of the two real solutions, the one needed by us, is easy to

identify. If there is no solution, we “break” out of the calculation, as in MATLAB R©

the remaining calculation will be done using complex numbers, and the iterations may

continue unnecessarily without stopping.

For backward climbing too, the 15 poses of the rover were obtained similarly, from

the position of the wheel which is climbing the step.

5.1.2 Solutions for Forward and Backward Climbing

The above problem was solved using ‘fmincon’ of MATLAB R©. Optimal solutions for

two cases were obtained. In the first case the rover climbs up the step forward (with the
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bogie climbing first), while in the second case the rover climbs up the step backwards

(with wheel number three, climbing first). In each case, the 15 poses described earlier

were considered. Step height ‘s’ is equal to wheel diameter (2r = 110 mm). Lower and

upper bounds of decision variables are given in Table 5.1.

The effort required for finding optimal design, considering 15 poses, was consider-

ably higher than that required for minimizing friction requirement of a given rover at a

given pose. While searches from every guess solution converged in the latter case, only

searches from very few guess solutions converged for optimal design. Initially, searches

from several randomly chosen guess solutions (a) got aborted due to square root argu-

ment becoming negative, (b) got stuck in infeasible regions without progressing, (c) led

to interference between wheels and steps, and (d) led to solutions with disproportionate

dimensions. This helped us modify the bounds of some of the inequality constraints. In

some cases we used the most recent point of a search as starting point, after these modifi-

cations. Finally, out of around 100 attempts, 10 searches converged to the same solution,

in the sense that all the design parameters and µ are the same in all these solutions, with

a few force variables at some poses being different.

One of the searches converged directly from a random guess to solution in 17.41

seconds in our computer with 1.6 GHz processor and 12 GB RAM. 314 iterations and

40321 function evaluations were required. In comparison, a search to optimize friction

requirement of a given rover at a given single pose takes only around 0.045 seconds

on the average, in the same computer, when started from random guesses. It took 25

iterations and 70 function evaluations to converge for a search which took roughly this

time. It may be noted that the number of decision variables in the optimal design problem

is 127, and the number of constraints is 242, while the number of decision variables in

the performance optimization problem is 9, and the number of constraints is 15.

We analyse the solutions in detail below. Please note that design was optimized sep-

arately for forward and backward climbing, and we did not seek a single optimal design

for both.
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Table 5.2: Values of fixed parameters of optimal rover for forward climbing, op-

timal rover for backward climbing, and nominal rover.

Parameters Forward Backward Nominal

µ 0.4457 0.6155 0.58 / 0.84**

l1 (mm) 122.98 155.56 228.00

l2 (mm) 93.64 119.47 132.30

θ2 (degrees) 33.80 -2.29 30.00

l4 (mm) 190.53 370.96 347.80

l5 (mm) 59.21 141.74 118.85

α (degrees) 38.89 33.80 28.39

AH∗ (mm) 261.10 490.30 456.00

yCoM (mm) 130.00 130.00 156.70

Note: ** both forward and backward climbing friction requirements are shown.

Optimal Design for Forward Climbing

Performance of Solutions

The optimal µ for forward climbing is 0.45, 22% lower than the 0.58 obtained for nominal

rover in Chapter 2. It should be noted that the nominal rover geometry was perhaps

designed based on many considerations, while the optimal design obtained here is for the

very narrow aim of climbing a single step. A more appropriate comparison with nominal

rover requires consideration of several terrain geometries, and other design requirements.

Optimal design of rover, considering three steps of different heights, is described in the

next section. The use of just 15 poses during climbing, can also be questioned. Our aim

is to establish the usefulness of a formulation and solution procedure. Later we show

how this optimal design performs at other poses during the climb.
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Geometry of Solutions

The optimal parameters obtained for forward climbing and backward climbing are given

along with those of the nominal rover in Table 5.2, and the three rovers are shown in

Figure 5.7. During forward climbing, pivot C is sufficiently high to give ample clearance

with the step corner.

The body CoM in the forward and backward solutions has reached its lower limit. The

CoM of the body of the nominal rover is 27 mm above that of the two optimal solutions.

In both cases, the CoM of the body is in between B and H and is closer to B in the case

of solution for forward climbing.

Solution for forward climbing is the shortest among the three. Although we kept an

upper limit of 500 mm for wheel base, both solution are shorter than that limit.

Analysis of Solution

Values of µ for the optimal solution for forward climbing, and corresponding torques

are plotted in Figure 5.8 and 5.9 for the 15 poses considered. Straight lines were drawn

between data points to show trends. They do not represent actual variations.

As already mentioned, while we got the same µ and mechanism parameters for some

solution searches, force values of the solution were identical only at poses 1, 6, 7, and

13, where the force ratios are identical to the optimum µ obtained. At other poses, the

force values were different. So we minimized the µ required at each of those poses, for
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Figure 5.8: Ratio of traction force to normal force - optimal design for forward

climbing.

plotting Figure 5.8.

As already noted in Chapter 2, the solutions at the fifteen poses demonstrate that we

could miss some solutions if we (a) insist on the equal force ratio condition, or (b) insist

on all traction forces being positive

In Figure 5.9 which shows the optimal torques, we can see that the torque peaks at

pose 13, and the peak torque happens for the middle wheel which is on the top horizontal

landing. At all other poses, torques of all wheels have lower values.

KKT Condition and Multipliers with Zero Value

KKT conditions, which are first order necessary conditions for constrained minima [70],

essentially state that at a local minimum, which is a regular point, the gradient of objective

function is a linear combination of all the active constraint gradients, with the multipliers

of the active inequality constraints being non-positive. For regularity, the gradients of the

active constraints should form a linearly independent set. We examined the solution for

forward climbing to see whether it satisfies KKT conditions.

At poses 1, 6, 7, and 13, contact force ratios reached the peak value µ. At these poses,
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Figure 5.9: Torques - optimal design for forward climbing.

the slip constraints of all three wheels are active. At the other 11 poses, the contact force

ratios are below the value of optimum µ, indicating that the corresponding forces are

slack in the sense that they can have a range of values consistent with constraints, without

affecting µ.

As already mentioned, at each of the 11 poses with slack, we minimized the mag-

nitude of the ratio of traction to normal force to obtain unique solutions for all force

variables. Figure 5.8 and 5.9 show such further optimized forces.

The solution has totally 18 active inequality constraints. They are (a) twelve con-

straints for preventing slip at poses 1, 6, 7, and 13, (b) two slip constraints and one

non-adhesive constraint at pose 5 (the latter three are due to FN1 and FT1 being zero), (c)

constraint for preventing middle wheel interference with step for pose 5, (d) constraint

for preventing last wheel interference with step for pose 10, and (e) lower limit on height

of CoM of body.

We check KKT conditions as follows. Gradients of all the 90 equality constraints and

18 active inequality constraints were determined. They were found to form a linearly

dependent set. Thus the solution is not a regular point. The dependency arose because

in the fifth pose there are two active slip constraints with gradients in the same direction.

To make the solution a regular point, we minimized the local µ at pose 5 by introducing
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a lower bound of 1 N for FN1 . The pose 5 values in Figure 5.8, and 5.9 correspond to

this. For this solution we have 105 active constraints (note that the two slip constraints

and the non-adhesion condition are no more active). Their gradients form a linearly in-

dependent set, and hence the solution is a regular point. The objective function gradient

was found to be a linear combination of the 105 active constraint gradients. Signs of the

Lagrange multipliers of 15 active inequality constraints are negative. Lagrange multipli-

ers of 67 out of 90 equality constraints were also found to be zero. Zero values of these

67 Lagrange multipliers happened because the corresponding constraints can be satisfied

by a continuum of force variable values without affecting the optimum µ. This can be

illustrated by the following simple analogous problem.

Determine {q, x1, x2, x3, x4} to

minimize q,

subject to

2x1 − x2 = 0,

x3 − 4x4 = 0,

(x1 − 5)2 + (x2 − 5)2 + 1 ≤ q, and

(x3 − 4)2 + (x4 − 3)2 + 1 ≤ q.

The solution is q = 6, x1 = 3, x2 = 6, x3 ∈ [2.567, 6.233], x4 = x3

4
. There is slack

in the variables x3 and x4. Hence we can minimize the LHS of the second inequality to

obtain x3 = 4.4, x4 = 2.2. This point satisfies the constraints. When checking the KKT

condition at this point, we find that the Lagrange multiplier of the second equation is

zero. This is analogous to 66 Lagrange multiplier of our solution being zero.

In addition to the above 11 poses with slack, at the 13th pose, the Lagrange multiplier

of the moment equation of the bogie is also zero. This does not happen due to slack -

all three slip constraints are active. In this case it happens that the moment equation is

satisfied by the solution of the problem posed by removing the moment equation of bogie

at the 13th pose, from the set of constraints.

As KKT conditions are satisfied, we can conclude that the objective function µ has

reached a constrained local minimum. As all the searches that converged, arrived at the
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Figure 5.10: Coefficient of friction - optimal design for forward climbing.

same solution, we can say that it is likely that this is the global optimum, for the 15 poses

considered.

Performance of Solution, Considering More Poses

The design which was optimized based on 15 poses during forward climbing, was ana-

lyzed considering 441 poses during the climb (see Chapter 2, for explanation regarding

number of poses). At each of these 441 poses, friction requirement was minimized. Fig-

ure 5.10 shows the variation of optimum µ during the climb. Maximum value for µ was

found to be 0.503, higher than the µ of 0.45 based on 15 poses. Similarly maximum

torque considering the 441 poses is 1.881 Nm, which is larger than 1.684 Nm for 15

poses. µ can be seen to be a continuous function within the regime of climbing of one

wheel. When the first wheel is climbing, µ reaches zero before changing sharply. From

the pose where µ = 0, the ratios become different in sign, for the three wheels. µ reaches

zero at the end of climbing of middle and last wheels. Torque varies in a reasonably

smooth fashion except at one pose each of middle and last wheel climbing regimes.

Note that it is possible to refine the design by including the poses at which peak

friction coefficient requirements appear in the above graph, along with the previous 15
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poses and the rover optimized again. That solution can be again analyzed, and its peak

friction poses identified and included in the set of poses, and the rover optimized again.

A few such iterations would take us to an improved design for the full climbing sequence.

We did not attempt such refinements here.

Optimal Design for Backward Climbing

For backward climbing, optimal µ is 0.615, 26% lower than the 0.84 obtained for nominal

rover. As mentioned earlier, five poses for each wheel climbing a single step totalling to

a total of 15 poses were considered for finding the optimal design solution for backward

climbing. The solution for backward climbing is quite different from that of forward

climbing. The optimal rover for backward climbing is much longer, by about 75% or

more than the optimal rover for forward climbing (see Table 5.2 and Figure 5.7). Back-

ward climbing optimal rover has one of the wheels quite separated from the other two,

unlike the solution for forward climbing and the nominal rover. One feature of the solu-

tion for backward climbing is that the pivot of the bogie namely ‘C’, is located below the

line of centers AB. This would have been even lower, and caused interference with step

corner. We prevented interference by adjusting the limit on constraint (h).

At pose 1, 6, and 13, the contact force ratios are same and equal to 0.615 (Fig-

ure 5.11), while at the remaining 12 poses, the contact ratios are lower. We minimized the

ratio of traction to normal forces at the 12 poses. µ and torques of the optimal solution at

the 15 poses are shown in Figure 5.11, 5.12. Note that the lines joining the 15 points do

not correspond to optimal torques.

The solution has totally 12 active inequality constraints. They are (a) 9 slip constraints

corresponding to poses 1, 6, and 13, (b) one constraint for the non-interference of bogie

with step, (c) one constraint which prevents the last wheel interference with the step at

pose 10, and (d) lower limit on height of CoM of body from ground. The gradients

of all 90 equality constraints and 12 active inequality constraints were found to form a

linearly independent set, and so the solution is a regular point. The signs of the Lagrange

multiplier of 12 active inequality constraints are negative. It was found that values of
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Lagrange multiplier of the equilibrium equations for the 12 poses with slack are zeros.

The special case which occurred in pose 13 for forward climbing was obtained in pose

1 of backward climbing. At pose 1 the Lagrange multiplier was zero for the moment

equation of bogie.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sequence of poses

-0.2

0

0.2

0.4

0.6

0.8

R
at

io
 o

f t
ra

ct
io

n 
fo

rc
e 

to
 n

or
m

al
 fo

rc
e

Last wheel
Middle wheel
First wheel

Figure 5.11: Ratio of traction force to normal force - optimal design for back-

ward climbing.
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Figure 5.12: Torques - optimal design for backward climbing.
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Performance of Solution, Considering More Poses

The optimal design for backward climbing was also analyzed at 783 points during the

climbing sequence. Variation of minimum friction requirement for these 783 poses is

shown in Figure 5.13. The highest µ of 0.622 is above the µ of 0.615 obtained for

optimizing for 15 poses. The highest torque 1.325 Nm is above the highest torque of

1.305 Nm obtained for 15 poses. The performance considering all poses is just only

slightly worse than the performance considering on 15 poses.
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Figure 5.13: Coefficient of friction - optimal design for backward climbing.

5.2 Optimal Design for Climbing Three Different Steps

Using the formulation described in the last section, we obtained the optimal rover for

climbing a step of height equal to thrice the radius of the wheel, using the 15 poses

for climbing. Rocker-bogie suspension based rovers have been found to climb boulders

which are three times the wheel radius [75]. The rover dimensions for this solution can be

seen in Figure 5.14, along with the optimal rover for climbing a step of twice the wheel

radius. Optimal µ for 3r step height is 0.4438 which is even lower than the optimal µ of

0.4457 for 2r step height. When optimal design obtained for climbing the 3r step was
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used to climb the 2r step, a µ of 0.737 was required. Thus a rover designed for a taller

step is not guaranteed to perform well for climbing a shorter step. This indicates the

need to optimize design, considering different terrain geometries. The need to consider

different geometries is also motivated by the fact that the design parameters are very

different for optimal designs for individual steps, as shown by Figure 5.14.
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Figure 5.14: Optimal solution for forward climbing; step height s = 3r and 2r.

Note that the nominal rover itself seems to have been optimized over a wide range of

steps and perhaps other terrains, as our optimization of its performance on steps of height

r and 3r, showed that its µ required does not go above 0.58, which was obtained earlier

for the 2r step.

5.2.1 Formulation

Poses Considered:
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Figure 5.15: Position of centre of first wheel for three steps; step height s = r, 2r

and 3r.
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The positions of the center of first wheel are shown for the three steps in Figure 5.15,

with pose numbers indicated. Second and third wheel centers also occupy the same posi-

tions, but the poses of the rover are different. The pose numbers corresponding to second

wheel climbing are 6 to 10, 21 to 25, and 36 to 40. The pose numbers corresponding to

third wheel climbing are 11 to 15, 26 to 30, and 41 to 45.

Amongst the rover poses corresponding to the 45 wheel positions, some are identical,

and for such cases we consider only one pose each. The identical poses are:

1. Poses 1, 16, and 31: first wheel just butting the step butting from lower landing.

2. Poses 11, 28, and 43: wheels 1 and 2 on the top landing and wheel 3 center at 0◦.

3. Poses 13, 29, and 44: wheels 1 and 2 on the top landing and wheel 3 center at 45◦.

4. Poses 15, 30, and 45: wheels 1 and 2 on the top landing and wheel 3 center at 90◦.

5. Poses 18, and 32: first wheels on steps 2r and 3r, with other two wheels on lower

landing.

Thus the above 14 poses can be reduced to just 5, and so the total of 45 poses can be

reduced to 36 distinct poses. The 36 poses are numbered continuously, and these pose

numbers are used in the subsequent sections. Mapping of the 45 pose numbers to the

corresponding 36 pose numbers is given in Appendix D.

Decision Variables

The eight force variables (FN1 , FT1 , FN2 , FT2 , FN3 , FT3 , F1, F2)
T , as mentioned in the

Section 5.1 are related to each pose. Thus the 36 distinct poses add up to a total of

288 force variables. The six design parameters (l1, l2, θ2, l4, l5 and α) also need to be

included along with the dummy upper bound parameter µ. This set of decision variables

is called x. Thus the total decision variables sums up to 295. The diameter of the wheel

is 110mm, and steps of height 55mm, 110mm, and 165mm are considered for this study.
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Problem Statement

Our proposed formulation can now be mathematically stated as follows.

Determine {x} to

minimize µ,

subject to

(a) Equilibrium equations: [Ah] {yh} = {bh}, h = 1, 2, ..., 36,

(b) Non-adhesion conditions: FNih
≥ 0, i = 1, 2, 3, h = 1, 2, ..., 36,

(c) No-slip conditions: −µFNih
≤ FTih

≤ µFNih
, i = 1, 2, 3, h = 1, 2, ..., 36,

(d) Non-negativity of coefficient of friction: µ ≥ 0,

(e) Limit on wheel base: AH∗ ≤ 500,

(f) Limits on CoM location of body:1
4
AH∗ ≤ xG2 ≤ 3

4
AH∗ and yG2 ≥ 3r + 20,

(g) Non-interference of wheels with step in forward climbing: xBh
≥ r, h = 27, 28, 29;

xHh
≥ r, h = 30, 31, ..., 34,

(h) Non-interference of bogie with step: l2sinθ2 ≥
(
l1
2
−
√
2r
)
− 5, and

(i) Limit on height of pivot C: yC ≤ 4r.

Constraint (g) is similar to constraint (g1) mentioned in Section 5.1. The poses 27, 28,

and 29 corresponds to front wheel climbing the 3r step, and 30, 31,..., 34, corresponds to

middle wheel climbing the same step.

Constraint (i) ensures that pivot C is not very high. In some solution the objective

function was around 0.35, but it was observed that the pivot is very high as compared to

the wheel diameter. Hence we imposed the upper limit of 4r.
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5.2.2 Results

The above problem also was solved using ‘fmincon’ of MATLAB R©. As in the case

of optimal design for a single step, several searches for optimal design for three separate

steps also got aborted due to the square root argument negativity, and due to search getting

stuck in infeasible regions. Of the approximately 40 attempts, only 2 attempts converged

to the solution.

One of the searches took 87.25 seconds to converge, from an intermediate point, and

not the initially chosen random guess. This clearly indicates that much greater effort was

needed to converge to solution for the case of three steps, compared to the case of one

step.

The optimal µ for forward climbing, considering three steps, is 0.4694. This is only

slightly higher than the optimal designs for the separate steps. It is still lower than the

optimal µ of 0.58 of the nominal rover for climbing the three steps, by 19%. Now that

we have considered more number of terrain scenarios, the comparison with the nominal

rover has started becoming more reasonable. The optimal rover is slightly taller than the

nominal rover, as can be seen in Figure 5.16. Particularly, pivot C is almost at the top line

of the body, while it is below the body in the case of nominal rover.

The solution has totally 18 active inequality constraints. They are (a) 13 slip con-

straints corresponding to poses 1, 11, 20, 29, and 30, (b) two slip constraints and one

non-adhesive constraint at pose 11 (the latter three are due to FN1 and FT1 being zero),

(c) one constraint which prevents the last wheel interference with the step at pose 34, and

(d) lower limit on height of CoM of body from ground.

The KKT conditions were checked. The gradients of the 216 equality constraints,

and the 18 active inequality constraints formed a set of linearly dependent set. The de-

pendency arose because in the eleventh pose there are two active slip constraints with

gradients in the same direction. To make it a regular point, the lower bound of 1N was

introduced for FN1 at pose 11. This shifted the optimal solution to a nearby point with

231 active constraints, whose gradients form a linearly independent set. Lagrange multi-

pliers of 172 out of 216 equality constraints with slack, are zero. The signs of multipliers
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of all the active inequality constraints are negative, and so KKT conditions are satisfied.

Optimal Design Nominal Design

A A B B 

C
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H H

G
G

Figure 5.16: Optimal solution for forward climbing of three steps of heights

r, 2r, 3r, and nominal rover.

Note that the special situation at pose 11, where the reaction and traction forces of

the first wheel are zero, is the same as that of pose 5 in the optimal design for single step

climbing.
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(b) Optimal rover for climbing r, 2r, and 3r steps.

Figure 5.17: Middle wheel climbing sequences for a 3r step.

Figure 5.17 shows middle wheel climbing sequences of the nominal rover and the

optimal rover (designed for climbing steps of height r, 2r, and 3r), climbing the step of

height 3r. The figure gives an idea about the relative positions of bogie and the front

wheels, with respect to the rocker, body, and rear wheel. It may be noted that the range

of pitch angle of the optimal rover is greater than that of the nominal rover.

The design which was optimized based on 36 poses was analysed considering 542

poses, 625 poses and 618 poses for step heights of r, 2r, and 3r respectively. Maximum

value of µ was found out to be 0.4868, higher than 0.4694 based on 36 poses. However,

the µ obtained is still better than µ of 0.58 of nominal rover (by 16%).
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Table 5.3: Values of fixed parameters of optimal rover with zero normal force,

optimal rover with FNmin
= 1.4388N climbing three different steps.

Parameters FNmin
= 0 FNmin

= 1.4388N

µ 0.4694 0.4760

l1 (mm) 173.93 174.30

l2 (mm) 188.31 189.37

θ2 (degrees) 56.44 57.10

l4 (mm) 345.28 347.80

l5 (mm) 106.92 104.44

α (degrees) 12.45 11.08

5.2.3 Optimal Design for Positive Normal force

The results of optimal design of rover for climbing single step, and three different steps

showed that at some poses, the rover will be at a point of marginal stability. This situation

can be avoided by ensuring a minimum positive normal force on all wheels, at all poses.

Thus optimal design of rover was attempted, keeping a minimum positive normal force

at all poses, for the three wheels. We imposed an FNmin
of 1.4388 N, which is 5% of

the total weight of the rover. The terrain considered consists of the three large steps

mentioned above, of heights 55mm, 110mm, and 165mm, with wheel radii being fixed at

55mm.

The formulation is same as that mentioned in Section 5.2, the only difference being

that the lower bound on the normal forces of the three wheels on all the 36 poses is set as

FNmin
= 1.4388N instead of zero.

The parameters of the optimal rover obtained are given in Table 5.3. It can be seen

that the size and shape of this optimal rover is very close to that of the optimal rover for

FNmin
= 0N . The friction requirement has worsened only slightly to 0.4760, from the

value of 0.4694 for the case when FNmin
= 0N . The ratio of traction force to normal

force for the 36 poses considered is shown in Figure 5.18. Poses 1 to 15, 16 to 26, 27 to
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36 corresponds to the r, 2r, and 3r step respectively.

At pose 1, 11, 20, 29, and 30 contact force ratios reached the peak value of µ. Except

pose 11, the slip constraints of all three wheels are active at these poses. At pose 11, slip

constraint of only the last wheel is active. Contact force ratios of the first and middle

wheels in pose 11, and those of all three wheels in the other 31 poses, are below the value

of optimum µ.

The solution has totally 16 active inequality constraints. They are (a) 13 slip con-

straints corresponding to poses 1, 11, 20, 29, and 30, (b) lower bound on FN1 at pose 11,

(c) one constraint which prevents the last wheel interference with the step at pose 34, and

(d) lower limit on height of CoM of body from ground.

KKT conditions were checked. Gradients of the active constraints (216 equality con-

straints, and 16 inequality constraints) form a linearly independent set, and so the solution

is a regular point. KKT conditions are satisfied, with Lagrange multipliers of all the 16

active constraints being negative. This indicates that our solution is a local minimum.
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Figure 5.18: Ratio of traction force to normal force - optimal design for for-

ward climbing of rover, climbing three steps of height r, 2r, 3r with

FNmin
.

The design which was optimized based on 36 poses with positive normal force was

analysed considering 542 poses, 626 poses and 619 poses for step heights of r, 2r, and
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3r respectively. Maximum value of µ was found to be 0.4940, higher than 0.4760 based

on 36 poses. However, the µ obtained is still better than µ of 0.5823 of nominal rover

with the same FNmin
= 1.4388N (by 15.16%).

Thus it can be seen it is possible to optimally design a rover for climbing different

step heights, using our formulation. Imposing a positive lower bound on normal force,

is useful from the point of view of stability, and when we used a lower bound of small

magnitude, friction requirement did not worsen much.

5.3 Optimal Design with Manipulator

In Chapter 2, we examined whether shifting of the CoM using an onboard manipulator

can reduce the friction requirement. We found that with the manipulator considered, the

worst friction requirement of the optimal forward climbing rover of Subsection 5.1.2 was

reduced from 0.4457 to 0.4390, an improvement of just 1.5%.

Here we examine whether the rover itself can be optimally designed, factoring in the

capability of shifting the center of mass using the manipulator. We optimize for the case

of climbing 3 different steps, considered in Section 5.2. We detail out the formulation,

before presenting the solution.

5.3.1 Formulation

The rover parameters l1, l2, θ2, l4, l5 and α are the same, as discussed previously. The

masses and the assumptions considered are also same for this study. The manipulator

arm consists of two segments, with two revolute joints, as shown in Figure 5.19.

Additional Pose Related Variables

As done in Section 2.5, we introduce the additional pose variable xmanip to represent

the position of CoM corresponding to a manipulator pose. The details are described in

Section 2.5.
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Figure 5.19: Geometric parameters of rocker-bogie rover with manipulator.

The decision variables are 331 in number, and constitutes the vector {x}, which con-

sists of

• 6 design parameters,

• 288 pose related force variables,

• 36 pose related variables for location of effective CoM of manipulator, and

• the dummy upper bound parameter µ.

Problem Statement

Our proposed formulation can now be mathematically stated as follows.

Determine {x} to

minimize µ,

subject to

(a) Equilibrium equations: [Ah] {yh} = {bh}, h = 1, 2, ..., 36,
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(b) Non-adhesion conditions: FNih
≥ FNmin

, i = 1, 2, 3, h = 1, 2, ..., 36,

(c) No-slip conditions: −µFNih
≤ FTih

≤ µFNih
, i = 1, 2, 3, h = 1, 2, ..., 36,

(d) Non-negativity of coefficient of friction: µ ≥ 0,

(e) Limit on wheel base: AH∗ ≤ 500,

(f) Limits on CoM location of body:1
4
AH∗ ≤ xG2 ≤ 3

4
AH∗ and yG2 ≥ 3r + 20,

(g) Non-interference of wheels with step in forward climbing: xBh
≥ r, h = 27, 28, 29;

xHh
≥ r, h = 30, 31, ..., 34,

(h) Non-interference of bogie with step: l2sinθ2 ≥
(
l1
2
−
√
2r
)
,

(i) Limits on yC ≤ 4r, and

(j) Limits on CoM location of manipulator:−200 ≤ xmaniph ≤ 200, h = 1, 2, ..., 36.

5.3.2 Solution

Optimal solution was obtained for rover climbing three steps (steps of height 55 mm,

110 mm, and 165 mm) in forward direction. The lower and upper bounds of decision

variables are same as given in Table 5.1, except that the lower bounds of normal forces

for all three wheels are FNmin
= 1.4388N . The solutions were generated using ‘fmincon’

of MATLAB R©.

As in the case of other optimal design searches, several searches for optimal design

for three separate steps with CoM shifted by manipulator, also got aborted due to the

square root argument negativity, and due to search getting stuck in infeasible regions. Of

the approximately 40 attempts, only 5 attempts converged to the solution.

The optimal µ for forward climbing with manipulator arm is 0.4073, 14.43% lower

than 0.4760 obtained for optimal rover without CoM shifting, in the Section 5.2. The

optimal rover for forward climbing with manipulator, and optimal rover without manip-

ulator are shown in Figure 5.20 and their parameters are given in Table 5.4. It can be

seen that the overall length of optimal rover with manipulator is 18.72% more than that
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Table 5.4: Values of fixed parameters of optimal rover with two segmented

manipulator arm, and optimal rover without manipulator, both with

FNmin
= 1.4388N .

Parameters Without manipulator With manipulator

µ 0.4760 0.4073

l1 (mm) 174.30 238.64

l2 (mm) 189.37 246.19

θ2 (degrees) 57.10 42.08

l4 (mm) 347.80 348.14

l5 (mm) 104.44 133.90

α (degrees) 11.08 13.137

AH∗ (mm) 412.20 489.28

of optimal rover without manipulator. Although an upper limit of 500 mm for wheel base

was chosen, the solution was within this limit. One can see that the pivot ‘C’ height for

both the cases are almost same, and the height of body CoM ‘G’ are also similar.

The solution for optimal design with manipulator for forward climbing was examined

to see whether it satisfies KKT conditions. Gradients of all the 216 equality constraints,

11 active inequality constraints, and 2 active lower bound and 2 active upper bounds were

determined. These gradients form a linearly independent set, and hence the solution is a

regular point. The objective function gradient was found to be a linear combination of

the 231 active constraint gradients. Signs of the Lagrange multipliers of all the 15 active

inequality constraints and bounds, are negative. As KKT conditions are satisfied, we can

conclude that the objective function µ has reached a local minimum value. It is likely to

be the global minimum, as it was the best solution from 40 starting points, of which 5

converged to this solution.

Optimal design of rover with manipulator was also done with lower bound for normal

force as zero, for moving in forward direction for these three different steps. The µ

obtained was 0.4025, against the µ requirement of 0.4073 with minimum positive normal
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Figure 5.20: Optimal solution for forward climbing of three different steps with

and without manipulator, keeping minimum positive normal force

on all wheels.

force of FNmin
= 1.4388N . Allowing zero normal force improved the solution slightly,

but has the disadvantage that there is no margin for stability.

When the optimally designed rover with manipulator was moved backward to climb

the three steps, with µminimized at each pose, a worst µ of 1.239 was required, indicating

that the rover is not suitable for climbing backwards.

The design with manipulator which was optimized based on 36 poses with positive

normal force was analysed considering 624 poses, 714 poses and 740 poses for step

heights of r, 2r, and 3r respectively. Maximum value of µ was found to be 0.4073, same

as that obtained based on 36 poses. The µ obtained is better than µ of 0.5823 of nominal

rover with the same FNmin
= 1.4388N , by 30.05%.

Note that wheel radii were not used as decision variables for optimizing the rover

here. In the next chapter, for optimal design of rover for staircases, we do use them as

decision variable, like other researchers who have optimized rovers for staircases have

done. In the next chapter we also include the scenario of three large steps, and hence we

do not include optimization with wheel radii as decision variables here.
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5.4 Conclusion

In this chapter we attempted to find the optimal rover for a single step, and for three steps

of different heights, without and with manipulator for shifting CoM, and with zero and

positive lower bounds for normal reaction forces. In all cases we were able to obtain local

minima, as indicated by satisfaction of KKT conditions. And in all cases, the fact that

the solution obtained is the best out of several searches, of which a few converged to the

same solution, indicates that we obtained the global optima in all cases. This indicates

the efficacy of our smooth problem formulation and the solver we used.

Using a small positive lower limit for normal reaction forces worsened our solution

only slightly. Using a manipulator enabled the design to improve to a point which was

substantially better (0.4073) than the solution without manipulator (0.4940).

The rover without manipulator, optimized for three steps, considering 36 poses, has

a maximum µ required which is 15.16 % better than that of nominal rover, when all

poses in the climbing sequence are considered. In both cases we used a positive FNmin
=

1.4388N . The optimal rover with manipulator is 23.47% better than the nominal rover.

This can be further improved by considering more poses for optimization. Please note

that the comparison with nominal rover is not really fair to the nominal rover, as it might

have been designed with many more considerations than what we have used for designing

our optimal rovers. We believe that our approach can be extended to include more design

considerations.

We also optimized the rover for backward climbing, but found that in most cases, it

is substantially worse than for forward climbing.
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CHAPTER 6

Optimal Design for Staircase Climbing

From optimally designing a rover for climbing large single steps in the last chapter, in

this chapter we move on to optimally designing the rover for climbing staircases and

large single steps. We consider a staircase first, and then staircase along with three large

steps.

6.1 Optimal Design for Staircase Climbing

The previous formulations for optimal design of rover for step climbing, with and without

manipulator, were formulated as smooth optimization problems. In the case of staircases,

we found it difficult to obtain a smooth formulation, for the reasons given below.

We considered a sequences of poses defined by the position of the first wheel on the

staircase. Figure 6.1 shows a pose which can occur during the optimization search. At

this pose the contact point of the middle wheel contact could be on the horizontal tread or

the the vertical riser. The equality constraints (equilibrium conditions) are discontinuous

with respect to a decision variable like the length AB, at this pose. This happens because

the coefficient matrix itself is discontinuous due to discontinuous shift in contact point.

We tried several remedies for this, but are yet to arrive at a good method for addressing

this issue. Another issue which cropped up is that when we allow the wheel radius

to change as a decision variable, the number of poses on the riser would change from

a specific number, to zero. This is explained below, where we describe selection of

poses. This also causes a discontinuity in the entire formulation. Hence we decided to

proceed with a formulation with such discontinuities and use an appropriate solver which

can work in spite of discontinuities. Our formulation of the problem as a discontinuous

optimization problem is described below.
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Figure 6.1: Rocker-bogie suspension climbing options.

6.1.1 Formulation

The assumptions considered previously are also valid for this study. We first describe the

decision variables, and then the wheel positions considered, and calculation of associated

full poses, before stating the problem mathematically.

Design Parameters

The parameters considered for this study are l1, l2, θ2, l4, l5 and α, which were already

defined in the previous Chapter 5 ‘Optimal Design for Step Climbing’. The wheel radii

r1, r2, and r3 of the rover were also considered along with the aforementioned list of

design parameters. These parameters are shown in Figure 6.2. Thus there are nine design

parameters l1, l2, θ2, l4, l5, α, r1, r2 and r3 and this set is called as {x} .

Poses Considered

Staircases in residential buildings require a minimum width of tread without nosing, of

250 mm, and the maximum riser height should be 190 mm, while for other building

the minimum tread width is 300 mm, and maximum riser height is 150 mm [76]. But,
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Figure 6.2: Rocker-bogie suspension moving climbing a staircase.

staircases of various dimensions (tread width varies from 240 mm to 310 mm, and riser

height varies from 100 mm to 250 mm) were considered by researchers [54, 65, 64]. In

our study, we considered a staircase with tread (Tr) 300 mm, and riser (H) 200 mm,

(slope of the staircase is 33.69◦) with five steps from the bottom landing to the top land-

ing. Fifth tread and top landing are essentially one and the same. The number of steps is

limited to five, so as to avoid too many repeating poses. The rover resting on the bottom

flat horizontal plane next to the staircase with, the first wheel butting the riser of the step,

is considered as the starting pose. All wheels of the rover reaching the top landing of

staircase is the last pose. Bottom and top landings are assumed to be sufficiently large so

as to accommodate all wheels of the rover.

For obtaining the rover climbing sequence on the staircase, the center position of first

wheel, A, and its contact points are used, which are predefined. Equivalently, predefined

center positions of middle or rear wheel also can be used for obtaining the climbing

sequence.

The following poses are considered for first wheel on every step of the staircase (see

Figure 6.3):

• Poses on the riser of step: The initial pose corresponds to the first wheel butting the

riser of step. Apart from the initial pose, two more equal distant points on the riser
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are also considered, before the wheel centre reaches the corner of this step. Thus

four poses were considered on the riser. This is applicable only when the radius of

the wheel is less than the step height (case (a) in Figure 6.3). If the radius of wheel

is equal to or more than the step height, all these poses on riser need to be excluded

(case (b) in Figure 6.3). As the wheel radius is a decision variable, this could cause

a sudden change in the number of poses considered.

• Poses on the corner of step: Every ten degree rotation of wheel centre on step

corner, starting after horizontal extension of tread, till the wheel centre exactly

reaches above the step, constitutes nine poses. These many number of poses are

selected because, when the front wheel center is at the corner, we observed that the

progress of the other two wheels are significant. The above is applicable when the

front wheel radius is less than or equal to the step height (case (a) in Figure 6.3).

If the front wheel radius is more than step height, the poses starting from the wheel

butting the step corner, till the wheel center reaches the last point on the corner,

only need to be considered. For this case, (shown as case (b) in Figure 6.3), the

distance the wheel centre need to travel is relatively larger than case (a), as the

wheel radius is higher. Due to this we consider 10 poses on this portion of step.

• Poses on the tread of step: Consider seven equidistant poses, from the wheel centre

position at the last point on the corner, till the wheel butts with the riser (for r1 <

H) or corner (for r1 ≥ H) of next step. Of these, we consider the middle 5 poses

as the poses on the tread.

The number of poses considered on the tread of step was chosen based on the

consideration that, for a front wheel diameter of 0.15m, the distance travelled by

the wheel along the center line will be approximately equal while climbing the riser

and tread.

As already pointed out, as the front wheel radius is also a design parameter, the num-

ber of poses on staircase can change with the front wheel radius. If the radius of the

wheel is less than the step height, the total of poses sums up to 141, as discussed earlier.

But, if the radius of front wheel is greater than or equal to the step height, the poses on
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Figure 6.3: Centre positions of front wheel: case (a) Wheel radius smaller than

step height, case (b) Wheel radius bigger than step height.

the riser of all the steps need to be excluded, bringing the number of poses down to 131.

Determination of the Full Rover Pose

When the front wheel is at one of the predetermined positions, the positions of the other

two wheels, pivot C, and rover body have to be determined. We explain our procedure for

this, using Figure 6.4. In the figure, front wheel is shown at a location on the riser of step

5. Location of middle wheel center B can be obtained by the intersection of an arc with

center at A and radius equal to l1, with the center line of middle wheel. The center line of

middle wheel is shown as G3-J4-K4-G4-J5-K5 in the figure. It is a piecewise continuous

non-smooth curve made up of straight line segments and circular arc segments which

are at distance r2 from the step surface. Determination of the intersection of the circular

arc of radius l1 with this curve requires checking whether the intersection falls within

the valid domains of the segments. In most cases, B can be located uniquely. Once B is

located, from A and B, the pivot C is located easily. Once C is located, we intersect an arc

with center at C and radius equal to l4, with the center line of third wheel H. This center

line is also a piecewise continuous non-smooth curve made up of straight line segments

and circular arc segments which are at distance r3 from the step surface. Note that when

the radius of the wheel, r2 or r3, is more than the height of the step, the respective center
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Figure 6.4: Finding centre of middle wheel, B.

line will not have the straight line segment KjGj (case b in Figure 6.3).

Problem Statement

Our formulation can now be mathematically stated as follows.

Determine {x} to

minimize max {µ1, µ2, µ3, ..., µh, ..., µk}

where µh = min

{
max

{∣∣∣∣FT1h

FN1h

∣∣∣∣ , ∣∣∣∣FT2h

FN2h

∣∣∣∣ , ∣∣∣∣FT3h

FN3h

∣∣∣∣}}
subject to

(a) Equilibrium equations: [Ah] {fh} = {bh}, h = 1, 2, ..., k,

(b) Non-adhesion conditions: FNih
≥ 0, i = 1, 2, 3, h = 1, 2, ..., k,

h denotes the pose number,

subject to

(c) Limit on wheel base: AH∗ ≤ 1000,

(d) Limits on CoM location of body: 1
4
AH∗ ≤ xG2 ≤ 3

4
AH∗ and 200 ≤ yG2 ≤

300,

(e) Non-interference of bogie with step: l2sinθ2 ≥
(
l1
2
−
√
2r1
)
− 5, and

(f) Non-interference between wheels: xB − xA ≥ r1 + r2 and xH − xB ≥ r2 + r3.
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The objective function µ was found out as follows. For each pose ‘h’, the minimum

required coefficient of friction, µh is determined satisfying constraints (a) and (b), using

the non-iterative algorithm 1, mentioned in Chapter 3. Note that the number of poses is

141 if r1 < H , and otherwise, 131. The maximum of all the µh’s for all these poses corre-

sponds to the value of objective function µ. If lower limit for normal force is FNmin
> 0,

we use algorithm 2 instead of algorithm 1, to find µh.

This way of defining the objective function has reduced the decision variable space

and number of constraints significantly. Otherwise we would have had to use all the

force variables and corresponding equality and inequality constraints, or at least two

force variables per pose with corresponding inequality constraints

Some of the constraints are explained below.

• The eight forces associated with pose h, in the equilibrium equations (a), are

{fh} =
{
FN1h

, FT1h
, FN2h

, FT2h
, FN3h

, FT3h
, F1h , F2h

}T

. These equations are the

same as those mentioned in Chapter 2.

• Condition (c), AH∗ refers to the wheel base of the rover, represented by the dis-

tance between the wheel centers A and H when the rover is on a plane surface.

In an earlier formulation, when we did not limit AH∗, the optimization search re-

turned a very high value for AH∗. Hence we imposed the upper limit of 1000 mm

in (c). In the earlier design, discussed in Chapter 5, we used an upper limit of 500

mm. We changed the limit to 1000, as the value of 500 mm, may be too small a

wheel base for climbing this staircase.

• The body size, and limits on the CoM location (constraint (d)) in the x position is

same as that discussed in Section 5.1. Through the third and fourth constraints we

provide sufficient ground clearance, and didn’t allow the body to be too far above

the ground.

• In a solution, the first wheel and the second wheel were found to be intersecting.

The first constraint in (f) says that the distance between the wheel centers A and

B, when the rover is on a plane surface, should be greater than the sum of the radii
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of first and middle wheels. Similarly the middle wheel and last wheel were found

to be intersecting. The second constraint says that the distance between the wheel

centers B and H, when the rover is on a plane surface, should be greater than the

sum of the wheel radii of middle and rear wheels.

6.1.2 Results

As mentioned already, some among the objective and constraint functions are non-smooth

and even discontinuous. Due to this, we used Genetic Algorithm for solving this prob-

lem. The function ‘ga’ of MATLAB R© was used. The function ‘ga’ uses the augmented

lagrangian approach of using lagrangians and penalty parameters to combine objective

function and constraints, and minimizes fitness based on this composite function. In each

generation, genetic algorithm is used to minimize the fitness for fixed values of lagrange

multipliers and penalty parameters, to a desired level of accuracy [77].

Each chromosome in the population consists of 9 parameters, mentioned in {x}. The

fitness function µ was calculated for each chromosome, using the corresponding values

of decision variables which are link lengths, angles, and wheel radii. Some of the genetic

algorithm parameters which were chosen based on a variation study, are as follows. The

population size was chosen as 150, crossover fraction 0.8, maximum number of genera-

tions 200. Roulette wheel selection method was used for selection of chromosomes for

new population. Mutation is also introduced to effectively explore the search space.

The lower and upper bounds of decision variables used for this design are given in

Table 6.1. The lower and upper bounds were chosen such that, no link lengths should be

greater than 1000 mm. The angles θ2 and α were made to lie within the four quadrants.

The lower bounds on wheel radii were chosen to be same as that of the nominal rover (55

mm), while the upper bound chosen was greater than step height, 250 mm.
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Table 6.1: Lower and upper bounds imposed.

Parameters Lower bound Upper bound

l1, l2, l4, l5 0 1000 (mm)

θ2, α -π (rad) π (rad)

r1, r2, r3 55 (mm) 250 (mm)

Solution

Solutions were attempted from 10 different starting populations, keeping the lower bounds

of normal forces for all three wheels as FNmin
= 1.4388N . No two searches converged

to the same point. It was seen that the best objective function values of the 10 searches

range from 0.5053 to 0.7156. Approximately 5 generations were needed to converge to

the final solution. Figure 6.5 is the plot provided by MATLAB R© on the progression of

one of the searches from generation to generation. It can be seen that in the second gener-

ation itself, a significant improvement in fitness was obtained. By the fourth generation,

the fitness value seems to have reached close to its final value. In two of the generations,

mean and best values appear to almost overlap. We could not analyse the progress in

detail, as the intermediate populations were not available.
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Figure 6.5: Progression of best fitness during optimization.

The objective function value for the optimal rover obtained is 0.5053. The variation

of µh as a function of pose h for the staircase climbing is shown in Figure 6.6. It can

be seen that 8 peaks have nearly the same optimal friction value, which could indicate

that there may be further scope for improvement in objective function as the number of

design variables is nine.
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Figure 6.6: µ variation of optimal rover climbing a staircase.

Some poses in the staircase climbing sequence of this optimal rover are shown in

Figure 6.7. It was observed that while one of the wheel is climbing a riser, the other

two wheels are either on the tread or on the corner, which essentially means that no two

wheels are climbing a riser together. This appears to validate the approach by Woo et

al. [55] of avoiding poses with more than one wheel at risers for a pose.

The parameters of optimal rover for staircase climbing with minimum normal force

can be seen in Table 6.2. It can be seen that r1 has reached its upper bound, and r3 the

lower bound.

Optimal design of rover was also done with lower bound for normal force as zero, for

staircase climbing. It was observed that the µ required decreased to 0.4984, against the

µ requirement of 0.5053 with positive normal force of FNmin
= 1.4388N .

We tried to improve the performance of the optimal rover by shifting its CoM using

a manipulator. The improvement was less than 0.5%.

When optimal performance of the nominal rover for staircase climbing was deter-

mined, at the 141 poses used here, it was found that friction coefficient required was

4.5717. This indicates that the nominal rover was not designed for climbing a staircase

of the type we considered. The high µ of 4.5717 did not occur at a pose where more than

one wheel are on risers. In fact such a pose does occur while the nominal rover climbs the
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Figure 6.7: Some poses in sequence of climbing of optimal rover for staircase

climbing (from bottom (a) to top (j)).
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Table 6.2: Optimal rover parameters for staircase climbing.

Parameters Staircase 3 steps + staircase

µ 0.5053 0.5421

l1 (mm) 506.48 450.33

l2 (mm) 76.63 34.78

θ2 (degrees) 11.04 -41.13

l4 (mm) 937.18 951.54

l5 (mm) 367.46 378.36

α (degrees) 13.03 12.90

r1 (mm) 249.99 249.99

r2 (mm) 62.39 104.48

r3 (mm) 55.00 73.56

staircase, but it has a low optimal µ of just 0.4384. This indicates that we need to revise

our earlier conclusion that the approach by Woo et al. [55], of avoiding such poses, is

valid. It is now clear that good solutions can occur with such poses, and so they need not

be avoided in the formulation.

We tried to optimize the rover design, keeping the wheel radii fixed at 55 mm, the

same as the radii of the rovers in the previous chapter. The minimum required friction in

this case was 0.7032, much higher than the µ when we allowed the radii to vary.

The genetic algorithm search which solved the staircase problem, started from a ran-

dom population of 150 and converged to the best point in 5 generations, taking about

2520 seconds.

To climb a ramp of the same angle as the mean slope of the staircase, a µ of 0.67

is needed. The µ of 0.5053 needed by the optimal rover for climbing the staircase is

much better than that. But the maximum traction force on a wheel of the optimal rover,

for climbing the staircase, is 0.39 times the rover weight, which is more than twice the

traction force of 0.185 times the rover weight, needed for climbing the ramp.
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6.2 Optimal Design for Three Steps and Staircase

The problem of optimal design for staircase was extended to include three different steps,

along with the staircase. Single steps of height 100 mm, 200 mm, 300 mm, and the

staircase 300 mm × 200 mm were considered.

Formulation

The 9 parameters discussed in the previous section were used as decision variables. They

are l1, l2, θ2, l4, l5, α, r1, r2 and r3, and this set is called as {x}.

Additional Poses Considered

For a rover climbing a single step, the pose of the front wheel on the riser, corner, and the

top landing need to be considered.

Poses for front wheel climbing the riser, and corner of the step are same as discussed

in Section 6.1.1 for staircase climbing. In addition to that, for the rover completing the

climbing sequence for a single isolated step, 56 equidistant positions of the front wheel

on the top landing were considered, so that all the wheels of rover will reach the top

horizontal landing of the step. The set of poses defined are similar for 100 mm, 200 mm,

and 300 mm step heights. All these four terrains are considered for this design. The

rover is moving through all these terrains, one after the other. A total of 346 poses were

considered for the design, if the front wheel radius is less than smallest step height, 100

mm.

The objective function, constraints, and lower, and upper bounds are same as men-

tioned in previous section.
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6.2.1 Results

This problem also was solved using, ‘ga’ in MATLAB R©. Solutions were attempted from

8 different starting populations, keeping the lower bounds of normal forces for all three

wheels as FNmin
= 1.4388N . No two searches converged to the same point. It was seen

that the objective function values of 8 solutions range from 0.5421 to 0.6225. Approxi-

mately 4 generations were needed to converge to the final solution. Figure 6.8 is the plot

provided by MATLAB R© on the progression of search from generation to generation.

0 5 10 15 20 25 30 35 40

Generation

0

5

10

15

F
it
n

e
s
s
 v

a
lu

e

Best fitness

Mean fitness

Figure 6.8: Progression of best fitness during optimization.

The objective function value for the optimal rover obtained is 0.5421. This, as ex-

pected, is worse than that of the optimal rover for staircase alone, which is 0.5053. The

variation of required friction coefficient is shown in Figure 6.9. The zones A, B, C, and

D denotes the rover climbing the four terrains namely 100 mm, 200 mm, 300 mm height

steps, and staircase. It can be seen that 9 peaks have nearly the same value as the optimal

mu, which might indicate that significant further improvement may not be possible, as

the number of decision variables is 9.

Optimal design of rover was also done with lower bound for normal force as zero, for

staircase and three steps. The µ required reduced to 0.5106, against the µ requirement

of 0.5421 with positive normal force of FNmin
= 1.4388N . When we examined the

minimum normal force for our solution, it was found to be 1.312 N, just slightly below

1.4388 N. What this indicates is that the attempts to optimize the design using ga have

not come very near to the global optimum.

The optimal design obtained for climbing a staircase, and the optimal design for

climbing a staircase and 3 large steps of different heights, are shown in Figure 6.10, and
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Figure 6.9: µ variation of optimal rover climbing three steps and a staircase.

the parameters given in Table 6.2. It can be seen that r1 has reached its upper bound for

the latter.

Middle wheel climbing sequences of the rover on a step of height 300 mm is shown

in Figure 6.11. It was observed that no pose during staircase climbing had more than one

wheel at a riser.

The performance of the optimal rover improved only by less than 0.5%, when a ma-

nipulator was used to shift the CoM.

Optimal rover design with fixed wheel radii equal to that of nominal rover, had a

relatively high friction requirement of 0.7235.

6.3 Conclusion

We could not find a continuous and smooth problem formulation for optimizing rover for

staircase climbing. However, we were able to reduce the problem space significantly, and

use the very fast non-iterative algorithms of Chapter 3, for objective function calculation.

With this, genetic algorithm was able to produce results which are good, but may not
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Figure 6.10: Optimal rover design for climbing 3 different steps, and staircase,

and optimal staircase design with minimum positive normal forces.

Figure 6.11: Optimal rover designed for climbing 3 different steps and stair-

case, climbing a step of height 300 mm - middle wheel climbing

sequence.

be exact optima. Friction requirement of the solution obtained for staircase along with

three isolated steps, for FNmin
= 1.4388N , is only slightly worse than that of solution

obtained for three steps, in the previous chapter. Use of a zero lower limit for normal

forces, improved the required µ only slightly. Use of manipulator to shift CoM also

improved the performances of these solutions only slightly. It is not possible to compare

the performances with that of nominal rover, as it does not seem to have been designed

for climbing staircases. We obtained solutions with fixed wheel radii, and found that

the µ required is much worse than that of solutions obtained with wheel radii treated as

variables.
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CHAPTER 7

Conclusions and Future Work

We conclude by summarizing the contributions of this work, and by making certain ob-

servations. We also make some suggestions for future work.

7.1 Contributions and Observations

Our major goal was to formulate the problem of optimizing performance and design of

rocker-bogie suspension rovers in a better way, and obtain solutions. We considered only

structured terrains with steps and staircases. In most cases, our objective was to minimize

friction requirement.

For minimization of friction requirement for a given rover, we formulated the prob-

lem as a smooth optimization problem, which we believe is useful for arriving at exact

local and global optima. We obtained solutions using a very powerful gradient based

numerical solver for smooth optimization problems. The fact that our solutions are local

or global minima, is proven by the fact that they satisfy first order necessary conditions

for constrained minima. Our solutions also prove that the characterization of solution as

having equal ground contact force ratios for the three wheels, used by earlier researchers,

is not a sufficient condition for minimum, and is also not necessary in some special cases.

Our solutions also prove that the approach of some earlier researchers, of restricting force

ratios to be positive, could lead to suboptimal solutions.

An important contribution of our work is the detailed understanding of the nature

of optima of the above problem, and the proposal of two non-iterative algorithms for

determining solutions. These algorithms have been demonstrated to be very effective,

and very fast compared to a generic numerical solver which generates the same solutions.

Our non-iterative algorithms being much simpler than generic solvers, have potential for



use in controllers of rovers. One of the two algorithms mentioned above, is for the case

where the normal forces on wheels are bounded below by a positive number, which we

believe is necessary to avoid unstable situations.

We also formulated and solved the problem of optimizing performance of a given

rover, when the friction available is known on some portion of the ground, or is fully

known. These are also smooth formulations. The case of partially know terrain is easily

solved by a generic gradient based solver, while the case of fully known terrain is a linear

programming problem, and hence even more easily solvable.

Another important contribution of our work is the formulation of the problem of

optimal design of the rover for minimizing friction requirement for climbing a single

step and several individual isolated steps, as a smooth problem. This formulation has

design parameters as decision variables, in addition to pose based decision variables.

Again we obtained solutions using a very powerful gradient based numerical solver, and

proved that they are local or global minima, using first order necessary conditions for

constrained minima.

We proposed the use of onboard manipulator for improving friction requirement by

shifting the effective center of mass of the body-rocker-manipulator sub-assembly. Based

on this, we formulated both the optimal operation and design problems as smooth opti-

mization problems, and solved the problems numerically. When the design itself was

optimized, factoring in the ability to shift center of mass using the manipulator, the fric-

tion requirement decreased significantly.

Optimal design of the rover for climbing a staircase could not be formulated as a

smooth problem. In its usual form, it is not even continuous with respect to some of the

rover design parameters. Hence we attempted solution using a genetic algorithm based

solver. We were able to eliminate the large number of pose related variables and reduce

the dimension of the problem significantly, by using our non-iterative algorithms for

calculating the objective function. Solutions obtained for a single staircase, and staircase

along with three individual large steps, had friction requirements which are only about

13.68% higher than that of the rover optimized for the three individual large steps.
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The optimal friction requirements obtained with minimum normal reaction of 1.44N,

are as follows.

(a) The nominal rover with wheel radii 55 mm, needs a µ of only 0.58 for climbing

steps of h = r, 2r, 3r. But it needs a µ of 4.47 to climb the staircase of 300×200

mm.

(b) The rover optimized for climbing steps of h = r, 2r, 3r needs a µ of only 0.49.

When optimized with a manipulator for shifting CoM, µ came down to 0.41.

(c) The rover optimized for climbing steps of h = 100, 200, 300 mm and staircase of

300×200 mm, needs a µ of 0.54. But this requires wheel radii also to be optimized,

and to be of different sizes. It may be noted that for climbing a ramp of the same

mean angle as the staircase, a µ of 0.67 is needed.

Regarding the computational effort needed for obtaining solutions, our non-iterative

algorithm 2, on the average, required only less than 10% of the time taken by a generic

solver for optimizing friction requirement of a given rover.

Solving the optimal design problem took a lot more effort, with many searches get-

ting stuck, and only about 10% of the randomly chosen guess points converging to the

solution. The best speed obtained was when a particular search for optimizing the de-

sign based on 15 poses converged in 17.41 seconds. The computer used has a 1.6 GHz

processor and a 12 GB RAM.

For solving the optimal design problem, for climbing a staircase, using 131 poses, the

genetic algorithm took about 2520 seconds on the same computer for a single trial. The

population size used was 150. The best solution was obtained from 10 trials.

Our results could not be tested on an actual rover. Instead, we simulated the dy-

namics of the rover climbing a step, and demonstrated that, as the applied wheel torques

approached their optimal equilibrium values, the rover acceleration approached zero, and

the contact force ratios approached the optimal values computed by our optimization

solver.
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7.2 Future Work

We had concluded that non-iterative algorithms can be used for finding the minimum

friction requirement. The proposed algorithms need to be tested and validated on actual

rovers.

Only structured 2D terrains were considered for the optimal design and operation

of rovers, in the current study. However, the real rover needs to negotiate uneven three

dimensional terrains, and hence it is necessary to investigate whether our approaches can

be extended to such terrains.

We did not succeed in formulating optimal design for staircase climbing as a smooth

problem. It appears to be difficult to do so, but is worth pursuing.

The current work focuses on rocker-bogie suspension rovers. Possibility of applying

our approaches to other types of rovers, needs to be investigated.

In this thesis our attention was limited to rigid wheels and ground. For planetary

exploration, we need to consider soft terrains, and soft terrains with boulders. Optimal

operation of rovers on such terrains, and optimal design of rovers for such environments,

are challenging problems, and worth pursuing.
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APPENDIX A

Equations for Dynamic Simulation

Here we provide the dynamic and kinematic equations needed to simulate the motion of

the rover on a step. It is assumed that the wheels do not slip on the ground.

Figure A.1 shows the free body diagrams of the three wheels (first, middle, and

rear wheels), bogie and rocker considered for dynamic simulation. The parameters

l1, l2, θ2, l4, l5, α are known for the given rover, while the values of l3, θ3, θ5, l6 can be

computed from the known parameters. The ground angles are defined as α1, α2, and α3

for the first, middle and the rear wheel respectively, measured in the counter clockwise

direction with respect to global positive x-axis. The inclination of bogie is denoted by γ,

while the inclination of rocker is denoted by δ. The wheel rotation angles are named as

ψ1, ψ2, and ψ3 respectively for the first, middle and rear wheels.

The initial positions of the centres of first, middle and rear wheels are denoted as

A1, B1, and H1 respectively. All three wheels are of the same radii and denoted as r.

As we assume that the wheels are rotating without slipping on the ground, the rover

is a one DoF system. We consider the angle ψ1 of the front wheel as the independent

coordinate. Then the other variable coordinates can be expressed in terms of ψ1, as

follows.

XA = XA1 − rψ1cosα1 (A.1)

YA = YA1 − rψ1sinα1 (A.2)

For finding the centre of middle wheel

(YB − YB1)cosα2 = (XB −XB1)sinα2 (A.3)

(XB −XA)
2 + (YB − YA)2 = l1

2 (A.4)
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Figure A.1: Free body diagram.

For finding ψ2,

((XB −XB1), (YB − YB1)) .(cosα2, sinα2) = −rψ2 (A.5)

For finding bogie angle γ,

tanγ =
YA − YB
XA −XB

(A.6)

For finding the location of pivot C,

XC = XB + l3 cos(γ + θ3) (A.7)
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YC = YB + l3 sin(γ + θ3) (A.8)

For finding the centre of rear wheel,

(YH − YH1)cosα3 = (XH −XH1)sinα3 (A.9)

(XC −XH)
2 + (YC − YH)2 = l4

2 (A.10)

For finding ψ3

((XH −XH1), (YH − YH1)) .(cosα3, sinα3) = −rψ3 (A.11)

For finding rocker angle δ,

tanδ =
YC − YH
XC −XH

(A.12)

For finding the location of CoM G of rocker-bogie subassembly,

XG = XH + l6 cos(δ + θ5) (A.13)

YG = YH + l6 sin(δ + θ5) (A.14)

Velocity equations are obtained by differentiating equations A.1 to A.14:

ẊA = −rψ̇1 cosα1 (A.15)

ẎA = −rψ̇1 sinα1 (A.16)

ẎB cosα2 − ẊB sinα2 = 0 (A.17)

2XBẊB − 2
(
XBẊA +XAẊB

)
+ 2XAẊA + 2YBẎB

− 2
(
YBẎA + YAẎB

)
+ 2YAẎA = 0 (A.18)

((XB −XB1) , (YB − YB1)) +
(
ẊB, ẎB

)
. (cosα2, sinα2) = −rψ̇2 (A.19)
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(XA −XB) cosγ γ̇ + sinγ
(
ẊA − ẊB

)
=

− (YA − YB) sinγ γ̇ + cosγ
(
ẎA − ẎB

)
(A.20)

ẊC = ẊB + l3 {−sinγ γ̇ cosθ3 − sinθ3 cosγ γ̇} (A.21)

ẎC = ẎB + l3 {cosθ3cosγ γ̇ − sinθ3 sinγ γ̇} (A.22)

ẎH cosα3 − ẊH sinα3 = 0 (A.23)

2XHẊH − 2
(
XCẊH +XHẊC

)
+ 2XCẊC + 2YH ẎH

− 2
(
YC ẎH + YH ẎC

)
+ 2YC ẎC = 0 (A.24)

((XH −XH1) , (YH − YH1)) +
(
ẊH , ẎH

)
. (cosα3, sinα3) = −rψ̇3 (A.25)

cosδ
(
ẎC − ẎH

)
−sinδ δ̇ (YC − YH) = sinδ

(
ẊC − ẊH

)
+cosδ δ̇ (XC −XH) (A.26)

ẊG = ẊH + l6

{
−cosθ5 sinδ δ̇ − sinθ5 cosδ δ̇

}
(A.27)

ẎG = ẎH + l6

{
cosθ5 cosδ δ̇ − sinθ5 sinδ δ̇

}
(A.28)

Acceleration equations are obtained by differentiating equations A.15 to A.28:

ẌA = −rψ̈1 cosα1 (A.29)

ŸA = −rψ̈1 sinα1 (A.30)

ŸB cosα2 − ẌB sinα2 = 0 (A.31)

2
(
XBẌB + (ẊB)

2
)
− 2

(
XBẌA + ẊAẊB +XAẌB + ẊBẊA

)
+ 2

(
XAẌA + (ẊA)

2
)
+ 2

(
YBŸB + (ẎB)

2
)

− 2
(
YBŸA + ẎAẎB + YAŸB + ẎBẎA

)
+ 2

(
YAŸA + (ẎA)

2
)
= 0 (A.32)

(
ẌB, ŸB

)
. (cosα2, sinα2) = −rψ̈2 (A.33)
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(XA −XB) cosγ γ̈ + γ̇
{
(XA −XB) (−sinγ γ̇) + cosγ

(
ẊA − ẊB

)}
+ sinγ

(
ẌA − ẌB

)
+
(
ẊA − ẊB

)
cosγ γ̇

= − (YA − YB) (sinγ γ̈) + γ̇
{
(YA − YB) (−cosγ γ̇)− sinγ

(
ẎA − ẎB

)}
+ cosγ

(
ŸA − ŸB

)
−
(
ẎA − ẎB

)
sinγ γ̇ (A.34)

ẌC = ẌB + l3
{
cosθ3

(
−sinγ γ̈ − γ̇2cosγ

)
− sinθ3

(
cosγ γ̈ − γ̇2sinγ

)}
(A.35)

ŸC = ŸB + l3
{
cosθ3

(
cosγ γ̈ − γ̇2sinγ

)
+ sinθ3

(
−sinγ γ̈ − γ̇2cosγ

)}
(A.36)

ŸH cosα3 − ẌH sinα3 = 0 (A.37)

2
(
XHẌH + (ẊH)

2
)
− 2

(
XCẌH + ẊHẊC +XHẌC + ẊCẊH

)
+ 2

(
XCẌC + (ẊC)

2
)
+ 2

(
YH ŸH + (ẎH)

2
)

− 2
(
YC ŸH + ẎH ẎC + YH ŸC + ẎC ẎH

)
+ 2

(
YC ŸC + (ẎC)

2
)
= 0 (A.38)

(
ẌH , ŸH

)
. (cosα3, sinα3) = −rψ̈3 (A.39)

(
ŸC − ŸH

)
cosδ −

(
ẎC − ˙YH

)(
sinδ δ̇

)
− sinδ (YC − YH) δ̈

+ δ̇
{
−sinδ

(
ẎC − ˙YH

)
− (YC − YH) cosδ δ̇

}
=
(
ẊC − ẊH

)(
cosδ δ̇

)
+ δ̇

{
cosδ

(
ẊC − ẊH

)
− (XC −XH) sinδ δ̇

}
+ cosδ (XC −XH) δ̈ +

(
ẌC − ẌH

)
sinδ (A.40)

ẌG = ẌH + l6

{
cosθ5

(
−sinδ δ̈ − δ̇2cosδ

)
− sinθ5

(
cosδ δ̈ − δ̇2sinδ

)}
(A.41)

ŸG = ŸH + l6

{
cosθ5

(
cosδ δ̈ − δ̇2sinδ

)
+ sinθ5

(
−sinδ δ̈ − δ̇2cosδ

)}
(A.42)
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When wheel is at the corner:

Consider that the front wheel is at a corner instead of being on a flat portion. Then the

following equations can be used to determine the position, velocity and acceleration of

its center A. Let the step corner be at (XS, YS). Defining ψ1 as the angle of the radius

vector from A to S.

Position of point A,

XA = XS − rcosψ1 (A.43)

YA = YS − rsinψ1 (A.44)

Velocity of point A,

ẊA = rψ̇1sinψ1 (A.45)

ẎA = −rψ̇1cosψ1 (A.46)

Acceleration of point A,

ẌA = rψ̈1 sinψ1 + rψ̇1
2
cosψ1 (A.47)

ŸA = −rψ̈1 cosψ1 + rψ̇1
2
sinψ1 (A.48)

If the middle wheel is at a corner, say (XS2 , YS2), we can obtain position of wheel

center (XB, YB) using

(XB −XS2)
2 + (YB − YS2)

2 = r2, and (A.49)

(XB −XA)
2 + (YB − YA)2 = l21. (A.50)

Then wheel angle ψ2 can be obtained from

tanψ2 = (YS2 − YB)/(XS2 −XB). (A.51)

Similarly, center of rear wheel, (XH , YH) which is at the corner (XS3 , YS3), can be
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obtained from

(XH −XS3)
2 + (YH − YS3)

2 = r2, and (A.52)

(XH −XC)
2 + (YH − YC)2 = l24. (A.53)

Angle ψ3 of rear wheel can be obtained from

tanψ3 = (YS3 − YH)/(XS3 −XH). (A.54)

The above equations can be differentiated twice to obtain the acceleration relations.

Dynamic Equations of motion:

The torques applied on the three wheels are τ1, τ2, and τ3, for the first, middle and the

rear wheels respectively.

For First wheel:

FT1cosα1 + FN1cos(α1 + π/2) + F1 = m1ẌA (A.55)

FT1sinα1 + FN1sin(α1 + π/2) + F2 −m1g = m1ŸA (A.56)

r FT1 + τ1 =
1

2
m1 r

2ψ̈1 (A.57)

For Middle wheel:

FT2cosα2 + FN2cos(α2 + π/2) + F3 = m2ẌB (A.58)

FT2sinα2 + FN2sin(α2 + π/2) + F4 −m2g = m2ŸB (A.59)

r FT2 + τ2 =
1

2
m2 r

2ψ̈2 (A.60)

For Bogie:

− F1 − F3 + F5 = mCẌC (A.61)
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− F4 − F2 + F6 −mCg = mC ŸC (A.62)

−F1(yC − yA)−F2(xA− xC)−F3(yC − yB)+F4(xC − xB)− τ2− τ1 = IC γ̈ (A.63)

For Rear wheel:

FT3cosα3 + FN3cos(α3 + π/2) + F7 = m3ẌH (A.64)

FT3sinα3 + FN3sin(α3 + π/2) + F8 −m3g = m3ŸH (A.65)

r FT3 + τ3 =
1

2
m3 r

2ψ̈3 (A.66)

For Body:

− F5 − F7 = mbodyẌG (A.67)

− F6 − F8 −mbodyg = mbodyŸG (A.68)

F5(yC − yG)− F6(xC − xG) + F8(xG − xH)− F7(yG − yH)− τ3 = IGδ̈ (A.69)

We simulate the rover by solving the second order differential equation with ψ1 as

the dependent variable, and time as the independent variable. Ode45 of matlab was used

as the solver. The inputs to the ‘deriv’ routine is time and values of ψ1, and ψ̇1, and the

outputs are ψ̇1, and ψ̈1.

ψ̈1 is calculated by solving the 15 equations of motion for the three wheels, bogie

and rocker, along with the 14 acceleration relations A.29 to A.42. In this calculation, in

addition to ψ̈1, 14 more accelerations, and 14 reaction forces would also be calculated, but

are not used. Torques applied are known as functions of time, as described in Appendix

B.
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APPENDIX B

Optimal Torques Interpolated as Functions of Wheel

Rotation Angle

From our optimal solution, we know torques only as a function of pose. While doing the

simulation, we need to specify the torque values as a function of wheel rotation angle.

Hence the nominal torques obtained were interpolated using polynomials as a function

of wheel rotation angle. Fifth and eighth degree polynomials were used for the wheel

moving on the flat portion and corner of step respectively.
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Figure B.1: Optimal torques interpolated as function of first wheel angle.
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Figure B.2: Optimal torques interpolated as function of middle wheel angle.
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Figure B.3: Optimal torques interpolated as function of Last wheel angle.
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APPENDIX C

100 Random Poses

The rocker, and bogie angles are named as configuration angles, used to define the ori-

entation of rover. The configuration angles and wheel contact angles (β1,β2,and β3) were

randomly generated.

The wheel contact angles of the three wheels varies between −80◦ to 80◦, while the

rocker, and bogie angles varies from −30◦ to 30◦. The table given below shows the

configuration and wheel contact angles for the 100 random poses discussed in Chapter 2

and 3.

Table C.1: Rover configuration and wheel contact angles for 100 random poses

Sl.No. Bogie angle Rocker angle β1 β2 β3

1 -23.6622 -23.4182 -67.4919 -43.5737 -66.6448

2 6.6575 -26.1845 -9.1715 -10.2882 -58.6926

3 16.7281 -5.7252 -62.9356 -30.2236 -52.2578

4 -4.5928 -3.0976 73.9037 67.7407 -17.4500

5 -24.5506 -8.0510 -79.2585 -11.1668 53.0208

6 -14.0117 15.8103 43.9857 -50.4294 48.5383

7 -20.7806 7.6738 50.7685 64.7810 -70.3246

8 -13.1397 16.3188 58.9912 76.7597 -16.1188

9 -3.5949 25.9712 -66.4903 -9.7808 4.3001

10 1.6286 28.3645 -16.0348 -62.2209 -13.3121

11 -2.5545 -18.4783 -38.4207 -38.7096 25.0976

12 22.5223 -21.6675 48.0110 -14.6048 20.4757

13 1.0831 11.7760 -10.9738 15.1834 -33.2825

14 26.6174 -24.3708 65.7036 -38.0461 -10.9358

Continued on next page



Table C.1 – Continued from previous page

Sl.No. Bogie angle Rocker angle β1 β2 β3

15 8.2625 1.5243 -50.9045 16.4549 -77.5221

16 27.4616 1.8207 -37.7915 33.7945 77.4502

17 -15.5576 21.6684 -56.7138 -44.5205 -53.2531

18 10.5673 -0.9088 -58.2290 -61.2132 -63.0054

19 -12.6561 -6.3926 59.0868 -32.5319 -20.4144

20 10.3085 10.2859 12.7527 -28.9955 -48.3011

21 11.7084 14.4755 7.9776 -12.1333 -1.6500

22 -25.9204 1.2031 -56.8072 1.2573 -25.6811

23 -14.7126 -9.1372 56.4850 -66.3175 72.2609

24 -16.5576 -21.0002 19.5288 -38.0028 67.2531

25 10.0700 5.1655 -23.8476 48.1623 -71.5717

26 20.6635 -14.2713 2.1199 -75.3248 38.0573

27 -9.3323 -27.3328 -15.7107 68.6167 -36.9409

28 16.8312 15.2960 -67.8453 36.8529 -12.3463

29 10.5199 -15.4329 -41.6134 -1.8226 7.6593

30 6.1302 11.2678 -50.5748 -42.0346 -13.1609

31 -6.7937 -8.4463 -41.6076 -6.5842 77.2884

32 24.9595 14.1804 -13.2373 74.0942 -31.7672

33 -29.9309 -6.3176 -72.0553 7.4889 32.1758

34 -2.2531 11.0050 64.4346 3.3817 26.6142

35 -4.5391 12.2428 71.1660 -42.9449 6.2602

36 -2.3450 -3.4617 -1.4617 -1.7764 31.6969

37 16.2096 -28.8253 -1.7196 19.8496 26.6445

38 -10.6517 -10.1485 -25.9649 28.6617 -51.4988

39 17.0844 -4.5414 64.0086 -16.7176 -59.5177

40 -1.7186 -13.7838 -20.9205 -21.2101 79.8529

41 -27.8542 -18.1768 -62.2076 78.0771 -52.6206

42 -19.4475 19.3033 44.8403 -73.9618 -74.7839

Continued on next page

168



Table C.1 – Continued from previous page

Sl.No. Bogie angle Rocker angle β1 β2 β3

43 13.3055 -4.2047 -17.6418 61.6269 9.7920

44 -1.5908 23.2663 -41.3294 66.1259 61.0986

45 -20.8367 -6.5290 -15.3741 47.3894 27.0680

46 -9.5325 16.1469 -64.5673 -64.2060 -49.5307

47 6.4434 -6.1925 -58.8843 -38.1006 -20.9734

48 -18.4953 18.5108 70.7281 -26.3429 -6.2839

49 14.3056 15.3046 72.9815 28.7565 77.0621

50 -15.4290 -7.3563 12.0334 -58.1515 -54.9752

51 25.0455 -17.0389 -70.4353 35.3964 56.8836

52 -13.8563 17.4244 -42.4352 -62.9181 23.1623

53 15.9300 26.9582 -23.4946 24.6012 -19.7964

54 -18.6803 -10.3461 51.3910 -0.9322 -49.4522

55 -12.7501 10.2759 -77.5354 44.6483 -11.4795

56 -24.5332 -3.6813 -73.1162 34.4059 -2.8765

57 4.5726 20.0100 -52.9616 64.5953 -60.7021

58 11.0018 16.1313 23.8585 62.5476 14.3212

59 2.7956 -19.9648 37.0756 -26.5339 -43.8100

60 -4.4563 21.7188 23.6394 31.7993 -18.4609

61 8.6666 29.3923 -7.8522 -48.3504 13.2778

62 8.8571 0.8654 7.5214 -75.1134 -39.7110

63 10.7410 23.0569 -32.5887 39.0519 -33.5295

64 8.1472 5.2816 39.1508 0.0036 18.7345

65 26.7104 -20.7149 -49.7672 -3.2125 -37.5551

66 -17.4639 -18.0082 29.8841 64.7556 51.9002

67 12.5569 -5.5827 -50.6382 17.5787 77.2261

68 -15.8262 14.9223 -21.0425 18.8266 36.8398

69 -22.8362 19.5350 20.0990 57.5108 -24.9797

70 6.4382 17.3978 44.8364 48.8783 13.4511

Continued on next page
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Table C.1 – Continued from previous page

Sl.No. Bogie angle Rocker angle β1 β2 β3

71 -2.9917 -10.8885 -67.0199 12.2754 -62.7570

72 -2.4765 2.0438 68.7018 -50.7324 65.0093

73 9.7167 -24.6030 44.1140 -41.6109 60.7446

74 16.2171 -23.2977 -2.1133 61.8419 50.8417

75 -8.9869 -21.8224 -10.2626 -75.4121 -38.2835

76 9.7206 10.7191 -8.5146 -1.6158 15.0970

77 -5.0305 -0.2894 -30.9841 -53.1317 -76.3980

78 20.5157 -18.6174 1.3614 76.5889 -11.9585

79 19.9750 -0.2997 1.7235 34.0311 -29.9650

80 -14.6135 -21.1435 50.8204 0.0755 -54.1624

81 6.8076 -26.7016 47.1730 -4.6259 -51.3974

82 4.9349 21.0428 23.0909 -70.4610 -12.3383

83 2.4444 3.6336 -19.4225 29.1155 -64.9233

84 22.1965 25.7765 49.8529 -73.2110 15.7638

85 -14.1133 11.8000 5.2521 -68.5687 -4.6521

86 -10.9156 4.9675 -23.8837 3.4640 31.3519

87 -22.8471 18.9238 70.2402 -64.5232 31.9821

88 26.3898 22.7408 60.1508 50.9038 22.1649

89 8.7331 29.3347 8.0250 50.8075 -74.6234

90 -1.2322 -29.9687 19.5960 35.5903 -68.9910

91 8.3590 21.9263 13.9272 -56.0215 -28.8640

92 2.6830 6.7540 -46.7612 25.5368 4.9383

93 8.8387 29.3970 -31.8006 2.9752 24.7113

94 2.6332 1.6608 -4.6523 75.6759 -14.7809

95 13.2628 -1.2286 -43.1219 23.8386 51.1970

96 1.3497 18.0809 55.0894 48.0529 34.9374

97 29.6223 -16.3294 -48.8377 -7.3924 74.9839

98 -16.8794 -0.1143 -43.8525 -10.8174 5.0134

Continued on next page
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Table C.1 – Continued from previous page

Sl.No. Bogie angle Rocker angle β1 β2 β3

99 -23.6521 24.0511 -52.6867 52.0502 -27.9767

100 -29.5971 -3.4559 -60.2690 12.5640 70.8379
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APPENDIX D

Mapping Poses

The 36 poses mentioned in the Section 5.2, is mapped to the 45 poses, described using

Figure 5.15. In the column final pose no. 1 to 15, 16 to 26, and 27 to 36 corresponds to

rover climbing the 100 mm, 200 mm, and 300 mm steps respectively.

Table D.1: Mapping of 36 poses to 45 poses

Initial pose no. Final pose no.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 -

17 16

18 17

Continued on next page



Table D.1 – Continued from previous page

Initial pose no. Final pose no.

19 18

20 19

21 20

22 21

23 22

24 23

25 24

26 25

27 26

28 -

29 -

30 -

31 -

32 -

33 27

34 28

35 29

36 30

37 31

38 32

39 33

40 34

41 35

42 36

43 -

44 -

45 -
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