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ABSTRACT

Rapid growth in wireless communication services has increased the demand for spec-

trum resources. A recent report by Federal Communications Commission (FCC) reveals

the fact that major part of the spectrum is underutilized. The existing static frequency

allocation schemes are not able to accommodate the requirements of increasing data

rate and wireless services. Such scenarios demand innovative techniques to exploit the

available spectrum. Cognitive Radio (CR) techniques have proven to be a solution to

alleviate the spectrum scarcity using spectrum sensing techniques.

In this thesis, we focus on wideband spectrum sensing using filter bank techniques.

Even though narrowband spectrum sensing makes a binary decision on the whole spec-

trum, it is unable to identify spectral holes and spectral opportunities within a wideband

spectrum. On the other hand, in wideband spectrum sensing, the available bandwidth is

divided into multiple subbands or subchannels for spectrum sensing. A solution to this

would be filter bank spectrum sensing.

Filter banks can be derived using modulation of a single prototype filter having high

stopband attenuation, narrow transition width, and small passband ripple. Architec-

tures based on filter banks allow sensing multiple subbands simultaneously with low

spectrum leakage from adjacent channels when properly designed subband filters are

used. We have designed a variable step prototype filter iteratively for the filter banks

satisfying Near Perfect Reconstruction (NPR) condition. Cosine Modulated Filter Bank

(CMFB) was used for spectrum sensing using the designed prototype filter as they pro-

vide higher bandwidth efficiency and lower sidelobes desirable for spectrum sensing.

The sensing performance depends on the granularity of filter banks. Finer granular-

ity band improves the probability of detection at the cost of increase in computational

complexity. In order to reduce computational complexity, a coarser to finer multistage

CMFB was proposed to detect narrowband users in a wideband spectrum. In such cases,

only the bandwidth of interest is sensed with finer resolution instead of the entire band-

width. Since polyphase filter banks are computationally efficient compared to CMFB,

the later work was done with polyphase filter banks.
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Since the spectrum bands are predefined for commercial communication scenar-

ios, CR system requires to check whether a spectrum band is free or occupied. Then

the detected spectral band can be utilized opportunistically. However, in multi-channel

military wireless communication, there exists a requirement to identify the center fre-

quency and the spectral edges of the primary users for fractional utilization of the avail-

able bandwidth. In order to address this problem, a novel centroid based low complexity

polyphase filter bank multistage approach was proposed. The sensing was performed

from coarser to finer spectral resolution using filter banks. Depending on the energy

distribution at each stage, narrowband users were detected in wideband channels. Us-

ing our approach, the primary users can be detected in the first stage itself in cases

they appear between two subbands. As the first stage has coarser subbands (number

of subbands are less), the complexity in computation as well as hardware is drastically

reduced. However, if the primary user appears exclusively within a single subband, the

detection process can be completed in the second stage without ambiguity. We have

considered IEEE 802.22 Wireless Regional Area Network (WRAN) standard as an ap-

plication for validating our algorithm using multistage polyphase filter banks to detect

Wireless Microphones (WM) in Television (TV) channels. The proposed scheme was

analyzed and validated through extensive simulations for the detection of WM.

A novel center of mass approach was proposed for the detection of multiple users

in wideband spectrum. Further, mathematical relation for the estimation of center fre-

quency and spectral boundaries/edges were also established. To reduce the complexity,

the detection is carried from a coarser to finer spectral resolution depending on the en-

ergy distribution at each stage. The subbands whose energy lies within the predefined

thresholds are further sensed with finer resolution in the subsequent stages. For simu-

lations, the signal having three different communication standards such as Bluetooth,

Zigbee, and Wideband Code Division Multiple Access were considered.

Applications such as digital channelizers in Software Defined Radios (SDR), digital

audio industry, biomedical signal processing, subband adaptive filtering, and communi-

cation requires non-uniform frequency partitioning to better exploit the signal charac-

teristics. In such applications, implementation of non-uniform filter banks has elicited

enormous interest in multirate signal processing. Non-uniform filter banks were im-

plemented with channel combiner using single and multi-prototype approaches. The

non-uniform bands are generated by directly combining the adjacent subbands of uni-
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form filter bank. The prototype filter is optimized in such a way that they are combined

at 3 dB cut-off frequency and, thereby satisfies the NPR condition. Single prototype

approach had the limitation of more distortion in case of large number of combiners

while generating wideband from a narrowband prototype this was overcome by multi-

prototype approach. The multi-prototype based method is found to have less com-

plexity and distortions when compared to the single prototype channel combiner based

approach.

In order to efficiently use the detected spectral holes, a rate request sequenced bit

loading secondary user reallocation algorithm for Discrete Multi Tone (DMT) systems

in CR was also proposed. Our algorithm is applicable to DMT systems for secondary

user reallocation. DMT systems support different modulation techniques on different

subchannels according to the Signal to Noise Ratio (SNR). The maximum bits and

power that can be allocated to each subband is determined depending on the Channel

State Information (CSI) and secondary user modulation scheme. The spectral holes

or free subbands are allocated to secondary users depending on the user rate request as

well as subchannel capacity. A comparison is done between random rate request and se-

quenced rate request of secondary user for subchannel allocation. Through simulations,

it is concluded that with sequenced rate request, higher spectral efficiency is achieved.
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CHAPTER 1

Introduction

Recent developments in wireless communication services lead to an increase in the de-

mand for spectrum resources. Moreover, most of the existing wireless networks follow

a fixed spectrum assignment policy. A recent report by Federal Communications Com-

mission (FCC) reveals that most of the spectrum are underutilized. Cognitive Radios

(CR) have proven to be a solution to alleviate the spectrum scarcity by utilizing different

spectrum sensing techniques. Another problem is the interference between users oper-

ating at the same frequency. When primary users share the spectrum with secondary

users, the secondary users have to be intelligent enough to give up the spectrum when

the primary user starts transmission. Therefore, the CRs have to be dynamic and adapt

to the spectral environment, spectrum policies and utilize the spectrum efficiently. As

a solution to these challenges advanced Cognitive Radio (CR) signal processing tech-

niques are being researched.

CRs find application in different areas of communication systems. In communi-

cation there are certain frequency bands globally available for low cost wireless sys-

tems. The frequency band 2.4 GHz industrial, scientific and medical (ISM) is available

globally and can be used by low cost wireless systems such as Wireless Local Area

Network (WLAN) and Wireless Personal Area Network (WPAN). Since no effective

co-ordination or radio spectrum management scheme exist, the frequency bands are

utilized inefficiently. CR techniques can be a solution to the problem of inefficient uti-

lization of spectrum. IEEE 802.22 working group is constructing Wireless Regional

Area Network (WRAN) to utilize the white spaces in TV spectrum using CR tech-

niques.

The idea of CR systems is to identify the spectral holes in a sensing bandwidth and

reallocate secondary users (unlicensed) to occupy those spectral holes without causing

harmful interference to the primary users (licensed). This chapter briefly describes the

functionality and applications of CR. The current trends towards CR and the important

issues related to the spectrum utilization are discussed. The motivation, objectives, and

contribution of the thesis are outlined.



1.1 Cognitive Radio

Cognitive radio system has been proposed as a promising solution to improve the spec-

trum utilization. The concept of cognitive radio was proposed by Joseph Mitola [5]. CR

systems have intelligent mechanism for monitoring the radio spectrum to detect spectral

holes and, thereby, allocate the same to secondary users without causing any harmful

interference to the primary users in wideband spectrum. Particularly, CR is considered

for obtaining spectrum usage characteristics across multiple dimensions such as time,

space, frequency, and code. CR comprises of determining the type of signals in ad-

dition to parameters such as modulation, waveform, bandwidth, and carrier frequency

occupying the spectrum [6].

FCC defines CR as "A radio or system that senses its operational electromagnetic

environment and can dynamically and autonomously adjust its radio operating param-

eters to modify system operation, such as maximize throughput, mitigate interference,

facilitate inter-operability, access secondary markets."

CRs are considered to be the most promising future wireless communication tech-

nology that may potentially mitigate the radio scarcity problem using dynamic spec-

trum access [7]. The underutilisation of spectrum is due to the extremely low spectrum

utilization in some localized temporal and geographical spectrum bands. Spectral op-

portunities have to be detected without any assistance from primary users. The primary

users do not have any constraints to share or change the operating parameters for sharing

spectrum with cognitive radio networks [8].

A CR system consists of the following entities:

1. Primary User: The users who have higher priority or legacy rights on the usage

of a specific part of the spectrum are defined as primary users [6].

2. Secondary User: The unlicensed users, who transmit and receive signals over

the licensed spectra or portions of it when primary users are inactive are called

secondary users [6].

3. Spectral hole: A band of frequencies assigned to a primary user, which is unused

at a particular time and at a specific geographic location is called a spectrum

hole [3].
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The spectral holes are classified into two types: (i) temporal and (ii) spatial spectral

holes. A temporal spectral hole appears when a primary user is not transmitting for a

certain period of time. When the primary users transmission are confined within an area

spatial spectral holes appears and the secondary users can use the spectrum outside that

area [9].

The four major functions of cognitive radio are [10]:

1. Spectrum sensing: The process of identification of spectrum holes by efficiently

detecting the primary user and allocating the same with other users without harm-

ful interferences is spectrum sensing. In general spectrum sensing techniques are

classified into three categories [10]

(a) Transmitter detection

(b) Cooperative detection

(c) Interference based detection

Transmitter detection identifies whether the signal from a primary transmitter is

locally present in a certain spectrum. There are three different approaches for

transmitter detection such as matched filter detection, energy detection, and cy-

clostationary detection [11]. Different spectrum sensing techniques are discussed

in detail in Section 2.1. In cooperative detection method, information from mul-

tiple users are incorporated for a primary user detection taking the advantages of

the spatial diversity to improve the reliability of spectrum sensing.

Interference based detection is performed based on the transmitter-centric ap-

proach. The transmitter radiated power, out-of-band emission and location of in-

dividual transmitters are regulated in this approach. FCC has introduced a model

called as interference temperature model to measure the interference [12]. De-

pending on the increase in interference temperature model the interfering signals

can be identified. The secondary users can determine the vacant spectrum from

the interference temperature model.

2. Spectrum management: Cognitive radio captures the best available spectrum

to meet user communication requirements. The best spectrum band to meet the

QoS requirements over the available spectrum bands is decided by cognitive ra-

dio. The spectrum management can be further classified as spectrum analysis and
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spectrum detection. The challenges in spectrum management include decision

model, multiple spectrum band decision, and spectrum decision over heteroge-

neous spectrum bands.

3. Spectrum mobility: The process where a cognitive radio user can exchange its

frequency of operation is the spectrum mobility. This allows the cognitive radio

user to dynamically use the spectrum by allowing the radio terminals to operate

in the best available frequency band. Therefore, seamless communication re-

quirements are maintained during the transition of one spectrum to another. The

challenges in spectrum mobility include spectrum handoff and spectrum mobility

among multiple users

4. Spectrum sharing: The sharing of spectrum provides a fair spectrum scheduling

method among existing next generation users. Spectrum sharing can be divided

into two types: (i) open spectrum sharing and (ii) licensed spectrum sharing [10].

All the secondary users have equal rights to access the channel in open spectrum

sharing. The licensed spectrum sharing follows a hierarchical spectrum access

model. The hierarchical spectrum access model can be further divided into spec-

trum underlay and spectrum overlay. The secondary users are allowed to transmit

simultaneously when the primary users are transmitting in a spectrum underlay

system. However, the secondary users need to be constrained to avoid interfer-

ence with primary users. In spectrum overlay system the secondary users can

transmit only when primary users are not transmitting [13].

Cognitive radios have two main features which distinguish them from the conven-

tional radio devices, they are cognitive capability and reconfigurability [10].

The cognitive ability allows a CR system to sense and capture the information from

the surrounding radio environment. These features allows a cognitive user to be aware

of different parameters such as transmitted waveform, Radio Frequency (RF) spectrum,

and geographical information. The gathered information are analyzed to identify any

unused spectrum at a specific time and location [14]. The interaction between CR and

radio environment is known as cognitive cycle. The cognitive ability of CR explained

through cognitive cycle is shown in Figure 1.1. A cognitive cycle consists of the fol-

lowing three components namely, spectrum sensing, spectrum analysis, and spectrum

decision [3].
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1. Spectrum sensing: In spectrum sensing, a cognitive radio observes the frequency

band and gathers necessary information regarding its surrounding radio environ-

ment. Based on the information captured, the cognitive radio is able to detect

spectrum holes.

2. Spectrum analysis: Once the spectrum holes are detected using spectrum sens-

ing, each of the spectrum band is characterized based on the local observation of

the cognitive radio as well as the statistical information of primary user network.

Moreover, characteristics of spectrum holes are also analyzed and estimated.

3. Spectrum decision: Depending on the spectrum analysis, the cognitive radio de-

termines the operating parameters such as the data rate, the transmission mode,

and the bandwidth available for transmission. The most appropriate spectrum

band is selected based on the spectrum band characterization and the user re-

quirements.

Radio Environment

Spectrum
Analysis

Spectrum
Sensing

Spectrum
Decision

RF
Stimuli

RF
Stimuli

Spectrum Hole
Information

RF Stimuli

Channel Capacity

Transmitted
Signal

Figure 1.1: Cognitive cycle [3]

As mentioned earlier, the second key feature of a cognitive radio that distinguishes it

from a traditional radio is its reconfigurability. The ability of a cognitive radio to intel-

ligently adapt to the radio environment by adjusting its operating parameters, according

to the sensed environmental variations, in order to achieve the optimal performance is
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referred to as reconfigurability. Cognitive wireless networks are capable of reconfig-

uring their infrastructure in order to adapt to the continuously changing environment.

The reconfiguration actions takes place in the PHY/MAC layers for the selection of

appropriate technology and spectrum for operation. Different transmission access tech-

nologies can be supported by its hardware design such that transmission and reception

are possible in a variety of frequencies [10], [15].

1.1.1 Application Scenarios of Cognitive Radio

Cognitive Radio finds application in many areas of communication. In disaster sce-

narios such as earth quake or hurricane the communication infrastructure might get

damaged. In such situations adhoc cognitive wireless communication becomes useful.

The applications of CR include defense, TV bands, and emergency networks [11]:

The portion of TV bands that are unused by licensed wireless services are referred

to as TV white spaces (TVWS). Large portions of the spectrum in the VHF/UHF bands

are available on a geographical basis due to the analog to digital switch over for higher

spectral efficiency in digital TV. The digital switch-over is intended to be carried out

in many countries around the world. For instance, FCC has proposed opportunistic ac-

cess to TV bands to access TV white spaces [16]. IEEE has formed a working group

(IEEE 802.22) to develop a cognitive radio standard with an air interface for oppor-

tunistic secondary access to the TV spectrum. The utilization of TVWS relies on the

ability of cognitive devices to successfully detect TVWS and allocate secondary users

without causing harmful interference to the licensed users of these bands [17]. When

the information regarding the primary user are available such as modulation the feature

detection can be performed to detect spectral holes. However, in most of the cases the

primary user information is unavailable and the energy detection technique is applied

for spectral analysis in TVWS.

CR techniques are useful in military application to identify wireless communication

services of enemies and protect their own wireless services. In disputed regions, the

adversary may send jamming signals to disturb the radio communication. In such sce-

narios, the CR can hands-off frequency over a wide range and use different frequency

band, thereby, avoiding the frequency band with jamming signal. CR can offer flexibil-
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ity which is vital in battle fields for high level of communication such as upgrade and

allow the radio to use a variety of different waveforms or signals. In addition, CRs are

capable of monitoring their own performances on a regular basis in order to deliver a

high quality of service. The operational environment is recognized in CR and adjusted

in such a way that high quality of service required for military radios are provided [18].

Military communications are also limited by radio spectrum scarcity due to the static

frequency assignment, where a large amount of spectrum remains idle. CR using dy-

namic spectrum access can alleviate spectrum congestion through efficient allocation

of bandwidth and flexible spectrum access. Therefore, CRs are capable of providing

military systems with adaptive, seamless, and secure communication [14], [19]. The

detection of spectral edges or spectral boundaries using CR are also useful for such

military radio applications [20].

CR networks are useful to enhance public safety and homeland security [14]. Under

unforseen circumstances such as accidents and natural calamities, there exists a need to

maintain reliable communication. Infrastructure of the current wireless systems are in-

adequate for these emergency situations. Therefore, emergency networks are required

to aid the search and rescue operations. CR can recognize spectrum availability and

reconfigure itself for efficient communication with dynamic spectrum selectivity and

reliable communication to minimize information delay [21]. In an unanticipated condi-

tion, the public networks may get overloaded due to specific group of users. To alleviate

the spectrum shortage, dynamic access of free spectrum is considered to be a feasible

solution using CR [22]. Further, CR can facilitate interoperability between different

communication systems. In order to accommodate the requirements and conditions of

other networks, the CR devices can support multiple service types, such as voice, data,

and video.

1.2 Motivation and Objectives

Wireless communication has grown rapidly with several wireless applications and hence

there exists a scarcity of spectrum. To accommodate new wireless technologies, dy-

namic spectrum access techniques are essential. CR systems can intelligently monitor

the radio spectrum to detect spectral holes and allocate the free spectrum to secondary
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users without causing any harmful interference to the primary users. Significant amount

of work has been done in narrowband sensing with reconfigurable and low complexity

spectrum sensing techniques.

The narrowband spectrum sensing makes a binary decision and is unable to identify

spectral holes within the available spectrum. Therefore, spectral opportunities within

a wideband spectrum has to be identified by mutiband spectrum sensing. Multiband

spectrum sensing has gained significance in CR due to its promising enhancement in

cognitive radio networks due to simultaneous access of secondary users. Moreover,

this improves the network throughput and reduces interference with primary user as

secondary users can seamlessly handsoff with other users. Further research is required

towards realizing multiband spectrum access.

When narrowband users are present in a wideband spectrum, the precision of spec-

tral detection depends on the number of subbands (granularity) used for spectrum sens-

ing. This implies that the computational complexity gets increased if finer granularity

subbands are chosen. Therefore, there exist a need to propose different spectrum sens-

ing algorithms with lower computational complexity and latency. An in depth research

is being carried out to address these two issues. Detection accuracy also plays an im-

portant role in efficient utilization of the spectrum (unused spectrum holes). There is a

need for precise and faster spectrum sensing algorithms for efficient spectrum sensing

and real time spectrum reallocation schemes for the unused spectrum.

Commercial CR applications require identification of the spectral holes to oppor-

tunistically exploit the available spectrum bands. Since the commercial spectrum bands

are predefined, identification of the spectral holes is sufficient to allocate secondary

users in the vacant frequency bands. However, in multi-channel military wireless com-

munication, there is a need to identify the center frequency and the spectral edges of

the primary users for fractional bandwidth utilization. Methods to estimate the center

frequency and spectral edges are limited in literature. Accurate detection of narrowband

users in wideband spectrum is also needed for fractional bandwidth utilization. There-

fore, techniques to detect spectral information such as center frequency and spectral

edges need to be investigated. Similarly, significant research has been done to detect

the spectral holes. However the spectral utilization is improved only when the detected

spectral holes are reallocated to secondary users. Spectrum reallocation techniques also
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need to be analyzed for efficient utilization of detected spectral holes.

The main objective of the thesis is to address the problem of wideband spectrum

sensing using filter bank techniques in CR. To overcome the computational complex-

ity of detection with finer spectral resolutions, a multistage filter bank techniques are

needed. Different filter bank techniques are to be analyzed for wideband spectrum sens-

ing for narrowband users and multiple users with different bandwidth. Therefore proper

design of prototype filters are required to enhance the overall filter bank performance.

There is a need to address the center frequency detection and estimation of spectral

edges/boundaries of both single and multiple users in a wideband spectrum sensing us-

ing filter banks. In addition, we need to address the reallocation of secondary users for

efficient utilization of unused spectrum (spectrum hole).

In this thesis, we focus on sensing Wireless Microphone (WM) in TV channel. FCC

has permitted the unlicensed wireless devices to utilize the vacant bands (white spaces)

in TV spectrum [23]. IEEE 802.22 wireless standard is considered to apply cognitive

radio technology to utilize the white spaces in TV spectrum. WMs have narrowbands of

less than 200 kHz and appear in wideband TV (6 MHz) spectrum. Filter bank techniques

are applied for the detection of WMs in such wideband spectrum. The detection of

multiple users in wide band spectrum with center frequency and spectral edge detection

is also addressed using filter banks

1.3 Contributions of Thesis

The contribution of the thesis is in the field of wideband spectrum sensing and non-

uniform bandwidth allocation using filter bank techniques. We summarize the contri-

bution of the thesis as follows:

1. The filter banks are used for wide band spectrum sensing in CR. The perfor-

mance of spectrum estimation is characterized by frequency resolution, spectrum

leakage, and subband attenuation. The three parameters can be regulated using

proper design of prototype filters, since the overall performance of the filter bank

depends on the design of prototype filter. Considering frequency resolution, spec-

trum leakage, and subband attenuation, a systematic and self controlled prototype
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filter is designed iteratively for complex modulated filter banks. The primary goal

of the design of prototype filters is to enhance the performance, i.e., minimizing

amplitude distortion and aliasing error. In order to achieve the goal, an objective

function is chosen to approximate 3 dB cut-off frequency, very close to
π

2M
, by

varying the step size, which is a function of transition width.

2. Cosine modulated filter banks (CMFB) can provide higher bandwidth efficiency

and lower sidelobes desirable for spectrum sensing. Moreover, cosine modulated

filter banks can be designed by modulating a single prototype filter. The detection

performance with varying granularity (number of subbands) bands using CMFB

was analyzed. The detection performance is found to be improved with finer gran-

ularity bands at the cost of computational complexity as the number of subbands

in the filter banks was increased. Therefore, multistage cosine modulated fil-

ter banks from coarser to finer resolution for reducing computational complexity

were investigated. Two thresholds are calculated depending on different proba-

bility of false alarm. Only the subbands with energy between the two thresholds

are sensed further with finer resolution rather than the entire bandwidth.

3. Polyphase filter banks have computationally efficient filter bank structure. In or-

der to reduce the computational complexity, multistage polyphase filter banks

were implemented for spectrum sensing in widebands. The proposed method al-

lows to detect the presence of single user and estimate the center frequency. As

narrowband users were considered, the number of detected subbands was found

to be atmost two. Therefore, the energy distribution in the subbands was modeled

as a trapezoid and the center frequency was calculated using the centroid method.

The novelty of the proposed method is the estimation of center frequency with

higher precision and reduced computational complexity. In addition, the method

allows to detect Wireless Microphone (WM) in the presence of signal which fol-

lows IEEE 802.22 Wireless Regional Area Network (WRAN) standard within

TV channels. In the first stage, the presence of WM along with the estimation

of center frequency can be performed, in case the WM lies partly in one subband

and partly in the adjacent subband. However, if the WM appears anywhere ex-

clusively within a single subband, the detection process can be completed in the

second stage without ambiguity. A mathematical expression for calculating the

center frequency of WM from the subband energy (power) using centroid method
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was derived and presented.

4. Multistage polyphase filter banks were implemented for the detection and esti-

mation of spectrum edge for multiple users in a wideband spectrum. The spec-

tral edges were estimated from the center frequency and detected subband from

energy detection at the output of each subband. Since multiple users are con-

sidered, primary users may occupy more than two subbands. In such cases, a

novel method based on center of mass was proposed to estimate the center fre-

quency and spectral edges of multiple users with higher precision and reduced

computational complexity. The mathematical relation for the calculation of cen-

ter frequency and estimation of spectral edges was also established. The rationale

behind the method is that the, mass is related to energy and and distance is related

to frequency.

5. Non-uniform frequency partitioning is required to better exploit the signal char-

acteristic in applications such as digital channelizer in Software Defined Radio

(SDR), digital audio industry, biomedical signal processing, subband adaptive fil-

tering, and communication. Non-uniform bandwidth allocation using filter bank

techniques with single and multiple prototype filter approaches was designed and

analyzed using channel combiner approach. The non-uniform filter banks were

implemented from uniform cosine modulated filter banks with proper design of

prototype filters.

6. Upon detecting the spectral holes, secondary users needs to be allocated to the

identified spectral holes for efficient spectral utilization. A rate request sequenced

bit loading secondary user reallocation algorithm for Discrete Multi Tone (DMT)

systems in CR was proposed.

1.4 Structure of Thesis

The remaining of this dissertation is organized as follows: Chapter 2 provides an ex-

haustive literature survey of different spectrum sensing methods. In addition, different

types of wideband spectrum sensing methods are discussed with an emphasis on filter

bank based techniques relevant to the scope of this thesis.
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Chapter 3 proposes an iterative prototype filter design for filter banks satisfying near

perfect reconstruction conditions. The design issues of different prototype filters are

also discussed. The design conditions and significance of prototype filters in complex

modulated filter banks are briefly explained. Further, the simulation results are validated

through comparison with existing methods.

Chapter 4 explores cosine modulated filter banks designed using the proposed pro-

totype filter for wideband spectrum sensing. The effects of varying granularity bands

were analyzed in wideband spectrum sensing. From the analysis, it is inferred that the

probability of detection improved when the number of subbands is increased, which

increases the computational complexity. In order to reduce computational complexity,

we investigate the scope of multistage filter banks.

Chapter 5 discusses wideband spectrum sensing using multistage polyphase filter

banks for single as well as multiple user detection. Issues related to the estimation of

center frequency and spectral edges of primary users for fractional bandwidth utilization

is examined. Two methods based on center of mass and centroid are proposed for the

detection of single and multiple user. In cases where only two subbands were detected

by a primary user, a centroid method was applied for estimation of center frequency.

When more than two subbands were detected, the idea of center of mass method is

used for estimation of center frequency. In multiuser detection the spectral edges are

also estimated from the center frequency. Multistage polyphase filter banks are used to

reduce the computational complexity. The performance of the proposed spectrum sens-

ing method was analyzed with different simulation environments. Simulations include

detection of wireless microphones in TV white space and detection of spectral holes in

a wideband comprising of different standards such as Blutooth, Zigbee, and WCDMA.

Chapter 6 discusses non-uniform bandwidth allocation techniques using cosine mod-

ulated filter banks. A single prototype approach and multiple prototype approach is de-

tailed for the design of non-uniform filter banks from uniform cosine modulated filter

banks. A comparison is done between both methods in terms of distortions introduced

in the filter bank design. The procedure for the design of non-uniform filter bank using

the single and multiple prototype approaches are explained in detail.

Chapter 7 addresses the issue of allocating secondary users to the identified spectral

holes using DMT systems. The bit loading algorithm was used to determine the maxi-
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mum number of bits that can be allocated to each channel. An analysis was presented

between random allocation along with sequenced and pooled rate requests for efficient

spectrum utilization.

Chapter 8 summarizes the thesis and draws the conclusions with possibilities for

future research. We conclude that filter banks can be useful for wideband spectrum

sensing in cognitive radio applications. Various areas of research using filter bank in

cognitive radio are also presented. The need for further research in filter bank based

spectrum sensing for adaptive and co-operative spectrum sensing is discussed.
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CHAPTER 2

Literature Survey on Spectrum Sensing

The emergence of new wireless devices and applications has increased the commu-

nication requirements and hence there is a scarcity of spectrum. The available radio

spectrum is used inefficiently due to the fixed spectrum allocation policy as each wire-

less service is assigned spectrum band to operate in certain frequency bands. Since

most of the spectrum are licensed, it becomes difficult to find vacant frequency bands

for new wireless services or enhance existing services. To accommodate new wire-

less technologies, dynamic spectrum access techniques are required. The underutilized

spectrum bands due to fixed frequency band allocation policy can be efficiently utilized

by spectrum sensing techniques using Cognitive Radio (CR).

In this chapter, a literature survey of different spectrum sensing methods is provided

in Section 2.1. The related works and classification of wideband spectrum sensing into

Nyquist and sub-Nyquist spectrum sensing is discussed in Section 2.2. The different

filter bank spectrum sensing methods are discussed in Section 2.3.

2.1 Spectrum Sensing Methods

Spectrum sensing is an inevitable part of cognitive radio systems that allows us to use

the available spectrum efficiently. The different spectrum sensing methods provide the

key to monitor and reuse the spectrum without interference. One of the major task of CR

is to obtain underutilized and non-interfered spectrum for allocation of secondary users.

The channel conditions keep changing due to the noise uncertainity, multipath fading,

and shadowing effects in wireless channels. Therefore, there exists a need for moni-

toring and co-operation among secondary users for efficient spectrum utilization. The

usefulness of the spectrum sensing techniques are based on the sensing performance

and complexity in implementation.

Spectrum sensing techniques can be classified as non-cooperative and cooperative

methods. The cognitive radio acts on its own in non-cooperative spectrum sensing,



while in cooperative spectrum sensing, multiple CRs work together, which results in an

increase of accuracy in spectrum detection and spectrum awareness. Cooperative spec-

trum sensing is further classified into three categories depending on how cooperating

CR users share the sensing data: (i) centralized [24], [25], (ii) distributed [26], and (iii)

relay assisted [27], [28]. In mutipath fading and shadowing environment, cooperative

spectrum sensing is considered to be an effective approach. The common spectrum

sensing techniques are Energy Detection (ED), Matched Filter (MF), and Cyclosta-

tionary Feature Detection (CFD), which are discussed in subsequent sections. Apart

from common spectrum sensing methods, other techniques existing in literature in-

clude Eigenvalue based methods, co-variance matrix method, and wavelet based meth-

ods [29], [30]. After spectrum sensing, the secondary users are allowed to access the

spectrum holes. In order to access the spectrum holes effectively, spectrum sharing

and spectrum allocation techniques are important [11]. The common spectrum sensing

methods are briefly explained in the following sections:

2.1.1 Energy Detection

Energy detection method is further classified as traditional energy detection and sub-

band based energy detection.

Traditional energy detection is the most widely used method of spectrum sensing

due to its low computational complexity [31], [32]. The receiver does not require any

prior knowledge of the primary user signal as energy detection is a non-coherent method

of detection. The primary user is detected by measuring the energy and comparing it

with a predetermined threshold. The threshold λ is computed using the assumed noise

variance σ2
w and probability of false alarm Pfa, which generally depends on the channel

characteristics. The problem of detecting the presence and absence of signal in spectrum

sensing is typically formulated by the following binary hypothesis test,

H0 : y[n] = w[n]

H1 : y[n] = x[n] + w[n] (2.1)

where, y[n] represents the received signal, x[n] is the transmitted wireless signal, and

w[n] is the zero mean complex circularly symmetric Additive White Gaussian Noise
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(AWGN). Further, x[n] = s[n]
�

h[n] where s[n] denotes the primary user signal and

h[n] the channel impulse response [33]. Hypothesis H0 represents the absence of a

primary user signal and consist only the noise w[n]. On the other hand, hypothesis H1

represents presence of primary user signal x[n] along with noise w[n]. The test statistic

is computed as the energy of the received signal,

T (y) =
1

Ns

Ns−1�

n=0

|y[n]|2, (2.2)

where Ns is the total number of samples sensed at the receiver. The test statistic fol-

lows a chi-square distribution. However, in practical cases, the test statistic can be

approximated to a Gaussian distribution for large number of samples according to the

Central Limit Theorem (CLT) [34]. According to CLT independent and identically dis-

tributed (i.i.d.) random variables with finite mean and variances approaches a normal

distribution when Ns is large enough. Therefore, the distribution of test statistics can

be accurately approximated with a normal distribution for sufficiently large number of

samples [34]. The above hypothesis can be written as in [35], [36], [37],

T (y) ∼ N (σ2
w,

1

Ns

σ4
v); for hypothesis H0

T (y) ∼ N (σ2
w + σ2

x,
1

Ns

(σ2
v + σ2

x)
2); for hypothesis H1,

where, σ2
x is the signal variance and σ2

w is the noise variance. The presence of an ac-

tive signal is determined by comparing the energy (test statistics) with a predetermined

threshold. The threshold λ is calculated using the knowledge of probability of false

alarm Pfa and the assumed noise variance σ2
w of the received signal. The probability of

false alarm Pfa is given as

Pfa = Q

�
λ− σ2

w�
1/Nsσ2

w

�
(2.3)

and the probability of detection Pd can be expressed as

Pd = Q

�
λ− (σ2

s + σ2
w)�

1/Ns(σ2
s + σ2

w)

�
(2.4)
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The threshold λ is determined from Equation 2.3 as

λ = (Q−1(Pfa)
�

1/Ns + 1)σ2
w. (2.5)

The minimum number of samples required for spectrum sensing is obtained using Equa-

tion 2.3 and Equation 2.4 [38],

Nmin = 2[Q−1(Pfa)−Q−1(Pd)(1 + SNR)]2SNR−2. (2.6)

Subband based energy detection are used when the available wideband is split into

non-overlapping subbands and the energy is computed as the test statistic at the output

of each subband. Filter bank based methods are robust and efficient for multiband

spectrum sensing where energy detection is performed at the subband level at the output

of the FFT or Analysis Filter Bank (AFB). The wideband signal is split into narrow

signal bands using FFT or AFB. Similar to traditional energy detection the subband

signal can be expressed as follows:

H0 : yk[m] = wk[m]

H1 : yk[m] = xk[m] + wk[m] (2.7)

where, yk[m] is the received signal at the kth subband (k = 1, 2, . . . ,M), M is the

total number of subbands with xk[m] = Hksk[m], Hk represents the complex gain of

subband, sk[m] is the input signal, and wk[m] is the noise samples at the subband. Sim-

ilar to traditional energy detection, noise follows the distribution wk[m] ∼ N (0, σ2
w,k)

and signal xk[m] ∼ N (0, σ2
x,k) with σ2

w,k being the noise variance and σ2
x,k, the signal

variance [33]. If σ2
w is the noise variance of the wideband channel, the subband noise

variance needs to be
σ2
w

M
. The energy at the output of individual subbands is considered

as the test statistic

Yk =
1

L

L−1�

m=0

yk[m]2, (2.8)

where L =

�
Ns

M

�
is the number of samples in each subband with M number of sub-

bands for sensing and Ns total number of samples received. The presence and absence
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of a primary user signal is written in terms of the following two hypotheses [39]:

yk(m) ∼ N
�
σ2
w,k,

1

L
σ4
w,k

�
; for hypothesis H0

yk(m) ∼ N
�
σ2
w,k + σ2

x,k,
1

L

�
σ2
w,k + σ2

x,k

�2
�
; for hypothesis H1

The number of samples for each stage need to be large enough to perform energy de-

tection even in low SNR. The minimum number of samples required in each stage can

be calculated using the relation in Equation 2.6.

2.1.2 Matched Filter

Matched Filter (MF) is a non-blind spectrum sensing technique with coherent detection.

Prior knowledge of the primary user signal are required in MF. The known primary user

information is correlated with the received signal to detect the presence of primary user

signal and maximize the Signal-to-Noise Ratio (SNR). The matched filter requires short

sensing time and achieves good detection performance with low probability of missed

detection and false alarm [40]. The drawback of this method is that it requires knowl-

edge about primary user signal such as operating frequency, bandwidth, modulation

type, and packet format. Therefore, the technique is not applicable when the informa-

tions regarding the primary users are unknown [11], [41].

2.1.3 Cyclostationary Feature Detection

Cyclostationary Feature Detection (CFD) technique exploits the cyclostationary fea-

tures of the signal for spectrum sensing. A signal is considered to be cyclostationary

if its statistical properties vary cyclically with time. When the modulated signals are

combined with sinusoidal signals and pulse trains, they exhibit periodicity [42]. The

cyclostationary features are exploited from these periodicity using signal statistics such

as mean and auto-correlation [43]. The Cyclic Auto-correlation Function (CAF) of the

received signal x(t) can be expressed as

R(α)
x (τ) = E[x(t)x∗(t− τ) exp(−j2πατ)], (2.9)
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where, α is the cyclic frequency, E[.] is the expectation operation, and ∗ denotes com-

plex conjugation. Using Fourier series expansion, CAF can be expressed as Cyclic

Spectral Density (CSD) [11].

S(f,α) = Σ∞
τ=−∞R(α)

x (τ) exp(−j2πfτ). (2.10)

When the cyclic frequency α and fundamental frequencies become equal, CSD exhibits

peaks. Therefore, under hypothesis H0, the noise alone is present and the CSD function

does not exhibit peaks as the noise is non-stationary. On the other hand, in hypothesis

H1, peaks occur due to the signal and presence of noise. Therefore, CFD distinguishes

the noise from the PU signal and can also be used for the detection of weak signal in case

of very low SNR. CFD does not require prior knowledge of primary user waveform.

The performance of CFD can be improved at a given SNR by increasing the number of

samples, however at the cost of sensing time. The limitation of cyclostationary feature

detection is that it requires longer processing time compared to the energy detection and

matched filter detection techniques [44].

2.1.4 Eigenvalue Based Methods

Eigenvalue method overcomes the noise uncertainty problem and perform spectrum

sensing in case the signals to be detected are highly correlated. The method does not

require prior knowledge of the primary user signal such as channel, and noise variance.

However, the computation complexity of this method is high. Eigenvalue methods are

useful when the signals has to be detected in low SNR with fading and time dispersion.

The Eigenvalues are determined from the covariance matrix of the received signal. The

detection threshold is determined from random matrix theory where the ratio between

the maximum Eigenvalue and minimum Eigenvalue is quantized. Since the Eigenvalue

method is based on statistical covariance, the detection is robust to noise uncertainty

and does not require a priori information of signal, channel, and noise power. Different

Eigenvalue based approaches such as Maximum Minimum Eigenvalue (MME) method

and Energy Minimum Eigenvalue (EME) method are presented in literature [29], [45].

To reduce the computational complexity, power iteration algorithms are proposed with

efficient eigenvalue computation [46], [47], [48].
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2.1.5 Wavelet Based Methods

Tian and Giannakis proposed a wavelet based spectrum sensing algorithm [49]. The

power spectral density (PSD) of the wideband spectrum was modeled as a train of con-

secutive frequency subbands, where the PSD is smooth within each subband. However,

the PSD exhibits discontinuities and irregularities on the border of two neighboring

subbands. Wavelet transforms are capable of detecting these singularities in the sig-

nal which allows to identify the discontinuities occurring between users and thereby,

detect the spectral edges from PSD [50],[30]. Wavelets provide procedures to analyze

and characterize such singularities from the wavelet transform multiscale information.

Wavelets are also useful in providing an effective radio sensing architecture to detect

spectrum holes in signal spectrum. To improve the performance of wavelet in wideband

spectrum sensing, compressive sensing techniques are employed along with the wavelet

transforms [51].

2.1.6 Multistage Spectrum Sensing

A variety of multistage spectrum sensing algorithms exist in literature. Multistage spec-

trum sensing was introduced in IEEE 802.22 [52]. The first multistage algorithm was

designed in [53] with energy detection followed by feature detection. A two stage spec-

trum sensing for dynamic spectrum access in TV applications was proposed in [54]

with a coarse resolution sensing followed by a fine resolution sensing. A procedure

of multistage orthogonal projection similar to multistage Wiener filter approach is used

for wideband spectrum sensing in [55]. Combination of energy detection and maximum

minimum eigenvalue based detection is applied for spectrum sensing in [56]. Two stage

spectrum sensing was used to maximize the probability of detection given the constraint

on the probability of false alarm. A two stage spectrum sensing with energy detection

followed by covaiance absolute value detector is presented in [57]. A few multistage

filter bank techniques are reported in literature. A multistage coefficient decimation fil-

ter bank technique with low complexity is proposed in [58]. For detection of wireless

microphones in TV band a multistage DFT filter bank method is proposed in [59]. A

tree-structured multistage DFT filter bank based spectrum sensor for estimation of radio

channel edge frequencies in military wideband receivers was investigated in [60]. Most
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of the multistage spectrum sensing techniques follow sensing from a coarser to finer

spectral resolution.

2.2 Wideband Spectrum Sensing

An important challenge in CRs is the sensing of multiple narrowband channels over a

wideband spectrum. Most of the existing spectrum sensing algorithms discussed above

are suitable for narrowband spectrum sensing, which exploits the spectral opportuni-

ties over narrow frequency range. To achieve higher throughput, CR needs to exploit

spectral opportunities over a wide range of frequencies, from hundreds of megahertz

to several gigahertz [8]. In cases where spectral opportunities are to be identified in

Ultra-High-Frequency (UHF) TV band (between 300 MHz to 3 GHz), wideband spec-

trum sensing techniques are to be employed. Narrowband spectrum sensing techniques

cannot be applied in this scenario as they can make only binary decision on the whole

spectrum and the spectral opportunities within the wideband cannot be identified. The

benefits of multichannel/wideband spectrum sensing for CR networks are discussed in

detail in [61]. In order to maximize the secondary user throughput capacity and re-

duce interference of primary users, multiband joint detection techniques are proposed

in [62], [63]. The multiband spectrum sensing has a few challenges due to the following

reasons as discussed in [64]

1. The available wideband for spectrum sensing may not be contiguous.

2. A small portion of bandwidth may be occupied by a wireless device and the entire

bandwidth may be considered unavailable. (For example, in IEEE 802.22 , wire-

less microphone occupies only 200 kHz of a 6 MHz TV channel and the entire

TV channel would be considered occupied).

3. If a portion of signal is in deep fade, the subbands may consider that portion as

a spectral hole. Therefore, if a secondary user is allocated to that portion of the

spectrum, interference would occur with the existing primary user.

The multiband spectrum sensing is categorized into serial based detectors, parallel

based detectors, and wideband based detectors. Serial sensing is simple to implement,
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however, the technique is slow and undesirable when the subbands are more. Parallel

sensing provides faster detection at the expense of RF components and complex signal

processing. The common multiband sensing techniques uses reconfigurable bandpass

filters, tunable oscillators, filter banks, wavelets, and blind sensing. A comparison be-

tween the different multiband spectrum sensing methods is provided in [64]. A detailed

review and comparison between the different spectrum sensing methods along with ad-

vantages, disadvantages, and challenges are also provided in [8]. The implementation

challenges in wideband spectrum sensing is summarized below:

1. Reduction in sampling rate to reduce power consumption

2. Development of practically feasible spectrum sensing models

3. Improvement in the robustness of spectrum sensing

4. Relaxation in the synchronization requirements

Further, wideband spectrum sensing techniques are broadly classified into two types,

1. Nyquist wideband SS

2. Sub-Nyquist wideband SS

In Nyquist wideband spectrum sensing, digital signals are sampled at or above the

Nyquist rate and in sub-Nyquist technique the signals are sampled below the Nyquist

rate. The wideband spectrum sensing techniques are briefly discussed Section 2.2.1 and

Section 2.2.2.

2.2.1 Nyquist Wideband Spectrum Sensing

Standard Analog-to-Digital Converters (ADC) and digital signal processing techniques

are used in Nyquist wideband spectrum sensing. After the received signals are sampled,

serial to parallel conversions are required for further processing of the signals. In filter

bank based techniques, Fast Fourirer Transform (FFT) is used to convert the signal to a

series of narrowband spectra. The spectral opportunities were identified by applying the

binary hypothesis test to the individual subbands. In most of the filter bank techniques,
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energy detection was chosen as the test statistic. The threshold for detection was jointly

chosen using optimization techniques. Some techniques reported in literature include

multiband joint detection algorithm for sensing multiple frequency bands, FFT based

filterbank techniques, and wavelet based methods [63], [65], [49]. In wavelet based

method, Power Spectral Density (PSD) is used to identify the spectral opportunities de-

pending on the discontinuities present in the border of two adjacent subbands. Wavelet

based methods are also useful in edge detection problem to find the spectral boundaries

of primary user signals as they can locate the singularities of the wideband PSD.

The signal sampling in wideband should follow Shannon’s theorem: the sampling

rate must be at least twice the maximum frequency present in the signal (Nyquist rate),

in order to avoid spectral aliasing. As standard ADC at or above Nyquist rate are re-

quired for sampling, this becomes unaffordable for next generation wireless networks.

Therefore, sampling of wideband signals presents significant challenges on designing

hardware that operate at sufficiently high rate and the design of high speed signal pro-

cessing algorithm. To overcome this limitation, tunable Local Oscillators (LO) or Band-

pass Filters (BPF) are utilized with superheterodyne technique that sweeps across the

frequency of interest. The LO mixes with the wideband signal and down convert the

spectrum to lower frequency. The down converted signals are bandpass filtered such

that narrowband spectrum sensing techniques can be applied. Techniques using tunable

LO are also limited as they are slow and inflexible [8]. The requirement of high sam-

pling rate and high speed signal processing algorithms are the limitations of Nyquist

wideband spectrum sensing. The implementation of hardware for high rate ADC with

high resolution and reasonable power consumption is also difficult. These problems can

be mitigated to some extent using filter bank techniques [65]. In case of filter banks, the

baseband can be directly estimated from a prototype filter and other bands are obtained

by modulating the prototype filter. The subbands in the filter bank are the correspond-

ing portion of the spectrum in the wideband signal down-converted to basesband and

lowpass filtered. Therefore, filter banks can capture the dynamic nature of wideband

spectrum by using low sampling rates. Unfortunately, filter banks require a large num-

ber of RF components due to the parallel structure [8]. The filter bank spectrum sensing

is discussed in detail in Section 2.3.
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2.2.2 Sub-Nyquist Wideband Spectrum Sensing

The sub-Nyquist approach overcome the limitations of Nyquist approach resulting from

high sampling rate and computation complexity [66]. In sub-Nyquist sensing, the wide-

band signal are acquired by using sampling rates lower than Nyquist rate. The sampled

signals are reconstructed from partial measurement in sub-Nyquist sampling. The spec-

tral opportunities of the wideband spectrum are detected using the reconstructed signal.

Two types of sub-Nyquist approaches are reported in literature: (i) compressive sensing

technique and (ii) multichannel sub-Nyquist wideband spectrum sensing. The sparse-

ness of sensing environment is exploited in sub-Nyguist rate sampling. The sub-Nyquist

wideband spectrum sensing is performed under the assumption that the sensing envi-

ronment has low percentage of spectrum occupancy by active radios. The limitation of

compressive sensing is the dependence of the technique on two principles, i.e., sparsity

of the signal and incoherence which pertains to sensing modality. A compressive sens-

ing technique is proposed for wideband spectrum by modeling the spectrum as sparse

with wavelet and PSD estimation [67]. A joint sparsity model along with compres-

sive sensing is proposed in [68]. For spectrum sensing with noise uncertainty, a cyclic

feature detection based compressive sensing was proposed in [69] and a distributed

compressive sensing for cooperative multihop cognitive radio networks was proposed

in [70]. Different multichannel sub-Nyquist wideband spectrum sensing using blind

spectrum sensing and non-uniform sampling are discussed in [71], [72].

2.3 Filter Bank Techniques for Spectrum Sensing

The concept of Filter bank was proposed for spectrum sensing initially by Farhang-

Boroujeny [65]. Filter banks are implemented by shifting a lowpass prototype filter.

The first subband is estimated using the prototype filter and other subbands are ob-

tained by modulating the prototype filter. The total bandwidth is split into narrow non-

overlapping subbands using multiple bandpass filters, i.e., filter banks. Multicarrier

techniques were also suggested for spectrum sensing, where OFDM was the first mul-

ticarrier technique proposed for CR [73], [74]. OFDM was considered as a suitable

candidate for CR as FFT can be used for spectral analysis and demodulator for OFDM

signal. However, the limitation of using the OFDM for CR application is the presence
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of large sidelobes in the response of the filters due to 13 dB attenuation of FFT, which

may lead to interference between different users because of the spectral leakage [75].

Moreover, OFDM techniques lack high spectral dynamic range and are not suitable for

detection of low power primary users. To overcome this issue, the rectangular pulse

shape in OFDM was replaced with a smooth edge pulse shape filters called filtered

OFDM. Filter Bank Multicarrier (FBMC) and filtered OFDM become alternate solu-

tions to overcome the above limitations. FBMC reduces the spectrum leakage compared

to cyclic prefixed OFDM systems and is capable of identifying multiple user with differ-

ent center frequencies and spectral gaps between users efficiently with flexibility [76].

Different FBMC schemes reported in literature include Staggered Modulated Multitone

(SMT), Filtered Multitone (FMT), and Cosine Modulated Multitone (CMT) [77]. A

comparison of filter bank multicarrier methods in cognitive radio systems is presented

in [78].

The spectrum efficiency can be increased by designing prototype filters with ac-

ceptable subband attenuation. Therefore, filter banks are considered to be an alternate

solution for wideband spectrum sensing. Moreover, the energy can be computed at the

output of subbands and compared with a predetermined threshold to determine the pres-

ence of primary users. To achieve high spectral dynamic range in filter banks, the length

of the prototype filter also needs to be adjusted. Multi-Taper Method (MTM) is shown

as a near optimal sensing method, even though its computational complexity is very

high [3], [79]. However, similar performance can be achieved with filter banks using

prolate filters with lower computational complexity [65]. Discrete Fourier Transform

(DFT) and modified DFT filter bank with root-Nyquist filter have also been exploited

for spectrum sensing in wideband cognitive radio [76].

Multistage filter bank techniques were proposed for the detection of center fre-

quency of primary users with low computational complexity and higher precision using

DFT based filter bank [80]. Polyphase DFT filter banks are applied for multichannel

spectrum sensing for opportunistic CR due to its efficient implementation [81]. FFT

and filter bank techniques have been used for sensing Wireless Local Area Networks

(WLAN) such as OFDM based on IEEE 802.11 system and Wireless Personal Area Net-

work (WPAN) with Bluetooth designated to operate on 2.4 GHz ISM band [82], [83].

Multi-resolution filter banks based on fast filter bank design with varying spectral bands

for spectrum sensing in military radio receivers were proposed in [20]. Tree structured
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DFT filter bank were proposed for estimating the center frequencies and spectral edges

of primary user signals [60]. Filter bank was proposed for the detection of wireless

microphones in IEEE 802.22 Wireless Regional Area Network (WRAN) and estima-

tion of center frequency [59]. Progressive Decimation Filter Bank technique (PDFB)

using variable sensing resolutions to detect different bandwidths are proposed in [84].

A theoretical framework for the analysis and design of filter bank based detectors for

spectrum sensing applications in cognitive radios are discussed in detail in [76].

2.3.1 Sensing Architecture Based on Filter Banks

Filter banks consist of an Analysis Filter Bank (AFB) and Synthesis Filter Bank (SFB).

Synthesis filter banks are sufficient to extract the signal components of each subband

from the wideband RF signals. The basic filter bank spectrum sensing is illustrated

in Figure 2.1 The RF module is followed by wideband ADC to sample the RF signal.

Different filter bank structures like Cosine Modulated Filter Bank (CMFB), DFT, and

Polyphase DFT can be considered. In case of complex modulated filter banks, the

complete filter bank structure can be realized using complex modulation of a single

prototype filter. A detailed discussion on the design of prototype filters is presented in

Chapter 3.

Filter
Bank

ADC
Anti

aliasing
Filter

RF
Module

ED
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...
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Figure 2.1: Sensing architecture based on filter banks

In general, multi-band sensing utilizes energy detection techniques. Different meth-

ods such as periodogram method, Multi-Taper Method (MTM), and filter bank meth-
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ods have investigated energy detection for spectrum sensing in literature. Farhang has

shown in [65] that DFT filter banks based on energy detection are more promising in

terms of accuracy if noise variance are known. Energy detection is the most common

method as it has low computational and implementational complexity. Energy (power)

is computed at the output of individual subbands and considered as the test statistic. The

presence and absence of the signal is detected by comparing the energy with a prede-

fined threshold as explained in Section 2.1.1. The threshold is a function of probability

of false alarm and noise variance of the channel.

Summary

In this chapter an exhaustive literature survey of spectrum sensing methods is provided.

The classification of wideband spectrum sensing methods is discussed with special em-

phasis on filter bank spectrum sensing in cognitive radios relevant to the scope of the

thesis. Chapter 3 discusses a prototype filter design for the filter bank implementation.
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CHAPTER 3

Protoype Filter Design for Filter Banks

The design of filter banks, transmultiplexers (TMUX) and Filter Bank Multicarriers

(FBMC) concentrate on the prototype filter design. Since the filter banks are generated

from the modulation of a single prototype filter. The design of prototype filter plays a

vital role in the overall performance of the filter bank structures. The distinctive feature

of FBMC is its ability to provide improved frequency selectivity using well shaped

prototype filters.

In this chapter we develop a prototype filter design using an iterative algorithm.

Section 3.1 provides a survey of existing prototype filter design schemes and its signif-

icance in designing filter banks, FBMC, and TMUX structures. The conditions to be

satisfied by the prototype filter for Near Perfect Reconstruction (NPR) in filter banks is

explained in Section 3.2. Different filter banks implemented using complex modulation

of a prototype filter is discussed in Section 3.3. Various errors that occur in filter banks

and possible ways of mitigating them using prototype filters are detailed in Section 3.4.

The proposed prototype filter design is explained in Section 3.5. The simulation results

and comparison with existing methods are discussed in Section 3.6.

3.1 Prototype Design Schemes

The multichannel filter banks can be implemented using cosine modulation, Fast Fourier

Transfor (FFT), Discrete Fourier Transform (DFT) or Modified DFT filter banks [1], [85].

The filter banks are implemented using complex modulation of a single prototype fil-

ter [86]. The analysis and synthesis subbands of the filter bank are simultaneously

generated by applying an appropriate modulation scheme to the linear phase Finite Im-

pulse Response (FIR) prototype filter. Current research aims at designing an optimal

lowpass prototype filter for filter bank implementation. The significance of prototype

filter design in the implementation of filter banks to improve the overall performance is

well proven.



Filter Bank Multicarriers (FBMC) derived from a prototype filter has attracted re-

cent attention due to its advantages over Orthogonal Frequency Division Multiplex-

ing (OFDM) [73]. FBMC can provide high subband attenuation and does not require

cyclic prefix as compared to OFDM. The OFDM is considered to have rectangular pro-

totype filters from the perspective of filter banks due to the IFFT/FFT blocks. Therefore,

the resulting subbands are not frequency selective and have only 13 dB attenuation.

Alternative techniques such as cosine modulated multitone (CMT), filtered multitone

(FMT), modified DFT (MDFT), and exponentially modulated filter banks (EMFB) are

used in multicarrier modulation. Filter bank based transmultiplexers with analysis and

synthesis filters derived from a prototype filter are also utilized in FBMC. The per-

formance parameters of an FBMC system such as stopband attenuation, intersymbol

interference (ISI), and interchannel interference (ICI) depend on the design of proto-

type filter. Therefore, the design of prototype filter is vital in the implementation of

filter banks structures. The dual of the filter banks are transmultiplexers and TMUX

forms the core system of FBMC.

In general, filter bank designs can be categorized into two types:

1. Perfect Reconstruction (PR)

2. Near Perfect Reconstruction (NPR) or Quadrature Mirror Filters (QMF)

Perfect reconstruction filters are alias free filters, where the output is a delayed ver-

sion of input. However, the implementation of PR filters are computationally complex

and for practical applications, NPR filters are adequate. The filter bank implementation

focuses on NPR as they provide improved alias suppression in the subbands by relaxing

PR constraint. As the same prototype filter is employed in the analysis and synthesis

banks, the NPR filters have polyphase matrices which are paraunitary and, hence, have

favorable numerical properties.

Extensive research has been carried out to find an optimal prototype filter for com-

plex modulated filter banks. The optimization techniques for prototype filter design are

categorized into threes types: (i) frequency sampling techniques, (ii) window based

techniques and (iii) direct optimization of filter coefficients [87]. Frequency sampling

techniques for prototype filter design have been proposed in [88] and [89]. The samples

in the transition band are optimized using frequency sampling in [90]. Window based
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prototype filter designs for transmultiplexers are proposed in [91].

Creusere and Mitra [92] have designed a prototype filter by optimizing the pass-

band frequency with fixed filter length and relative error weighting. A Kaiser window

approach was used by Lin and Vaidyanathan in [93] to optimize the cut-off frequency

and different window based techniques with iterative algorithms are used in [94]. An

investigation on perfect reconstruction filters [95] and Inter Symbol Interference (ISI)

free filter banks are presented in [87], [96]. Linear optimization techniques are used

in [97], and [98] to optimize the 3 dB cut-off frequency with least square method.

However, in most of the existing methods, a fixed filter order and an arbitrary step size

are considered for the design of prototype filters.

Other approaches include second order cone programming [99], [100] and filter

designs based on gradient information [101], [102]. A prototype filter design with opti-

mization to minimize stopband energy with NPR constraint for filter bank multicarrier

modulation is proposed in [103]. The direct optimization of filter coefficients are often

nonconvex and are highly nonlinear. The filter design is sensitive to the initial values

and has high computational complexity. The global optimal is also not guaranteed as

the solution can be trapped in local minimum [87], [104]. Prototype filters have been

designed for cognitive radio systems through direct optimization of filter coefficients

in [104]. A near perfect reconstruction filter bank with prototype filter having an ap-

proximate cosine-rolloff at the transition band with convex minimax optimization is

solved using second order cone programming in [105].

3.2 Near Perfect Reconstruction

Perfect Reconstruction (PR) filter banks satisfy the condition that the reconstructed sig-

nal x̂(n) need to be a scaled and delayed version of the input x(n).

x̂(n) = cx(n− n0) (3.1)

The reconstructed signal can be represented using z-transform as

X̂(z) = T (z)X(z) (3.2)
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The PR condition indicates that aliasing is canceled and distortion function T (z)

is forced to be a delay. The optimization of the prototype coefficients for perfect re-

construction is highly nonlinear. In case of NPR or approximate reconstruction, the

analysis and synthesis filters Hk(z) and Fk(z) respectively, are chosen in such a way

that the adjacent subband aliasing gets cancelled. The distortion function T (z) is ap-

proximately a delay. The approximate systems mentioned are called pseudo Quadrature

Mirror Filter (QMF) banks and are acceptable for practical applications. For near per-

fect reconstruction, the lowpass prototype filters have to satisfy the following conditions

[92]:

1. Prototype filter has to be band-limited

��H(ejω)
�� ≈ 0, |ω| > π

M
(3.3)

2. Frequency response of prototype filter has to be pairwise power complementary

��H(ejω)
��2 +

��H(ej(
π
M

−ω))
��2 ≈ 1, 0 ≤ ω ≤ π

M
(3.4)

3.3 Filter Bank Using Prototype Filters

In order to overcome the limitation of having M different transfer functions, which

provide perfect reconstruction, the complex modulated filter banks are realized from

a single lowpass prototype filter. Filter bank based on DFT, cosine modulation, DFT

based polyphase filter banks, and modified DFT are examples of M analysis filters

derived from a single prototype filter. The complex modulated filter banks generally

use the basic pseudo quadrature mirror filter principle. The filter banks are realized

by equidistant frequency shifts of a prototype filter. The transfer function of adjacent

subband filters have to be power complementary as in Equation 3.4. The advantages of

such filters are twofold:

1. The cost of implementing an M analysis filter bank include the cost of one proto-

type filter and modulation overhead. The cost of an M synthesis filter is similar

to an analysis filter.
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2. Optimization of prototype filter alone is required for the implementation of filter

bank structure.

The prototype filters should have sufficient stopband attenuation to suppress the

aliasing components. The realization of DFT, cosine modulation, and DFT based polyphase

filter banks are discussed in the following subsections.

3.3.1 DFT Filter Banks

The M analysis filters Hk(z), k = 0, . . . ,M − 1, are realized using frequency shifting

the transfer function H(z) of the prototype filter h(n). The impulse response of the

prototype filter is multiplied by a factor ejnΩ0 . Further, the frequency response of the

prototype filter H(ejΩ) is shifted right by Ω0 as H(ej(Ω−Ω0)). The M analysis filter

response can be expressed as in [86]

Hi(e
jΩ) = H(e(jΩ−2πi/M)), i = 1, 2, . . . ,M − 1. (3.5)

In case, WM = e−j2π/M , the Z-transform of the analysis filters can be written as

Hi(z) = H(zW i
M) (3.6)

The frequency response of the prototype filter and the shifted versions of the proto-

type filter for the generation of subbandss filter are shown in Figure 3.1 and 3.2 respec-

tively.

0 2π Ω

H

π
M

Figure 3.1: Frequency response of prototype filter
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. . .
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Hi

Figure 3.2: Frequency shifted versions of the prototype filter for analysis filter

banks

3.3.2 Cosine Modulated Filter Bank

The Cosine Modulated Filter Banks (CMFB) are also pseudo QMF and satisfy the NPR

conditions. Cosine modulated filters can easily maintain maximally decimated NPR

conditions. Among the NPR FIR filter banks, CMFB is considered to be simple both

in terms of design and implementation complexities. Initially, the prototype filter is

designed satisfying the power complementary and band-limiting conditions specified in

Equation 3.3 and 3.4. In an M channel CMFB, the impulse responses of the analysis and

synthesis filters are hk(n) and fk(n) respectively. The filter banks are cosine modulated

versions of the prototype filter h(n) and are given by the Equation 3.7 and 3.8 for

0 ≤ n ≤ N − 1 and 0 ≤ k ≤ M − 1. The closed form expressions for analysis and

synthesis filters are given in [1] as

hk(n) = 2h(n)cos

�
π

M

�
k +

1

2

��
n− N − 1

2

�
+ (−1)k

π

4

�
(3.7)

fk(n) = 2h(n)cos

�
π

M

�
k +

1

2

��
n− N − 1

2

�
− (−1)k

π

4

�
(3.8)

The entire design of the cosine modulated filter bank is reduced to proper design

of prototype filter. Therefore, the design of filter bank requires to optimize the pro-

totype filter coefficients to reduce the complexity and computational overhead. The

prototype filter has to be lowpass with linear phase and satisfy the conditions stated in

Equation 3.3 and Equation 3.4 for near perfect reconstruction. The aliasing error can be

cancelled when the condition in Equation 3.3 is satisfied. In case Equation 3.4 is satis-

fied the amplitude distortions are eliminated. By designing prototype filters with linear

phase FIR the phase distortion can be eliminated completely. Therefore, the common
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errors that occur in filter banks such as aliasing error, amplitude distortion and phase

distortion can be eliminated.

3.3.3 Polyphase Filter Banks

The DFT filters can be modified to get a better stopband attenuation compared to 13 dB

of DFT at the cost of one prototype filter. The polyphase implementation of uniform

DFT reduces the computational complexity. The polyphase decomposition of the pro-

totype filter is given in [81], and [1]. The transfer function of a FIR prototype filter h(n)

is given in Equation 3.9 as.

H(z) =
∞�

n=−∞
h(n)z−n (3.9)

The transfer function in Equation 3.9 can be decomposed into polyphase components

as in Equation 3.10.

H(z) =
∞�

n=−∞
h(nM)z−nM + z−1

∞�

n=−∞
h(nM + 1)z−nM + . . . (3.10)

+ z−(M−1)

∞�

n=−∞
h(nM +M − 1)z−nM

Equation 3.10 can be written in short as in Equation 3.11.

H(z) =
M−1�

l=0

z−lEl(z
M), l = 0, 1, . . . ,M − 1. (3.11)

The above equation represents a Type-1 polyphase filter. Similarly, lth polyphase com-

ponent of the filter bank is defined as

El(z) =
∞�

n=−∞
el(n)z

−n, (3.12)

where, el = h(nM + l). The Type-2 polyphase decomposition of the Equation 3.10 can

be expressed as

H(z) =
M−1�

l=0

zM−1−lRl(z
M) (3.13)
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Polyphase implementation simplifies the theoretical results and computationally ef-

ficient filter banks can be realized. Using Noble identities the polyphase uniform DFT

filter bank structure with decimators can be drawn as shown in Figure 3.3. Since the

downsampler are shifted toward the input side, the polyphase subband filters are com-

puted at a low sampling rate, which reduces the computational complexity by a factor of

M . Due to the polyphase decomposition of prototype filter, the polyphase subband fil-

ters are shorter compared to the original filters by a factor of M . Therefore, the number

of coefficients of the subband filters become equal to that of a single prototype filter [1].

M-Point
FFT

EM−1(z)

Ek(z)

E0(z)

↓ M

↓ M

↓ M

z−1

z−1

...

...

...

...

...

...

x
M−1

[n− 1]

x
k
[n− 1]

x
0
[n− 1]

x[n]

Figure 3.3: Polyphase filter bank structure [1]

3.4 Errors in Filter Banks

Errors in filter banks, occur due to the difference between the reconstructed signal x̂(n)

and the input x(n). Errors are generally classified into three types:

1. Aliasing error

2. Amplitude distortion

3. Phase distortion

In practice, the analysis filters have non-zero transmission bandwidth and stopband

gain. Therefore, the signals are not bandlimited and their decimations result in alias-

ing. As a result, the responses of the subbands overlap and the energy in each subband
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Figure 3.4: Errors in filter banks [1]

exceeds the ideal passband region. Even though the filters provide good stopband at-

tenuation, decimation of the signals results in aliasing. However, having sufficiently

large stopband attenuation, the effect of aliasing can be controlled. Implementation

of narrow transition width filters is expensive as they increase the length of the proto-

type filter. Therefore, a feasible choice is to design subband filters with overlapping

responses that are able to cancel the effect of aliasing with proper choice of synthesis

filters [1].

For example if we consider a two channel filter bank, the reconstructed signal can

be written as

X̂(z) =
1

2
[H0(z)F0(z)+H1(z)F1(z)]X(z)+

1

2
[H0(−z)F0(z)+H1(−z)F1(z)]X(−z)

(3.14)

The second term in Equation 3.14 corresponds to the aliasing error. By proper choice

of analysis and synthesis filters the second term can be reduced to zero for eliminating

the aliasing error. Thus, the following choice of filters cancels aliasing.

F0(z) = H1(−z) (3.15)

F1(z) = −H0(−z) (3.16)

If the filters are designed satisfying Equation 3.15 and Equation 3.16 then H0(−z)F0(z)+

H1(−z)F1(z) = 0. Then the reconstructed signal becomes

X̂(z) = T (z)X(z). (3.17)
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Even though the aliasing error is cancelled the reconstructed signal suffers from linear

shift-invariant distortion T (z), which is also called as distortion transfer function.

T (z) =
1

2
[H0(z)F0(z) +H1(z)F1(z)]X(z) (3.18)

If we consider, T (ejω) = |T (ejω|ejφ(ω), then

X̂(ejω) = |T (ejω|ejφ(ω)X(ejω) (3.19)

If T (z) is allpass (i.e., |T (ejω)| = d �= 0 for all ω), we say that the reconstructed signal

X̂(ejω) suffers from amplitude distortion. Similarly, unless T (z) has linear phase (i.e.,

φ(ω) = a + bω for constant a, b ), the reconstructed signal X̂(ejω) suffers from phase

distortion [1]. The phase distortion can be completely eliminated by implementing

the analysis and synthesis filter with linear phase FIR filters. The amplitude distortion

gets reduced, when the band limiting condition stated in Equation 3.3 is satisfied. The

prototype filters are implemented with Type-1 linear phase FIR filters. The different

types of filters are discussed in detail in Section 3.4.1.

Consider the filter response H0(z) =
�N

n=0 h0(n)z
−n, with h0(n) real. The linear

phase constant requires h0(n) = ±h0(N − n). Since H0(z) has to be lowpass, the only

possibility is h0(n) = h0(N − n).

H0(e
jω) = e−jωN/2R(ω), (3.20)

where R(ω) is real for all ω. As long as |H0(e
jω)| is an even function we can write

T (ejω) =
ejNω

2
(|H0(e

jω)|2 − (−1)N |H0(e
j(π−ω))|2) (3.21)

In case the length of the filter N is even at ω =
π

2
, the above expression reduces to zero

resulting in severe amplitude distortion. Accordingly, N is chosen to be odd such that

T (ejω) =
ejNω

2
(|H0(e

jω)|2 + |H0(e
j(π−ω))|2) (3.22)

T (ejω) =
ejNω

2
(|H0(e

jω)|2 + |H1(e
jω)|2) (3.23)
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3.4.1 Types of FIR Linear Phase Filters

In general, the prototype filters have FIR and are designed to satisfy linear phase prop-

erty. There exist different design procedures to design FIR transfer function with exact

linear phase responses. A digital filter satisfies linear phase property if the phase re-

sponse φ(ω) is linear with ω. Consider, h(n) as a prototype filter with response

H(z) =
N�

n=0

h(n)z−n. (3.24)

The prototype filter has linear phase property only when Equation 3.25 is satisfied.

H(ejω) = ce−jKωHR(ω), (3.25)

where, c is a complex constant, K is real, and HR(ω) is a real valued function of ω.

HR(ω) is called the amplitude response or zero phase response. The response of filter

can be symmetric or anti-symmetric.

Symmetric : h(n) = h(N − n), n = 0, 1, . . . , N

Antisymmetric : h(n) = −h(N − n), n = 0, 1, . . . , N

Depending on the length of filter N (even or odd) and whether h(n) is symmetric or

anti-symmetric, there are four types of real coefficient linear phase filters.

Table 3.1: Four types of real coefficient linear phase FIR filters [1]

Type 1 2 3 4

Symmetry h(n) = h(N − n) h(n) = h(N − n) h(n) = −h(N − n) h(n) = −h(N − n)

Filter Length N N even N odd N even N odd

Frequency

Response
e
jω
N

2 HR(ω) e
−jω

N

2 HR(ω) je
−jω

N

2 HR(ω) je
−jω

N

2 HR(ω)

The Type-3 and Type-4 filters are anti-symmetric and are not used for lowpass filter

design. Type-2 is not suitable for high pass filter design. Therefore, the prototype filters

are designed using Type-1 FIR filters.
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3.5 Design Approach of Proposed Prototype Filter

Literature survey reveals that researchers have worked out several efficient algorithms

for the design of lowpass prototype filters in filter banks. However, most of the methods

start with an arbitrary fixed filter length and are optimized to get the NPR condition by

varying the 3 dB cut-off frequency or passband frequency with an arbitrary step size. It

is found that no systematic procedure is followed in determining the step size. Also,

it is shown that the step size plays a significant role in achieving minimum amplitude

distortion and aliasing error. The proposed algorithm varies the step size from a coarser

to finer level with a primary objective of minimum amplitude distortion and aliasing

error for CMFB.

Our scheme uses step size as a function of the transition width, which is a function

of the number of subbands M . Filter bank follows the NPR condition of the prototype

filter by controlling the magnitude response of the lowpass prototype filter at π/2M

close to 1/
√
2

|H(e(jω)| = 1√
2

(3.26)

The following objective function approximates the 3 dB cut-off frequency very close to

the ideal filter

φ = ||H(ejπ/2M )|− 1√
2
| (3.27)

At the initial step, the cut-off frequency is calculated using the relation ωc =
π

2M
. The

passband can be approximated as ωp ≈ ωc =
π

2M
and stopband, ωs =

π

M
. Thus, the

approximate transition width ωs − ωp is achieved from the number of subbands M as

Δω =
π

2M
(3.28)

The filter length N can be obtained from the given attenuation As (in dB) and number

of subbands M as

N =
(As − 7.95)M

14.36Δω/2π
. (3.29)
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For a fixed prototype filter length, the transition width can be computed using the Kaiser

widow approach as

Δω =
As − 7.95

2.285N
(3.30)

Further, we use step size chosen as a fraction of the transition width for the proposed

iterative prototype filter design algorithm. Hence, by choosing the step size as a function

of transition width and varying the step size from coarser to finer level, the minimum

amplitude distortion and aliasing error can be achieved. The proposed filter is designed

using two input parameters: number of subbands M and attenuation A and all other

system parameters are derived from it to avoid heuristic inputs.

3.5.1 Design Procedure

The systematic procedure followed for design of prototype filter is summarized as

shown in Algorithm 1. The primary goal is to design a prototype filter with enhanced

performance i.e., minimum amplitude distortion and aliasing error. The proposed algo-

rithm approximates 3 dB cut-off frequency very close to
π

2M
.

Check for Transition Point

The step size is varied from a coarser to a finer level to get the transition point, where the

filter provides minimum amplitude distortion and aliasing error. Most of the existing

methods in literature utilized fixed step size for the design of prototype filters. Hence,

there is no mechanism to find the minimum distortion unless the step size is chosen

appropriately. On the other hand in our method, the step size is varied from a coarser

to a finer level in order to systematically arrive at a minimum amplitude distortion and

aliasing error. Therefore, our algorithm becomes structured and does not require any

heuristic input.

The relation between input signal X(z) and reconstructed signal X̂(z) is given by

X̂(ejω) = T0(e
jω)X(ejω) +

M−1�

l=1

Tl(e
jω)X(ejω−2πl/M ), (3.31)
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Algorithm 1 Prototype filter design
Number of subbands M , Attenuation A in dB and Window function W (n).

Step 1 Calculate:

(i) The 3 dB cut-off frequency: ωc =
π

2M
(ii) Transition width: Δω =

π

2M
, Let step size, δ = f(Δω) [A fraction of the transition width Δω.]

(iii) Initialize: error threshold;

Step 2 (a) : Step size δj =
Δω

lj
. where, lj = k1 + (j − 1)k; j = 1, 2, . . . ,m; k1 is the initial value

and k step increment.

Note: Iteration must start with coarser step size and move to finer step size which implies lj+1 > lj

and δj+1 < δj .

Step 2 (b): Iteration count for ωc updation i = 1 : count;

Step 3: Calculate: h(n)- the lowpass prototype filter of length N + 1, where W (n) is the window

function:

h(n) =

sin

�
n− N

2

�
ωc

π

�
n− N

2

� W (n).

Step 4: Calculate objective function, i.e., magnitude response at 3 dB φ =|| H
� π

2M

�
| − 1√

2
|

Cond− a : φ > error threshold

Cond− b : φ ≤ error threshold

Cond− a1: φ(i+ 1)th iteration ≤ φ(i)th iteration

Cond− a2 : φ(i+ 1)th iteration > φ(i)th iteration

Step 5:

if Cond− a then

Go to Step 5 (a)

else

Go to Step 6

Step 5 (a):

if Cond − a1 then ωc = ωc + δj ; i = i + 1 goto Step 3, until i ≤ count, [if i > count Go to

Step 2 (a)]

else

if Cond− a2 then Go to Step 2 (a) to update step size δj .

end if

end if

Step 6: Cond− b is satisfied, check for transition point with amplitude distortion/aliasing error.

if error with step size δj+1 ≤ error with step size δj then

Go to Step 2 (a) to update the step size

else

Go to Step 7.

end if

end if

Step 7: Terminate; h(n) with step size δj is the final prototype filter.
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where, |T0(e
jω)| refers to the amplitude distortion and |Tl(e

jω)| the aliasing error. The

performance of the prototype filter is evaluated by calculating the maximum amplitude

distortion Rp and the maximum aliasing error εa. The maximum amplitude distortion

Rp is computed as

Rp = max(1− |T0(e
jω)|). (3.32)

Similarly, maximum aliasing error εa is calculated as

εa = max
�
Tl

�
ejω

��
, 1 ≤ l ≤ M − 1, (3.33)

where, Tl(e
jω) =

1

M

�M−1
k=0 Fk(e

jω)Hk

�
ejω−

2πl
M

�
.

3.6 Simulation Results

The prototype filter designed using the proposed algorithm have been analyzed using

the cosine modulated filter bank. The designed prototype is compared with some of the

existing methods in literature in terms of amplitude distortion and aliasing error. The

performance of the prototype filter was analyzed for different number of subbands in

the filter bank. The effect of fixed filter length and the filter length calculated using

Equation 3.29 are also evaluated in the prototype filter design.

The designed prototype filters were compared with existing method by choosing the

filter parameters: filter length N = 439, number of subbands M = 32 and stopband

attenuation of 100 dB in Table 3.2. The frequency response of the proposed prototype

filter for M = 32, filter length N = 439 and stopband attenuation of 100 dB is shown in

Figure 3.5. From Table 3.2 it can be inferred that the proposed method provides better

performance in terms of amplitude distortion and aliasing error.

The performance of the filter bank for different subband resolutions (M = 8, 16, 32, and 64)

with fixed filter length N = 439 and stopband attenuation of 100 dB is shown in Ta-

ble 3.3. The amplitude distortion increased as the number subbands increased in case

of fixed filter length. A comparison in performance of prototype filter for different sub-

band resolution with filter length using Equation 3.29 is given in Table 3.4. When filter
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Table 3.2: Comparison with existing methods for M = 32

Algorithm
Filter

Length N

Amplitude

Distortion

Rp

Aliasing

Error

εa

Creusere et al. 439 1.80× 10−3 1.96× 10−6

Lin et al. 467 2.42× 10−3 2.76× 10−7

Cruz et al. 439 3.06× 10−3 1.85× 10−7

Kumar et al. 448 1.50× 10−3 9.45× 10−7

Bergen et al. 440 3.42× 10−3 2.60× 10−7

Bergen et al. 512 1.01× 10−3 5.66× 10−7

Proposed Method 439 1.0954× 10−4 3.041× 10−8

length was evaluated for different number of subbands the variation in amplitude dis-

tortion was minimal. However, the filter length increased with increase in number of

subbands. The effect of variation in filter length with increase in subband filters can be

observed from Table 3.4.
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Figure 3.5: Prototype filter for M = 32 with filter length N = 439 and stop-

band attenuation of 100 dB
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Table 3.3: Performance of the proposed prototype filter with different number

of subbands M for a filter length of 439.

Subbands

M

Amplitude

Distortion Rp

Aliasing

Error εa

64 2.449× 10−4 8.994× 10−8

32 1.0954× 10−4 3.041× 10−8

16 1.1051× 10−4 2.164× 10−7

8 1.0126× 10−4 2.128× 10−7

Table 3.4: Performance of prototye filter with different subbands and filter

length N evaluated using Kaiser Window

Subbands

M

Filter

Length N

Amplitude

Distortion Rp

Aliasing

Error εa

64 819 1.2106× 10−4 5.11× 10−8

32 409 1.2106× 10−4 1.45× 10−7

16 205 1.2108× 10−4 3.92× 10−7

8 101 1.1747× 10−4 1.20× 10−6
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3.6.1 Impact of Variable Step Size on Filter Performance

The effect of varying the step size as a function of transition width from a coarser to a

finer level in the design of prototype filter is shown through simulations. A prototype

filter was designed for a filter length N = 439, subband attenuation of 100 dB and

number of subbands M = 32. The performance in amplitude distortion for variable

step sizes (4.55 × 10−4, 9.2 × 10−4, and 1.84 × 10−3) with iterations 6, 11, and 19 is

shown in Figure 3.6. The step size is varied when the error conditions are not satisfied

and thereby, the algorithm becomes computationally efficient and self controlled. From

Figure 3.6, it is apparent that the minimum distortion is at the transition point.

Figure 3.7 shows the variation of step size for different subband resolution in terms

of amplitude distortion. From Figure 3.7 it is apparent that there is a transition point,

i.e., the amplitude distortions are minimum at a particular step size. Similarly, the

different transition points for variable filter length N and the number of subbands M

are shown for aliasing error in Figure 3.8. Therefore, proper selection of step size

is essential to achieve minimum amplitude distortion and aliasing error for different

number of subbands M .
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Figure 3.6: Effect of step size on amplitude distortion of the proposed method

for subband M = 32, filter length N = 439, and stopband attenua-

tion of 100 dB
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Figure 3.7: The significance of transition point variation for different filter

length N and number of subbands M on amplitude distortion
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Figure 3.8: The significance of transition point variation for different filter

length N and number of subbands M on aliasing error

3.7 Summary

In this chapter, literature survey of different prototype filters and the significance of

prototype filter in the implementation of filter banks were discussed. A systematic

and self controlled algorithm for the design of a lowpass linear phase FIR prototype

47



filter was proposed and the design procedure is discussed in detail. In our scheme, the

prototype filter cut-off frequency is approximated to 3 dB response iteratively using a

step size as a function of transition width instead of an arbitrary step size. The prototype

filter is designed with two user inputs - number of subbands M and attenuation As. Our

approach is simple and systematic compared to other widely used techniques. It can be

concluded that by choosing the step size as a function of transition width and varying

the step size from coarser to finer level, the minimum amplitude distortion and aliasing

error can be achieved. Simulation results are presented in comparison with the results of

existing methods. In Chapter 4, spectrum sensing using cosine modulated filter banks is

discussed. The cosine modulated filter banks are designed using the proposed prototype

filter.

Related publication

An Iterative Design with Variable Step Prototype Filter for Cosine Modulated Filter

Bank, Radioengineering, 25, 156-160 (2016).
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CHAPTER 4

CMFB for Spectrum Sensing

Filter banks have spectral containment and are expected to provide better results in

terms of spectrum sensing and spectrum utilization [73], [82]. Using complex modu-

lation of single prototype filter, uniform multirate filter banks such as Discrete Fourier

Transform (DFT), Modified DFT (MDFT), and Cosine Modulated Filter Bank (CMFB)

can be implemented. These filters decompose the spectral components uniformly with

efficient filter bank realization structures. The CMFB is more desirable as it provides

higher bandwidth efficiency and lower sidelobes [106].

In this chapter, we discuss cosine modulated filter banks with emphasis on spectral

granularity of filter banks for spectrum sensing in Cognitive Radios (CR) and multi-

stage filter banks to reduce computational complexity. The bandwidth efficiency of the

detected spectral holes can be increased by varying the granularity of prototype filter

depending on the spectrum to be sensed. Spectrum sensing can be done effectively by

proper choice of prototype filter with specified subband attenuation. The energy de-

tection after subband filtering detects the spectral holes with high confidence due to

spectral containment in the subband sensing using CMFB. The precision of spectral de-

tection is increased when the number of subbands are increased, however this increases

the computational complexity of the filter bank structure. We suggest a multistage filter

bank structure to reduce the complexity. The subbands detected in coarser granularity

bands alone would be sensed with finer granularity bands for precise spectral detec-

tion depending on the predefined threshold based on probability of false alarm. Only

the spectrum of interest is sensed further with finer granularity which in turn reduces

computational complexity. Using simulations, it is shown that spectrum detection with

multistage granularity maintains bandwidth efficiency and reliability in spectrum detec-

tion even at low SNR.

Section 4.1 discusses the implementation of cosine modulated filter banks for wide-

band spectrum sensing. The significance of variable granularity bands in spectrum

sensing is explained in Section 4.2. Multistage CMFB from coarser to finer spectral



resolution depending on the predefined thresholds based on probability of false alarm

for reducing computational complexity is discussed in Section 4.3. Simulation results

along with our observations are presented in Section 4.4.

4.1 Spectrum Sensing with Cosine Modulated Filter Banks

At the initial phase, Orthogonal Frequency Division Multiplexing (OFDM) was consid-

ered as a suitable candidate for CR systems for spectrum sensing [107]. However, the

sidelobes of OFDM subcarriers introduce power leakage to adjacent channels due to

the presence of FFT [75]. The FFT in OFDM is not flexible and provides a subband at-

tenuation of only 13 dB [108]. The out-of-band rejection requirements of FCC are also

not satisfied by OFDM/FFT [109]. The spectrum sensor have to provide sufficiently

high spectral dynamic range in order to detect the low power primary users. The spec-

tral resolution of sensing has to be small for better utilization of spectrum resources.

Therefore, alternatively different filter bank techniques are investigated to overcome

the above limitations [73]. Filter banks have been suggested as potential candidate for

CR systems because of their higher spectral efficiency and lower spectral leakage com-

pared to OFDM. Moreover, filter banks are efficient for CR signal processing as the

subbbands can be designed with desired attenuation [109].

The performance of the filter banks are comparable to Thomsons Multi-Taper Method

(MTM) [65]. MTM has been considered as optimal spectrum sensing technique by

Simon Haykins in [3], however they are limited by the high computational complex-

ity. Filter banks based on prolate filter also provide good spectrum sensing perfor-

mance [77]. Most of the filter bank spectrum sensing methods are based on energy

detection. If the energy in a subband is above a predefined threshold, the subband is

considered as occupied and if the energy is below a threshold it is considered as a spec-

tral hole. For better detection of spectral holes, the subbands in filter banks have to

provide good subband attenuation and low spectral leakage to the neighbouring sub-

bands.

Among different filter bank based methods such as orthogonal multiplexed quadra-

ture amplitude modulation (OQAM), cosine modulated multitone (CMT), and filtered

multitone (FMT), CMT is more desirable as it provides higher bandwidth efficiency
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compared to FMT and lower sidelobes than OQAM [110]. The performance of spec-

trum estimation is characterized by different parameters such as frequency resolution,

spectrum leakage, and estimation time. The above three parameters can be regulated

using CMFB with a proper design of prototype filters. In wideband spectrum sens-

ing, signals are filtered using CMFB followed by power spectrum estimation [106].

CMFB can detect primary user over contiguous channel having different bandwidth. A

transceiver framework based on cosine modulated filter bank was proposed in [111] for

cognitive access to TV white spaces.

In the proposed work, we discuss cosine modulated filter banks with emphasis on

spectral granularity of filter banks for spectrum sensing and multistage filter banks to re-

duce the computational complexity. The prototype filter for CMFB was designed using

Kaiser window method with attenuation As (in dB), filter length N , and approximating

the amplitude response at
π

2M
close to

1√
2

using the algorithm proposed in Chapter 3.

The number of subbands M determines the granularity of the filter banks. The analysis

and synthesis filters are implemented by modulating the prototype filter as explained in

Section 3.3.2. The closed form expressions for analysis and synthesis filters are given

in [1] as

hk(n) = 2h(n) cos

�
π

M

�
k +

1

2

��
n− N − 1

2

�
+ (−1)k

π

4

�
(4.1)

fk(n) = 2h(n) cos

�
π

M

�
k +

1

2

��
n− N − 1

2

�
− (−1)k

π

4

�
(4.2)

where, 0 ≤ n ≤ N − 1, 0 ≤ k ≤ M − 1 and h(n) is the prototype filter. The dynamic

range of the transition width of the subbands depends on the length of the prototype

filter. Figure 4.1 illustrates the effect of subband attenuation for different prototype

filter lengths (N = 64, 128, 256, 512) with a subband attenuation of As = 100. It is

apparent from Figure 4.1 that the subband attenuation increases with filter length and

better spectral characteristics can be achieved.
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Figure 4.1: Subband attenuation with different filter lengths

4.1.1 System Model

The wideband signal for spectrum sensing are localized to various subband frequen-

cies using filter bank structures. The available spectrum band is divided into M non-

ovelapping uniform subbands, where M is the number of subbands in the filter bank.

The output of each subband, xk(n), is assumed to be a random process, obtained from

a random process input sk(n) passing through a linear subband filter of frequency re-

sponse Hk, where xk(n) = Hksk(n). The received signal yk(n) can be modeled as [33],

yk(n) = xk(n) + wk(n), k = 0, 1, 2, . . . ,M − 1, (4.3)

where, xk(n) is the active signal and wk(n) is the additive white Gaussian noise with

zero mean and variance σ2
w. In order to detect signal we define a binary hypothesis

given as in [112].

H0,k : yk(n) = wk(n) absence of signal

H1,k : yk(n) = xk(n) + wk(n) presence of signal
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We consider the test statistic as the energy at the output of each subband and is given

by Equation 4.4.

yk(n) =
1

L

L−1�

n=0

x2
k(n), (4.4)

where, L =

�
Ns

M

�
, the number of samples in each subband and k = 0, 1, 2, . . . ,M−1.

When the number of samples is increased, the chi-square distribution approximate to a

normal distribution from the central limit theorem (CLT). According to CLT indepen-

dent and identically distributed (i.i.d.) random variables with finite mean and variances

approaches a normal distribution when Ns is large enough. Therefore, the distribution

of test statistics can be accurately approximated with a normal distribution for suffi-

ciently large number of samples [34]. The minimum number of samples required for

spectrum sensing is obtained using the relation [38],

Nmin = 2[Q−1(Pfa)−Q−1(Pd)(1 + SNR)]2SNR−2. (4.5)

The presence of an active signal in a specified subband can be determined by comparing

the energy in that subband with a predetermined threshold. The threshold is calculated

based on probability of false alarm and noise variance depending on channel character-

istics.

Calculation of Threshold

The threshold λ can be calculated using the knowledge of probability of false alarm Pfa

and noise variance σ2
w of the received signal as explained in Section 2.1.1.

λ =
�
Q−1(Pfa)

�
1/L+ 1

�
σ2
v (4.6)

The energy detector gives the best performance with known noise variance and per-

formance deteriorates when the noise variance is uncertain. To improve the detection

performance, the noise variance can be estimated at the receiver before detection.
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4.2 CMFB with Variable Granularity for Spectrum Sens-

ing

The granularity of the filter banks can be chosen specifically if the bandwidth of the

primary users are known apriori. At the initial stage, the prototype filter is designed

with a coarse granularity. Further, using cosine modulation of the prototype filter, the

filter bank structure is realized for spectrum sensing. The energy is computed at the

output of individual subbands. The threshold is calculated for specified probability

of false alarm Pfa and known noise variance σ2
w. The procedure followed is given in

Algorithm 2.

Algorithm 2 Filter bank technique for spectrum sensing
Require:

B: Bandwidth of sensing.

M : Granularity of the filter bank.

As: Stopband attenuation in dB of the subband filters.

1: Design prototype filter with the above specification and specify the cutoff frequency

of the prototype filter to be π/2M .

2: Implement the analysis filter bank structure using Equation.4.1

3: Calculate threshold λ for specified Pfa with known noise variance σ2
w.

4: Calculate the energy Yk as test statistics at the output of each subband using Equa-

tion 4.4.

5: Apply the thresholds on the individual subband outputs and obtain the decision.

Spectrum sensing can be performed using filter bank structures for varying granu-

larity bands. The number of subbands M determines the granularity of sensing band-

width. For spectrum sensing with finer granularity bands, M needs to be increased,

whereas for spectrum sensing with coarser granularity bands, M needs to be decreased.

The advantage of varying granularity band is that the spectrum utility and re-usability

can be effectively increased. Moreover, the same structure can be used for spectrum

reallocation due to the flexibility offered by the filter bank structure.

The detection performance of the filter bank was evaluated for different subband

resolutions varying the SNR with fixed probability of false alarm. Figures 4.2, 4.3,
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and 4.4 shows the detection performance for Pfa = 0.1, Pfa = 0.01 and Pfa = 0.05,

respectively, for varying granularity bands and SNR. From Figures 4.2, 4.3 and 4.4 it

can be inferred that the probability of detection is increased for finer granularity bands.

Simulations were performed by varying the SNR -30 dB to 10 dB and spectral granular-

ity M = [4, 8, 16, 32, 64] for fixed Pfa. It is also observed that the bandwidth efficiency

could be effectively increased using finer granularity bands. When the number of sub-

bands is increased the spectral resolution of the filter banks gets increased and better

detection performance is achieved. The computational complexity can be further re-

duced with efficient structure using polyphase filter bank discussed in Chapter 5.
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Figure 4.2: SNR vs probability of detection with different subband resolutions

for Pfa = 0.1

From the Algorithm 2, it was found that finer granularity bands provide better detec-

tion performance and bandwidth efficiency. However, finer granularity bands increase

the computational complexity of the filter bank structure used for spectrum sensing. In

order to reduce the computational complexity, a multistage CMFB structure is proposed

from coarser to finer level spectral resolution using filter bank structure.
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Figure 4.3: SNR vs probability of detection with different subband resolutions

for Pfa = 0.01
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Figure 4.4: SNR vs probability of detection with different subband resolutions

for Pfa = 0.05

4.3 Spectrum Detection with Multistage CMFB

Better sensing performance can be achieved in filter banks with finer resolution. How-

ever, this would increase the computational complexity of the filter bank structure.

Therefore, to overcome the computational complexity multistage filter banks are in-
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vestigated for sensing from coarser to finer resolution. In multistage or multi-resolution

filter banks, at the initial stage the total bandwidth is sensed using coarser spectral res-

olution. The bandwidth of interest is identified depending on the sensing decision and

only those frequency bands are further sensed with finer spectral resolution. Multires-

olution filter bank techniques include Fast Filter Bank (FFB) based on Frequency Re-

sponse Masking (FRM), coarser to finer spectrum sensing using wavelet transforms, and

FFT based multiresolution spectrum sensing using multiple antennas [20], [113], [102].

The available bandwidth is initially divided into non-overlapping subbands with

coarser spectral resolution of M1 subbands as illustrated in Figure 4.5. When narrow

band users appear in wideband spectrum and the bandwidth of sensing is sparse as

shown in Figure 4.5, the subbands of interest can be detected in the first stage. The

detected subbands can be sensed further with finer spectral resolution in the next stage

with a spectral resolution of M2 subbands. As the narrowband users are identified in

coarser resolution, only the detected subbands are sensed further with finer resolution.

Therefore, the computational complexity is reduced and better sensing performance can

be achieved.

Figure 4.5: Illustration for multistage filter bank spectrum sensing

Multistage spectrum sensing can be performed by defining two thresholds based on

different probability of false alarm Pfa depending on the channel conditions. Energy

detection is performed using the predefined thresholds with different probability of false

alarms, calculated as discussed in Section 4.1.1. Two thresholds, λ1 and λ2 are the

calculated based on different probability of false alarm (λ2 > λ1). If the energy is

above the threshold λ2, it can be concluded as the presence of primary user. If the
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energy is below λ1 it is decided as the presence of a spectral hole or absence of primary

user and if the energy is between λ1 and λ2 there is a possibility of spectral hole within

the subband. The multistage spectrum sensing with energy distribution and thresholds

are explained in Figure 4.6. Only the subbands having energy between λ1 and λ2 has to

be sensed in the next level with finer granularity. Multiple spectral gaps can be identified

in an efficient and flexible way using the multistage methods with reduced complexity,

since the whole band need not be sensed with finer granularity.

Figure 4.6: Illustration of threshold decision with multistage spectrum sensing

The proposed multistage filter bank technique for wideband spectrum sensing is

elaborated in Algorithm 3.

The significance of multistage spectrum sensing is summarized as follows:

1. The probability of detection is improved with finer granularity bands [59].

2. Multistage filter banks reduce the computational complexity as the whole band

need not be sensed with the finer granularity.

3. Sensing can be performed from a coarser to finer level [60].

4.4 Simulation Results

The prototype filter for the CMFB was designed for the cut-off frequency
π

2M
for

varying granularity bands with stop band attenuation As = 100 dB and filter length
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Algorithm 3 Multistage filter bank technique for spectrum sensing
Require:

B: Sensing bandwidth.

M1: Granularity of the filter bank (initial subbands should be coarse)

1: Design prototype filter with the above specification and specify the cutoff frequency

of the prototype filter to be π/2M1.

2: Implement the analysis filter bank structure using Equation.4.1.

3: Calculate λ1 and λ2 for different Pfa with known noise variance.

4: Calculate the energy Yk as the test statistics at the output of each subband us-

ing Equation.4.4

5: Apply the thresholds on the individual subband outputs and obtain the decision

6: if Yk > λ2 then

7: Primary user is present

8: else

9: if Yk < λ1 then

10: Primary user is absent

11: else

12: if λ1 ≤ Yk ≤ λ2 then

13: Perform spectrum detection with finer granularity

14: end if

15: end if

16: end if

17: Divide the subbands detected for finer granularity with M2 subbands. The spectral

resolution of the subbands would be
π

M1M2
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N = 289. The frequency response of the CMFB for M = 8 and M = 16 is shown in

Figures 4.7 and 4.8, respectively.
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Figure 4.7: Frequency response of CMFB for M = 8
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Figure 4.8: Frequency response of CMFB for M = 16

For our simulation, the signals having different communication standards such as

Bluetooth (PU1: B1 = 1 MHz) and Zigbee (PU2: B2 = 4 MHz) are considered [2].

Simulation parameters are given in Table 4.1. Spectrum using FFT scheme with three

primary users in a wide bandwidth of 12 MHz is shown in Figure 4.9. The center fre-

quency of Bluetooth is at 2 MHz and Zigbee at 8 MHz, respectively. The signal sensed
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Table 4.1: Simulation parameters [2]

Parameter Value

Sensing bandwidth B MHz 12

Sampling time Ts 1/24

Capture time τ 2 sec

Number of samples N = τTs

Subband attenuation 100 dB

Prototype filter length 127

Primary Users : Bluetooth (PU1),

Zigbee(PU2)
2

Bandwidth of PU in MHz 1, 4

Spectral resolution of filter bank M 8, 16, 64

Spectral decomposition of filter bank

M = M1M2,
M1 = 16, M2 = 4

with M = 8 and M = 16 subbands are shown in Figures 4.10 and 4.11 respectively.

It can be inferred from the Figures 4.10 and 4.11 that the finer the spectral resolution,

better the detection performance and spectral efficiency, since more spectral holes can

be identified.
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Figure 4.9: Spectrum containing Bluetooth and Zigbee using FFT scheme
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Figure 4.10: Energy distribution at the output of individual subbands

with M1 = 8 in the first stage of sensing for an SNR of 0 dB

From Figure 4.11, Bluetooth is identified from subbands 3 and 4 for M1 = 16.

Depending on the threshold decision, the subband 4 can be sensed with a finer reso-

lution to identify holes within the subband. The subband 4 is further sensed with a

spectral resolution of M2 = 4 as shown in Figure 4.12. Similarly, the Zigbee is iden-

tified from subbands 9 to 14. Depending on the threshold decision, subband 14 can be

sensed further with finer resolution in the second stage with M2 = 4 as shown in Fig-

ure 4.12. Thus, holes within the subbands could be identified with a spectral resolution

of M = 64 i.e., M = M1M2.

Similarly, the simulation was done for the signal containing Bluetooth and Zigbee

for an SNR of -5 dB. The energy distribution at the output of first stage for M1 = 16 is

shown in Figure 4.13. Depending on the threshold decision, the subband 4 and 14 can

be sensed further with a finer resolution to identify holes within a subband. The energy

distribution at the output of second stage for subbands 4 and 14 with M2 = 4 is shown

in Figure 4.14.

The significance of multistage CMFB spectrum sensing can also be illustrated as-

suming the Bluetooth (PU1: B1 = 1 MHz) signal appears over a wideband of 12 MHz.

A signal with Bluetooth and their spectrum using FFT scheme are shown in Figure 4.15.

At initial stage, the wideband is sensed with a CMFB of M1 = 8 and the corresponding
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Figure 4.11: Energy distribution at the output of individual subbands

with M1 = 16 in the first stage of sensing for an SNR of 0 dB
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Figure 4.12: Energy distribution at the output of subbands 4 and 14

with M2 = 4 in the second stage of sensing for an SNR of 0 dB

energy distribution is shown in Figure 4.16. The subbands 4 and 5 are detected in the

first stage and these subbands are sensed using finer resolution with M2 = 4 in the

second stage and shown in Figure 4.17. Thus, the signals of interest are sensed with a

spectral resolution which is equivalent to M = M1M2, i.e., M = 32. The frequency

band of interest could be sensed with finer spectral resolution with reduced complexity.
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Figure 4.13: Energy distribution at the output of individual subbands

with M1 = 16 in the first stage of sensing for an SNR of -5 dB
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Figure 4.14: Energy distribution at the output of subbands 4 and 14

with M2 = 4 in the second stage of sensing for an SNR of -5 dB

The detection of Bluetooth (PU1: B1 = 1 MHz) signal over a wide band of 12 MHz

with SNR = -5 dB using multistage CMFB spectrum sensing is also considered for sim-

ulation. Initially, the signal was sensed with a CMFB of M1 = 8 and the corresponding

energy distribution is shown in Figure 4.18. From the energy distribution and threshold

decision the subbands 4 and 5 are detected in the first stage and shown in Figure 4.18.
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The detected subbands are further sensed in the second stage with M2 = 4. The energy

distribution of the subbands 4 and 5 in second stage is shown in Figure 4.19. Therefore,

the frequency band of interest was sensed with a spectral resolution which is equivalent

to M = M1M2, i.e., M = 32.
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Figure 4.15: Spectrum containing Bluetooth using FFT scheme
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Figure 4.16: Energy distribution of the signal containing Bluetooth with

M1 = 8 subbands for an SNR of 0 dB

From the above examples, it can be concluded that the computational complexity

can be reduced when the spectrum to be sensed is sparse. At the initial phase, the
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Figure 4.17: Energy distribution at the output of subbands 4 and 5 in the second

stage with M2 = 4 for an SNR of 0 dB
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Figure 4.18: Energy distribution of the signal containing Bluetooth with

M1 = 8 subbands for an SNR of -5 dB

subbands are sensed with coarser level (smaller number of subbands M ) to detect the

presence of signal and spectral holes. Depending on the decision, the subbands are

further splitted into finer bands. Since the complete spectrum need not be splitted with

the finer spectral resolution, the computational complexity can be reduced further. The

subbands having energy between λ1 and λ2 only need to be sensed with finer spectral
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Figure 4.19: Energy distribution at the output of subbands 4 and 5 in the second

stage for an SNR of -5 dB

resolution.

4.5 Summary

In this chapter CMFB was explored for wideband spectrum sensing. The filter banks

provided higher bandwidth efficiency and lower sidelobes desirable for spectrum sens-

ing. The spectral holes could be identified by the threshold determined from probability

of false alarm and noise variance. The test statistic was calculated based on the energy

at the output of each subband. The bandwidth efficiency could be effectively increased

by finer granularity bands. It can be concluded that, finer the spectral resolution, bet-

ter the detection performance and spectral efficiency. The computational complexity is

reduced using multistage filter banks by processing only those subbands having energy

within the predefined thresholds, instead of the entire bandwidth. Simulation results

show that the detection efficiency of the free spectrum is effectively increased and the

computational complexities reduced with multistage filter banks. In Chapter 5, we dis-

cuss multistage polyphase filter banks for spectrum sensing which further reduces the

computational complexity.
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CHAPTER 5

Polyphase Filter Bank for Spectrum Sensing

Wideband spectrum sensing using filter banks has proved to be robust and efficient. Fil-

ter bank based physical layer design for Cognitive Radio (CR) systems was introduced

to perform simultaneous spectrum sensing and transmission. Filter bank techniques

can reduce computational complexity and improve spectral analysis in cognitive radio

applications. For fractional utilization of spectrum, the center frequency and spectral

edges of the primary user need to be estimated.

In this chapter, we address the problem of estimating the center frequency and spec-

tral edges of primary users in a wideband spectrum using polyphase filter banks. Sec-

tion 5.1 discusses the general polyphase filter bank. The proposed multistage polyphase

filter bank is explained in Section 5.2. Different scenarios such as narrow band users

and multiple user detection in a wideband spectrum are considered. A novel centroid

based method was used for the detection of narrowband users in wideband spectrum.

The method was applied for the detection of Wireless Microphone (WM) in TV white

spaces in the presence of a signal, following IEEE 802.22 WRAN standard. For multi-

user detection, a center of mass based method was introduced. Simulation results are

discussed for single user as well as multi-user detection in wideband for estimation of

center frequency and spectral edges in Section 5.3.

5.1 Polyphase Filter Banks

Filter banks are often implemented based on the modulation of a single prototype filter.

In general, lowpass FIR filters are used as prototype filters in realization of filter banks.

The magnitude of side lobes of the filter determines spectral leakage to adjacent sub-

bands. The overall performance of the filter bank can be improved with proper design

of subband filters [81]. Polyphase filter bank structure reduces the complexity of the

filter bank implementation. Polyphase filter banks are efficiently designed using FFT

when the number of subbands M is a power of two. Here, M subbands are obtained



using polyphase decomposition of the prototype filter h(n) having the transfer function

H(z). The polyphase decomposition of the prototype filter can be written as [1]

H(z) =
M−1�

l=0

z−lEl(z
M), l = 0, 1, . . . ,M − 1. (5.1)

The lth polyphase component can be defined as

El(z) =
N−1�

n=0

h(Mn+ l)z−n. (5.2)

The polyphase structure of an M band filter bank is equivalent to the realization of sin-

gle prototype filter and an M point FFT. The computational complexity is N +M log2 M ,

where N is the length of the prototype filter. Polyphase filter bank reduces the com-

putational complexity to a large extent compared to the complexity (NM) of direct

implementation. The polyphase filter bank structure can further be simplified using

Noble identities of multirate signal processing [1]. The structure of polyphase filter is

explained in detail in Section 3.3.

5.2 Proposed Multistage Polyphase Filter Banks

The proposed multistage polyphase filter bank method detects the presence of pri-

mary user and also estimates the center frequency with higher precision using the cen-

troid/center of mass method. It is well known that the detection accuracy depends on

the number of subbands M in the filter bank. The computational complexity of the filter

bank increases with higher values of M . However, the complexity is reduced by using

multistage polyphase filter bank structure. The primary users are detected by computing

the signal energy (power) at output of the individual subbands. Our algorithm for the

detection of unused spectrum (spectrum holes) starts with a coarser spectral resolution

(smaller number of subbands) at the first stage to reduce computational complexity.

Single user and multi-user scenarios are considered in wideband for spectrum sens-

ing using multistage polyphase filter banks. The detection of single and multiple users

in widebands are elaborated in the following subsections.
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5.2.1 Single User Detection in Wideband Spectrum

The proposed system can be used to detect WMs in the presence of a signal that follows

IEEE 802.22 WRAN standard. In IEEE 802.22 WRAN standard, spectrum sensing has

to be done to allow television (TV) services and wireless microphones to coexist. WMs

are low power licensed users and are allowed by Federal Communications Commission

(FCC) to operate on vacant TV channels without causing interference. The detection

of WM is difficult due to the low power transmission (typically 50 mW for 100 m cov-

erage) and small bandwidth occupancy (200 kHz). In IEEE 802.22 WRAN standard,

when a WM appears anywhere in the TV channel, the whole channel of 6 MHz has to

be evacuated to avoid interference [114]. However, TV channels can be utilized frac-

tionally when the exact position of the WM is detected [115], [59]. Hence, there are

several challenges in the detection of WM signals [116], [117].

Some of the conventional techniques discussed in literature include blind spectrum

sensing based on Eigenvalue algorithm and power spectral density (PSD) to detect the

peak of WM signal regardless of modulation type [118, 119, 120, 121]. The sensing

of WM remains as an open research problem as there are no common transmission

standards. Some of the filter bank techniques existing in literature include DFT filter

banks, polyphase realization of DFT filter banks, and multistage coefficient decimation

filter banks [81], [122], [123]. Even though multistage coefficient decimation filter bank

reduces computational complexity, they are not suitable for detecting narrowband spec-

trum [124]. Reconfigurable filter bank methods have also been exploited for spectrum

sensing in [125]. Multistage filter bank technique was proposed for the detection of a

single WM and estimate the center frequency appearing in the TV channels. However,

this method requires an additional modulation component to the existing DFT filter

bank to move the filter response to the desired spectral region [122], [126].

The goal of the proposed multistage polyphase filter bank method is to detect the

presence of WM and estimate the center frequency of the WM with better precision by

using the centroid method. The important contribution of our work is the detection and

estimation of center frequency with high precision and reduced computational complex-

ity. The novelty of the proposed centroid based technique is that the presence of WM

can be detected in the first stage itself, when spectrum of WM lies partly in one subband

and partly in adjacent subband. As the WM is detected in the first stage it reduces the
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computational complexity, latency, and thereby achieves fast sensing. However, if WM

appears exclusively within a single subband, an additional stage is required to detect

and estimate the center frequency of WM with finer spectral resolution. In such cases,

WM can be detected in the second stage without ambiguity.

Our method is designed to detect the presence of WM anywhere within a TV chan-

nel (6 MHz) and to estimate the center frequency of WM taking into account the fol-

lowing scenarios:

Case 1: If the signal spectrum of WM lies partly in one subband and partly in the

adjacent subband as shown in Figure 5.1, the center frequency of WM can be either in

one of the subbands or between two subbands. The center frequency in such a case is

estimated using the centroid method as described in Section 5.2.3.

Case 2: If the signal spectrum of WM is in the middle of two adjacent subbands as

shown in Figure 5.2, the energy at the output of two subbands will be equal. That is, the

center frequency of WM is at the midpoint of the two subbands. Therefore, finer level

of detection is not necessary, which in turn reduces the computational complexity and

latency.

Case 3: If the signal spectrum of WM appears exclusively within a subband as

shown in Figure 5.3, the output of first stage is passed to the input of the next stage

filter bank to estimate the center frequency with a finer spectral resolution. The process

is illustrated in Figure 5.4 where only two stages are required to detect the presence

of the WM and to accurately estimate its center frequency. The center frequency is

estimated in the second stage using DFT polyphase filter bank and centroid method.

Figure 5.1: Case 1: WM appears anywhere between two consecutive subbands

The procedure followed for multistage spectrum sensing is briefed in the following

two steps:

Step 1: The bandwidth of sensing is divided coarsely into M1 subbands and sensed
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Figure 5.2: Case 2: WM appears exactly between two subband

Figure 5.3: Case 3: WM appears exclusively within a subband

through the M1 subband DFT polyphase filter bank. Energy detection is performed at

the output of each subband, considering energy (power) as the test statistic to decide

the presence or absence of the WM in the subbands. The detection and estimation of

center frequency of WM as per Case 1 or Case 2 is done in the first stage. If the signal

spectrum of WM is as per Case 3, the output of the sensed subband is further processed

with finer resolution as in Step 2.

Step 2: The output of first stage is sensed in the next level with M2 subbands. The

signal energy (power) at the output of the subband is considered as the test statistic. At

this level, the spectrum is sensed with a spectral resolution of π/M1M2.

The proposed method can be summarized as:

(i) If WM appear anywhere within consecutive subbands (Case 1 and Case 2), the

center frequency of WM is estimated accurately using the centroid method in single

stage.

(ii) If WM appears anywhere exclusively within any subband (Case 3), the output

of the sensed subband is further processed with finer resolution as in Step 2.
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Figure 5.4: Detection of WM in a two stage filter bank

Table 5.1: Computational complexity in terms of multiplications for the pro-

posed method for different stages and number of subands

Filter structure for a

prototype filter of

length N = 51

Computational

Complexity

Hardware

Complexity

32 subbands 211 Single Stage

M1 = 16,M2 = 2 168 Double Stage

M1 = 8,M2 = 4 134 Double Stage

5.2.2 Complexity Analysis

The complexity of the filter is estimated with the number of complex multiplications

performed in the filter bank structure. For an M subband filter with conventional

polyphase structure, complexity is equivalent to the length of the prototype filter and

the M point FFT, N +M log2 M . The M subbands can be divided into two stages M1

and M2 such that M = M1M2, where M1 is the number of subbands in first stage and

M2 is the number of subbands in second stage. The complexity is 2N +M1 log2 M1 +

M2 log2 M2. The complexity of the first stage is N + M1 log2 M1 and the complex-

ity of second stage is N + M2 log2 M2, where N is the length of prototype filter. The

computational complexities of the filter bank structure for different stages and subband

resolution are given in Table 5.1.

As per IEEE 802.22 standard, if the spectrum sensing is done in a 6 MHz channel

to detect a WM having a bandwidth of 200 kHz, different filter bank structures can be

considered. The spectral resolution to detect the WM in TV channels can be calculated
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Table 5.2: Comparison of computational complexity in terms of multiplications

for different filter bank methods. Example: M = 32;M1 = 8;M2 =

4;N = 51

Method Computational Complexity Example value

Direct Implementation NM 1632

Conventional

polyphase FB method
N +M log2 M 211

MS-DFTFB [122] N +M1 log2 M1 + 2N +M2 log2 M2 185

Proposed method 2N +M1 log2 M1 +M2 log2 M2 134

using the relation given below,

M = � BTV

BWM

�, (5.3)

where BTV is the bandwidth of the TV channel and BWM is the bandwidth of the wire-

less microphone. The operator �� is used to select the value of M as the least integer that

is equal to or greater than power of two. When BTV = 6MHz and BWM = 200KHz

then, M = 32 subbands are sufficient to detect WM in all scenarios. If the latency need

to be reduced, a 32 subband filter can be considered in the first stage. This is suffi-

cient to detect WM in all possible scenarios, as the spectral resolution of the subbands

is 187.5 kHz. For a trade-off between complexity and latency, two stages with either

M1 = 16 and M2 = 2 subbands or M1 = 8 and M2 = 4 subbands can be considered.

The comparison of computational complexity of the proposed method with existing

methods using filter bank structures is shown in Table 5.2.

5.2.3 Centroid Method

We use the centroid method to estimate the center frequency of the primary users. The

center of each subband represents the energy in that subband resolution as shown in

Figure 5.5. The energies can be modeled as a trapezoid and the center frequency can be

calculated from the centroid of the trapezoid. The centroid of the trapezoid is explained

in detail in Appendix A. The top edge of the distribution can be defined using a linear

function f(x) = b + x
h
(a − b). The area of a trapezoid is given as A = h

2
(a − b). The
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centroid in the x direction is computed as

Ax̄ =

� h

0

xf(x)dx =

� h

0

x(b+
x

h
(a− b))dx =

h2

6
(2a+ b), (5.4)

where x̄ = h
3
(2a+b
a+b

), and A is the area of the trapezoid. Here, x̄ represents the centroid

of the trapezoid. In case of equal energy at the output of individual subbands, i.e.,

when a = b, the midpoint can be verified as x̄ = h/2. The center frequency of WM

is related to x̄, h represents the granularity of filter bank M , a and b are related to the

energies, E1 and E2 of the adjacent subbands. The minimum of two subband energies

are represented as a, i.e., a = min(E1, E2), and maximum as b = max(E1, E2). Thus,

the estimated center frequency f̂c can be expressed as follows:

f̂c =
h

3

�
2a+ b

E1 + E2

�
(5.5)

A generalized expression is obtained by considering the energies of subband Ei and

adjacent subband Ei+1.

f̂c =
h

3

�
2min(Ei, Ei+1) + max(Ei, Ei+1)

Ei + Ei+1

�
(5.6)

Figure 5.5: Centroid method

The centroid method provides better accuracy in center frequency estimation when

the number of detected subbands is two. If the number of detected subbands is beyond

two the centroid method does not provide accurate estimation of center frequency. Since

the energy distribution can no longer be modeled as a trapezoid and the top edge can
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not be written as a linear function. In such cases, a center of mass method is used for

estimation of center frequency. The center of mass method is explained in detail in

Section 5.2.5.

5.2.4 Multi-User Detection in Wideband Spectrum

One of the key features of CR, is to detect the unused spectrum bands within users in

the available bandwidth. In a muti-user environment with available apriori informa-

tion regarding the number of users, bandwidth of each user, and sensing bandwidth, an

attempt is made to calculate the center frequency and estimate the spectral edges ac-

curately. A center of mass method is used in multi-user environment since the number

of subbands detected can be more than two as multiple users with different bandwidth

can appear in the sensing bandwidth. The computational complexity can be reduced to

determine the occupied spectrum using a multistage polyphase filter bank. The unused

spectrum can be utilized opportunistically to improve the overall spectrum utilization.

The choice of the filter bank resolution in multi-user detection in wideband scenarios is

important to reduce the computational complexity and improve the detection accuracy.

The spectral resolution of the filter bank can be deterministically calculated if the

apriori information regarding the bandwidth of the different primary users in the sensing

bandwidth is available. Consider, Nu as the number of primary users {PU1, PU2, . . . , PUNu}
having bandwidth {B1, B2, . . . , BNu} present over the available spectrum sensing band-

width B. The sensing bandwidth is assumed to be sparse such that
�Nu

j=1 Bj < B;

where, j = 1, 2, . . . , Nu. The number of subbands required in each stage can be calcu-

lated deterministically using the relation below:

Mmax = � B

min{B1, B2, . . . , BNu}
� (5.7)

The operator �� is used to select the least integer that is greater than or equal to powers of

two. Mmax determines the spectral resolution of the filter bank and is dependent on the

smallest bandwidth of the primary user. In order to reduce computational complexity,

Mmax can be further decomposed using the relation Mmax = M1M2. The selection of

M1 and M2 depends on the sparseness of the primary users and available bandwidth.

If the filter bank is implemented with a spectral resolution of Mmax, the detection
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of narrowband users appearing in the sensing bandwidth becomes easier. Since Mmax

is calculated considering the bandwidth of the narrowband users, the spectral resolution

of the filter bank will have finer granularity. The finer granularity in filter banks inturn

increases the computational complexity of the filter bank structure. If the latency need

to be reduced Mmax should be considered for filter bank implementation. For a trade-off

between complexity and latency Mmax can be decomposed and multistage filter bank

structure can be considered for spectrum sensing. In our method, Mmax is decomposed

into two stages in order to reduce the computational complexity.

Two scenarios can occur when primary users of different bandwidth are sensed in a

wide bandwidth as illustrated in Figure 5.6.

Case 1: When the primary users occupy more than one subband, for example PU1

and PU3 as shown in Figure 5.6, the center frequency can be estimated in the first stage

with a computational complexity of N +M1 log2 M1 using the center of mass method.

Case 2: If any primary user appears exclusively within a single subband, for ex-

ample PU2 as shown in Figure 5.6, the center frequency and spectral edges can be

estimated in the second stage with a computational complexity 2N + M1 log2 M1 +

M2 log2 M2.

For better accuracy in detection, the spectral edges can be sensed with finer reso-

lution depending on the binary detection. The edges can be identified from the binary

detection as they have a 10 or 01 transitions, which is illustrated in Figure 5.8. How-

ever, this increases the computational complexity of the detection process. The merit of

our method is that only the spectral edges are sensed with finer granularity instead of

the entire spectral band of the primary user. For most of the sensing scenarios, Case 1

and Case 2 are sufficient to detect the center frequency and estimate the spectral edges.

Since multiple users are present in the sensing bandwidth the different users will have

different bandwidth. The number of subbands detected by the primary users can be

more than two subbands. In such cases the centroid method can not be applied to de-

termine the center frequency. Therefore, a novel method based on center of mass is

proposed to estimate the center frequency and spectral edges.
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Figure 5.6: Illustration of binary detection and multistage filter banks

5.2.5 Center of Mass Method

In Section 5.2.3, a centroid based method was proposed for detection of single narrow

band users in wideband spectrum along with center frequency estimation. The centroid

method can be applied for center frequency estimation only when the detected subbands

are at most two. When the number of detected subbands are beyond two, the center

frequency can be estimated using a center of mass based method. The center frequency

is calculated using the energy at the output of detected subbands and spectral resolution

of the filter bank. We use center of mass method to compute center frequency, where

mass is related to energy and distance is related to frequency.

The center of mass method is illustrated in Figure 5.10. Consider the energy in

different subbands as E1, E2, . . . , Ek and Δ1,Δ2, . . . ,Δk as the center point of the

subbands and Δ as the spectral resolution of subbands in the filter banks as shown in

Figure 5.10. Then the center frequency of the k detected subbands can be calculated
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Figure 5.7: Illustration of center of mass method

Figure 5.8: Illustration of spectral edge detection with fine resolution

using the Equation 5.8

f̂cd =

�k
i=1 EiΔi�k
i=1 Ei

(5.8)

where, i = 1, 2, ..., k. For an M point DFT based polyphase filter bank, the number

of subbands are k = 1, 2, . . . ,M . Consider (P th to Qth) subbands are occupied by

a primary user (Ek > λ), where k = P, . . . Q, which is illustrated in Figure 5.6 for
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primary user PU3. The center frequency of a primary user is estimated as,

f̂cd =

�R
k=P EkΔk�Q
k=P Ek

; k = P, . . . , R, (5.9)

where, Δk = Δ(k− 1)+
Δ

2
. Ek represents the energy at the output of the kth subband,

Δk is the center frequency of the kth subband, P is the first occupied subband number

of a primary user, Q is the last occupied subband number of the same primary user, and

Δ spectral resolution of each spectral band as illustrated in the Figure 5.10.

The center frequency calculation can be extended for estimating the spectral edges

of the primary users. The filter bank detects the number of subbands occupied by a

primary user over the available bandwidth from the energy detection method. The in-

formation regarding the number of subbands and the center frequency can be used to

estimate the spectral edges of the primary user. The rising and falling edges of the

detected primary user are,

f̂rise = f̂cd − Bx/2 (5.10)

and,

f̂fall = f̂cd + Bx/2, (5.11)

where, Bx is the bandwidth of the communication channel/primary user identified de-

pending on the number of subbands detected using energy detection.

Center Frequency of Conventional Filter Banks

In conventional filter bank method, the center frequency is determined using the rela-

tionship given in Equation 5.12.

f̂cd = (P +Q− 1)
Δ

2
(5.12)

That is, the center frequency is the midpoint of the detected subbands. In conventional

filter bank method, the center frequency is a function of spectral resolution.
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5.3 Simulation

In this section, we discuss the simulation setup and results for single user and multiple

users. The single user detection is explained considering the detection of WM appear-

ing in a wideband TV channel using signal following IEEE 802.22 WRAN standard.

The center frequency is calculated using the centroid method for different center fre-

quencies. We simulated multi-users considering the different communication standards

such as Bluetooth, Zigbee, and WCDMA appearing in a wideband channel . The center

frequency in case of multi-user was calculated using the center of mass method and

the spectral edges are estimated. In both the cases the detection accuracy of center

frequency is calculated using the relative percentage error given in Equation 5.13

%Error =

�
fcd − f̂cd

fcd
× 100

�
(5.13)

5.3.1 Simulation Setup for Wireless Microphone Detection

The sensing performance (detection and estimation of center frequency) of the WM is

determined using simulation model provided in [127]. The WM signals are simulated

using frequency modulation as in [118]. We assume the sensing bandwidth is 6 MHz.

Stage 1 has a spectral resolution of 750 kHz (π/M1) for M1 = 8 and Stage 2

has the number of subbands M2 = 4, with spectral resolution 187.5 kHz (π/M1M2).

The polyphase decomposition of spectrum in Stage 1 is [0-0.375-1.125-1.875-2.625-

3.375-4.125-4.875-5.625-6] MHz. WM has three different operating modes, silent, soft,

and loud. The three different operating modes in indoor environment recommended

in [127], are used to generate frequency modulated WM signals. The power spectral

density of the frequency modulated WM as per the specification given in Table 5.3 is

shown in Figure 5.9.

The simulation parameters are given in Table 5.4. Three different scenarios are

considered here.

Case 1: If WM appears with a center frequency of 1.1 MHz, the subband 2 and

subband 3 are sensed as shown in Figure 5.10 and the center frequency is determined

using the centroid method.
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(a) Soft Mode
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(b) Loud Mode
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(c) Silent Mode

Figure 5.9: WM operating conditions
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Table 5.3: WM operating conditions

Operating Mode fm kHz Δf kHz β

Silent 32 5 0.16

Soft 3.9 15 3.85

Loud 13.4 32.6 2.43

Case 2: If the WM appears with a center frequency of 1.125 MHz, the subband 2

and subband 3 have equal energy as shown in Figure 5.11. The center frequency of WM

is at the midpoint of the two subbands.

Case 3: If the WM appears with a center frequency of 0.65 MHz, the subband 2 has

higher energy compared to other subbands as shown in Figure 5.12, and the output of

detected subband is further sensed with finer resolution in Stage 2 to locate the center

frequency using centroid method. The condition is shown in Figure 5.13 for a spectral

resolution of M2 = 4.

It can be inferred, that except for Case 3, the detection and center frequency estima-

tion of WM is completed in Stage 1 with less computational complexity and latency.
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Figure 5.10: Energy distribution for Case 1

The accuracy of center frequency estimation concerning WM using the proposed

method was compared with conventional polyphase DFT filter bank methods for differ-

ent number of subbands M = 8, M = 16, and M = 32. The accuracy of the multistage
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Figure 5.11: Energy distribution for Case 2

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16
x 107 Stage 1 Enegy Distribution

Subband Number

E
ne

rg
y

Figure 5.12: Energy distribution for Case 3

method in [122] is same as the conventional polyphase DFT filter bank method [59]. In

our method, the number of subbands in the first stage was chosen to be M1 = 8 and

the second stage M2 = 4. Simulations are performed for different center frequencies

with different operating modes of WM over a sensing bandwidth of 6 MHz with SNR

varying from 0 to -20 dB. A comparison of our method with the conventional methods

for center frequency estimation in terms of percentage error is shown in Figure 5.14.

It can be inferred from Figure 5.14 that our method has the percentage error less than
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Figure 5.13: Energy distribution at the output of subband 2 in Case 3 for a

spectral resolution of M2 = 4 in second stage

Table 5.4: Simulation parameters

Parameter Value

Capture time τ 2 sec

Bandwidth B MHz 6 MHz

Sampling time Ts 1/12 MHz

Number of samples N = τTs

Samples in first stage

(M1=No.of

subbands in stage 1)

N/M1

Samples in first stage

(M2=No.of

subbands in stage 2)

N/M1M2

Latency N/M1(Ts) +N/M1M2(Ts)

Subband attenuation 100 dB

Prototype filter length 127

4% which is better compared to conventional filter bank methods. It is also observed

that, for coarser resolution M = 8, the percentage error is much higher compared to

finer resolutions M = 16 and M = 32. The computational complexity of proposed
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Figure 5.14: Comparison of proposed method with conventional methods for

different center frequencies of WM

method along with the other methods is tabulated in Table 5.2. The proposed method

provides better accuracy in the estimation of center frequency regarding WM with less

computational complexity.

5.3.2 Simulation Setup for Muti-user Detection

For simulation with multi-users, we considered signals with three different communi-

cation standards Bluetooth (PU1: B1 = 1 MHz), Zigbee (PU2: B2 = 4 MHz), and

Wideband Code Division Multiple Access (PU3: B3 = 5 MHz) [2]. Simulation param-

eters are given in Table 5.5. The simulations are performed for different values of SNR

varying from 0 dB to -15 dB. A typical signal spectrum with the three primary users is

shown in Figure 5.15. The center frequency of different primary users fc1, fc2, and fc3

are varied during the simulation. �Mmax� = 32 calculated using Equation 5.7 is fur-

ther decomposed into two factors with M1 = 16 and M2 = 2. The energy distribution

for the three primary users with M1 = 16 is shown in Figure 5.16. In order to show

the merit of the proposed method, a comparison of relative error between filter bank

method and center of mass method in the estimation of different center frequency for a

primary user PU2 with an SNR of -5 dB is shown in Table 5.6. It is inferred from the

Table 5.6 that the center of mass method achieves better detection accuracy compared
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to filter bank method even in a coarser level of spectrum sensing.

Table 5.5: Simulation Parameters [2]

Parameter Value

Sensing Bandwidth B MHz 20

Sampling time Ts 1/40

Capture time τ 2 sec

Number of samples N = τTs

Subband attenuation 100 dB

Prototype filter length 127

No. of Primary Users : Bluetooth (PU1),

Zigbee(PU2), WCDMA (PU3)
3

Bandwidth of PU in MHz 1, 4, 5

Spectral resolution of filter bank M 32

Spectral decomposition of filter bank

M = M1M2,
M1 = 16, M2 = 2

Table 5.6: Comparison of relative error between center of mass method and

filter bank method

�
fcd − f̂cd

fcd
× 100

�
for PU2

Center Frequency Proposed Method Filter Bank Method

fcd f̂cd Error% f̂cd Error%

6.5 6.6197 1.8415 6.875 5.7690

7 6.9609 0.5585 6.875 1.7850

7.5 7.5025 0.0333 7.5 0.0000

8 8.0315 0.3937 8.125 1.5625

9 9.131 1.4555 9.375 4.1666

13 13.035 0.2692 13.125 0.9615

Simulations are done simultaneously for detecting the primary users and calculating

the center frequency. The calculation of the center frequency of the three primary users

for varying center frequencies are shown in Table 5.7. It can be inferred that filter bank

methods provide better performance only when the center frequencies of the primary

users appear at integer multiples of the spectral resolution.
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Figure 5.15: Spectrum containing BT, Zigbee and WCDMA for fc1 = 2MHz,

fc2 = 8MHz, and fc3 = 15MHz

The rationale for better accuracy in the proposed center of mass method is due to

the fact that the estimation of the center frequency depends on the energy in each sub-

band as well as the spectral resolution of the filter banks. In filter bank method, the

center frequency is a function of spectral resolution alone. The comparison of the pro-

posed method with the conventional methods for center frequency estimation in terms

of percentage error is shown in Figure 5.17. It can be inferred from Figure 5.17 that

the proposed method has the percentage error better compared to the conventional fil-

ter bank methods. The detection precision of filter bank method can be made similar

to the proposed method with finer spectral resolution at the expense of higher compu-

tational complexity. Simulation results show that the center of mass method detects

center frequencies with better accuracy than conventional filter bank techniques.

5.4 Summary

In this chapter, wideband spectrum sensing using polyphase filter banks was discussed.

Multistage polyphase filter banks were used to reduce computational complexity due to

its efficient structure. The sensing was performed from finer to coarser spectral reso-

lution using multistage filter banks. We proposed a centroid method for computing the
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Figure 5.16: The energy distribution at the output of individual subbands for

M1 = 16

center frequency of WM in TV channels depending on the energy at the output of the

subbands in the filter bank. The centroid method provides better accuracy in center fre-

quency estimation when the number of detected subbands is two. The centroid method

detects the presence of WM depending on the energy distribution at the output of each

subband. Compared to the existing schemes, the proposed method has less computa-

tional complexity. If the number of detected subbands is greater than two, the center of

mass method was used for estimation of center frequency.

The rationale behind the center of mass method was, mass is related to energy and

and distance is related to frequency. A center of mass based method was useful for

computing the center frequency of multiple users in a wideband spectrum and estimat-

ing the spectral edges. Computational complexity is reduced in most of the cases, using

the center of mass or centroid method the detection process can be completed in the first

stage with coarser resolution. It is shown through exhaustive simulation that the pro-

posed scheme based on multistage polyphase filter bank and center of mass method can

estimate the center frequency of primary user with higher precision and detect spectral

edges with reduced computational complexity. The proposed method outperforms the

conventional filter bank as it can exploit the uniqueness of center of mass in center fre-

quency estimation with high precision in addition to low computational complexity due

to multistage polyphase filter bank. The rationale behind adapting this method along

90



2 4 6 8 10 12 14 16

Center Frequency Fc (MHz)

0

2

4

6

8

10

12

%
 E

rr
or

M=16 FB Method
M=8 FB Method
M=16 Proposed Method
M=8 Proposed Method

Figure 5.17: Comparison of proposed method with conventional methods for

different center frequencies of Zigbee in SNR = -5 dB

with the mathematical derivation for calculation of center frequency and spectral edges

are discussed in detail. In the next chapter, we discuss non-uniform digital channelizers

using filter banks.

Related publication

A Low Complexity Multistage Polyphase Filter Bank For Wireless Microphone Detec-

tion in CR, Circuits, Systems, and Signal Processing, Springer, 36, 1671-1685 (2016).
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Table 5.7: Comparison of relative error between center of mass method and

filter bank method for three primary user appearing simultaneously

User No.

Center

Frequency

fc

Proposed

Method

f̂cd

Filter Bank

Method

f̂cd

Proposed

Method

Error%

Filter Bank

Method

Error%

Primary

User - 1

2.0 1.886 1.875 5.665 6.25

8.0 7.999 8.125 0.008 1.562

8.5 8.464 8.125 0.415 4.411

15.5 15.499 15.625 0.005 0.805

10 9.998 10.000 0.018 0.000

Primary

User - 2

8.0 8.029 8.175 0.308 1.562

4.0 4.022 3.750 0.555 6.250

4.5 4.475 4.375 0.540 2.777

10.0 9.988 10.000 0.113 0.000

15.0 15.000 15.000 0.000 0.000

Primary

User - 3

15.0 15.000 15.000 0.000 0.000

14.0 13.994 13.750 0.036 1.785

15.0 15.000 15.000 0.000 0.000

4.0 3.994 3.750 0.130 6.250

5.0 5.000 5.000 0.000 0.000
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CHAPTER 6

Non-Uniform Filter Bank Channelizer

Applications such as digital channelizer in Software Defined Radio (SDR), digital au-

dio industry, biomedical signal processing, subband adaptive filtering, and communi-

cation require non-uniform frequency partitioning inorder to better exploit the signal

characteristics [128]. In such applications, implementation of non-uniform filter banks

has elicited enormous interest in multirate signal processing. Particularly, the digital

channelizers are useful to select narrowband channels from wideband signal. Differ-

ent wireless standards have different bandwidths, therefore non-uniform filter banks are

useful in such applications. Due to the advantages of digital channelizers in SDR, more

attention is given to improve the performance of non-uniform filter banks [129].

In this chapter, we discuss the design of non-uniform filter banks (NUFB) with chan-

nel combiners using single and multiple prototype filter approaches. In single prototype

approach, the NUFB is realized using uniform cosine modulation filter bank (CMFB)

structure. The uniform CMFB was implemented from a single FIR, Type-1 prototype

filter. CMFB is designed to satisfy Near Perfect Reconstruction (NPR) conditions such

that the 3 dB point of the prototype filter is optimized at π
2M

, where M is the number of

subchannels in the corresponding uniform filter bank. Channel combiners are employed

to combine the subbands of uniform filter bank. The limitation of single prototype ap-

proach is that, when the number of combiners increases the distortions introduced in

the filter bank increases.

The multi-prototype based method reduces the number of channel combiners and

residual errors compared to single prototype based channel combination techniques. In

multi-prototype method, the prototype filters with different passbands are optimized

independently. In Section 6.1 the existing methods and conditions to be satisfied in

the design of non-uniform filter banks are discussed. Single prototype approach is ex-

plained in Section 6.2 and multi-prototype approaches in Section 6.3. Simulation results

and comparison of single and multiple prototype approaches are detailed in Section 6.4.



6.1 Introduction

Filter banks for various applications demand good frequency response with reduced

implementation complexity. The frequency selectivity of the filter bank depends on the

small passband ripple, high stopband attenuation, and narrow transition width. An im-

portant application of NUFB is digital channelizers in software defined radios (SDR) to

select individual channels from a wideband signal. SDR require stringent specification

on the design of filter banks with narrow transition width and low implementation com-

plexities. Different non-uniform filter bank channelizers have been proposed earlier

using multiplier-less cosine modulated filter banks to reduce the complexity by repre-

senting the coefficients as canonic signed digits and optimizing the filter coefficients

with modified meta heuristic algorithms [130], [129].

In general the approach used for the design of a NUFB is a direct method, which

involves nonlinear optimization with different parameters [131]. NUFB can be im-

plemented indirectly by merging uniform filter banks to achieve near perfect recon-

struction [132]. Tree structure based NUFB using linear optimization is also widely

discussed in literature. However, this approach accumulates the system delay with a

number of stages and can implement subbands in powers of two [133], [134]. Trans-

multiplexers (TMUX) are also used for the non-uniform partitioning of the spectrum.

A multimode transmultiplexer employing Farrow structures for non-uniform decom-

position of signals is proposed in [135]. The constraints for designing an NUFB are

discussed in [136].

Cosine modulated filter bank is an attractive choice for the design of NUFB due

to its simple design and frequency characteristics. Different methods are used for the

generation of NUFB using cosine modulated filter banks. A linear phase NUFB with

interpolated prototype filter is proposed in [137]. NUFB was implemented by merging

uniform filter banks in cases where, the upper band edge frequency of each non-uniform

filter is an integer multiple of the bandwidth of the corresponding uniform band in [138].

The design of NUFB from uniform filter banks using cosine modulation has also been

addressed in [139] and [140].

Most of the literature mention NUFB design using a single prototype approach due

to the simplicity in its design. A design of cosine modulated non-uniform linear phase
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FIR filter bank through the stretching and shifting of a single prototype filter is pro-

posed in [141]. Non-uniform filter banks implemented with more than one prototype

(multiprototype) with different passbands are discussed in [142]. The filter banks were

designed with numerical optimization of a narrowband prototype filter. All the other

prototype filters were derived from the narrowband prototype filter. The multi-prototype

approach in [142] was particularly suitable for the design of filter banks with large num-

ber of filter coefficients.

In this thesis, we focus on the generation of NUFB based on single and multi-

prototype approaches using channel combiners. Channel combiner approach was ini-

tially used to generate non-uniform filter banks from a uniform filter bank. The uni-

form filter bank was implemented by modulating a single prototype filter. However,

when widebands are required from a narrowband prototype filter the number of ad-

ditions and subsequent distortions caused due to merging is significantly high. The

distortions/residual errors in single prototype filter approach can be overcome by the

multi-prototype approach. In multi-prototype approach, the number of combinations

are reduced by designing prototype filters with different passbands. Hence, the ampli-

tude distortion of the designed NUFB is also reduced.

6.1.1 Review of Non-Uniform Filter Banks

In the design of NUFB, certain conditions have to be satisfied to achieve near perfect

reconstruction. The necessary and sufficient conditions required in the implementation

of NUFB are detailed in [136]. Consider an NUFB shown in Figure 6.1, where deci-

mation factors nk are integers. The filter bank is said to be maximally decimated if the

channel decimation factors nk satisfies the following condition,

L−1�

k=0

1

nk

= 1, (6.1)

where, L is the number of non-uniform subbands.

Decimation factors are not the same for all the subbands in NUFB and has to be

constrained to Equation 6.1, such that the average sampling rate is preserved at the

output of the analysis filter bank.
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x(n)

x̂(n)HL−1(z) ↓ nL−1 ↑ nL−1 FL−1(z)

H1(z) ↓ n1 ↑ n1 F1(z)

H0(z) ↓ n0 ↑ n0 F0(z)

...

Figure 6.1: L band non-uniform filter bank [4]

In case of M maximally decimated uniform filter banks with analysis filter bank

Hk(z) and synthesis filters Fk(z), the reconstructed signal can be written as

X̂(z) = T (z)X(z) +
M−1�

l=1

Tl(z)X(zW l
M), (6.2)

where WM = e−j(2π/M). The distortion function T (z) is given as per Equation 6.3 and

also represents the amplitude distortion.

T (z) =
1

M

M−1�

k=0

Fk(z)Hk(z) (6.3)

The aliasing error is given by Equation 6.4.

Tl(z) =
1

M

M−1�

k=0

Fk(z)Hk(zW
M
l ) (6.4)

The three main errors that occur in uniform filter banks are aliasing error, amplitude

distortion, and phase distortion. Methods to cancel such errors in uniform filter banks

are well proven.

In case of NUFB the reconstructed signal X̂(z) is given by [1] and [4], as

X̂(z) =
L−1�

k=0

F̄
k
(z)

1

nk

nk−1�

l=0

X
�
zW l

nk

�
H̄k

�
zW l

nk

�
, (6.5)

where Wnk
= e−j2π/nk . Unlike uniform filter banks, the two summation in Equation 6.5

is not interchangeable. Similar to uniform filter banks aliasing error, amplitude distor-

tion, and phase distortion occur in non-uniform filter banks.
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In NUFB, aliasing can be eliminated if the compatibility set condition is satisfied

with the decimation factors. It is proposed that if the cut-off frequencies of each analysis

filter are integer multiples of their bandwidth, aliasing errors can be avoided [139].

Based on the integer factors, Vaidyanathan et al. proposed a compatibility test on the

set of possible decimation factors that can be used in NUFB design [4].

Compatibility Test on Decimators

The necessary conditions have been found for the choice of decimation factors such

that the NPR condition is satisfied in the design of NUFB [4], [136]. The need for com-

patibility test arises as each alias frequency at the output should occur at least twice for

aliasing to get cancelled. The decimation factors nk should form a compatible set to

pair the alias components in the alias cancellation matrix to cancel aliasing. Compati-

bility test is proposed in [4] as an algorithm to be performed on the decimator values.

The definition of a compatible set is stated as follows:

Let S = {n0, n1, . . . , nL−1} be a set of ordered integers n0 ≤ nl ≤ . . . ≤ nL−1.

The set S is said to be compatible if it satisfies the following conditions:

1. The decimation factors nk has to be the constrained by
�L−1

k=0
1
nk

= 1

2. For ni, li(li ≤ ni−1), there exists nj , lj(lj ≤ nj−1), with nj �= ni, such that

W li
ni

= W
lj
nj

6.2 Single Prototype Approach

In our approach, we have designed an NUFB using uniform cosine modulated filter

bank. The maximum passband ripple magnitudes and the maximum stopband ripple

magnitudes of all the analysis filters and the synthesis filters depend on the prototype

filter and sampling factors. If the FIR lowpass protoytpe filter are used, the cosine mod-

ulated uniform filter banks satisfy linear phase condition. The closed form expressions

for analysis and synthesis filters are given in [1] as

hk(n) = 2h(n)cos

�
π

M

�
k +

1

2

��
n− N − 1

2

�
+ (−1)k

π

4

�
, (6.6)
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fk(n) = 2h(n)cos

�
π

M

�
k +

1

2

��
n− N − 1

2

�
− (−1)k

π

4

�
, (6.7)

where 0 ≤ n ≤ N − 1 and 0 ≤ k ≤ M − 1. The associated NUFB is obtained

by combining the adjacent channels of uniform filter banks using channel combiners

or adders. Channel combiners add the frequency responses at specific locations of the

uniform filter bank to produce a non-uniform bank as illustrated in Figure 6.2. If M is

the number of subbands in the uniform filter bank, NUFB can be implemented with L

subbands where (1 ≤ L < M).

Figure 6.2: Illustration of NUFB from uniform filter bank using channel com-

biner

The non-uniform banks are generated by combining integer number of subbands

constrained to the compatibility condition mentioned in Section 6.1.1. The frequency

response of analysis and synthesis filters of non-uniform filter bank is given by,

H̄k (z) =

Pk−1+pk−1�

m=Pk−1

Hm (z) (6.8)

F̄k (z) =

Pk−1+pk−1�

m=Pk−1

Fm (z) , (6.9)

where, Pl−1 =
�k

l=0 pl−1, l = 0, 1, . . . , L − 1 and P−1 = 0. The number of subbands

to be combined to generate the non-uniform subband is represented as pk. Therefore,

for M uniform filter bank there are L non-uniform subbands with different number of

subbands pk, (k = 0, 1, . . . , L− 1) generated from the different decimation factors nk.

The number of subbands satisfies the condition p0 + p1 + . . . + pL−1 = M and the
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number of subbands to be combined is obtained from the relation pk =
M

nk

.

For example, consider that a 3 channel NUFB has to be generated from a uniform

filter bank of M = 8 with decimation factors (4, 4, 2). Then, the corresponding combi-

nation needed in the NUFB are (2, 2, 4). The 3 channel NUFB is generated from an 8

channel uniform filter bank using a single prototype filter. The prototype filter designed

for a filter length N = 187 and subband attenuation As = 100 dB is shown in Fig-

ure 6.3. The 8 channel uniform filter bank implemented from a single prototype filter

of length N = 187 and subband attenuation As = 100 dB is shown in Figure 6.4. The 3

channel NUFB generated from a 8 channel uniform filter bank using a single prototype

filter is shown in Figure 6.5.
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Figure 6.3: Prototype filter with filter length N = 187 and subband attenuation

As = 100 dB for M = 8 subbands

The prototype filter is optimized to have the 3 dB amplitude response at
π

2M
. If

the adjacent subbands are not combined exactly at 3 dB, distortions occur around the

3 dB as dips or bumps as shown in Figure 6.6. If the subband responses are combined

properly at the 3 dB, flat in-band response can be achieved. The improper combination

at the 3 dB frequency response lead to amplitude distortions in the filter bank design.

Thus, it is necessary that when the adjacent subbands are combined to generate the

non-uniform bandwidth, the subband filters are combined exactly at the 3 dB amplitude

response to eliminate the distortions.
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Figure 6.4: 8 channel uniform filter bank implemented from a single prototype

filter length N = 187 and subband attenuation As = 100 dB for

M = 8 subbands
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Singleprototype Method

Figure 6.5: 3 Channel NUFB from an 8 channel uniform filter bank using a

single prototype filter

As the decimation factors are chosen according to the compatibility condition the

aliasing errors get reduced. In the absence of aliasing error the reconstructed signal can

be written as

X̂(z) = T̄ (z)X(z) (6.10)
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Figure 6.6: Illustration of amplitude distortions introduced due to combiner

mismatch

The distortion function has to be an allpass function such that the amplitude and phase

distortions can be reduced. When analysis filters h̄k(n) and synthesis filters f̄k(n) sat-

isfy the relation in Equation 6.11 the NUFB satisfies linear phase condition and is free

from phase distortions.

f̄k(n) = h̄k(N − n) (6.11)

The amplitude distortions have to be reduced in NUFB by satisfying the power comple-

mentary condition.

The errors introduced in the NUFB in comparison with the uniform filter bank is

explained through an example. Consider, we have a uniform filter bank with M = 4

subbands. Let an NUFB be implemented with L = 3 subbands with a decimation factor

(4, 4, 2) and combination set of (1, 1, 2), such that p0 = 1, p1 = 1, and p2 = 2. Then,

the distortion function of the NUFB is given by

T̄ (z) =
2�

j=0

H̄k(z)F̄k(z) (6.12)

T̄ (z) = H0(z)F0(z) + (H1(z) +H2(z))(F1(z) + F2(z)) +H3(z)F3(z) (6.13)
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Table 6.1: Performance comparison with existing methods for 3 channel NUFB

Decimation

Foactor
Method N

As

( dB)
Epp

Li et al. (4,4,2)
Cosine

Modulation
64 -60 7.803× 10−3

Xie et al (4,4,2) Recombination 63 -110 7.803× 10−3

Soni et al (4,4,2) Tree Structure 63 -80 3.85× 10−3

Kumar et al (4,4,2) Tree Structure 48 -80 3.11× 10−3

Proposed (4,4,2)
Cosine

Modulation
45 -80 2.60× 10−3

T̄ (z) = H0(z)F0(z) +H1(z)F1(z) +H2(z)F2(z) +H3(z)F3(z)� �� �+F1(z)H2(z) + F2(z)H1(z)

(6.14)

T̄ (z) = T (z) +H1(z)F2(z) + F1(z)H2(z)� �� � (6.15)

T̄ (z) = T (z) + e(z) (6.16)

From Equation 6.15 and 6.16, it is clear that a few additional terms are introduced in

the distortion function of NUFB when compared to uniform filter banks. The limitation

of single prototype approach is that when the number of combinations increases the

residual error also increases. Residual error due to combiners can be reduced using the

multi-prototype approach explained in Section 6.3. The single prototype approach was

compared with some of the existing methods in literature and tabulated in Table 6.1.

From the table, it can be inferred that the proposed single prototype approach has better

performance compared to the existing methods. The 3 channel NUFB was designed

from a uniform filter bank of M = 8, with decimation factors (4, 4, 2). The proto-

type filter was designed with a subband attenuation of As = 100 dB and filter length

N = 187.
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6.3 Multi-prototype Approach

In multi-prototype approach the non-uniform filter banks are designed using a combina-

tion of more than one prototype having different passbands. The analysis and synthesis

filter coefficients of the NUFB with different granularity bands can be generated by

cosine modulation of the prototype filters of same filter length N . The multiple pro-

totype filters can be optimized independently with reduced errors, unlike the method

proposed in [142], thereby simplifying the design complexity. In the earlier method,

the prototype filters were designed dependent on each other. Our method optimizes the

3 dB cut-off frequency of the individual prototype filter at ωc =
π

2M
to eliminate the

combiner mismatch and thereby, reduce amplitude distortions.

For simplicity, consider two uniform filter banks with different subbands M1 and

M2 using prototypes hp1 and hp2, respectively. The impulse response of the analysis

and synthesis filters are given by the closed form expressions as [142]:

Bank 1:

h1,k (n) = 2hp1 (n) cos

�
(2k + 1)

π

2M1

�
n− N

2

�
+ θ1,k

�
(6.17)

f1,k (n) = 2hp1 (n) cos

�
(2k + 1)

π

2M1

�
n− N

2

�
− θ1,k

�
(6.18)

where, k = 0, 1, . . . ,M1 − 1.

Bank 2:

h2,k (n) = 2hp2 (n) cos

�
(2k + 1)

π

2M2

�
n− N

2

�
+ θ2,k

�
(6.19)

f2,k (n) = 2hp2 (n) cos

�
(2k + 1)

π

2M2

�
n− N

2

�
− θ2,k

�
(6.20)

where, k = 0, 1, . . . ,M2 − 1.

The prototype filters have linear phase and satisfy the relation f(n) = h(N − 1− n).

Here, θ1,k and θ2,k are the phase terms associated with different filter banks. The phase

difference has to be
π

2
in order to reduce the aliasing error [142]. For the design of

NUFB using multiple prototype filters the phase terms are related by the matching con-
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dition in Equation 6.21.

ej2θ1,k + ej2θ2,k = 0 (6.21)

where, θq,k = (±)k
π

4
, with q = 1, 2, . . . , Q represents different prototype filters hp1, hp2, . . . , hpQ.

The generalized expression for multiple prototype filter banks can be written as hq,k and

fq,k for the analysis and synthesis filter banks, respectively. In our method, the proto-

type was designed using the method proposed in Chapter 3. The prototype filters which

are designed to implement NUFB need to satisfy the following necessary conditions.

1. All the prototype filters have to be of the same length N .

2. The prototype filters should satisfy near perfect reconstruction, bandlimiting and

power complementary conditions as in [93].

��H(ejω)
�� ≈ 0, |ω| > π

M
(6.22)

��H(ejω)
��2 +

��H(ej(
π
M

−ω))
��2 ≈ 1, 0 ≤ ω ≤ π

M
(6.23)

3. The phase terms relative to adjacent filters must differ by π
2
.

4. The prototype filters should satisfy the linear phase conditions f(n) = h(N − 1− n).

The conditions reduce the aliasing error, amplitude distortion, and phase distortion

while combining different prototype filters to implement filter banks with non-uniform

bandwidth. The advantage of our method is that the multiple prototypes can be opti-

mized independently. Filter banks with different bandwidths are implemented by alter-

natively selecting the analysis and synthesis filter coefficients which satisfies the phase

conditions. A flowchart for the design of multi-prototype filter is shown in Figure 6.7.

The procedure followed for the implementation of a multi-prototype non-uniform

filter bank is summarized below:

1. Design Q linear phase FIR lowpass prototype filters of length N optimized to

have their cut-off frequencies at ωc =
π

2Mq

, where q = 1, 2, . . . , Q. All the pro-

totype filters should be designed with the same length and satisfy the bandlimiting

and power complementary condition for satisfying near perfect reconstruction.
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Build L-channel NUFB/TMUX
for the required application

Select filters from each bank
depending on required spectrum

Generate Q-uniform FB’s
using cosine modulation

Design Q number of
prototype filters

⇓

⇓

⇓

Figure 6.7: Flowchart for NUFB design using multiple prototype filters.

2. The corresponding Q uniform filter banks should be generated using cosine mod-

ulation of these prototype filters. The closed form equations as given in Equa-

tion 6.6 and 6.7 are to be used to generate the subband filter responses.

3. Implement an L channel non-uniform filter bank by selecting the subband re-

sponses from each uniform filter bank with proper compatibility set and apply

the channel combination in accordance with the required bandwidth.

For example, consider an NUFB has to be designed with decimation factors (16, 16, 8, 4, 2).

When a multi-prototype approach is considered, four or three prototype filters can be

designed depending on the flexibility. We consider three different prototype filters hav-

ing resolution M1 = 4, M2 = 8, and M3 = 16 with the same length and subband

attenuation. The designed prototype filter is shown in Figure 6.8. The implemented

NUFB will have 5 subbands and are shown in Figure 6.9. All the prototype filters are

designed with the same length N = 187 and subband attenuation As = 100 dB.

105



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

-150

-100

-50

0

50

M
ag

ni
tu

de
 (d

B
)

M2
M1

M3

Figure 6.8: Different lowpass prototype filters with variable granularity

M1 = 4, M2 = 8, and M3 = 16
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Multiprototype Method

Figure 6.9: NUFB with multiple prototype filters having resolution M1 = 4,

M2 = 8, and M3 = 16 and decimation factors (16, 16, 8, 4, 2)
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6.4 Simulation Results of Single and Multi-prototype

Approaches

Comparisons between single and multiple prototype filter bank approaches are shown

through simulations. A 5 channel NUFB is constructed from a 16 channel uniform

CMFB designed from a single prototype filter. Consider the NUFB has decimation

factors (16, 16, 8, 4, 2), then the corresponding combinations required are (1, 1, 2, 4, 8)

using single prototype approach. The prototype filter is designed with a subband atten-

uation of As = 100 dB, and filter length N = 187. The designed NUFB using single

prototype filter is shown in Figure 6.10. The same was implemented with multiple pro-

totype approach. Three different prototype filters were generated for M1 = 4, M2 = 8,

and M3 = 16 as explained in Section 6.3 with the same length and subband attenuation

as in single prototype approach. The single prototype approach required 11N additions

compared to 1N addition in multiple prototype approach. The distortions introduced in

the single and multiple prototype approach are shown in Figure 6.10 and 6.11. From

the comparisons of single and muti-prototype approach it can be concluded amplitude

distortions are reduced in the muti-prototype approach.

0 0.5 1

Normalized Frequency

0.999

1

1.001

1.002

1.003

1.004

1.005

1.006

1.007

M
ag

ni
tu

de
 o

f D
is

to
rti

on
 F

un
ct

io
n

0 0.5 1

Normalized Frequency 

-160

-140

-120

-100

-80

-60

-40

-20

0

20

M
ag

ni
tu

de
 R

es
po

ns
e 

(d
B

)

Figure 6.10: NUFB using single prototype approach and their corresponding

distortion function

The performance comparison of single and multiple prototype filter bank approaches

in terms of amplitude distortion Epp, number of filter taps N , and stopband attenuation
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Figure 6.11: NUFB using multi-prototype approach and their corresponding

distortion function

As is tabulated in Table 6.2. It is observed from the table that the multi-prototype ap-

proach provides better performance when the subband combinations are increased.

It was inferred that the distortion occurring in the multi-prototype method is less

compared to single prototype approach when the combinations are increased. The main

advantage of multi-prototype approach is that the number of additions required in the

channel combiner is much reduced when compared to that of single prototype approach.

Therefore, the complexity in the system and the distortions introduced by the adders are

reduced.

The aliasing error of the given design is not altered as compared with the uniform

bank case. Both the single and muti-prototype approaches have same values since the

stop band attenuation is not altered during channel combinations. The complexity in fil-

ter additions and hence the increased distortions when using a single prototype approach

is reduced using multi-prototype approach since we have the flexibility in choosing the

required prototype.
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Table 6.2: Comparison of single prototype approach vs mutiprototype ap-

proach

Band
As

(dB)

Filter Length

N

Single

Prototype

Multiple

Prototype

Three Band

4,4,2,
-80

47

65

71

2.7× 10−3

2.5× 10−3

2.6× 10−3

2.7× 10−3

2.5× 10−3

2.6× 10−3

Four Band

8,8,4,2
-80

65

71

79

5.4× 10−3

3.8× 10−3

5.1× 10−3

2.7× 10−3

2.6× 10−3

2.6× 10−3

Five Band

16,16,8,4,2
-80

95

125

7.09× 10−2

8.4× 10−3

5.4× 10−3

3.2× 10−3

6.5 Summary

In this chapter, non-uniform bandwidth allocation techniques using cosine modulated

filter banks are discussed. We implemented non-uniform filter banks from uniform

cosine modulated filter banks using single and multiple prototype approaches. A per-

formance comparison of NUFB design using single and multiple prototype filters with

channel combiners is presented. The prototypes are designed using an iterative al-

gorithm which satisfies the NPR conditions. In single prototype based method, non-

uniformity is achieved by combining adjacent subbands constrained by compatibility

set. As the prototype filters are generated to have the cut-off frequency at ωc =
π

2M
,

flat passbands are generated at the merging points.

In multiple prototype method, non-uniform filter responses are obtained from de-

sign of different prototype filters with varying passbands. Different prototype filters

were optimized independently in multiple prototype filter approach. The conditions

to be satisfied by prototype filters in multiple prototype filter approaches were also

discussed. The multi-prototype based method reduces the number of channel combin-

ers and residual errors when compared to single prototype based method. Finally, a

comparative analysis of both methods in terms of complexity as well as accuracy is

presented. The complexity in filter additions and hence the increased distortions in the
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single prototype filter bank is minimized in a multi-prototype based non-uniform filter

bank. In both single and multi-prototype approaches, the NUFB maintains the linear

phase and is found to be simple in terms of implementation

Related publications

A channel combiner approach for the design of near perfect reconstruction non uni-

form filter banks at the IEEE International Conference on Communication and Signal

Processing (ICSSP 2014) Tamil Nadu, 3-5th April 2014.

Analysis of multiprototype over single prototype filters for non uniform filter banks at

the IEEE (INDICON 2014) Pune, 11-13th Dec 2014.
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CHAPTER 7

Rate Request Sequenced Bit Loading Algorithm for

Secondary User Allocation

Significant research has been done to detect the spectral holes, however the spectral uti-

lization is improved only when the detected spectral holes are reallocated to secondary

users [123], [143], [144], [145]. Efficient spectrum utilization is done using bit loading

algorithm based on Channel State Information (CSI) [143]. The spectrum requirements

of secondary users are not known aprori and their request comes at different time slots.

Therefore, it is not possible to use any static resource allocation algorithms for the sec-

ondary users in Cognitive Radio (CR). At present, an extensive research is being carried

out for adaptive resource allocation techniques for secondary users allocation in CR.

The reallocation can be carried out based on instantaneous request, i.e., on a first-

come-first-serve basis. However, this approach does not allow efficient resource alloca-

tion, because the secondary users may have different spectral requirements. In order to

address this issue, an approach based on sequence of request available from the users

and channel condition in terms of CSI need to be used. The maximum bits and power

that can be allocated to each subband is determined based on the CSI and secondary

user modulation schemes.

In this chapter, the performance analysis of a rate request sequenced bit loading real-

location algorithm for allocation of secondary users is examined. This work investigates

subband-wise spectrum sensing followed by spectrum utilization using bit loading algo-

rithms. The spectral holes or free subbands are allocated to secondary users depending

on the user rate request and subchannel capacity. Section 7.1 provides a brief overview

of the existing resource allocation techniques. The rate request sequenced algorithm

is explained in Section 7.2, followed by simulation results in Section 7.3. Simulations

was done to compare the spectral utility between random rate request and sequenced

rate request of secondary users for subchannel allocation.



7.1 Resource Allocation Techniques

In Cognitive Radio (CR), unused spectrum need to be reallocated to secondary user

for efficient spectrum utilization. The secondary users have variable spectrum require-

ments, therefore rate adaptive techniques have to be used for spectrum reallocation.

Spectrum utilization can be maximized by using adaptive bit loading algorithms. In

addition, rate adaptive loading algorithms are considered to provide better control of

interference between CR and primary user receivers [143]. In adaptive bit loading al-

gorithm the number of bits that can be transmitted in each subchannel is determined by

the CSI.

Different optimization techniques have been proposed in literature for resource al-

location. They are broadly classified as rate adaptive algorithms and margin adaptive

algorithms. The Margin Adaptive (MA) algorithms achieve minimum transmit power

given the constraints on data rate and Bit Error Rate (BER). The Rate Adaptive (RA) al-

gorithms maximize the data rate with constraints on transmit power [146]. A maximum

rate loading algorithm for DMT systems was proposed in [147], which assigns energy

to different subchannels in order to maximize the data rate. Even though waterfill al-

gorithms are optimal, it is difficult to realize this in practice. Therefore, suboptimal

algorithms are used to maximize margin for a target data rate in DMT systems such as

chow’s algorithm [148], Fischers algorithm [149], Hughes-Hartogs algorithm [150]. Bit

loading algorithms using Lagrange approach was proposed by Krongold et al. in [151].

To reduce the complexity in allocation, suboptimal techniques are used with adaptive

algorithms in [152].

In order to maximize the data rate for a given transmit power, adaptive bit loading

algorithm is considered to be a better choice to determine the number of bits to be allo-

cated to each subchannel. DMT systems use maximum rate loading algorithm to assign

more bits to a subchannel with higher SNR. The critical requirement of bit loading al-

gorithms is to determine the usable subchannels [147]. A subband based water filling

algorithm for spectrum utilization in CRs operating in ISM band was analyzed in [82].

As in case of spectrum sensing, the subband information is known, therefore the bit

loading algorithm are examined for secondary users allocation. The performance of a

rate request sequenced bit loading reallocation algorithm for allocation of secondary

users in CR are analyzed. The random request for resource allocation from secondary
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users is sequenced based on the data rate. The pool of sequenced rate request is ana-

lyzed to allocate spectrum resource to secondary users in order to increase the spectrum

efficiency.

7.2 Rate Request Sequenced Algorithm for Subchannel

Allocation

Spectral utility is said to be achieved only when the detected spectral holes are effi-

ciently allocated to the secondary users. In our thesis, we focus on the reallocation of

unused spectrum (detected spectrum holes) to the secondary users. We consider a rate

request sequenced bit loading reallocation algorithm for the allocation of spectrum to

secondary users. Free subchannels are allocated to the secondary users depending on

the channel capacity and the user rate request. The bits to be allocated to each subchan-

nel are determined based on the channel state information and modulation scheme used

by secondary users. The channel state information takes care of the different fading

channel conditions and additive white Gaussian noise present in the channels.

Bit loading algorithm is suitable for rate adaptive DMT systems as optimal distri-

bution of discrete bits is possible over different subcarriers [153]. The number of bits

per symbol in each subcarrier can be adjusted according to the channel conditions. The

maximum number of bits that can be allocated to each subchannel is calculated using

secondary user modulation schemes. The crucial part of bit loading algorithm is to

determine the usable subchannels. Allocation of resources to subchannel other than a

useable subchannels increases the probability of error.

After spectrum sensing the spectral holes are detected and the number of free sub-

channels is calculated. Let Nfree be the identified free subchannels. The scheme first

determines the maximum number of bits that can be allocated to each free subchannel.

The energy distribution of each subchannel is calculated using subchannel SNR and the

water filling constant K [147]. The optimal water filling constant is calculated using

the relation in Equation 7.1

K =
1

Nfree


ε+ Γ

Nfree�

n=1

1

gn


 (7.1)
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where ε represents the total energy distributed in the available bandwidth and Γ refers

to SNR gap in each subchannel. The subchannel SNR in each subband is gn =
|Hn|2
σ2
n

.

The SNR gap Γ represents the additional SNR required to transmit the bit rate equal to

channel capacity. The value of SNR gap varies with the modulation scheme used by the

secondary user and depends on the symbol error rate requirement. For Pulse Amplitude

Modulation (PAM), the symbols are real and SNR gap is calculated as in [154].

ΓPAM =
1

3

�
Q−1

�
SERPAM

2 (1− 2−b)

��2
(7.2)

For Quadrature Amplitude Modulation (QAM) the symbols are complex and SNR gap

is calculated as

ΓQAM =
1

3

�
Q−1

�
SERQAM

4 (1− 2−b)

��2
, (7.3)

where SER is the symbol error rate and b is the number of bits per symbol of the mod-

ulation scheme used by the secondary user. As the SNR gap increases, symbol error

decreases. The energy in each usable channel can be calculated as per Equation 7.4

εn = K − Γ

gn
(7.4)

Since, ε is the total energy that can be distributed in the available bandwidth, then

subbands energies are εn = ε
Nfree

. The number of bits that can be allocated to each

subchannel is obtained using the maximum rate loading algorithm [147].

bn =
1

2

�
1 +

εngn
Γ

�
(7.5)

In order to increase the data rate of each subchannel, maximum rate loading algorithm

is chosen to determine the maximum number of bits that can be allocated to each sub-

channel. Subchannel gains are calculated and arranged in descending order to determine

the usable subchannels for secondary user transmission. When noise variance is high,

subchannel SNR reduces and the energy in that subchannel becomes negative. The sub-

channel is declared as a bad channel, when εn < 0, as it is not suitable for secondary

user transmission. In such cases, the total number of usable subchannels reduces to

N∗
free = Nfree − Nb, where Nb is the number of subchannels with negative energy.

Accordingly, the bit allocation is done only for the usable subchannels.
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Upon determining the maximum number of bits that can be allocated to each sub-

channel, the available subchannels are allocated to the secondary users depending on

the rate request. There exist different ways to allocate subchannels to secondary users

for efficient spectrum utilization. The spectrum utility is increased as we allocate from

the pool of sequenced random request received from secondary user for resource allo-

cation instead of random allocation i.e., first-come-first-serve basis. The rate sequenced

resource allocation algorithm is described in Algorithm 4.

Algorithm 4 Rate request sequenced resource allocation

1: Randomly generate L rate requests, R = [R1, R2, . . . , RL], L > Nfree, of sec-

ondary users using Poisson distribution with mean µ and arrange them in descend-

ing order.

2: Determine the maximum number of bits that can be allocated to each subchannel

using bit loading algorithm as B = [b1, b2, . . . , bNfree
], where Nfree is the number

of free subbands and bn = 1
2
log2(1 +

εngn
Γ

).

3: if Rl ≤ bn, l ∈ L, n ∈ Nfree then

4: Allocate nth subchannel to user request l

5: else

6: Discard that request

7: end if

The improvement in spectrum efficiency and reduction in computational complexity

are achieved by pooling and sequencing the random rate requests R from secondary

users and arranging B in descending order. Computational complexity is reduced as

the sorting process is done only once at the beginning of the algorithm. Sequencing R,

allocates the first user with maximum rate request to occupy the subchannel with higher

capacity. In cases where the secondary user rate request does not satisfy the condition

in Step 3, the request gets denied. The process is continued until all the subchannels are

occupied. The allocation of secondary users can be done till the the new set of CSI is

available.

The performance of rate request sequenced resource allocation method was com-

pared with random rate request without pooling and sequencing. In random rate request

allocation, the users were allocated to subchannels in a first-come-first-serve basis. The

disadvantage of random allocation is that the user request with less data rate may occupy
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a subchannel of higher capacity. The last user with high data rate may be denied if sub-

channel is not free. In such cases spectrum is not utilized efficiently and for each data

request searching process takes place from the first subchannel excluding the occupied

subchannels.

7.3 Simulation Results

Simulations were carried out by random generation of secondary user request based on

Poisson distribution with different mean values. A comparison is done between random

rate request and sequenced rate request of secondary users for subchannel allocation.

Let Nfree be the number of vacant subchannels (spectral holes). The resource allocation

to secondary users is done depending on the secondary user rate request. The random

rate requests are generated using Poisson distribution with different mean values and

different modulation schemes (QAM, PAM). Figure 7.1 shows the bit allocation using

QAM with an Symbol Error Rate (SER) of 10−7 and SNR gap of ΓQAM = 9.91 with

mean µ = 6. Figure 7.2 shows the bit allocation using PAM with SER of 10−4 and

SNR gap of ΓQAM = 5.05 using bit loading algorithm. The total number of bits varies

for different modulation with different SER. The simulation are done on the assumption

that the free subchannels are detected and the channel state information is known. The

channel state information gives the subchannel SNR to determine the maximum number

of bits that can be allocated to each subchannel.

In Figure 7.3, Method 1 shows the subchannel allocation using random rate request

and Method 2 shows the pooled and sequenced rate request. By arranging the rate re-

quests and bits per subchannel in descending order, spectrum can be utilized efficiently.

The proposed method was tested for 100 Monte Carlo simulations and it is observed

that Method 2 has the superior performance compared to Method 1. It is observed from

Figure 7.4 that the request denial rate is less when the rate requests are pooled and

sequenced. Therefore, higher capacity is achieved in rate sequenced allocation when

compared to random allocation. For 35 rate requests, only 9 requests are denied using

Method 2 whereas 16 requests are denied using Method 1. The performance of random

rate request is compared with pooled and sequenced rate request for different rate re-

quest and shown in Figure 7.4. The request denial rate gradually increases with increase
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Figure 7.1: Bits distribution in each subchannel with QAM for SER of 10−7

and a SNR gap of 9.91
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Figure 7.2: Bits distribution in each subchannel with PAM for SER of 10−4 and

a SNR gap of 5.05

in number of rate requests.
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Figure 7.3: Subchannel allocation to secondary users with the two methods
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Figure 7.4: Comparison between Method 1 and Method 2 using Bit Loading

algorithm

7.4 Summary

The problem of allocating spectral holes detected by cognitive radio to secondary users

was addressed in this chapter. The bit loading algorithm is applicable in DMT sys-

tems for secondary user allocation. The maximum number of bits that can be allocated

to each subchannel is determined using the channel state information and bit loading
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algorithm. The spectral holes are free subbands are allocated to secondary users de-

pending on the rate request and subchannel capacity. It is concluded that, compared

to random allocation, a sequenced and pooled rate request of secondary users provides

efficient spectral utilization. In addition, it is observed that the request denial rate is

less when rate requests are pooled and sequenced and higher capacity is achieved when

compared to random allocation.

Related publication

Rate Request Sequenced Bit Loading Secondary User Reallocation Algorithm for DMT

Systems in Cognitive Radio, International Journal of Vehicular Technology, Article ID

685491 (2015)
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CHAPTER 8

Conclusions and Future Scope

In essence, our research mainly focuses on exploring wideband spectrum sensing tech-

niques using filter banks for the efficient use of radio frequency spectrum. Various

conclusions drawn are explained in Section 8.1 and future scope of the thesis is briefed

in Section 8.2.

8.1 Conclusions

In this thesis, we developed various wideband spectrum sensing algorithms in cognitive

radio using filter banks and addressed the issues related to non-uniform bandwidth al-

location. A systematic and self controlled prototype filter was designed for filter banks

satisfying near perfect reconstruction. The prototype filter was designed using two in-

put parameters: (i) number of subbands M and (ii) subband attenuation A. All other

system parameters were derived from these two parameters to avoid heuristic inputs.

Wideband spectrum sensing was performed with cosine modulated filter banks and

polyphase filter banks. The filter banks provides higher bandwidth efficiency and lower

sidelobes desirable for spectrum sensing. The spectral holes could be identified by

the threshold determined from probability of false alarm and noise variance. The test

statistic was calculated based on energy detection. The bandwidth efficiency could

be effectively increased by finer granularity bands. It can be concluded that finer the

spectral resolution better the detection performance and the spectral efficiency. The

detection precision of primary users in a wideband spectrum sensing is directly related

to the number of subbands and number of stages in the filter bank. The computational

complexity of the filter bank structure was increased when the number of subbands and

number of stages increased. It was shown in the thesis, computational complexity was

reduced when sensing from a coarser to a finer spectral resolutions using multistage

filter banks.



The proposed centroid method was used for detection of single narrowband user in

wideband with multistage filter banks. The entire bandwidth was divided into con-

secutive non-overlapping frequency bands using DFT based polyphase filter banks.

The mathematical expressions for calculating the center frequency was derived and

presented in the thesis. The proposed method can be used to detect Wireless Micro-

phone (WM) in the presence of signal which follows IEEE 802.22 Wireless Regional

Area Network (WRAN) standard within TV channels. The WM is detected in the first

stage with a reduced computational complexity and latency when WM appears between

adjacent bands. When the WM appears exclusively within a single subband, the cen-

ter frequency can be estimated in the second stage without ambiguity. The proposed

method outperforms the conventional filter bank as it can exploit the uniqueness of

centroid method in center frequency estimation with high precision, in addition to low

computational complexity due to multistage polyphase filter bank.

In cases where the information regarding the bandwidth of different primary users

are available, the spectral resolution of the filter bank is deterministically calculated.

It is shown that, when multiple users appear on a wideband, the number of detected

subbands can be more than two. In such scenarios, a center of mass method was used

for primary user detection. Similar to single user detection, if the primary users occupy

more than one subband, the detection is performed in the first stage. If a primary user

appears exclusively within a single subband, the detection of center frequency and es-

timation of spectral edges are done in the second stage. The mathematical expressions

for calculating center frequency and spectral edges are also derived using center of mass

method and presented in the thesis. The proposed method can be used to detect center

frequencies and spectral edges of multiple users in a wideband spectrum.

We also address the problem of non-uniform bandwidth allocation using uniform

filter banks. As the initial step, a channel combiner approach was used to generate non-

uniform filter banks from a uniform filter bank. Uniform filter bank was implemented

by cosine modulating a single prototype filter. We could combat the issue of residual

errors and amplitude distortion in single prototype filter approach by adopting a multi-

prototype approach.

A rate request sequenced algorithm was proposed for efficient utilization of the

spectrum to efficiently allocate spectral holes to the secondary users. It was observed
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that, when secondary user requests are pooled and sequenced, we achieved higher spec-

tral utilization compared to random allocations on first-come-first- serve basis.

Although an extensive research has been done in spectrum sensing there exist sev-

eral challenges in wideband spectrum sensing which has to be appeased for making cog-

nitive radio networks a reality. Important areas of cognitive radio such as access policy,

coexistence among multiple primary users/secondary networks, cooperative communi-

cation, network security, cognitive network architecture, and hardware implementation

requires further research.

8.2 Future Scope

From our research we conclude that filter banks are plausible for wideband spectrum

sensing. As a result, our research lead to many other areas of research which are tar-

geted towards filter bank based communication systems. We presented wideband spec-

trum sensing using filter banks for implementation in cognitive radios, where resource

allocation could be done as well using filter banks. We briefly highlight some possible

future scope of research in this field.

The proposed spectrum sensing was validated using additive white Gaussian noise.

In future they can be extended for different fading environment. Predominantly, energy

detection method is used for spectrum sensing in filter bank techniques. The detec-

tion performance can be increased, if the noise variance is known. The threshold in

energy detection is a function of noise variance. Therefore, noise variance estimation

techniques can be investigated in wideband spectrum sensing. The proposed method

used fixed threshold for all the subbands in the filter banks. If noise variance can be

estimated in individual subbands, adaptive threshold schemes can be implemented. The

adaptive thresholds can be determined for different stages with different spectral reso-

lution in order to increase the probability of detection. The sensing performance can be

improved by incorporating adaptive schemes in wideband spectrum sensing. In order to

improve the reliability of spectrum sensing in multipath and shadowing environments

co-operative wideband sensing techniques can be investigated.

In this research, the estimation of center frequency and spectral edges were for-

mulated for fractional bandwidth utilization. On the other hand center frequency and
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spectral edge detection can be extended for coexistence among heterogeneous networks

and multiple primary users in the same frequency bands. More practical scenarios can

be validated with the proposed method. The resource allocation techniques available for

reallocation of secondary users in the identified spectral holes are limited in literature.

The filter bank techniques can be further extended for resource allocation as well.
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APPENDIX A

Centroid of Trapezoid

The energy distribution in two subband bins are modeled as a trapezoid and shown in

Figure A.1, where a and b represent the energy in the subband bins and h the spectral

resolution of the subband.

(0,0)

b

h

a

Figure A.1: Centroid of trapezoid

We consider the bottom edge to be perpendicular to the left and right sides of the

trapezoid. The bottom left corner is considered as the point (0, 0). The top edge is then

defined by the linear function

f(x) = b+
x

h
(a− b), (A.1)

where, f(0) = b and f(h) = b+
x

h
(a− b).

The area of the trapezoid is given by A =
h

2
(a + b). A trapezoid is a quadrilateral

with two parallel sides and the centroid lies between the two bases. That is, centroid of

a trapezoid geometrically lies on the median. Therefore,

Ax̄ =

� h

0

xf(x)dx (A.2)

=

� h

0

x
�
b+

x

h
(a− b)

�
dx (A.3)

=

�
1

2
bx2 +

1

3h
(a− b)x3

�h

0

(A.4)

=
h2

6
(2a+ b) (A.5)



Hence,

x̄ =
h2

6
(2a+ b)

h
2
(a+ b)

(A.6)

=
h(2a+ b)

3(a+ b)
(A.7)

The centroid can be verified for the following conditions:

1. If a = 0 the trapezoid becomes a right triangle, and then Equation A.6 becomes

x̄ =
h

3
.

2. If a = b the trapezoid becomes a rectangle and Equation A.6 becomes x̄ =
h

2
.
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