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ABSTRACT

The main objective of this thesis study is to investigate the impact of assimilating

satellite observations for simulating various mesoscale weather features over the In-

dian region. The influence of background error covariance in determining the impact

of satellite observations is the main focus of the present thesis study.

The impact of assimilating humidity information from MeghaTropiques SAPHIR

(Sounder for Probing Vertical Profiles of Humidity) radiances in simulating three trop-

ical cyclones that formed over the Bay of Bengal is investigated in chapter 3 of this

thesis. The three dimensional Variational (3DVar) assimilation technique is used in the

Weather Research and Forecasting (WRF) model. SAPHIR radiances have moderate

positive impact in the simulation of various cyclone features in terms of minimum

sea level pressure, maximum wind speed, area average temperature anomaly, relative

vorticity as well as accumulated rainfall.

WRF 3DVar utilizes a static background error covariance matrix (B) which is esti-

mated using the National Meteorological Center (NMC) method. The various balance

relations between the model variables are expressed through regression relations in

this method. The formulation of the above-mentioned regression relations influence

the background error correlations in 3DVar system. This significantly impacts the

spread of observation information between the various grid points as well as model

variables. This thesis study explores the two formulations - cv5 and cv6 - available

in the WRF 3DVar system. The influence of the formulation of B is investigated in

chapter 4 by performing assimilation of conventional as well as satellite radiance ob-

servations from the Advanced microwave sounding unit (AMSU-A) using cv5 and

cv6 options. Three case studies involving the simulation of monsoon depressions over

the Indian region are performed comparing the impacts of cv5 and cv6 options. It

is seen that the moisture field is maximum impacted by the cv6 formulation of B.

Model simulations of horizontal wind divergence, moisture convergence, temperature

anomaly, relative humidity as well as rainfall are seen to be moderately influenced by

the choice of formulation of B .

xiii



The impact of using cv5 and cv6 options in the 3DVar assimilation of SAPHIR

radiances is investigated in the Chapter 5 , by considering the simulation of three

tropical cyclone cases over Bay of Bengal. The simulation of tropical cyclones are

also impacted in a moderate way by the choice of B matrix used.

3DVar techniques have the disadvantage of utilizing a static B. The evolution of

background errors, are, hence not represented adequately in 3DVar assimilation tech-

nique. Flow-dependent B using ensembles provides a method to alleviate this disad-

vantage. Chapter 6 explores the use of ensembles to provide B. Ensemble Kalman

filter technique is used to assimilate satellite wind observations from Oceansat-2 satel-

lite in the simulation of two heavy rainfalls during the north east monsoon as well as

the simulation of a monsoon depression. It is seen that the use of EnKF method in as-

similating observations provide positive impact on the simulation of these mesoscale

weather phenomena as compared with assimilation using 3DVar method. The present

thesis study, thus, indicates the significant role of B in determining the impact of

satellite data assimilation over Indian region.
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CHAPTER 1

Introduction

The fundamental philosophy of weather prediction owes its origin to the Norwe-

gian scientist Vilhelm Bjerknes, who, in 1904, proposed the following procedure for

numerical model-based weather forecasting. The above procedure has two impor-

tant steps, namely, (i) a diagnostic step where the initial state of the atmosphere is

determined using observations and (ii) a prognostic step in which physical laws as

expressed as a system of coupled nonlinear partial differential equations are used to

estimate the change of the state with time (Lynch, 2008). The first practical step

to implement the above was initiated by Lewis Fry Richardson in the early twenti-

eth century. Richardson’s valiant attempt at predicting weather however turned out

to be unsuccessful. Successful modern numerical weather prediction became a real-

ity with the advent of the first digital computer during 1950s. Since the realization

of the first barotropic model forecast made in early 1950s, the subsequent numerical

weather prediction models have shown considerable improvement as a result of in-

creased computational power, improved physics of the model, increased availability

of data especially satellite data over sparsely observed regions and the use of more ac-

curate data assimilation methods (Kalnay, 2003). Shuman (1989) has opined that the

procedures followed by Richardson were quite similar to those that are in operational

use today. However, the deficiencies in the knowledge of modeling the atmospheric

physics component, numerical instabilities as well as lack of requisite computational

power resulted in the failure of Richardson’s experiment.

The numerical weather prediction is essentially an initial value problem. Hence

the accurate specification of the initial state of the atmospheric system is a very im-

portant requirement for a successful weather forecast. Data assimilation is a robust

technique designed to determine this initial state of the atmosphere, called the ’anal-

ysis’. Estimation of the analysis through the assimilation technique is a complex and

non-trivial problem due to the following reasons. The fundamental problem is due

to the under-determined nature of estimating the initial state of the atmosphere from

its observations. The typical degrees of freedom (the number of values required to
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prescribe the initial state of the atmosphere which depends on the number of three

dimensional grid points and the number of dependent variables of the atmosphere) of

a numerical model is ∼ 107 whereas the total available atmospheric observations are

two orders lower than this. Furthermore, the observations of the atmosphere do not

sample the system in a homogeneous way, both in space and time. Also, different

types of observations have different patterns of error structures. In addition, many

important sets of observations like satellite radiances and observations from Doppler

weather radar (DWR) such as radial velocity and reflectivity do not manifest as model

variables. Data assimilation systems provide the statistically most likely state of the

atmosphere, taking into account all the information from atmospheric observations

as well as a ’prior’ or ’background information’ about the atmospheric system. The

’prior’ or ’background’ or ’first guess’ information of the atmosphere typically is taken

to be the output of a short numerical model forecast itself.

Data assimilation usually proceeds in a sequential manner. A short atmospheric

model forecast defines the apriori first guess available for specifying background in-

formation about the atmospheric system. The available observations of the atmosphere

are used to provide a correction to this background state to generate the "analysis" at

any time. From the analysis, the model is integrated forward in time further. The above

atmospheric model forecast provides the background information at the next analysis

time. The above sequence continues over several assimilation cycles. The informa-

tion provided by the first guess as well as observations of the atmosphere are therefore

significant for obtaining the best possible analysis. Both the above sources of atmo-

spheric information include associated errors of the observations and the background

. Hence a statistical approach is necessary to blend them in a physically consistent

manner. Several such blending (data assimilation) techniques exist for this purpose

which are briefly reviewed in the next section.

1.1 Data assimilation techniques

The earliest available method for quantitative numerical estimation is known as

the ’objective analysis’. Panofsky (1949) employed interpolation of observations to

model grid positions using curve fitting methods and applied suitable ’weights’ de-
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pending on the accuracy of each observation. The above method was further improved

by Gilchrist and Cressman, who in 1954, proposed restricting the polynomial fit of

observations within a local region of influence. In addition to assigning weights to

observations based on subjective analyses and incorporating geostrophic constraints,

they proposed the following two suggestions. The suggestions are the following. (i)

include automatic quality check of observations and (ii) incorporate a previous esti-

mate of the state of the system in the analysis procedure (Daley, 1993).

The successive corrections method (SCM) was developed by Bergthórsson and

Döös (1955). In the SCM method, the analysis increments at each grid points were

estimated as weighted linear combination of observation increments in a region of in-

fluence. The observations weights were inversely proportional to the distance between

observation and model grid points. The analysis increments were added to the back-

ground information to generate an analysis of the state. An iterative variation of this

method was suggested by Gandin in 1959. The methods of optimal interpolation (OI)

provided for the weights to observations relative to their errors (Gandin and Hardin,

1965). OI method was operationally employed in many forecasting centers during

1970s and 1980s.

Another popular technique used for producing optimal estimates of atmospheric

state is nudging or Newtonian relaxation. This method adjusts dynamical variables of

models using the observations. A term proportional to the difference between model

variable and observation is included in the dynamical prognostic equations. The nudg-

ing procedure "adjusts" or "relaxes" the model state close to the observations.

One of the major advancements in data assimilation methods was the introduction

of variational technique (Sasaki, 1958). In three dimensional variational (3DVar) tech-

nique, a cost function proportional to the square of the distance between the analysis

and both the background and the observations is minimized. Minimization procedures

like conjugate gradient method or quasi-newton methods are utilised in 3DVar. This

has the further advantage that observations like satellite radiances and DWR observa-

tions such as radial velocity and reflectivity which do not manifest as model variables

can be assimilated. The above variational technique has been extended to four dimen-

sions to give the four dimensional variational technique (4DVar). In 4DVar, the cost

function includes the distance of the analysis from observations over a time interval.
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The 4DVar method is computationally expensive.

The utilisation of Kalman filter algorithm (Kalman, 1960) provides distinct advan-

tages among the several data assimilation methods. Broadly, the Kalman filter algo-

rithm proceeds in two steps. In the first step, estimates of the current state variables

along with their uncertainties are generated. These estimates are updated in the sec-

ond step when observations are available, by prescribing weights based on their errors.

This is a recursive algorithm and is known to be an optimal filter for linear systems.

However, for a nonlinear system like a weather model, the Kalman filter equations are

not directly applicable since the error covariances cannot be exactly determined. The

use of Kalman filter equations for the purposes of data assimilation in the atmospheric

system received widespread and immediate acceptance with the introduction of the

Ensemble Kalman filter (EnKF) (Evensen, 1994; Burgers et al., 1998; Evensen, 2003)

method. In the EnKF algorithm, the error covariances for background and observa-

tions are estimated using ensembles which can be obtained by perturbing model and

observation states. Several variants of EnKF analysis algorithms exist in the literature.

These fall into two broad categories: stochastic (Houtekamer and Mitchell, 1998) and

deterministic, based on whether perturbed observations are used to obtain the ensem-

ble analysis. Deterministic filters can be further categorized as ensemble adjustment

Kalman filter (EAKF); (Anderson, 2001), ensemble transform Kalman filter (ETKF)

; (Bishop et al., 2001), ensemble square root filter (EnSRF) (Whitaker and Hamill,

2002)), and local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007). As

noted by Tippett et al. (2003), the first three of the above mentioned deterministic fil-

ters yield analysis ensembles with identical means and covariances when implemented

from the same forecast ensemble.

All the assimilation techniques mentioned here combines a background informa-

tion with the observation information by taking into account the error statistics of

both of them. The weight given to each of these components is, in general, inversely

proportional to their errors.

The variational and EnKF based assimilation techniques have been extensively em-

ployed in the recent decades in global and regional assimilation systems. Together

with better observational capabilities through the use of satellite sensors, the use of

sophisticated assimilation algorithms have resulted in marked improvements in nu-
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merical forecasting of the weather. In this context, analysing the impact of such

observations on the improved numerical forecast would help in better utilising the

existing observations as well as in providing guidelines for setting up of future ob-

serving systems. Hence the observation impact studies as undertaken in this thesis

which quantify the impact of satellite observations on weather simulations are highly

relevant.

1.2 Impact of assimilating satellite observations using

3DVar

It is known that the assimilation of satellite observations using the 3DVar technique

has significant impact on the simulation of mesoscale weather systems. A number of

studies have demonstrated the positive impact of satellite observations in the simula-

tion of weather phenomena over the Indian region by assimilating them using 3DVar

technique in Weather Research and Forecasting (WRF) model. A brief review of such

studies are given here.

Monsoon depressions are one of the most significant weather systems that form

over the Indian region. These low pressure systems embedded in the monsoon trough

during the south west monsoon (June-September) provide copious amount of rainfall

over this region. Hence accurate simulation of monsoon depressions are considered

very important. Variational assimilation of satellite observations can contribute to im-

proved simulation of monsoon depressions since these systems form over ocean sur-

faces which are conventionally sparsely observed. Govindankutty and Chandrasekar

(2010) demonstrated the positive impact of assimilating Moderate Resolution Imag-

ing Spectroradiometer (MODIS) retrieved temperature and humidity profiles in sim-

ulating the dynamic and thermodynamic features of monsoon depressions over India.

Sinha and Chandrasekar (2010) showed that assimilation of ocean surface winds from

Quick Scatterometer (QuickSCAT) improves the simulation of mesoscale features of

the monsoon depressions. The positive impact of assimilation of Advanced TIROS

Vertical Sounder (ATOVS) temperature and humidity profiles and Spectral sensor mi-

crowave imager (SSM/I) total precipitable water (TPW) on the simulation of a mon-

soon depression was shown by Govindankutty and Chandrasekar (2011).
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Several studies have demonstrated the considerable positive impacts of assimilat-

ing satellite observations on the simulation of tropical cyclones over the Indian re-

gion. Singh et al. (2008a) and Osuri et al. (2012) showed the positive influence of

Special Sensor Microwave Imager (SSM/I) and Quick Scatterometer (QuikSCAT) ob-

servations in simulating tropical cyclone features. Singh et al. (2011) investigated the

impact of the Quick Scatterometer (QuikSCAT) ocean surface winds, Special Sensor

Microwave/Imager (SSM/I)-derived Total Precipitable Water (TPW), and Meteosat-

7-derived Atmospheric Motion Vectors (AMVs) on the track and intensity prediction

of tropical cyclones over the North Indian Ocean. Sowjanya et al, 2013 established

that assimilation of total precipitable water and surface wind data retrieved from the

Special Sensor for Microwave Imaginary (SSM/I) sensors improved the simulation of

rainfall by the WRF model over the Indian monsoon region. Kumar et al. (2013a)

evaluated the impact of scatterometer and radiometer data on tropical cyclone (Phet)

prediction by assimilating Oceansat-2 scatterometer (OSCAT) winds, wind speed and

precipitable water derived from the Tropical Rainfall Measuring Mission (TRMM)

Microwave Imager (TMI) in the WRF model. Srinivas et al. (2012a) showed the posi-

tive impact of assimilating the Quick Scatterometer (QuikSCAT) ocean surface winds

on the simulations of intensity and track positions of the tropical cyclones Fanoos

and Nargis. Yesubabu et al. (2014a) investigated the improvements in simulating the

various features of two tropical cyclones Jal and Thane by assimilating Oceansat-2

winds and MODIS temperature/humidity profiles in the WRF model. Assimilation

of Kalpana-1 AMVs showed positive impact in 12-h wind forecast over the tropical

region in the upper troposphere as well as in rainfall forecast over India in Kaur et al,

2015.

The above mentioned studies utilized observations retrieved from satellite radi-

ances using inversion algorithms. Variational techniques can directly ingest satellite

radiance measurements through the use of a radiative transfer model. Theoretically,

the assimilation of satellite radiances are expected to yield more positive impact as

compared to the assimilation of retrieved meteorological information. Singh et al.

(2012c) showed that assimilation of Advanced Microwave Sounding Unit-A (AMSU-

A) radiances does improve tropical cyclone simulations. The positive impact of assim-

ilation of assimilation of Kalpana Very High Resolution Radiometer (VHRR) channel

3 clear-sky radiances in the simulation of rainfall over India was demonstrated by
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Singh et al. (2010). The impact of directly assimilating the Advanced Television and

Infrared Observation Satellite Operational Vertical Sounder (ATOVS) radiance in the

WRF model was investigated by Singh et al. (2012b). Singh et al. (2012a) demon-

trated that the assimilation of AIRS measurements has a significant impact on WRF

analysis and short range forecasts over India. Greeshma et al. (2015) showed that

assimilation of AMSU radiances and Atmospheric Motion Vectors (AMV) improved

the intensity and track predictions of tropical cyclones. Routray et al. (2016) evaluated

the improvement in simulation of tropical cyclones over the Bay of Bengal through

the assimilation of satellite radiances

All the above mentioned studies highlight the importance of assimilating satel-

lite observations in WRF model using 3DVar technique for improved simulation of

mesoscale features over the Indian region.

One of the significant factors that affect the impact of observations is the back-

ground error covariance. However, not many studies have investigated the above

impact "in-depth" for the simulation of mesoscale weather features over the Indian

domain. Rakesh and Goswami (2011a, b) , showed that using region-specific back-

ground error covariances instead of global error covariances did improve the simu-

lation of tropical cyclones over the North Indian Ocean (NIO) region. The signifi-

cance of utilizing region-specific BEC was further reiterated by Routray et al (2014)

who utilized the region specific BEC for simulating monsoon depressions. One of

the main components in BEC modeling is the so-called "control variable transform"

(CVT). CVT converts the numerical weather model variables to control variables of

a data assimilation system as well as imposes approximate balance relations. A few

studies have examined the effect of tuning the length scales in the CVTs in estimat-

ing BECs. In the default region-specific specification of BEC (called CV5 option) in

WRF 3DVar system, balance relationships between the stream function with velocity

potential, temperature, and surface pressure are defined. All previous studies over the

Indian region assimilating meteorological observations using WRF 3DVar have used

the CV5 option for specifying the BEC in WRF. However, WRF 3DVar system sup-

ports a modified version of BEC wherein the humidity variable also has multivariate

contributions in the balance relations. This newer option named CV6 option has not

been used for assimilation of observations for limited area weather models over India.
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However, the background error covariances in 3DVar is still isotropic and homoge-

neous, and hence, the flow dependent "errors of the day" do not get represented in it.

Ensemble based data assimilation techniques inherently incorporate flow dependent

error structures in assimilation. There are several studies available in the literature

which have investigated the impact of assimilating satellite observations using ensem-

ble based data assimilation methods in the WRF model. A brief overview of such

studies are given here. However, utilising EnKF based assimilation techniques over

India in a regional model context is a largely unexplored topic in the available litera-

ture at present.

1.3 Previous studies using EnKF for assimilating satel-

lite observations

Torn and Hakim (2009) investigated the impact of assimilating conventional in

situ observations, reconnaissance dropsondes, including data taken during the Hurri-

cane Rainband and Intensity Exchange Experiment (RAINEX) on the simulation of

tropical cyclones. Schwartz et al. (2012) showed the positive impact of assimilating

microwave radiances with ensemble adjustment Kalman filter (EAKF) in the simu-

lation of the track, intensity, and precipitation forecasts of Typhoon Morakot (2009).

The improvement in simulation of tropical cyclones by assimilating radiance obser-

vations from the Advanced Microwave Sounding Unit-A (AMSU-A) using the EAKF

algorithm is demonstrated by Liu et al. (2012). The study by Jones and Stensrud

(2012) assesses the impact of assimilating the temperature and mixing ratio profiles

derived from the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua

satellite in WRF model using EAKF algorithm. Jones et al. (2013) explored the po-

tential of assimilating water vapor-sensitive satellite infrared brightness temperatures

and Doppler radar reflectivity and radial velocity observations with EnKF technique

using an observing system simulation experiment. The impact of assimilating Quick

Scatterometer (QuikSCAT) ocean surface wind vectors and surface mesonet observa-

tions on the simulation of tropical cyclones was investigated by Zhang and Pu (2014).

Wu et al. (2015a) investigated the various aspects of assimilating satellite-derived at-

mospheric motion vectors (AMVs) using the ensemble adjustment Kalman filter.
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The ensemble based assimilation techniques yield superior analyses when com-

pared with 3DVar analyses, in principle. Several studies have compared the two as-

similation techniques and arrived at similar conclusions. Meng and Zhang (2008a)

and Meng and Zhang (2008b) demonstrated that EnKF generally outperforms 3DVar

through the use of flow-dependent error covariances as well as due to its ensemble-

based state estimation. Comparison of EnKF and 3DVar assimilation performances

in assimilating near-surface observations through observing system simulation exper-

iments by Pu et al. (2013) also showed that EnKF assimilation system outperforms

3DVar in producing more realistic analyses. Dhanya and Chandrasekar (2014) show

that using EnKF technique for assimilating Oceansat-2 ocean surface winds in WRF

model has improved the simulation of heavy rainfall event over India, when compared

with that by 3DVar technique.

The main difference between 3DVar and EnKF assimilation systems is in the way

the background error covariances are specified in them. The specification of back-

ground error is significant in assimilation since it helps spread the observation infor-

mation in both spatial and temporal dimensions in the model. However, the model

error cannot be exactly calculated because the true state of the system is not known.

Furthermore, typically the background error covariance matrix has a large number of

elements that cannot be exactly represented in a computing environment. Hence this

matrix has to be estimated and several techniques exist for the purpose. Bannister

(2008a) and Bannister (2008c) have demonstrated the significance of background er-

ror information in a data assimilation system and have reviewed the techniques used in

its estimation. 3DVar technique used in WRF model employ the National Meteorolog-

ical Center (NMC) method (Parrish and Derber (1992)) for estimating the background

error. This technique uses statistics obtained by calculating the forecast differences

between 24hr and 12hr forecasts of the model for a period of typically one month to

estimate the model error. However, this method assumes that the background error

is homogeneous and isotropic and hence does not include the error structures in the

model associated with the atmospheric flow pattern of the particular day considered.

Use of ensembles to estimate the flow-dependent background errors is a method that

can overcome this deficiency. The ensembles, in principle represent the probability

distribution function (pdf) of the system. However, in practise, the pdf of the system

is not fully represented because the pdf is accurate only when the number of ensem-
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ble members become infinitely large. Since this is not practically possible to achieve,

the background error covariance matrix generated by the ensemble techniques is in

general rank-deficient. This results in sampling errors and manifestations of spuri-

ous correlations as well as filter divergence in an ensemble based assimilation system

(Ehrendorfer (2007)).Hybrid data assimilation systems utilize the ensemble-derived

error covariances along with the static background error covariances to provide for an

improved analysis than what is possible using 3DVar alone (Wang et al. (2008a,b); Li

et al. (2012); Feifei and Jinzhong (2014); Mizzi et al. (2015)).

In a data assimilation system, the background information provided by a short

numerical forecast forms an essential component determining the analysis accuracy.

Better estimates of BECs help in improving the positive impact of assimilating mete-

orological observations. Therefore, investigations for improving the existing methods

for estimating BECs are important, especially for limited-area weather models. Stud-

ies that explore and utilize modifications in the existing formulation of BEC are very

much essential for improving the analyses in the case of 3DVar system. However,

over the Indian monsoon domain, detailed investigations on the specification of BEC

in terms of its different formulations are still lacking. Furthermore, improving the

operational analyses through the utilization of flow-dependent error covariances using

EnKF based assimilation systems also is extremely important. The generation and

maintenance of an ensemble with adequate spread is a difficult problem for a limited

area model due to its dependence on boundary conditions. However, the above is still

a largely unexplored research area in the data assimilation literature available for the

Indian region. The present thesis aims to address this ’gap’ in the field of data assim-

ilation research in the country. However, there are some other gap areas in the field

of data assimilation research that do not come under the purview of the present study.

The currently operational data assimilation systems all assume Gaussianity of the un-

derlying probability distribution function. However, in reality, the distributions are

nonlinear due to the inherent nonlinearities in the model. While efforts for incorpo-

rating non-Gaussianity in geophysical data assimilation through the use of techiques

like particle filters are well-underway (Bocquet et al. (2010),?), such research results

are still in the nascent stages only. This is a potential area for future research studies.
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1.4 Objectives of the thesis

Accurate representation of moisture information in the initial condition provided

to a numerical weather model helps to improve the accuracy of its forecast. The

above assumes greater significance over the Indian region where the generation and

evolution of mesoscale weather features depend heavily on the moist convective pro-

cesses. Hence assimilation of moisture information from satellite observations is of

paramount importance. The present thesis first explores the impact of assimilation

of humidity information from MeghaTropiques satellite for simulating three tropical

cyclones over the Bay of Bengal. Accuracy of analysis also depends to a great ex-

tent on the correct formulation for the specification of background error covariance

in a data assimilation system. The effect of multivariate formulation of the moisture

control variable in the WRF model’s background error formulation is investigated in

this study. The thesis explores the impact of assimilating satellite radiances using this

newer formulation of background error covariances in the simulation of mesoscale

weather features over the Indian domain. Another major objective of the present study

is the implementation of ensemble Kalman filter (EnKF) based data assimilation for

a mesoscale model and investigating the improved impact of assimilating satellite ob-

servations using EnKF vis.a.vis the 3DVar system in WRF model.

The thesis is structured as follows.

Chapter 2 provides an overview of the WRF model used in this study. The various

components of the model are detailed. A brief description of the data assimilation

methods along with the observations utilized in this thesis are also provided in this

chapter. Furthermore, the techniques used for validating the model analysis and fore-

cast fields are also given. The impact of assimilating radiances from MeghaTropiques

satellite’s SAPHIR sensor in the simulation of three tropical cyclones is investigated

in chapter 3. The 3DVar technique is used for assimilation in this chapter. The WRF

3DVar system supports various options to specify the background error covariance

matrix. Chapter 4 provides an overview of two of the formulations (cv5 and cv6 op-

tions) used and compares them with each other. Impact of assimilating conventional

as well as radiance observations from AMSU-A using these two formulations are also

investigated. The simulation of three monsoon depressions are considered here to

compare the effect of these two formulations. The influence of the above-mentioned
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background error formulation on the impact of SAPHIR radiances is investigated in

chapter 5 with regard to three tropical cyclone cases. Background error covariances

generated using both cv5 and cv6 options in WRF 3DVar are static in nature. Flow-

dependent background error covariances can be generated using model forecast en-

sembles. Chapter 6 explores some of the techniques used for generating ensembles

using WRF model. This chapter also investigates the improvement in the simulation

of heavy rainfall events over India on using the EnKF assimilation technique as com-

pared with that using the 3DVar technique. Lastly, the chapter 7 provides for a general

discussion of the results of this thesis and the main conclusions of the present thesis

work are summarized.
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CHAPTER 2

Data and Methodology

The present chapter describes the model used in this study along with the assimila-

tion techniques used. The chapter also details the observations utilised for assimilation

as well as verification of model forecasts. The chapter concludes with the description

of different verification measures used to validate the model forecasts.

2.1 Model Overview

The Weather Research and Forecasting (WRF) model is a community mesoscale

non-hydrostatic numerical weather prediction system. It can be used to model the

weather phenomena for operational as well as research purposes. It has two dynamical

cores - the ARW (Advanced Research WRF) core and the NMM (Nonhydrostatic

Mesoscale Model) core. The model supports numerous physics options which can

be used in a broad spectrum of applications. The schematic diagram representing the

various model components are shown in Fig.2.1

WRF 
Preprocesing 

system

Analysis/
Forecasts/

observations

Digital Filter

Data 
Assimilation

Dynamic Solver

Physics Interface

Physics packages

WRF
Chem

Post-processing/
verification

Figure 2.1: WRF model system components(Skamarock et al., 2008)
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2.1.1 WRF pre-processing system

The WRF pre-processing system (WPS) consists of three parts. (i) the simulation

domain is specified and the various terrestrial data sets are interpolated to this domain.

(ii) the various input meteorological fields, typically taken from a global model’s anal-

ysis or forecast or observation data, are read and re-written to an intermediate format.

(iii) the data in the intermediate format are interpolated to the simulation domain. The

output of WPS is used to generate initial conditions as well as boundary conditions

for solving the model equations.

2.1.2 ARW Dynamical core

The WRF model’s dynamic solver uses the Euler equations written in flux form. A

terrain following hydrostatic pressure vertical coordinate denoted by η is used in the

model and is defined as

η = (ph − pht)/µ where, µ = phs − pht

ph is the hydrostatic component of pressure. Its value at the top boundary is denoted

by pht while phs denotes the value at the surface.

The flux form of Euler equations used are given by,

∂tU + (∇.Vu)− ∂x(pφη) + ∂η(pφx) = FU (2.1)

∂tV + (∇.Vu)− ∂y(pφη) + ∂η(pφy) = FV (2.2)

∂tW + (∇.Vw)− g(∂ηp− µ) = FW (2.3)

∂tΘ+ (∇.Vθ) = FΘ (2.4)

∂tµ+ (∇.V ) = 0 (2.5)

∂tφ+ µ−1[(V.∇φ)− gW ] = 0 (2.6)

Here, V = µv = (U, V,W ) where v = (u, v, w), the covariant velocities in the

two horizontal and vertical directions, respectively, while ω = η̇. θ is the potential
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temperature and Θ = µθ. Ω = µη̇ , φ = gz which is the geopotential and p is the

pressure (Skamarock et al., 2008).

The model equations Eqn.2.1-2.6 are discretized using Arakawa C-grid in the hori-

zontal. A time-split integration scheme is used where the meteorologically significant

slow modes are integrated using the third order Runge-Kutta scheme and the fast or

high frequency acoustic modes are integrated over smaller time steps. The model sup-

ports nesting with both one-way and two-way nesting options. A dynamical filter is

supported by the WRF model system , which can be used to remove initial model

imbalances.

Inclusion of moisture

In the WRF ARW model, the moist Euler equations are formulated by coupling

the dry air mass to the prognostic variables and retaining the conservation equation

for dry air. The vertical coordinate is defined as,

η = (pdh − pdht)/µd (2.7)

where µd represents the mass of the dry air in the column and pdh and pdht represent

the hydrostatic pressure of the dry atmosphere and the hydrostatic pressure at the top

of the dry atmosphere. The coupled variables are defined as

V = µdv, Ω = µdη̇,Θ = µdθ

And the moist Euler equations are defined as,

∂tU + (∇.Vu) + µdα∂xp− µd(α/αd)∂ηp∂xφ = Fu (2.8)

∂tV + (∇.Vu) + µdα∂yp− µd(α/αd)∂ηp∂yφ = FV (2.9)

∂tW + (∇.Vw)− g[(α/αd)∂etap− µd] = FW (2.10)

∂tΘ+ (∇.Vθ) = FΘ (2.11)

∂tµd + (∇.V ) = 0 (2.12)

∂tφ+ µ−1[(V.∇φ)− gW ] = 0 (2.13)

∂tQm + (∇.Vqm) = FQm (2.14)
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with the diagnostic equation for dry inverse density given by,

∂ηφ = −αdµd (2.15)

along with the diagnostic relation for the full pressure (vapor plus dry air)

p = p0(Rdθm/p0αd)
γ (2.16)

Here, αd is the inverse density of the dry air and α is the inverse density taking into

account the full parcel density. α = αd(1 + qv + qc + qr + qi + ...)−1 where qv is the

water vapor mixing ratio, qc is the mixing ratio for cloud, qr is the mixing ratio of rain

and qi is the mixing ratio for ice.

Furthermore, θm = θ(1 + (Rv

Rd
)qv) and Qm = µdqm ; qm = qv, qc, qi...

2.1.3 Physics schemes

The WRF model supports simulation of meteorological phenomena over a wide

range of space and time-scales. Those physical processes that cannot be explicitly

resolved in a numerical model, either due to their small-scale or complexity are rep-

resented using various parameterization schemes. Physics schemes for microphysics,

cumulus convection, long wave radiation, short wave radiation, boundary layer turbu-

lence, surface layer and land-surface processes are included in the model. The various

physics schemes are utilised by the dynamic solver through an interface which calls

the required physics packages. The physics packages compute tendencies for the ve-

locity components (un-staggered), potential temperature, and moisture field.

Fig. 2.2 shows a schematic representation of the interactions between various pa-

rameterization schemes in the WRF model.

The interactions between the different physics schemes happen via the various

model state variables and their tendencies. The tendencies for radiation, surface, plan-

etary boundary layer and cumulus schemes are calculated in the first Runge-Kutta

step while the microphysics is computed after the last Runge-Kutta step. The various

physics schemes available in WRF model are the following
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Figure 2.2: Schematic representation of the interactions between various pa-

rameterization schemes in WRF model

Microphysics schemes

Microphysics parameterization schemes attempt to account for sub-grid scale up-

drafts, clouds and precipitation processes. These include processes controlling forma-

tion and growth of cloud droplets and ice crystals, as well as their fall out as precipita-

tion. The microphysics scheme updates the atmospheric state at the end of the model

time step. WRF model supports many microphysics schemes and the microphysics

schemes supported by WRF-ARW model version 3.5 are listed out in the Table 2.1

. These schemes mainly differ from one another in the manner in which the mixing

ratios, namely, the cloud water mixing ratio (qc), rain water mixing ratio (qr), ice mix-

ing ratio (qi), snow mixing ratio (qs), graupel mixing ratio (qg), total ice mixing ratio

(qt), mixing ratio for hail (qh) and the various processes are modelled. Table 2.1 also

indicates the various mass variables that are handled by each of the schemes of WRF

model.
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Table 2.1: Microphysics parametrization options available in WRF-ARW

model

sl.no. Scheme Mass variables

1 Kessler scheme qc, qv, qr

2 Lin et al. scheme qc, qr, qv, qi, qs, qg

3
WRF Single-Moment 3-class scheme

(WSM-3)
qc/qi, qr/qs, qv

4
WRF Single-Moment 5-class scheme

(WSM-5)
qc, qr, qv, qi, qs

5 Eta microphysics qc, qr, qv, qt

6
WRF Single-Moment 6-class scheme

(WSM-6)
qc, qr, qv, qi, qs, qg

7 Goddard microphysics scheme qc, qr, qv, qi, qs, qg

8 New Thompson et al. scheme qc, qr, qv, qi, qs, qg

9
Milbrandt-Yau Double-Moment 7-class

scheme
qc, qr, qi, qs, qg, qh

10 Morrison double-moment scheme qc, qr, qi, qs, qg

11 WRF Double-Moment 5-class scheme qc, qr, qi, qs

12 WRF Double-Moment 6-class scheme qc, qr, qi, qs, qg

13 Stony Brook University (Y. Lin) scheme qc, qr, qi, qs

14 NSSL 2-moment scheme qc, qr, qi, qs, qg, qh

15 NSSL 2-momemt + CCN scheme qc, qr, qi, qs, qg, qh

16 NSSL 1-moment scheme qc, qr, qi, qs, qg, qh

17 NSSL 1-momlfo scheme qc, qr, qi, qs, qg

Cumulus schemes

Arakawa (2004) defines cumulus parameterization as "the problem of formulat-

ing the statistical effects of moist convection to obtain a closed system for predicting

weather and climate" generally. In this sense, the cumulus parametrization handles the

unresolved components of moist convection in a discrete model where the resolved

components influence and are in turn influenced by the unresolved components. Cu-

18



mulus parametrization schemes in the WRF model represent the effects of sub-grid-

scale processes associated with convective and shallow clouds. The vertical fluxes

due to updrafts and downdrafts that are unresolved by the model and the associated

compensating motion outside the clouds are handled by the cumulus physics schemes.

Several cumulus parametrization schemes exist that aim to resolve the sub-grid scale

effects of the convective and/or shallow clouds in the model. They also represent

vertical fluxes due to unresolved updrafts and downdrafts and compensating motion

outside the clouds. The cumulus schemes available in WRF ARW model version 3.5.1

are listed below.

i Kain-Fritsch (KF) Scheme (Kain, 2004): The KF scheme is a mass flux convective

scheme. It determines the existence of instability, estimates whether cloud growth is

possible via an existing instability and also the properties of any convective clouds

that are formed. The KF scheme has three major components , namely , (i) trig-

ger function, (ii) mass flux formulation, and (iii) closure assumption. The trigger

function determines the location and time of occurrence of deep convection. A

steady state entraining/detraining plume model is used to represent the convective

updrafts in the KF scheme. The evaporation of condensate generated within the up-

draft determines the convective downdrafts. The updraft and downdraft processes

determines the mass flux in a convective system in the KF scheme. The closure

of KF scheme depends on the convective available potential energy (CAPE) for

an entraining air parcel. In KF scheme the mass fluxes are adjusted through up-

drafts, downdrafts and environmental mass flux so that at least 90% of CAPE is

removed.(Kain, 2004).

ii Betts-Miller-Janjic (BMJ) Scheme : The BMJ scheme is a convective adjustment

scheme .In such a scheme, the temperature and moisture fields are adjusted (relaxed)

towards observed quasi-equilibrium thermodynamic structures. The basic shapes of

the empirical quasi-equilibrium thermodynamic profiles are based on observations.

The scheme treats both the deep as well as shallow convection. The Betts-Miller

scheme (Betts and Miller, 1986), as modified by Janjic (Janjic, 1994) includes a pa-

rameter called cloud efficiency which depends on the precipitation, entropy change

and the temperature of the cloud. The relaxation time of the scheme is determined

using the cloud efficiency (Janjic, 1994).
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iii Grell Devenyi ensemble scheme (GD) scheme (Grell and Dévényi, 2002) : The GD

scheme is an ensemble based cumulus scheme, in which multiple cumulus schemes

with small variants are run within a single grid box. The linear weight average of

these ensembles of cumulus scheme is taken and is given as feed back to the model.

The framework of this scheme is based on the simple convective parameterization

developed by Grell (1993). The WRF model includes a newer scheme called Grell

3D scheme which is an improved version of GD scheme which can be used for

high resolution model simulations in addition to coarser resolutions also. The Grell

3D scheme provides options to spread subsidence to neighboring grid points also

which makes it suitable for smaller grid sizes where the subsidence may not occur

within the same grid column as the updraft. Furthermore, the WRF model includes

another variant of the GD scheme, called the Grell-Freitas (GF) scheme (Grell and

Freitas, 2014) which provides for cloud-aerosol interactions also, and can be useful

for nearly cloud-scale parametrizations. (Grell and Dévényi, 2002)

iv Simplified Arakawa-Schubert (SAS) scheme (Pan and Wu, 1995): This is based on

Arakawa and Schubert (1974) scheme with the simplifications by Grell (1993) and

with a saturated downdraft. In this scheme, the atmospheric temperature and mois-

ture fields are adjusted using a mass flux concept. The simplified scheme assumes

one cloud type with detrainment only from its top. Modified version of the SAS

scheme that accommodates shallow convection by modifying cloud-base mass flux,

entrainment, and detrainment specifications (Han and Pan, 2011) is also available

in the WRF model.

v Tiedtke scheme (Tiedtke, 1989) : This scheme also uses a mass-flux approach. An

ensemble of clouds is represented using one-dimensional bulk model here. Various

types of convection are considered and the penetrative and midlevel convection are

assumed to be maintained by large-scale moisture convergence while the shallow

convection is maintained by the supply of moisture through surface evaporation.

vi Zhang-McFarlane scheme (Zhang and McFarlane, 1995) : This is also a mass-flux

based scheme which uses a closure condition that CAPE is consumed at an expo-

nential rate by cumulus convection with characteristic time scale. This is a cumulus

scheme suitable for use in general circulation models.
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Atmospheric radiation

The radiation schemes provides for the total radiative flux at any given location.

The surface downward longwave (LW) and shortwave (SW) radiation as well as atmo-

spheric heating due to radiative flux divergence are taken into account by the radiation

parameterization schemes. Shortwave radiation encompasses visible and surround-

ing wavelengths and takes into account, the processes like absorption, reflection, and

scattering in the atmosphere and at surfaces. The longwave radiation accounts for the

infrared and thermal radiation absorbed and emitted by the atmospheric trace gases

and the surface.

The most commonly used radiation parametrization in WRF model is the ’Rapid

Radiative Transfer Model (RRTM)’. RRTM is a spectral-band scheme which calcu-

lates the fluxes and cooling rates for the long wave spectral region (10-300 cm1) for

an arbitrary clear atmosphere. The fluxes are calculated using a correlated-k method

from the line-by-line radiative transfer model (LBLRTM). This model takes into ac-

count water vapor, carbon dioxide, ozone, methane, nitrous oxide and the common

halocarbon (Mlawer et al., 1997)

The Dudhia scheme is most commonly employed for shortwave radiation parametriza-

tion in the WRF model. This scheme integrates the downward solar flux and accounts

for clear sky scattering, water vapor absorption and cloud albedo and absorption (Dud-

hia, 1989).

Planetary Boundary Layer

The planetary boundary layer (PBL) scheme provides for the vertical sub-grid-

scale fluxes due to eddy transports in the whole atmospheric column. The PBL

schemes provide atmospheric tendencies of temperature, moisture (including clouds),

and horizontal momentum in the entire atmospheric column by determining the flux

profiles within the well-mixed boundary layer and the stable layer. The represen-

tation of lower-tropospheric thermodynamic and kinematic structures via the PBL

parametrization helps in improving the mesoscale weather forecasts. The parametriza-

tion of unresolved fluxes of temperature, momentum, and moisture in the PBL requires

a closure scheme for obtaining turbulent fluxes from the mean quantities. In schemes
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following local closure, the turbulent fluxes at each grid points is estimated from the

atmospheric variables and/or their gradients at that grid point. Nonlocal fluxes which

are transported over large distances through eddies in convective conditions are mod-

eled using non-local closure PBL schemes. The most popular among the various PBL

schemes available with the WRF model are the Yonsei University (YSU) scheme and

the Mellor-Yamada-Janjic (MYJ) scheme.

The YSU scheme (Hong et al. (2006)) uses a non-local closure approach whereas

MYJ scheme (Janjic (1994)) is typically a local closure scheme. YSU scheme is a

modified version of medium range forecast (MRF) scheme (Hong and Pan, 1996). The

MRF scheme is modified by treating the entrainment processes at the top of the PBL

explicitly. This is done through the addition of an asymptotic entrainment flux term

to the turbulence diffusion equation. MYJ scheme is an implementation of Mellor

Yamada level 2.5 model. In the MYJ scheme, the eddy diffusion coefficients are

determined from prognostically calculated turbulent kinetic energy (TKE). An upper

limit to the master length scale is imposed using TKE as well as buoyancy and shear

of the driving flow. In the unstable range, the requirement that the TKE production

be non-singular in the growing turbulence case is used to derive the function for the

upper limit. In the stable regime, the condition that the ratio of the variance of the

vertical velocity deviation and TKE cannot be smaller than that corresponding to the

regime of vanishing turbulence is used to impose the upper limits.

Land Surface Model

The land surface models (LSM) provide heat and moisture fluxes over land points

and sea-ice points. This is done by utilising the atmospheric information from the

surface layer scheme, radiative forcing from the radiation scheme, and precipitation

forcing from the microphysics and convective schemes as well as internal information

on the land’s state variables and land-surface properties. Currently, in the WRF model

all the available LSMs are one dimensional and these do not provide for interaction

between neighboring grid points. The thermal diffusion scheme (TD) is a simple 5

layer soil temperature model and the layer and the soil layers are centered at 1, 2, 4, 8,

and 16 cm respectively from the top to the bottom. The temperature at the bottom layer

and below is fixed at a deep layer average. In this scheme, the soil moisture is fixed
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with land use and a season dependent constant and this model not represent adequately

the vegetation processes. The unified NOAH LSM has 4 soil layers centered at 10,

30, 60, 100 cm from the top to the bottom. The major advantage of NOAH LSM

is that it is consistent with time dependent soil fields provided by analysis datasets.

NOAH LSM takes into account, root zone, evaporation, soil drainage, run off and the

vegetation processes. Despite the availability of other options for LSM in the WRF

model, the above mentioned schemes are those that are commonly used for WRF

model simulations over the Indian region. Table 2.2 lists all available the physics

options with the WRF model. For brevity, detailed discussion of the other physics

options are not provided.

The calculation of surface heat and moisture fluxes by the land-surface models as

well as the calculation of surface stress by the planetary boundary layer scheme are

utilized in the surface layer scheme in the model that provides for the friction veloci-

ties and exchange coefficients. The surface layer scheme provides stability-dependent

information about the surface layer and not the tendencies and hence every surface

layer option in the model is linked an associated boundary-layer scheme option.

Furthermore, the WRF model system supports the simulation of emission, trans-

port, mixing, and chemical transformation of trace gases and aerosols through the

WRF-Chem which is the WRF atmospheric chemistry model. The WRF-Chem model

is used for investigation of regional-scale air quality, field program analysis, and

cloud-scale interactions between clouds and chemistry. The WRF-Chem component

is not utilized in the present thesis study.
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Table 2.2: List of Physics parametrization schemes available in WRF model

Cumulus S.W Radation LW Radiation PBL LSM

Kain-Fritsch Dudhia RRTM YSU 5-layer thermal diffusion

Betts-Miller-Janjic Goddard CAM MYJ NOAH LSM

Grell-Freitas CAM RRTMG GFS RUC LSM

Old Simplied

ArakawaSchubert
RRTMG New Goddard QNSE Pleim-Xiu LSM

Grell-3 New Goddard FLG MYNN2 NOAH-MP LSM

Tiedtke FLG Held-Suarez MYNN3 SSiB LSM

Zhang-McFarlane GFDL GFDL ACM2 CLM4

New SAS BouLac

Grell-Devenyi UW

Old Kain-Fritsch TEMF

GBM

MRF
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2.2 Data assimilation techniques

The fundamental problem of data assimilation is to deduce the best possible esti-

mate (called the analysis) of the atmospheric state given the observations and back-

ground information along with their respective error information.

Let x ∈ Rn denote the state vector of the system. If the true state of the system

is represented as xt and a background state is represented as xb, then, the error in

the background state can be represented as �b = xt − xb. It is assumed that the

background error is unbiased . i.e.,��b� = 0 where the angular brackets denote the

expectation value.

Consider a vector of observations y ∈ Rm. An observation operator H(x) pro-

vides a mapping from the model’s state space to the observation space. In general the

observation operator can be non-linear also. y = H(xt) + �o where �o denotes the

error in observations. It is assumed that the observations are unbiased (��o� = 0) and

that the observational and background errors are uncorrelated.The observational error

covariance is given by R = ��o�oT � ∈ Rm×m.

There are several data assimilation techniques available for estimating the analysis.

In this thesis study, two assimilation techniques namely, the three dimensional varia-

tional (3DVar) technique and Ensemble Kalman Filter (EnKF) technique are utilized.

2.2.1 Three dimensional variational technique

In the three dimensional variational (3DVar) technique, the best analysis is obtained

by minimising a cost function given by,

J(x) =
1

2
(x− xb)TB−1(x− xb) + (y −H(x))TR−1(y −H(x)) (2.17)

Eqn.4.1 is minimized by assigning the gradient of cost function to zero. ie, ∇xJ(x) =

0 where,

∇xJ(x) = B−1(x− xb)−HTR−1(y −H(x)) (2.18)

Here, H is the Jacobian of H . Linearising H around the background xb using
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Taylor expansion, substituting in Eqn.2.18 and equating to zero and rearranging, we

get the analysis,

xa = xb + (B−1 +HTR−1H
−1
)HTR−1(y −H(x)) (2.19)

2.2.2 Ensemble Kalman Filter

The Ensemble Kalman filter (EnKF) is an improvement over the original Kalman

filter algorithm where the probability distribution function (pdf) of the prior state is

represented via an ensemble of states X = [x1,x1, ...xN] where x1,x1, ...xN repre-

sent N ensemble members , each with a state space of dimension n. Hence, X is an

n×N matrix whose columns are the ensemble members.

In the original formulation of EnKF (Evensen, 2003; Burgers et al., 1998), the ob-

servation vector is also perturbed, generating an observation ensemble D = [d1,d2...dN.

Here, each perturbed observation vector d is obtained by adding a random vector from

the m-dimensional normal distribution N(0, R) to the observation state vector y.

The EnKF algorithm defines the analysis step consisting of update to each model

state xi as given by,

xi
a = xi

b +K(di −Hxi) (2.20)

This results in an ensemble of analysis states.

The Kalman gain K is defined as

K = P fHT (HP fHT +R)−1 (2.21)

Here, P f is the model forecast error covariance P f = (x− (x))(x− (x)T ). The

overbar denotes an expectation value.

The mean of the analysis ensembles is taken as the best estimate.

This analysis step is followed by the forecast step, where the analysed states are

integrated through the model equations, like in a standard Kalman filter.
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2.3 Data Used

2.3.1 Data for initialising the WRF model

The WRF model, being a limited area model, requires meteorological fields for

initial and boundary conditions. Typically, analyses and forecast fields from a global

model is utilised for the purpose. Here, the forecast fields from National Centers for

Environmental Prediction (NCEP) Global Forecast System (GFS) is used to provide

the initial and boundary conditions for the WRF model. GFS is a coupled global

spectral model consisting of an atmosphere model, an ocean model, a land/soil model,

and a sea ice model. Model output obtained at a horizontal resolution of 0.5◦ and

available every 6 hours are used in this study.

2.3.2 Observations used

Conventional surface and upper air observations

The observations available from NCEP ADP global upper air and surface weather

observations are utilized for assimilation as well as verification here. These include

land surface, marine surface, radiosonde, pibal and aircraft reports together with satel-

lite wind data. These data are available in PREPBUFR format from

http://rda.ucar.edu/datasets/ds337.0/.

MeghaTropiques SAPHIR radiances

The MeghaTropiques satellite, is an Indo-French joint satellite mission and car-

ries the following four instruments: Microwave Analysis and Detection of Rain and

Atmospheric Structure (MADRAS), a microwave imager operating in the frequency

range from 18 to 157 GHz for measuring rain, atmospheric water vapor content, liquid

water content, and ocean surface wind speed; SAPHIR (Sounder for Probing Vertical

Profiles of Humidity) is a six-channel microwave sounder operating at 183 GHz mea-

suring vertical profiles of atmospheric humidity over land and ocean; ScaRab (Scanner

for Radiation Budget), operating in the optical region for estimating Earth radiation

budget over tropical convective region and Radio Occultation Sensor for Vertical Pro-
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filing of Temperature and Humidity.

The chief objective of the MeghaTropiques satellite mission is to investigate the

water cycle and the tropical convection life cycle. The satellite was launched on 12th

October 2011 and has been placed in a circular orbit at 800 km with a 20◦ inclination,

covering the tropical belt between 23◦ N and 23◦S. One of the important features

of the above satellite is that it is able to observe tropical region upto five times a

day. SAPHIR instrument aboard the MeghaTropiques satellite consists of cross-track,

scanning microwave radiometer for atmospheric moisture sounding. The satellite has

six channels around the 183.31 GHz water vapor absorption line. It is expected that by

utilizing SAPHIR radiance, an improved water vapour vertical profile can be deduced.

The satellite has a footprint of 10 km horizontal resolution at the nadir (Aguttes et al.,

2000; Brogniez et al., 2013; Desbois et al., 2003).

AMSU Radiances

The Advanced microwave sounding unit (AMSU) is a multi-channel microwave

radiometer. AMSU-A is flown aboard the NOAA satellites (NOAA-15, 16,17,18) as

well as the NASA Aqua Earth science satellite and the EUMETSAT MetOp series, all

polar-orbiting satellites in sun-synchronous orbits. AMSU-A has 15 channels between

23.8 and 89 GHz, and is used primarily for measuring atmospheric temperatures .

AMSU has a ground resolution near nadir of 45 km.

Ocean surface winds from Oceansat-2 scatterometer

Oceansat-2 is an Indian Space Research Organisation’s (ISRO) satellite which is

dedicated to ocean research and was launched in September 2009. It carried a 13.5-

GHz Ku-band microwave scatterometer (OSCAT), in addition to an Ocean Colour

Monitor and a Radio Occultation Sounder for Atmospheric Studies (ROSA). OSCAT

has a swath of 1800 km with a ground resolution cell of size 50 × 50 km and was

designed to retrieve the horizontal wind speed and direction over the ocean surface.

The instrument provides wind speed measurements of 4-24ms−1 with an accuracy of

2ms−1 and direction with an accuracy of 200. Oceansat-2 satellite provided ocean

surface data during November 2009 to February 2014 after which it became dysfunc-
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tional.

Rainfall observations from TRMM

The Tropical Rainfall Measuring Mission (TRMM) a joint mission between NASA

and the Japan Aerospace Exploration (JAXA) Agency to study rainfall for weather

and climate research, was launched in November 1997 and provided data till April 15,

2015. TRMM carried the following instruments: a 3-sensor rainfall suite (precipita-

tion radar, TRMM microwave imager, Visible and infrared scanner) and two related

instruments (Clouds and the Earth’s Radiant Energy Sensor and Lightning Imaging

Sensor). The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipita-

tion Analysis (TMPA) has provided combined precipitation estimates from multiple

satellites, as well as gauge analyses where feasible with a horizontal resolution of

0.25o × 0.25o (Adler et al., 1993).

2.4 Validation methodology

Quantitative verification of model forecasts are performed using various commonly

employed verification measures in this thesis study. The commonly employed verifi-

cation measures used in this thesis study are given below.

(i) Root mean square error (RMSE) :- the RMSE for a predicted quantity xf with

respect to its observed value xo value is given by

RMSE(x) =

�
1

N

�
(xf − xo)2 (2.22)

where N is the total number of observations.

(ii) Forecast impact parameter (FI) (Wilks, 2011) for any model parameter is de-

fined based on its RMSE and is given by,

FI =

�
1− RMSEE

RMSEC

�
× 100 (2.23)

where RMSEE refers to the RMSE of the assimilation experiment, RMSEC refers
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Table 2.3: Contingency table utilized for calculating skill scores for model rain-

fall with respect to TRMM rainfall observations

TRMM Rainfall

M
od

el
fo

re
ca

st Yes No

Yes a b

No c d

to the RMSE of the control (no-assimilation) experiment.

(iii) Improvement parameter : A positive η implies that the difference between a

control forecast of a model parameter and the observation is more than that between

the parameter forecast in an assimilation experiment and the observation. A positive

value of the improvement parameter indicates that the assimilation experiment has

forecasted a value closer to observations than the control forecast.

η = |observation− control|− |observation− experiment| (2.24)

(iv)Variou skill scores for the rainfall forecast: For quantitative verification of the

rainfall forecast skill, various skill scores like equitable threat score (ETS) , Bias score

, False Alarm Ratio (FAR) and Probability of Detection (POD) are utilized. The above

mentioned skill scores are calculated using the contingency Table 2.3 considering

whether a forecast occurs (yes) or not (no) (Wilks, 2011). While ’a’ is called a hit

(both model and observations have predicted a rainfall event of a certain threshold),

the situation ’c’ is called a ’miss’. Situation ’b’ is called as ’false alarm’ (model sim-

ulates rainfall event of a certain threshold that is not observed), and ’d’ refers to a

situation where both model and observation agree on a non-rainfall event.

ETS estimates how well the observed event is forecast, discounting the situation

where the correct rainfall forecasts occur due to pure chance.

ETS =
(a− ar)

(a+ b+ c− ar)
(2.25)

where ar represents the expected number of correct forecast in a random forecast

30



and is defined as

ar =
((a+ b)(a+ c))

(a+ b+ c+ d)
(2.26)

Bias score estimates the ratio of frequency of forecast events to the frequency of

observed events, indicating whether there is over or under prediction by the model.

The FAR gives the fraction of false alarms (model simulated rainfall that is not ob-

served) and POD gives the fraction of correctly forecast events.

Bias =
a+ b

a+ c
(2.27)

POD gives the fraction of correctly forecast events defined as,

POD =
a

a+ c
(2.28)

False alarm ratio (FAR) is used in conjunction with POD and is defined as,

FAR =
b

a+ b
(2.29)
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CHAPTER 3

Impact of 3DVar assimilation of MeghaTropiques

SAPHIR radiances on the simulation of tropical

cyclones over Bay of Bengal

3.1 Introduction

Accurate prediction of track and intensity changes of tropical cyclones is essential

to minimize the destruction and damage it causes to millions of people. Since tropical

cyclones form and develop over the oceans, observations over oceans become crucial

for their accurate numerical simulation. However, oceans are sparsely observed by

conventional observing systems. This chapter explores the impact of assimilating

MeghaTropiques SAPHIR radiances in simulating three tropical cyclones over the

Bay of Bengal using the WRF model.

Many previous studies like (Langland et al., 2009; Chen, 2007; Singh et al., 2008b;

Srinivas et al., 2012b; Wu et al., 2014, 2015b; Yesubabu et al., 2014b) etc have shown

that assimilating satellite observations did improve the simulation of tropical cyclone

features.

There are two distinct ways in which microwave satellite observations are assim-

ilated in a model. The first is to use the satellite-observed radiances directly in the

assimilation system by utilising a radiative transfer model (RTM) to simulate the ra-

diance values corresponding to the model variables. The second method is to utilise a

retrieval algorithm to invert the observed radiances to atmospheric variables, the latter

can then be directly assimilated in the model without the need for an RTM. How-

ever, the second method has some inherent drawbacks since, the inversion algorithm

entails approximations, which results in errors. Furthermore, the assumption of non-

correlated observation errors is more true in assimilating the radiance observations

directly (Derber and Wu, 1998; McNally et al., 2000; Eyre et al., 1993). Hence, it is

better to assimilate radiance observations directly in a numerical model.
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Unlike in the case of infra-red and visible frequency radiations, clouds and aerosols

are essentially transparent for the microwave frequencies and allow the latter to pass

through. Hence, microwave satellite sensors are vital in providing observations over

tropical cyclones. Singh et al. (2013) have assessed the quality of radiances measured

by SAPHIR and have assimilated these observations into the Weather Research and

Forecasting (WRF) model. They showed that the assimilation of SAPHIR radiances

resulted in improvements in the simulation of fields such as moisture, temperature,

winds and precipitation etc. The present study aims to investigate the impact of as-

similating SAPHIR observations in the simulation of tropical cyclones over the Bay

of Bengal. The genesis and life cycle of a tropical cyclone is significantly dependent

on the convective processes over oceans. The inclusion of humidity information over

the oceanic regions can, hence, significantly impact on the simulation of a cyclone

by a numerical model. The Advanced Research Weather Research and Forecasting

(WRF ARW) model and its three dimensional variational (3DVar) assimilation tech-

nique have been utilised in this study. Three tropical cyclones that formed over the

Bay of Bengal have been considered in this study to investigate on the impact of atmo-

spheric humidity measurements from SAPHIR on the model simulation of the tropical

cyclones.

The chapter describes the numerical experiments performed, the cases investigated

and discussion on the impact of SAPHIR radiance assimilation in simulating the trop-

ical cyclone cases that are investigated.

3.2 Model configuration

Fig.3.1 shows the model domain used in this study. The WRF ARW model is

configured in a two-way nested domain. The outer domain has 200 grid cells in the

east-west direction and 170 grid cells in the north-south direction with a horizontal

resolution of 27 km. The inner domain has a horizontal resolution of 9 km with 325×
274 grid cells in the east-west and north-south directions respectively. Both domains

have 30 levels in the vertical. Both the domains use Kain-Fritsch cumulus scheme with

Yonsei University Scheme for planetary boundary layer, RRTM scheme for long wave

radiation , Dudhia scheme for short wave radiation, Kessler scheme for microphysics
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Figure 3.1: Model Domain used in the experiment

and NOAH land surface model for land surface parameterisation.

3.3 Observations assimilated

The global surface and upper air observations available from NCEP include land

surface, marine surface, radiosonde, pibal and aircraft reports from the Global Telecom-

munications System (GTS), profiler and US radar derived winds, SSM/I oceanic winds

and TCW retrievals, and satellite wind data from the National Environmental Satel-

lite Data and Information Service (NESDIS) (NCEP, 2008). These observations are

assimilated in this study along with the radiance observations from SAPHIR sensor

of MeghaTropiques satellite. Fig.5.2 shows the distribution of observations that are

typically available over the domain, used for assimilation in this study.

3.4 Assimilation Methodology

The available observations are assimilated using the three dimensional variational

(3DVar) technique here. The background error covariance (B) associated with the

model forecasts over the experimental domain has been estimated using the NMC

method which approximates the background error using model forecasts which have

different lead times (24 hours and 12 hours in the regional) valid at the same time. The
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Figure 3.2: Distribution of typically available observations over the domain

used for assimilation

statistics for the above calculation are obtained from model simulations over a month

long period.

The WRFDA system, by default, supports the assimilation of radiances from sev-

eral satellite sensors directly. However, the assimilation of observations from the

SAPHIR sensor aboard the MeghaTropiques satellite is not supported as such in the

WRF model. Hence, modifications are made in the programming modules associated

with assimilating observations from the new sensor (SAPHIR) in the WRF 3DVar

system.

Direct assimilation of satellite radiances in a numerical weather model requires

a radiative transfer model (RTM) which simulates the model-equivalent brightness

temperatures. WRF varitaional assimilation system supports the use of two RTMs

, namely the (i) Radiative Transfer for Television and Infrared Observation Satellite

(TOVS; RTTOV) developed and maintained by the European Organisation for the

Exploitation of Meteorological Satellites (EUMETSAT), and the U.S. Joint Center for

Satellite Data Assimilation (JCSDA) CRTM (Barker et al., 2012) and (ii) Community

Radiative Transfer Model (CRTM) developed at the Joint Center for Satellite Data

Assimilation (JCSDA). The RTTOV model (Saunders et al., 2005) is used in this study
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for simulating radiances from model variables.

The observations are subjected to quality control check before assimilation. Mete-

orological observations available from NCEP in prepbufr format are already quality-

controlled for assimilation into the various NCEP analyses (Keyser, 2013). Further-

more, a gross quality check is performed by WRF 3DVar system and observations that

differ from the model’s first guess by more than five times the observation error stan-

dard deviation are excluded from assimilation. Quality check has also been performed

for the MeghaTropiques SAPHIR radiances. The precipitation affected radiance ob-

servations have not been considered in this study using the method used by Singh

et al. (2013). In this study, the observation errors for SAPHIR radiances are assumed

to be 3K for all the channels. In addition, the observations from channel S6 only over

land are used for assimilation as the observations from this channel have impact from

land surface. Since the observational errors are assumed to be uncorrelated in the

horizontal, observation thinning is also performed on SAPHIR radiances.

In addition to quality check, the radiance observations are also required to undergo

a bias correction since the radiance measurements and the RTMs are prone to con-

tain biases (systematic errors). The biases in the observations depend on platform,

instrument, channel, scan angle, and atmospheric conditions. The bias correction co-

efficients can be estimated either offline (Harris and Kelly, 2001) or using a varia-

tional bias correction (VarBC; (Dee, 2005), (Auligné et al., 2007)). This study uses

the VarBC scheme for removing the SAPHIR radiance biases.

Cyclone Cases Investigated

3.5 Cyclone Thane (25-31 December, 2011)

3.5.1 Synoptic Conditions

The very severe cyclonic storm Thane formed as a tropical disturbance over the

southeast Bay of Bengal on 24th December 2011. The above system concentrated into

a depression on 25th December 2011 and lay over 8.5◦N, 88.5◦E. Moving northeast,

37



the depression strengthened into deep depression by 00Z 26 December 2011. Further

moving northwards, the system became a tropical cyclone by 18Z of 26th December

2011 and lay centred near 11◦N, 87.5◦E. The cyclone moved north-westwards over the

southeast Bay of Bengal and lay over 12◦N, 87◦E on 27 December 2011. It then moved

westwards and intensified into a severe cyclonic storm by 28th December 2011. By

12Z of the same day, the system further intensified into a very severe cyclonic storm.

Further moving west, the very severe cyclonic storm crossed north Tamil Nadu coast

around 00Z 30th December 2011. The system moved westwards and weakened into a

severe cyclonic storm by 03Z of the same day. Moving further westwards , the system

further weakened into a deep depression by 06Z of 30th December 2011. Further

moving westsouthwestwards, it further weakened and dissipated into a low pressure

area by 31st December 2011.

3.5.2 Experimental Details

The WRF model is configured in the manner that is described in section 3.2. The

model is initialized using forecast fields from GFS model of 0.50×0.50 horizontal res-

olution. From the initial conditions valid at 18Z of 24th December 2011, WRF model

is integrated for a period of 6 hours for model spin up. Thereafter, two numerical

simulation experiments are performed. (i) ctrl run - A control run where the surface

and upper air observations together with satellite winds from NCEP are assimilated

at 00Z, 06Z, 12Z and 18Z of 25th December 2011. From the analysis at 18Z of 25th

December 2011 a free forecast is performed without any further assimilation of ob-

servations till the cyclone experienced landfall on 30th December 2011 (ii) saph run

- Here, along with NCEP surface, upper air and satellite wind observations, radiance

observations from SAPHIR are also assimilated at 00Z, 06Z, 12Z and 18Z of 25th De-

cember 2011. A free forecast run is performed from 18Z 25 December 2011 to 00Z

30th December 2011 without any assimilation of observations during the free forecast

period.
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Figure 3.3: Analysis increment for ctrl (a-d) and saph runs (e-h) for zonal wind

(a,e), meridional wind (b,f), temperature (c,g) and water vapor mix-

ing ratio (d,h) at model level 1 for the cyclone Thane

3.5.3 Results and discussion

Fig.3.3 indicates the analysis increment for ctrl (a-d) and saph runs (e-h) for zonal

(u) wind (a,e) in ms−1, meridional (v) wind (b,f) in ms−1, temperature (c,g) in K and

water vapor mixing ratio (q; d,h) in gkg−1 at model level 1 for the cyclone Thane.

It is clear that the SAPHIR radiances do have influence on the analysis fields. In

comparison with the ctrl analysis, the assimilation of SAPHIR humidity information

has resulted in a small reduction in u-wind over the Bay of Bengal region while the

temperature at model level 1 has been slightly lowered due to SAPHIR assimilation.

The assimilation of radiances from SAPHIR has also modified the analysis field of q

over relatively larger number of grid points as compared with the ctrl run.

Mean sea level pressure and wind

Fig.3.4 depicts the mean sea level pressure (slp) and lower tropospheric wind at

850hPa at (+00hr forecast), 24 hour forecast (+24hr) and at 48 hour forecast (+48hr)

simulated by the ctrl and saph runs. From Fig.3.4(a-c) it can be seen that the initial

position and structure of the slp and wind fields in saph runs are relatively closer
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Figure 3.4: Mean sea level pressure and 850hPa wind from GFS analysis

(a,d,g), CTRL run (b,e,h) and 3DVar run (c,f,i) at +00hr, +24hr and

+48hr forecasts for cyclone Thane
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to the GFS analysis as compared with the ctrl simulation. After 24 hours of model

integration, the cyclonic system is seen to have intensified more in the ctrl run as

compared with the GFS analysis. However, the assimilation of SAPHIR radiances in

the saph run has resulted in the system reaching an intensity comparable with GFS run

in the 24hr simulation as seen in Fig.3.4(d). The 48 hour model forecast of slp and

wind (Fig.3.4(h-i)) as compared with the GFS analysis shown in Fig.3.4(g) indicates

that the model simulations have resulted in greater intensification of the cyclone than

seen in the GFS analysis. There are errors in the simulation of both position and

intensity of the cyclone by both ctrl and saph runs, with the saph runs showing the

system relatively closer to land than seen in ctrl run as well as GFS analysis.

Figure 3.5: Time series of minimum sea level pressure in hPa (a) and maximum

wind speed in ms−1 (b) for cyclone thane

Fig.3.5a shows the time series of minimum sea level pressure simulated by the

CTRL and 3DVar runs as compared with the IMD observations for cyclone Thane

during the free forecast period. The initial value of minimum slp in saph run is closer

to that observed by IMD observations. The ctrl run has simulated a more intense

system at the initial forecast hours. Furthermore, the observed intensification of the

cyclone is not faithfully reproduced by the saph run after 42 hours of model integration

(ie. after 12Z 27 December 2011). The time series of maximum wind speed simulated

by the CTRL and 3DVar runs along with the observations from IMD are shown in
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Fig.3.5b. As seen in the case of simulation of minimum slp, the maximum wind speeds

simulated by the model in the saph run is closer to observation than that simulated in

the ctrl run during initial forecast hours. Both the ctrl and saph runs have simulated

stronger winds than the observed. The observed winds strengthen especially after 00Z

28December 2011, corresponding to the intensification of the system. However, the

cyclone simulated by the models reveal no intensification of wind speed, after this

time. This may be because of the fact that assimilation of SAPHIR observations is

not attempted over the entire duration of the simulation period. The model errors do

manifest during the free forecast period and this may cause increase in the errors in the

cyclone simulation. Assimilating observations throughout the life cycle of the cyclone

system may possibly contribute to simulating the cyclonic features more accurately by

the WRF model.

Vertical profiles of average temperature anomaly and relative vorticity

Figure 3.6: Area averaged and time averaged temperature anomaly (a) and rel-

ative vorticity (b) in a 3◦×3◦ box around the cyclone centre for

cyclone Thane

To investigate the impact of SAPHIR radiance assimilation on the vertical thermo-
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dynamic structure of the tropical cyclones, an area averaged and time averaged tem-

perature anomaly is analysed. For this, a 3◦× 3◦ box is considered around the cyclone

centre. The temperature anomaly is defined as the difference of the average tempera-

ture in this box and that from the outside environment. This temperature anomaly is

averaged over the first 48 hours of the free forecast period. The average temperature

anomaly for GFS analysis, CTRL run and 3DVar run are shown in Fig.3.6a. The trend

in the average temperature anomaly profile in gfs analysis is reasonably reproduced

by both the model runs. However, the temperature anomaly values simulated by the

saph run are closer to GFS analysis in the lower model levels as compared with the ctrl

simulation. Fig. 3.6b indicates the area averaged and time averaged relative vorticity

profile in a 3◦× 3◦ box around the cyclone centre. Here also, the first 48 hours of the

model free forecast is considered for time averaging based on inference of trend of

maximum wind speed and minimum sea level pressure as seen in Fig.3.5. The relative

vorticity profile (Fig.3.6b) shows that the saph run has simulated a stronger vortex in

the lower levels as compatred with the ctrl as well as GFS analysis. However, the

profile of relative vorticity over the higher levels in saph run is closer to the profile

from GFS analysis.

Rainfall

Fig.3.7 shows the spatial distribution of 24 hour accumulated rainfall for day 1 and

day 2 forecasts from CTRL run (Fig.3.7(b,e)) and 3DVar run(Fig.3.7(c,f)) along with

observed rainfall from TRMM (Fig.3.7(a,c)). The maximum rainfall observed is over

the oceans. While there are location and intensity errors in the simulation of maximum

rainfall in both the CTRL and 3DVar runs, the 3DVar run simulates the accumulated

rainfall field with lower location and intensity errors than the CTRL run.

A quantitative measure of improvement in rainfall simulation due to assimilation

of SAPHIR radiances is obtained by calculating statistical skill scores of 48hr accu-

mulated precipitation simulated by the model. The skill scores are calculated with

respect to TRMM rainfall observations. Fig.3.8 shows the equitable threat score

(ETS)(Fig.3.8a), bias score (Fig.3.8b), false alarm ratio (FAR) (Fig.3.8c), and proba-

bility of detection (./images/chapter3) (Fig.3.8d). 3DVar run has higher ETS scores,

higher ./images/chapter3 scores and lower FAR scores in all the higher rainfall thresh-
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Figure 3.7: 24 hour accumulated precipitation (in mm) from TRMM observa-

tions (a,d), CTRL run (b,e) and 3DVar run (c,f) forecasts for day

1(d-f) and day 2(a-c) for cyclone Thane

Figure 3.8: Equitable threat score (a), bias (b), false alarm ratio(c) and proba-

bility of detection (d) of 48hr accumulated rainfall estimated with

respect to TRMM observations for cyclone Thane
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olds . Bias values are similar in both CTRL and 3DVar runs. The above result indi-

cates that the assimilation of SAPHIR radiances has a moderate positive impact on the

heavy rainfall simulation.

3.6 Cyclone Nilam (28 October - 01 November 2012)

3.6.1 Synoptic Conditions

A depression was formed over southeast and adjoining southwest Bay of Bengal

on 28th October 2012. Moving westward, the system deepened into a deep depression

by 29th October 2012 near 9◦N, 83.0◦E. The deep depression moved further west and

intensified into cyclonic storm Nilam. The storm then moved northnorthwestwards,

crossed north Tamilnadu coast near Mahabalipuram on 31st October 2012. After ex-

periencing landfall, the cyclonic storm Nilam moved west-northwestwards and weak-

ened gradually into a deep depression and then into a depression over south Interior

Karnataka in the morning of 01st November 2012.

3.6.2 Experimental Details

For the simulation of cyclone Nilam, the GFS model forecasts of 0.50 × 0.50 hori-

zontal resolution are used to initialize the WRF model. From the GFS forecasts fields,

the model has been integrated for a 6-hour spin up from 18Z 27th October 2012. Sub-

sequently two numerical experiments are performed. (i) ctrl run - surface and upper

air observations from NCEP as well as satellite winds are assimilated in the control

run at 00Z, 06Z, 12Z and 18Z of 28th October 2012. (ii) saph run - Assimilations

are performed in a cyclic manner at 00Z, 06Z, 12Z and 18Z of 28th October 2012

by ingesting SAPHIR radiances also to the observations assimilated for the ctrl run.

For both ctrl and saphir runs, the WRF model has been integrated in a free forecast

mode with no further assimilation of observations, till the cyclone experienced land

fall. The model domains’ horizontal resolution, number of grid cells in the E-W and

N-S directions as well as the number of vertical levels for the simulation of cyclone

Nilam are the same as utilized for cyclone Thane. The physics options utilized here

are also the same as used for cyclone Thane.
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3.6.3 Results and discussion

Mean sea level pressure and wind

The spatial structure of mean SLP and 850hPa wind vectors from GFS analysis,

ctrl run and 3DVar run are shown in Fig.3.9. Fig.3.9(a-c) shows the SLP and wind

fields at the start of the free forecast. Both ctrl and saph runs simulate a relatively

stronger vortex closer to SriLanka than seen in the GFS analysis. After 24 hours, the

saph run has simulated a cyclonic system with a larger horizontal extent than in the

GFS system. However, by 48 hours of model forecast, the saph run has simulated a

spurious vortex over the southern tip of India.

The time series of minimum SLP and maximum wind speed for Nilam cyclone is

shown in Fig.3.10a and Fig.3.10b respectively. As inferred from the spatial plots for

slp and wind Fig.3.9, the time series plot also reveals that the model has simulated a

stronger cyclonic system than what is observed in terms of minimum slp and maxi-

mum wind speed. Both ctrl and saph runs have however, over estimated the strength

of the cyclonic system. However, the saph run has simulated a cyclonic system having

both minimum slp and maximum wind speed closer to observations as compared to

the ctrl run.

Vertical profiles of average temperature anomaly and relative vorticity

The time averaged and area averaged air temperature anomaly profile and rela-

tive vorticity in a 3◦× 3◦ box around the cyclone centre for the first 48 hours simu-

lated for cyclone Nilam are shown in Fig.3.11(a) and (b). The temperature anomaly

(Fig.3.11(a)) indicates that the model has simulated a stronger warm core at the sur-

face in both ctrl and saph runs, as compared with the GFS analysis. The warm core at

300 hPa is more pronounced in the ctrl simulation as compared with the saph run as

well as GFS analysis. Also, the relative vorticity profile is also stronger in the ctrl run

as compared with the saph run at all levels.
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Figure 3.9: Mean sea level pressure and 850hPa wind from GFS analysis

(a,d,g), CTRL run (b,e,h) and 3DVar run (c,f,i) at +00hr, +24hr and

+48hr forecasts for cyclone Nilam

Rainfall

Fig. 3.12 shows the 24hr accumulated rainfall for day 1 (Fig.3.12(a-c)) and day

2 (Fig.3.12(d-f)). Accumulated rainfall for ctrl run is shown in Fig. 3.12(b,e), saph

run in Fig. 3.12(c,f) and TRMM observations in Fig. 3.12(a,d) for Nilam cyclone.

The intensity of heavy rainfall in the saph run for day 1 forecast is closer to TRMM

observations as compared with the ctrl run. In the day 2 forecast, the location error of

the maximum rainfall is lower in the saph run as compared with the ctrl run. However,

the saph run has simulated relatively intense rainfall in day 2 forecast near the south

west coast of India as compared with the ctrl run and TRMM observations. The above-

mentioned anomalous rainfall pattern is possibly associated with the spurious cyclonic

vortex simulated by the saph run as seen in Fig.3.9(g-i).

The quantitative verification of the first 48 hr accumulated rainfall as simulated by
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Figure 3.10: Time series of minimum sea level pressure in hPa (a) and maxi-

mum wind speed in ms−1 (b) for cyclone Nilam

Figure 3.11: Area averaged and time averaged temperature anomaly (a) and

relative vorticity (b) in a 3◦×3◦ box around the cyclone centre for

cyclone Nilam during the first 48 hours of free forecast
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Figure 3.12: 24 hour accumulated precipitation (in mm) from TRMM observa-

tions (a,d), ctrl run (b,e) and saph run (c,f) forecasts for cyclone

Nilam

Figure 3.13: Equitable threat score (a), bias (b), false alarm ratio(c) and proba-

bility of detection (d) of 48hr accumulated rainfall estimated with

respect to TRMM observations for cyclone Nilam
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the model with respect to TRMM observations (Fig.3.13) shows that assimilation of

SAPHIR radiances have improved the rainfall simulation in quantitative terms consid-

erably in terms of higher ETS and ./images/chapter3 values and lower FAR values for

all the three cyclones. However, the bias score is higher in the saph run as compared

to ctrl run indicating that the radiance assimilation also results in over prediction of

heavy rainfall.

3.7 Cyclone Phailin (8-14 October 2013)

3.7.1 Synoptic Conditions

The very severe cyclonic storm Phailin originated from the remnant of a cyclonic

system from the South China Sea. The cyclonic circulation manifested as a low pres-

sure area over Tenasserim coast on 6th October 2013. The system was over north

Andaman Sea as a well marked low pressure area on 7th October 2013 and intensi-

fied to a depression over the north Andaman Sea on 8th October 2013 with its centre

near 12.00◦N, 96.00◦E. The system intensified into a deep depression on 9th October

2013 near 13.00◦N and 93.50◦E. Moving west-northwestwards, the system crossed

Andaman Islands and moved over east central Bay of Bengal intensifying into a cy-

clonic storm. The cyclonic system further intensified to a severe cyclonic storm on

10th October 2013. The system further intensified and experienced landfall on 12th

October 2013 near Andhra Pradesh and Odisha coast. The system weakened subse-

quently and by October 14th, 2013 the depression had become a well marked low

pressure system.

3.7.2 Experimental Details

As in the previous two cyclone cases, for the cyclone Phailin also, the WRF model

is initialized from GFS forecasts and a spin up of 6 hours is performed. For cyclone

Phailin, the model spin up is from 18Z 7th October 2013 to 00Z 8th October 2013.

Subsequently, two numerical experiments are performed. (i) ctrl run , which is a con-

trol run where conventional observations (surface and upper air) along with satellite

winds are assimilated at 00Z, 06Z, 12Z and 18Z of 8th October 2013. Thereafter the
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model is integrated from 18Z 8th October 2013 to 12th October 2013 in a free forecast

mode without assimilation of observations. (ii) saph run which is configured the same

way as the ctrl run except that SAPHIR radiances are also included in the assimilation

cycles in addition to conventional observations and satellite wind observations. The

model domain, horizontal resolution, number of grid cells in E-W and N-S directions

and the number of vertical levels for cyclone Phailin are the same as that employed

for cyclone Thane. The physics options utilized here are also the same as used for

cyclone Thane.

3.7.3 Results and Discussion

Mean sea level pressure and wind

Fig.3.14 shows the mean sea level pressure and 850hPa wind from GFS analysis,

ctrl run and saph run at the start of the free forecast (Fig.3.14a-c), valid at 24 hour

forecast (Fig.3.14 d-f) and at 48 hour forecast (Fig.3.14g-i). The above figures indicate

that the WRF model simulates a more intense cyclonic system as compared with the

GFS analysis in both ctrl run as well as saph run. The initial and 24 hour cyclonic

systems are similar to each other in the ctrl and saph runs in terms of location of

minimum sea level pressure. However, the saph run has simulated an anomalous low

pressure system which is not seen in the GFS analysis close to the Indian east coast in

the 48 hour simulation.

The time series of minimum sea level pressure (Fig.3.15a) and maximum wind

speed (Fig.3.15b) over the domain indicates that relatively stronger winds as com-

pared with the ctrl run and observations are simulated in day-1 of the forecast for

cyclone Phailin due to the assimilation of SAPHIR radiances. SAPHIR provides hu-

midity information at high spatial resolution even in the presence of non-precipitating

clouds. The improved moisture content of the atmosphere due to SAPHIR obser-

vations can impact the low level moisture convergence associated with the cyclonic

system, which will definitely impact the vertical ascending motion of moist air and

the release of the latent heat of condensation in the model simulation. This can lead

to further intensification of the cyclonic system through the CISK (Conditional Insta-

bility of Second Kind) mechanism. For cyclone Phailin, the time series of maximum
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Figure 3.14: Mean sea level pressure and 850hPa wind from GFS analysis

(a,d,g), ctrl run (b,e,h) and saph run (c,f,i) at +00hr, +24hr and

+48hr forecasts for cyclone Phailin
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Figure 3.15: Time series of minimum sea level pressure in hPa (a) and maxi-

mum wind speed in ms−1 (b) for cyclone Phailin

wind speed indicates that the rapid observed strengthening of the cyclone system after

48 hours of integration is not captured by the model. The above inadequacy in the

model simulation is also seen in the time series of minimum SLP.

Vertical profiles of average temperature anomaly and relative vorticity

The time averaged and area averaged temperature anomaly profile and relative vor-

ticity in a 3◦× 3◦ box around the cyclone centre for the first 48 hours simulated for

cyclone Phailin is shown in Fig.3.16(a) and (b). The assimilation of SAPHIR radi-

ances has resulted in a stronger cyclone than is simulated in the ctrl run, which can

be inferred from the higher values of temperature anomaly as well as larger relative

vorticity at all model levels in the saph run as compared with the ctrl run as well as

GFS analysis. Cyclone Phailin is characterised by stronger maximum wind speeds

and lower minimum SLP for saph experiment for the first 30 hours of free forecast as

compared to ctrl and observation (refer Fig. 3.15a and Fig.3.15b). Stronger pressure

gradients at the surface would lead to greater moisture convergence and larger vertical

ascending motion. These would invariably lead to higher relative vorticity through

Ekman layer dynamics and the above effect is seen in Fig.3.16a for cyclone Phailin.

Larger horizontal wind speed for cyclone Phailin in the saph run can lead to establish-
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Figure 3.16: Area averaged and time averaged temperature anomaly (a) and

relative vorticity (b) in a 3◦×3◦ box around the cyclone centre for

cyclone Phailin

ment of super gradient wind speeds which would entail larger subsiding motion over

the centre of the tropical cyclone contributing to stronger warm core over the cyclone

centre. The above effect is seen in Fig.3.16b for the cyclone Phailin.

Rainfall

The spatial distribution of 24 hour accumulated rainfall from day1 and day2 fore-

casts of ctrl and 3DVar runs are compared with TRMM observations in Fig.3.17. In

the day 1 forecast, the ctrl run has not simulated the observed spatial pattern of rainfall

over the Bay of Bengal region whereas the saph run is able to simulate rainfall over this

region. However, the saph run has simulated more intense rainfall than is observed. In

the day 2 forecast also, saph run has overestimated rainfall intensity both over the east

coast as well as the west coast of India. This may be a manifestation of the anomalous

low pressure system that is simulated by the saph run (refer Fig.3.14(i)).

Fig.3.18 shows the quantitative verification scores of 48 hour accumulated rain-

fall from the ctrl and saph runs calculated with respect to the TRMM observations.
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Figure 3.17: 24 hour accumulated precipitation (in mm) from TRMM observa-

tions (a,d), ctrl run (b,e) and saph run (c,f) forecasts for day 1(a-c)

and day 2(d-f) forecasts for cyclone Phailin

Figure 3.18: Equitable threat score (a), bias (b), false alarm ratio(c) and proba-

bility of detection (d) of 48hr accumulated rainfall estimated with

respect to TRMM observations for cyclone Phailin
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Figure 3.19: Cyclone track from CTRL, SAPH and IMD for cyclone Thane

(a) , Nilam (b) and Phailin (c)

The saph runs has higher ETS (Fig.3.18(a)), lower FAR (Fig.3.18(c)) and higher ./im-

ages/chapter3 (Fig.3.18(d)). However, the bias is high in the saph run (Fig.3.18(b)),

which agrees with the previous inference that the saph run over-predicts the precipita-

tion as compared with the ctrl run.

3.7.4 Track simulated for the three cyclones

The track errors for the three tropical cyclones with respect to IMD track observa-

tions are given in Table 3.1. The Table3.1 shows that the error in the initial position

of the cyclonic center is lower in the saph run as compared with the ctrl run for Thane

and Nilam cyclones. However, the track error in the saph run as compared with to the

ctrl run increases with forecast time. For cyclone Phailin, the results indicate lower

track error in the last couple of days before occurrence of landfall for the saph run as

compared to the ctrl run. Fig. 3.19 show the cyclone tracks for the model runs ctrl and

saph runs together with IMD track observed for all the tropical cyclones investigated

in this chapter.

3.8 Summary

The study of impact of assimilation of radiance observations from MeghaTropiques

SAPHIR sensor is performed in this chapter. The impact of this assimilation on the

simulation of three tropical cyclones namely Thane, Nilam and Phailin is investigated.

It is seen that the SAPHIR humidity observations do influence the model simulation.

When compared with a control (ctrl) run which assimilates conventional as well as

56



Table 3.1: Track Error(in km) for the cyclones Thane, Nilam and Phailin cal-

culated with respect to IMD track data

Thane Nilam Phailin

Hours CTRL 3DVar CTRL 3DVar CTRL 3DVar

00 87.6 65.7 198.6 180.8 104.5 104.3

06 89.3 37.1 233.2 179.6 160 160

12 98.1 46.1 167.5 86.7 215.6 215.6

18 26.5 199.2 79.5 47.2 271.2 253.2

24 37.5 269.4 58.9 250.9 326.8 308.8

30 109.3 352.3 100.0 232.5 382.4 373.4

36 99.0 350.9 103.3 309.1 466.6 493.6

42 88.6 376.6 94.5 336.8 495.2 549.2

48 86.9 402.1 45.3 297.8 496.8 604.9

54 76.1 400.6 63.3 311.3 563.0 400.4

60 74.3 426.1 46.9 281.0 504.2 387.2

66 72.6 424.9 126.1 307.3 471.9 320.4

72 62.0 432.2 441.7 242.6

78 40.5 393.7 416.3 160.0

84 107.2 319.4 451.3 71.0

90 167.0 243.0 470.9 29.8

96 209.2 193.4 497.3 146.3

102 242.6 146.0
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satellite wind observations, additional ingesting of SAPHIR radiances along with the

conventional and satellite wind observations is seen to have a moderate positive impact

of the model simulation of cyclone features. The humidity information obtained from

SAPHIR has impacted all the model fields such as temperature, maximum wind speed,

minimum sea level pressure and accumulated rainfall in a moderate manner.

Atmospheric humidity is a highly significant parameter that influences numerical

simulation of mesoscale weather features of tropical cyclones. Assimilation of hu-

midity information from SAPHIR observations has resulted in an improved analysis

of moisture variable in the case of the three tropical cyclones investigated in this chap-

ter. The representation of low level moisture convergence is improved by the assim-

ilation of SAPHIR observations. This has resulted in an improved representation of

latent heat release in the model simulation. Since a better simulation of latent heat of

condensation influences the convective processes simulated by the model, the inten-

sification of the tropical cyclones due to the CISK (Conditional Instability of Second

Kind) mechanism is better simulated in the SAPHIR run as compared with the control

run. The improved representation of latent heat flux results in an improved simulation

of the intensity and the dynamical characteristcs of the cyclone. Hence, the simulation

of physical and dynamical features of the tropical cyclones investigated in this chapter

are improved due to the assimilation of SAPHIR radiances.
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CHAPTER 4

Impact of formulation of background error covariance

matrix on 3DVar assimilation

4.1 Introduction

The optimal analysis, obtained by combining observations with background or

apriori information in a data assimilation scheme, is derived from statistical estimation

theory. The above-mentioned two sources of information are weighted according to

their respective error covariances. The observation error covariance matrix, R is deter-

mined by instrument errors and representation errors, the latter arising from the effect

of unresolved scales in a model as well as errors that arise from the specification of

observation operator that maps model space variables to observation space. However,

the background error cannot be calculated exactly as we do not have the information

regarding the true state of the system. Furthermore, in the case of a numerical weather

prediction model, the background state has degrees of freedom of ∼ 107. Hence the

background error covariance matrix (B) has a dimension of ∼ 107 × 107, which is

impossible to explicitly calculate in a practical data assimilation system. Hence it is

clear that one has to invoke methods which provide for estimation of ’background

error covariance’ (B).

There are three main methods that are used for estimating B. They are (i) us-

ing innovation statistics (Hollingsworth and Lönnberg, 1986) Usage of innovation

(observation-minus-background) statistics has the limitation that this method requires

a good quality, homogeneous observation network. Furthermore, this method provides

estimates of background error for observed quantities only.

(ii) the National Meteorological Center (NMC) method (Parrish and Derber, 1992)

The NMC method approximates the background error statistics using the difference

between two model forecasts of different lead times, valid at the same time. The most

popularly used method for generating the B is the NMC method despite having its

own shortcomings. It is known that the NMC method underestimates the variance

59



of background error over data-sparse regions. Also, the time duration of forecasts

used to generate B are typically 12 to 48 hours. Since the background fields used

in the assimilation system would typically be of a shorter duration, the covariances

of estimated background error could become broader than the actual background er-

ror (Fisher, 2003).The popularity of the method however arises from the fact that this

method yields global statistics for B for model variables at all levels. Also it is less

expensive to implement the NMC method in an operational weather prediction en-

vironment since the forecasts required to generate the differences would be already

available.

(iii) the analysis-ensemble method (Fisher, 2003) The analysis system is run sev-

eral times using perturbed inputs in the analysis-ensemble method. The difference

between background fields in the various runs provides a surrogate of background

errors in this method. The chief limitation with this method is due to the fact that

generating and maintaining an ensemble which can adequately represent the prior dis-

tribution is not an easy task. This is especially true in the case of a limited area model

whose boundary conditions also significantly influence the model ensemble.

The NMC method has been implemented to estimate the B in Weather Research

and Forecasting (WRF) model’s variational data assimilation system (WRFDA) (Barker

et al., 2004). This method employs a control variable transform (CVT) in which the

model variables are converted to the control variables of the data assimilation system.

This CVT renders the B matrix diagonal and also imposes balance relations within

the variables. The manner in which the CVT is specified can impact the data assimila-

tion results. In WRFDA3.5.1, there are three choices for control variable transforms,

namely, cv3, cv5 and cv6 options. In cv3 option, the control variables are described

in physical space while the control variables are defined in the eigen vector space in

cv5 and cv6 options. While cv3 option uses a vertical recursive filter to model the

vertical covariance, both cv5 and cv6 options use an empirical orthogonal function

(EOF) approach to represent the vertical covariance. Previous studies(Routray et al.,

2014) have shown that the simulation of mesoscale weather phenomena like monsoon

depressions over India can be improved using domain-specific B statistics calculated

using cv5 option rather than utilizing cv3 option in WRF.
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4.2 Background error covariance in the WRF model

The 3DVar analysis is obtained by minimizing a cost function defined as

J(x) = J b + Jo =
1

2
(x− xb)TB−1(x− xb) + (y −H(x))TR−1(y −H(x)) (4.1)

The analysis x = xa represents a minimum variance estimate of xt given the ob-

servations y ∈ Rm as well as the error covariances of background and observations

denoted by B and R respectively. The observation operator H provides a mapping

from the model’s grid space to the observation space.

The calculation of the background term Jb requires ∼ O(n2) calculations for a

system with n degrees of freedom. For a numerical weather model with typically 107

degrees of freedom, the direct calculation of this term is not possible. To reduce the

computational cost , Jb is calculated in terms of control variables v defined via the

relation x� = Uv where x� denotes the analysis increment, x� = x − xb . Using the

incremental formulation (Courtier et al., 1994; Barker et al., 2004) and the control

variables, equation 4.1 can be rewritten as

J(v) = J b + Jo =
1

2
vTv +

1

2
(y −HUv)TR−1(y −HUv) (4.2)

The transformation matrix U is defined in such a way that the background error

matrix can be represented as UUT . In WRF 3DVar system, the control variable trans-

form is implemented in three steps - a horizontal transform Uh, a vertical transform

Uv and a parameter transform Up (Barker et al., 2004).

i.e, x� = UhUvUpv

The control variable transform aims to convert the B matrix to block-diagonal

form. The horizontal transform Uh is represented using recursive filters (Hayden and

Purser, 1995; Purser et al., 2003) in WRF 3DVar. There are two free parameters

associated with each variable for the recursive filter - the number of applications of

the filter and the correlation length scale of the filter. The correlation length scale is

estimated for each variable and vertical mode using the NMC method’s accumulated

forecast difference data processed as a function of grid-point separation (Barker et al.,
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2004). A tuning factor is applied to the length scale, to reflect the actual correlation

length scales in a domain.

In the vertical transform Uv , an empirical orthogonal function (EOF) decomposi-

tion is performed on the vertical component of the background error Bv. The analysis

increments are projected onto the eigen vector space and the eigen values specify the

relative weights of increments in the calculation of cost function. The parameter trans-

form Up is applied so that the errors in the control variables are not correlated with

each other and the B matrix is rendered block-diagonal. The increments in model

variables u (zonal wind) , v (meridional wind), T (temperature), p (pressure) and hu-

midity (q) are converted to new set of variables such as stream function (ψ), velocity

potential(χ), temperature (T), surface pressure (ps) and relative humidity( rh). WRF-

Var system provides the balance relations between the new set of variables using re-

gression relations. After the "balanced part" of analysis variables is estimated, the

"unbalanced part" is determined by subtracting the former from the full fields. Hence,

while some fields are analysed in full , for some other variables the unbalanced parts

are included in the analysis system. The control variable options cv5 and cv6 differ

from each other in the specification of the balance relations between these control

variables.

In cv5 option, the analysis variables consist of the full fields corresponding to

stream function and relative humidity and the unbalanced parts corresponding to the

other variables are included in the analysis. However, in cv6 option, only stream func-

tion is analysed in full, while relative humidity (rh) and other variables comprise of

both balanced and unbalanced parts.

The control variables specified in cv5 option are related as given below,

χu(i, j, k) = χ(i, j, k)− αψχ(i, j, k)ψ(i, j, k) (4.3a)

Tu(i, j, k) = T (i, j, k)−
Nk�

l=1

αψT (i, j, k, l)ψ(i, j, l) (4.3b)

psu(i, j) = ps(i, j)−
Nk�

l=1

αψps(i, j, l)ψ(i, j, l) (4.3c)
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Here, i and j denote the horizontal dimension index, k and l indicates the vertical

sigma levels while α represents the various regression coefficients between the vari-

ables represented using the respective subscripts. The unbalanced parts of the fields

are denoted using the subscript u.

The relations specified by equations 4.3 indicate the manner in which the various

analysis control variables are related in WRFVar system. Here, the balanced part of

velocity potential is related with the stream function alone and hence the possible

relations that the divergent component of wind could have with other variables are

not properly considered. Similarly, in cv5, temperature and surface pressure are not

related with each other as well as with the moisture variable. Relative humidity field

is not influenced by any of the model variables like temperature or wind, as per the

relations in equations 4.3.

The balance relations defined in cv6 option, on the other hand, includes additional

correlations between model variables. The cv6 option has the following balance rela-

tions.

χu(i, j, k) = χ(i, j, k)− αψχ(i, j, k)ψ(i, j, k) (4.4a)

Tu(i, j, k) = T (i, j, k)−
Nk�

l=1

αψT (i, j, k, l)ψ(i, j, l)−
Nk�

l=1

αχuT (i, j, k, l)χu(i, j, l)

(4.4b)

psu(i, j) = ps(i, j)−
Nk�

l=1

αψps(i, j, l)ψ(i, j, l)−
Nk�

l=1

αχups(i, j, l)χu(i, j, l) (4.4c)

rhu(i, j, k) = rh(i, j, k)−
Nk�

l=1

αψrh(i, j, k, l)ψ(i, j, l)−
Nk�

l=1

αχurh(i, j, k, l)χu(i, j, l)

−
Nk�

l=1

αTurh(i, j, k, l)Tu(i, j, l)−
Nk�

l=1

αpsurh(i, j, k)psu(i, j) (4.4d)

Here, additional correlation coefficients connect model variables in more ways than

are available in cv5 option. For example, the balanced part of temperature and sur-

face pressure are now correlated with the unbalanced velocity potential also. Hence,

temperature and surface pressure are influenced by the divergent component of wind

in the cv6 option unlike in the cv5 option. Similarly, additional correlations defined
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in the moisture variable makes the moisture analysis multivariate in nature in the cv6

option (Chen et al., 2013).

In both cv5 and cv6 options, the estimation of background error covariances is

accomplished through the following five stages

(i) Calculation of standard perturbations from forecast differences. In NMC method,

this is calculated as x� = xT2 − xT1 where xT2 and xT1 are forecast difference

times (e.g. 48hr, 24hr for global, 24hr, 12hr for regional).

(ii) Time/bin mean for each variable/level is removed so that zero-mean fields are

obtained

(iii) Regression analysis is performed and the various correlations are determined be-

tween the control variable fields. The unbalanced components of the fields are

calculated.

(iv) The vertical component of control variable transform is applied

(v) Recursive filter is used to provide horizontal correlations

The cv5 and cv6 options in WRFVar differ from each other in the step (iii) men-

tioned above.

4.3 Comparison of cv5 and cv6

The characteristic features of B generated by cv5 and cv6 options are compared

here to determine in what all features they significantly differ. In the WRFVar system,

the vertical transform is determined by the eigen vectors and the corresponding eigen

values represent the variance. During assimilation of observations, the analysis incre-

ment is weighted by the eigen values. The horizontal length scale of the recursive filter

determines the horizontal spread of the information in the EOF space. The informa-

tion spreads vertically due to the transformation from the EOF space to the physical

space (Descombes et al., 2015). Fig.4.1 show the first five eigenvectors for the control

variables for cv5 Fig.4.1(a-d) and cv6 Fig.4.1(e-h). Fig.4.2(a,b) shows the asscoiated

eigen values of unbalanced temperature (Tu) corresponding to cv5 and cv6 options

and fig.4.2(c,d) shows the eigen values for relative humidity for cv5 and cv6. Here,
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Figure 4.1: First five eigenvectors from the EOF decomposition on the vertical

component of B for ψ (a,e), χu (b,f), Tu (c,g) and rh (d,h) for cv5

option (a-d) and cv6 option (e-h)

Figure 4.2: Eigen values for unbalanced temperature (a,b) and relative humid-

ity (c,d) for cv5 (left panel) and cv6 (right panel)
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Figure 4.3: Horizontal length scales for each vertical mode for B for ψ (a,e),

χu (b,f), Tu (c,g) and rh (d,h) in cv5 (a-d) and cv6 (e-h)

the vertical mode number of the corresponding EOF is shown in x-axis. y-axis gives

the eigen value for the associated EOF mode. The eigen values corresponding to these

two analysis control variables are shown here, since the same for ψ and χu in both

cv5 and cv6 options are same and hence their eigen values do not differ. However, as

shown here , for Tu and rh the eigen values are lower in cv6 option as compared to that

in cv5 option over all vertical modes. The horizontal length scales for each vertical

mode for B for all the control variables are shown in Fig.4.3. The figure shows that

for smaller vertical modes the rh in cv6 option has a larger lengthscale than that in cv5

option, indicating a greater horizontal spread for relative humidity information in cv6

as compared with cv5. The above results do provide evidence that the characteristic

features of B generated using cv6 option do differ from the cv5 option and the major

difference between the two is in the moisture variable as is to be expected.

4.3.1 Single Observation Experiment

The significance of B in spreading the information in vertical and horizontal direc-

tions in space can be explained using the single observation experiment.To understand

this, let us consider the expression of analysis found from the Best Linear Unbiased

Estimator (BLUE (Kalnay, 2003)) ,

xa − xb = BHT (R+HBHT )−1{yo −H(xb)} (4.5)

The analysis obtained by BLUE is the same as that from eqn.(2.19) when H is
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linear. Even if H is nonlinear, the above provides a useful estimate when

H(xb + δx) ≈ H(xb) +Hδ(x)

Consider only kth element of the state x, is observed at one location. In this case,

y = y and R = σ2. Also, H and H become row vectors of zeroes apart from their

kth element, which becomes 1. Then, from eqn.(4.5), analysis increment at element l

is ((Bannister, 2008b),

xa
l − xb

l = Blk
y − xb

k

Bkk + σ2
(4.6)

That is, the analysis increment is proportional to the matrix elements Blk. This is

called a structure function.

Figure 4.4: Analysis increment for zonal wind (a, e), meridional wind (b, f),

potential temperature (c, g) and water vapour mixing ratio (d, h )

when a single u-wind observation is assimilated at the middle of

the domain at model level 19. Fig(a-d) is for cv5 run and Fig(e-h)

is for cv6 run

Fig. 4.4 shows the analysis increments in u, v, θ and q when a single u-wind ob-

servation is assimilated at the middle of the domain at model sigma level 19. u-wind

observation which differs from the background with a magnitude of 1ms−1 is assim-
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Figure 4.5: Analysis increment in the x-z plane for zonal wind (a, e), merid-

ional wind (b, f), potential temperature (c, g) and water vapour

mixing ratio (d, h ) when a single u-wind observation is assimi-

lated at the middle of the domain at model level 19. Fig(a-d) is for

cv5 run and Fig(e-h) is for cv6 run

ilated using both cv5 and cv6 options of B matrix. Fig 4.4a-d provides the analysis

increment in u, v, θ and q respectively for cv5 option while Fig 4.4e-h shows the same

for cv6 options. The analysis increment patterns for cv5 option are similar to that

obtained by Routray et al. (2014) for regional BE option with a double maxima over

the ocean region in the C(u,u) pattern (Fig.4.4 a and e). The inclusion of additional

correlation functions in cv6 has resulted in non-vanishing increment in the moisture

field due to assimilation of wind information. Furthermore, the additional correlation

coefficient αχuT in the expression for Tu has resulted in a changed temperature field

(Fig4.4 (g)) for the cv6 option. Also, the location of maximum impact of the obser-

vation is shifted in cv6 run as compared to the cv5 run. Since the covariance matrix

is symmetric, assimilation of a single temperature observation will result in a relative

rotation of increment pattern in the u-field (Chen et al., 2013). Hence, the results of

the single observation experiments reveal that the difference in formulation of control

variables has resulted in different analysis increment structures for the cv6 option as

compared to the cv5 option.
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Figure 4.6: Analysis increment in the y-z plane for zonal wind (a, e), merid-

ional wind (b, f), potential temperature (c, g) and water vapour

mixing ratio (d, h ) when a single u-wind observation is assimi-

lated at the middle of the domain at model level 19. Fig(a-d) is for

cv5 run and Fig(e-h) is for cv6 run

Fig.4.5 shows the x-z cross section of the analysis increments at the centre lon-

gitude of the domain where the single u-wind observation is assimilated. Fig.4.5a-d

provides the analysis increment in u, v, θ and q, respectively for cv5 option while Fig

4.5e-h shows the same for the cv6 option. The increments in all the fields show differ-

ences between cv5 and cv6 options. The most prominent difference is in the mixing

ratio field where the assimilation of u-wind observation has not modified the back-

ground field in cv5 option. However, the assimilation of u-wind pseudo-observation

has resulted in a modified mixing ratio field at the lower model levels significantly,

close to the location of the observation. Also, the pattern of increment is not sym-

metrical about the location of observation, as in the case of increments in u-wind and

v-wind fields, but is tilted slightly westwards. Similarly, the pattern of increments in θ

also show a tilt in the cv6 option as compared to the cv5 option. Furthermore, u-wind

observation has impacted the potential temperature field at a higher model level in the

cv6 option as compared with the cv5 option.

The analysis increments in a y-z cross section at the longitude of the pseudo-
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Figure 4.7: Analysis increment in the for zonal wind (a, e), meridional wind

(b, f), potential temperature (c, g) and water vapour mixing ratio

(d, h ) when a single q observation is assimilated at the middle of

the domain at model level 19. Fig(a-d) is for cv5 run and Fig(e-h)

is for cv6 run

observation is shown in Fig.4.6. Here also, the major differences between the cv5

and cv6 options are in the θ and q fields. Both cv5 and cv6 options show symmetrical

increment structures at the observation longitude for θ. However, the pattern of incre-

ments show that the analysis increments in θ has higher magnitude in the cv6 option

as compared to the cv5 option. The tilt in the increment pattern of cv6 option with

respect to that in cv5 option is seen here also. The increment pattern of mixing ratio

field in cv6 option indicates that the maximum of analysis increment has been shifted

southwards from the observation location.

To verify the differences between cv5 and cv6, further, a single q pseudo-observation

is assimilated in a fashion similar to the single u-wind assimilation experiment. Here,

the observation error is fixed as 0.001 kgkg−1 and the observation is assumed to have

a magnitude which differs from the background value by 0.001 kgkg−1. The resulting

analysis increments shown in Fig.4.7 affirm the differences between cv5 and cv6 op-

tions. Since B is symmetric, it is not surprising that the assimilation of q-observation
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has not influenced the wind fields in cv5 option similar to u-wind observation not

influencing the q field in cv5 option. Furthermore, the q-observation has had more

impact on the θ field in cv6 option as compared with cv5 option. This can be inferred

from the magnitude of the analysis increments of θ, the same being one order higher

in cv6 case as compared with the cv5 case.

4.4 Impact of cv formulation on forecasts of monsoon

depressions

4.4.1 Case Description

Case 1- Depression (29May - 31May 2013)

Under the influence of a cyclonic circulation over northwest Bay of Bengal, off

Odisha - West Bengal coasts, a low pressure area formed over the North Bay of Bengal

and neighbourhood. The system intensified into a Depression and was centered near

210 N, 89.50 E, at 0300 UTC of 29th May 2013. Moving north-northwestwards, the

depression’s center was near 21.70 N, 88.80 E, at 1200 UTC of 29th May 2013. The

depression crossed the West Bengal coast near 21.80 N, 88.70 E between 1330 and

1430 UTC on the same day. The above mentioned depression caused heavy to very

heavy rainfall during its passage over the Indian region.

Case 2 - Land Depression (20July - 24July 2014)

A land depression manifested with its center over the northeastern parts of Odisha

and adjacent areas of Gangetic West Bengal on 21st July 2014 morning. The depres-

sion moved west-northwestwards and weakened into a well-marked low pressure area

over west Madhya Pradesh and neighbourhood on 23rd July 2014.

Case 3 - Depression (29July - 01August 2013)

A low pressure area manifested with its center over the northeast Bay of Bengal and

adjacent Bangladesh and coastal areas of West Bengal on 29 July 2013. The system

71



Figure 4.8: Model Domains used in the study

Figure 4.9: Observations available typically over the domain.

intensified into a Depression with its center near 210 N, 880 E. The depression moved

northwestwards subsequently and crossed Odisha coast at 1200 UTC of 30th July.

The depression further moved westwards and weakened into a low pressure system by

August 1st 2013.

4.5 Experimental

The Advanced Research WRF (ARW) model version 3.5.1 is configured with two-

way nested domains as shown in Fig.4.8. The outer domain has 350 × 350 grid
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Figure 4.10: Analysis increment at model level 1 in zonal wind (a,e) meridional

wind (b,f), temperature(c,g) and water vapour mixing ratio (d,h)

for cv5 option(a-d) and cv6 option(e-h) for the depression case 1

due to assimilation of all available observations

Figure 4.11: Analysis increment at model level 1 in zonal wind (a,e) meridional

wind (b,f), temperature(c,g) and water vapour mixing ratio (d,h)

for cv5 option(a-d) and cv6 option(e-h) for the depression case 2

due to assimilation of all available observations
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Figure 4.12: Analysis increment at model level 1 in zonal wind (a,e) meridional

wind (b,f), temperature(c,g) and water vapour mixing ratio (d,h)

for cv5 option(a-d) and cv6 option(e-h) for the depression case 3

due to assimilation of all available observations

cells in the east-west and north-south directions with a horizontal resolution of 27

km while the inner domain is configured with 451×451 grid points with a horizontal

resolution of 9 km. There are 36 vertical levels in both the domains. This study

uses the Kain-Fritsch scheme for cumulus, RRTM for longwave radiation, Dudhia

scheme for shortwave radiation, Unified NOAH land surface model for land surface,

YSU scheme for planetary boundary layer and WRF single-moment 3-class simple

ice scheme for microphysics parametrization. All the results discussed in this study

are from the inner, higher resolution domain.

The initial and boundary conditions for the model are obtained from the National

Centre for Environmental Prediction (NCEP) Global Forecast System (GFS) fore-

cast fields of horizontal resolution 0.50 × 0.50. Data assimilation is performed in

the outer domain only for this study. For estimating the B matrix using the NMC

method, 12hr and 24 hr forecasts are generated for a period of one month during the

2013 summer monsoon period (01June 2013 to 01 July 2013) for the outer domain.

In WRF 3DVar system, the forecast differences of 24hr and 12hr forecast times are

typically used for calculating background error using NMC method in the regional

domain (Skamarock et al., 2008). The forecast perturbations generated using the dif-

ferences of these forecasts are used for calculating BE covariances using both cv5
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and cv6 options. The conventional surface and upper air observations from the Re-

search Data Archive, Computational and Information Systems Laboratory (CISL) of

NCAR (http://rda.ucar.edu/datasets/ds337.0) are utilized here for assimilation. Also,

Advanced Microwave Sounding Unit-A (AMSU-A) radiances (Baker et al., 2005;

Singh et al., 2012c) are assimilated in this study (shown in Fig.4.9. In all three depres-

sion cases investigated here, WRF model is integrated for 12hr without any assimila-

tion for model spin-up. Using this model forecast as background, 3DVar analysis is

performed using both cv5 and cv6 options at one time followed by free forecast (no

assimilation of observations) for the next 48 hours . Fig.4.9 shows the all observations

typically available in the domain at the assimilation time. In order to bring out clearly

the effect of data assimilation, a control (CTRL) run is performed with no assimilation

of observations.

The European Center for Medium range Weather Forecasting (ECMWF) ERA-

interim reanalysis data (Dee et al., 2011) available at a horizontal resolution of 0.125o×
0.125o is used to evaluate the model forecasts here. Furthermore, a high resolution

analysis is also utilised here. The high resolution analysis has been determined as

follows. The GFS global analysis and all the observations (conventional and AMSU

radiances) over the model domain are subjected to the 3DVar methodology using cv5

option, throughout the model forecast period, with assimilation performed every 6hr.

This uses the same horizontal and vertical resolution of the model grids.

4.5.1 Results and Discussion

Fig.4.10-4.12, shows the analysis increment for cv5 and cv6 options at the model

level 1 for zonal wind (a and e), meridional wind ((b and f), temperature(c and g)

and water vapor mixing ratio (d and h) with all observations assimilated for the three

depression cases investigated here. Assimilation of all available observations (conven-

tional and AMSU-A radiances) has yielded different impacts in cv5 and cv6 cases as

seen from the differing analysis increment patterns. The increments in u-wind shows

a larger positive region over the oceans in the cv5 run as compared with the cv6 run.

This indicates that the strength of the zonal wind has increased due to assimilation in

the cv5 run as compared with cv6 run. While the increment patterns in meridional

winds and temperature at the surface level are fairly similar, assimilation of all obser-
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vations has impacted the water vapour mixing ratio differently in cv5 and cv6 cases.

Additional correlation information in the B matrix formulation has resulted in larger

increments in cv6 option as compared with cv5 option. The above results indicate that

differing formulation of B matrix indeed impacts the assimilation of observations in

WRF 3DVar system.

Table 4.1: Track error in km of the three depression cases with respect to IMD

data

Case 1 Case 2 Case 3

Forecast hour CTRL cv5 cv6 CTRL cv5 cv6 CTRL cv5 cv6

00 414.9 73.14 82.2 137.1 110.0 110.0 230.9 41.3 139.6

06 320.4 113.5 122.5 74.9 19.8 22.9 422.1 494.4 512.5

12 165.3 123.9 132.9 257.4 239.3 293.6 360.3 360.3 378.3

18 120.8 159.3 168.4 368.6 434.5 440.8 449.9 391.5 499.9

24 118.04 253.2 271.3 515.9 390.7 506.9 675.9 594.5 543.0

30 156.9 331.7 313.6 499.2 219.1 508.3 741.9 588.2 543.0

36 170.2 390.1 335.9 419.2 15.2 545.8 616.7 499.2 472.1

42 222.81 545.6 464.3 178.1 96.8 241.3 812.0 260.8 703.6

48 29.4 601.9 229.7 470.0 261.4 406.1 813.4 786.3 668.9

The impact of assimilation on the structure and movement of the depressions is

investigated by estimating the depression track errors for a 48hr forecast period with

respect to India Meteorological Department (IMD) track reports. The track errors for

CTRL, cv5 and cv6 runs are shown in Table 4.1. In general both cv5 and cv6 runs

perform better than CTRL run in terms of lower track errors. Here, cv5 run has lower

track errors as compared to cv6 run. From Fig.4.10-4.12 we can infer that the analysis

increments between cv5 and cv6 options are significantly different for the watervapor

mixing ratio only. Therefore, it may be unrealistic to expect that the simulation of

mean sea level pressure pattern and center of depression and the hence the track errors

will be improved by utilising the cv6 option instead of the cv5 option.

Monsoon depressions are known to have cold core lows at the lower levels and

warm core highs at the upper levels. It is known that systems with cold core at

lower levels typically intensify with increasing height indicating that the monsoon
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depression has higher intensity at lower to mid-troposphere (Godbole, 1977; Sikka,

1977). To investigate how the various experiments have simulated this observed ther-

mal structure of depressions, the profile of the temperature anomaly has been calcu-

lated over the depression centre at the initial time. For this a 3o × 3o box has been

considered around the depression centre. The difference of average temperature in

this box with that outside it is calculated. Fig. 4.13(a,b,c) shows the vertical pro-

file of the temperature anomaly at the analysis time at the depression centre for the

case1, case2 and case3 depressions respectively. All assimilation runs have simulated

the thermal structure of the depression well with respect to the high resolution anal-

ysis as compared with the CTRL run, in all the three cases. However, as compared

with the ECMWF analysis, the simulated temperature anomalies have stronger cold

cores at lower levels. For the depression case1, the ECMWF analysis reveals a sys-

tem whose cold core weakens with height at the lower levels indicating a weakening

of the system’s intensity with height at the lower levels. This is at variance with the

known thermodynamic structure of the monsoon depressions. In all the three depres-

sion cases, cv6 runs have simulated a relatively stronger cold core at the lower levels,

as compared to CTRL run, cv5 run as well as the ECMWF and high resolution analy-

ses. This indicates that the thermodynamic structure of the monsoon depressions are

modified by the cv6 analysis.

Fig.4.14a-4.14c shows the vertical profile of moisture divergence at the centre of

the depression cases at the initial time of the forecast (+0hr forecast). Fig. 4.14a

shows that cv6 run has contributed to higher moisture convergence values that are

closer to the high resolution analysis in the lower levels at the depression centre as

compared with both the CTRL and cv5 runs for first depression case. In the second

depression case shown in Fig.4.14(b), cv6 run shows higher moisture convergence

value close to the surface and relatively higher divergence values in the upper lev-

els as compared with cv5 run. Fig. 4.14(c), which shows the third depression case

indicates that surface moisture convergence values of cv6 are closer to the high reso-

lution analysis. The cv6 run simulated moisture convergence is closer to the ECMWF

analysis as compared to cv5 run at low levels for the first depression case.

Fig. 4.15(a-c) shows the vertical profile of relative vorticity at the centre of the

depression for all the depression cases at analysis time of the cv5/cv6 sensitivity ex-

periments (+0hr forecast). For the second and third depression cases, at lower levels,

77



the relative vorticity values for the cv6 run are closer to the high resolution analysis as

compared to cv5 and CTRL runs. The difference in relative vorticity profiles between

cv5 and cv6 options are not marked for all the depression cases. However, CTRL run

simulated relative vorticity profile for the first depression are very far from the anal-

ysis values at all levels. ECMWF analysis of the relative vorticity profile for the first

depression case also shows a weaker vortex at all the levels.

Vertical profiles of horizontal divergence over the depression centre at analysis

time of the cv5/cv6 sensitivity experiments (+0hr forecast) for all the three depression

cases are shown in Fig. 4.16(a-c) respectively. For the first and third depression cases

considered here, the cv6 option has simulated stronger convergence at the lower levels

than the cv5 option. In the first case the simulated profile of horizontal divergence is

closer to the ECMWF analysis.

Fig 4.17(a-c) shows the vertical profiles of relative humidity at analysis time of

the cv5/cv6 sensitivity experiments over the depression centre for all the three de-

pression cases. For the first depression case, the CTRL run simulates relatively drier

atmosphere till the mid troposphere while the assimilation runs are closer to the high

resolution analysis and are more moist. ECMWF analysis also indicates a drier at-

mosphere. This is consistent with the warmer core at around 900hPa present in the

ECMWF analysis. The ECMWF analysis also shows large relative humidity values

for all depressions at the upper levels. For the first and second depression cases, cv6

option simulates higher values of relative humidity at lower levels as compared to the

high resolution analysis as well as CTRL and cv5 runs. In the case of the third depres-

sion, despite having lower relative humidity values at the initial time at lower levels,

relative humidity simulated by cv6 run is closer to the high resolution analysis and the

ECMWF analysis as compared to cv5 and CTRL runs, especially in the middle levels.

The differences between the vertical profiles of say, a meteorological variable at

the center of depression between the cv5 and cv6 runs with respect to the CTRL

run at each model level at the beginning of the free forecast period are calculated.

To estimate whether the assimilation with the cv6 option has significantly altered the

model output fields, a student’s t test (Wilks, 2011) has been performed by considering

these differences. It is found that the differences in the vertical profiles of moisture

convergence and relative vorticity between the reference (CTRL) run and the cv5/cv6
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Figure 4.13: Vertical Profiles of temperature anomaly (a,b,c) at the analysis

time of the cv5/cv6 sensitivity experiments over the depression

centre for case1 (a), case2 (b) and case3(c) depressions

Figure 4.14: Vertical Profiles of moisture divergence (a,b,c) at the analysis time

of the cv5/cv6 sensitivity experiments over the depression centre

for case1 (a), case2 (b) and case3(c) depressions

analyses are significant at 95% confidence level. The differences in relative humidity

are found to be 95% significant over the first fifteen model levels only. However, the

divergence profiles are found to be statistically significant at 65% level only.

Comparison of vertical profiles at the depression centre at analysis time of the

cv5/cv6 sensitivity experiments shows that in comparison with the cv5 option, the cv6

option has simulated

(i) Stronger cold core low at lower levels (upto 800hPa) for all the three depressions

(ii) Stronger low level moisture convergence for two of the three cases at initial time

(iii) Stronger low level horizontal wind convergence for two of the three depressions

(iv) Higher values of relative humidity at lower levels in two out of three depressions.
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Figure 4.15: Vertical Profiles of relative vorticity (a,b,c) at the analysis time of

the cv5/cv6 sensitivity experiments over the depression centre for

case1 (a), case2 (b) and case3(c) depressions

Figure 4.16: Vertical Profiles of horizontal divergence (a,b,c) at the analysis

time of the cv5/cv6 sensitivity experiments over the depression

centre for case1 (a), case2 (b) and case3(c) depressions

Figure 4.17: Vertical Profiles of relative humidity (a,b,c) at the analysis time of

the cv5/cv6 sensitivity experiments over the depression centre for

case1 (a), case2 (b) and case3(c) depressions

80



Figure 4.18: Water vapour mixing ratio at level 1 compared with the ECMWF

analysis at the analysis time of the cv5/cv6 sensitivity experiments

at level 1 for case 1(left panel) , case2(middle panel), case3(right

panel) depressions for ECMWF analysis (a-c), high resolution

analysis (d-f), CTRL run (g-i), cv5 run(j-l) and cv6 run(m-o)
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Figure 4.19: 48hr accumulated precipitation for case 1 (left panel),

case2(middle panel) and case3(right panel) depressions from

TRMM (a-c), CTRL run(d-f), cv5 run(g-i) and cv6 run(j-l)
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Figure 4.20: Differences in 48hr accumulated precipitation (in mm) from

TRMM rainfall observation for case 1(a-c) , case2(d-f), case3(g-i)

for CTRL (a,d,g), cv5(b,e,h), cv6(c,f,i) runs

83



Considering the above, it is clear that utilising the cv6 option has modified the

vertical structure at the depression centre at the initial time in two out of three cases

considered here, resulting in higher relative humidity values, higher low level mois-

ture convergence and higher low level horizontal convergence values. However, to

infer definite and broad conclusions, more number of depression cases have to be

investigated.

Fig.4.18 shows the surface level water vapour mixing ratio of CTRL run(g-i), cv5(j-

l) and cv6 run(m-o) compared with the ECMWF analysis(a-c) and the high resolution

analysis(d-f) for all the three depressions. In general, all the model simulations in-

dicate more moisture content than the ECMWF analysis. The cv6 run has simulated

moderately higher mixing ratio values as compared with CTRL and cv5 runs over the

land region in two out of the three cases considered. With more moisture content be-

ing simulated over land, both in horizontal and vertical directions along with larger

horizontal moisture convergence, the cv6 run is expected to simulate rainfall better

than the cv5 and CTRL runs.

The model simulated 48hr accumulated rainfall is compared with TRMM rainfall

observations to analyse the impact of B formulation on rainfall simulation in Fig.4.19.

The accumulated precipitation from TRMM (a-c), CTRL run (d-f), cv5 run(g-i) and

cv6 run (j-l) for the three depressions considered here are shown in Fig.4.19(a-l).

The left panel (Fig.4.19(a,d,g,j)) shows the first depression case, the middle panel

(Fig.4.19(b,e,h,k)) shows the second depression case and the right panel(Fig.4.19(c,f,i,l))

shows the third depression case, considered in this study. For all the three cases, ac-

cumulated rainfall values indicate heavy rainfall over the Indian region due to the

monsoon depressions. In the first depression case, the model simulates excess rainfall

over the Head Bay of Bengal and north eastern regions of India. However, the TRMM

observations show that the location of maximum precipitation is over the Head Bay

of Bengal. Furthermore, the CTRL run simulates erroneous rainfall maximum off the

west coast of India, which is not seen in the TRMM observations as well as in the

assimilated runs. All the model runs show similar spatial pattern of precipitation for

the second depression case. However the intensity of rainfall is different in the cv6 run

as compared with the CTRL and cv5 runs. For the third depression case, the observed

rainfall maximum over oceans is reproduced by all the model runs in terms of location

and intensity. However, both cv5 and cv6 runs simulate rainfall closer to TRMM ob-
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servations as compared to the CTRL run. The differences of 48hr accumulated rainfall

simulated by the three model runs with respect to the TRMM observation are shown

in Fig.4.20. For all the depression cases, the maximum differences between TRMM

observation and model simulations in CTRL, cv5 and cv6 runs occur over the regions

where TRMM observations show maximum accumulated rainfall.
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Table 4.2: Location and intensity of maximum precipitation(cm) as obtained from TRMM for all the three depressions together with locational

and magnitude error of maximum precipitation for CTRL, cv5 and cv6 runs

TRMM CTRL cv5 cv6

Location magnitude (cm) location magnitude location magnitude location magnitude

of max. of max. error(km) error (cm) error(km) error (cm) error(km) error (cm)

rainfall rainfall of max of max of max of max of max of max

precipitation precipitation precipitation precipitation precipitation precipitation

Depression 1 89.130E, 35.7 1173 -11.8 257 -4.9 146 -4.4

20.880N

Depression 2 800E, 24.1 218 -21.6 211 -11.4 183 -2.1

21.250N

Depression 3 79.650E, 29.9 1325 -13.5 937 -15.2 943 -13.3

20.880N
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Figure 4.21: Improvement parameter of 48 hr accumulated rainfall for case 1

depression (a-b) case 2 depression (c-d) and case 3 depression (e-

f) for CV5 run (a,c,e) and CV6 run (b,d,f)

Table 4.2 gives the location and magnitude of maximum 48hr accumulated rainfall

from TRMM observations as well as the location error (in km) and magnitude error

(in cm) in the model simulations of the same for CTRL, cv5 and cv6 runs. The results

show that in all the depression cases considered here, the model simulated location and

intensity of maximum accumulated rainfall has errors when compared with TRMM

observations. It is also found that cv6 run has lower error in the location as well as

magnitude of maximum rainfall when compared with both CTRL and cv5 runs for all

the three depression cases.

Fig.4.21 indicates the improvement parameter (η) of 48 hour model simulated rain-

fall in the CV5 and CV6 runs. Postive value of IP indicates that the assimilation run

has improved the simulation of rainfall as compared to the control run. Here, the IP of

rainfall for CV5 and CV6 runs in the three depression cases are compared. In the three
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Figure 4.22: Skill scores of 48hr accumulated precipitation in mm w.r.to

TRMM for case 1 in left panel (a,d,g,j), case2 in middle panel

(b,e,h,k) and case3 in right panel (c,f,i,l) depressions. Equitable

threat score is shown in Fig. a-c . Bias scores in Fig.d-f , False

alarm ratio in Fig.g-i and Probability of Detection in Fig.j-l
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cases, CV6 run produces a larger value of IP over the land, in general, as compared

with CV5 run. This indicates that the CV6 run has in general improved the rainfall

simulation over a larger number of grid points over land, as compared with the CV5

run. However, over the west coast of India as well as over the ocean, there are more

number of grid points having negative values for IP in the CV6 run as compared to

CV5 run.

For quantitative verification of rainfall forecast skill, various skill scores like eq-

uitable threat score (ETS) , Bias score , False Alarm Ratio (FAR) and Probability of

Detection (POD) have been calculated for 48hr accumulated rainfall with respect to

TRMM observations for all the three depression cases and are shown in Fig4.22. To-

wards this, model simulated 48hr accumulated rainfall were regridded to the resolution

of TRMM rainfall observations. The skill scores are calculated using the contingency

table considering whether a forecast occurs or not (Wilks, 2011). The ETS estimates

how well the observed event is forecast, taking into account the correct forecasts that

can occur by chance. Bias score estimates the ratio of frequency of forecast events

to the frequency of observed events, indicating whether there is over or under pre-

diction by the model. The FAR gives the fraction of false alarms (model simulated

rainfall that is not observed) and POD gives the fraction of correctly forecast events.

In general, assimilated runs perform better than CTRL run in all rainfall thresholds

with higher ETS values, lower false alarm ratio and higher probability of detection in

all the three cases. In the second and third depression cases, cv6 runs have higher ETS

score, lower bias , lower FAR and larger POD as compared with cv5 and CTRL runs

in the higher threshold regions. The higher ETS score, higher POD and lower FAR

scores for all cases in the high rainfall thresholds, also supports the earlier inference

(refer Table 4.2) that cv6 runs perform better than the CTRL and cv5 runs for higher

intensity rainfall.

4.6 Summary

This chapter explores the two formulations of B matrix, namely, cv5 and cv6 op-

tions in the WRF 3DVar assimilation system. It is seen that the formulation of B

matrix do significantly impact the analysis. In the cv5 formulation, the background
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error correlations between humidity and other variables are not included. Inclusion

of the unbalanced velocity potential related correlations and humidity related corre-

lations leads to multivariate analysis of huimdity in the cv6 formulation. Improved

analysis of humidity is significant in improving the simulation of convective systems.

Furthermore, temperature and surface pressure are influenced by the divergent com-

ponent of wind in the cv6 option unlike in the cv5 option. The correlations specified in

the background error formulation results in spread of observation information among

the various model variables. The total number of humidity observations available

over a convectively active region may be less. Furthermore, the quality of the avail-

able humidity observations will also be less over such regions. Hence the multivariate

correlations in the humidity variable will ensure that the information from other ob-

servations improve the quality of humidity analysis for the simulation of convective

systems.

The impact of assimilation of conventional and satellite observations using the

above two methods are compared in the simulation of three cases of monsoon de-

pressions. The formulation of B matrix does have an impact on the analysis fields.

The moisture field is seen to be impacted the most by using the cv6 option as com-

pared with the cv5 option. The cv6 option has simulated a stronger cold core at lower

model levels as compared with the cv5 run for the depression cases considered here.

Vertical profiles of moisture convergence indicate stronger moisture convergence val-

ues for two of the depressions at low levels in cv6 run as compared with the cv5 run.

Higher relative vorticity and horizontal divergence values also are seen at the lower

levels in cv6 option for two cases. Furthermore, in two of the three depression cases

considered here, skill scores estimated for 48hr rainfall forecasts are better in cv6 runs

for the higher threshold levels as compared with the cv5 run and CTRL run. The lo-

cation and magnitude of maximum 48hr accumulated rainfall is also better simulated

in cv6 run when compared with cv5 run as well as CTRL run.
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CHAPTER 5

Impact of 3DVar assimilation of SAPHIR radiances

using multivariate background error covariances in the

simulation of tropical cyclones over Bay of Bengal

5.1 Introduction

The cv6 option in WRF 3DVar includes additional correlations between mixing

ratio field with other fields like temperature, divergent wind and surface pressure.

Utilizing the above-mentioned cv6 option should lead to improved representation of

moisture field in the analysis. Formation and development of tropical cyclones greatly

depend on convection-driven physical processes. Hence, one would expect that the

improved representation of moisture correlations in the 3DVar assimilation system

would result in better analysis of initial fields ; and hence would contribute to im-

proved simulation of tropical cyclone features.

The above hypothesis is evaluated in this study by employing the cv5 and cv6

options for B matrix in the 3DVar assimilation of MeghaTropiques SAPHIR radiances

using the WRF model. Three tropical cyclones that formed over the Bay of Bengal in

the recent years are selected in this chapter to investigate the influence of B matrix on

the analysis fields as well as on the forecasts of the WRF model.

5.2 Model configuration

Fig.5.1 shows the model domain used in this study. The WRF ARW model is

configured in a two-way nested domain. The outer domain has 350 grid cells in the

east-west direction and 350 grid cells in the north-south direction with a horizontal

resolution of 27 km. The inner domain has a horizontal resolution of 9 km with

451× 451 grid cells in the east-west and north-south directions respectively. Both

domains have 36 levels in the vertical. Both the domains use Kain-Fritsch cumulus
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Figure 5.1: Model Domain used in this chapter

Figure 5.2: Distribution of typically available observations over the domain

used for assimilation in this chapter

scheme with Yonsei University Scheme for planetary boundary layer, RRTM scheme

for long wave radiation, Dudhia scheme for short wave radiation, WSM scheme for

microphysics and Noah land surface model for land surface parametrisation.

5.3 Observations assimilated

The global surface and upper air observations available from NCEP include land

surface, marine surface, radiosonde, pibal and aircraft reports from the Global Telecom-

munications System (GTS) and satellite winds (NCEP, 2008). These observations are

assimilated in this study along with the radiance observations from SAPHIR sensor of

the MeghaTropiques satellite. Fig.5.2 depicts the distribution of observations that are

typically available over the domain, used for assimilation in this study.

92



Cyclone Cases Investigated

5.4 Cyclone Nilam (28 October - 01 November 2012)

5.4.1 Synoptic Conditions

A depression was formed over southeast and adjoining southwest Bay of Bengal

near 9.50oN, 86.00oE at around 06Z of 28th October 2012. Moving westward, it

deepened into a deep depression by 29th October 2012 near 9◦N, 83.0◦E. The depres-

sion moved further west and intensified into cyclonic storm Nilam. The cyclone then

moved northnorthwestwards, crossed north Tamilnadu coast near Mahabalipuram on

31st October 2012. After experiencing landfall, the cyclonic storm, Nilam moved

west-northwestwards and weakened gradually into a deep depression and then into

a depression over south Interior Karnataka in the morning hours of 01st November

2012.

5.4.2 Experimental Details

In order to investigate the impact of formulation of B matrix on the simulation of

cyclone Nilam, three numerical simulations have been conducted. These are called

the control (CTRL), CV5 run and CV6 run. In the CTRL run, model is integrated

from 12Z of 28th October 2012 to 31st October 2012 without assimilating any obser-

vations. In both the CV5 and CV6 runs, the model has been initialized at 12Z 28th

October 2012 and underwent 6 hours of spin up integration till 18Z 28th October 2012.

All available surface and upper air observations, satellite winds along with SAPHIR

radiances are assimilated at 18Z 28th October 2012 using the 3DVar technique. Sub-

sequently in both the CV5 and CV6 runs, the model is integrated without assimilating

any observations till the tropical cyclone experienced landfall. In the CV5 run, the B

matrix is estimated using the cv5 option and in CV6 run, it is estimated using the cv6

option.

93



5.4.3 Results and discussion

Fig.5.3 depicts the analysis increments at model level one at 18Z, 28th October

2012 after assimilating the conventional and satellite observations. The increments in

the fields of zonal wind ,u (a,e), meridional wind,v (b,f) , temperature, T (c,g), water

vapor mixing ratio q (d,h) for the CV5 run is shown in the top panel (a-d) and the

same for the CV6 run is depicted in the bottom panel(e-h) . The results indicate that

the differences between CV5 run and CV6 run in the analysis fields for T and q are

most pronounced. Specifically, the analysis increments between the CV5 and CV6

options differ from each other mainly in the q-field (Fig.5.3(d,h)) . The results of the

first model level shown in the Fig.5.3 indicates larger moisture increments in the CV6

analysis as compared with the CV5 analysis over the domain of interest. Considering

the importance of moisture field in the evolution of intensity changes associated with

tropical cyclones, it is hoped that employing the cv5 and cv6 options would lead to

differences in the simulation of intensities associated with cyclone Nilam.

The vertical profile of moisture divergence field at the cyclone center at +0hr, +24hr

and +48 hr forecasts of cyclone Nilam for the CTRL, CV5 and CV6 runs are shown in

Fig.5.4 and are compared with the GFS analysis]. There are very little differences in

the moisture convergence field at the cyclone center at the initial time between the CV5

and CV6 simulations. The large low level convergence indicated in the GFS analysis is

not reproduced by the model runs. However, the results of the 24 hr simulation shows

that stronger convergence values at the lower levels are seen in the CV5 simulation as

compared with the CV6 run. The CV5 run produces more moisture convergence at

the lower model levels as compared with the GFS analysis as well as CV6 run in the

24 hour simulation.

The horizontal divergence field at the cyclone center at +0hr, +24hr and +48 hr

forecasts of cyclone Nilam for the CTRL, CV5, CV6 runs and GFS analysis are com-

pared in Fig.5.5. At the initial time, as in the case of moisture divergence field, there

is very little differences in the horizontal divergence fields between the CV5 and CV6

runs. Both CV5 and CV6 runs produce a divergence/convergence profile closer to the

GFS analysis as compared with the CTRL run. However, the 24 and 48 hour fore-

casts indicate that the model simulations using the cv5 and cv6 options do differ in

the simulation of horizontal divergence fields. The CV5 run has simulated greater
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Figure 5.3: Analysis increment at model level 1 for zonal wind(a,e), meridional

wind,v (b,f) , temperature, T (c,g), water vapor mixing ratio q (d,h)

for CV5 run (a-d) and CV6 run (e-h) for cyclone Nilam

Figure 5.4: Moisture divergence at the cyclone center at +0hr, +24hr and +48

hr forecasts of cyclone Nilam for CTRL, CV5 and CV6 runs and

GFS analysis
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Figure 5.5: Horizontal divergence at the cyclone center at +0hr, +24hr and +48

hr forecasts of cyclone Nilam for CTRL, CV5 and CV6 runs and

GFS analysis

Figure 5.6: Relative vorticity at the cyclone center at +0hr, +24hr and +48 hr

forecasts of cyclone Nilam for CTRL, CV5 and CV6 runs and GFS

analysis

convergence/divergence at lower/upper model levels as compared with the CTRL and

CV6 run as well as the GFS analysis in the 24 hour forecast.

Fig.5.6 depicts the vertical profiles of relative vorticity at the center of the cyclone

Nilam at +0hr, +24hr and +48 hr forecasts for CTRL, CV5 and CV6 runs as well as

GFS analysis. Here also, at +0hr of forecast there is no discernible differences in the

profiles simulated in the CV5 and CV6 runs and all the model runs have simulated

lower values of relative vorticity at the cyclone center as compared with the GFS

analysis. However, the +24hr forecast shows that the relative vorticity at the cyclone

center is more intense in the CV5 run at lower model levels as compared with that
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Figure 5.7: 48 hour accumulated precipitation observed from TRMM (a), sim-

ulated by CTRL (b), CV5 run (c) and CV6 run (d) for cyclone

Nilam. The difference in accumulated rainfall of CTRL run from

TRMM observations is shown in (e), difference between CV5 and

TRMM in (f) and difference between CV6 and TRMM in (g) and

the difference between CV5 and CV6 is shown in (h) for cyclone

Nilam

in the CV6 runs. In the 24 hour forecast, CV5 run has simulated a stronger relative

vorticity as compared with CTRL, CV5 runs as well as the GFS analysis.

Fig.5.7(a-d) shows the 48 hr accumulated rainfall as observed by TRMM (a) and

simulated by CTRL (b), CV5 run (c) and CV6 run (d). The spatial extent of observed

rainfall is simulated reasonably well by the model simulations. However, the model

over-estimates the precipitation amounts as compared with the TRMM observations.

Assimilation of SAPHIR radiances have resulted in the model simulating excess rain-

fall in both the CV5 and CV6 simulations. However, the difference between the 48

hour accumulated rainfall in the CV5 and CV6 simulations (Fig.5.7c and 5.7d) rainfall
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Figure 5.8: Improvement parameter of 48 hour accumulated rainfall simulated

by CV5 (a) and CV6 (b) runs for cyclone Nilam.

is not easily discerned. Fig.5.7(e-g) shows the difference between the TRMM rainfall

observations and simulated 48 hour accumulated rainfall by CTRL (fig.5.7(e)), CV5

run (fig.5.7(f)) and CV6 run (fig.5.7(g)). The difference between the 48hr accumu-

lated rainfall simulated in the CV5 and CV6 runs in Fig.5.7(h) and the same indicates

that the differences in the formulation of the B matrix does have an influence on the

simulation of model rainfall for the case of cyclone Nilam.

Fig.5.8 indicates the improvement parameter (IP) of 48 hour accumulated rainfall

simulated by CV5 (a) and CV6 (b) runs for cyclone Nilam. In general, both CV5

and CV6 assimilation runs have negative IP over the north-west region of the cyclonic

system. Also, both CV5 and CV6 runs indicate that IP is positive for a larger number

of grid points indicating that the assimilation of SAPHIR radiances have positive im-

pact on the simulation of rainfall over more model grid points. The CV6 run has more

number of grid points with positive IP as compared with the CV5 run in the case of

cyclone Nilam.

The quantitative verification of rainfall simulation is performed by calculating the

various skill scores with respect to the 48hr accumulated TRMM observations for

cyclone Nilam. Fig.5.9 (a) shows the ETS, Fig.5.9 (b) shows Bias , Fig.5.9 (c) the

FAR and Fig.5.9 (d) shows the POD for cyclone Nilam for CTRL, CV5 and CV6

runs. The skill scores also indicate that the rainfall simulated by CV5 and CV6 runs

are indeed different. CV6 run provides for higher ETS, higher POD and higher bias

as compared with the CV5 run.
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Figure 5.9: ETS (a), Bias (b), FAR (c) and POD (d) of CV5 and CV6 model

simulations estimated with respect to TRMM observations for cy-

clone Nilam.

Figure 5.10: Time series of minimum slp (a) and maximum wind speed (b) of

cyclone Nilam for CTRL, CV5 and CV6 runs compared with IMD

observations
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Figure 5.11: Track of cyclone Nilam from CTRL, CV5 and CV6 runs com-

pared with IMD observations

The time series of minimum slp and maximum wind speed simulated by CTRL,

CV5 and CV6 runs are compared with the IMD observations in Fig.5.10 (a) and

Fig.5.10(b), respectively for cyclone Nilam. The overall trend of intensification as

observed is reasonably well simulated by the model in CTRL, CV5 and CV6 runs.

However, both the assimilated runs (CV5 and CV6) indicate simulation of a more

intense cyclonic system as compared with the observations. The simulation of the

CTRL run however is relatively closer to the observations than the assimilated run.

The reasons for the simulation of an excessively intense cyclonic system (as com-

pared to observations) in the assimilated run are difficult to establish.The utilization

of cv6 option has resulted in a slightly more intense cyclone than the CV5 simulation

in terms of the minimum slp and maximum wind speeds.

Fig.5.11 shows the simulated tracks of cyclone Nilam, by the CTRL, CV5 and

CV6 runs as compared with the IMD observations. Both the CV5 and CV6 runs

have reduced the location error of the cyclone as compared to the CTRL simulation.

However, the cyclone Nilam experiences landfall in the CV5 and CV6 simulations at

an earlier time than the observed time of landfall.

Fig.5.12 indicates that during the intial forecast hours CV6 run has the least track

error for cyclone Nilam. However, after 12 hours of model simulation, CV6 run has

simulated the location of the cyclonic system with larger error with respect to IMD

observations as compared with both CTRL and CV5 runs.
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Figure 5.12: Track error of cyclone Nilam from CTRL, CV5 and CV6 runs as

compared with IMD observations

5.5 Cyclone Phailin (8-14 October 2013)

5.5.1 Synoptic Conditions

Cyclone Phailin happens to be the strongest cyclone to hit Indian coasts in recent

times after the devastating Orissa super cyclone that formed in 1999. The system orig-

inated from a remnant cyclonic system over the South China Sea. The cyclonic circu-

lation observed over the Tenasserim coast on 6th October 2013 became a well-marked

low pressure over north Andaman sea on the next day. By 03UTC , 8th October 2013,

the system had intensified into a depression. As a result of favourable atmospheric

conditions like upper level divergence, increased values of low level convergence and

low level relative vorticity as well as low to moderate vertical wind shear, along with

the favourable SST values and Madden Jullian oscillation (MJO) index, the system

further intensified into a deep depression by 00Z 09th October 2013. Moving west-

northwestwards, the system crossed Andaman islands and moving over the east central

Bay of Bengal, intensified into a cyclonic storm by 12Z 09th October 2013. The cy-

clonic storm underwent rapid intensification and became a severe cyclonic storm by

03Z of 10th October 2013 and a very severe cyclonic storm by 06Z of the same day.
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The associated wind speed of the cyclonic storm Phailin experienced an increase from

55 knots on 03Z 10th October 2013 to 115 knots on 03Z 11th October 2013. Cyclone

Phailin further moved northwestwards and crossed Andhra Pradesh and Odisha coast

near Gopalpur (19.20oN and 84.90oE) around 1700 UTC on 12 October 2013. The

system weakened gradually into a severe cyclonic storm by 03Z of 13 October 2013

and a deep depression by 18Z on 13October 2013. The system further weakened to

become a well marked low by 09Z of 14 October 2013

5.5.2 Experimental Details

Three numerical experiments are performed to investigate the impact of cv6 option

in the simulation of cyclone Phailin. They are (i) a control (CTRL) run where no

assimilation of observations is performed. The model is integrated from 12Z of 08th

October 2013 to 18Z of 12th October 2013 utilizing NCEP GFS model forecasts for

initialization. (ii) CV5 run - the WRF model is initialized using NCEP GFS model

forecasts at 12Z , 08th October 2013 and a spin-up of the model is performed from 12Z

08th October 2013 to 18Z 08th October 2013. All conventional surface and upper air

observations including satellite wind observations, along with SAPHIR radiances are

assimilated using the WRF 3DVar technique with the cv5 option for background error

covariance at 18Z 08th October 2013 in the CV5 run. Subsequently, a free forecast

of the model is performed from 18Z of 08th October 2013 to 18Z of 12th October

2013 in the above CV5 run. CV6 run is exactly similar to the CV5 run except that cv6

option is utilized instead of cv5 option in background error covariance.

5.5.3 Results and Discussion

Fig.5.13 shows the analysis increments at model level one at 18Z , 08th October

2013 after assimilating all the observations. The top panel shows the increments in

the fields of zonal wind ,u (a,e), meridional wind,v (b,f) , temperature, T (c,g), water

vapor mixing ratio q (d,h) for the CV5 run and the bottom panel shows the same for

the CV6 run. It can be seen that the variation in the B matrix has an impact on the

analysis of all the fields. However, the differences between CV5 run and CV6 run in

the analysis fields for T and q are most pronounced. The analysis increments in the
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Figure 5.13: Analysis increment at model level 1 for zonal wind(a,e), merid-

ional wind,v (b,f) , temperature, T (c,g), water vapor mixing ratio

q (d,h) for CV5 run (a-d) and CV6 run (e-h) for cyclone Phailin

q-field (Fig.5.13(d,h)) indicates that the CV6 option has yielded non-zero moisture

analysis increments at the lowest model level , especially over the oceans as compared

with the CV5 run.

The vertical profile of moisture divergence at the cyclone center at +0hr, +24hr

and +48 hr forecasts of cyclone Phailin for CTRL, CV5 and CV6 runs are shown in

Fig.5.14. The moisture convergence simulated by the CV6 run at has a lower value at

the lower model levels as compared with the CV5 run and GFS analysis in general in

this case. Lower moisture convergence at the cyclone centre could result in reduced

vertical motion and affect further intensification of the cyclone in the CV6 run. Since

the analysis fields of water vapor mixing ratio show an increment in the CV6 run as

compared with the CV5 run, the reduction in moisture convergence could indicate a

reduced value of horizontal convergent wind fields. This implies that the modification

in the formulation of B matrix has impacted the divergent component of wind flow.

The horizontal divergence at the cyclone center at +0hr, +24hr and +48 hr forecasts

of cyclone Phailin for CTRL, CV5 and CV6 runs are compared in Fig.5.15 with GFS

analysis. The initial profile indicates that the CV6 run has simulated lower values

of horizontal convergence at the lowest model levels as compared with the CV5 run

and GFS analysis. In the subsequent forecast hours also (+24 and +48 hours) shown

103



Figure 5.14: Moisture divergence at the cyclone center at +0hr, +24hr and +48

hr forecasts of cyclone Phailin for CTRL, CV5 and CV6 runs

compared with GFS analysis

Figure 5.15: Horizontal divergence at the cyclone center at +0hr, +24hr and

+48 hr forecasts of cyclone Phailin for CTRL, CV5 and CV6 runs

compared with GFS analysis

in Fig.5.15, the horizontal convergence at lower model levels is not as marked in the

CV6 run as in the CV5 run and in the GFS analysis.

The Fig.5.16 depicts the vertical profiles of relative vorticity at the center of the

cyclone Phailin at +0hr, +24hr and +48 hr forecasts for GFS analysis, CTRL, CV5

and CV6 runs. The relative vorticity profiles simulated by the CV6 run indicates a

stronger vortex as compared to CV5 run as well as GFS analysis in the initial forecast

hour. The +24 hr and +48 hr forecast profiles of relative vorticity indicates that the

vortex simulated in the two assimilated model forecasts (CV5 and CV6) do differ from

each other significantly.
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Figure 5.16: Relative vorticity at the cyclone center at +0hr, +24hr and +48 hr

forecasts of cyclone Phailin for CTRL, CV5 and CV6 runs com-

pared with GFS analysis

Fig.5.17(a-d) shows the 48 hr accumulated rainfall as observed by TRMM (a) and

simulated by CTRL (b), CV5 run (c) and CV6 run (d). Fig.5.17(e-g) shows the dif-

ference between TRMM observations and simulated accumulated rainfall by CTRL

(Fig.5.17(e)), CV5 run (Fig.5.17(f)), (Fig.5.17(g)) and the difference between CV5

and CV6 run in (Fig.5.17(h)). The figure indicates that the simulation of precipita-

tion associated with Phailin is impacted by the formulation of control variables in the

background error covariance matrix. The difference between the rainfall simulated by

the CV5 and CV6 runs appear to be associated with the location of position of the

cyclonic system. This could be because of the convective processes that occur in the

cyclone and the dependence of these processes on the moisture analysis.

Fig.5.18 indicates the improvement parameter (IP) of 48 hour accumulated rainfall

simulated by CV5 (a) and CV6 (b) runs for cyclone Phailin. It is seen that there are

a significant number of grid points where the assimilation runs , CV5 and CV6 , have

positive IP value. However, there are a large number of grid points where the IP is

negative in both CV5 and CV6 runs. These corresponds to the ocean where the spatial

plot of accumulated rainfall (Fig.5.17) indicates that the model runs are predicting

excessive precipitation as compared with the TRMM observations. As compared with

the CV5 run, CV6 run has produced a marginally more number of grid points with

positive IP values for cyclone Phailin.

The quantitative verification of rainfall simulation is performed by calculating the

various skill scores with respect to the TRMM observations. Fig.5.19 (a) shows the
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Figure 5.17: 48 hour accumulated precipitation observed from TRMM (a),

simulated by CTRL (b), CV5 run (c) and CV6 run (d) for cyclone

Phailin. The difference in accumulated rainfall of CTRL run from

TRMM observations is shown in (e), difference between CV5 and

TRMM in (f) , between CV6 and TRMM in (g) and the difference

between CV5 and CV6 is shown in (h)

Figure 5.18: Improvement parameter of 48 hour accumulated rainfall simulated

by CV5 (a) and CV6 (b) runs for cyclone Phailin.

ETS, Fig.5.19 (b) shows Bias , Fig.5.19 (c) the FAR and Fig.5.19 (d) shows the POD

for cyclone Phailin. The skill scores indicate that the assimilation of SAPHIR radi-

ances using the cv6 option has resulted in improvement in ETS score especially at

106



Figure 5.19: ETS (a), Bias (b), FAR (c) and POD (d) of CV5 and CV6 model

simulations estimated with respect to TRMM observations for cy-

clone Phailin.

higher rainfall threshold values as compared with the CV5 run. POD also shows im-

proved values in the CV6 run as compared with the CV5 run. However, the number

of false alarms is higher in the CV6 run as compared with the CV5 run.

The time series of minimum slp and maximum wind speed simulated by the CTRL,

CV5 and CV6 runs are compared with the IMD observations in Fig.5.20 (a) and

Fig.5.20(b) respectively. The model simulations follow somewhat the evolution of

the observed minimum slp and observed maximum wind speed. However, the assim-

ilation of SAPHIR radiances has intensified the cyclonic system during day 1 of the

simulation of minimum slp and maximum wind speed. It is to be noted that CV6

run and CV5 runs have assumed similar values for minimum slp and maximum wind

speed. The formulation of B matrix has not impacted the simulation of maximum

wind speed of cyclone Phailin in a significant manner. However, the observed inten-

sification of the cyclonic system as manifested in Fig.5.20 is not however captured by

the model simulations.

The Fig.5.21 shows the simulated tracks of cyclone Phailin, by the CTRL, CV5

and CV6 runs as compared with the IMD observations. All the model runs reproduce

the general northwestward movement of the observed Phailin track
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Figure 5.20: Time series of minimum slp (a) and maximum wind speed (b) of

cyclone Phailin for CTRL, CV5 and CV6 runs for cyclone Phailin

Figure 5.21: Track of cyclone Phailin from CV5 and CV6 runs compared with

observations

Figure 5.22: Track error of cyclone Phailin from CV5 and CV6 runs as com-

pared with observations
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Fig.5.22 depicts the time series track error of the three model simulations with re-

spect to IMD observations. It is seen that at all the forecast hours, CTRL run simulated

cyclone center location with the maximum error, and the CV5 run has the least error

in cyclone center location.

5.6 Cyclone Thane (25-31 December, 2011)

5.6.1 Synoptic Conditions

The very severe cyclonic storm Thane formed as a tropical disturbance over the

southeast Bay of Bengal on 24th December 2011. The above system concentrated into

a depression on 25th December 2011 and lay over 8.5◦N, 88.5◦E. Moving northeast,

the depression strengthened into deep depression by 00Z 26 December 2011. Further

moving northwards, the system became a tropical cyclone by 18Z of 26th December

2011 and lay centred near 11◦N, 87.5◦E. The cyclone moved north-westwards over

the southeast Bay of Bengal and lay over 12◦N, 87◦E on 27 December 2011. The

cyclone then moved westwards and intensified into a severe cyclonic storm by 28th

December 2011. By 12Z of the same day, the system further intensified into a very

severe cyclonic storm. Further moving west, the very severe cyclonic storm crossed

north Tamil Nadu coast around 00Z 30th December 2011. The system moved west-

wards and weakened into a severe cyclonic storm by 03Z of the same day. Moving

further westwards , the system further weakened into a deep depression by 06Z of

30th December 2011. Further moving westsouthwestwards, the deep depression fur-

ther weakened into a low pressure area by the early hours of the next day.

5.6.2 Experimental Details

The following three experiments have been performed namely (i) control (CTRL)

run - forecast fields from NCEP GFS model are used to initialize WRF model. The

CTRL simulation is performed from 12Z 25th December 2011 while the system was

in a depression stage to 30th December 2011 , when the cyclone made landfall. No

assimilation of observations is performed in the CTRL run. (ii) CV5 run - WRF model

is initialized at 12Z 25 December 2011 and a spin up of the model is performed till
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18Z 25 December 2011. All available surface and upper air observations along with

SAPHIR radiances are assimilated at 18Z 25 December 2011. There after the model is

integrated in a free forecast mode without further assimilation of observations, till the

cyclone experienced landfall. For the CV5 run, the 3DVar assimilation is performed

using the cv5 option of B matrix. (iii) CV6 run - This numerical experiment is con-

figured in the same way as the CV5 run, except for the utilization of the cv6 option

instead of cv5 option in estimating the B matrix for the 3DVar assimilation.

5.6.3 Results and discussion

Analysis increments in the first model level in zonal wind (u), meridional wind(v),

temperature (T) and water vapour mixing ratio (q) in the CV5 and CV6 assimilations

at 18Z 25 December 2011 is shown in Fig.5.23. The analysis increments in u an v are

more or less similar in the two assimilation runs. However, the model fields T and q

are impacted mostly by the utilization of cv6 formulation of B matrix. Larger positive

increments are seen over Arabian Sea and Bay of Bengal in the T and q fields at model

level 1 in the assimilation run with cv6 option.

The vertical profile of moisture divergence at the cyclone center at +0hr, +24hr and

+48 hr forecasts of cyclone Thane for CTRL, CV5 and CV6 runs are shown in Fig.5.24

along with GFS analysis. The moisture divergence field at the centre of the cyclone

at the initial forecast time has similar profile for CV5 and CV6 runs. Here, the model

simulations have not faithfully reproduced the more stronger moisture convergence

at lower levels as indicated in the GFS analysis. However, the vertical profiles of

moisture divergence differ between CV5 and CV6 runs at the +24 hour forecast. CV6

run is seen to produce more moisture convergence at lower model levels in the 24

hour model forecast as compared with the CV5 run. However, the convergence at

lower levels simulated by the CV6 run is smaller than indicated by the GFS analysis

The horizontal divergence at the cyclone center at +0hr, +24hr and +48 hr forecasts

of cyclone Thane for CTRL, CV5 and CV6 runs are compared in Fig.5.25 along with

GFS analysis. At the initial time, at the centre of the cyclone, CV5 and CV6 runs

simulate similar vertical profiles for horizontal divergence. All the three model runs

produce more horizontal convergence/divergence as compared with the GFS analysis.
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Figure 5.23: Analysis increment at model level 1 for zonal wind(a,e), merid-

ional wind,v (b,f) , temperature, T (c,g), water vapor mixing ratio

q (d,h) for CV5 run (a-d) and CV6 run (e-h) for cyclone Thane

Figure 5.24: Moisture divergence at the cyclone center at +0hr, +24hr and +48

hr forecasts of cyclone Thane for CTRL, CV5, CV6 runs and GFS

analysis
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Figure 5.25: Horizontal divergence at the cyclone center at +0hr, +24hr and

+48 hr forecasts of cyclone Thane for CTRL, CV5, CV6 runs and

GFS analysis

Figure 5.26: Relative vorticity at the cyclone center at +0hr, +24hr and +48 hr

forecasts of cyclone Thane for CTRL, CV5, CV6 runs and GFS

analysis
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Figure 5.27: 48 hour accumulated precipitation observed from TRMM (a),

simulated by CTRL (b), CV5 run (c) and CV6 run (d) for cyclone

Thane. The difference in accumulated rainfall of CTRL run from

TRMM observations is shown in (e), difference between CV5 and

TRMM in (f) , between CV6 and TRMM in (g) and the difference

between CV5 and CV6 is shown in (h)

Figure 5.28: Improvement parameter of 48 hour accumulated rainfall simulated

by CV5 (a) and CV6 (b) runs for cyclone Thane.

However, the CV6 run simulates more convergence/divergence as compared with the

CV5, CTRL run and the GFS analysis at +24 hour model forecast. At +48 hour of the

model forecast also, CV5 and CV6 runs simulate similar moisture divergence profiles.

Fig.5.26 depicts the vertical profiles of relative vorticity at the center of the cyclone
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Thane at +0hr, +24hr and +48 hr forecasts for GFS analysis, CTRL, CV5 and CV6

runs. The initial profile of relative vorticity at the cyclone centre is also similar for

CV5 and CV6 runs and both CV5 and CV6 runs as well as the CTRL run has simu-

lated a larger relative vorticity as compared with the GFS analysis. The +24 forecast

results however do show the differences between the two simulations. Both CV5 and

CV6 runs have simulated larger vorticity than the GFS analysis in the 24hr forecast

also. The CV5 run indicates stronger relative vorticity at the lower model levels as

compared with the CV6 and CTRL runs. CV6 runs indicate a relative vorticity profile

closer to the GFS analysis as compared with the CV5 run and CTRL run.

Fig.5.27(a-d) shows the 48 hr accumulated rainfall as observed by TRMM (a) and

simulated by CTRL (b), CV5 run (c) and CV6 run (d). Fig.5.27(e-g) shows the dif-

ference between TRMM observations and simulated accumulated rainfall by CTRL

(Fig.5.27(e)), CV5 run (Fig.5.27(f)), (Fig.5.27(g)) and the difference between CV5

and CV6 run in (Fig.5.27(h)). The spatial pattern of simulated 48 hour accumulated

rainfall is similar in both CV5 and CV6 runs. Both these runs simulate larger amounts

of rainfall as compared with the TRMM observations. The difference plot Fig.5.27(h)

indicates that assimilation of observations using the cv5 option has resulted in heavier

rainfall as compared with that using the cv6 option for the cyclone Thane during the

48 hours of model simulation.

Fig.5.28 indicates the improvement parameter (IP) of 48 hour accumulated rainfall

simulated by CV5 (a) and CV6 (b) runs for cyclone Thane. The north-western region

of the cyclonic system is seen to have large number of grid points with negative IP

values in both CV5 and CV6 runs. The spatial plot of accumulated rainfall (Fig.5.27)

indicates that the model simulations are producing excessive precipitation over this

region. However, in the CV6 run, the number of grid points where the IP is negative is

lower as compared with the CV5 run, indicating an improvement in rainfall simulation

over these grid points when the cv6 option is utilized.

The quantitative verification of rainfall simulation is performed by calculating the

various skill scores with respect to the TRMM observations. Fig.5.29 (a) shows the

ETS, Fig.5.29 (b) shows Bias , Fig.5.29 (c) the FAR and Fig.5.29 (d) shows the POD

for cyclone Thane. ETS is similar for both CV5 and CV6 runs with CV6 run indicating

only slightly larger ETS values as compared with CV5 run. Bias for the model is
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Figure 5.29: ETS (a), Bias (b), FAR (c) and POD (d) of CV5 and CV6 model

simulations estimated with respect to TRMM observations for cy-

clone Thane.

larger at the higher rainfall thresholds with the CV5 run showing the largest values

of bias, thereby indicating excessive amounts of rainfall as compared with TRMM

observations in the higher rainfall thresholds. FAR is lower in the CV6 run at all

thresholds. However, CV6 runs indicate lower probability of detection at all rainfall

thresholds when compared with the CV5 run.

The time series of minimum slp and maximum wind speed simulated by the CV5

and CV6 runs are compared with the IMD observations in Fig.5.30 (a) and Fig.5.30(b)

respectively. As compared with the IMD observations as well as the CTRL run, both

assimilated runs (CV5 and CV6) have simulated a stronger cyclonic system in terms of

minimum sea level pressure and maximum wind speed attained at the initial forecast

hours. However, after about 60 hours of model forecast, at 12Z 28th December 2011,

the observations show an intensification of the system in terms of minimum sea level

pressure and maximum wind speed. However, this intensification is not reproduced

by all the model forecasts. All the three model simulations indicate a weakening of

the system at and after 60 hours of forecast.

Fig.5.31 shows the simulated tracks of cyclone Thane, by the CTRL, CV5 and

CV6 runs as compared with the IMD observations. The cyclone track simulations by

all the three model runs are fairly close to each other with the CTRL run simulating a
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Figure 5.30: Time series of minimum slp (a) and maximum wind speed (b) of

cyclone Thane for CTRL, CV5, CV6 runs compared with IMD

observations for cyclone Thane

Figure 5.31: Track of cyclone Thane from CTRL, CV5 and CV6 runs com-

pared with IMD observations
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Figure 5.32: Time series of track error of cyclone Thane from CTRL, CV5 and

CV6 runs compared with IMD observations

track somewhat more closer to the IMD observations as compared with the CV5 and

CV6 runs. In all the model runs, the cyclone experiences landfall earlier than that is

observed.

Fig.5.32 shows the time series of track error in CTRL, CV5 and CV6 runs with

respect to IMD observations. Fig.5.32 indicates that at the initial time, the locational

error in cyclone centre is more in the CV5 and CV6 runs as compared with the CTRL.

However, after the initial forecast hour, the CV6 run has simulated the track of cyclone

Thane with lowest location errors.

5.7 Summary

The results of this chapter clearly indicate that the impact of assimilation of SAPHIR

radiances are indeed influenced by the formulation of B matrix in the WRF 3DVar sys-

tem. In general, the three cyclones considered here are seen to be more intense when

the cv6 option is used , in terms of minimum sea level pressure and maximum wind

speed. Moisture fields are seen to be impacted the most in the model simulations.

This has resulted in higher ETS, lower FAR and higher POD in the 48hr accumulated

rainfall forecasts in two out of three cyclones considered here. The differences in the

model forecasts between the CV5 and CV6 runs are seen to be moderate in this study,

even though the analysis of the moisture field differs between the two. The reason

for this is the fact that cv5 and cv6 only differ in the representation of correlations
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between the control variables in the 3DVar analysis, and both these options generate

background error covariances which are static and homogeneous in nature.

The results from the previous chapter (chapter 4) indicate that the formulation of

background error covariance matrix does impact the analysis as well as forecasts of

mesoscale weather systems over the Indian domain. Monsoon depressions and tropi-

cal cyclones have different thermodynamical as well as dynamical characteristics. For

example, the central region of monsoon depressions are characterised by cold core

at the lower levels and warm core at the upper levels as opposed to tropical cyclones

which have a warm core at the middle and upper atmopsheric levels. Also, while tropi-

cal cyclone weakens in intensity with height from the surface, the monsoon depression

intensifies with height from the surface. Furthermore, monsoon depressions are rela-

tively larger systems in terms of their horizontal extent as compared with the tropical

cyclonic systems. However, the formation and further evolution of both these low

pressure systems are highly dependent on atmospheric moisture content. Hence better

analysis of humidity variable in a numerical model would result in better simulation

of monsoon depressions as well as tropical cyclones.

The cv6 formulation of background error covariance in the WRF model provides

for an improved representation of moisture in the initial condition for simulation. The

correlations among the control variables in the cv6 formulation include relations of

humidity variable with other atmospheric variables. In contrast, the cv5 formulation

incorporates only univariate humidity analysis. The multivariate humidity analysis in

cv6 formulation is seen to have a positive impact on the simulation of both monsoon

depressions as well as tropical cyclones.
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CHAPTER 6

Impact of assimilating satellite observations using

Ensemble Kalman Filter over the Indian Region

6.1 Introduction

The Ensemble Kalman filter (EnKF) has been used for assimilating meteorologi-

cal observations in many studies world over. However, such studies over the Indian

region in a regional model framework have not been performed. The major difference

between 3DVar and EnKF is in incorporating the effects of flow-dependent B matrix

in the latter. The current study details the implementation of EnKF in WRF model

over the Indian region and investigates the impact of assimilating satellite wind ob-

servations using EnKF. Furthermore, a comparative impact study is performed by as-

similating the same observations using the 3DVar technique. For the initial two cases

investigated, a relatively small domain is utilized, considering the higher computa-

tional cost involved in the implementation of EnKF. Subsequently, a larger domain is

also utilized for investigating an additional case study.

6.2 Generating ensembles

The numerical forecast of any weather system includes inherent uncertainties. These

uncertainties have two causes

(i) Errors in initial conditions : Being a chaotic system, the evolution of the atmo-

spheric state is very sensitive to the prescribed initial conditions of the model.

The errors in the initial conditions manifest due to the inherent inadequacy of

required number of atmospheric observations as well as instrumental errors asso-

ciated with atmospheric observations.

(ii) Errors in the forecast model : A numerical weather model is used as a replica

of the real atmospheric structure and evolution. All weather models are not es-
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sentially perfect. Furthermore, several weather phenomena manifest at scales

that cannot be explicitly resolved by the numerical model. Due to the above,

the average statistical effects of the such processes need to be parametrized. The

parametrization schemes are not perfect and hence can introduce errors in the

model. Furthermore, numerical approximations utilized to solve the model equa-

tions are an additional source of model errors.

6.2.1 Ensemble generation by random perturbations to initial and

boundary conditions (initial-condition ensemble)

In the method of ensemble generation by random perturbations to initial and bound-

ary conditions, all the ensemble members have the same configuration. In this method,

WRF model’s initial and boundary fields are perturbed using spatially correlated,

Gaussian noise. The spatial and multivariate covariances of the above noise follows

the background error covariance of WRF 3DVar (Torn et al., 2006). The main advan-

tage of this method is its relative simplicity as compared with other methods such as

bred vectors or singular vectors for generating perturbations. Storage of large amounts

of data is also not required in this method. However, this method may have some

disadvantages since the state-dependent information is not used for generating per-

turbations (Torn et al., 2006). In this method, a set of random control variables with

zero mean and standard deviation of one unit, following a normal distribution, are

generated. The analysis increments obtained by the 3DVar minimization for these

random control variables are transformed back to the model space using an empiri-

cal orthogonal function (EOF) transform (for vertical correlations), a recursive filter

(for horizontal correlations) and a variable transform. The zonal and meridional com-

ponents of horizontal wind, potential temperature and water vapour mixing ratio are

perturbed in this method (Zhang et al., 2009). The perturbations thus generated are

added to the GFS 6-hour forecast fields to generate an initial ensemble. Here, both

initial as well as boundary conditions are perturbed using the same methodology.
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6.2.2 Ensemble generation by perturbing model parametrization

schemes (multiphysics ensemble)

In the method of ensemble generation using perturbation of model parametrization

schemes, each of the ensemble members is configured with a different parametriza-

tion combination. However, the same initial and boundary conditions are used to

integrate each of these ensemble members. This method addresses the uncertainties

in the model itself which arise because of the imperfections in the representation of

the various atmospheric processes by the model. Table 6.1 depicts the number of

ensemble members which are configured using a particular parameterization scheme.

Table 6.1: Model configuration for the multiphysics ensemble depicting the

number of ensemble members (N) for each physics scheme used

N
Cumulus

scheme
N

Microphysics

scheme
N PBL scheme

8 Kain-Fritsch 10 Kessler scheme 20 YSU scheme

8
Betts-Miller-

Janjic
10 Lin et al. scheme 20

Mellor-Yamada-

Janjic

scheme

8
Grell-Freitas

(GF) scheme
10

WRF

Single-Moment

3-class scheme

8 Grell 3D scheme 10
New Thompson

et al. scheme

8

Simplified

Arakawa-

Schubert

scheme

Stensrud et al. (2000) has opined that the initial-condition ensemble and the mul-

tiphysics ensemble have similar mean square error values. However, it is well known

that the multiphysics ensemble generates larger variance in the temperature, specific

humidity, geopotential height, and wind component fields as compared to the initial-

condition ensemble method. The variance in the multiphysics ensemble is seen to be
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Figure 6.1: Model domain

two to six times larger than that in initial-condition ensemble during the first 12 hours

of model simulation (Stensrud et al., 2000). Hence, in a data assimilation scenario

where the typical assimilation cycles are performed at a time interval which normally

is not more than 12 hours, employing multiphysics ensemble method for generating

ensembles can be advantageous.

6.2.3 Ensemble generation using stochastic kinetic energy backscat-

ter (skeb ensemble)

In this method of ensemble generation using the stochastic kinetic energy backscat-

ter (skeb), the error associated with the interaction between the resolved and unre-

solved components of a numerical weather model is the basis for ensemble generation.

The motivation behind this method of ensemble generation is the idea that there is a

flow of energy from the unresolved subgrid-scales to the explicitly resolved scales in a

model (Shutts, 2005). In this method, using a prescribed power spectrum and a decor-

relation time parameter, perturbations are introduced to the rotational component of

horizontal wind and potential temperature tendency equations. Berner et al. (2011)

provides the theoretical basis of the skeb scheme in the WRF model.

An ensemble ideally represents the flow-dependent evolution of uncertainties dur-

ing a numerical weather forecast. The uncertainties in an ensemble is quantified by

estimating the spread in the ensemble, or the dispersion among the ensemble mem-

bers. To compare the spread of ensembles generated using the above three methods,

a 40-member ensemble is generated using these methods. Towards this end, the input

fields for the WRF model obtained from the GFS forecast fields are perturbed at 00Z
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Figure 6.2: (a-d) indicates the vertical profiles of domain averaged spread in

40-member ensembles generated using the three perturbation meth-

ods for zonal wind (u), meridional wind(v), temperature (T) and

water vapor mixing ratio (q)

of 01 July 2013. This is performed in a single domain of 27km horizontal resolution

with 36 vertical levels shown in Fig.6.1 . From these perturbed states, ensemble mem-

bers are integrated forward in time for a period of 24 hours. The domain-averaged

vertical profiles of 12 hr spread of the 40 member ensembles generated using the three

methods are shown in Fig.6.2 for zonal wind,u (a), meridional wind,v (b), tempera-

ture, T (c) and water vapor mixing ratio, q (d). It is seen from Fig6.2. that all the

three methods generate ensembles with somewhat similar vertical structures associ-

ated with the 12hr forecast uncertainty. In general, all the three methods provide for

larger spread in the upper model levels as compared with the lower levels for u, v and

T. However, the extent of spread is quite different between the three methods. The

icbc ensemble method has the least spread in all the variables at all model levels. For

the wind and temperature fields, the skeb method generates maximum spread among

the three methods. However, the maximum uncertainty in the moisture field is found

in the multiphysics ensemble method which indicates that the uncertainties associated

with the parametrisation schemes provides for larger influence in the uncertainties of

the moisture field.
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6.3 Ensemble Kalman Filter

The main disadvantage in employing the 3DVar techniques for data assimilation

is due to the static background error covariance employed in this method. However,

the forecast errors associated with the evolution of the atmospheric system are not

reflected in the estimation of B matrix in 3DVar method. EnKF method inherently

provides flow-dependent B matrix through the use of forecast ensembles. This has

the advantage of not requiring the adjoint of the forecast model as in the case of

four-dimensional variational technique (4DVar). The 4DVar method provides flow-

dependent B implicitly whereas in EnKF method, the flow-dependency is included

directly through the ensemble statistics. In addition, the analysis error covariance is

also provided by ensemble based methods. Also it is conceptually simpler to imple-

ment an ensemble based assimilation technique. This is because the EnKF method

only requires a forecast model and an observation operator to estimate the state of the

system unlike a variational technique which requires linearized models and forward

operators, their adjoints, and additional prior knowledge about the covariance between

different model components (Kalnay et al., 2007).

The EnKF technique is implemented here using the utilities provided by the Data

Assimilation Research Testbed (DART) (Anderson et al., 2009). DART is a commu-

nity, open-source facility developed and maintained at NCAR. It provides software

tools for data assimilation.

The background error covariance in an EnKF analysis depend on the forecast en-

semble used for assimilation. To illustrate this, a single observation assimilation ex-

periment is performed here. A single temperature observation which differs from the

mean background by a magnitude of 1K is assimilated at 10oN, 80oE at the surface.

The analysis increment at model level 1 in the u,v, T and q fields after assimilating the

above pseudo observation is evaluated for three different ensemble member sizes and

the results are provided in fig. 6.3. The location of the observation is shown as a black

dot in Fig.6.3(g). The results (Fig6.3) indicates the extent to which the background

error covariance values are modified through the use of ensembles. Since the anal-

ysis increment in a single observation experiment is proportional to a column of the

background error covariance, the results as depicted in Fig. 6.3 essentially shows the

variation in the correlation between temperature at surface and other model variables
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Figure 6.3: Analysis increments in u(a-c), v(d-f), T(g-i) and q(j-l) fields for

ensemble sizes 5 (a,d,g,j), 15(b,e,h,k) and 30(c,f,i,l) when a single

pseudo observation of surface temperature is assimilated.

125



Figure 6.4: Analysis increments in u with covariance cutoff of 600 km (a) and

300 km (b) when a single pseudo observation of surface tempera-

ture is assimilated.

with the increase of number of ensemble members. With the increase in the number of

ensemble members, the representation of error correlations between the various model

fields at different model levels improves. It is clear from the above result that smaller

number of ensemble members lead to spurious correlation between the various model

fields.

The model sub-space has to be sampled adequately by the ensemble members to

properly depict the statistical representation of the atmospheric system for the EnKF

assimilation (Oke et al., 2007). Since a general numerical weather model has state

space with a typical size ∼ 107, in principle, the ensemble that represents the above

system should be very large. However, in practise, a typical ensemble filter, has a

maximum of around 100 ensemble members. Even employing 100 ensemble mem-

bers entails huge computational costs when we consider the cost involved in gener-

ating and maintaining the ensemble over several analysis cycles. If the number of

ensemble members is small, this results in inadequate representation of the system it

samples. Such under-sampling leads to a reduced-rank estimate of the background

error covariance matrix (Hamill et al., 2001) .

Undersampling results in what it termed as inbreeding (Houtekamer and Mitchell,

1998) in an ensemble filter. In general, the sampling errors in the ensemble contributes

to the underestimation of the forecast errors. Since the analysis errors are expected to

be lower than the forecast errors (Furrer and Bengtsson, 2007), the analysis errors are

also incorrectly estimated. Inbreeding refers to the situation where the analysis er-

ror is systematically underestimated due to assimilation of observations. In the case
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where the EnKF utilises the perturbed observation ensemble, more errors associated

with the sampling of observational ensemble can also add to this problem. As a result

of inbreeding, filter divergence can occur (Hamill et al., 2001). If the forecast error

covariances are incorrectly estimated to be larger than what they are, the background

will not be properly weighed by the filter and the observations will be given greater

weightage. Conversely, if forecast error covariances are very low, then higher weigh-

tage will be given to the background than the observations by the filter. Since the

analysis error is expected to be lower than the forecast error, the ensemble members

incorrectly converge after a few assimilation cycles. Furthermore, spurious long-range

correlations between the model variables can manifest due to inbreeding. Due to the

above, grid point values can be erroneously influenced by observations that are phys-

ically remote.

Covariance inflation and covariance localization (Hamill et al., 2001) have been

used to circumvent the issue of undersampling. Covariance inflation is one method

of correcting an underestimation in the forecast error covariance matrix by inflating,

for each ensemble member, the deviation of the background error from the ensemble

mean by a percentage (Anderson and Anderson, 1999). The choice of inflation factor

used cannot be universally determined as it depends on the numerical model used,

the type of ensemble filter used as well as the system dynamics. Covariance inflation

does not address the issue of spurious correlations, which is taken care by covariance

localization method (Houtekamer and Mitchell, 1998; Hamill et al., 2001) . In the

covariance localization method, the long range correlations are cut-off at a specified

distance. This is accomplished by applying a Schur product between the forecast error

covariance matrix and a non-zero correlation function in a small (local) region. It is

assumed that the Schur product outside the small local region is zero. Usually, the fifth

order piecewise rational function as defined in Gaspari and Cohn (1999) is used as the

correlation function for implementing localisation in the EnKF method. A correlation

lengthscale needs to be specified, ensuring that the correlations drop off to zero at a

distance larger than twice this lengthscale.

Fig.6.4 shows the increment in u at model level 1 after assimilating a pseudo tem-

perature observation in an ensemble of size 30, with two correlation lengthscales spec-

ified. Fig.6.4(a) shows the analysis increment when a length of 600 km is chosen as

localization distance. Here, the influence of the observation reduces to about half at
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300 km and becomes zero at 600 km. In Fig.6.4(b) the length at which the impact

of observation is zero is chosen to be 300km. The above results shown in the Fig.6.4

provides for the effects of covariance localization on analysis fields in EnKF.

6.4 Impact of assimilating Oceansat-2 satellite ocean

surface wind vectors using EnKF in simulating heavy

rainfall over Indian peninsula

Several studies have shown that assimilation of ocean surface winds from scat-

terometers can improve forecasts of a numerical model. Some of the recent studies

like (Govindankutty and Chandrasekar, 2010; Sinha and Chandrasekar, 2010; Osuri

et al., 2012; Singh et al., 2011) have shown that assimilating satellite data in WRF

model using variational techniques have improved the simulations of various weather

systems like tropical cyclones and depressions over the Indian region. The objective of

the current study is to assimilate ocean surface winds retrieved from the scatterometer

aboard Oceansat-2 satellite. Oceansat-2 satellite launched by Indian Space Research

Organisation (ISRO) in September 2009 carries three payloads (i) a 13.5 GHz Ku-

band scatterometer (OSCAT) (ii) an Ocean Color Monitor and (iii) Radio Occultation

Sounder for Atmospheric Studies. The wide swath of 1800 km helps Oceansat-2 to

cover 90% of the global oceans in 24 hours. OSCAT is designed to retrieve wind

speed and direction over the ocean surface. It has a similar configuration and oper-

ating mechanism as that of NASA’s QuikSCAT. Mission goals of OSCAT require an

accuracy of 2ms−1 in speed and 20o in direction for winds within 4-24ms−1. Several

recent studies (Mathew et al., 2012; Kumar et al., 2013b; Sathiyamoorthy et al., 2012)

have shown that this requirement has been met and OSCAT provides good quality

wind measurements for use in numerical weather forecasting. Singh et al. (2008a)

have shown that assimilation of OSCAT winds in WRF model has positive impact

on the forecasts of surface winds, midtropospheric relative humidity, temperature and

precipitation. It has been shown by Kumar et al. (2013a) that assimilation of OSACT

winds improves track prediction for a tropical cyclone with degradation in the fore-

casts of intensity and evolution characteristics. Both these studies assimilated obser-

vations using WRF’s 3DVar technique. There are no studies available in the literature
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that have investigated the impact of assimilating OSCAT winds using EnKF method

over the Indian region.

Studies like (Meng and Zhang, 2007, 2008a,b; Whitaker et al., 2008; Zhang et al.,

2010; Torn, 2010; Zhang et al., 2011) etc have indicated that improved results are ob-

tained by using ensemble based assimilation method as compared to the more popular

three dimensional variational techniques (3DVar). This is because, ensemble based

assimilation methods provide flow-dependent multivariate background error covari-

ance and cross-covariance unlike 3DVar. This is possible as the former employ the

Monte-Carlo based estimation of error statistics. A large ensemble of model states are

integrated forwards in time using the dynamic equations of the model and the various

moments of probability density function are calculated from this. Such a calculation of

error evolution is not possible in 3DVar. It has been shown by (Buehner et al., 2010a,b;

Miyoshi et al., 2010; Zhang et al., 2011) that the performance of EnKF is comparable

to that of 4DVar. However, EnKF is simpler than 4DVar as the latter’s requirement of

adjoint of observation operators do not arise in the former. Further, EnKF’s analysis

code does not depend on the prediction model as in the case of 4DVar. Importantly,

information regarding uncertainty in both analysis and observations can be obtained

in an ensemble based technique unlike in a variational technique.

6.4.1 Case 1 Heavy rainfall event over the Indian peninsular re-

gion during November 2009

Case Investigated

A low pressure area was formed around the south west Bay of Bengal and neigh-

bourhood on 14th November 2009. The trough from this low pressure region extended

over west central Bay across Sri Lanka and southwest Bay of Bengal. The system per-

sisted on 15th November and moved towards north west and became less marked on

16th November 2009. This system strengthened the northeast monsoon flow and re-

sulted in heavy rainfall in the peninsular region, especially over the southern state of

Tamil Nadu. A trough of low pressure over Lakshadweep islands in the Arabian sea

was also seen on 14th November 2009. The above system persisted on 15th November

and moved eastward and is seen over east Arabian sea. Fig.6.5(a-d) shows the mean
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sea level pressure (MSLP) and associated lower tropospheric wind flow at 850hPa dur-

ing the evolution of this system over the model domain, as obtained from the NCEP

analysis fields at 06Z and 18Z of 14th November, 12Z on 15th November and 06Z on

16th November, respectively.

Figure 6.5: MSLP and 850hPa streamline pattern from NCEP analysis at 06Z

(a) and 18Z of 14th November (b) , 12Z of 15th November (c) and

06Z of 16th November (d) for the first case study

The MSLP field from NCEP analysis shows clearly the existence of low pressure

over South West Bay of Bengal, south of Sri Lanka on 14November 2009 (Fig.6.5a,b).

The analysis shows that the above low pressure area has intensified slightly on 15th

November 2009 moving northwards and is now lying over Sri Lanka (Fig.6.5c). The

analysis further reveals that the low pressure has weakened considerably on 16th

November 2009 (Fig.6.5d). The associated streamline pattern at 850hPa from the

analysis reveals a cyclonic circulation which extends upto the southern peninsula on

14th November 2009. The centre of the above cyclonic circulation has moved north-

west wards on 15th November 2009 and has clearly weakened on 16th November

2009 as shown in the analysis.
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Model Details

Figure 6.6: Model domain used.

For this case study, the WRF model is configured with a small domain so that com-

putational expenses are somewhat modest. WRF model has a single domain of 15 km

horizontal resolution with 120 x120 grid cells in the north-south and east-west direc-

tions and has 36 levels in the vertical (shown in Fig.6.6). The various parametriza-

tion schemes used in this study are Kain-Fritsch scheme for cumulus, WRF Double-

Moment 5-class (WSM5) scheme for microphysics, Rapid Radiative Transfer Model

(RRTM) for longwave radiation, Dudhia scheme for shortwave radiation, Yonsei Uni-

versity (YSU) scheme for boundary layer and thermal diffusion scheme for surface

physics.

Experimental Details

Three experiments are performed to analyse the impact of assimilation of OSCAT

winds on the simulation of this heavy rainfall event, namely (i) control (CTRL) run,

(ii) assimilation run using 3DVar (3DVar run) and (iii) assimilation run using EnKF

(EnKF run). The initial and boundary conditions for WRF model are obtained from

National Centre for Environmental Prediction (NCEP) Global Forecast System (GFS)

fields in all the three experiments. No observations are assimilated in the CTRL run.

The model is integrated from 18Z 12th November 2009 to 06Z 16th November 2009 in

the CTRL run. The 3DVar and EnKF runs, are started from 18Z 12th November 2009.

OSCAT wind observations are assimilated thrice after this initial spin up - at 06Z and

18Z 13th November 2009 and 06Z 14th November 2009. From the assimilated state
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at 06Z 14th November 2009, the model is integrated for 48 hours without further as-

similation of OSCAT winds, in a free forecast mode. The EnKF run is identical to the

3DVar run, except that EnKF method is employed. The model simulated fields during

the free forecast run (during 06Z 14th November 2009 to 06Z 16th November 2009)

for all the three experiments are compared with each other and validated with observa-

tions and analyses to investigate the impact of assimilation. The EnKF experiment is

configured with 64 ensemble members and uses a prior inflation of 1.2. The ensemble

is generated by perturbing the model’s initial and boundary conditions at 18Z 12th

November 2009. The ensemble members are integrated till 06Z 13th November 2009

so that the error evolution of the model forecast is captured.

Scatterometer data quality is known to be affected by rain. Due to this, prior to

data assimilation, rain-flagged OSCAT wind observations are not included in both

assimilation runs.

Results

Figure 6.7: 850hPa moisture streamline (qu,qv) patterns at 12 hours of forecast

from the NCEP analysis, CTRL, 3DVar and EnKF runs (a-d) and at

30 hours of forecast (e-h) for the first case study.
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Figure 6.8: Height-time section of the wind speeds and relative humidity over

Chennai from analysis (a) and the model runs (b-d) for the first case

study.

The 850hPa lower tropospheric moisture flux at 12 hours of forecast , i.e. at 18Z

14th November (Fig 6.7b-d) and at 30hours of forecast , i.e. at 12Z 15th November

2009 (Fig.6.7f-h) as simulated by the model (CTRL, 3DVar and EnKF) are compared

with that from NCEP analysis fields in Fig 6.7a and 6.7e. While the CTRL results

are shown in Fig 6.7b, 6.7f, the 3DVar and EnKF results are shown in Fig 6.7c,6.7g

and Fig 6.7d,6.7h respectively. While the analysis reveals that the lower tropospheric

moisture flux convergence is south of Sri Lanka at 12 hours of the forecast (Fig 6.7a),

the moisture flux convergence moves over northwards and is over Sri Lanka at 30

hours of forecast (Fig 6.7e). The CTRL and EnKF runs at 12hours of forecast have

simulated lower tropospheric moisture convergence as manifested through associated

cyclonic circulation (Fig 6.7b, 6.7d). The 3DVar run at 12 hour forecast simulates an

anti-cyclonic circulation (Fig 6.7c) which is not observed in the analysis. However,

all the three model runs have simulated lower tropospheric moisture convergence at

30hours of forecast (Fig 6.7f-h) over Sri Lanka as well as over the west coast of India.

The analysis, however, at 30 hours of forecast shows low level moist convergence over

the west coast of India (Fig 6.7e).
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Figure 6.9: Spatial distribution of improvement parameter and forecast impact

parameter in the simulation of wind magnitude with respect to

QuikSCAT observations for 3DVar run (a),(c), EnKF run(b),(d) for

the first case study

Fig 6.8(a-d) shows the time-height variation of relative humidity and wind vectors

over a location (Chennai) on the east coast of peninsular India during the free fore-

cast period. Chennai is chosen since it receives most of its rain during the northeast

monsoon ; it received 120 mm in 48 hours during this case study event. The NCEP

analysis reveals persistent south-easterlies over Chennai (Fig 6.8a), with the southerly

component increasing with height as well as time. Also, the wind magnitude increases

with height in the analysis (Fig.6.8a). All the three model runs faithfully reproduce

the above easterly wind pattern (Fig6.8b-6.8d) seen during the northeast monsoon

season. The NCEP analysis reveals the existence of very high relative humidity (over

80%) over Chennai during the entire two-day period (14-16 November 2009), except

for a small patch of dry air around 700 hPa on day1 and during the last 12 hours over

300 hPa (Fig6.8a). All the three model runs manifest relatively drier air at and above

300 hPa (Fig 6.8b-6.8d). However, the 3DVar run simulates excessive dry air on day 1

of the forecast over the entire troposphere, which is also manifested in the lower tro-
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posphere after 24 hours of forecast. (Fig 6.8c). A possible reason for the above feature

in the 3DVar run is due to the lower tropospheric anticyclonic circulation simulated

on day 1 of the forecast (Fig.6.7c) , a feature not observed in the analysis.

The model forecasts of the surface wind surface magnitude are compared with

QuikSCAT gridded wind observations for validation since it is more meaningful to

obtain an independent validation of the results of the model simulations with obser-

vations which have not been assimilated. Also, QuikSCAT winds are available at

a finer horizontal resolution of 25 km. The quantitative evaluation of the simulated

surface wind magnitude with respect to QuikSCAT observations are performed using

Improvement parameter (η) and Forecast impact parameter (F.I).

Positive η values indicate positive impact of assimilation. The spatial distribution

of improvement parameter for the 3DVar and EnKF runs are given in Fig.6.9a and

6.9b. It is seen that η is positive over large regions (51.8%) in the 3DVar run (Fig6.9a)

indicating positive impact on the simulated wind magnitudes. However, the EnKF

run shows a slightly lower percentage (40.8%) of grid points where η is positive. It

is somewhat surprising to note that the simulation of surface winds over the ocean

using EnKF method has resulted in lower number of positive values of η and F.I as

compared to the 3DVar run.

A positive FI indicates that the model forecast with assimilation compares better

with observations than the forecast without assimilation. Fig.6.9c and 6.9d shows the

spatial plot of FI for 3DVar and EnKF runs. The result of the 3DVar run has large

percentage of grid points where FI is positive (51.7%) while the same for the EnKF

run is slightly smaller (42.7%).

The evaluations of the simulated rainfall for the CTRL, 3DVar and EnKF runs

are performed by comparing with Tropical Rainfall Measurement Mission (TRMM)

(Fig6.10a) and India Meteorological Department (IMD) gridded rainfall (Fig6.10b)

observations and are shown in Fig.6.10c, 6.10e, 6.10h for 48hr accumulated rainfall

forecasts. The TRMM observations indicate that the south eastern Arabian sea (off

the west coast of Kerala) as well the region off the east coast of Tamil Nadu expe-

rience very good rainfall. The IMD gridded rainfall data is available over a coarser

resolution (0.5ox0.5o) as compared with TRMM (0.25ox0.25o) and is available only

over the Indian land region. Despite the above differences, the intensity and the spa-
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Figure 6.10: 48hr accumulated rainfall from TRMM(a), IMD(b), CTRL run(c),

3DVar run (d-f) with lenghtscale 0.5,1.0 and 1.5 and EnKF run

(g-i) with cutoff radius 50km,100km and 150km for the first case

study.

tial distribution of the observed rainfall matches well between the TRMM and IMD

observations. The CTRL run (Fig 6.10c) simulates excessive rainfall off the coasts of

Kerala and Tamil Nadu. Further, the CTRL run simulates heavy rain southeast of Sri

Lanka which is not observed in TRMM.

The results of the 48hr rainfall simulation for the 3DVar and EnKF runs are shown

in Fig 6.10e and 6.10h respectively. It is clear that the assimilation of OSCAT winds

have succeeded in reducing the excessive rainfall simulated by the CTRL run. How-

ever, the rainfall simulated by the 3DVar run is severely underestimated over the west

coast. Also, the location of the precipitation maxima over the east coast of India as

seen in TRMM is displaced southward in the 3DVar run. A possible reason for the

above behaviour can be due to the anomalous anticyclonic circulation together with
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much drier air as simulated by the 3DVar run on day 1 of the forecast. The EnKF

run, in addition to reducing the excessive rainfall simulated by the CTRL run, also

correctly reproduces the location of the rainfall maximum over the east coast of India.

Furthermore, the EnKF run also appears to reproduce the spatial distribution of rain-

fall maximum over the west coast of India. It is true that the EnKF run has simulated

more rainfall in terms of intensity over North Indian ocean as compared to TRMM

and other model runs.

Although the poor simulation of the 3DVar run has been attributed to the anoma-

lous anticyclonic circulation, it is worthwhile to investigate whether the above under-

estimation of rainfall prediction by the 3DVar run can be corrected through tuning of

parameters which eventually determine the "background error covariance (B matrix)".

One of such parameters is the scaling factor for length scale of the recursive filter uti-

lized in the B matrix calculations. Towards this end, the 3DVar experiment has been

rerun by changing the scale factor of the length scale from 1 (Fig6.10e) to values such

as 0.5(Fig6.10d) and 1.5 (Fig 6.10f). Similar studies such as Guo et al. (2006),Ha and

Lee (2012) have been undertaken in the literature to study the sensitivity of scaling

factor of length scale. Increasing the scaling factor of length scale to 1.5 yields a sim-

ulation where heavy rain is only observed over Indian Ocean with very little rain over

the southern peninsula (Fig 6.10f). Decreasing the scaling factor of length scale to 0.5

yields a simulation closer to the CTRL simulation.

A similar sensitivity study to investigate the effect of "localization" on the model

simulation using EnKF technique has been undertaken. While the cutoff radius Gas-

pari and Cohn (1999) (a measure of localization) is chosen as 100km in Fig6.10h,

the same is changed to 50km (Fig 6.10g) and 150km (Fig 6.10i) respectively. The

results of the above sensitivity studies have not produced any discernible changes in

the simulated precipitation of the EnKF run (refer Fig6.10g-6.10i). To sum up, it is

clear that the best possible rainfall results for 3DVar and EnKF runs are associated

with Fig.6.10e and 6.10h, respectively and hence these are utilised in the subsequent

analyses and discussions.

In addition to the comparison of qualitative spatial distribution of rainfall, Fig6.11

a-d provide quantitative skill score measures of 48hour simulated precipitation such as

are Equitable threat score (ETS), Bias, Probability of detection (POD) and False alarm
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ratio (FAR) for CTRL, 3DVar and EnKF runs with respect to TRMM observations.

Figure 6.11: (a) Bias score, (b) False alarm ratio, (c) Probability of Detection

and (d) Equitable threat score of the model runs for 48hour accu-

mulated precipitation with respect to TRMM for different rainfall

thresholds for the first case study

Bias score is a measure of the over prediction/under prediction of the model rainfall

forecast with respect to TRMM observations. Fig 6.11a depicts the bias for CTRL,

3DVar and EnKF runs for various rainfall thresholds. While the CTRL run over-

estimates very significantly the rainfall for higher thresholds of rain, the 3DVar run

underestimates rainfall for lower threshold values and is relatively unbiased for higher

rainfall values. The EnKF run, however, over predicts rainfall as compared to the

3DVar run for all thresholds. FAR is a measure of the number of false alarms (rainfall

simulated when there are no observations to indicate the presence of rainfall) for a

model forecast. While the FAR for moderate to heavy rainfall thresholds indicate that

EnKF run has lower false alarm ratio as compared to CTRL and 3DVar runs, the same

is not true for low rainfall thresholds(Fig6.11b) .
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Figure 6.12: Area averaged and time averaged temperature anomaly (a) and

relative vorticity (b) over 3oxo box around the centre of low pres-

sure system from analysis and the three model runs for the first

case study

POD is a measure of the skill of a model to predict rainfall with respect to TRMM

observations including the cases of correct predictions which happen due to mere

chance. The POD for 3DVar run (Fig.6.11c) is consistently lower as compared with

the EnKF and CTRL runs indicating poor rainfall prediction by the 3DVar run for this

case. The POD values for EnKF run are the highest for all rainfall thresholds among

the three model run results. The ETS is a measure of the skill of a model to predict

rainfall without including the cases of correct predictions which occur by mere chance.

The poor performance of prediction of rainfall by the 3DVar in this case as seen in Fig

6.10e is reflected in the low ETS values for the 3Dvar run as well as compared to the

CTRL and EnKF runs (Fig6.11d). As with POD, the ETS values for the EnKF are the

highest for most of the rainfall thresholds.

The location of the minimum SLP over the entire domain at different times (every

6 hours) is determined from the GFS analysis fields as well as the three model runs.

A 3o × 3o box is considered around the centre of the minSLP region. The 48hour

time averaged (06Z 14th November - 06Z 16th November 2009) and box averaged

vertical profiles of this observed (GFS analysis) relative vorticity is compared with

the model runs in Fig 6.12a. The relative vorticity as seen in NCEP analysis at the
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lower levels are not reproduced by all the model forecasts. Both the assimilation runs

have simulated vorticity profiles that are relatively closer to analysis as compared to

CTRL run. The CTRL run has, however, simulated large values of cyclonic relative

vorticity in the lower levels (4.5 ×10−5s−1) with a maximum around 850 hPa. The

EnKF run simulated cyclonic vorticity is closer to GFS analysis at heights above 800

hPa although they differ at lower levels. Also, the height at which the maximum

relative vorticity observed in the EnKF run is closer to the GFS analysis and these are

quite different for the CTRL and 3DVar runs. In order to quantify the departure of the

time averaged and area averaged relative vorticity of model runs from the analysis,

the rmse of the above is calculated with respect to the GFS analysis summed over

all the vertical levels. and are as follows ; CTRL run: 2.15 ×10−5s−1, 3DVar run

:1.35×10−5s−1 and EnKF run : 7.22 x ×10−6s−1, indicating clearly the closeness of

the EnKF run to the analysis.

The area averaged and box averaged temperature anomaly is calculated using the

same 3o × 3o box over the minSLP region. The difference between the average tem-

perature within this box with that over the entire domain at different pressure levels

is considered as the temperature anomaly. Fig. 6.12b shows that at all the levels, the

simulated temperature anomaly from the EnKF run is closer to the analysis than that

from the 3DVar and the CTRL runs. The rmse of the 48 hour time averaged area av-

eraged temperature anomaly of the model runs averaged over the vertical levels with

respect to the GFS analysis for CTRL run is 0.51 K, 3DVar run is 0.63 K and EnKF

run is 0.43 K. Clearly, the EnKF run has simulated the temperature structure closest

to the GFS analysis among the three model runs.

6.4.2 Case 2 : Depression over Comorin region during November

2011

Case Investigated

Under the influence of an active ITCZ, a cyclonic circulation formed over south-

west Bay of Bengal off Sri Lanka and south Tamil Nadu coast on 23rd November 2011

and manifested as a low pressure area over southwest Bay of Bengal and adjoining Sri

Lanka on 24th November 2011. The above system moved west-northwestwards and
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became well marked on 25th November 2011 and concentrated into a depression at

0300 UTC of 26th November 2011 over the Comorian area. During the intensifica-

tion of the above mentioned low pressure system to depression, heavy rainfall was

obtained over the peninsular region.

Figure 6.13: MSLP and 850hPa streamline pattern from NCEP analysis at 06Z

(a) and 18Z of 14th November (b) , 12Z of 15th November (c) and

06Z of 16th November (d) for the second case study

The MSLP field from NCEP analysis shows clearly the existence of low pressure

near Sri Lanka on 24November 2011 (Fig.6.13a,6.13b). The analysis shows that the

above low pressure area has intensified slightly on 25th November 2011 moving north-

westwards and is now lying over the Comorin area (Fig.6.13c) and (Fig.6.13d). The

associated streamline pattern at 850hPa from the analysis reveals a cyclonic circula-

tion on 24th November 2011.

Experimental

The WRF model is configured in the same manner in terms of model domain,

horizontal resolution, number of vertical levels and various parametrization schemes

utilized for case study 1 considered in the previous section in this chapter. Three ex-

periments are performed to analyse the impact of assimilation of OSCAT winds on the

simulation of this heavy rainfall event, namely (i) control (CTRL) run, (ii) assimila-

tion run using 3DVar (3DVar run) and (iii) assimilation run using EnKF (EnKF run).

The initial and boundary conditions for WRF model are obtained from NCEP GFS

fields in all the three experiments. No observations are assimilated in the CTRL run.
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The model is integrated from 18Z 22November 2011 to 06Z 26November 2011 in the

CTRL run. The 3DVar and EnKF runs, are started from 18Z 22th November 2011.

OSCAT wind observations are assimilated thrice after this initial spin up - at 06Z and

18Z 23th November 2011 and 06Z 24th November 2011. From the assimilated state

at 06Z 24th November 2011, the model is integrated for 48 hours without further as-

similation of OSCAT winds, in a free forecast mode. The EnKF run is identical to the

3DVar run, except that EnKF method is employed. The ensemble filter used here uses

the same inflation and localization values that have been used for the heavy rainfall

case 1 considered. The model simulated fields during the free forecast run (during 06Z

24th November 2011 to 06Z 26th November 2011) for all the three experiments are

compared with each other and validated with observations and analyses to investigate

the impact of assimilation. Here also, rain-flagged OSCAT wind observations are not

included in the assimilation runs. This case study also has used the same configuration

of EnKF system as in the first case study.

Results

Figure 6.14: 850hPa moisture streamline (qu,qv) patterns at 12 hours of fore-

cast from the NCEP analysis, CTRL, 3DVar and EnKF runs (a-d)

and at 30 hours of forecast (e-h) for the second case study.
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The 850hPa lower tropospheric moisture flux at 12 hours of forecast , i.e. at 18Z

24th November (Fig 6.7b-6.7d) and at 30hours of forecast , i.e. at 12Z 25th November

2011 (Fig.6.7f-6.7h) as simulated by the model are compared with that from NCEP

analysis fields in Fig 6.7a and 6.7e. In the model runs, the moisture convergence seems

to be centered near the south of SriLanka where as the NCEP analysis shows this

feature further south. The 30hr model forecast shown in Fig6.7f-6.7h also indicates

that the model has simulated more moisture flux nearer to the Indian peninsular region

as compared with the NCEP analysis as shown in Fig. 6.7e.

Figure 6.15: Height-time section of the wind speeds and relative humidity over

Chennai from analysis (a) and the model runs (b-d) for the second

case study.

Fig 6.15(a-d) shows the time-height variation of relative humidity and wind vectors

over Chennai on the east coast of peninsular India during the free forecast period. The

figure indicates that the three model runs given by Fig. 6.15(b-d) are able to reproduce

the easterly wind pattern observed over Chennai during the North East monsoon pe-

riod. The NCEP analysis of relative humidity field (Fig.6.15a) shows that the humidity

is in general high over Chennai during this period. However, the CTRL and 3DVar

model runs (Fig.6.15b,c) have simulated a drier atmosphere above around 600hPa at

almost all times during the free forecast period. In EnKF simulation also, the levels

above 600 hPa are drier during the day 1 forecast. However, during the day 2 forecast,

the EnKF run has simulated more moisture in terms of relative humidity than that is

simulated by the CTRL and 3DVar runs.

The moisture flux pattern and the relative humidity fields indicate that the EnKF run

has simulated more moisture convergence and higher humidity values over the land
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Figure 6.16: Spatial distribution of improvement parameter and forecast impact

parameter in the simulation of wind magnitude with respect to

ASCAT observations for 3DVar run (a),(c) and EnKF run(b),(d)

for the second case study

region. This can impact the rainfall simulation and can result in heavier precipitation

in the EnKF run over the Indian peninsula as compared with the CTRL and 3DVar

runs.

Positive η values indicate positive impact of assimilation. The spatial distribution

of improvement parameter for the 3DVar and EnKF runs are given in Fig.6.16a and

6.16b. It is seen that η is positive over large regions in the 3DVar run (Fig6.9a) in-

dicating positive impact on the simulated wind magnitudes. However, the EnKF run

Figure 6.17: 48hr accumulated rainfall from TRMM(a), CTRL run(b), 3DVar

run (c) and EnKF run (d) for the second case study
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shows a slightly lower percentage of grid points where η is positive.

A positive FI indicates that the model forecast with assimilation compares better

with observations than the forecast without assimilation. Fig.6.9c and 6.9d shows the

spatial plot of FI for 3DVar and EnKF runs. The result of the 3DVar run has larger

percentage of grid points where FI is positive as compared with the EnKF run.

Towards this end, 48 hour accumulated rainfall simulated by the CTRL, 3DVar

and EnKF runs, are compared with the TRMM rainfall observations and are shown

in Fig.6.17. The figure shows that the 3DVar run has reduced the extent of spurious

heavy rainfall simulated by the CTRL run. It is also clear that EnKF run has simulated

excessive rainfall as compared to 3DVar run. Furthermore, there are errors in the

location and intensity of heavy rainfall simulated by both the 3DVar and EnKF runs.

The 3DVar run has simulated heavy rainfall over a somewhat limited spatial extent as

compared with TRMM observations. However, the spatial pattern of rainfall simulated

by the EnKF run is close to that observed by TRMM. However, the EnKF run has

simulated rainfall with more intensity than that observed by TRMM.

The quantitative verification of skill of rainfall forecast by the CTRL, 3DVar and

EnKF runs are shown in Fig.6.18. The 48 hour accumulated rainfall simulated by the

CTRL, 3DVar and EnKF runs are compared with the TRMM rainfall observations.

The ETS score ( Fig.6.18a) shows that EnKF runs are more skillful in simulating

rainfall over all the thresholds as compared with the CTRL as well as 3DVar runs.

Furthermore, the number of false alarms are lower and the probability of detection

values are higher in EnKF run as compared with both CTRL and 3DVar runs over all

the rainfall thresholds. However, the EnKF run exhibits large bias as compared with

both CTRL and 3DVar runs. The above result is consistent with the inference that

EnKF run is simulating heavier rainfall, a feature discerned from the spatial plot of

accumulated rainfall simulation.

The vertical profiles of temperature anomaly and relative vorticity in a 3o× 3o box

around the depression centre is shown in Fig.6.19 (a) and (b), respectively. The verti-

cal profile of temperature anomaly from GFS indicates a warm core system in lower

and upper troposphere. The CTRL and 3DVar runs have simulated smaller tempera-

ture anomaly at the lower levels as compared with the GFS analysis. The thermal core

structure simulated by the EnKF run is relatively more closer to that from the GFS
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Figure 6.18: ETS (a), Bias (b), FAR (c) and POD (d) for CTRl, 3DVar and

EnKF runs for 48 hr accumulated rainfall with respect to TRMM

rainfall observations for the second case study

analysis at lower levels as compared with the CTRL and 3DVar runs. However, the

warm core maximum at around 300 hPa seen in the GFS analysis is better captured by

the 3DVar run as compared with the EnKF run. The vertical profile of relative vortic-

ity around the center of the system is shown in Fig.6.19(b). For this case, the 3DVar

run has simulated a higher relative vorticity throughout the troposphere as compared

to the CTRL and EnKF runs as well with the GFS analysis.

6.4.3 Case 3 Depression over the Bay of Bengal during May 2013)

Case Investigated

Under the influence of a cyclonic circulation over northwest Bay of Bengal off

Odisha - West Bengal coasts, a low pressure area formed over the North Bay of Ben-

gal and neighbourhood. The low pressure system intensified into a Depression and
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Figure 6.19: Vertical profiles of temperature anomaly (a) and relative vorticity

(b) in a 3o× 3o box around the depression centre for the second

case study

was centered near 210 N, 89.50 E, at 0300 UTC of 29th May 2013. Moving north-

northwestwards, the depression was located near 21.70 N, 88.80 E, at 1200 UTC of

29th May 2013 and crossed the West Bengal coast near 21.80 N, 88.70 E between

1330 and 1430 UTC on the same day. The above mentioned depression caused heavy

to very heavy rainfall during its passage over the Indian region.
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Figure 6.20: MSLP and 850hPa streamline pattern from NCEP analysis at 00Z

(a) and 06Z of 29 May 2013 (b) , 18Z 30 May 2013 (c) and 00Z

of 31 May 2013 (d) for the third case study

The MSLP field from NCEP analysis depicts the depression embedded in the mon-

soon trough (Fig.6.20a-d). The analysis shows that north-westward movement of the

depression centre during 29May - 31May2013.

Experimental Details

The two heavy rainfall cases investigated in this chapter have been performed with

a limited computational requirement by employing a relatively smaller domain to

lower the computational costs involved since the EnKF utilizes large number of en-

semble forecasts. However, the use of a relatively smaller domain has the limitation

that the number of assimilated observations is low. Furthermore, the domain over

peninsular India considered in the previous two case studies in this chapter do not

include many conventional observations within it. Moreover, a relatively smaller do-

main might impact the spread among the ensemble members in the EnKF run due

to closer boundaries. Hence it is envisaged that an experiment be performed using

EnKF method which makes use of a relatively larger domain (shown in Fig.6.1) . The

above domain has 350 × 350 grid points in the E-W and N-S directions with a hori-

zontal resolution of 27km and has 36 levels in the vertical. The same parametrisation

schemes in the previous case studies reported in this chapter are used here for the

model integration.
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The ensembles are generated using the multiphysics ensemble approach wherein

each of the ensemble members has a unique physical parametrization combination.

This ensures sufficient spread in the ensemble. An ensemble with 40 ensemble mem-

bers are used in this third case study. A lower number of ensemble members appears

to be adequate for this case study since the ensemble members are generated using the

multiphysics scheme. This ensures that the ensemble members are sufficiently differ-

ent from each other and thus provide adequate spread. Furthermore, to minimize the

impact of lower number of ensemble members, a covariance inflation of 1.2 is also

employed in this case study. The conventional surface and upper air observations as

well as satellite winds over the oceans available from NCEP are used in this case study

for assimilation.

The various experiments are configured as follows - a control (CTRL) run is per-

formed without ingesting any observations from 12Z 28th May 2013 to 00Z 31 May

2013. Two assimilation runs are also performed, namely, a 3DVar run and an EnKF

run. Both these model runs are performed in a similar manner. WRF model is in-

tialized from GFS model forecasts at 12Z 28th May 2013. A 12 hr model spin up is

performed without assimilating any observations. Thereafter, conventional observa-

tions and satellite winds are assimilated thrice - at 00Z 28th May 2013, 12Z 28th May

2013 and 00Z 29th May 2013. From the 3DVar as well as EnKF analyses at 00Z 29th

May 2013, a 48 hour model forecast is performed without any further assimilation of

observations.
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Results

Figure 6.21: 850hPa moisture streamline (qu,qv) patterns at 12 hours of fore-

cast from the NCEP analysis, CTRL, 3DVar and EnKF runs (a-d)

and at 30 hours of forecast (e-h) for the third case study.

The 850hPa lower tropospheric moisture flux at 12 hours of forecast , i.e. at 12Z

29th May 2013 (Fig 6.7b-6.7d) and at 30hours of forecast , i.e. at 18Z 30th May

2013 (Fig.6.7f-6.7h) as simulated by the model are compared with that from NCEP

analysis fields in Fig 6.7a and 6.7e. The Fig..6.7 indicates that bu 12 hours of model

forecast, the moisture convergence pattern has moved more inland as compared with

the analysis. The Fig.6.7f-6.7h) indicates that the 3DVar run has simulated more lower

level moisture convergence as compared with the EnKF and CTRL runs as well as the

NCEP analysis.
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Figure 6.22: Height-time section of the wind speeds and relative humidity over

the location of maximum observed precipitation from analysis (a)

and the model runs (b-d) for the third case study.

Fig 6.22(a-d) shows the time-height variation of relative humidity and wind vec-

tors over 20.75oN, 89.1oE on the where the maximum amount of rainfall has been

observed during the free forecast period. The figure indicates that the three model

runs have simulated a drier model upper levels over this location after about 24 hours

of forecast as compared to the NCEP analysis. However, the EnKF run has simulated

more relative humidity as compared to 3DVar and CTRL runs.

The track of the depression simulated by the three model runs are compared with

the IMD best track data. From Fig.6.23 it is clear that EnKF assimilation of con-

ventional and satellite wind observations has improved the simulation of location of

depression centre at the initial forecast hours , as compared with the CTRL and 3DVar

simulations. After the first eighteen hours of forecast, the EnKF simulated track does

deviate farther from the IMD observation. It is quite possible that deviation with re-

spect to observed track manifest after the initiation of free forecast ; larger the time

after the initiation of free forecast, larger is the deviation. Additional assimilation

cycles encompassing the free forecast period may possibly provide for a better track

simulation by the EnKF.

The 48 hour accumulated rainfall observed by TRMM is shown in Fig.6.24(a).

This is compared with the rainfall simulated by the CTRL run (Fig.6.24(b)), 3DVar

run (Fig.6.24(c)) and the EnKF run (Fig.6.24(d)). The maximum intensity of rain-

fall is seen over the Head Bay region in the TRMM rainfall observations. There is

rain over the west coast of India also. It is clear that the CTRL run has simulated
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Figure 6.23: Depression track simulated by CTRL, 3DVar and EnKF runs com-

pared with the IMD observation for the third case study

Figure 6.24: 48 hour accumulated precipitation simulated by CTRL (b), 3DVar

(c) and EnKF (d) compared with TRMM observations (a)for the

third case study
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excess rainfall over the Head Bay region. Also, the spatial extend of rainfall over the

west coast of India is seen to be lower in the CTRL run. Furthermore, CTRL run has

produced relatively smaller spatial extend of heavy rainfall over the Head Bay as com-

pared with the EnKF simulation. However, there is error in the location of maximum

precipitation in the CTRL run. Furthermore, the rainfall over the Indian west coast in

not reproduced by the 3DVar assimilation run. EnKF assimilation run, however has

simulated larger extent of heavy rainfall over the Bay of Bengal as compared to the

CTRL run. The location of maximum precipitation in the EnKF run is also closer to

the TRMM observation. Furthermore, the spatial extent of rainfall over the west coast

of India as well as over the Bay of Bengal region are better simulated by the EnKF

run.

Figure 6.25: ETS (a), Bias (b), Far (c) and POD (d) of 48 hr accumulated rain-

fall calculated with respect to TRMM observations for the third

case study

The improved simulation of accumulated rainfall in the EnKF run can be further

substantiated by utiliszing the skill scores of rainfall simulations as shown in Fig.6.25.

The ETS (a), Bias(b), FAR(c) and POD(d) in Fig.6.25 shows that EnKF assimilation
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has resulted in better simulation of accumulated rainfall in terms of higher ETS, lower

Bias, lower FAR and higher POD as compared with both the CTRL and 3DVar runs.

Figure 6.26: vertical profile of temperature anomaly (a) and relative vorticity

(b) in a 3o× 3o box around the depression centre for the third case

study

The thermal structure of the monsoon depression is depicted using the temperature

anomaly in a 3o× 3o box around the depression centre for CTRL, 3DVar and EnKF

runs in Fig.6.26(a). These are compared with the temperature anomaly profile from

GFS analysis. Fig.6.26(a) shows that the thermal structure of the depression simulated

by the EnKF run is more closer to GFS analysis that that simulated by the 3DVar and

CTRL runs. Similarly, the vertical profile of relative vorticity simulated by EnKF run

is closer to that from the GFS analysis as compared with the simulations from both

CTRL and 3DVar runs (Fig.6.26(b)).
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6.4.4 Summary and Conclusions

The EnKF assimilation technique is known to provide better analyses and hence

improved prediction as compared with the 3DVar assimilation method in both global

and regional models. However studies involving the use of EnKF assimilation tech-

nique for mesoscale weather systems over the Indian region is absent and hence the

need for such an investigation as undertaken in this study. It is seen that the EnKF

technique does provide improved analyses and hence, improved forecasts as com-

pared with 3DVar assimilation. This is demonstrated by simulating three case studies

of heavy rainfall events over the Indian region. The first two case studies investi-

gated here are associated with the North east monsoon season while the third case

corresponds to heavy rainfall event during a monsoon depression. The results of all

the three case studies indicate that the EnKF assimilation run has provided for im-

proved simulation of rainfall. Also the EnKF run has provided for better simulations of

wind, moisture as well as temperature structures associated with the above mentioned

weather events. The major reason for the improvements in the simulation associated

with the EnKF run is the use of flow dependent B matrix in the EnKF assimilation

system.

3DVar system assumes the correlations among the control variables in the B ma-

trix to be homogeneous and isotropic in the horizontal. This assumption is invalid as

the correlation structures in the background error covariances will be spatially hetero-

geneous depending on the synoptic situation that is simulated. The ensemble derived

covariances capture these covariance structures better than the 3DVar background er-

ror covariances in the convectively active systems. Hence, in an EnKF analysis, the

spread of observation information depends on the actual flow patterns of the day and

this ensures improved analysis as compared to the 3DVar analysis.

Further studies using EnKF method are necessary over the Indian region. One

of the limitations in the use of EnKF systems is the need for larger computational

resources as compared with the 3DVar assimilation system. Further research is neces-

sary to improve the existing EnKF methods and to deduce better methods over the

EnKF system. The currently emerging hybrid data assimilation techniques which

combines flow dependent B matrix from an ensemble along with the 3DVar technique

is one of the possible options available for future research.
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CHAPTER 7

Conclusions

It is well known that the observations obtained from the various satellite-based sen-

sors play a significant role in improving the initial conditions for numerical weather

models. The present thesis explores this and further investigates how the impact is

affected through the modification of background error covariances in 3DVar. Further-

more, the improved impact of satellite data assimilation using the Ensemble Kalman

filter vis.a.vis 3DVar is also investigated here.

The impact of assimilation of satellite radiances from MeghaTropiques satellite’s

SAPHIR sensor in the simulation of three tropical cyclones over the Bay of Bengal

has been investigated. The results indicate that the SAPHIR radiances have a positive

impact on the simulation of features of all the three tropical cyclone . The assimila-

tion has been performed using the WRF 3DVar system. All the model variables like

temperature, wind, sea level pressure as well as the rainfall are better simulated due

to the humidity information assimilated from the SAPHIR observations. This is at-

tributed to the fact that since the formation and development of cyclones are influenced

by moist convective processes in the atmosphere, inclusion of moisture observations

does improve the simulation of such processes and thereby leads to better simulation

of tropical cyclones.

One of the major factors that influence the data assimilation system is the back-

ground error covariance matrix (B). Since the background error covariance matrix

is a huge matrix and cannot be determined exactly, B matrix can be estimated using

different methods. Hence, the representation of B matrix in an assimilation system

has scope for further improvement. Improved representation of B matrix will, in

principle result in better analysis since B determines how effectively the observations

correct the background information. This thesis investigates the impacts of two differ-

ent methods in which B is represented in WRF 3DVar system. The default option used

in regional assimilation applications is called as cv5 option. The results of cv5 option

are compared with the more recent and supposedly of specification of B , which is

termed as the cv6 option.
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Three monsoon depression cases are chosen to investigate the impact of using these

two B options in the cost function of the 3DVar system. Assimilation of conventional

surface and upper air observations along with satellite wind and radiance observations

from AMSU-A reveal that the formulation of B does have an impact on the analysis

fields. The moisture field understandably is seen to have the maximum impact while

employing the cv6 option which has impacted the model forecast fields like water va-

por mixing ratio as well as precipitation. The improvement of the skill scores based

on 48 hour accumulated precipitation in two out of three depression cases considered

in this study are in the higher rainfall thresholds. The results provide positive encour-

agement for further investigations as well as provides a means for improving heavy

rainfall forecasts using the WRF model.

Since the cv6 option is found to impact the analysis as well as the forecast fields in

WRF 3DVar system, further investigations of its influence on the simulation of three

tropical cyclones that formed over the Indian region have been undertaken. All the

three tropical cyclones Thane, Nilam and Phailin have been simulated by using cv5

option as well as cv6 option for assimilation. In this study, in addition to the surface,

upper air observations and satellite wind observations, SAPHIR radiances are also

utilized for assimilation. One of the chief reasons for using the SAPHIR radiances is

that they provide high resolution humidity information for a microwave sensor from

a satellite which provides 5 to 6 passes over the tropical region. Since the cv6 option

impacts the moisture field most, the analysis would have a better representation of

moisture fields if the same were obtained from a high resolution microwave sensor

which provides humidity observations with higher repetitivity. Since tropical cyclones

depend on moisture convective processes for their genesis and growth, the cv6 option

has been hypothesized to provide for better tropical cyclone simulations. Based on the

above, it is found that the analysis fields show a higher moisture content in the lower

model levels while using the cv6 option. Due to the above, the choice of formulation

of B matrix also impacts the forecast fields of the model in a moderate manner.

The comparison of assimilation using cv5 and cv6 formulations lead to the fol-

lowing conclusions. (i) the form of correlation functions in the background error

covariance matrix do influence the impact of 3DVar analysis. This is beacuse the

modification of the background field by the observation information depends on the

structure of model error correlations in the horizontal as well as vertical directions in
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the control variable space (ii) the use of cv6 formulation for BEC impacts the model’s

moisture field significantly. This is due to the provision for multivariate nature of the

moisture field in the control variable transforms in the cv6 formulation as compared

to the cv5 formulation (iii) the modified moisture analysis positively influences the

model simulation of heavy rainfall associated with the monsoon depressions. The re-

sults of this study also clearly indicates that the simulation of tropical cyclones is also

influenced by the choice of BEC option. Two out of three cyclones investigated in

this study are found to be more intense in the cv6 formulation in terms of minimum

sea level pressure and maximum wind speed as compared to the cv5 formulation. The

above results are due to the fact that the background error covariance does provide

for correlations of the humidity field with other fields like wind, temperature and sur-

face pressure observations. Hence the observations of the above-mentioned fields do

influence the moisture field and vice-versa.

The importance of formulation of B in a data assimilation system naturally leads

one to employ methods that allow for improved, flow-dependent B statistics. The

major disadvantage in the 3DVar technique is in its static and more or less isotropic

nature of B matrix. It is known that the flow dependence can be incorporated in B

through employing ensembles using EnKf method.

Ensembles of atmospheric state variables are generated by perturbing the model

state variables (initial and boundary conditions) as well by through the utilization of

different model physics schemes. The ensembles thus generated represent the evolu-

tion of model probability density function and hence it is expected that the background

error estimated using the ensembles better represent the error evolution of the model

system. The Ensemble Kalman filter (EnKF) routines available with Data Assimi-

lation Research Testbed (DART) are used here to assimilate the ocean surface wind

observations from Oceansat-2 scatterometer. The flow dependent B matrix used in

EnKF results in better analysis which inturn provide improved forecasts. The model

simulations of heavy rainfall events over peninsular Indian region using EnKF assim-

ilation provides improved rainfall prediction , as compared with assimilation using

3DVar technique. Apart from the simulation of two heavy rainfall events, a case study

of a monsoon depression has also been investigated using EnKF method. The results

of the study provide proof of improvement in the simulation due to the flow dependent

B statistics.
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The present thesis addresses the main objectives of the study by utilizing a few

case studies. It is known that while one cannot derive a broad conclusion based on the

results of a few case studies alone, it is quite possible that the above results do provide

for a positive inference . In the same, the results of the present thesis indicates that

assimilating satellite radiance observations does improve the simulation of mesoscale

weather systems in a limited area model. Furthermore, it can also be surmised that

the use of an improved estimate of background error covariance can further enhance

the positive impact of satellite observations on the simulation of weather phenomena.

There is a significant factor of uncertainty associated with a limited area model where

the boundary conditions also influence the background error, unlike in the case of a

global model. Error evolution in the simulation of a mesoscale weather phenomenon

also involve uncertainties that are different from those associated with a large scale

system. Hence, better estimations of errors associated with the background flow can

markedly influence the forecast of a limited area model like WRF.

However, the present study suffers from the following shortcomings. The thesis

has focussed on the impact of formulation of background error covariances on assimi-

lation of satellite observations. The above objective has been investigated by taking up

a few case studies which are not adequate enough for drawing broad and general con-

clusions for the impact of formultion of background error covariance in the simulation

of meteorological systems over India. Furthermore, the thesis has not systematically

investigated one single weather system nor it has critically examined the impact of

ingesting one type of observation for limited area models over India, which does not

provide for generalization of the conclusions. Also, the perturbations for estimating

background error covariance in the NMC method can be computed using an ensemble

of model forecast, which has not been attempted in the present study . This study

has not critically examined the sensitivity of various parameters such as (i) number of

ensemble members , (ii) covariance inflation, (iii) localization etc while evaluating the

impact of assimilating observations using EnKF method. The various ways of creat-

ing ensembles like multiphysics methods, perturbing initial and boundary conditions,

utilizing SKEB scheme etc have been mentioned in the thesis. However, a critical ex-

amination of the impact of the above on the assimilation of observations has not been

conducted. Furthermore, the impact of assimilating satellite radiances using EnKF

has not been invetsigated in the present study.
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The research queries that motivated the investigation carried out in this thesis can

be further explored using the following avenues. Many other variants of the EnKF

method such as the Ensemble Transform Kalman filter (ETKF) and Ensemble Adjust-

ment Kalman filter (EAKF) methods have been in use in recent times. It is important

to investigate on whether methods such as ETKF and EAKF perform better over the

Indian region as compared to the EnKF method. Another aspect of research work

possible as an extension of this study is in the use of satellite radiances in the EnKF

system, especially radiances from sensors like SAPHIR from MeghaTropiques satel-

lite which has no been addressed in the present study. A further interesting aspect

could be to examine the impact of a 4DVar assimilation system over the Indian region

and its benefits vis.a.vis the EnKF method.
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APPENDIX A

WRF ARW model and WRF 3DVar system

The WRF model is a fully compressible and nonhydrostatic model (with a run-time

hydrostatic option). Its vertical coordinate is a terrain-following hydrostatic pressure

coordinate. The grid staggering is the Arakawa C-grid. The model uses the Runge-

Kutta 2nd and 3rd order time integration schemes, and 2nd to 6th order advection

schemes in both the horizontal and vertical. It uses a time-split small step for acoustic

and gravity-wave modes. The dynamics conserves scalar variables.

The WRF model code contains an initialization program, a numerical integra-

tion program (wrf.exe), a program to do one-way nesting (ndown.exe), and a pro-

gram to do tropical storm bogussing (tc.exe). The WRF model supports a variety

of capabilities for simulating weather phenomena along various scales. The WRF

model is an open-source, community weather model which can be downloaded from

http://www2.mmm.ucar.edu/wrf/users/model.html.

The flowchart A.1 illustrates the component programs of the WRF Modeling Sys-

tem. The WRF model can be run with either idealized initialization or real-data ini-

tialization. The function of the WRF Preprocessing System (WPS) is to define WRF

grid, generate map, elevation and land information for WRF, take real-data analyses/-

forecasts from another model, and interpolate the data to the WRF grid. WRF-Var

is used to assimilate observations into model initial conditions. The standard output

from WPS, real, and WRF model is in netCDF format can be displayed using the

graphic tools like NCAR Graphics NCL, GrADS etc.

A.2 shows the major steps that are performed during WRF 3DVar assimilation.

In the 3DVar system, the following steps are performed to obtain the analysis (ref.

http://www.mmm.ucar.edu/wrf/users/wrfda/tutorial.html) .

• Reads in the namelist

• Set up the first guess or background field

• Reads the background error statistics and extracts the necessary quantities like
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Figure A.1: WRF Modeling System (from WRF ARW userguide)

Figure A.2: Main steps during 3DVar assimilation
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eigenvectors, eigenvalues, lengthscales, regression coefficients, etc

• Meteorological observations are read

– Observation input in ASCII format for WRF-Var is supplied through obser-

vation preprocessor, OBSPROC. Observation input in BUFR format is read

directly and do not pass through OBSPROC

– The observations outside the model domain are excluded

– The observations undergo quality control and are thinned

• Calculates "model equivalent" B of observation O utilizing the observation oper-

ator

• Computes observation minus first guess (O-B) value

• Minimize the 3DVar cost-function using conjugate gradient method

• The converged control variable is converted to model space analysis increments

• Analysis is computed by adding the analysis increments to first guess fields

• Various diagnostics are computed

• Boundary conditions for the model are updated

A.1 Modifications to the WRF 3DVar code for assimi-

lating MeghaTropiques SAPHIR radiance

The WRF 3DVar system (version 3.6.1) does not support the input of MeghaT-

ropiques SAPHIR radiance out-of-the-box. The WRF 3DVar source code is split into

subdirectories containing logically distinct algorithms. Each subdirectory is identi-

fied with a particular Fortran90 module file i.e. all the routines within the subdirec-

tory are "Fortran90 INCLUDEd" in a single module file with the same name as the

subdirectory. The following modules were added the WRF 3DVar code to read the

MeghaTropiques SAPHIR radiance in BUFR format and perform quality control.
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1. Code for reading the SAPHIR radiance in BUFR format

s u b r o u t i n e d a _ r e a d _ o b s _ b u f r s a p h i r ( obs type , iv , i n f i l e )

!

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Purpose : read i n NCEP b u f r s a p h i r 1b da ta t o i n n o v a t i o n s t r u c t u r e

!

! METHOD: use F90 s e q u e n t i a l da ta s t r u c t u r e t o a v o i d r e a d i n g f i l e

t w i c e

! so t h a t d a _ s c a n _ b u f r s a p h i r i s n o t n e c e s s a r y any more .

! 1 . read f i l e r a d i a n c e da ta i n s e q u e n t i a l da ta s t r u c t u r e

! 2 . do g r o s s QC check

! 3 . a s s i g n s e q u e n t i a l da ta s t r u c t u r e t o i n n o v a t i o n

s t r u c t u r e

! and d e a l l o c a t e s e q u e n t i a l da ta s t r u c t u r e

!

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i m p l i c i t none

c h a r a c t e r ( 5 ) , i n t e n t ( in ) : : o b s t y p e

c h a r a c t e r ( 2 0 ) , i n t e n t ( in ) : : i n f i l e

type ( i v _ t y p e ) , i n t e n t ( i n o u t ) : : i v

# i f d e f BUFR

i n t e g e r : : i o s t

i n t e g e r ( i _ k i n d ) , a l l o c a t a b l e : : n r e a d ( : )

i n t e g e r ( i _ k i n d ) , parameter : : n1bhdr =15

i n t e g e r ( i _ k i n d ) , parameter : : maxinfo =12

i n t e g e r ( i _ k i n d ) , parameter : : maxchanl =100

l o g i c a l s a p h i r , h i r s 2 , mhs , msu

l o g i c a l o u t s i d e , o u t s i d e _ a l l , i u s e

i n t e g e r : : i n s t

c h a r a c t e r ( 1 0 ) d a t e
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c h a r a c t e r ( 8 ) s u b s e t , su b f gn

c h a r a c t e r ( 8 0 ) hdr1b

i n t e g e r ( i _ k i n d ) ihh , i , j , k , i f o v , idd , i readmg , i r e a d s b

i n t e g e r ( i _ k i n d ) i r e t , i d a t e , im , iy , nchan

i n t e g e r : : num_bufr ( 7 ) , numbufr , i b u f r

c h a r a c t e r ( 2 0 ) : : f i l e n a m e

! t h i n n i n g v a r i a b l e s

i n t e g e r ( i _ k i n d ) i t t , i t x , i obs , i o u t

r e a l ( r _ k i n d ) t e r r a i n , t i m e d i f , c r i t , d i s t

r e a l ( r _ k i n d ) d l o n _ e a r t h , d l a t _ e a r t h

r e a l ( r _ k i n d ) tbmin , tbmax , t b b a d

r e a l ( r _ k i n d ) p a n g l r , r a t o

! r e a l ( r _ k i n d ) rmask

r e a l ( r _ k i n d ) s t e p , s t a r t

r e a l ( r _ d o u b l e ) , dimension ( maxinfo +maxchanl ) : : d a t a 1 b 8

r e a l ( r _ d o u b l e ) , dimension ( n1bhdr ) : : b f r 1 b h d r

! I n s t r u m e n t t r i p l e t , f o l l o w t h e c o n v e n s i o n o f RTTOV

i n t e g e r : : p l a t f o r m _ i d , s a t e l l i t e _ i d , s e n s o r _ i d

! p i x e l i n f o r m a t i o n

i n t e g e r : : year , month , day , hour , minute , second ! o b s e r v a t i o n t i m e

r e a l ∗8 : : o bs _ t i m e

r e a l : : r l a t , r l o n ! l a t / l o n i n

d e g r e e s f o r An f ovs

r e a l : : s a t z e n , s a t a z i , s o l z e n , s o l a z i ! scan a n g l e s f o r

An fo vs

i n t e g e r : : l andsea_mask

r e a l : : s r f _ h e i g h t

! channe l s ’ b r i g h t t e m p e r a t u r e

r e a l , a l l o c a t a b l e : : t b _ i n v ( : ) ! b r i g h t

t e m p e r a t u r e s

! end t y p e b r i g h t _ t e m p e r a t u r e

type ( d a t a l i n k _ t y p e ) , p o i n t e r : : head , p , c u r r e n t , p r ev

i n t e g e r : : i f g a t
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type ( i n f o _ t y p e ) : : i n f o

type ( m o d e l _ l o c _ t y p e ) : : l o c

data hdr1b / ’SAID FOVN YEAR MNTH DAYS HOUR MINU SECO CLAT CLON SAZA

SOZA HOLS LSQL SOLAZI ’ /

! da ta hdr1b / ’FOVN YEAR MNTH DAYS HOUR MINU SECO CLAT CLON SAZA

SOZA HOLS LSQL SLNM BEARAZ ’ /

data tbmin , tbmax , t b b a d / 5 0 . 0 _ r_k ind , 550 .0 _ r_k ind , −9.99 e 1 1 _ r _ k i n d /

i n t e g e r : : n u m _ s a p h i r _ l o c a l , n u m _ s a p h i r _ f i l e , n u m _ s a p h i r _ g l o b a l ,

n u m _ s a p h i r _ s e l e c t e d

i n t e g e r : : n u m _ s a p h i r _ t h i n n e d , num_saphi r_used , num_saph i r_used_tmp

i n t e g e r : : l n b u f r

i n t e g e r : : n

i n t e g e r ( i _ k i n d ) , a l l o c a t a b l e : : p t o t a l ( : )

r e a l , a l l o c a t a b l e : : in ( : ) , out ( : )

l o g i c a l : : found , head_found

c a l l d a _ t r a c e _ e n t r y ( " d a _ r e a d _ o b s _ b u f r s a p h i r " )

! I n i t i a l i z e v a r i a b l e s

nchan = 20

a l l o c a t e ( n r e a d ( 1 : r t m i n i t _ n s e n s o r ) )

a l l o c a t e ( p t o t a l ( 0 : num_fga t_ t ime ) )

n r e a d ( 1 : r t m i n i t _ n s e n s o r ) = 0

p t o t a l ( 0 : num_fga t_ t ime ) = 0

! S e t v a r i o u s v a r i a b l e s depend ing on t y p e o f da ta t o be read

s t e p = 1 . 8 0 _ r _ k i n d

s t a r t = −49.5 _ r _ k i n d

nchan =6

r a t o =1.1363987 _ r _ k i n d

p l a t f o r m _ i d = 20

s a t e l l i t e _ i d = 1

s a p h i r = o b s t y p e == ’ s a p h i r ’

! s u b f g n =’NC021043 ’
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su b f gn = ’ NC021057 ’

s e n s o r _ i d = 34

a l l o c a t e ( t b _ i n v ( nchan ) )

n u m _ s a p h i r _ f i l e = 0 ! number o f obs i n f i l e

n u m _ s a p h i r _ g l o b a l = 0 ! number o f obs w i t h i n whole domain

n u m _ s a p h i r _ l o c a l = 0 ! number o f obs w i t h i n t i l e

n u m _ s a p h i r _ t h i n n e d = 0 ! number o f obs r e j e c t e d by t h i n n i n g

num_saph i r_used = 0 ! number o f obs e n t e r e d i n t o i n n o v a t i o n

c o m p u t a t i o n

n u m _ s a p h i r _ s e l e c t e d = 0 ! number o f obs l i m i t e d f o r debug ing

i o b s = 0 ! f o r t h i n n i n g , argument i s i n o u t

! 0 . 0 Open u n i t t o s a t e l l i t e b u f r f i l e and read f i l e header

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

num_bufr ( : ) =0

numbufr =0

i f ( num_fga t_ t ime >1) then

do i =1 ,7

c a l l d a _ g e t _ u n i t ( l n b u f r )

w r i t e ( f i l e n a m e , fmt= ’ (A, 2 I1 ,A) ’ ) tr im ( i n f i l e ) , 0 , i , ’ . b u f r ’

open ( u n i t = l n b u f r , FILE = tr im ( f i l e n a m e ) , i o s t a t = i o s t , form =

’ u n f o r m a t t e d ’ , STATUS = ’OLD’ )

i f ( i o s t == 0) then

numbufr=numbufr +1

num_bufr ( numbufr ) = i

e l s e

c l o s e ( l n b u f r )

end i f

c a l l d a _ f r e e _ u n i t ( l n b u f r )

end do

e l s e

numbufr =1

end i f

i f ( numbufr ==0) numbufr =1
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b u f r f i l e : do i b u f r =1 , numbufr

i f ( num_fga t_ t ime ==1) then

f i l e n a m e = tr im ( i n f i l e ) / / ’ . b u f r ’

e l s e

i f ( ( numbufr ==1) . and . ( num_bufr ( i b u f r ) == 0) ) then

f i l e n a m e = tr im ( i n f i l e ) / / ’ . b u f r ’

e l s e

w r i t e ( f i l e n a m e , fmt= ’ (A, 2 I1 ,A) ’ ) tr im ( i n f i l e ) , 0 , num_bufr ( i b u f r ) , ’ . b u f r

’

end i f

end i f

! We want t o use s p e c i f i c u n i t number f o r b u f r data , so we can

c o n t r o l t h e en d ia n f o r m a t i n e n v i r o n m e n t .

l n b u f r = 99

open ( u n i t = l n b u f r , f i l e = tr im ( f i l e n a m e ) , form= ’ u n f o r m a t t e d ’ , &

i o s t a t = i o s t , s t a t u s = ’ o l d ’ )

i f ( i o s t /= 0 ) then

c a l l da_warn ing ( __FILE__ , __LINE__ , &

( / " Cannot open f i l e " / / i n f i l e / ) )

c a l l d a _ t r a c e _ e x i t ( " d a _ r e a d _ o b s _ b u f r s a p h i r " )

re turn

end i f

c a l l openbf ( l n b u f r , ’ IN ’ , l n b u f r )

c a l l d a t e l e n ( 1 0 )

c a l l readmg ( l n b u f r , s u b s e t , i d a t e , i r e t )

i f ( s u b s e t /= su b f gn ) then

c a l l c l o s b f ( l n b u f r )

c l o s e ( l n b u f r )

message ( 1 ) = ’ The f i l e t i t l e does n o t match t h e d a t a s u b s e t ’

w r i t e ( u n i t =message ( 2 ) , fmt =∗ ) &

’ i n f i l e = ’ , l n b u f r , i n f i l e , ’ s u b s e t = ’ , s u b s e t , ’ su b f gn = ’ , su b f gn

c a l l d a _ e r r o r ( __FILE__ , __LINE__ , message ( 1 : 2 ) )

end i f

i y =0

im=0

i d d =0
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i h h =0

w r i t e ( u n i t = da te , fmt= ’ ( i 1 0 ) ’ ) i d a t e

read ( u n i t = da te , fmt= ’ ( i4 , 3 i 2 ) ’ ) iy , im , idd , i h h

w r i t e ( u n i t = s t d o u t , fmt =∗ ) &

’ Bufr f i l e d a t e i s ’ , iy , im , idd , ihh , i n f i l e

! Loop t o read b u f r f i l e and a s s i g n i n f o r m a t i o n

to a s e q u e n t i a l s t r u c t u r e

!

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( i b u f r == 1 ) then

a l l o c a t e ( head )

! a l l o c a t e ( head % t b _ i n v ( 1 : nchan ) )

n u l l i f y ( head % n e x t )

p => head

e n d i f

! i f ( s a p h i r _ s t a r t > 1) t h e n

! w r i t e ( u n i t =s t d o u t , f m t = ’(A , I6 ) ’ ) " S k i p p i n g s a p h i r obs

b e f o r e " , s a p h i r _ s t a r t

! end i f

obs : do whi l e ( i r eadmg ( l n b u f r , s u b s e t , i d a t e ) ==0 . and . s u b s e t == sub fg n )

do whi l e ( i r e a d s b ( l n b u f r ) ==0)

! 1 . 0 Read header r e c o r d and da ta r e c o r d

c a l l u f b i n t ( l n b u f r , b f r 1 b h d r , n1bhdr , 1 , i r e t , hdr1b )

c a l l u f b r e p ( l n b u f r , da ta1b8 , 1 , nchan , i r e t , ’TMBR’ )

! check i f o b s e r v a t i o n o u t s i d e range

n u m _ s a p h i r _ f i l e = n u m _ s a p h i r _ f i l e + 1

! 2 . 0 E x t r a c t o b s e r v a t i o n l o c a t i o n and o t h e r r e q u i r e d i n f o r m a t i o n

! QC1: j u d g e i f da ta i s i n t h e domain , read n e x t r e c o r d i f n o t

!

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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r l a t = b f r 1 b h d r ( b u f r _ l a t )

r l o n = b f r 1 b h d r ( b u f r _ l a t )

i f ( r l o n < 0 . 0 ) r l o n = r l o n +360.0

i n f o%l a t = b f r 1 b h d r ( b u f r _ l a t )

i n f o%l o n = b f r 1 b h d r ( b u f r _ l o n )

c a l l d a _ l l x y ( i n f o , loc , o u t s i d e , o u t s i d e _ a l l )

i f o v = n i n t ( b f r 1 b h d r ( b u f r _ i f o v ) )

! QC2: l imb p i x e l r e j e c t e d ( n o t imp lem en ted )

! 3 . 2 E x t r a c t d a t e i n f o r m a t i o n .

y e a r = b f r 1 b h d r ( b u f r _ y e a r )

month = b f r 1 b h d r ( buf r_month )

day = b f r 1 b h d r ( b u f r _ d a y )

hour = b f r 1 b h d r ( b u f r _ h o u r )

minu te = b f r 1 b h d r ( b u f r _ m i n u t e )

second = b f r 1 b h d r ( b u f r _ s e c o n d )

w r i t e ( u n i t = i n f o%d a t e _ c h a r , fmt= ’ ( i4 , a , i 2 . 2 , a , i 2 . 2 , a , i 2 . 2 , a , i 2 . 2 , a , i 2

. 2 ) ’ ) &

year , ’− ’ , month , ’− ’ , day , ’ _ ’ , hour , ’ : ’ , minute , ’ : ’ , second

! QC3: t i m e c o n s i s t e n c y check w i t h t h e background d a t e

i f ( y e a r <= 99) then

i f ( y e a r < 78) then

y e a r = y e a r + 2000

e l s e

y e a r = y e a r + 1900

end i f

end i f

c a l l d a _ g e t _ j u l i a n _ t i m e ( year , month , day , hour , minute , o b s _ t i m e )

! c t o d a y
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! i f ( o b s _ t i m e < t i m e _ s l o t s ( 0 ) . or . &

! c t o d a y

! o b s _ t i m e >= t i m e _ s l o t s ( n u m _ f g a t _ t i m e ) ) c y c l e

! 3 . 2 . 1 d e t e r m i n e FGAT i n d e x i f g a t

do i f g a t =1 , num_fga t_ t ime

i f ( o b s _ t i m e >= t i m e _ s l o t s ( i f g a t −1) . and . &

o b s _ t im e < t i m e _ s l o t s ( i f g a t ) ) e x i t

end do

! 3 . 3 Find w r f v a r i n s t r u m e n t i n d e x from RTTOV i n s t r u m e n t t r i p l e t

! go t o n e x t da ta i f i d i s n o t i n t h e l i s t s

i n s t = 0

do i = 1 , r t m i n i t _ n s e n s o r

i f ( p l a t f o r m _ i d == r t m i n i t _ p l a t f o r m ( i ) &

. and . s a t e l l i t e _ i d == r t m i n i t _ s a t i d ( i ) &

. and . s e n s o r _ i d == r t m i n i t _ s e n s o r ( i ) ) then

i n s t = i

e x i t

end i f

end do

i f ( i n s t == 0) c y c l e

! 3 . 4 e x t r a c t s a t e l l i t e and s o l a r a n g l e

p a n g l r =( s t a r t + f l o a t ( i f o v −1)∗ s t e p ) ∗ deg2rad

i f ( h i r s 2 . or . msu ) then

s a t z e n = a s i n ( r a t o ∗ s i n ( p a n g l r ) ) ∗ r ad2deg

s a t z e n = abs ( s a t z e n )

e l s e

s a t z e n = b f r 1 b h d r ( b u f r _ s a t z e n ) ! ∗ deg2rad ! l o c a l z e n i t h a n g l e

s a t z e n = abs ( s a t z e n )

s o l z e n = b f r 1 b h d r ( b u f r _ s o l z e n ) ! s o l a r z e n i t h a n g l e

s o l a z i = b f r 1 b h d r ( b u f r _ s o l a z i ) ! RTTOV9_3

n u m _ s a p h i r _ g l o b a l = n u m _ s a p h i r _ g l o b a l + 1

p t o t a l ( i f g a t ) = p t o t a l ( i f g a t ) + 1
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n u m _ s a p h i r _ s e l e c t e d = n u m _ s a p h i r _ s e l e c t e d + 1

i f ( o u t s i d e ) c y c l e ! No good f o r t h i s PE

n u m _ s a p h i r _ l o c a l = n u m _ s a p h i r _ l o c a l + 1

! Make T h i n n i n g

! Map obs t o t h i n n i n g g r i d

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f ( t h i n n i n g ) then

d l a t _ e a r t h = i n f o%l a t

d l o n _ e a r t h = i n f o%l o n

i f ( d l o n _ e a r t h < z e r o ) d l o n _ e a r t h = d l o n _ e a r t h + r360

i f ( d l o n _ e a r t h >= r360 ) d l o n _ e a r t h = d l o n _ e a r t h −r360

d l a t _ e a r t h = d l a t _ e a r t h ∗ deg2rad

d l o n _ e a r t h = d l o n _ e a r t h ∗ deg2rad

t i m e d i f = 0 . 0 ! 2 . 0 _ r _ k i n d ∗ abs ( t d i f f ) ! range : 0 t o 6

t e r r a i n = 0 . 0 1 _ r _ k i n d ∗abs ( b f r 1 b h d r ( 1 3 ) )

c r i t = 1 . 0 ! 0 . 0 1 _ r _ k i n d+ t e r r a i n + t i m e d i f !+ 1 0 . 0 _ r _ k i n d ∗ f l o a t ( i s k i p )

c a l l map2gr ids ( i n s t , i f g a t , d l a t _ e a r t h , d l o n _ e a r t h , c r i t , i obs , i t x , 1 , i t t ,

i o u t , i u s e )

i f ( . not . i u s e ) then

n u m _ s a p h i r _ t h i n n e d = n u m _ s a p h i r _ t h i n n e d +1

c y c l e

end i f

end i f

num_saph i r_used = num_saph i r_used + 1

n r e a d ( i n s t ) = n r e a d ( i n s t ) + 1

! 3 . 5 e x t r a c t s u r f a c e i n f o r m a t i o n

s r f _ h e i g h t = b f r 1 b h d r ( b u f r _ s t a t i o n _ h e i g h t ) ! s t a t i o n h e i g h t

i f ( s r f _ h e i g h t < 8888 .0 .AND . s r f _ h e i g h t > −416.0) then

e l s e

s r f _ h e i g h t = 0 . 0

e n d i f

l andsea_mask = n i n t ( b f r 1 b h d r ( b u f r _ l a n d s e a _ m a s k ) ) ! 0 : l and ; 1 : sea (

same as RTTOV)

i n f o%e l v = s r f _ h e i g h t
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! 3 . 6 e x t r a c t c h a n n e l b r i g h t t e m p e r a t u r e

t b _ i n v ( 1 : nchan ) = d a t a 1 b 8 ( 1 : nchan )

do k = 1 , nchan

i f ( t b _ i n v ( k ) < tbmin . or . t b _ i n v ( k ) > tbmax ) &

t b _ i n v ( k ) = m i s s i n g _ r

end do

i f ( a l l ( t b _ i n v < 0 . 0 ) ) then

n u m _ s a p h i r _ l o c a l = n u m _ s a p h i r _ l o c a l −1

num_saph i r_used = num_saph i r_used − 1

n r e a d ( i n s t ) = n r e a d ( i n s t ) − 1

c y c l e

end i f

! 4 . 0 a s s i g n i n f o r m a t i o n t o s e q u e n t i a l r a d i a n c e s t r u c t u r e

!

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a l l o c a t e ( p % t b _ i n v ( 1 : nchan ) )

p%i n f o = i n f o

p%l o c = l o c

p%landsea_mask = landsea_mask

p%s c a n p o s = i f o v

p%s a t z e n = s a t z e n

p%s a t a z i = s a t a z i

p%s o l z e n = s o l z e n

p%t b _ i n v ( 1 : nchan ) = t b _ i n v ( 1 : nchan )

p%s e n s o r _ i n d e x = i n s t

p%i f g a t = i f g a t

! RTTOV9_3

p%s o l a z i = s o l a z i

! end o f RTTOV9_3

a l l o c a t e ( p%n e x t ) ! add n e x t da ta

p => p%n e x t

n u l l i f y ( p%n e x t )

end do

end do obs
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c a l l c l o s b f ( l n b u f r )

c l o s e ( l n b u f r )

end do b u f r f i l e

i f ( t h i n n i n g . and . n u m _ s a p h i r _ g l o b a l > 0 ) then

# i f d e f DM_PARALLEL

! Get minimum c r i t and a s s o c i a t e d p r o c e s s o r i n d e x .

j = 0

do i f g a t = 1 , num_fga t_ t ime

do n = 1 , i v%num_ins t

j = j + t h i n n i n g _ g r i d ( n , i f g a t )%i txmax

end do

end do

a l l o c a t e ( in ( j ) )

a l l o c a t e ( out ( j ) )

j = 0

do i f g a t = 1 , num_fga t_ t ime

do n = 1 , i v%num_ins t

do i = 1 , t h i n n i n g _ g r i d ( n , i f g a t )%i txmax

j = j + 1

in ( j ) = t h i n n i n g _ g r i d ( n , i f g a t )%s c o r e _ c r i t ( i )

end do

end do

end do

c a l l mpi_reduce ( in , out , j , t r u e _ m p i _ r e a l , mpi_min , r o o t , comm , i e r r )

c a l l w r f _ d m _ b c a s t _ r e a l ( out , j )

j = 0

do i f g a t = 1 , num_fga t_ t ime

do n = 1 , i v%num_ins t

do i = 1 , t h i n n i n g _ g r i d ( n , i f g a t )%i txmax

j = j + 1

i f ( ABS( out ( j )− t h i n n i n g _ g r i d ( n , i f g a t )%s c o r e _ c r i t ( i ) ) > 1 . 0 E−10 )

t h i n n i n g _ g r i d ( n , i f g a t )%i b e s t _ o b s ( i ) = 0

end do
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end do

end do

d e a l l o c a t e ( in )

d e a l l o c a t e ( out )

# e n d i f

! D e l e t e t h e nodes which b e i n g t h i n n i n g o u t

p => head

p rev => head

head_found = . f a l s e .

num_saphi r_used_tmp = num_saph i r_used

do j = 1 , num_saphi r_used_ tmp

n = p%s e n s o r _ i n d e x

i f g a t = p%i f g a t

found = . f a l s e .

do i = 1 , t h i n n i n g _ g r i d ( n , i f g a t )%i txmax

i f ( t h i n n i n g _ g r i d ( n , i f g a t )%i b e s t _ o b s ( i ) == j . and . t h i n n i n g _ g r i d ( n ,

i f g a t )%s c o r e _ c r i t ( i ) < 9 . 9 9 e 6 _ r _ k i n d ) then

found = . t rue .

e x i t

e n d i f

end do

! f r e e c u r r e n t da ta

i f ( . not . found ) then

c u r r e n t => p

p => p%n e x t

i f ( head_found ) then

p rev%n e x t => p

e l s e

head => p

prev => p

e n d i f

d e a l l o c a t e ( c u r r e n t % t b _ i n v )

d e a l l o c a t e ( c u r r e n t )

n u m _ s a p h i r _ t h i n n e d = n u m _ s a p h i r _ t h i n n e d + 1

num_saph i r_used = num_saph i r_used − 1
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n r e a d ( n ) = n r e a d ( n ) − 1

c o n t i nu e

e n d i f

i f ( found . and . head_found ) then

p rev => p

p => p%n e x t

c o n t i nu e

e n d i f

i f ( found . and . . not . head_found ) then

head_found = . t rue .

head => p

prev => p

p => p%n e x t

e n d i f

end do

e n d i f ! End o f t h i n n i n g

i v%t o t a l _ r a d _ p i x e l = i v%t o t a l _ r a d _ p i x e l + num_saph i r_used

i v%t o t a l _ r a d _ c h a n n e l = i v%t o t a l _ r a d _ c h a n n e l + num_saph i r _used ∗ nchan

i v%i n f o ( r a d i a n c e )%n l o c a l = i v%i n f o ( r a d i a n c e )%n l o c a l + num_saph i r_used

i v%i n f o ( r a d i a n c e )%n t o t a l = i v%i n f o ( r a d i a n c e )%n t o t a l +

n u m _ s a p h i r _ g l o b a l

do i = 1 , num_fga t_ t ime

p t o t a l ( i ) = p t o t a l ( i ) + p t o t a l ( i −1)

i v%i n f o ( r a d i a n c e )%p t o t a l ( i ) = i v%i n f o ( r a d i a n c e )%p t o t a l ( i ) + p t o t a l ( i )

end do

i f ( i v%i n f o ( r a d i a n c e )%p t o t a l ( num_fga t_ t ime ) /= i v%i n f o ( r a d i a n c e )%

n t o t a l ) then

w r i t e ( u n i t =message ( 1 ) , fmt= ’ (A, I10 , A, I10 ) ’ ) &

" Number o f n t o t a l : " , i v%i n f o ( r a d i a n c e )%n t o t a l , " i s d i f f e r e n t from t h e

sum of p t o t a l : " , i v%i n f o ( r a d i a n c e )%p t o t a l ( num_fga t_ t ime )

c a l l da_warn ing ( __FILE__ , __LINE__ , message ( 1 : 1 ) )

e n d i f
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w r i t e ( u n i t = s t d o u t , fmt= ’ ( a ) ’ ) ’ n u m _ s a p h i r _ f i l e n u m _ s a p h i r _ g l o b a l

n u m _ s a p h i r _ l o c a l num_saph i r_used n u m _ s a p h i r _ t h i n n e d ’

w r i t e ( u n i t = s t d o u t , fmt= ’ (5 i 1 0 ) ’ ) n u m _ s a p h i r _ f i l e , n u m _ s a p h i r _ g l o b a l ,

n u m _ s a p h i r _ l o c a l , num_saphi r_used , n u m _ s a p h i r _ t h i n n e d

d e a l l o c a t e ( t b _ i n v )

! 5 . 0 a l l o c a t e i n n o v a t i o n r a d i a n c e s t r u c t u r e

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do i = 1 , i v%num_ins t

i f ( n r e a d ( i ) < 1 ) c y c l e

i v%i n s t i d ( i )%num_rad = n r e a d ( i )

i v%i n s t i d ( i )%i n f o%n l o c a l = n r e a d ( i )

w r i t e (UNIT= s t d o u t ,FMT= ’ ( a , i3 , 2 x , a , 3 x , i 1 0 ) ’ ) &

’ A l l o c a t i n g s p a c e f o r r a d i a n c e innov s t r u c t u r e ’ , &

i , i v%i n s t i d ( i )%r t t o v i d _ s t r i n g , i v%i n s t i d ( i )%num_rad

c a l l d a _ a l l o c a t e _ r a d _ i v ( i , nchan , i v )

end do

! 6 . 0 a s s i g n s e q u e n t i a l s t r u c t u r e t o i n n o v a t i o n s t r u c t u r e

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
n r e a d ( 1 : r t m i n i t _ n s e n s o r ) = 0

p => head

! do w h i l e ( a s s o c i a t e d ( p ) )

do n = 1 , num_saph i r_used

i = p%s e n s o r _ i n d e x

n r e a d ( i ) = n r e a d ( i ) + 1

c a l l d a _ i n i t i a l i z e _ r a d _ i v ( i , n r e a d ( i ) , iv , p )

c u r r e n t => p

p => p%n e x t

! f r e e c u r r e n t da ta

d e a l l o c a t e ( c u r r e n t % t b _ i n v )

d e a l l o c a t e ( c u r r e n t )
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end do

d e a l l o c a t e ( p )

d e a l l o c a t e ( n r e a d )

d e a l l o c a t e ( p t o t a l )

c a l l d a _ t r a c e _ e x i t ( " d a _ r e a d _ o b s _ b u f r s a p h i r " )

# e l s e

c a l l d a _ e r r o r ( __FILE__ , __LINE__ , ( / " Needs t o be compi l ed w i th a BUFR

l i b r a r y " / ) )

# e n d i f

end s u b r o u t i n e d a _ r e a d _ o b s _ b u f r s a p h i r

2. Code for performing quality control for SAPHIR radiances

s u b r o u t i n e d a _ q c _ s a p h i r ( i t , i , nchan , ob , i v )

! Purpose : per fo rm q u a l i t y c o n t r o l f o r s a p h i r da ta .

i m p l i c i t none

i n t e g e r , i n t e n t ( in ) : : i t ! o u t e r loop c o u n t

i n t e g e r , i n t e n t ( in ) : : i ! s e n s o r i n d e x .

i n t e g e r , i n t e n t ( in ) : : nchan ! number o f c h a n n e l

type ( y_ ty pe ) , i n t e n t ( in ) : : ob ! O b s e r v a t i o n s t r u c t u r e

.

type ( i v _ t y p e ) , i n t e n t ( i n o u t ) : : i v ! O−B s t r u c t u r e .

! l o c a l v a r i a b l e s

i n t e g e r : : n , scanpos , k , i s f l g , i o s , f g a t _ r a d _ u n i t

r e a l : : s i , s i 1 , s i 2 , s i 3 , s i 4 , s i 5

l o g i c a l : : lmix

i n t e g e r : : ngood ( nchan ) , n r e j ( nchan ) , n re j_omb_abs ( nchan ) , &

n r e j _ o m b _ s t d ( nchan ) , &

n r e j _ m i x s u r f a c e , n re j_windowchan l , n r e j _ s i , &

n r e j _ c l w , n r e j _ t o p o , num_proc_domain , &

n r e j _ l i m b

c h a r a c t e r ( l e n =30) : : f i l e n a m e
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i f ( t r a c e _ u s e ) c a l l d a _ t r a c e _ e n t r y ( " d a _ q c _ s a p h i r " )

ngood ( : ) = 0

n r e j ( : ) = 0

nre j_omb_abs ( : ) = 0

n r e j _ o m b _ s t d ( : ) = 0

n r e j _ m i x s u r f a c e = 0

n r e j _ w i n d o w c h a n l = 0

n r e j _ s i = 0

n r e j _ c l w = 0

n r e j _ t o p o = 0

n r e j _ l i m b = 0

num_proc_domain = 0

do n= i v%i n s t i d ( i )%i n f o%n1 , i v%i n s t i d ( i )%i n f o%n2

i f ( i v%i n s t i d ( i )%i n f o%proc_domain ( 1 , n ) ) &

num_proc_domain = num_proc_domain + 1

! 0 . 0 i n i t i a l i s e QC f l a g s by assuming good obs

i v%i n s t i d ( i )%t b _ q c ( : , n ) = qc_good

i f ( c r t m _ c l o u d ) go to 2508

! a . r e j e c t a l l c h a n n e l s o ver m i x t u r e s u r f a c e t y p e

i s f l g = i v%i n s t i d ( i )%i s f l g ( n )

lmix = ( i s f l g ==4) . or . ( i s f l g ==5) . or . ( i s f l g ==6) . or . ( i s f l g ==7)

i f ( lmix ) then

i v%i n s t i d ( i )%t b _ q c ( : , n ) = qc_bad

i f ( i v%i n s t i d ( i )%i n f o%proc_domain ( 1 , n ) ) &

n r e j _ m i x s u r f a c e = n r e j _ m i x s u r f a c e + 1

end i f

!

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! F o l l o w i n g i s added by SAC / ISRO Ahmedabad

! b . r e j e c t c h a n n e l s 6 ov er land / sea−i c e / snow

i f ( i s f l g > 0) then

i v%i n s t i d ( i )%t b _ q c ( 6 , n ) = qc_bad

i f ( i v%i n s t i d ( i )%i n f o%proc_domain ( 1 , n ) ) &

n r e j _ w i n d o w c h a n l = n r e j _ w i n d o w c h a n l + 1

i f ( o n l y _ s e a _ r a d ) i v%i n s t i d ( i )%t b _ q c ( : , n ) = qc_bad

end i f
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! d . check c l o u d / p r e c i p i t a t i o n , By SAC / ISRO Ahmedabad

i f ( ob%i n s t i d ( i )%t b ( 2 , n ) > 0 . 0 . and . &

ob%i n s t i d ( i )%t b ( 5 , n ) > 0 . 0 ) then

s i 1 = ob%i n s t i d ( i )%t b ( 2 , n ) − ob%i n s t i d ( i )%t b ( 3 , n )

s i 2 = ob%i n s t i d ( i )%t b ( 2 , n ) − ob%i n s t i d ( i )%t b ( 5 , n )

s i 3 = ob%i n s t i d ( i )%t b ( 3 , n ) − ob%i n s t i d ( i )%t b ( 5 , n )

s i 4 = ob%i n s t i d ( i )%t b ( 2 , n ) − ob%i n s t i d ( i )%t b ( 1 , n )

s i 5 = ob%i n s t i d ( i )%t b ( 6 , n ) − ob%i n s t i d ( i )%t b ( 4 , n )

i f ( s i 1 . gt . 0 . or . s i 2 . gt . 0 . or . s i 3 . gt . 0 . or . s i 5 . l e . 4 ) then

i v%i n s t i d ( i )%t b _ q c ( : , n ) = qc_bad

i v%i n s t i d ( i )%c l o u d _ f l a g ( : , n ) = qc_bad

i f ( i v%i n s t i d ( i )%i n f o%proc_domain ( 1 , n ) ) &

n r e j _ s i = n r e j _ s i + 1

end i f

end i f

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( i v%i n s t i d ( i )%clwp ( n ) >= 0 . 2 ) then

i v%i n s t i d ( i )%t b _ q c ( : , n ) = qc_bad

i v%i n s t i d ( i )%c l o u d _ f l a g ( : , n ) = qc_bad

i f ( i v%i n s t i d ( i )%i n f o%proc_domain ( 1 , n ) ) &

n r e j _ c l w = n r e j _ c l w + 1

end i f

! g . check i u s e ( pre−r e j e c t e d c h a n n e l s by . i n f o f i l e s )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
do k = 1 , nchan

i f ( s a t i n f o ( i )%i u s e ( k ) . eq . −1) &

i v%i n s t i d ( i )%t b _ q c ( k , n ) = qc_bad

end do

2508 c o n t in u e

! f . check i n n o v a t i o n

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
do k = 1 , nchan

! a b s o l u t e d e p a r t u r e check

i f ( . not . c r t m _ c l o u d ) then

i f ( abs ( i v%i n s t i d ( i )%t b _ i n v ( k , n ) ) > 1 5 . 0 ) then

i v%i n s t i d ( i )%t b _ q c ( k , n ) = qc_bad
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i f ( i v%i n s t i d ( i )%i n f o%proc_domain ( 1 , n ) ) &

nre j_omb_abs ( k ) = nre j_omb_abs ( k ) + 1

end i f

end i f

! r e l a t i v e d e p a r t u r e check

i f ( u s e _ e r r o r _ f a c t o r _ r a d ) then

i v%i n s t i d ( i )%t b _ e r r o r ( k , n ) = &

s a t i n f o ( i )%e r r o r _ s t d ( k ) ∗ s a t i n f o ( i )%e r r o r _ f a c t o r ( k )

e l s e

i v%i n s t i d ( i )%t b _ e r r o r ( k , n ) = s a t i n f o ( i )%e r r o r _ s t d ( k )

end i f

i f ( . not . c r t m _ c l o u d ) then

i f ( abs ( i v%i n s t i d ( i )%t b _ i n v ( k , n ) ) > 3 . 0∗ i v%i n s t i d ( i )%t b _ e r r o r ( k , n ) )

then

i v%i n s t i d ( i )%t b _ q c ( k , n ) = qc_bad

i f ( i v%i n s t i d ( i )%i n f o%proc_domain ( 1 , n ) ) &

n r e j _ o m b _ s t d ( k ) = n r e j _ o m b _ s t d ( k ) + 1

end i f

! f i n a l QC d e c i s i o n

i f ( i v%i n s t i d ( i )%t b _ q c ( k , n ) == qc_bad ) then

i v%i n s t i d ( i )%t b _ e r r o r ( k , n ) = 500 .0

i f ( i v%i n s t i d ( i )%i n f o%proc_domain ( 1 , n ) ) &

n r e j ( k ) = n r e j ( k ) + 1

e l s e

i f ( i v%i n s t i d ( i )%i n f o%proc_domain ( 1 , n ) ) &

ngood ( k ) = ngood ( k ) + 1

end i f

end i f

end do ! chan

end do ! end loop p i x e l

! Do i n t e r −p r o c e s s o r communica t ion t o g a t h e r s t a t i s t i c s .

c a l l d a _ p r o c _ s u m _ i n t ( num_proc_domain )

c a l l d a _ p r o c _ s u m _ i n t ( n r e j _ m i x s u r f a c e )

c a l l d a _ p r o c _ s u m _ i n t ( n r e j _ w i n d o w c h a n l )

c a l l d a _ p r o c _ s u m _ i n t ( n r e j _ s i )

c a l l d a _ p r o c _ s u m _ i n t ( n r e j _ c l w )

c a l l d a _ p r o c _ s u m _ i n t ( n r e j _ t o p o )

c a l l d a _ p r o c _ s u m _ i n t ( n r e j _ l i m b )

c a l l d a _ p r o c _ s u m _ i n t s ( n re j_omb_abs ( : ) )

c a l l d a _ p r o c _ s u m _ i n t s ( n r e j _ o m b _ s t d ( : ) )
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c a l l d a _ p r o c _ s u m _ i n t s ( n r e j ( : ) )

c a l l d a _ p r o c _ s u m _ i n t s ( ngood ( : ) )

i f ( r o o t p r o c ) then

i f ( num_fga t_ t ime > 1) then

w r i t e ( f i l e n a m e , ’ ( i 2 . 2 , a , i 2 . 2 ) ’ ) i t , ’ _ q c s t a t _ ’ / / tr im ( i v%i n s t i d ( i )%

r t t o v i d _ s t r i n g ) / / ’ _ ’ , i v%t ime

e l s e

w r i t e ( f i l e n a m e , ’ ( i 2 . 2 , a ) ’ ) i t , ’ _ q c s t a t _ ’ / / tr im ( i v%i n s t i d ( i )%

r t t o v i d _ s t r i n g )

end i f

c a l l d a _ g e t _ u n i t ( f g a t _ r a d _ u n i t )

open ( f g a t _ r a d _ u n i t , f i l e = tr im ( f i l e n a m e ) , form= ’ f o r m a t t e d ’ , i o s t a t = i o s )

i f ( i o s /= 0 ) then

w r i t e ( u n i t =message ( 1 ) , fmt= ’ (A,A) ’ ) ’ e r r o r open ing t h e o u t p u t f i l e ’ ,

f i l e n a m e

c a l l d a _ e r r o r ( __FILE__ , __LINE__ , message ( 1 : 1 ) )

end i f

w r i t e ( f g a t _ r a d _ u n i t , fmt= ’ ( / a / ) ’ ) &

’ Q u a l i t y C o n t r o l S t a t i s t i c s f o r ’ / / i v%i n s t i d ( i )%r t t o v i d _ s t r i n g

w r i t e ( f g a t _ r a d _ u n i t , ’ ( a20 , i 7 ) ’ ) ’ num_proc_domain = ’ ,

num_proc_domain

w r i t e ( f g a t _ r a d _ u n i t , ’ ( a20 , i 7 ) ’ ) ’ n r e j _ m i x s u r f a c e = ’ ,

n r e j _ m i x s u r f a c e

w r i t e ( f g a t _ r a d _ u n i t , ’ ( a20 , i 7 ) ’ ) ’ n r e j _ w i n d o wc h a n l = ’ ,

n r e j _ w i n d o w c h a n l

w r i t e ( f g a t _ r a d _ u n i t , ’ ( a20 , i 7 ) ’ ) ’ n r e j _ s i = ’ , n r e j _ s i

w r i t e ( f g a t _ r a d _ u n i t , ’ ( a20 , i 7 ) ’ ) ’ n r e j _ c l w = ’ , n r e j _ c l w

w r i t e ( f g a t _ r a d _ u n i t , ’ ( a20 , i 7 ) ’ ) ’ n r e j _ t o p o = ’ , n r e j _ t o p o

w r i t e ( f g a t _ r a d _ u n i t , ’ ( a20 , i 7 ) ’ ) ’ n r e j _ l i m b = ’ , n r e j _ l i m b

w r i t e ( f g a t _ r a d _ u n i t , ’ ( a20 ) ’ ) ’ n re j_omb_abs ( : ) = ’

w r i t e ( f g a t _ r a d _ u n i t , ’ (10 i 7 ) ’ ) n re j_omb_abs ( : )

w r i t e ( f g a t _ r a d _ u n i t , ’ ( a20 ) ’ ) ’ n r e j _ o m b _ s t d ( : ) = ’

w r i t e ( f g a t _ r a d _ u n i t , ’ (10 i 7 ) ’ ) n r e j _ o m b _ s t d ( : )

w r i t e ( f g a t _ r a d _ u n i t , ’ ( a20 ) ’ ) ’ n r e j ( : ) = ’

w r i t e ( f g a t _ r a d _ u n i t , ’ (10 i 7 ) ’ ) n r e j ( : )

w r i t e ( f g a t _ r a d _ u n i t , ’ ( a20 ) ’ ) ’ ngood ( : ) = ’

w r i t e ( f g a t _ r a d _ u n i t , ’ (10 i 7 ) ’ ) ngood ( : )

c l o s e ( f g a t _ r a d _ u n i t )

c a l l d a _ f r e e _ u n i t ( f g a t _ r a d _ u n i t )
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end i f

i f ( t r a c e _ u s e ) c a l l d a _ t r a c e _ e x i t ( " d a _ q c _ s a p h i r " )

end s u b r o u t i n e d a _ q c _ s a p h i r
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APPENDIX B

DART EnKF system

Figure B.1: Schematic of ensemble data assimilation

Fig. B.1 describes the schematic of ensemble data assimilation in the Data Assimi-

lation Research Testbed (DART). A Fortran executable named ’filter’ reads a namelist,

an initial state for the ensemble, and a file containing observations and goes to work.

Given the observations and an initial state, ’filter’ assimilates the observations and then

determines how far to advance the model (using information from the namelist and the

observation file). ’filter’ forks a shell script to the system and it is this shell script that

is responsible for three things: 1) for converting the DART state vectors and ’advance

to time’ to the format required by the underlying model, 2) advancing the model, and

3) converting the model output into a form suitable for ’filter’. The model advances

each ensemble member and the model output is converted to the input format expected

by ’filter’. The shell script finishes and signals ’filter’ to continue. We are now back
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at the beginning and the cycle continues as long as there are observations to assimilate

or until the control information in the Fortran namelist is met. When that happens, a

set of restart files is written (suitable to continue an experiment with more observa-

tions) and diagnostic files are written. These diagnostic files allow for the exploration

of the assimilation before and after each assimilation step and for exploration of the

assimilation in ’observation space’; each real observation is paired with the estimates

of the observation from all of the ensemble members. Minimally, the ensemble mean

estimate of the observation and the ensemble spread of the estimates is recorded.

DART employs a modular programming approach to apply an Ensemble Kalman

Filter which nudges the underlying models toward a state that is more consistent with

information from a set of observations. Models may be swapped in and out, as can

different algorithms in the Ensemble Kalman Filter. The method requires running

multiple instances of a model to generate an ensemble of states. A forward operator

appropriate for the type of observation being assimilated is applied to each of the states

to generate the model’s estimate of the observation. DART source code, which is an

open-source community software avaiable from http://www.image.ucar.edu/DAReS/DART,

has been used to perform EnKF assimilation in the present study.
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