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ABSTRACT

In a cellular network, the demand for high throughput and reliable transmission

is increasing in large scale. One of the architectures proposed for 5G wireless

communication to satisfy the demand is Massive MIMO system. The massive

system is equipped with the large array of antennas at the Base Station (BS)

serving multiple single antenna users simultaneously i.e., number of BS antennas

are typically more compared to the number of users in a cell. This additional

number of antennas at the base station increases the spatial degree of freedom

which helps to increase throughput, maximize the beamforming gain, simplify the

signal processing technique and reduces the need of more transmit power. The

advantages of massive MIMO can be achieved only if Channel State Information

(CSI) is known at BS uplink and downlink operate on orthogonal channels - TDD

and FDD modes. We studied channel estimation for both modes.

In TDD system, the signals are transmitted in the same frequency band for

both uplink and downlink channel but in different time slots. Hence, uplink and

downlink channels are reciprocal. The estimation of the uplink channel is pre-

ferred, as the number of pilots used to estimate the channel is less compared to

the downlink channel. Most published research works have considered the rich

scattering propagation environment in uplink TDD mode (i.e., number of scatter-

ers tend to be infinity or more than the number of BS antenna and users in the

cell). Under rich scattering condition, the channel vector seen by any two users

are orthogonal. However, in realistic condition, the number of scatterers is finite.

In this thesis, the finite scattering propagation environment is considered for the

uplink TDD mode channel estimation problem. In finite scattering scenario, it is

assumed that the number of scatterers is less than the number of BS antenna and

users. Also, the scatterers are fixed and all users are facing the same scatterers.

When same scatterers are shared by all users, the correlation among the channel

vectors increases and correspondingly increases the spread of Eigen values of the

channel matrix. Hence, the high dimensional massive MIMO system is likely to
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have a low-rank channel.

The most conventional way of estimating the channel is by sending the pilot

or training sequences during the training phase in uplink. The Least Square

(LS) method estimates the channel based on the received signal and transmitted

training sequences by minimizing the mean square error. The main drawback of LS

estimation is that it does not impose the low-rank feature to the estimated channel

matrix. Therefore, to estimate the channel at the receiver, the channel estimation

problem can be formulated as a linearly constrained rank minimization problem.

Since, the nonconvex rank estimation is an NP hard problem, relaxed version of the

nonconvex rank minimization problem is formulated as the convex Nuclear Norm

Minimization (NNM) problem and solved using Majorization and Minimization

(MM) technique. In MM technique, the channel matrix is estimated iteratively by

successive minimization of the majorizing surrogate function obtained for the given

cost function. This successive minimization of the majorizer ensures that the cost

function decreases monotonically and guarantees global convergence of the convex

cost function. The iterative algorithm used to compute the channel estimates is

called Iterative Singular Value Thresholding (ISVT). In ISVT, all singular values

are equally penalized. However, the major information of the channel matrix is

associated with the larger singular values should be shrunk less compared to the

lower singular values. Therefore, nuclear norm minimization method leads to the

biased estimator. In ISVT, estimated singular value ignores the prior knowledge

of the singular values of the matrix. By utilizing the knowledge of singular value,

different shrunk can be applied to different singular values which lead to unbiased

estimation.

In this thesis, Weighted Nuclear Norm Minimization (WNNM) method which

includes the prior knowledge of singular value is proposed for channel estimation

problem. The WNNM is not convex in general case. By choosing the weights in

an ascending order, the nonconvex problem can be approximated to the convex

optimization problem which can be solved using MM technique. The solution to

the problem can be computed using Iterative Weighted Singular Value Threshold-

ing algorithm (IWSVT). To recover low-rank channel, the training matrix should

satisfy Restricted Isometric Property (RIP). The proposed algorithm is studied for

two different training sequences which satisfy the restricted isometric condition.
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One of the orthogonal training sequence used is Partial Random Fourier Trans-

form matrix (PRFTM) which provides the iterative algorithm to converge in one

iteration. In order to obtain unbiased estimator, weights are chosen by minimizing

the Stein’s Unbiased Risk Estimator (SURE).

Another training sequence used to study the performance of the iterative al-

gorithm is Non-orthogonal BPSK modulated data. When the non-orthogonal

training sequence is used, the iterative algorithm takes more iteration to con-

verge. To speed up the convergence of the algorithm, the previous two estimate

and dynamically varying step size are considered which is termed as Fast Itera-

tive Weighted Singular Value Thresholding algorithm (FIWSVT). The weights are

chosen by minimizing the nonconvex optimization problem. Using super gradient

property of a concave function, the non-convex optimization problem is converted

into weighted nuclear norm problem and the weights are chosen as the gradient of

the nonconvex regularizer. In this thesis, the Schatten q norm and entropy func-

tion are the two nonconvex regularizer function whose derivative is chosen as the

weights for WNNM problem. The performance of the algorithm for the proposed

WNNM method is studied using normalized Mean Square Error (MSE), uplink

and downlink sum-rate as the performance index for a different number of scat-

terers. The results are also compared with the existing LS and ISVT algorithms.

On the other hand, the current cellular network is dominated by FDD system.

Hence, it is of importance to explore channel estimation of massive MIMO system

in FDD Mode also. In FDD systems, every user obtains CSI by sending the pilot

signal and the obtained CSI is fed back to the BS for precoding. The number

of pilots required for downlink channel estimation is proportional to the number

of BS antennas, while the number of pilots required for uplink channel estima-

tion is proportional to the number of users. Therefore, to estimate the downlink

channel, the pilot overhead is in the order of the number of BS antenna which is

prohibitively large in Massive MIMO system and the corresponding CSI feedback

is high overhead for uplink. Hence, it is of importance to explore channel estima-

tion in the downlink than that in the uplink, which can facilitate massive MIMO

to be backward compatible with current FDD dominated cellular networks.

In this thesis, instead of estimating the channel vector at the user side, the
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observed pilot signal by each user is fed back to the BS. The joint MIMO channel

estimation of all users is done at the BS. In channel model, rich scattering is con-

sidered at the user side and most clusters are around BS. The clusters that are

present around the BS are accessible to all users and this introduces correlation

among the users. Hence, high dimensional downlink channel matrix is approxi-

mated as a low-rank channel. Then the low-rank channel is estimated at BS it-

eratively using weighted singular value thresholding algorithm. The performance

of the algorithm in FDD mode is tested for non-orthogonal training matrix. The

convergence analysis of the proposed FIWSVT algorithm is compared with the

existing algorithms like Singular Value Projection (SVP)-Gradient, SVP-Newton

and SVP-Hybrid algorithm as discussed in the literature. The normalized mean

square error performance is compared with the FISVT algorithm for different up-

link SNR levels.
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CHAPTER 1

INTRODUCTION

1.1 Evolution of Massive MIMO

The demand for wireless throughput has grown exponentially in the past few

years, with the increase in a number of wireless devices and number of new mo-

bile users. The throughput is the product of Bandwidth(Hz) and Spectral ef-

ficiency(bits/s/Hz). To increase the throughput, either Bandwidth or Spectral

efficiency has to be increased. Since increasing the Bandwidth is a costly factor,

the spectral efficiency has to be taken into consideration. It can be increased by

using multiple antennas at the transmitter and receiver. Multiple-Input Multiple-

Output (MIMO) antennas enhance both communication reliability as well as the

capacity of communication (by transmitting different data in different antennas).

Generally MIMO systems are divided into two categories: Point-to-Point MIMO

and Multi User - MIMO (MU-MIMO) [2],[3]. In Point-to-Point MIMO, both the

transmitter and receiver are equipped with multiple antennas. The performance

gain can be achieved by using the techniques such as beamforming and spatial

multiplexing of several data streams. On the other hand, in MU-MIMO, the wire-

less channel is spatially shared among the users. The users in the cell transmit

and receive data without joint encoding and joint detection among them. The

Base Station (BS) communicates simultaneously with all the users, by exploiting

the difference in spatial signatures at the BS antenna array. MIMO systems are

incorporated in several new generation wireless standards like LTE - Advanced,

Wireless LAN etc. The main challenge in MU-MIMO system is the interference

between the co-channel users. Hence, complex receiver technique has to be used,

to reduce the co-channel interference.

In [4], it is shown that by using an infinite number of antennas at the BS in com-

parison with the number of users in the cell, the random channel vectors between

users and the BS become pair-wise orthogonal. By introducing more antennas at



the BS, the effects of uncorrelated noise and intracell interference disappear and

small scale fading is averaged out. Hence, simple matched filter processing at BS

is optimal. MU-MIMO system with hundreds of antenna at the BS which serves

many single antenna user terminals simultaneously at same frequency and time is

known as Massive MIMO system or large antenna array MU-MIMO system [5],[6].

One of the architectures proposed for 5G wireless communication is the massive

MIMO system in which BS is equipped with a large number of antenna and serves

multiple single antenna user terminals as shown in Fig1.1.

Figure 1.1: Multicell Massive MIMO System

1.2 Review of Massive MIMO Concept

Figure 1.2: Single cell Massive MIMO System

2



A single cell massive MIMO system where BS is equipped with a large number

of antennas (M) and serving multiple single antenna User Terminals (K), where

(M > K) is shown in Fig1.2. The channel matrix of massive MIMO system

is modeled as the product of small scale fading matrix and a diagonal matrix

of geometric attenuation and log-normal shadow fading. The channel coefficient

between the mth antenna of the BS and the kth user hmk is represented by

hmk = gmk

�
βk (1.1)

where gmk is the small scale fading coefficient.
√
βk models the geometric attenu-

ation and shadow fading, which is assumed to be independent over m and to be

constant over many coherence time intervals and known apriori. This assumption

is reasonable since the distance between the users and base station is much larger

than the distance between the antennas. The value of βk changes very slowly with

time. Therefore the channel matrix is written as,

H = GD1/2 (1.2)

where G is a M ×K matrix of small scale fading coefficients between the K users

and the BS and D is a K ×K diagonal matrix.

H = [h1 h2 · · ·hK ] (1.3)

where, h1 represents the channel vector of user 1 whose size is M × 1. As M is

very large then the channel vector of each user is very large. Under rich scat-

tering environment, the element in the channel vectors is independent identically

distributed (i.i.d) random variables with zero mean and unit variance.

According to the Law of long vectors, for any n × 1 vector q whose elements

are i.i.d random variables with zero mean and variance σ2
p, then

1

n
qHq a.s−→ σ2

p, as n → ∞

where a.s−→ denotes almost sure convergence. Since, H = GD1/2 and using the
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above law, by taking q as a column of G,

�
HHH
M

�

M�K

=

�
D1/2G

HG
M

D1/2

�

M�K

= D (from law of long vectors)

This shows that, the column vectors of the channel matrix are asymptotically

orthogonal. In similar way, to show orthogonality of row vectors:

�
HHH

M

�

M�K

=

�
G D1/2D1/2GH

M

�

M�K

=

�
G DGH

M

�

M�K

=

�
GGH

M

�
D

M�K

= D (from law of long vectors)

This shows that, the row vectors of the channel matrix are asymptotically orthog-

onal.

1.2.1 Advantages of Massive MIMO System

• High energy efficiency: If the channel is estimated from the uplink pilots,

then each user’s transmitted power can be reduced proportionally to 1/
√
M

considering M is very large. If perfect Channel State Information (CSI) is

available at the BS, then the transmitted power is reduced proportionally to

1/M [7]. In the downlink case, the BS can send signals only in the directions

where the user terminals are located. By using the Massive MIMO, the

radiated power can be reduced achieving high energy efficiency.

• Huge Spectral efficiency: H defines the channel matrix between users

and BS. If we assume that perfect CSI is available at receiver, then from a

point-to-point Massive MIMO, the achievable rate is given by

C = log2 ||I +
1

K
HHH ||

bits
s

Hz
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The upper and lower bounds of the above equation can be derived as [3]

log2(1 +M) ≤ C ≤ min(M,K) log2(1 +
max(M,K)

K
) (1.4)

In Massive MIMO case, number of BS antennas is very large then (1.4)

becomes

C ≈ min(M,K) log2(1 +
M

K
)

bits
s

Hz

The achievable rate is enhanced by a magnitude of approximately min(M,K)

than point-to-point MIMO case.

• Simple signal processing: Using an excessive number of BS antennas

compared to users lead to the pair-wise orthogonality of channel vectors.

Hence, with simple linear processing techniques both the effects of inter-

user interference and noise can be eliminated.

• Sharp digital beamforming : With an antenna array, generally analog

beamforming is used for steering by adjusting the phases of RF signals.

But in the case of Massive MIMO, beamforming is digital because of lin-

ear precoding. Digital beamforming is performed by tuning the phases and

amplitudes of the transmitted signals in baseband. Without steering actual

beams into the channels, signals add up in phase at the intended users and

out of phase at other users. With the increase in a number of antennas, the

signal strength at the intended users gets higher and provide low interfer-

ence from other users. Digital beamforming in massive MIMO provides a

more flexible and aggressive way of spatial multiplexing. Another advantage

of digital beamforming is that it does not require array calibration since

reciprocity is used.

• Channel hardening: The channel entries become almost deterministic in

case of Massive MIMO, thereby almost eliminating the effects of small scale

fading. This will significantly reduce the channel estimation errors.

• Reduction of Latency: Fading is the most important factor which impacts

the latency. More fading will leads to more latency. Because of the presence

of Channel hardening in Massive MIMO, the effects of fading will be almost

eliminated and the latency will be reduced significantly.
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• Robustness: Robustness of wireless communications can be increased by

using multiple antennas. Massive MIMO have excess degrees of freedom

which can be used to cancel the signal from intentional jammers.

• Array gain: Array gain results in a closed loop link budget enhancement

proportional to the number of BS antennas.

• Good Quality of Service (QoS): Massive MIMO gives the provision of

uniformly good QoS to all terminals in a cell because of the interference

suppression capability offered by the spatial resolution of the array. Typi-

cal baseline power control algorithms achieve max-min fairness among the

terminals.

• Autonomous operation of BS’s: The operation of BS’s is improved be-

cause there is no requirement of sharing Channel State Information (CSI)

with other cells and no requirement of accurate time synchronization.

1.2.2 Challenges

• Propagation Model: In most of the Massive MIMO related works, the

assumption that made was: as the BS antennas grow the user channels

are uncorrelated and the channel vectors become pair-wise orthogonal. But

in real time propagation environment, antenna correlation comes into the

picture. If the antennas are highly correlated, then the channel vectors

cannot become pair-wise orthogonal by increasing the number of antennas.

This means that users location is an important factor in Massive MIMO

systems.

• Modulation: For the construction of a BS with a large number of antennas,

cheap power efficient RF amplifiers are needed.

• Channel Reciprocity: TDD operation depends on channel reciprocity.

There seems to be a reasonable consensus that the propagation channel itself

is basically reciprocal unless the propagation is suffering from materials with

strange magnetic properties. Between the uplink and the downlink, there is

a hardware chain in the base station and terminal transceivers may not be

reciprocal.
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• Channel Estimation: To perform detection at the receiver side, we need

perfect CSI at the receiver side. Due to the mobility of users in MU case,

channel matrix changes with time. In high mobility case, accurate and time

acquisition of CSI is very difficult. FDD Massive MIMO induces training

overhead and TDD Massive MIMO relies on channel reciprocity and training

may occupy a large fraction of the coherence interval.

• Low-cost Hardware: Large number of RF chains, Analog-to-Digital con-

verters, Digital-to-Analog converters are needed.

• Coupling between antenna arrays: At the BS side, several antennas are

packed in a small space. This causes mutual coupling in between the antenna

arrays. Mutual coupling degrades the performance of Massive MIMO due

to power loss and results in lower capacity and less number of degrees of

freedom. When designing a Massive MIMO system, the effect of mutual

coupling has to be taken into account [8], [9].

• Mobility: If the mobility of the terminal is very high, then the coherence

interval between the channel becomes very less. Therefore, it accommodates

very less number of pilots.

• Pilot Contamination: Pilot contamination is a challenging problem for

multicell massive MIMO is to be resolved. In multicell system, users from

neighboring cells may use non-orthogonal pilots that result in pilot contami-

nation. This causes inter-cell interference problem which further grows with

the increase in a number of BS antennas. Various solutions suggested in the

literature to solve this problem for non cooperative cellular network are [10],

[11], [12], [13]:

– Channel Estimation Methods: These are based on some channel esti-

mation algorithm to detect the CSI by picking up the strongest channel

impulse responses, often done with less number of pilots than users.

– Time-Shifted Pilot Based Methods: These are based on insertion of

shifted pilot locations in slots (or a shifted frame structure).

– Optimum Pilot Reuse Factor Methods: These are based on choosing

a reuse factor greater than unity which is optimized in some sense.
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In addition, there are significant performance gaps that exist among

different reuse patterns.

– Pilot Sequence Hopping Methods: These schemes switch users ran-

domly to a new pilot between time slots, which provides randomization

in the pilot contamination.

– Cell Sectoring based Pilot Assignment: These schemes are based on sec-

tioning the cells into a center and edge regions. Users in neighboring

border areas partly reuse sounding sequences. This improves the qual-

ity of service by reducing the number of serviced users. However, by

significantly reducing serviceable users, it degrades the system capacity.

1.3 Channel Estimation

In order to achieve the benefits of a large antenna array, accurate and timely acqui-

sition of Channel State Information (CSI) is needed at the BS. The need for CSI

is to process the received signal at BS as well as to design a precoder for optimal

selection of a group of users who are served on the same time-frequency resources.

The acquisition of CSI at the BS can be done either through feedback or channel

reciprocity schemes based on Time Division Duplex (TDD) or Frequency Division

Duplex (FDD) system. The procedure for acquiring CSI and data transmission

for both systems is explained in the subsequent sections.

1.3.1 Channel Estimation and Data Transmission in TDD

System

In TDD system, the signals are transmitted in the same frequency band for both

uplink and downlink transmissions but at different time slots. Hence, uplink and

downlink channels are reciprocal. During uplink transmission, all the users in the

cell synchronously send the pilot signal to the BS. The antenna array receives

the modified pilot signal by the propagation channel. Based on the received pilot

signal, BS estimate the CSI and further, this information is used to separate the

signal and detect the signal transmitted by the users as shown in Fig 1.3. In
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downlink transmission, due to channel reciprocity, BS uses the estimated CSI to

generate precoding/beamforming vector. The data for each user is beamformed

by the precoded vector at the BS and transmitted to the user through propagation

channel as shown in Fig 1.4.

Figure 1.3: Uplink transmission in a TDD Massive MIMO system

Figure 1.4: Downlink transmission in a TDD Massive MIMO system

1.3.2 Channel Estimation and Data Transmission in FDD

System

In FDD system, the signals are transmitted at different frequency band for uplink

and downlink transmission. Therefore, CSI for the uplink and downlink channels

are not reciprocal. Hence, to generate precoding/beamforming vector for each

user, BS transmits a pilot signal to all users in the cell and then all users feedback

9



estimated CSI of the downlink channels to the BS as shown in Fig. 1.5. During

uplink transmission, BS needs CSI to decode the signal transmitted by the users.

To detect the signal transmitted by the user, CSI is acquired by sending pilot

signal in the uplink transmission.

Figure 1.5: Downlink transmission in an FDD Massive MIMO system

1.4 Literature Survey

Massive MIMO is originally designed for TDD operation since CSI can be easily

acquired with the help of reduced training overhead (≥ K) in the uplink trans-

mission and same CSI can be used to generate precoding vector for downlink

transmission by utilizing the channel reciprocity property.

1.4.1 Channel Estimation Method in TDD System

Some of the existing research works in channel estimation for massive MIMO TDD

system have considered the rich scattering environment. Under rich scattering

environment, the channel estimation technique used in the literature are discussed
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below.

The authors in [14], proposed practical channel estimator to mitigate the prob-

lems caused by pilot contamination in multipath multicell massive MIMO TDD

systems. This practical estimator does not require knowledge of inter-cell large-

scale fading coefficients. Instead of individually estimating the large-scale coeffi-

cients, the proposed method estimates, a parameter that is the sum of large-scale

coefficients plus a normalized noise variance using minimum variance unbiased es-

timator. The estimated parameter is substituted back into the Bayesian MMSE

estimator without requiring any additional overhead.

In [15],[16] the conventional LS and MMSE estimation is proposed for channel

estimation problem. However, the problem is with the complexity of inverse which

is of order O(N 3) where N = MK. In order to overcome the inverse complexity,

in [16] a low complexity channel estimation using Polynomial expansion (PEACH

and W-PEACH) is proposed. In PEACH, an L-order matrix polynomial replaces

the inverse present in LS, MMSE, and Minimum Variance Unbiased estimation.

The problem with PEACH estimator is the complexity involved in finding out the

optimal weights.

In [17], partially decoded data is used to estimate the channel by which two

types of interference components, cross-contamination and self-contamination van-

ishes and they exist even when the number of antennas grows to infinity.

In massive MIMO system, blind channel estimation works well, since there is

unused degree of freedom in the signal space. One of the blind channel estima-

tion methods is the subspace portioning of the received samples. This method

can achieve near Maximum Likelihood performance when the data samples are

sufficiently large. In [18], Eigen Value Decomposition (EVD) based semi blind

channel estimation is proposed, considering the pilot sequences sent by the users

are orthogonal. CSI can be estimated from the Eigen vector of the covariance

matrix of the received samples, up to a multiplicative scalar factor ambiguity. By

using a short training sequence, this multiplicative factor ambiguity can be re-

solved. EVD-based channel estimation technique with the iterative least-square

projection algorithm is used to improve the performance of the channel estimation.
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Recently, there has been a growing interest in compressive sensing (CS) based

channel estimation algorithms [19]. By exploiting the inherent sparsity of the

Massive MIMO channels, sparse channel estimation algorithms are proposed which

give better estimation performance than conventional schemes such as least square

and minimum mean square. In [20], the authors proposed a probability-weighted

subspace pursuit algorithm to estimate the channel. This method that estimates

the probabilities of the nonzero path delays in current Channel Impulse Response

(CIR) based on the knowledge of the previous CIR. The probability data is used

as a priori information in the subspace pursuit algorithm to improve the uplink

massive MIMO channel estimation.

In [21], the author modeled the channel estimation problem as a joint sparse

recovery problem . According to the block coherence property as the number of

antennas at the base station grows, the probability of joint recovery of the positions

of nonzero channel entries will increase. The block optimized orthogonal matching

pursuit is proposed to obtain an accurate channel estimate for the model.

1.4.2 Channel Estimation Method in FDD System

The CSI acquired in the uplink may not be accurate for the downlink due to the

calibration error of radio frequency chains and limited coherence time. More im-

portantly, compared with TDD systems, FDD systems can provide more efficient

communications with low latency. In FDD systems, CSI is obtained at every UT

by sending the pilot signal and the obtained CSI is fed back to the BS for precod-

ing. The number of orthogonal pilots required for downlink channel estimation

is proportional to the number of BS antennas, while the number of orthogonal

pilots required for uplink channel estimation is proportional to the number of

scheduled users. Therefore, to estimate the downlink channel, the pilot overhead

is in the order of a number of BS antenna which is prohibitively large in Massive

MIMO system and the corresponding CSI feedback is high overhead for uplink.

Therefore, it is of importance to explore channel estimation in the downlink than

that in the uplink, which can facilitate massive MIMO to be backward compatible

with current FDD dominated cellular networks. Hence it is necessary to explore

channel estimation method for massive MIMO based on FDD mode with reduced
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overhead.

In order to overcome the excessive utilization of the resources in FDD mode,

considerable work have been done in downlink channel estimation and feedback

techniques. In recent, Compressed Sensing (CS) based channel estimation is con-

sidered for practical poor scattering channel [22]. CS is all about recovering the

sparse or compressible signal from limited number of measurements i.e., solving

the under-determined system [1], [23] and [24]. In most of the work, the propa-

gation medium in the virtual angular domain is considered as sparse based [25]

on the assumption the majority of channel energy is small due to the limited in

time-domain delay spread, angular spread, and Doppler domain. Hence downlink

channel estimation problem is formulated as a compressed sensing problem and

by utilizing the sparsity, the pilot overhead is reduced.

In [26], the block based orthogonal matching pursuit scheme is proposed for

downlink massive multiple-input single-output systems. In [27] the authors assume

that the path delays are invariant and utilize the channel support estimated from

the uplink training to enhance the downlink channel estimation using the Auxiliary

information based Block Subspace Pursuit algorithm.

The problem of CS is considered in two-dimensional (2D) sparse decomposition

measurement model in [28]. A modified 2D subspace pursuit algorithm is proposed

with the prior support and chunk sparse structure for the sparse channel estimation

in massive MIMO. In [29] along with sparsity, spatial correlation, and common

sparsity are assumed. By exploiting the channel block sparsity property, pilot

overhead is reduced and using Block-Partition CoSaMP (BP-CoSaMP) algorithm

downlink channel is estimated.

Standard sparse recovery algorithms have the stringent requirement on the

channel sparsity level for robust channel recovery and this severely limits the op-

erating regime of the solution. Therefore to overcome this issue, in [30] a joint

burst LASSO algorithm exploiting additional joint burst sparse structure is used.

In this method, the BS first transmits M pilots and then user feeds back the com-

pressed CSIT measurements to the BS. Finally, the joint burst LASSO algorithm

is performed at the BS based on the compressed CSIT measurements. Partial

Channel Support Information-aided burst Least Absolute Shrinkage and Selection
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Operator (LASSO) algorithm is used to estimate the burst sparsity in massive

MIMO channels by exploiting both the partial channel support information and

additional structured properties of the sparsity in [31].

In Massive MIMO OFDM system, it has been proven that the equispaced

and equipower orthogonal pilots can be optimal to estimate the noncorrelated

Rayleigh MIMO channels for one OFDM symbol, where the required pilot over-

head increases with the number of transmit antennas [32]. By exploiting the spatial

correlation of MIMO channels, the pilot overhead to estimate MIMO channels can

be reduced. Furthermore, by exploiting the temporal channel correlation, further

reduced pilot overhead can be achieved to estimate MIMO channels associated

with multiple OFDM symbols [33] and [34]. In [35], a spectrum-efficient super-

imposed pilot signal occupy the same sub carriers in different transmit antenna

is used to estimate the channel with the help of the structured subspace pursuit

algorithm.

1.5 Motivation

In recent, CS based channel estimation is considered for practical poor scattering

channel [36] and it is all about recovering the sparse or compressible signal from

a limited number of measurements i.e., solving the under-determined system [1]

[23]. Sparse channel estimation is considered in many papers like in [25], where

they used inherent sparsity present in the channels (due to Doppler delay spread).

However in a situation like limited or poor scattering environment and non

zero antenna correlations at the BS end due to congested antenna spacing [37] [38],

causes the effective Degrees of Freedom (DoF) of the channel matrix to decrease,

which leads to decrease in the rank of the high dimensional channel matrix. The

advantages of massive MIMO is achieved if perfect CSI is known at the BS. To

estimate high dimensional channel matrix in poor scattering environment within

the coherence time interval is one of the big challenges.

In a finite scattering channel model, the number of AoAs is finite. In addition,

if the number of AoAs is less than the number of users, that would result in an

increase in the correlation between the channel vectors and a corresponding in-
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crease in the condition number (or eigenvalue spread) of the channel matrix. In

this thesis, we considered the case when P < min{M,K} is fixed and therefore

the rank r of the channel matrix satisfies r < min{M,K,P}. Hence such a chan-

nel can conveniently be approximated as a low-rank channel. The conventional

Least Square (LS) approach fails to give the desired MSE performance under

such conditions. Therefore the channel estimation problem is modeled as a rank

minimization problem. Since the propagation medium considered is a low-rank

channel, it necessitates the development of the algorithm for obtaining low-rank

channel estimates.

The rank minimization problem is a nonconvex optimization problem and the

solution is NP hard to obtain. The nonconvex problem is approximated as con-

vex nuclear norm minimization problem [23] and is solved using Quadratic Semi-

Definite Programming (QSDP) approach [36] and [39]. This method is solved

using SDP solver and can provide the accurate result in the estimation only for a

matrix of size up to 100 × 100. Also, this method consume more time which will

not fit in the real time communication system. It is noted that the same problem

is solved using Iterative Singular Value Thresholding (ISVT) method [25]. How-

ever, the channel estimation using ISVT method gives a biased solution as all

singular values are penalized equally by the same threshold value. Since the larger

singular values contain the major information of the matrix will be lost by equal

penalization which leads the solution to deviate from the true singular values of

the channel matrix. This motivates to form the objective of the research as to

obtain unbiased low-rank channel estimates.

1.6 Contribution

The focus of this work is to estimate the channel for massive MIMO system under

limited scattering propagation environment. The channel is estimated under the

condition that the number of scatterers is small compared to the BS antennas

and number of users in the cell. If the number of scatterers is limited then the

corresponding Angle of Arrivals (AoAs) are finite. Moreover, if all the users share

the same AoAs then the correlation among the channel vector increases. Thus
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the high dimensional channel matrix is approximated to the low-rank matrix.

Hence the objective of this thesis is to estimate the low-rank channel matrix. The

summary of the work done presented in the form of flowchart is given in Fig.1.6.

The contribution of the research work is listed below:

Figure 1.6: Flow chart showing the summary of the work done

1. Weighted Nuclear Norm Minimization (WNNM) method is proposed for low-

rank Massive MIMO channel estimation problem for both TDD and FDD

system.

2. Using Majorization and Minimization technique WNNM problem is solved

and low-rank channel matrix is obtained iteratively by the Weighted Singular

Value Thresholding algorithm.

3. Performance of the algorithm is analyzed by orthogonal and non-orthogonal

training sequence obtained by a restricted isometric property.

4. By using orthogonal training sequence, it is proved that the iterative algo-

rithm converges to one iteration.

5. For non-orthogonal training sequence, the algorithm takes more iteration to

converges. Hence to speed up the convergence rate, extra momentum term is

added in the algorithm and variable step size are used to reduce the number

16



of iteration. Hence, Fast Iterative Weighted Singular Value Thresholding

(FIWSVT) algorithm is proposed for channel estimation problem for the

non-orthogonal training sequence.

6. Regularization parameter is found in order to have low-rank property for the

resultant estimated channel matrix.

7. The significance of the proposed channel estimation problem in TDD is an-

alyzed through the Mean Square Error and Average Sum Rate (uplink and

downlink mode) as the performance index and are compared with the Nu-

clear Norm method using different scatterers.

8. The WNNM method is also extended to FDD mode by modeling the down-

link FDD channel as low rank and uplink channel as the full rank matrix.

Both downlink and uplink channel are estimated at BS. The performance of

the FIWSVT algorithm for estimating downlink low-rank channel in FDD

mode is analyzed through the Mean Square Error. The results are compared

with the existing SVP-G, SVP-N, and SVP-H algorithm.

1.7 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents the modeling

of finite scattering channel for single cell system as a low rank. System model

used in the rest of the thesis and the different performance metrics used to study

the performance of the algorithms are described. The failure of conventional least

square method to estimate low-rank channel is explained. The existing method-

ology already used to estimate the low-rank channel matrix and their advantages

and disadvantages are presented. The WNNM method proposed to estimate the

low-rank matrix is discussed. The majorization and minimization technique used

to solve WNNM method is presented.

Chapter 3 focus on the performance analysis of Iterative Weighted Singular

Value Threshold channel estimation algorithm using non-orthogonal training se-

quence. The selection of training matrix using restricted isometric property is

presented. The different weight function used in the analysis of the algorithm is
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discussed. The convergence analysis of the iterative algorithm with non-orthogonal

training sequence is studied. The increase in the convergence speed of the iterative

algorithm by introducing the momentum function in the algorithm is presented.

The estimation of the regularization parameter in order to achieve low-rank ma-

trix is discussed. The performance and the convergence analysis of the algorithm

are tested for a different number of scatterers and signal to noise ratio. The per-

formance analysis of the algorithm is also validated by varying the number of BS

antenna and the number of users in the cell is presented.

Chapter 4 deals with the performance study of WNNM method using orthog-

onal training sequence. The selection of training matrix using restricted isometric

property is presented. Convergence analysis of the iterative algorithm with or-

thogonal training sequence is studied. The selection of regularization parameter

in order to achieve low-rank matrix and the selection of weights for WNN method

are discussed. In order to obtain minimum mean square error, the selection of tun-

ing parameter using Stein’s unbiased risk estimate is studied. The performance

and the convergence analysis of the algorithm are tested for a different number of

scatterers and signal to noise ratio and validated by varying the number of base

station antennas and the number of users in the cell is presented.

Chapter 5 presents the issue related to the implementation of the massive

MIMO in FDD system. The modeling of the FDD downlink channel as a low-

rank matrix and uplink as the full rank is discussed. The downlink low-rank

channel and the uplink full rank channel is jointly estimated at BS is presented.

The proposed WNNM method is presented for estimating channel at BS. The

performance of the algorithm in FDD mode is tested for non-orthogonal training

matrix. The convergence analysis of the proposed FIWSVT algorithm is compared

with the existing algorithms like Singular Value Projection(SVP)-Gradient, SVP-

Newton and SVP-Hybrid algorithm. The comparison of normalized mean square

error performance is compared with the FISVT algorithm for different uplink SNR

levels are presented.

Chapter 6 presents the conclusions from the work presented in this thesis.

Possible future extensions are also discussed.
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CHAPTER 2

Finite Scattering Channel Model and Low-Rank

Channel Estimation

2.1 Introduction

In this chapter finite scattering propagation environment for massive MIMO is

modeled in Section 2.2. When the number of scatterers is very small compared to

the number of base station antennas which is in the order of hundreds and number

of users in the cell which is in tens and if the same scatterers are shared by all

users, then the correlation among the channel vectors of users increases. Hence,

the high dimensional MIMO system is likely to approximate the channel matrix

as low rank. In this chapter, different methodology used to estimate the low-rank

channel, their advantages and disadvantages are discussed.

In Section 2.3, the model of the massive MIMO system operating in TDD mode

is described. The conventional Least Square (LS) method to estimate channel ma-

trix is explained during the initial phase. The failure of LS to achieve low-rank fea-

ture in the estimated channel matrix is outlined. In order to overcome the failure

of the conventional method, the low-rank channel matrix estimation is formulated

as the Nuclear Norm Minimization (NNM) problem. The solution for solving the

minimization problem using the Majorization and Minimization (MM) technique

is discussed and the algorithm for estimation is outlined. To overcome the biased

solution provided NNM method, the rank minimization problem is formulated as

the Weighted Nuclear Norm minimization (WNNM) problem and further, the al-

gorithm for the optimization problem is discussed. The performance metrics are

used to analyze the proposed channel estimation algorithm are described.



2.2 Finite Scattering Channel Model for Single Cell

in TDD System

In finite scattering channel model, the propagation is modeled in terms of a finite

number of multiple path components [40], [41], and [42]. Each path is specified by

AoA, complex gain, and delay. Delay of each path is neglected, since narrow band

system is considered. The following assumptions are made regarding the channel

Figure 2.1: Physical finite scattering channel model for single user (the

above scenario holds for all the users as well as scatterers)

model:

1. There are P path originating from each user to the BS is as shown in Fig.2.1

and each path has M × 1 steering vector given by

a(φqi) =
�
1, e−j2πD

λ
sin(φqi), · · · e−j2π

(M−1)D
λ

sin(φqi)
�T

(2.1)

where, D is the antenna spacing between the adjacent antennas at BS, λ is

the carrier wavelength and φqi is the steering vector corresponding to the

Angle of Arrival (AoA) associated with the qth path of ith user.

2. The AoAs are assumed to be uniformly spaced in the interval [−π/2, π/2]

(i.e.) φq = −π/2+((q−1)π/P ) in the absence of prior knowledge about the
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distribution of AoAs and each path is indexed by an integer q ∈ [1, 2 · · ·P ].

3. There are fixed number of scatterers (P ) distributed within the cell.

Therefore the channel vector of the ith user to the BS is modeled as a linear

combination of the P steering vectors

hi =
1√
P

P�

q=1

αqia(φqi)) (2.2)

where, αqi ∼ CN (0, 1) is the path gain of the qth path to the ith user. In vector

form the channel vector of ith user is represented as

hi = Aigi (2.3)

where the AoAs matrix Ai is given as

Ai =
1√
P




1 1 . . . 1
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λ
sin(φ1i) e−j2πD

λ
sin(φ2i) . . . e−j2πD

λ
sin(φPi)

e−j2π 2D
λ

sin(φ1i) e−j2π 2D
λ

sin(φ2i) . . . e−j2π 2D
λ

sin(φPi)

...
... . . . ...

e−j2π
(M−1)D

λ
sin(φ1i) e−j2π

(M−1)D
λ

sin(φ2i) . . . e−j2π
(M−1)D

λ
sin(φPi)




If there are P fixed scatterers around each individual users who are geographi-

cally separated in the cell as shown in the Fig.2.2, then the steering matrix for

each individual user will be different. Therefore the channel matrix M ×K com-

bining all users in the cell is represented as

H = [A1g1,A2g2, · · ·AKgK] (2.4)

where the A1 is M × P steering matrix of user 1. In this case, the rank of the

channel matrix r = min{M,K,P}.

2.2.1 Channel Model with Identical AoAs

In this thesis, we have considered the case, if there are P fixed scatterers around

the BS and all users who are geographically separated in the cell are accessible

to the P scatterers as shown in Fig. 2.3. Under this condition all users will have
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Figure 2.2: A simple illustration where the signal from User1 and User2

have different AoAs

same steering matrix (i.e.AoAs) [43]. Then the channel matrix can be written is:

H = [Ag1,Ag2, · · ·AgK] (2.5)

where the g1 is CP×1 gain vector of user 1 and G is CP×K matrix represented as

G =




α11 α12 . . . α1K

α21 α22 . . . α2K

α31 α32 . . . α3K

...
... . . . ...

αP1 αP2 . . . αPK




Remarks:1 In a finite scattering channel model, the number of AoAs is finite.

In addition, if the number of AoAs is less than the number of users and all users

share the same AoAs, that would result in an increase in the correlation between the

channel vectors and a corresponding increase in the condition number (or eigen-

value spread) of the channel matrix. We considered the case when P < min{M,K}

22



Figure 2.3: A simple illustration where the signal from User1 and User2

share same AoAs

is fixed and therefore the rank r of the channel matrix satisfies r < min{M,K,P}.
Hence, such a channel can conveniently be approximated as a low-rank channel.

2.3 System Model

A single cell massive MIMO communication system operating in the TDD mode

is considered. The base station is equipped with M uniform linear array antennas

serving K single antenna users simultaneously in the same frequency and time

slot. The channel is assumed to be constant in one coherence interval and tends

to change in next interval i.e., quasi-static. The received signal at the base station

in the uplink mode at a time instant t is described in vector form as

y = Hx+ n (2.6)

where, y ∈ CM×1 is the received vector at the BS, x ∈ CK×1 is the transmit signals

from all the K users at the same instant of time and n ∈ CM×1 is an Additive

White Gaussian Noise (AWGN) whose elements are independent and identically

distributed (i.i.d) random variable with zero-mean and σ2
n variance. The channel

matrix H ∈ CM×K between the BS antennas (M) and users (K), is characterized

as a finite scattering flat fading channel model with a number of scatterers are
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less than the number of BS antennas and number of user in the cell. We have also

assumed that all the users in the cell share the same scatterers which approximate

the high dimensional channel matrix as the low-rank matrix.

The propagation medium is considered as a low-rank channel, therefore, it

necessitates the development of an algorithm for obtaining low-rank channel esti-

mates. The subsequent sections deal with the different methods to estimate the

low-rank channel matrix.

2.4 Conventional LS based Channel Estimation

The most conventional way of estimating the channel is by sending the pilot or

training sequences during the training phase in uplink TDD system as shown

in Fig.2.4. Using the Channel reciprocity in TDD systems, the Channel State

Information (CSI) is only needed to be estimated at the BS end. According to

TDD protocol [1], all the users in the cell will be sending the pilot sequences during

the training phase of each coherence time interval. BS uses the training or pilot

data to estimate the CSI and generates the precoding/beamforming vectors for

each user K after detecting the data.

Figure 2.4: Massive MIMO TDD protocol [1]

During the training phase of each coherence interval in the uplink, each user sends

the pilot or training sequences of length L ≥ K. Let us assume φ(1) is the

training vector of length L for user 1, similarly φ(2), · · · , φ(K) are the training

vector of other user. Therefore, the training matrix Φ which is K × L is given as
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Φ = [φ(1)T ,φ(2)T · · ·φ(K)T ]. The received signal at the BS Y ∈ CM×L is given

by:

Y = HΦ+N (2.7)

where N is AWGN matrix with i.i.d entries of CN (0, 1). Since, no statistical

knowledge about channel is assumed, the LS channel estimates minimize the mean

square error given by minimizing:

min
H

�Y −HΦ�2F

The solution to the unconstrained problem is given as:

ĤLS = YΦ† = YΦH(ΦΦH)−1 (2.8)

The LS method estimates the channel based on the received and transmitted

training sequences by minimizing the mean square error. The main drawback of

LS estimation is that it does not impose the low-rank feature of the channel matrix

in the cost function. Moreover, the computational complexity of LS method is in

the order of O(N 3) where N = MK. In order to overcome the limitation of LS

estimates, the problem of low-rank channel estimates is proposed and details are

discussed in the following section.

2.5 Low-Rank Channel Estimation

2.5.1 Nuclear Norm Minimization Method

In the finite scattering propagation environment, the channel matrix exhibit low-

rank feature and the conventional Least Square (LS) approach to estimate the

channel fail to provide the desired rank of the channel matrix. Therefore, to

estimate the channel at the receiver, the channel estimation problem can be for-

mulated as a linearly constrained rank minimization problem [25]:

min
H

rank(H) s.t. Y = HΦ (2.9)
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The constrained equation shown in equation (2.9) is obtained by applying the

vectorization formula to the received signal matrix using Lemma 2.5.1.

Lemma 2.5.1 The vectorization of an M × K matrix A, denoted by vec(A),

is the MK × 1 column vector obtained by stacking the columns of the matrix A

on top of one another. If A ∈ CM×K and B ∈ CK×L are two matrix, then the

vectorization of product of two matrices is vec(AB) = (BT ⊗ IM)vec(A).

Therefore, (2.9) can be written as

min
H

rank(H) s.t. y = Ψh (2.10)

where y = vec(Y), h = vec(H), and Ψ = (ΦT ⊗ IM).

Rank minimization problem is a nonconvex optimization problem and is com-

putationally intractable (NP-hard). Also, there are no efficient exact algorithms

to solve the problem. The convex envelope of the rank function which is equivalent

to the nuclear norm is a tractable convex approximation that can be minimized

efficiently (A.1). Hence, the constrained rank minimization is approximated as

the constrained NNM problem.

min
H

�H�∗ =
r�

i=1

σi

s.t. y = Ψh

(2.11)

where r indicate the desired rank of the channel matrix. In order to solve this

problem rank information should be known prior and the optimization problem can

be solved iteratively using hard Thresholding algorithm [44] [45]. However, it is

difficult to obtain the prior information about the rank of the channel. Therefore,

without providing the rank information we can estimate the low-rank channel by

reformulating the constrained nuclear norm minimization problem (2.11) as an

unconstrained minimization problem given as:

min
H

1

2
||y −Ψh)||22 + λ||H||∗ (2.12)

The term 1
2
||y−Ψh)||22 in (2.12) is known as loss function and the term λ||H||∗ is
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called regularizer function. This nuclear norm minimization problem can be refor-

mulated as Quadratic Semi Definite Programming (QSDP) [46] problem and can

be solved efficiently. However, QSDP approach will not fit in real time communi-

cation system due to time complexity. Moreover, it provides accurate results for

the matrix of size up to 100 × 100. The same problem can be solved heuristically

using Majorization - Minimization technique.

2.5.1.1 Majorization - Minimization Technique

The Majorization - Minimization (MM) technique [47], [48] is a simple optimiza-

tion principle used for minimizing an objective function (2.12) written as

J(h) =
1

2
||y −Ψh)||22 + λ||H||∗ (2.13)

The first term in the cost function is the convex and smooth function where as

the nuclear norm is a convex and nonsmooth function. Hence the resultant cost

function is convex and nonsmooth. Instead of directly minimizing the cost function

(2.13), the principle used by the MM technique is shown in Fig.2.5 to solve (2.13)

is as follows:

Figure 2.5: Illustration of Majorization-Minimization technique

1. Find the majorizing surrogate function Gk(h) for the cost function J(h) that
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coincides with J(h) at h = hk and upper bound J(h) at all other value of h

i.e, finding the surrogate function Gk(h) that lies above the surface of J(h)

and is tangent to J(h) at the point h = hk which is mathematically defined

as

Gk(h/hk) ≥ J(h) ∀h (2.14)

Gk(hk/hk) = J(hk) h = hk

2. Compute the surrogate function at each iteration and further update the

current estimate.

This successive minimization of the majorizing function Gk(h) ensures that the

cost function J(h) decreases monotonically. This guarantees global convergence

for convex cost function.

The competence of MM technique depends on how well the surrogate approximate

J(h). The quadratic surrogate function Gk(h) can well approximate the convex

nonsmooth function so that it satisfies the condition (2.14).

Gk(h) = J(h) + non negative function of h (2.15)

and the non-negative function chosen is 1
2
(h − hk)

H(αI −ΨHΨ)(h − hk). Thus,

Gk(h) = J(h) +
1

2
(h − hk)

H(αI −ΨHΨ)(h − hk) + λ||H||∗ (2.16)

At h = hk, Gk(h) coincides with J(h). To ensure the added term to be a non-

negative for all value of h, choose α > σmax(Ψ
HΨ)) and for convex function

h ≤ hk. Hence, the added term is non negative for all h value.

To minimize the majorizer function Gk(h), differentiate Gk(h) with respect to h

and equate to zero. Therefore, the equation (2.16) would become

h = hk +
1

α
ΨH(y −Ψhk) (2.17)

The vector h is computed iteratively, by upgrading the equation ( 2.17)

hk = hk−1 +
1

α
ΨH(y −Ψhk−1) (2.18)
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By substituting (2.18) in (2.16), Gk(h) can be written as

Gk(h) =
α

2
||h− hk||22 − hk

Hhk + yHy+ hk−1
H(α−ΨHΨ)hk−1 + λ||H||∗ (2.19)

It is observed from (2.19) that, only first and last term depends on h and all

other terms are independent of h. Therefore, instead of minimizing Gk(h), we can

minimize

G̃k(h) =
1

2
||h − hk||22 + ν||H||∗

where, h = vec(H), hk = vec(Hk) and ν = λ/α

||h − hk||22 = ||H −Hk||2F

[49]. Therefore, the cost function to be minimized can be written as

min
H

ν||H||∗ +
1

2
||H −Hk||2F (2.20)

Theorem 2.5.1.1 For any λ > 0, Y ∈ CM×K then the following problem

min
X

1

2
||Y−X||2F + λ||X||∗ (2.21)

is the convex optimization problem and the closed form solution is X∗ = USλ(Σ)VH

where Y = UΣVH is the SVD of Y and Sλ(Σ) = Diag{(σi − λ)+} is the soft

thresholding done on the ith singular value σi where, x+ denotes max(x, 0).

Proof:

For any X,Y ∈ CM×K , the singular value decomposition of matrix X and Y are de-

noted by Û S V̂
H

and UΣVH respectively, where Σ = diag {σ1, σ2, · · · σK , 0 · · · , 0} ∈
RM×K and S = diag {s1, s2, · · · sK , 0 · · · , 0} ∈ RM×K are the diagonal singular

value matrices such that s1 > s2 > · · · > sk ≥ 0 and σ1 > σ2 > · · · > σK ≥ 0.

The following derivations hold based on Frobenius norm:

min
X

1

2
||Y − X||2F + λ||X||∗ (2.22)

= min
X

1

2
[Tr(YHY)− 2Tr(YHX) + Tr(XHX)] + λ

K�

i=1

si
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if Û = U and V̂ = V

= min
S

1

2
[

K�

i=1

σ2
i − 2

K�

i=1

σisi +
K�

i=1

s2i ] + λ

K�

i=1

si

= min
S

1

2
[

K�

i=1

(si − σi)
2] + λ

K�

i=1

si

for a particular i, the equation can be written as

min
si≥0

f(si) =
1

2
(si − σi)

2 + λsi

To find si, take the derivative of f(si) and equate to zero

f �(si) = si − σi + λ = 0

then

si = max(σi − λ, 0), i = 1, 2, ....K (2.23)

Since σ1 ≥ σ2 ≥ · · · ≥ σK then s1 ≥ s2 ≥ · · · ≥ sK . Thus, the global optimum

solution to NN problem is the soft thresholding operator on the singular value of

the matrix Y which is given as

X∗ = USλVH

where, Sλ = Diag{(σi − λ)+} is the soft thresholding done on the singular value.

Based on Theorem 2.5.1.1, the solution to the minimization problem G̃k is

H∗ = USν(Σ)VH where, U and V are obtained from the Singular Value Decom-

position (SVD) of HK (where HK is equivalent to Y in the theorem).

Therefore, the channel matrix is estimated by computing the following three equa-

tions iteratively:

Hk = Hk−1 +
1

α
vec_matM,K(Ψ

Hvec(Y −Hk−1Φ))

Hk = UΣVH

H∗ = USν(Σ)VH
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The explanation behind the updates of the equation is as follows:

1. The current update of the channel matrix is obtained by updating the previ-

ous channel estimates in the gradient direction evaluated from loss function

at a fixed step size of 1
α
.

2. In order to obtain the low rank solution to the estimates, the updated matrix

is projected on to the low-rank matrix constraint set. This projection is

done using SVD and soft thresholding operator on the singular value of the

updated matrix.

3. The soft thresholding rule makes any singular values less than the threshold

value is set to zero to have reduced rank channel matrix.

The algorithm used to iteratively solve the set of equations for the channel estima-

tion problem is called as Iterative Singular Value Thresholding (ISVT) algorithm

[50].

2.5.1.2 Iterative Singular Value Thresholding algorithm

In this section, the Iterative Singular Value Thresholding (ISVT) algorithm being

adapted to the channel estimation problem is described.

Algorithm : Iterative Singular Value Thresholding algorithm

1: Input M,K,L, Φ, Y, λ, α, ν = λ/α

2: Initialization: H(1) = 0,Ψ = ΦT ⊗ IM

3: Until ||H(i)−H(i+1)||F
||H(i+1)||F < δ

4: A ← H(i) + 1
α
vec_matM,K(Ψ

Hvec(Y − H(i)Φ))

5: [UΣV] = SV D(A)

6: Thresholding : Sν(Σ) = Diag(σi − ν)

7: H(i+ 1) ← USν(Σ)VH
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8: i ← i+ 1

9: Go to 3

10: Output: H(i+ 1)

The initial value of the channel matrix is assumed as zero matrix. At each it-

eration, the channel matrix is gets updated using the equation given in step 4.

In order to get the low rank solution to the estimated channel matrix, in each

iteration soft thresholding is done according to the equation in step 6. These

steps are executed iteratively until the normalized difference between the previous

estimates and current estimates reaches the threshold δ.

2.5.1.3 Complexity Order

The main computational complexity lies in calculating SVD of the M×K matrix,

which has a complexity of O(M 2K) (at each iteration). The matrix-vector mul-

tiplication in step (4) has a complexity of O((ML)(MK)). The total complexity

of the ISVT algorithm is O(iter(M 2K + (ML)(MK))), where iter is the number

of iteration required to obtain the desired result.

Remarks 2: The soft thresholding scheme which is used in ISVT algorithm

Sλ(Σ) = Diag{(σi − λ)+} ignores the prior knowledge about the singular values.

The soft thresholding scheme penalize the larger singular values as heavily as the

lower ones by the threshold or regularizer λ, which deviate the solution from the

true singular value of the channel matrix. In comparison with the small singular

values, the larger ones are generally associated with the major information of the

channel matrix. Hence, it should be shrunk less compared to lower ones. Therefore,

different weights to different singular values overcome the limitation of NN method.
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2.5.2 Weighted Nuclear Norm Minimization Method

To overcome the above issues, the problem stated in (2.12) can be relaxed by

the nonconvex regularizer. The nonconvex regularizer function proposed in this

section is the WNN and hence the optimization problem can be redefined as:

min
H

1

2
||y −Ψh||22 + λ||H||w,∗ (2.24)

where, ||H||w,∗ = ΣK
i=1wiσi.

In general, WNN is a nonconvex regularizer. However, if the weights satisfy

the condition 0 ≤ w1 ≤ w2 ≤ · · · ≤ wK then σ1w1 ≥ σ2w2 ≥ σ3w3 ≥ · · · ≥ σKwK .

Therefore, the resultant singular values are arranged in a non-increasing order

which is same as the nuclear norm and hence satisfy the convexity. Therefore, by

applying the same principle of Majorization and Minimization technique to the

above problem results in minimization of the cost function

min
H

ν||H||w,∗ +
1

2
||H −Hk||2F (2.25)

whose solution is presented in Theorem 2.5.2.1.

Theorem 2.5.2.1 For any λ > 0, Y ∈ CM×K and if the weights to the singular

values satisfy the condition 0 ≤ w1 ≤ w2 ≤ · · · ≤ wK then the following problem

min
X

1

2
||X−Y||2F + λ||X||w,∗ (2.26)

is the convex optimization problem and the closed form solution to this problem

is X∗ = USλ,wVH where Y = UΣVH is the SVD of Y and Sλ,w = Diag{(σi −
λwi)+} is the weighted soft thresholding done on the singular value.

Proof:

For any X,Y ∈ CM×K , the singular value decomposition of matrix X and Y are de-

noted by Û S V̂
H

and UΣVH respectively, where Σ = diag {σ1, σ2, · · · σK , 0 · · · , 0} ∈
RM×K and S = diag {s1, s2, · · · sK , 0 · · · , 0} ∈ RM×K are the diagonal singular

value matrices such that s1 > s2 > · · · sk ≥ 0 and σ1 > σ2 > · · · > σK ≥ 0. The
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following derivations hold based on Frobenius norm:

min
X

1

2
||Y − X||2F + λ||X||w,∗ (2.27)

= min
X

1

2
[Tr(YHY)− 2Tr(YHX) + Tr(XHX)] + λ

K�

i=1

wisi

if Û = U and V̂ = V

= min
S

1

2
[

K�

i=1

σ2
i − 2

K�

i=1

σisi +
K�

i=1

s2i ] + λ
K�

i=1

wisi

= min
s

1

2
[

K�

i=1

(si − σi)
2] + λ

K�

i=1

wisi

for a particular i, the equation can be written as

min
si≥0

f(si) =
1

2
(si − σi)

2 + λwisi

To find si, take the derivative of f(si) and equate to zero

f �(si) = si − σi + λwi = 0

then

si = max(σi − λwi, 0), i = 1, 2, · · · , K (2.28)

Since σ1 ≥ σ2 ≥ · · · ≥ σK and by choosing the weight vector in a non-descending

order w1 ≤ w2 ≤ · · ·wK , then si will satisfy the condition s1 ≥ s2 ≥ · · · ≥
sK . Thus, the global optimum solution to WNN problem is the weighted soft

thresholding operator on the singular value of the matrix Y which is given as

X∗ = USλ,wVH

where, Sλ,w = Diag{(σi − λwi)+} is the weighted soft thresholding done on the

singular value.

Based on Theorem 2.5.2.1, the solution to the minimization problem is H∗ =

USν,wVH where, U and V are obtained from the SVD of Hk (where HK is equiv-

alent to Y in the theorem).
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Therefore, the channel matrix is estimated by computing the following three equa-

tion iteratively:

Hk = Hk−1 +
1

α
vec_matM,K(Ψ

Hvec(Y −Hk−1Φ))

Hk = UΣVH

H∗ = USν,w(Σ)VH

This set of equations used to solve the channel estimation problem is called as

Iterative Weighted Singular Value Thresholding (IWSVT) algorithm.

2.5.2.1 Iterative Weighted Singular Value Thresholding Algorithm

The Iterative Weighted Singular Value Thresholding (IWSVT) algorithm being

adapted to the channel estimation problem is described below.

Algorithm : Iterative Weighted Singular Value Thresholding Algorithm

1: Input M,K,L, Φ, Y, λ, α

2: Initialization: H(1) = 0,Ψ = ΦT ⊗ IM

3: Until ||H(i)−H(i+1)||F
||H(i+1)||F < δ

4: A ← H(i) + 1
α
vec_matM,K(Ψ

Hvec(Y − H(i)Φ))

5: [UΣV] = SV D(A)

6: Update the weight function wi

7: Thresholding : Sν,w(Σ) = Diag(σi − νwi)

8: H(i+ 1) ← USν,w(Σ)VH

9: i ← i+ 1

10: Go to 3

11: Output: H(i+ 1)
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The channel matrix is initially assigned as zero matrix. At each iteration, the

channel matrix is getting updated using the equation given in step 4. The weight

for each singular values is computed, based on the singular values obtained from

the SVD of the matrix in step 4. In order to get a low rank solution to the estimated

channel matrix, in each iteration weighted soft thresholding is done according to

the equation in step 7. These steps executed iteratively until the normalized differ-

ence between the previous estimates and current estimates reaches the threshold

δ.

2.5.2.2 Complexity Order

The computational complexity of IWSVT algorithm is same as ISVT algorithm.

The total complexity of the IWSVT algorithm is O(iter(M 2K + (ML)(MK))).

2.6 Performance Metrics

The performance of the channel estimation algorithm is analyzed using Mean

Square Error and Uplink Achievable Sum-Rate, which is defined as follows:

2.6.1 Mean Square Error

The significance of the proposed channel estimation problem is analyzed through

the Mean Square Error (MSE) as the performance index which is defined as:

MSE = 10 log10

�� H − Hestimated �2F
MK

�
(2.29)

2.6.2 Uplink Achievable Sum-Rate

Uplink Achievable Sum-Rate (ASR) per cell is another performance index used to

investigate the proposed channel estimation method. The sum rate is measured
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at the BS using the following equation:

ASR =
K�

i=1

log2(1 + SINR(i)) (2.30)

where, SINR(i) is the Signal to Interference Noise Ratio for the ith user. To

compute the signal to interference ratio for each user, the signal received at the

base station which is transmitted by the K user is separated into K streams

by multiplying the received signal with a linear detector matrix A. Then the

corresponding data stream for kth user is given as

ỹul,k =
�

PuaH
k hkxk +

�
Pu

K�

i�=k

aH
k hixi + aH

k nk (2.31)

where ak denotes the kth column of a matrix A and hK is the kth column of

the channel matrix. In the equation (2.31), first term is the desired data and

the second and third terms are interference from other users in addition to noise.

Inference along with noise combined together is considered as the noise and hence

the signal to interference noise ratio of the kth user is shown in (2.32)

SINRK =
Pu|aH

k hk|2
Pu

�K
i�=k |aH

k hi|2 + ||ak||2
(2.32)

where Pu is the average SNR. The achievable rate for the kth user is logarithmic to

the base 2 of one plus signal to interference noise ratio of the kth user. Therefore,

achievable sum rate in the uplink mode is the sum of the achievable rate of the

users in the cell.

In this thesis, Maximum Ratio Combining receiver (MRC) and Zero Forcing (ZF)

receiver [51] are considered for decoding the received matrix into K separate vec-

tor. For MRC receiver, the decoding matrix A of size M×K is given as A = Hest

if channel estimates is known and A = H if perfect channel state information is

available. Similarly, ZF decoder matrix is given as

A = (HHH)−1HH (2.33)

if perfect CSI is available, if not H is replaced by Hest in the above equation.
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2.6.3 Downlink Achievable Sum-Rate

In downlink transmission, using linear precoding technique, the signal transmitted

from the BS is a linear combination of signal for the K user. The linear precoded

data at the kth user is obtained as

ỹdl,k =
�
αPdhT

k wkxdk +
K�

i�=k

hT
k wixdi + zk (2.34)

where pd and xdk are the downlink average SNR and data. The SINR of the

transmission from BS to the kth user is

SINRK =
αdPd|hT

k wk|2
αdPd

�K
i�=k |hT

k wi|2 + 1
(2.35)

where αd is the normalization constant. The precoder matrix for Maximum Ratio

Transmission (MRT) and ZF beamforming transmission [52] is given by

W =





H∗ for MRT

H∗(HTH∗)−1 for ZF
(2.36)

ZF precoder matrix (W) is a pseudo inverse of H matrix. For low rank matrix

pseudo inverse is calculated using SVD of H (i.e.)

W = V(:, 1 : rank)Σ+(1 : rank, 1 : rank)UH(1 : rank, :) (2.37)

2.7 Summary

In this chapter, the different methodology used to estimates the massive MIMO

channel under finite scattering propagation environment is discussed. The least

square channel estimation algorithm fails to recover the low-rank channel are ex-

plained. Hence the channel estimation problem is formulated as the constraint

rank minimization problem. The nuclear norm minimization method which is a

relaxed version of the rank minimization problem to have a tractable solution.

Further, the iterative algorithm used to solve NNM method is derived from the

Majorization and Minimization technique. Since NNM method provides a biased
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solution, the rank minimization problem is formulated as WNNM problem to have

an unbiased solution. The performance metrics used to analyze the performance

of the channel estimation algorithms are discussed in this chapter.
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CHAPTER 3

Channel Estimation using Non-Orthogonal Pilot

Sequence

3.1 Introduction

In finite scattering propagation environment, the high dimensional MIMO system

is likely to have a low-rank channel. To estimate the channel matrix, Weighted

Nuclear Norm Minimization method (WNNM) is proposed and the optimization

problem is solved iteratively using weighted singular value thresholding algorithm

which is discussed in chapter 2.

In conventional channel estimation problem, an orthogonal training sequence

is used to estimate the channel. However, to estimate massive MIMO channel

in uplink, the number and length of orthogonal training sequence should at least

be the number of transmit antennas. Hence, when the number of users grows

there may not exist sufficient orthogonal training sequence to separate the uplink

channel estimation from different users. Hence, we have studied the performance

of weighted nuclear norm minimization method using non-orthogonal training se-

quence. A non-orthogonal training sequence introduces inter-user interference

which arise during the channel estimation stage is known as Pilot contamina-

tion. However, non-orthogonal sequence which satisfies the Restricted Isometric

Property (RIP) can efficiently recover the low-rank channel matrix using WNNM

method is detailed in section 3.2

In section 3.3, the selection of weights in WNNM method in order to satisfy

the convexity condition is outlined. The proposed algorithm for non-orthogonal

training sequence converges very slowly. The momentum functions are introduced

in order to speed up the convergence of the algorithm are discussed in 3.4. The

proper selection of regularization parameter in order to have the desired rank for

the channel estimation is discussed in Section 3.5. The Mean Square Error (MSE)



and Average Sum-Rate (ASR) are the criteria used to measure the performance

of the proposed method. In Section 3.6, the performance of the proposed WNNM

method are compared with the Least Square (LS) estimation method and the Nu-

clear Norm Minimization (NNM) method for various finite scatterers in different

SNR levels.

3.2 Selection of Training Matrix

To recover low-rank matrix in compressed sensing, the training matrix should meet

the Restricted Isometric Property (RIP) [22]. The RIP is stated as follows:

A matrix Φ satisfies the RIP of order r if there exist a δr ∈ (0, 1) such that

(1− δr)||H||2F ≤ ||HΦ||2F ≤ (1 + δr)||H||2F (3.1)

which holds for all H with rank(H) ≤ r.

This condition implies that the eigenvalue of the training matrix Φ should lie

between [1− δr, 1+ δr]. In general, a random Gaussian/ Bernoulli matrix satisfies

the RIP is used in recovering the low-rank matrix. In the proposed algorithm,

random Bernoulli matrix whose entries are +1 and -1 with equal probability is

chosen as the training matrix. This is nothing but Binary Phase Shifted Keying

(BPSK) modulated data in communication point of view.

3.3 Selection of Weight Function

Nuclear norm is used as an approximation function in place of rank function, to

get low-rank matrix gives sub optimal solution. In order to achieve the better

approximation to the rank function, nonconvex or concave function is applied to

the singular value. Hence, the minimization problem is rewritten as:

min
H

F (H) =
1

2
||y −Ψh||22 + λΣK

i=1g(σi(H)) (3.2)

where, g(σi(H)) is a nonconvex function which is monotonically increasing on [0,

∞). Instead of minimizing F (H) directly, Hk+1 is updated by minimizing the sum
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of two surrogate functions in (3.2). If g(.) is a concave function, then the super

gradient of a concave function [53],[54] is defined as

g(σi(H)) ≤ g(σk
i (H)) + wk

i (σi(H)− σk
i (H)) (3.3)

where,

wk
i ∈ ∂g(σk

i (H)) (3.4)

since σk
1 ≥ σk

2 ≥ · · · ≥ σk
K ≥ 0, by the antimontone property of supergradient,

we have 0 ≤ wk
1 ≤ wk

2 · · · ≤ wk
K . Thus, instead of minimizing g(σi(H)), (3.3)

motivates to minimize its right- hand side function. Thus the relaxed version of

(3.2) is

Hk+1 = min
H

1

2
||y−Ψh||22 + λ{ΣK

i=1(g(σ
k
i (H)) + wk

i (g(σi(H))− g(σk
i (H)))} (3.5)

which is equivalent to minimizing the function (considering only the term which

depend on H from the second tern of the equation (3.6).)

Hk+1 = min
H

1

2
||y −Ψh||22 + λΣK

i=1w
k
i σi(H) (3.6)

The above equation (3.6) is same as weighted nuclear norm minimization problem,

where weight is the gradient of the concave function. Schatten q norm is one of

the concave function [55] [56] used in this thesis, which is defined as

||H||qq = ΣK
i=1σi(H)q (3.7)

with 0 < q < 1.

When q = 1, Schatten q norm becomes the nuclear norm and when q = 0 Schatten

q norm becomes a rank problem. Therefore weight function for Schatten q norm

as a regularization function is

wk
i =

q

(σk
i (H) + �)1−q

(3.8)

where wi is the weight value for the ith singular value and � is a positive value

included to avoid infinity when the singular value is zero. Another concave function

used as a regularization function is the entropy function [57], [58] and [59]. The
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entropy function is defined as

g(σ(H)) = −ΣK
i=1σ̃i(H) log10 σ̃i(H) (3.9)

where σ̃i(H) = σi(H)
||σ(H)|| . In order to have the value of σi(H) lie between 0 and 1,

σi(H) is normalized by it norm.

In information theory point of view, maximizing the entropy of a vector means

making all the elements in the vector equal. On the other hand, minimizing the

entropy of a vector means only a few elements of the vector has significant values

and rest to zero. Therefore, minimizing the entropy of a vector whose elements

are the singular value of a matrix is equivalent to sparsifying the singular value

vector which results in the low-rank matrix.

If entropy is the regularization function then the weight function is the partial
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Figure 3.1: Plot for entropy function

derivative of entropy function which is given as

wk
i = −(log10(σ̃i(Hk) + 1) (3.10)
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3.4 Proposed Algorithm for the Channel Estima-

tion Problem

The algorithm for the proposed channel estimation problem is iteratively solved.

The channel update equation which is specified in the algorithm is same as that of

the first order Landweber iteration. The Landweber iteration takes more number

of iteration for the algorithm to converge. Since in channel updating equation, to

construct a new channel matrix only the previous iterate channel matrix is taken

and the step size α is fixed as:

Hk = Hk−1 +
1

α
vec_matM,K(Ψ

Hvec(Y −Hk−1Φ)) (3.11)

Hence, to speed up the rate of convergence, the previous two estimate, and the

dynamically varying step size is considered. Therefore the new channel update

equation becomes

Hk = WSV T [Hd + vec−1
M,K(Ψ

Hvec(Y −HdΦ))] (3.12)

Hd+1 = Hk +
tk − 1

tk+1

(Hk −Hk−1) (3.13)

where, the step size tk is updated in every iteration as [15]

tk+1 =
1 +

�
1 + 4t2k
2

(3.14)

The computational steps of the Fast Iterative WSVT (FIWSVT) algorithm for

the proposed channel estimation problem is given below:

Algorithm : WNN Channel Estimator using FIWSVT algorithm

1: Input M , K, L, Φ, Y, X, λ, α

2: Initialization: H(1) = 0,Ψ = ΦT ⊗ IM , Wi = I, t1 = 0, i = 1.

3: repeat
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4: A ← Hd(i) +
1
α
vec−1

M,K(Ψ
Hvec(Y −Hd(i)Φ))

5: [UΣV] = SV D(A)

6: Thresholding : Σt = Diag(σi − λwi)

7: H(i) ← UΣtV
H

8: ti+1 =
1+
√

1+4t2i
2

9: Hd(i+ 1) = H(i) + ( ti−1
ti+1

)(H(i)−H(i− 1))

10: i ← i+ 1

11: Update Wi

12: until condition satisfied or maximum number of iteration reached

13: Output: Hd

The stopping criteria chosen for the proposed algorithm is either when the

maximum iteration is reached or the relative change in the objective function is

less than the tolerance level.

3.4.1 Complexity Order

The main computational complexity lies in calculating SVD of the M×K matrix,

which has a complexity of O(M 2K) (at each iteration). The matrix-vector multi-

plication in step (4) has a complexity of O((ML)(MK)). The total complexity of

the FIWSVT algorithm is O(iter(M 2K+(ML)(MK))), where iter is the number

of iteration required to obtain the desired result.

3.5 Selection of Regularization Parameter λ

The regularization parameter λ should be chosen in order to obtain a sufficiently

accurate result. The parameter should depend on the noise level and the size of
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the received signal matrix at the BS. To obtain convergence of the cost function,

the regularization parameter should satisfy the condition λ ≥ ||NΦH ||2.

Lemma 1. Consider a matrix A is M ×L random matrix whose entries are in-

dependent random variables with mean zero and variance one. B is an L×K non

random matrix with independent columns and ||B||2 ≤ 1. Then the resultant prod-

uct of the matrix W = AB will have entries random with an independent column.

Therefore, the spectral norm of the matrix W is given as ||W||2 ≈ C(
√
M +

√
K),

where C is constant [60],[61].

Using Lemma 1 the value for the regularization parameter λ is determined.

The training matrix Φ is a K × L deterministic BPSK data at the receiver and

||Φ||2 > 1. In order to use the above results in Lemma 1, Φ can be normalized

by σ1(Φ). N is a random Gaussian matrix with zero mean and σ2
n variance then

λ ≥ ||NΦH ||2 ≈ C1σn(
√
M +

√
K) where C1 = C/σ1(Φ).

3.6 Simulation Results and Discussion

In this section, the proposed WNN channel estimator is evaluated using the per-

formance index normalized MSE and Downlink average sum-rate for the non-

orthogonal training sequence. The parameters of the single cell massive MIMO

system for simulation is given in Table.3.1.

Parameters Values

Number of BS Antennas (M) 100

Number of users in a cell (K) 40

Number of scatterers (P ) 10, 15, 20

Length of the training data (L) 50 [62]

Antenna Spacing (D/λ) 0.3

Table 3.1: System Parameters
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Figure 3.2: Normalized MSE versus SNR for schatten q norm weight func-

tion for P = 10 scatterers

Fig.3.2 shows the MSE versus SNR for the derivative of Schatten q norm weight

function for the q value between 0 to 1 and P = 10 (fixed scatterer). From the

graph, it is revealed that q=0.1 gives minimum MSE value compared to 0.3, 0.5

and 0.8 since q=0.1 is the closest approximation to the rank function. The similar

trend is visible for P = 15 and P = 20 is shown in Fig.3.3 and Fig.3.4.

Fig.3.5 shows the MSE curve for both derivative of Schatten q norm (q = 0.1)

and entropy function as the weight function for P = 10. From the graph, Schat-

ten q norm shows lower MSE value compared to entropy weight function. Hence,

Schatten q norm for q=0.1 is taken as the weight function for further simulation.

Both FIWSVT algorithm for solving WNN problem and ISVT algorithm for solv-

ing NN problem give the same rank of the estimated channel matrix as shown in

Table.3.2. The table displays the estimated rank for different P values and SNR

levels. It is observed from the simulation that when the number of fixed scatterers

(P ) are 10, 15 and 20 then the corresponding rank of the channel matrix are 6, 8
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Figure 3.3: Normalized MSE versus SNR for schatten q norm weight func-

tion for P = 15 scatterers
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Figure 3.4: Normalized MSE versus SNR for Schatten q norm weight func-

tion for P = 20 scatterers
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Figure 3.5: Normalized MSE versus SNR

and 11 respectively. From the Table.3.2, it is revealed that both NN and WNN

method estimate the rank exactly at high SNR. However, it is very difficult to es-

timate the correct rank at low SNR (0 dB). For higher P value (P = 20), the gap

between the singular value σr(Y) and σr+1(Y) is very small as shown in Fig.3.6,

which leads to an incorrect estimation of rank at low SNR.

Note: The estimated channel matrix from IWSVT and ISVT algorithm provide

the same rank for different P and SNR level. Hence, only one table is provided

for explanation.

SNR (dB) 0 5 10 15 20 25 30

R̂ (P=10) 6 6 6 6 6 6 6

R̂ (P=15) 8 8 8 8 8 8 8

R̂ (P=20) 10 11 11 11 11 11 11

Table 3.2: Estimated rank (R̂) of the channel matrix for different P values

using NN and WNN method

Fig.3.7 shows the MSE versus SNR for fixed scatterers P = 10 of different
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Figure 3.6: Singular value plot of Y matrix for P = 20

channel estimation algorithm. It can be seen from Fig.3.7 that for MSE both

IWSVT and FIWSVT of WNN method achieves significantly better performance

compared to ISVT and FISVT (variable step size and momentum function are

added to ISVT algorithm in order to have fast convergence) of NN method and

LS method. At high SNR, deviation of the singular value of Y matrix from the

singular value of H matrix will be very small. However, NN method penalizes

equally all the singular values by λ. Hence, it provides the least performance com-

pared to LS method at high SNR.

The convergence of the FIWSVT algorithm is verified for various SNR value with

P = 10. The algorithm will terminate, if the normalized relative cost function

reaches the threshold δ (10−4). It can be seen from the Fig.3.8 that the algorithm

converges fast at 0 dB SNR compared to 30 dB. Since the shrinkage value which

depends on the product of λ (a function of noise level which is negligible value at

high SNR) and weights which are very small. Hence at high SNR, the algorithm

takes a longer time to converge.
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Fig.3.9 display the number of iteration for the different algorithm to reach the

convergence. The bar chart shows, FIWSVT algorithm reduces the number of

iterations to converge compared to IWSVT algorithm for all SNR level. However,

at low SNR, ISVT algorithm takes less iteration compared to FIWSVT algorithm.

Even though the number of iterations is reduced, the MSE performance of ISVT

is very poor compared to FIWSVT.

0 5 10 15 20 25 30

SNR(dB)

0

50

100

150

200

250

300

350

400

N
u

m
b

e
r 

o
f 

it
e

ra
ti
o

n

ISVT

IWSVT

FIWSVT

Figure 3.9: Number of iteration to converge vs SNR for different algo-

rithms

The distribution of singular values of Y for a different number of users in the

cell while keeping the number of BS antennas constant is shown in Fig.3.10. The

distribution plot is shown for 10 scatterers and SNR level of 30 dB. For P = 10,

the rank of the channel matrix is 6. From the Fig.3.10, it is clearly seen that by

increasing or decreasing the number of users in the cell, the rank of the matrix

remains same as long as P � K.

Fig.3.11 shows the distribution of the singular values for the same setup by

varying M while maintaining K constant. It is evident that, at high SNR, as long
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Figure 3.10: Singular value plot of Y matrix for different K at 30 dB SNR

as P � {M,K} there will be no change in rank of the channel by varying the M

or K. Hence by increasing M or K the rank of the matrix remain unchanged and

the difference will be noticed only in estimation error.

Table.3.3 displays the MSE for different M values and scatterers. As the num-

ber of BS antenna (M) increases for fixed scatterers, the estimation error decreases.

Downlink Sum-Rate is another performance index used to investigate the per-

formance of the proposed WNN channel estimation method. Fig.3.12 and Fig.3.13

shows the achievable sum-rate for MRT precoding and ZF precoding scheme [19],

carried out for 1000 Monte-Carlo simulation. ASR computed using WNN method

is near to ASR calculated using perfect CSI compared to the NN method.

Uplink Sum-Rate is another performance index used to investigate the perfor-

mance of the proposed WNN channel estimation method. Fig.3.14 and Fig.3.15

show the achievable sum-rate for MRC precoding and ZF receiver scheme [19],
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Figure 3.11: Singular value plot of Y matrix for different M at 30 dB SNR
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Figure 3.12: Downlink Achievable Sum-Rate versus SNR for different

method (MRT precoder)
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Scatterers SNR (dB) M = 60 M = 80 M = 100 M = 120

P=10 10 0.0490 0.0344 0.0367 0.0257

20 0.0061 0.0040 0.0038 0.0029

30 0.0007 0.0004 0.0005 0.0003

P=15 10 0.0556 0.0466 0.0427 0.0402

20 0.0068 0.0056 0.0050 0.0048

30 0.0008 0.0006 0.0006 0.0006

P=20 10 0.0935 0.0732 0.0679 0.0636

20 0.0121 0.0095 0.0082 0.0076

30 0.0015 0.0011 0.0009 0.0008

Table 3.3: MSE for different BS antennas and Scatterers for constant num-

ber of users in the cell

carried out for 1000 Monte-Carlo simulation. ASR computed for WNN method is

near to ASR calculated using perfect CSI compared to the NN method.

3.7 Summary

In this chapter, estimation of single cell massive MIMO channel using non-orthogonal

training sequence is presented. High correlated massive MIMO channel which is

approximated as low-rank matrix estimated using the WNN optimization method.

Using Majorization - Minimization technique, the WNN problem is solved using

IWSVT algorithm. The weight function which is chosen as the derivative of two

concave function Schatten q norm and entropy in IWSVT algorithm. The IWSVT

method takes more iteration for the algorithm to convergence. Further, to speed

up the convergence rate, FIWSVT algorithm is proposed for the channel estima-

tion problem. To study the performance of this method, numerical simulation is

carried out for different SNR, and by varying the number of users in the cell and

the number of BS antennas. From the result, it is inferred that WNN method

which is solved using FIWSVT algorithm performs better in terms of estimation

error and average sum rate compared to the conventional LS and NN solved using

ISVT method.
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Figure 3.13: Downlink Achievable Sum-Rate versus SNR for different

method (ZF precoder)
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Figure 3.14: Uplink Achievable Sum-Rate versus SNR for different method

( MRC receiver)
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CHAPTER 4

Channel Estimation using Orthogonal Pilot

Sequence

4.1 Introduction

The low-rank channel estimation using non-orthogonal training sequence is studied

in chapter 3. To recover the low-rank channel matrix using WNNM method, the

training matrix should satisfy the Restricted Isometric Property (RIP) which is

detailed in Section 4.2. A Partial Random Fourier Matrix (PRFM) satisfying the

RIP is adapted as the training matrix to recover the low-rank channel. In Section

4.3 and 4.4, the reduction in computational complexity of the proposed channel

estimation method using PRFM and the algorithm is discussed.

The proper selection of regularization parameter in order to have the desired

rank for the channel estimation is discussed in Section 4.5. In section 4.6, the

selection of weights in WNNM method in order to satisfy the convexity condition

is outlined. The weights which are proposed for solving WNNM problem is a

function of the regularization parameter, singular values, and tuning parameter.

To achieve minimum MSE for the estimate, the tuning parameters are selected

based on Stein’s unbiased risk estimate which is explained in Section 4.7. The

Mean Square Error (MSE) and Average Sum-Rate (ASR) are the criteria used

to measure the performance of the proposed method and are compared with LS

estimation method and the NNM method for various finite scatterers in different

SNR levels in Section 4.8.

4.2 Selection of Training Matrix

The low rank matrix can be recovered efficiently using Weighted Nuclear Norm

Minimization method, if the training matrix satisfies the Restricted Isometric

Property(RIP) [63]. The RIP condition is stated in Theorem 4.2.1.



Theorem 4.2.1 A matrix Φ satisfies the RIP of order r if there exist a δr ∈ (0, 1)

such that

(1− δr)||H||2F ≤ ||HΦ||2F ≤ (1 + δr)||H||2F (4.1)

which holds for all H with rank(H) ≤ r. This condition implies that, the eigen-

value of the training matrix Φ should lie between [1− δr, 1 + δr].

The matrix satisfies the RIP condition are random Gaussian, random Bernoulli

matrix, and partial random Fourier matrix. In this work, the partial random

Fourier matrix as the training matrix for estimating the channel is adapted which

satisfies near optimal RIP [64]. By choosing this training matrix, the low-rank

channel estimation problem can be solved efficiently.

The design of partial random Fourier matrix is as follows:

1. Select the discrete Fourier matrix F ∈ CL×L with entries Fi,j =
1√
L
ej2π(i−1)(j−1)/L,

i, j ∈ [1, L]

2. Pick the random K row vector out of L from matrix F (L ≥ K)

3. Construct a matrix Φ of size K×L by placing the K row vector of F matrix

in random position.

Remarks: The orthogonality of the design training matrix is preserved even after

the random permutation of row vector [64].

4.3 Convergence Analysis

In this section, convergence analysis for WNN method for the partial DFT training

matrix is discussed. The WNNM cost function is given as

J(h) =
1

2
||y −Ψh)||22 + λ||H||∗ (4.2)

The convergence of the proposed iterative algorithm is analysed by assuming the

regularizer factor λ = 0. Then the term ||y−Ψh||22 can be solved iteratively using
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Landweber iterative method [65] in matrix form as

Hi+1 = Hi +
1

α
(Y − HiΦ)ΦH (4.3)

which can be rewritten as

Hi+1 = Hi(I −
1

α
ΦΦH) +

1

α
YΦH (4.4)

Since H0 is initialized to zero matrix, using the above recursion H1 is obtained as

H1 =
1

α
YΦH (4.5)

and

H2 =
1

α
YΦH + (I − 1

α
ΦΦH)YΦH (4.6)

Rearranging the equation H2 in terms of H1

H2 = H1 + (I − 1

α
ΦΦH)YΦH (4.7)

Similarly, we obtain H3 as

H3 = H2 + (I − 1

α
ΦΦH)2YΦH (4.8)

In general, the iterative equation is written as

Hi =
i−1�

j=0

1

α
YΦH(I − 1

α
ΦΦH)j (4.9)

Using the expression for the sum of a geometric series, we obtain

Hi =
1

α
YΦH [I − (I − 1

α
ΦΦH)]−1[I − (I − 1

α
ΦΦH)i] (4.10)

For a partial DFT matrix ΦΦH = I and if we assume α =1 then (4.10) converges

to YΦH i.e in one iteration.
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4.4 WNN algorithm for Orthogonal Pilot Sequence

The proposed algorithm for the channel estimation problem is given below:

Algorithm : WNN Channel Estimator

1: Input M,K,L, Φ, Y, λ, α , ν = λ/α

2: A ← YΦH

3: [UΣV] = SV D(A)

4: calculation of weights

5: Thresholding : Sν,w(Σ) = Diag(σi − νwi)

6: Hest ← USν,w(Σ)VH

7: Output: Hest

4.4.1 Complexity Order

The total computational complexity of the IWSVT algorithm for orthogonal train-

ing sequence is O((M 2K + (ML)(MK))).

4.5 Selection of Regularization Parameter λ

The accurate rank estimation of the channel matrix is crucial as the rank of the

Multiuser MIMO matrix determines the number of users data stream can be served

simultaneously by the BS within the same time and frequency bandwidth. The

correct rank estimation improves the channel estimation quality which is very

important in designing the beamforming vector as well as for allocating different

power levels to different users.
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The regularization parameter λ should be chosen carefully. By choosing larger

value, Hest will become zero and for lesser value introduces more noise to the

estimates. The parameter should depend on the noise level and the size of the

received signal matrix at the BS. To obtain faster convergence of the cost function,

the regularization parameter should satisfy the condition

λ ≥ ||NΦH ||2 (4.11)

When a Gaussian matrix is multiplied by the unitary matrix then the resultant

matrix is Gaussian. Therefore, λ should be greater than or equal to the largest

singular value of the matrix Ñ where Ñ = NΦH .

From the Non-asymptotic theory, the largest singular value of the random

matrices with size M ×K with independent entries (and with zero mean and unit

variance) is
√
M +

√
K. Since the entries of Ñ are independent Gaussian with

zero mean and variance σ2
n then,

λ ≥ ||Ñ||2
= σn(

√
M +

√
K)

(4.12)

For simulation, the lower bound value is considered.

4.6 Selection of Weight Function

In general, WNN Minimization problem is a nonconvex optimization problem. For

WNN to be the convex function, the weights must be non-decreasing with respect

to the singular values, which is proved in [11] and [17]. In such a case, the estimated

singular values using WNN method will be in decreasing order resulting in the

same order as the singular value obtained from the NN minimization problem.

Therefore, the condition imposed on weights are 0 ≤ w1 ≤ w2 ≤ · · · ≤ wK and

the estimated singular value is given by the equation

σ̂est = σi − νwi (4.13)
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So that larger singular values are less penalized to reduce the bias and small

singular values are heavily penalized to induce sparsity and there by a reduction

in the rank of the matrix. To satisfy the increasing condition, the weight is chosen

as an inverse function of the singular value as given below

wi =

�
ν

σi

�γ−1

(4.14)

where the tuning parameter γ is chosen as ≥ 1. Since ν is constant then the weight

is a function of singular values. As singular values are arranged in decreasing

order then their corresponding weights will be arranged in increasing order, thus

convexity is achieved. If γ = 1 then the estimated singular value is

σ̂est = σi − ν

�
ν

σi

�γ−1

σ̂est = σi − ν

is the solution of NNM problem and is a biased estimator.

If γ = ∞ then

σ̂est =





σi σi ≥ ν

0 σi < ν

and is the hard thresholding of the singular value which contains original singular

values plus noise. Hence, the proper selection of tuning parameter leads to unbi-

ased estimator. Therefore, γ is chosen by minimizing the Stein’s Unbiased Risk

Estimator (SURE) [66] [67] which is a function of γ .

4.7 Stein’s Unbiased Risk Estimator

The tuning parameter γ should be carefully chosen because too much of shrinkage

of the singular value by the threshold parameter νwi results in large bias to the

estimates whereas a little shrinkage results in high variance. Hence γ is selected

by minimizing the mean square error given by

MSE = E||H − Hest(γ)||2F (4.15)
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where Hest is obtained from nonlinear biased estimator. However, the true mean-

squared error of an estimator is a function of the unknown parameter H to be

estimated, and thus cannot be determined accurately. Therefore, Stein’s unbiased

risk estimate [66],[68] is an unbiased estimator of the mean-squared error of a

nonlinear biased estimator is used to estimate γ, by minimizing the SURE function

with respect to γ.

E(SURE) = MSE. (4.16)

In order to obtain SURE function, the received matrix Y is multiplied by ΦH

YΦH = HΦΦH + NΦH (4.17)

Therefore, the received matrix becomes

Ỹ = H + Ñ (4.18)

where Ỹ = YΦH , Ñ = NΦH and ΦΦH = I.

The estimation of the unknown channel matrix H from the received matrix Ỹ is

given as

Hest = USν,w(Σ)VH (4.19)

where U and V are obtain from SVD of YΦH . The soft thresholding operator

Sν,w which is a function of w discussed in Section 4.6 is given by

Sν,w(σi) = σimax(1− νγ

σγ
i

, 0) (4.20)

The estimator using the thresholding function is given by

Hest(γ)

min(M,K)�

i=1

Uiσimax(1− νγ

σγ
i

, 0)VH
i (4.21)

ν ≥ 0 and γ ≥ 1. Thus, minimizing SURE can act as a surrogate for minimizing

the MSE. To remove the dependency of the true channel matrix H, a simple
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manipulation is done in the equation in order to determine optimal γ value.

SURE(γ) = E||H − Hest(γ)||2F
= E||H + Ỹ − Ỹ − Hest(γ)||2F
= E||H − Ỹ||2F + E||Ỹ − Hest(γ)||2F + 2E((H − Ỹ)T (Ỹ − Hest(γ)))

= −E||Ñ||2F + E||Ỹ − Hest(γ)||2F + 2E((H − Ỹ)T (Ỹ − Hest(γ)))

= −MKσ2
n + E||Ỹ − Hest(γ)||2F + 2E((H − Ỹ)T (Ỹ − Hest(γ)))

where div(Hest(γ)) = E((H− Ỹ)T (Ỹ−Hest(γ))) is the divergence of the estimate

Hest(γ) and

E||Ỹ − Hest(γ)||2F =

min(M,K)�

i=1

σ2
imin(

ν2γ

σ2γ
i

, 1) (4.22)

Therefore, SURE formula can be written as

SURE(γ) = −MKσ2
n +

min(M,K)�

i=1

σ2
imin(

ν2γ

σ2γ
i

, 1) + 2σ2
ndiv(Hest(γ)) (4.23)

Candes et al. in [66] given the closed form of divergence as

div(Hest(γ)) =

min(M,K)�

i=1

(S�
ν,w(σi)+|M−K|Sν,w(σi)

σi

)+2

min(M,K)�

t�=i,t=1

σiSν,w(σi)

σ2
i − σ2

t

(4.24)

S�
ν,w(σi) is the differentiation of Sν,w(σi) with respect to σi and it is given as

S�
ν,w(σi) = (1 + (γ − 1)

νγ

σγ
i

).1(σi > ν)

where

1(σi > ν)





1 ifσi > ν

0 otherwise

Substituting both Sν,w(σi) and S�
ν,w(σi) into divergence equation. Then we can

get divergence equation as
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div(Hest(γ)) =

min(M,K)�

i=1

(1 + (γ − 1)
νγ

σγ
i

).1(σi > ν) + |M −K|max(1− νγ

σγ
i

, 0)

+ 2

min(M,K)�

t�=i,t=1

σ2
imax(1− νγ

σγ
i
, 0)

σ2
i − σ2

t

(4.25)

From (4.23) it is observed that, SURE is a function of a γ, ν, σ2
n and singular value

of the received matrix Ỹ. Since ν = λ/α and λ is chosen as σn(
√
M +

√
K) (Refer

Section 4.5), noise variance σ2
n is known then for a particular received matrix,

SURE is function of γ. Therefore, select γ which minimizes the SURE function.
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Figure 4.1: SURE(γ) versus γ

It is observed that SURE function parametrized by SNR, asymptotes to dif-

ferent minimum values as a function of γ > 2. The zoomed version of Fig.4.1 for

15 dB SNR is shown in Fig.4.2. It is revealed that the SURE function is almost

constant from γ ≥ 2. Even if γ is chosen 3 or 4, it is observed that the change

in MSE is minimal which is negligible. The MSE presented for different γ values

and SNR which is shown in Table.4.1.
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Figure 4.2: SURE(γ) versus γ [expanded portion of the figure for SNR

=15 dB]

γ = 2 γ = 3 γ = 4

SNR(dB) MSE(dB) SNR(dB) MSE(dB) SNR(dB) MSE(dB)

0 -7.5306 0 -7.9622 0 -7.8622

5 -12.6059 5 -12.7837 5 -12.6617

10 -17.6806 10 -17.7116 10 -17.6615

15 -22.7090 15 -22.7026 15 -22.6884

20 -27.7168 20 -27.7069 20 -27.7033

25 -32.7181 25 -32.7110 25 -32.7101

30 -37.7177 30 -37.7134 30 -37.7131

Table 4.1: SURE value for different γ and SNR

Hence, for subsequent simulations, the tuning parameter γ is chosen as 2.
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4.8 Simulation Results and Discussion

In this section, the proposed IWSVT channel estimation algorithm is evaluated

using the performance index normalized MSE, uplink, and downlink average sum-

rate for the orthogonal training sequence. The parameters of the single cell MU-

MIMO system for simulation is given in Table.4.2.

Parameters Values

Number of BS Antennas (M) 100

Number of users in a cell (K) 40

Number of scatterers (P ) 10, 15, 20

Length of the training data (L) 50

Antenna Spacing (D/λ) 0.3

Tuning parameter (γ) 3

Table 4.2: System Parameters

In TDD mode, the length of the training data (L) scales linearly with the number

of users (K) in the cell due to channel reciprocity [62]. Hence training length is

chosen as 50. The significance of the proposed channel estimation algorithm is

analyzed through the Mean Square Error (MSE) as the performance index.

Fig.4.3 compares the MSE performance of channel estimators that employs the

LS method, ISVT method and the proposed IWSVT method when the number

of scatterers is fixed at 10. At low SNR (10 dB) an improvement of 4.27 dB

is achieved in the proposed IWSVT algorithm compared to the ISVT method

and 6.83 dB improvement compared to LS estimator. Moreover, both ISVT and

IWSVT algorithm outperform the LS method.

Even when the number of scatterers increases, IWSVT performance is better

than other two methods, where as ISVT algorithm performance slowly deterio-

rates and give the same performance as LS method at high SNR which is shown

in Fig.4.4 and Fig.4.5. Simulations reveal that when the number of fixed scatters

are 10, 15 and 20, the rank of the corresponding channel matrices are 6, 8, and

11 respectively. For such channels, Table.4.3 shows the estimated channel rank
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Figure 4.3: MSE performance comparison of various channel estimation

schemes for P = 10 scatterers

SNR(dB) Rank(P=10) Rank (P=15) Rank(P=20)

0 6 8 10

5 6 8 11

10 6 8 11

15 6 8 11

20 6 8 11

25 6 8 11

30 6 8 11

Table 4.3: Estimated rank of the channel matrix for different P value
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Figure 4.4: MSE performance comparison of various channel estimation

schemes for P = 15 scatterers
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Figure 4.5: MSE performance comparison of various channel estimation

schemes for P = 20 scatterers
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for different scatterers and various SNR levels. It is observed that the estimated

rank are same for both IWSVT and ISVT method. However, the difference is

significant in the MSE performance.

Note: The estimated channel matrix from IWSVT and ISVT algorithm provide

the same rank for different P and SNR level. Hence, only one table is provided

for explanation.
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Figure 4.6: MSE performance comparison of IWSVT channel estimation

algorithm for different scatterers

The performance of IWSVT method for different numbers of scatterers is shown

in Fig.4.6. When the number of scatterers increases, there is an inevitable error

in the estimation of the channel rank. The graph shows that the estimation MSE

decreases with P for all SNRs.

The distribution of singular values of YΦH for a different number of users in the

cell while keeping the number of BS antennas constant is shown in Fig.4.7. The

distribution plot is shown for 10 scatterers with SNR level of 30dB. For P = 10,
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Figure 4.7: Singular value plot of YΦH matrix for different K at 30 dB

SNR

the rank of the channel matrix is 6. From Fig.4.7, it is clearly seen that by increas-

ing or decreasing the number of users in the cell, the rank of the matrix remains

same as long as P � K. At high SNR there is a significant gap between the

singular values σr and σr+1. Hence the estimated channel rank will be very close

to as an original rank.

Fig.4.8 also shows the distribution of the singular values for the same setup

by varying K while maintaining M constant. It is evident that, at high SNR,

as long as P � min{M,K}, there will be no change in rank of the channel by

varying the M or K.

It can be observed in Fig.4.8 that at high SNRs, for indices greater than 6, the

singular values collapse to zero implying that for P � M , changing either K or M

does not affect the rank of the channel matrix. However, at low SNRs, as shown

in Fig.4.9 and Fig.4.10, (which are parameterized by M and K respectively) the

singular values are significantly larger than zero for indices greater than 6. In

addition the gap between the singular value at r = 6 and r = 7 decreases, that
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Figure 4.8: Singular value plot of YΦH matrix for different M at 30 dB

SNR
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Figure 4.10: Singular value plot of YΦH matrix for different M at 0 dB

SNR

result in the imperfect estimation of rank of the matrix.

Uplink Achievable Sum-Rate (ASR) per cell is another performance index used

to investigate the proposed channel estimation algorithm with ISVT method.

Fig.4.11 shows the comparison of ASR computed using MRC detector matrix

designed with IWSVT, ISVT algorithm and with perfect CSI. From the figure, it

is noted that 4.7% bits/s/Hz improvement are observed in IWSVT method from

perfect CSI compared to 9.13% bits/s/Hz obtained in ISVT method from per-

fect CSI. Downlink Sum-Rate is another performance index used to investigate

the performance of the proposed IWSVT channel estimation algorithm. Fig.4.12

shows the achievable sum-rate for Maximum Ratio Transmission (MRT) precod-

ing scheme [19], carried out for 1000 Monte-Carlo simulation. ASR computed for

IWSVT is near to ASR calculated using perfect CSI compared to ISVT algorithm.
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Figure 4.11: Uplink Achievable Sum-Rate versus SNR for different method
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Figure 4.12: Downlink Achievable Sum-Rate versus SNR for different

method
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4.9 Summary

In this chapter, we have considered orthogonal training sequence for the estima-

tion of the low-rank channel matrix using the Weighted Nuclear Norm optimization

method. The optimization problem is solved iteratively using weighted singular

value thresholding method. The convergence analysis of the iterative algorithm for

orthogonal training sequence is done and an optimum value of the convergence pa-

rameter has been chosen to obtain the convergence in one iteration. The proposed

IWSVT algorithm shows better improvement over the existing ISVT algorithm in

terms of the performance indices both in Mean Square Error and Achievable Sum

Rate. The unique feature of the IWSVT algorithm is the reduced computational

complexity which can be efficiently implemented in a practical system.
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CHAPTER 5

Low Rank Channel Estimation in FDD Mode

5.1 Introduction

In TDD mode, CSI acquired in the uplink may not be accurate for the downlink

due to the calibration error of radio frequency chains and limited coherence time.

FDD systems can provide more efficient communications with low latency. In

FDD systems, CSI is obtained at every user by sending the pilot signal from BS

and estimate the channel information with the help of pilot signal. The obtained

CSI is fed back to the BS for precoding the user data.

The number of orthogonal pilots required for downlink channel estimation is

proportional to the number of BS antennas, while the number of orthogonal pilots

required for uplink channel estimation is proportional to the number of scheduled

users. To estimate the downlink channel, the pilot overhead is in the order of

a number of BS antennas which is prohibitively large in Massive MIMO system.

Further, the estimated CSI by the user is feedback to the BS over the uplink chan-

nel. Hence, the overall overhead for uplink is high. Therefore, it is of importance

to explore channel estimation in the downlink than that in the uplink, which can

facilitate massive MIMO to be backward compatible with current FDD dominated

cellular networks. Hence, it is necessary to explore channel estimation method for

massive MIMO based on FDD mode with reduced overhead.

In this chapter, the channel is modeled for downlink and uplink FDD mode

transmission is discussed in Section 5.2. In downlink propagation model, rich

scattering is considered at the user side and most clusters are around BS. All users

in the cell are accessible to cluster at BS leads to same steering matrix which

introduces correlation among the users. Hence, the high dimensional downlink

channel matrix is likely to approximate as low rank, where as in uplink, rich



scattering at user side approximates the channel as high dimensional i.i.d matrix.

The channel estimation method for downlink is carried out at BS is presented in

section 5.3. In Section 5.4, the convergence results for SVP-G, SVP-H, SVP-H

are compared with the proposed WNN method based on the mean square error

at different SNR levels are presented.

5.2 System and Channel Model

Consider the downlink FDD massive MIMO system with M transmit antenna at

BS, serving K single receiver antenna user as shown in Fig.5.1. The BS transmits

Figure 5.1: Single cell downlink transmission

pilot φt ∈ CM×1 at the tth channel use (t = 1, 2, ...L). The received pilot signal at

the kth user is yk ∈ C1×L during L channel use can be expressed as

yk = hkΦ+ nk (5.1)

where Φ = [φ1,φ2, ...φL] is a M × L training matrix constructed from the trans-

mitted pilots during T channel use. nk ∈ C1×L represents the i.i.d additive white

Gaussian noise with elements having zero mean and variance σ2
nk

. The channel
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vector hk ∈ C1×M between the BS and the kth user is given by

hk =
P�

p=1

gk,pa(θp) (5.2)

where P is the number of scatterers or number of resolvable physical paths, θp is

the Angle of Departure (AoD) of the pth path. For uniform linear antenna array

the steering vector is defined as

a(θp) = [1, e−j2πD
λ
cos(θp), · · · , e−j2πD

λ
(M−1)cos(θp)] (5.3)

where D and λ denote the antenna spacing at the BS and carrier wavelength

respectively.

In channel model, rich scattering is considered at the user side and most clus-

ters are around BS. The clusters that are present around the BS are accessible

to all users introduce correlation among the users, even when the users are geo-

graphically apart. Hence, the channel vectors associated with different users have

the same steering vectors. Thus, the downlink channel matrix is given as

H = GA (5.4)

where G ∈ CK×P is the path gain matrix and A = [a(θ1)
T , a(θ2)

T , · · · a(θP )T ] ∈
CP×M . Therefore, the rank(H) ≤ min{P,K,M}. Usually, M and K are large

for massive MIMO system and the number of scatterers is assumed relatively

small then the rank(H) ≤ min{P}. Therefore high dimensional downlink channel

matrix is approximated as a low rank channel.

5.3 Downlink Channel Estimation

In conventional FDD system, the channel vector for each user hk (k = 1, 2, · · · , K)

is estimated individually and then the estimated CSI is fed back to the BS. In this

thesis we have assumed, instead of estimating the channel vector at the user side,

the observed pilot signal by each user is fed back to the BS. The joint MIMO

channel estimation of all user is done at the BS. The pilot observation of all user
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is expressed as

Y = HΦ+N (5.5)

where Y ∈ CK×L, H = [h1
T ,h2

T , · · · ,hK
T ]T ∈ CK×M is the downlink channel to

be recovered and N = [n1
T ,n2

T , · · · ,nK
T ]T ∈ CK×L is the downlink noise matrix.

The pilot signal W which is fed back to the BS by all users is given as

W = QY + Z (5.6)

where Q ∈ CM×K is the uplink channel matrix which is modelled as Rayleigh

fading matrix whose entries i.i.d random variable with zero-mean and σ2 variance.

Z ∈ CM×L is the uplink noise matrix whose entries follows CN (0, σ2
z).

To recover the downlink channel matrix at BS, firstly Y has to be estimated.

Y matrix is estimated using LS estimation by assuming, uplink channel matrix Q

is known. The estimate Ŷ is given as

Ŷ = (QHQ)−1QHW (5.7)

Further, the estimation of downlink channel matrix at BS can be formulated as a

rank minimization problem:

min
H

rank(H) s.t. Ŷ = HΦ (5.8)

This rank minimization problem is nonconvex and NP hard. The above problem

can be reformulated, when rank of the matrix is known as [69]

min
H

J(h) = ||ŷ −Ψh||22 s.t. rank(H) ≤ r (5.9)

The solution to the minimization problem is obtained iteratively using Singular

Value Projection (SVP) algorithm. In SVP algorithm, channel matrix can also be

iteratively updated using Newton’s method called SVP-N and the search direction

is ∇2J(h)−1∇J(h). The optimal step size λi is chosen by minimizing the cost

function J .

λi
N =min

t
{J(hi−1 + t∇2J(h)−1∇J(h))} (5.10)
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Taking the derivative of the cost function and equating to zero the optimal step

size λi
N obtained is

λi
N = t = − ∇J(hi−1)T (2ΨHΨ)−1∇J(hi−1)

((2ΨHΨ)−1∇J(hi−1))T (2ΨHΨ)(2ΨHΨ)−1∇J(hi−1)
(5.11)

simplifying the equation

λi
N = −1 (5.12)

The channel update matrix at ith iteration is given by

h(i+ 1) = h(i) + λi
N∇2J(h)−1∇J(h) (5.13)

substituting the optimal step size and newton search direction, the above equation

simplifies to

h = (ΨHΨ)−1ΨH ŷ (5.14)

Hence, with the Newton search direction, the channel updating equation converges

in one iteration. To get the low rank solution, the updated channel matrix is

projected on to the low-rank matrix constraint set. The projection of the matrix

to the low-rank matrix is done using SVD. Therefore, the SVP-N algorithm gives

the low rank solution in two steps.

Algorithm : Channel Estimator using SVP-N algorithm

1: Input M , K, L, Φ, Ŷ, α, r

2: Ψ = ΦT ⊗ IM

3: h ← (ΨHΨ)−1ΨH ŷ

4: H= unvec(h)

5: [UΣV] = SV D(H)

6: H ← U(:, 1 : r)Σ(1 : r, 1 : r)V(:, 1 : r)H
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Complexity Order: The computational complexity lies in calculation of SVD

of the M × K matrix of rank r is O(M 2r) and matrix-vector multiplication in

step has a complexity of O((ML)(MK)). The total complexity of the SVP-N

algorithm is O(M 2r + (ML)(MK)).

In SVP-N, SVD operation is used only once and hence the error variance will

be more. In SVP algorithm, channel matrix can also be updated using Gradient

decent method (SVP-G) i.e search direction is the gradient of the cost function

∇J(h) = 2ΨH(Ψh− ŷ). The optimal step size λi
G is chosen to minimize the cost

function J is given as

λi
G =min

t
{J(hi−1 + t∇J(hi))} (5.15)

Solving the equation, the optimal step size λi
G obtained is

λi
G = t = − ∇J(hi−1)T∇J(hi−1)

∇J(hi−1)T (2ΨTΨ)∇J(hi−1)
(5.16)

Therefore, the SVP-G algorithm for the channel estimation problem consists of

two steps: (i) channel updating matrix (ii) SVD operation to obtain the low-rank

solution. These two steps solved iteratively are shown below:

Algorithm : Channel Estimator using SVP-G algorithm

1: Input M , K, L, Φ, Ŷ, α, r

2: Initialization: h(1) = 0,Ψ = ΦT ⊗ IM , i = 1.

3: repeat

4: h(i+ 1) ← h(i) + 2λi
GΨ

H(Ψh(i)− ŷ)

5: H(i+1)= unvec(h(i+1))

6: [UΣV] = SV D(H(i+ 1))

7: H(i+ 1) ← U(:, 1 : r)Σ(1 : r, 1 : r)V(:, 1 : r)H
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8: h(i+1)= vec(H(i+1))

9: i = i+1

10: until maximum number of iteration reached

Complexity Order:

The computational complexity lies in calculation of SVD of the M × K ma-

trix of rank r is O(M 2r) and matrix-vector multiplication in step has a com-

plexity of O((ML)(MK)). The total complexity of the SVP-G algorithm is

O(iter(M 2r + (ML)(MK))).

The SVP-G algorithm takes a longer time to converge but gives minimum error

variance compared to SVP-N. Hence in [69], the authors combined the advantage

of SVP-G and SVP-N and proposed SVP-Hybrid (SVP-H) algorithm. In SVP-H,

SVP-N is used in the first iteration to have fast convergence and SVP-G is used

in the rest of the iteration to have minimum error variance compared to SVP-N.

SVP-H algorithm for the channel estimation problem is given below:

Algorithm : Channel Estimator using SVP-H algorithm

1: Input M , K, L, Φ, Ŷ, α, r

2: Initialization: H(1)=rand(K,M), h(1)=vec(H(1))

Hq(1)= SV Dr(H(1)), hq(1)=vec(Hq(1)), i = 1.

3: repeat

4: if i = 1

5: λ(i) = λN(i), d(i) = dN(i)

6: else

7: λ(i) = λG(i), d(i) = dG(i)
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8: end

9: h(i+ 1) ← hq(i) + λ(i)d(i)

10: H(i+1)= unvec(h(i+1))

11: [UΣV] = SV D(H(i+ 1))

12: H(i+ 1) ← U(:, 1 : r)Σ(1 : r, 1 : r)V(:, 1 : r)H

13: hq(i+1)= vec(H(i+1))

14: i = i+1

15: until maximum number of iteration reached

Complexity Order:

The computational complexity lies in calculation of SVD of the M × K ma-

trix of rank r is O(M 2r) and matrix-vector multiplication in step has a com-

plexity of O((ML)(MK)). The total complexity of the SVP-H algorithm is

O(iter(M 2r + (ML)(MK))).

In the algorithm, dN and dG are the search direction for Newton and gradient

method. In all these algorithms the singular value of the estimated channel ma-

trix is equal to the singular value of the original channel matrix plus the singular

value of the noise matrix. Hence at lower SNR, the error variance will be more

compared to the error variance at higher SNR. Therefore, SVP-H gives minimum

error variance only at high SNR. To overcome the above issue, that is to maintain

minimum variance at all SNR, IWSVT algorithm is used and the corresponding

optimization problem is

min
H

||H||w,∗ s.t. ŷ = Ψh (5.17)

In order to speed up the convergence, FIWSVT algorithm is used for non-orthogonal

training sequence. The proposed algorithm for the channel estimation problem is

given below:
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Algorithm : Channel Estimator using FIWSVT algorithm

1: Input M , K, L, Φ, Ŷ, λ, α, r

2: Initialization: Hd(1) = 0,H(1) = 0,Ψ = ΦT ⊗ IM , Wi = I, t1 = 0,

i = 1.

3: repeat

4: A ← Hd(i) + 1
α
vec−1

M,K(Ψ
Hvec(Ŷ − Hd(i)Φ))

5: [UΣV] = SV D(A)

6: Thresholding : Σt = Diag(σi − λwi)

7: H(i) ← U(:, 1 : r)Σt(1 : r, 1 : r)V(:, 1 : r)H

8: ti+1 =
1+
√

1+4t2i
2

9: Hd(i+ 1) = H(i) + ( ti−1
ti+1

)(H(i)− H(i− 1))

10: i ← i+ 1

11: Update Wi

12: until condition satisfied or maximum number of iteration reached

13: Output: Hd

Complexity Order:

The computational complexity lies in calculation of SVD of the M × K ma-

trix of rank r is O(M 2r) and matrix-vector multiplication in step has a com-

plexity of O((ML)(MK)). The total complexity of the FIWSVT algorithm is

O(iter(M 2r + (ML)(MK))).
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5.4 Simulation Results and Discussion

In this section, the WNN channel estimator for FDD system is evaluated based on

the normalized MSE performance index for the nonorthogonal training sequence.

The parameters of the single cell massive MIMO system for simulation is given in

Table.5.1.

Parameters Values

Number of BS Antennas (M) 60

Number of users in a cell (K) 20

Number of scatterers (P ) 10

Rank of the matrix (r) 6

Length of the training data (L) 70

Antenna Spacing (D/λ) 0.3

Table 5.1: System Parameters
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Figure 5.2: Normalized MSE Vs Number of iteration (SNRd=10 dB,

SNRu=15 dB)

86



0 20 40 60 80 100 120 140 160 180 200

Number of iterations (i)

10-2

10-1

100

N
M

S
E

SVP-G

SVP-N

SVP-H

FIWSVT
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Fig.5.2 and 5.3 show the convergence analysis of the algorithm SVP-N, SVP-G,

SVP-H and FIWSVT algorithm for downlink with SNR (SNRd) fixed as 10 dB

and uplink SNR (SNRu) is varied for 15 dB and 20 dB. It is observed from the

figure that FIWSVT algorithm gives minimum NMSE value compared to all other

variants of SVP algorithm. It is noted that FIWSVT algorithm reaches the steady

state error faster than SVP-G. However, SVP-N and SVP-H algorithms converge

faster with high estimation error. As uplink SNR increases, FIWSVT takes more

iteration to reach steady state with minimum NMSE.

Fig.5.4 and 5.5 shows the scenario, where the SNR of the uplink is varied for

10 dB and 20 dB by keeping downlink SNR as 15 dB. Similar trend is observed

in NMSE performance for FIWSVT and SVP variants. SVP-G and FIWSVT

provide minimum NMSE value compared to other two algorithms but takes more

iteration to converge compared to SVP-N and SVP-H. As downlink SNR value

increase, FIWSVT algorithm takes more number of iteration to converge as uplink

SNR value increase which is shown in Fig.5.6, 5.7 and 5.8.

The NMSE performance of FIWSVT and FISVT algorithms for different
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uplink SNR is simulated by fixing the downlink SNR as constant. Fig.5.9 and

Fig.5.10 show NMSE versus uplink SNR for downlink SNR 15 dB and 25 dB

respectively. From the response, FIWSVT shows minimum NMSE compared to

FISVT algorithm for both downlink SNR.

5.5 Summary

In this chapter, downlink FDD channel is modeled as a low-rank channel by con-

sidering most of the clusters are around BS and rich scattering at the user side.

Instead of estimating the downlink channel at the user side, the received pilot

signal of the user is sent back to the BS and downlink channel matrix is estimated

at BS under the assumption that uplink channel matrix is known. The received

pilot signal of the users is estimated using LS method. The downlink channel es-

timation problem is studied for nonorthogonal training sequence using FIWSVT

algorithm when the rank of the matrix is known. The convergence and NMSE

of the FIWSVT algorithm are compared with SVP-G, SVP-N, and SVP-H. It is
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shown through simulation, FIWSVT algorithm has minimum NMSE and faster

convergence at low SNR compared to other algorithms whereas, at high SNR,

it shows minimum NMSE same as SVP-H but with more number of iteration

compared to SVP-H.

92



CHAPTER 6

Conclusion and Future Scope

6.1 Conclusion

The focus of this work was to estimate the finite scattering propagation envi-

ronment for the uplink TDD mode channel. In finite scattering scenario, it was

assumed that the number of scatterers was less than the number of BS antenna

and users. Also, the scatterers were fixed and all users signals were reflected

by the same scatterers. Then their corresponding AoAs for all users were same.

Hence, the correlation among the channel vectors increases which leads to the high

dimensional MIMO channel likely to have the low-rank channel.

The conventional way of estimating the channel was by sending the training

sequences. The LS method estimated the channel matrix without imposing the

low-rank property to the estimated. Hence, the channel estimation problem was

formulated as the rank estimation problem. Since the rank estimation problem

was the nonconvex problem and NP hard to solve, it was formulated as the convex

NNM problem and solved using MM technique. By successive minimization of the

majorizing surrogate function for the given cost function, channel matrix was

estimated iteratively using ISVT algorithm. The main drawback of the ISVT was

penalization of all singular values equally and hence the major information of the

channel matrix associated with the larger singular values was perturbed.

To overcome the drawbacks, WNNM method was proposed in which weight

function includes the prior knowledge of the singular value. By choosing the

weights in an ascending order, the nonconvex problem could be approximated to

the convex optimization problem. The WNNM problem was solved using MM

technique and the corresponding algorithm was IWSVT.

To recover low-rank channel, the proposed algorithm was studied for both or-

thogonal training sequence PRFTM and non-orthogonal training sequence BPSK



modulated data. Using PRFTM, it was proved that the iterative algorithm con-

verges in one iteration and the weights were chosen by minimizing the SURE

unbiased estimator in order to obtain unbiased estimation. The performance of

the algorithm was measured in terms of NMSE, uplink, and downlink average

sum-rate. It was observed that both ISVT and IWSVT algorithm provided same

rank estimation for all SNR level, however, the difference is significant in NMSE

performance (i.e) IWSVT algorithm provide minimum NMSE compared to ISVT

algorithm. The accuracy of the rank estimation algorithm was tested by varying

the number of base station and users in the cell. It was proved through simulation,

as long as the number of scatterers was less in comparison with the number of base

station antenna and user, the exact rank could be estimated.

Non-orthogonal BPSK modulated data was also used to study the performance

of the ISVT and IWSVT algorithm. For non-orthogonal training sequence, itera-

tive algorithm required more iteration to converge. To speed up the convergence

FIWSVT algorithm was proposed for WNNM problem and FISVT algorithm for

NNM problem. Nonconvex weight function was chosen to minimize the mean

square estimation error. Using super gradient property of a concave function,

any nonconvex regularizer function which satisfied smooth property would be con-

verted into weighted nuclear norm problem. The weights for WNNM problem were

chosen as the gradient of the nonconvex regularizer. The algorithm was tested for

Schatten- q norm and entropy function as the two nonconvex regularizer function.

It was shown through simulation that Schatten-q norm regularizer provided min-

imum channel estimation error compared to entropy regularizer. However, both

the regularizer function gave the same rank estimation for all SNR levels. Simi-

larly, the performance of the algorithm was tested by varying the number of BS,

users in the cell and number of fixed scatterers. The results were compared with

the existing LS method, FISVT, and FIWSVT algorithms.

Further, the low-rank channel estimation work was carried out for FDD system,

to show that the proposed method could be applicable to both FDD and TDD

system. In FDD system, downlink channel was assumed to be low rank and uplink

channel as full rank and the estimation of both the channel was done at BS, in

order to reduce the computational burden at the user side. The performance of

the algorithm in FDD system was tested by assuming the rank of the downlink
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channel is known. The convergence rate and the NMSE versus SNR level results

were compared with SVP-G, SVP-N and SVP-H algorithm when the rank of the

matrix was known.

6.2 Scope for Future Work

This thesis has dealt with channel estimation for single cell Massive MIMO system

with no interference from other cells. However, it is necessary to estimate the

channel of a single cell, when the signal from other cells interferes with the signal

of the desired cell. Consider the case, where BS estimate not only the channel

parameters of desired links in a given cell but also, those of the interference links

from adjacent cells. In multi-cell case, it is necessary to study the interference links,

in order to have interference coordination. In such scenarios, BS has to collect

information regarding CSI of both the desired links within the cell and interference

links from its neighboring cells. Under undesirable finite scattering scenario, the

combined channel matrix can be modeled as low-rank matrix. Therefore, the

analysis presented in this work can be extended to a multi-cell scenario.

For non-orthogonal training sequence, presented in this thesis, the algorithm

takes more iteration to converge. In order to speed up the convergence, variable

step size and previous two estimates are included to find the new estimates. How-

ever, this fast algorithm converges faster at low SNR and take more iteration to

converge at high SNR compared to lower SNR. Hence, the existing algorithm can

be improved to provide a minimum number of iteration for convergence, in high

SNR.

In FDD Massive MIMO system, downlink channel is estimated by keeping

the constraint, rank is known. The analysis in FDD system can be extended

for unknown rank also. The number of training sequence used to estimate the

downlink channel is more than the number of BS antenna. Hence, research can

be made to reduce the number of the pilot sequence.

The channel estimation problem discussed in this thesis is for single cell Massive

MIMO system only. The same channel estimation problem can be extended to

multi-cell scenario also. The pilot contamination is one of the issue in multi-
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cell massive MIMO system and is mainly caused by non-orthogonality of pilot

sequences used in adjacent cells. In this case, the estimated channel vector in

any cell is the summation of all the channel vectors of users from the neighboring

cells. As the number of interfering cells increase, the problem exponentially grows

and eventually causes system malfunction. Different methods are suggested in

the literature to solve this problem for non cooperative cellular network. These

methods can be extended further to low rank massive MIMO scenario, which can

be made as a future research work.
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APPENDIX A

A.1 Convex Envelope of Matrix Rank

Theorem A.1.1 [70], [71] On the set S = {X ∈ Rm×n, ||X|| ≤ 1}, the convex

envelope of function φ(X) = rank(X) is

φenv = ||X||∗ =
min{m,n}�

i=1

σi(X) (A.1)

Proof:

A basic result of convex anaysis is that the conjugate of the conjugate function, is

the convex envelope of the function provided some conditions hold.

Step 1: Determine conjugate of the rank function.

According to the definition of the conjugate function

φ∗(Y ) = sup
||X||≤1

(trace(Y TX)− φ(X))

Let q = min{m,n}. According to the Von Neumann trace theorem [72]

trace(Y TX) ≤
q�

i=1

σi(Y )σi(X)

If we let X = UXΣXV
T
X and Y = UYΣY V

T
Y then in the relation above equality

holds when choosing

UX = UY VX = VY

Function φ(X) = rank(X) is independent of UX , VX . Consider UX = UY , VX = VY

and then Von Neumann trace theorem can be applied. Thus the conjugate function



of the matrix rank can be expressed as

φ∗(Y ) = sup
||X||≤1

(

q�

i=1

σi(Y )σi(X)− rank(X))

For the particular case when rank(X) = r, the convex conjugate is given by

φ∗(Y ) =
r�

i=1

σi(Y )− r

Therefore the conjugate of the matrix rank function is expressed as

φ∗(Y ) = max{0, σ1(Y )− 1, · · · ,
r�

i=1

σi(Y )− r, · · · ,
q�

i=1

σi(Y )− q}

In the set above the largest term is the one that sums all positive terms σi(Y )−1.

Therefore

φ∗(Y ) = 0 if ||Y || ≤ 1,

φ∗(Y ) = σi(Y )− r ifσr(Y ) > 1 and σr+1(Y ) ≤ 1

or

φ∗(Y ) =

q�

i=1

(σi(Y )− 1)+

Step 2: Determine conjugate of the conjugate of rank function

To determine the biconjugate function, applying again the definition

φ∗∗(Z) = sup
||Y ||≤1

(trace(ZTY )− φ∗(Y ))

choosing UY = UZ , VY = VZ and the biconjugate function is

φ∗∗(Z) = sup
||Y ||≤1

(

q�

i=1

σi(Z)σi(Y )− φ∗(Y ))

φ∗∗(Z) = sup
||Y ||≤1

(

q�

i=1

σi(Z)σi(Y )− (σi(Y )− r))

Let ||Z|| ≤ 1, if ||Y || ≤ 1 then φ∗(Y ) = 0 and the supremum is

φ∗∗(Z) =
q�

i=1

σi(Z) = ||Z||∗
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If ||Y || > 1 then the expression can be re-written as:

φ∗∗(Z) =
q�

i=1

σi(Y )σi(Z)−
r�

i=1

(σi(Y )− 1)

Adding and subtracting the term
q�

i=1

σi(Z) and grouping the terms

φ∗∗(Z) =
q�

i=1

σi(Y )σi(Z)−
r�

i=1

(σi(Y )− 1)−
q�

i=1

σi(Z) +

q�

i=1

σi(Z)

φ∗∗(Z) =
r�

i=1

(σi(Y )− 1)(σi(Z)− 1) +

q�

i=r+1

(σi(Y )− 1)σi(Z) +

q�

i=1

σi(Z)

which leads to

φ∗∗(Z) <
q�

i=1

σi(Z)

Therefore

φ∗∗(Z) = ||Z||∗

over the set {Z; ||Z|| ≤ 1}. Thus, over this set, ||Z||∗ is the convex envelope of

the function rank(Z).
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