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ABSTRACT

In the thesis, we study controllability of linear systems with fuzzy initial con-

ditions and fuzzy inputs. Before establishing the controllability results for the fuzzy

dynamical systems, we will first investigate the behavior of solutions of a general non-

linear system of ordinary differential equations with fuzzy initial conditions and fuzzy

inputs. Although various approaches are suggested in the literature for the evolution of

solution to fuzzy differential equations, we investigate controllability results by using

the levelwise approach and differential inclusion approach. We also investigate con-

trollability of nonlinearly perturbed matrix Lyapunov systems and impulsive semilinear

matrix Lyapunov systems by using the tools of operator theory and nonlinear functional

analysis.

The research work is mainly divided in to three parts. In the first part, we in-

vestigate the behavior of the solutions of fuzzy differential equations obtained by fuzzi-

fication of nonlinear ODEs with fuzzy initial conditions and fuzzy inputs. We consider

the following n-dimensional nonlinear ordinary differential equations with fuzzy initial

conditions and fuzzy inputs of the form

ẋ(t) = f(t, x(t), u(t)), x(t0) = X0, t ≥ t0 ≥ 0, (1)

where f : R+ ×Rn ×Rm → Rn is a nonlinear function which is measurable in t and is

continuous in x and u, X0 ∈ (E1)n and the fuzzy input u(t) ∈ (E1)m. In our analysis,

we employ the tools of levelwise approach of solving fuzzy differential equations along

with some of the results from real analysis. We have shown that the solutions of systems

of type (1) are described by a system of 2n-ordinary differential equations with crisp

initial conditions and crisp inputs corresponding to the end points of the alpha cuts of

fuzzy states.

We also consider a particular case of the systems of type (1), that is, linear

time-varying dynamical systems with fuzzy initial conditions and fuzzy inputs of the
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form 



ẋ(t) = A(t)x(t) + B(t)u(t)

x(t0) = X0, t ≥ t0 ≥ 0,

(2)

where A(·) ∈ C([t0, t1]; Rn×n), B(·) ∈ C([t0, t1]; Rn×m), X0 ∈ (E1)n = E1 × . . . × E1

� �� �
n−times

and the input u(t) ∈ (E1)m for each t ∈ [t0, t1](t1 > t0). Here we use a complex num-

ber representation of the α-level sets of the fuzzy states to characterize the solutions of

such systems by a closed form formula involving the transition matrix which could be

easily used in practical computations. We will use Peano-Baker type of series to obtain

the transition matrix for the system (2).

We, further, consider fuzzy initial value problem of the type

ẋ(t) = f(t, x(t)), x(t0) = x0 ∈ (E1)n, t1 ≥ t ≥ t0, (3)

where f : T = [t0, t1]× (E1)n → (E1)n is continuous, t0 ∈ R+. We study the existence

and uniqueness of the solution of system (3).

The second part of the thesis deals with the problems on controllability of

linear fuzzy differential dynamical systems. Here, we first consider the following linear

time invariant systems with fuzzy initial condition





ẋ(t) = Ax(t) + Bu(t)

x(t0) = X0, t1 ≥ t ≥ t0,
(4)

where A, B are real matrices of size n×n, n×m, respectively and t0 ∈ R+. The initial

state X0 ∈ (E1)n and the control u(t) ∈ (E1)m.

We study controllability of the system (4) by using the levelwise approach of evo-

lution of solutions to system (4). In controllability, one looks for a fuzzy control u(t)

during time-interval [t0, t1] such that the system can be steered exactly to a desired tar-

get fuzzy state X1 at time t1. That is, the solution of system (4) with the appropriate

fuzzy control u(t) during time interval [t0, t1] satisfies x(t1) = X1, where X1 is the

desired fuzzy state at time t1. We establish some sufficient conditions for the controlla-

bility of the system (4). We also provide a closed form representation for the steering

control when the matrices A and B have non-negative entries. Furthermore, we intro-
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duce the concept of ‘fuzzy-controllability’, a concept weaker than controllability, and

establish sufficient conditions for the fuzzy dynamical systems of type (4) to be fuzzy-

controllable. In fuzzy-controllability, one looks for a fuzzy-controller u(·) that can steer

the system-state within the desired target state X1 at time t1. More precisely, solution of

system (4) with the fuzzy control u(t) during time-interval [t0, t1] satisfies x(t1) ≤ X1,

where X1 is the desired fuzzy state at time t1. In our work, we provide a computational

procedure to obtain the fuzzy-controllable initial states that can be steered to within a

desired target fuzzy state X1 with some suitable control.

So far in our controllability analysis, we have employed the levelwise approach

of the evolution of solutions of fuzzy differential equations in order to establish control-

lability results. We will now establish controllability results by using the differential

inclusion approach. We consider the following time-varying systems of the form

ẋ(t) = A(t)x(t) + B(t)U(t)

x(0) = x0 ∈ Rn, T ≥ t ≥ 0, (5)

in which A(t), B(t) are n×n, n×m continuous matrices, respectively. We assume that

the control u(t) ∈ (E1)m and the state x(t) for t > 0 belong to (E1)n. Controllability of

similar systems has been studied by other authors with an assumption of the invertibility

of the matrix B(t); while we obtain controllability results with a general non-invertible

matrix B(t). It is observed in our analysis that the system (5) may not be controllable

on the whole space (E1)n, instead controllability is established on a subset En
0 of (E1)n.

This motivates us to introduce a concept of quasi-controllability, a weaker concept than

controllability. We characterize the quasi-controllable subset En
0 of (E1)n and establish

sufficient conditions for quasi-controllability of system (5).

The third part of the thesis deals with the controllability analysis of the semi-

linear matrix Lyapunov systems and semilinear impulsive matrix Lyapunov systems.

We use techniques from operator theory and nonlinear functional analysis to establish

the complete controllability results for such systems. We study the controllability of

nonlinear matrix Lyapunov systems represented by:

Ẋ(t) = A(t)X(t) + X(t)B(t) + F (t)U(t) + G(t,X(t)), (6)
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where X(t) is an n × n real matrix called state matrix, U(t) is an m × n real matrix

called control matrix and G(·, ·) : R+ × Rn×n → Rn×n is a nonlinear function. A(t),

B(t), F (t) are n × n, n × n and n × m real matrices, respectively. All of them are

assumed to be piecewise continuous functions of t in [t0, t1](0 ≤ t0 < t1 < ∞).

Furthermore, entries in the state matrix X(t) and the control matrix U(t) belong to

L2([t0, t1], R). The function G satisfies the ‘Caratheodory conditions’; that is, G(·, x) is

measurable with respect to t for all x ∈ Rn×n and G(t, ·) is continuous with respect to

x for almost all t ∈ [t0, t1]. We establish our results under the assumption that nonlinear

term G(t, X(t)) satisfies Lipschitz condition or monotonicity condition.

We also obtain sufficient conditions for the complete controllability of the

following matrix Lyapunov systems with impulse effects





Ẋ(t) = A(t)X(t) + X(t)B(t) + F (t)U(t) + G(t, X(t)), t �= tk, t ∈ [t0, T ]

X(t+k ) = [In + DkU(tk)]X(tk), k = 1, 2, . . . , ρ

X(t0) = X0,

(7)

where the state X(t) is an n × n real matrix, control U(t) is an m × n real matrix.

A(t), B(t), F (t) are n × n, n × n, n × m real matrices with piecewise continuous en-

tries in time interval [t0, T ] and 0 ≤ t0 ≤ t1 ≤ t2 . . . ≤ tρ ≤ T are the time points at

which impulse control U(tk) is given to the system. For each k = 1, 2, . . . , ρ, DkU(tk)

is an n × n diagonal matrix such that DkU(tk) =
�m

i=1

�n
j=1 dk

ijUij(tk)In, where In

is the identity matrix on Rn and dk
ij ∈ R. G(·, ·) : R+ × Rn×n → Rn×n is a nonlinear

function and satisfies the ‘Caratheodory conditions’.

Controllability of special cases of system (6) and system (7) has been studied

by several authors in the literature. However, our results are more general, applica-

ble to a much wider class of systems and extend some of the existing results on the

controllability of matrix Lyapunov systems and impulsive dynamical systems.
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CHAPTER 1

Introduction

1.1 General Introduction

Study of many of the real life systems in science and engineering domains are con-

trol theoretic in nature. In linear and nonlinear system theory, the problems related to

controllability are always of the fundamental interest. Controllability analysis of such

systems are essential in designing system parameters, computation of steering control,

optimal control, etc (cf. Zabczyk (2008)). Though the controllability of the linear sys-

tems has been well investigated in the literature, controllability of the nonlinear systems

is still one of the thriving and challenging area in the applied mathematics. Many au-

thors have investigated the controllability of nonlinear systems, for example, George

(1995), Hirschorn (1975), Joshi and George (1989) and many other authors. Further-

more, controllability of systems with uncertain or fuzzy parameters is relatively newer

in the literature, for example, Ding and Kandel (2000a,b), Feng and Hu (2006) and

Kwun et al. (2008) etc. Usually fuzziness or uncertainty may exist in the system due to

the lack of precise measurements of parameters or sometimes due to the nature of the

system.

Fuzzy sets and fuzzy systems theory have got tremendous applications in many of

the real world problems including modelling and control of physical systems, designing

knowledge based systems, intelligent systems etc. Starting right from the seminal work

on fuzzy sets by Zadeh (1965), there is abundant literature on theoretical investigations

on fuzzy systems theory and its practical applications. Specially the area of fuzzy dif-

ferential equations has been enormously grown starting from its formal induction in to

literature by Kandel and Byatt (1980). It is worthwhile to note that various approaches

are proposed in the literature to define the solutions of fuzzy differential equations de-

pending on the notion of the derivative involved in the equation, namely, Hukuhara

or H-differentiability approach (cf. Puri and Ralescu (1983)), levelwise approach (cf.



Seikkala (1987)), differential inclusion approach (cf. Hüllermeier (1997), Ding and

Kandel (2000a)), extension principle approach Buckley and Feuring (2000) and many

others. Recently, Bede and Stefanini (2013) introduced the notion of generalized dif-

ferentiability of fuzzy-valued functions (g-differentiability) by using the generalization

of Hukuhara differences (gH-difference).

In our work, we mainly study controllability of the linear dynamical systems with

fuzzy initial conditions and fuzzy inputs from the aspect of levelwise approach due to

Seikkala (1987) and differential inclusion approach as in Ding and Kandel (2000a).

We also investigate the behavior of solutions of fuzzy differential equations as they are

essential for establishing the controllability results for fuzzy dynamical systems.

In our work, we will also investigate the complete controllability of nonlinear matrix

Lyapunov systems and impulsive matrix Lyapunov systems. Matrix Lyapunov systems

are regarded as the generalizations to usual dynamical systems and find applications in

many engineering domains. Recently, Murty et al. (2006) have studied the complete

controllability of linear matrix Lyapunov systems, also some stability property for the

linear matrix Lyapunov systems is investigated in Murty and Kumar (2008b). Their

results motivate the study of controllability of nonlinear matrix Lyapunov systems.

Furthermore, we will establish complete controllability of impulsive matrix Lya-

punov systems both linear and nonlinear. Impulsive systems have been proved very

effective in modelling of the physical systems that are subject to sudden changes in

control or state at discrete time points. Many evolutionary processes, for instance, some

motions of aircrafts and satellites, system models in economics, frequency modulated

systems and bursting rhythm models in biology are impulsive in nature. We establish

various sufficient conditions for the controllability of impulsive matrix Lyapunov sys-

tems both linear and semilinear.
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Thus, the main objectives of the thesis is to investigate the following problems :

Problem 1: Investigation of the evolution of solution to system of linear and nonlinear ordi-

nary differential equations with fuzzy initial conditions and fuzzy inputs.

Problem 2: Investigation of the controllability property of linear systems with fuzzy initial

conditions and fuzzy inputs. We establish our results by using both levelwise

approach and differential inclusion approach.

Problem 3: Controllability study of semilinear matrix Lyapunov systems .

Problem 4: Controllability study of impulsive matrix Lyapunov systems, both linear and

semilinear.

We shall now briefly describe each of the problems. We consider an n-dimensional

nonlinear system of ordinary differential equations with fuzzy initial conditions and

fuzzy inputs

ẋ(t) = f(t, x(t), u(t)), x(t0) = X0, t ≥ t0 ≥ 0, (1.1)

where f : R+ ×Rn ×Rm → Rn is a nonlinear function which is measurable in t and is

continuous in x and u. The fuzzy initial condition X0 is an n-vector of fuzzy numbers

on R, and the fuzzy input u(t) is an m-vector of fuzzy numbers on R. By using the

Zadeh’s extension principle, we prove that the evolution of system (1.1) is described by

a system of 2n-ordinary differential equations corresponding to the end points of the

α-cuts of x.

We also consider a special case of the system (1.1) of the type





ẋ(t) = A(t)x(t) + B(t)u(t)

x(t0) = X0, t1 ≥ t ≥ t0,

(1.2)

where A(·) ∈ C([t0, t1]; Rn×n), B(·) ∈ C([t0, t1]; Rn×m), X0 ∈ (E1)n = E1 × . . . × E1

� �� �
n−times

,

t0 ∈ R+, the input u(t) ∈ (E1)m for each t ∈ [t0, t1](t1 > t0), moreover u(·) is assumed

to be integrable in [t0, t1]. We discuss the existence and uniqueness of system (1.2). We

use a complex number representation of the α-level sets of the fuzzy states and a gen-

eralization to Peano-Baker series to obtain the transition matrix in order to characterize

3



the solutions of such systems by a closed form formula which could be easily used in

practical computations. Xu et al. (2007) have also used such closed form representation

of solutions by using complex number representation of α-cuts of fuzzy states for time

invariant systems of type (1.2), thats is, A(t) = A and B(t) = B in Eq. (1.2).

In the investigation of controllability property of fuzzy dynamical systems, we

mainly focus on the time invariant systems of the form





ẋ(t) = Ax(t) + Bu(t)

x(t0) = X0, t ≥ t0 ≥ 0,
(1.3)

where A, B are real matrices of size n × n, n × m, respectively. The initial state

X0 ∈ (E1)n (hence x(t) ∈ (E1)n)and the control u(t) ∈ (E1)m. Although the analysis

of controllability of various fuzzy systems, namely, T-S fuzzy system, (cf. Biglarbe-

gian et al. (2012), Chen et al. (2009) and references their in), fuzzy logic systems (cf.

Gupta et al. (1986), Farinwata and Vachtsevanos (1993)) has been long standing in the

literature, there is relatively a modest attempt towards the analysis of controllability of

fuzzy dynamical system from the aspect of fuzzy differential equation. For our pur-

pose, we refer to Ding and Kandel (2000a,b), Feng and Hu (2006), Murty and Kumar

(2008a), Kwun et al. (2009, 2008). In our work, we establish sufficient conditions for

the controllability of system (1.3). In controllability, one looks for a fuzzy control in-

put u(t) ∈ (E1)m such that given a desired target fuzzy state X1 at time t1 solution

of system (1.3) satisfies x(t1) = X1. In our analysis, we found that the property of

controllability for the fuzzy systems of type (1.3) is stronger than the controllability

property for the crisp systems, that is, system (1.3) with crisp initial condition. It has

also been observed that not all state in (E1)n are reachable from the given initial state

X0 ∈ (E1)n even if the pair (A,B) is controllable. Thus, we provide a characterization

of reachable states from the given initial state X0 ∈ (E1)n and computation of steering

control that steers an initial fuzzy state X0 ∈ (E1)n to a desired target state X1 ∈ (E1)n.

We also introduce the concept of fuzzy-controllability, a concept weaker than con-

trollability, and establish sufficient conditions for the system (1.3) to be fuzzy-controllable.

The problem which we deal with fuzzy-controllability is as follows. Let x0 and x1 be

two crisp vectors in Rn and X1 ∈ (E1)n be the fuzzy state at time t1 around x1, then

4



find out an initial fuzzy state X0 at t0 around x0 and some suitable fuzzy control inputs

such that the solution of system (1.3) at t1 satisfies x(t1) ≤ X1. Note that we do not re-

quire exact equality between propagated system state at time t1 and desired target state

X1, instead we want the the system state at time t1 to be restricted within X1. Roughly

speaking, as also desired in many practical systems, we do not want the system state

to be controlled to a precise point in the state space so long as minimal requirement is

satisfied. For example, in the game of basketball, where the player’s primary interest is

to throw the ball in the basket from the base line. Player is not quite interested whether

the center of the ball coincides with that of basket while passing through it. Here the

position of ball from center of the basket form the target fuzzy set, thus the problem is to

find initial membership grade around the baseline and some fuzzy control input so that

the ball can be placed in the basket. Similar situations can occur in other applications

like, air conditioning system, biological systems, satellite injection in an orbit and orbit

manoeuvering of satellites, etc.

We will also investigate controllability of the following time-varying fuzzy dynamic

control systems of the form





ẋ(t) = A(t)x(t) + B(t)u(t)

x(0) = x0 ∈ Rn, T ≥ t ≥ 0,
(1.4)

where A(·) ∈ C([0, T ]; Rn×n), B(·) ∈ C([0, T ]; Rn×m), and the control u(t) ∈ (E1)m.

Ding and Kandel (2000a) investigated the controllability of system (1.4) with B(·) ∈
C([0, T ]; Rn×n). Moreover they have assumed the invertibility of the matrix B(t),

which is quite strong assumption and can not be often met in practical systems. There-

fore, we establish our results on controllability for a general matrix B(t) of size n×m.

In our analysis, we have observed when B(t) is of size n × m complete controllabil-

ity can not be guaranteed, that is, it may not be possible to control any arbitrary state

X ∈ (E1)n from the initial state x0. Thus, we characterize En
0 , a subset of (E1)n, called

the set of all admissible controllable states in (E1)n.

Now we shall describe our problems dealing with the controllability of nonlinear

matrix Lyapunov systems and impulsive matrix Lyapunov systems. First, we investigate
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the controllability of nonlinear matrix Lyapunov systems represented by:

Ẋ(t) = A(t)X(t) + X(t)B(t) + F (t)U(t) + G(t,X(t)), (1.5)

where X(t) is an n×n real matrix called state matrix, U(t) is an m×n real matrix called

control matrix and G(·, ·) : R+ × Rn×n → Rn×n is a nonlinear function. A(t), B(t),

F (t) are n×n, n×n and n×m real matrices respectively. All of them are assumed to

be piecewise continuous function of t in [t0, t1](t0 < t1 < ∞). Furthermore, entries in

the state matrix X(t) and the control matrix U(t) belong to L2([t0, t1], R). The function

G satisfies the ‘Caratheodory conditions’; that is, G(·, x) is measurable with respect to

t for all x ∈ Rn×n and G(t, ·) is continuous with respect to x for almost all t ∈ [t0, t1].

Recently, Murty et al. (2006) have studied the controllability of linear matrix Lya-

punov systems, that is, the system (1.5) with G(t, x) = 0. Furthermore, if G(t, x) ≡ 0

and B(t) ≡ 0 then the system (1.5) reduces to linear time-varying control system whose

controllability is well established in the literature, for example, Barnett and Cameron

(1975), Sontag (1998). We establish many sufficient conditions for the complete con-

trollability of system (1.5) by using the tools of operator theory, nonlinear functional

analysis and fixed point theorems. In our analysis we assume that nonlinear function G

either satisfies Lipschitz condition or monotonicity condition.

We will also investigate complete controllability of the following matrix Lyapunov

systems with impulse effects





Ẋ(t) = A(t)X(t) + X(t)B(t) + F (t)U(t) + G(t, X(t)), t �= tk, t ∈ [t0, T ]

X(t+k ) = [In + DkU(tk)]X(tk), k = 1, 2, . . . , ρ

X(t0) = X0,

(1.6)

where the state X(t) is an n × n real matrix, control U(t) is an m × n real matrix.

A(t), B(t), F (t) are n × n, n × n, n × m real matrices with piecewise continuous

entries and t0 ≤ t1 ≤ t2 . . . ≤ tρ ≤ T are the time points at which impulse control

U(tk) is given to the system. For each k = 1, 2, . . . , ρ, DkU(tk) is an n × n diagonal

matrix such that DkU(tk) =
�m

i=1

�n
j=1 dk

ijUij(tk)In, where In is the identity matrix

6



on Rn and dk
ij ∈ R. G(·, ·) : R+ × Rn×n → Rn×n is a nonlinear function and satisfies

the ‘Caratheodory conditions’. The control U(t) is said to be impulsive if at t = tk, k =

1, 2, . . . , ρ, the pulses are regulated and chosen arbitrarily in rest of the domain.

Indeed, the controllability of many special cases of system (1.6) has been studied in

the literature. For example, if B(t) = 0 and G(t, x) = 0 hold along with DkU(tk) = 0

for k = 1, 2, . . . , ρ, then the system (1.6) reduces to linear time-varying control system

whose controllability is well established in the literature, for example, Russell (1979),

Zabczyk (2008). Leela et al. (1993) studied the controllability of a special case of (1.6),

that is, when B(t) = 0, G(t, x) = 0, and A(t), F (t) are constant matrices. Also, George

et al. (2000), established complete controllability of a special case of system (1.6) with

B(t) = 0.

Murty et al. (2006) investigated the controllability of linear non-impulsive matrix

Lypunov systems, that is, system (1.6) with G = 0 and without impulses. Furthermore,

in Dubey and George (2013b) complete controllability of semilinear non-impulsive ma-

trix Lyapunov systems is established.

In our work, first we obtain sufficient conditions for the complete controllability of

linear IMLS, that is, system (1.6) with G = 0. We, then, establish complete controlla-

bility of semilinear IMLS, that is, system (1.6) itself. In our analysis, we assume that

nonlinearities G are either Lipschitzian or monotone.

1.2 Thesis Outline

We provide necessary concepts of control systems theory, fuzzy sets and fuzzy system

theory in Chapter 2.

Chapter 3 deals with the study of qualitative behavior of the solutions of a system of

nonlinear ordinary differential equations with fuzzy initial conditions and fuzzy inputs

by using the tools of levelwise apporach. Our results generalize some of the results in

the literature, namely, Kaleva (1987), Seikkala (1987), Xu et al. (2007). As a particular

case, for the linear systems with fuzzy initial conditions and fuzzy inputs, we provide

a closed form representation for the solutions of such systems. We also study the dif-
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ferentiability and integrability properties of fuzzy vector-valued functions whose values

are n-dimensional vectors of fuzzy numbers on R. We establish sufficient conditions for

the existence and uniqueness of a solution to a system of fuzzy differential equations

in which derivative is given by such functions. We provide examples to illustrate our

results.

In Chapter 4, we study controllability property for the linear systems with fuzzy ini-

tial conditions and fuzzy inputs. We establish sufficient conditions for the system to be

controllable. We study controllability under both, the levelwise approach of evolution

of solutions of underlying systems as in Seikkala (1987) and the differential inclusion

approach as in Ding and Kandel (2000a). We obtain many new results on the inves-

tigation of controllability property via levelwise approach; our results generalize and

extend some of the results in Feng and Hu (2006).We also introduce a concept of fuzzy-

controllability, a concept weaker than controllability, for the linear fuzzy systems and

provide a computational procedure for the estimation of fuzzy-controllable initial states.

Few examples are provided to substantiate the results obtained.

Our results on the controllability via differential inclusion approach are the exten-

sion of the controllability results due to Ding and Kandel (2000a,b). In particular, we

weakened the assumption of invertibility of the input-to-state matrix B(t) assumed in

Ding and Kandel (2000a).

Chapter 5 deals with the controllability analysis of nonlinear matrix Lyapunov sys-

tems. We discuss mainly the controllability of semilinear matrix Lyapunov systems

with two types of nonlinearities - Lipschitzian and monotone. We establish sufficient

conditions for the complete controllability of the nonlinear matrix Lyapunov systems

under both Lipschitzian and monotone nonlinearities. An examples is also provided to

illustrate the results obtained.

In Chapter 6, we investigate complete controllability of linear and nonlinear im-

pulsive matrix Lyapunov systems. First, we establish the complete controllability of

linear impulsive matrix Lyapunov systems. We, then, consider the semilinear impulsive

matrix Lyapunov systems with both Lipschitzian and monotone nonlinearities. Many

sufficient conditions are obtained for the semilinear impulsive matrix Lyapunov systems
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to be controllable. Examples are given to illustrate the results.
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CHAPTER 2

Preliminaries

2.1 Basics of Control Theory

In our investigation, the controllability properties of various systems, namely, fuzzy dy-

namical systems, nonlinear matrix Lyapunov Systems and impulsive matrix Lyapunov

systems depend more on the properties of the following linear system represented by

the equation 



ẋ(t) = A(t)x(t) + B(t)u(t)

x(t0) = x0 ∈ Rn, t ≥ t0 ≥ 0,

(2.1)

where A(·) ∈ C([t0, t1]; Rn×n) and B(·) ∈ C([t0, t1]; Rn×m), t1 > t0. The matrix A(t)

is sometimes called the plant matrix and the matrix B(t) is called the control matrix. For

each t ∈ [t0, t1], x(t) ∈ Rn is called the state of the system and u(·) ∈ L2([t0, t1]; Rm)

is called the input or the control function for the system. If the matrices A(t) and

B(t) are matrices with constant entries then system (2.1) is called linear time-invariant

dynamical system. The unique solution of the system (2.1) is given by the following

equation(cf. Szidarovszky (1998)) :

x(t) = Φ(t, t0)x0 +

� t

t0

Φ(t, τ)B(τ)u(τ)dτ, (2.2)

where Φ(t, τ) is the transition matrix for the homogeneous system ẋ = A(t)x.

Definition 2.1.1. (Transition Matrix) The transition matrix Φ(t, τ) for the system (2.1)

is regarded as the unique solution of following matrix differential equation :

Ẋ(t) = A(t)X(t), X(τ) = In,

where In is the n × n identity matrix.



The transition matrix provides a transition of the system states; in other words future

states are directly computed using the transition matrix. That is, the unique solution of

the system ẋ = A(t)x, x(t0) = x0, is given by

x(t) = Φ(t, t0)x0. (2.3)

Φ(t, t0) is also expressed by the following Piano-Baker series :

Φ(t, t0) = In +

� t

t0

A(τ)dτ +

� t

t0

A(τ)

� τ

t0

A(s)dsdτ+

� t

t0

A(τ)

� τ

t0

A(s)

� s

t0

A(w)dwdsdτ . . . .

Transition matrix satisfies the following important properties (cf. Szidarovszky (1998)) :

1. Φ(t, t) = I.

2. Φ(t, τ)Φ(τ, s) = Φ(t, s).

3. Φ(t, τ)−1 = Φ(τ, t).

4. ∂
∂t

Φ(t, τ) = A(t)Φ(t, τ).

5. ∂
∂τ

Φ(t, τ) = −Φ(t, τ)A(τ).

We will now define the controllability for the system (2.1). Although there are vari-

ous equivalent definition for the controllability of the system (2.1), our definition is as

follows (refer to Szidarovszky (1998), Russell (1979)).

Definition 2.1.2. (Controllability) The system (2.1) is said to be controllable to a state

x1 ∈ Rn at time t1(> t0) if there exists a control u(·) ∈ L2([t0, t1]; Rm) such that the

solution of system (2.1) also satisfies x(t1) = X1. That is,

x1 = Φ(t1, t0)x0 +

� t1

t0

Φ(t1, τ)B(τ)u(τ)dτ.

Remark 2.1.3. If the initial state x0 at t0 and desired target state x1 at t1 are chosen

arbitrarily in Rn then the system is called completely or globally controllable during
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time-interval [t0, t1]. If x0 and x1 are required only to belong to a subset D ⊂ Rn, then

the resulting controllability is called local controllability.

Now we will provide characterization of complete controllability of system (2.1).

Define an operator C : L2([t0, t1]; Rm) → Rn by

Cu =

� t1

t0

Φ(t1, τ)B(τ)u(τ)dτ.

It is clear that the system (2.1) is completely controllable if and only if the operator C
(called control operator) is surjective.

Let C∗ : Rn → L2([t0, t1], Rm) denote the adjoint of C and is defined by

(C∗x)(t) = BT (t)ΦT (t1, t)x, x ∈ Rn.

It can be easily shown that the operator C is onto iff the operator CC∗ is onto. The

operator CC∗ is also called controllability Grammian W (t0, t1) and is defined by :

CC∗ = W (t0, t1) =

� t1

t0

Φ(t1, τ)B(τ)BT (τ)ΦT (t1, τ)dτ.

The above discussion can be summarized in the form of following important theorem.

Theorem 2.1.4. The following statements are equivalent :

(i) System (2.1) is completely controllable.

(ii) C is surjective.

(iii) C∗ is injective.

(iv) CC∗ is surjective.

If W (t0, t1) is invertible, then it can be easily shown that the control given by

C∗(CC∗ )−1(x1−Φ(t1, t0)x0) steers the system from initial state x0 at time t0 to a desired

state x1 at time t1. More precisely the control u0(t), t ≥ t0, defined by

u0(t) = BT (t)ΦT (t1, t)W
−1(t0, t1)(x1 − Φ(t1, t0)x0) (2.4)
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steers the system state from x0 to x1 during time interval [t0, t1].

Furthermore, it can be shown that the steering control u0(t) is an optimal control.

The following theorem depicts this fact.

Theorem 2.1.5. (Minimum norm control) The control function u0(·) as defined in Eq.

(2.4) has minimum L2 norm (energy) among all possible controls u ∈ L2([t0, t1]; Rm)

steering the system state x0 to x1 during time interval [t0, t1].

Although invertibility of controllability Grammian is necessary and sufficient con-

dition for the system (2.1) to be completely controllable, it is not computationally effi-

cient. However, for time invariant systems of the form





ẋ(t) = Ax(t) + Bu(t)

x(t0) = x0 ∈ Rn, t ≥ t0 ≥ 0,

(2.5)

we have the following simple characterization of controllability.

Theorem 2.1.6. The following statements are equivalent.

1. The system (2.5) is completely controllable.

2. (Kalman rank condition)

rank([B AB A2B . . . An−1B]) = n.

3. No eigenvector of AT lies in the kernal of BT .

4. (PBH Test) rank[A-λI B] = n for every eigenvalue λ of A.

2.2 Basics of Fuzzy Sets and Systems

The following definition of fuzzy sets is due to Zimmermann (2001).

Definition 2.2.1. If X is a collection of objects denoted generically by x, then a fuzzy

set A in X is a set of ordered pairs A = {(x, µA(x)) |x ∈ X}, where µA : X → [0, 1]
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is called the membership function and µA(x) is called the grade of membership of x in

A. For the sake of convenience, we use the notation A(x) to denote µA(x).

Definition 2.2.2. Let A be a fuzzy set defined on the universe X . For α ∈ (0, 1], the

α−cut or α−level set of A, denoted by Aα or [A]α, is defined as Aα = {x ∈ X : A(x) ≥
α}. For α = 0, the 0-cut of A is defined as the closure of the union of all non-zero α-cuts

of A. That is,

A0 =
�

α∈(0,1]

Aα.

Definition 2.2.3. (Zadeh (1965)) A fuzzy set A defined on Rn is convex if and only if

the sets Aα as defined above are convex for all α in interval (0, 1].

An alternative and more direct definition of the convexity is the following :

Definition 2.2.4. A fuzzy set A defined on Rn is convex if and only if

A(λx1 + (1 − λ)x2) ≥ min(A(x1), A(x2)),

for all x1, x2 ∈ Rn and λ ∈ [0, 1]. Note that it is assumed that A(x) = 0 for x ∈ Rn\A0

in case if A is defined only on a proper subset of Rn.

It is to be noted that the above definition does not imply that A(x) must be a convex

function of x.

Definition 2.2.5. Let {Ai}i∈Λ be a family of fuzzy sets on X , where Λ is any arbitrary

index set. Then the fuzzy union of {Ai} is denoted by the fuzzy set
�

i∈Λ Ai and is defined

as follows:
� �

i∈Λ

Ai

�
(x) = sup{Ai(x)}, x ∈ X.

Fuzzy intersection of {Ai} is denoted by
�

i∈Λ Ai or
�

i∈ΛAi and defined as follows:

� �

i∈Λ

Ai

�
(x) = inf{Ai(x)}, x ∈ X.

Every fuzzy set can be uniquely represented in terms of its α−cuts. The following

decomposition theorem of fuzzy sets supports this fact.
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Theorem 2.2.6. Let X be an arbitrary set. Then for every A ∈ F(X), the set of all

fuzzy sets on X , we have A =
�

α∈[0,1]
αA, in which

�
denotes the standard fuzzy union

and for α ∈ [0, 1], the fuzzy sets αA are defined by :

αA(x) =





α if x ∈ Aα

0 if x ∈ X \ Aα.
(2.6)

(For proof, refer to Klir and Yuan (1995))

We shall now define fuzzy numbers, a special type of fuzzy sets on R.

Definition 2.2.7. By a fuzzy number on R, we mean a mapping µ : R → [0, 1] with the

following properties :

(i) µ is upper semi-continuous.

(ii) µ is fuzzy convex, that is, µ(λx + (1 − λ)y) ≥ min(µ(x), µ(y)) for all x, y ∈ R

and λ ∈ [0, 1].

(iii) µ is normal, that is, there exists x0 ∈ R such that µ(x0) = 1.

(iv) Closure of the support of µ is compact, that is, cl{x ∈ R : µ(x) > 0} is compact

in R.

Remark 2.2.8. Let E (or E1) denote the set of all fuzzy numbers on R. R is embedded

E . It follows easily from the fact that ∀c ∈ R, the mapping c → ĉ from R into E is

injective, where ĉ ∈ E is defined by

ĉ(x) =





1 if x=c

0 if x �= c.

It can be easily shown that for every µ ∈ E, for α ∈ [0, 1], the α-level set of µ

is closed and bounded interval which is denoted by [µ]α = [µα, µα], where µα, µα are

lower and upper α−cuts of µ, respectively.

A fuzzy number µ in E in its parametric form is represented by (µα, µα, α). The
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following lemma due to Goetschel Jr and Voxman (1986) provides a characterization of

fuzzy numbers on R.

Lemma 2.2.9. (Goetschel Jr and Voxman (1986)) Assume that I = [0, 1], and a : I →
R and b : I → R satisfy the conditions :

(a) a : I → R is a bounded increasing function.

(b) b : I → R is a bounded decreasing function.

(c) a(1) ≤ b(1).

(d) For 0 < k ≤ 1, limα→k− a(α) = a(k) and limα→k− b(α) = b(k).

(e) limα→0+ a(α) = a(0) and limα→0+ b(α) = b(0).

Then µ : R → I defined by

µ(x) = sup{α|a(α) ≤ x ≤ b(α)}

is a fuzzy number with parametrization given by {(a(α), b(α),α)|0 ≤ α ≤ 1}. More-

over, if µ : R → I is a fuzzy number with parametrization given by {(a(α), b(α),α)|0 ≤
α ≤ 1}, where (a(α)), b(α) are the lower and upper α-cuts of µ, then functions a(α)

and b(α) satisfy conditions (a) − (e).

The following representation theorem characterizes the space En, the space of fuzzy

numbers defined on Rn. Let Pk(Rn) denote the set of all nonempty compact and convex

subsets of Rn.

Theorem 2.2.10. (Negoita and Ralescu (1975)) If u ∈ En, then we have

(i) [u]α ∈ Pk(Rn), for all 0 ≤ α ≤ 1.

(ii) [u]α2 ⊂ [u]α1 , for all 0 ≤ α1 ≤ α2 ≤ 1.

(iii) If {αk} is a non-decreasing sequence converging to α > 0, then [u]α = ∩k≥1[u]αk
.

Conversely, if {Aα} is a family of subsets of Rn satisfying (i) − (iii), then there exists

an u ∈ En such that [u]α = Aα for 0 < α ≤ 1 and [u]0 = ∪0<α≤1Aα ⊂ A0.
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Definition 2.2.11. Given two fuzzy numbers X0 = (X01, . . . , X0n), X1 = (X11, . . . , X1n)

in (E1)n, we say X0 ≤ X1 if µX0i
(·) ≤ µX1i

(·), 1 ≤ i ≤ n. If µX0i
(·) = µX1i

(·), for

1 ≤ i ≤ n then we say X0 = X1 otherwise X0 �= X1. µX0i
and µX1i

denotes the

membership functions for X0i and X1i, respectively.

We now introduce the well known fundamental arithmetic operations on fuzzy num-

bers on R. Arithmetic operations on fuzzy numbers are defined through the arithmetic

operations on their α-cuts. Since we know that α-cuts of fuzzy numbers on R are

closed and bounded intervals, therefore we first need to define the arithmetic operations

on closed and bounded intervals of R. Let ∗ denote any of the arithmetic operations:

addition (+), subtraction (−), multiplication (×), or division (/). Let [a, b] and [c, d] be

any closed and bounded intervals of R. Then we have

[a, b] ∗ [c, d] = {x ∗ y|a ≤ x ≤ b and c ≤ y ≤ d}.

This yields

(i) [a, b] + [c, d] = [a + c, b + d].

(ii) [a, b] − [c, d] = [a − d, b − c].

(iii) [a, b] × [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)].

(iv) [a, b]/[c, d] = [a, b] × [ 1
d
, 1

c
] provided 0 /∈ [c, d].

Let A and B be fuzzy numbers in E1, then the α-cuts of the fuzzy number A ∗ B in E1

is defined by

(A ∗ B)α = Aα ∗ Bα.

By using decomposition Theorem 2.2.6, the fuzzy number (A ∗ B) is defined as

A ∗ B =
�

α∈[0,1]

α(A ∗ B).

Definition 2.2.12. (Extension Principle) The extension principle for fuzzy sets is in

essence a basic identity which allows the domain of the definition of a mapping or a
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relation to be extended from points in X to fuzzy subsets of X .(cf. Zadeh (1975)). More

specifically, let f : X −→ Y be a given function. Then the Zadeh’s extension principle

leads to the extension f ∗ : F(X) −→ F(Y ) of f defined as follows :

f ∗(A)(y) = sup
x|f(x)=y

A(x) ∀A ∈ F(X).

The function f ∗ is called fuzzy extension of f . Further, suppose f : X1 × X2 ×
. . . × Xn −→ Y . Then the extension principle leads to the following definition of

f ∗ : F(X1) × F(X2) × . . . F(Xn) −→ F(Y ). For Ai ∈ F(Xi), 1 ≤ i ≤ n, we have :

f ∗(A1, A2, . . . , An)(y) = sup
x=(x1,x2,...,xn)|f(x)=y

(A1(x1)∧A2(x2)∧ . . .∧An(xn)), (2.7)

where ∧ denotes the standard fuzzy intersection operator.

By using above extension principle, the fuzzy arithmetic operations can be easily

obtained. This can be seen as follows. Let ∗ denote any of the standard arithmetic

operations +,−,×, or/. Let A and B be any fuzzy sets on R. Define a function f :

R×R → R by f(x, y) = x∗y for x, y ∈ R. Then the application of extension principle

on f leads to the following definition of arithmetic operations of fuzzy sets on R

(A ∗ B)(z) = sup
(x,y)|x∗y=z

(A(x) ∧ B(y).

For example, by replacing ∗ with +, we have the following definition of A + B.

(A + B)(x) = sup
x=y+z

min(A(y), B(z)), x ∈ R.

Given any A ∈ F(R), scalar multiplication on fuzzy sets of X is defined as follows (see

Dubois and Prade (1982)) :

(βA)(x) =





u(x
β
)} if β ∈ R \ {0}

0̃ if β = 0,
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where 0̃ ∈ F(R) is given by

0̃(x) =





1 if x = 0

0 if x �= 0.

Thus, it is clear that there is a linear structure on the space E1, the space E1 is not

a vector space. However, the fuzzy numbers E1 with addition and multiplication as

defined above is a convex cone. The fuzzy numbers can be isometrically embedded

into a suitable normed linear space (cf. Puri and Ralescu (1983)).

Definition 2.2.13. The Hausdorff metric dH on Pk(Rn) is defined as

dH(A, B) = inf{�|A ⊂ N(B, �) andB ⊂ N(A, �)}, (2.8)

where A, B ∈ Pk(Rn) and N(A, �) = {x ∈ R||x − y| < � for some y ∈ A}, N(B, �)

is similarly defined.

The Housdorff distance dH(A,B) between A and B in Pk(Rn) is also defined by

dH(A,B) = max{sup
a∈A

inf
b∈B

|a − b|, sup
b∈B

inf
a∈A

|a − b|}.

It is well known that (Pk(R), dH) is complete metric space (cf. Kaleva (1987), Puri

and Ralescu (1983)). We can define a metric on En by using Hausdorff metric. Define

D : En × En → R+ ∪ {0} by

D(u, v) = sup
0≤α≤1

dH(uα, vα),

where dH is the Hausdorff metric defined on Pk(Rn).

Definition 2.2.14. A mapping F : I = [a, b] → En is continuous at t0 ∈ I if given any

� > 0 there exists a δ > 0, such that

D(F (t), F (t0)) < � whenever |t − t0| < δ.

Now we will introduce the notion of differentiability for fuzzy functions. There
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are various notions of differentiability for fuzzy set valued function. Few important

among them are H-derivatives or Puri and Ralescu Derivative, Seikkala Derivative, and

Kandel-Friedman-Ming derivatives (cf. Buckley and Feuring (2000)). We shall now

provide the formal definition for Puri and Ralescu Derivative and Seikkala Derivative.

Definition 2.2.15. (Puri and Ralescu Derivative ) First, we define the Hukuhara differ-

ence between two fuzzy numbers A and B defined on Rn. If there exists a fuzzy number

C on Rn such that C + A = B then C is called Hukuhara difference between B and A

and we write this as

C = B −∗ A.

A mapping F : I = [a, b] → En is differentiable at t0 ∈ I if there exists a fuzzy number

Ḟ (t0) ∈ En such that the limits

lim
h→0+

F (t0 + h) −∗ F (t0)

h
, lim

h→0+

F (t0) −∗ F (t0 − h)

h
,

exist and equal to Ḟ (t0). Here the limits are taken in the metric (En, D) (cf. Puri and

Ralescu (1983)).

Definition 2.2.16. (Seikkala Derivative) Let F : I = [a, b] → E1 be a given function.

Suppose the parametric form of F (t) is represented by

F (t) = {(F1(t,α), F2(t,α),α) : α ∈ [0, 1], t ∈ I}.

The Seikkala (1987) derivative Ḟ (t) of F (t) is defined by

Ḟ (t) = {(Ḟ1(t,α), Ḟ2(t,α),α) : α ∈ [0, 1], t ∈ I}, (2.9)

provided that the above equation represents a fuzzy number in the parametric form (cf.

Seikkala (1987)).

Definition 2.2.17. A set valued function F : [0, T ] → Pk(Rn) is said to be measurable

if it satisfies any one of the following equivalent conditions :

(i) For all x ∈ Rn, the mapping t → dF (t)(x) = infu∈F (t) � x − u � is measurable.
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(ii) Gr(F ) = {(t, x) ∈ [0, T ] × Rn : x ∈ F (t)} ∈ σ × β(Rn), where σ and β(Rn)

are the Boral σ-field of [0, T ] and Rn, respectively.

(iii) There exists a sequence {fn(·)} of measurable functions such that F (t) = ∪n≥1fn(t)

for all t ∈ [0, T ] (Casting representation).

Let F : [0, T ] → Pk(Rn), we denote by S1
F , the set of all measurable selections of

F (·) that belong to Lebesgue-Bochner space L1
Rn , that is,

S1
F =

�
f(·) ∈ L1

Rn : f(t) ∈ F (t), a.e.
�

,

and the Aumann’s integral is presented as follows :

(A)

� T

0

F (t)dt =

�� T

0

f(t)dt, f(·) ∈ S1
F

�
.

We say that F : [0, T ] → Pk(Rn) is integrably bounded if it is measurable and there

exists a function h : [0, T ] → R, and h ∈ L1
R such that � x �≤ h(t), x ∈ F (t). If F is

integrably bounded then
� T

0
F (t)dt is compact in Rn.

We say a fuzzy set valued mapping F : [0, T ] → En is integrably bounded if

F0(t) = [F (t)]0 is integrably bounded.

Definition 2.2.18. Let F : [0, T ] → En be a fuzzy integrably bounded mapping. Let

Fα(t) = [F (t)]α, then the fuzzy integral of F over [0, T ], denoted by
� T

0
F (t)dt, is

defined levelwise by :

�� T

0

F (t)dt

�

α

= (A)

� T

0

Fα(t)dt, 0 < α ≤ 1.

This integral is well defined (see (Puri and Ralescu, 1986, Theorem 3.1)). Further-

more, various properties of the fuzzy integral are discussed in Kaleva (1987).

Let F : [0, T ] × En → En. Consider the following fuzzy initial value problem :

ẋ = F (t, x), x(0) = x0. (2.10)

Definition 2.2.19. A mapping x : [0, T ] → En is a fuzzy weak solution to (2.10) if it is
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continuous and satisfies the following integral equation :

x(t) = x0 +

� t

0

F (s, x(s))ds, ∀t ∈ [0, T ].

If F is continuous then the weak solution also satisfies (2.10) and we call it strong

fuzzy solution to (2.10) as mentioned in (Kaleva, 1987, Lemma 6.1).
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CHAPTER 3

Evolution of Solutions of Fuzzy Dynamical Systems

3.1 Introduction

The theory of fuzzy differential equations has been developed in late seventies and early

eighties. The term "fuzzy differential equation" was first used by Kandel and Byatt in

1978 in a short note (cf. Kandel and Byatt (1978)). An extended version of this short

note was published in 1980 by the same authors (cf. Kandel and Byatt (1980)). Since

then so many authors have substantially contributed towards the theory of fuzzy differ-

ential equations. In the theory of fuzzy differential equations many approaches are sug-

gested to define a solution of a fuzzy differential equation. Among them Hukuhara ap-

proach or H-differentiability approach (cf. Dubey and George (2012b), Kaleva (2006),

Khastan et al. (2011), Nieto (1999), Puri and Ralescu (1983), Wu et al. (1996)), differ-

ential inclusion approach (cf. Diamond (1999), Hüllermeier (1997), Mizukoshi et al.

(2007)), extension principle approach (cf. Buckley and Feuring (2000)) and the level-

wise or α-cut approach due to Seikkala (1987) are the most referred in the literature.

Although several authors have contributed in theoretical and applied fields for fuzzy

differential equations considering the H-derivatives, still in some cases the approach

suffers certain disadvantages since the diameter diam(x(t)) of the solution x(t) of an

FDE is unbounded as time t increases. These disadvantages have been overcome up to

certain extent by introducing a more general definition of H-derivative namely general-

ized H-differentiability (cf. Bede and Stefanini (2013)), fuzzy lateral H-derivative (cf.

Chalco-Cano and Román-Flores (2008)). Recently, Bede and Gal (2005) and Chalco-

Cano and Román-Flores (2008) studied the fuzzy differential equations by consider-

ing fuzzy lateral H-derivative. Furthermore, Chalco-Cano and Román-Flores (2009),

investigated the relationships with fuzzy differential inclusions and fuzzy differential

equations considering generalized H-derivative.



In recent years, many authors studied the qualitative properties of solutions of FDEs

by considering the levelwise approach. Unlike other approaches levelwise approach

allows to translate a system of fuzzy differential equations in to a system of ordinary

differential equations corresponding to the end points of α-cuts of the states. This

translation of FDE in to a system of ODEs allows to borrow many of the standard

concepts from the established theory of ordinary differential equations. Due to this

reason levelwise approach has attracted the attention of many researchers (for example,

Diamond and Kloeden (1994), Ghazanfari et al. (2012), Xu et al. (2010, 2007), Dubey

and George (2013d)) to study and analyze the various aspects of solutions of fuzzy

differential equations.

The early work in the direction of levelwise approach is initiated by Seikkala (1987).

Seikkala (1987) has shown that by using the Zadeh’s extension principle, the evolution

of fuzzy initial value problem ẋ(t) = f(t, x(t)), x(t0) = x0, where f : R+ × R → R

is measurable in t and continuous in x, and x0 is a fuzzy number on R, is expressed

by a system of 2-ordinary differential equations corresponding to the end points of the

α-cuts of x. However, the proof is missing. Following the idea of Seikkala (1987),

Xu et al. (2007) has considered the linear fuzzy initial value problem of the type ẋ(t) =

Ax(t), x(t0) = X0, where A is n×n real matrix and X0 is an n-vector of fuzzy numbers

on R. In Xu et al. (2007), it is stated (see Lemma 3.2 of Xu et al. (2007)) that the

evolution of aforesaid system can be described by a system of 2n-ordinary differential

equations corresponding to the end points of the α-cuts of x. Similar results are stated

in Dubey and George (2012a) for the systems of the type ẋ(t) = Ax(t)+Bu(t), x(t0) =

X0, where A and B are n × n and n × m real matrices, respectively and X0 ∈ (E1)n,

u(t) ∈ (E1)m.

These results motivate us to investigate the solutions of a general nonlinear system

with fuzzy initial conditions and fuzzy inputs by using the levelwise approach. To

the best of our knowledge, we feel that a detailed proof of the results describing the

evolution of solutions of such systems in terms of α-cuts is missing in the literature.

We have shown with a complete proof that the solutions of such systems are described

by a system of ordinary differential equations with crisp initial conditions and crisp

inputs corresponding to the end points of the α-cuts of the fuzzy states. The novelty
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of our results lies in their applicability to nonlinear systems with uncertain but fuzzily

modelled initial conditions and control variables. Our results can also be regarded as

the generalizations of some of the results in the literature (for example, Seikkala (1987),

Xu et al. (2007)).

The organization of the chapter is as follows: In Section 3.2, we investigate the

solutions of an n-dimensional nonlinear fuzzy initial value problem

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0, (3.1)

where f : R+ × Rn × Rm → Rn is a nonlinear function which is measurable in t

and is continuous in x and u. The fuzzy initial condition x0 is an n-vector of fuzzy

numbers on R, that is, x0 ∈ (E1)n, and the fuzzy input u(t) is an m-vector of fuzzy

numbers on R, that is, u(t) ∈ (E1)m. By using the extension principle, we prove that

the evolution of system (3.1) can be described by a system of 2n-ordinary differential

equations corresponding to the end points of the α-cuts of x. In Section 3.3, we discuss

the existence and uniqueness of the solutions of time-varying linear systems with fuzzy

initial conditions and fuzzy inputs; we also provide a closed form formula for the solu-

tions of such systems by using the complex number representation of the α-cuts of the

fuzzy states and transition matrix techniques. In Section 3.4, we discuss the existence

and uniqueness of the solutions of nonlinear fuzzy initial value problem of the type

ẋ(t) = f(t, x(t)), x(t0) = x0 ∈ (E1)n, t ≥ t0 ≥ 0,

where f : T × (E1)n → (E1)n is continuous. Finally, Section 3.5 concludes the chapter.

3.2 Solutions of Nonlinear Systems of ODEs with Fuzzy

Initial Conditions and Fuzzy Inputs

In this section, we investigate the solutions of nonlinear systems of ODEs with fuzzy

initial conditions and fuzzy inputs. Let f : R+ × Rn × Rm −→ Rn be a given function

such that f(t, x, u) is measurable with respect to t and continuous with respect to x and
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u. That is, the system we consider is formulated as :

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0 ∈ (E1)n, u(t) ∈ (E1)m, t ≥ t0 ≥ 0. (3.2)

In the following theorem, we will show that by using the extension principle the evo-

lution of the solutions of system (3.2) is described by a 2n-differential equations with

crisp initial conditions and crisp inputs corresponding to the end points of the α-cuts of

x.

Theorem 3.2.1. Let x(t) = (x1(t), x2(t), . . . , xn(t)) and [xk(t)]α = [xα
k (t), xα

k (t)] be

the α-cut of xk(t) for 1 ≤ k ≤ n. u(t) = (u1(t), u2(t), . . . , um(t)) and [uk(t)]α =

[uα
k (t), uα

k (t)] be the α-cut of uk(t) for 1 ≤ k ≤ m. The evolution of system (3.2) is

described by the following set of 2n-levelwise differential equations corresponding to

the end points of the α-cuts of x(t). That is, for each α ∈ [0, 1] and 1 ≤ k ≤ n, we

have :





ẋα
k (t) = min(fk(t, z, w) : zi ∈ [xα

i (t), xα
i (t)], wj ∈ [uα

j (t), uα
j (t)])

ẋα
k (t) = max(fk(t, z, w) : zi ∈ [xα

i (t), xα
i (t)], wj ∈ [uα

j (t), uα
j (t)])

xα
k (t0) = xα

0k

xα
k (t0) = xα

0k,

where z = (z1, z2, . . . , zn) ∈ Rn, w = (w1, w2, . . . , wm) ∈ Rm and fk is the kth

component of f .

Proof. Since x(t) ∈ (E1)n, u(t) ∈ (E1)m for all t ≥ t0, therefore, fk(·, ·, ·) is ex-

tended by using the extension principle. The fuzzy extension f ∗
k (·, ·, ·) : R+ × (E1)n ×

(E1)m −→ E1 of fk is defined as follows :

f ∗
k (t, x1(t), . . . , xn(t),u1(t), . . . , um(t))(y) = sup

(τ,ν)=(τ1,...,τn,ν1,...,νm)|fk(t,τ,ν)=y

{min(x1(t)(τ1),

. . . , xn(t)(τn), u1(t)(ν1), . . . , um(t)(νm))}.

Fuzzification of system (3.2) yields for each 1 ≤ k ≤ n

ẋk(t) = f ∗
k (t, x(t), u(t)), xk(t0) = x0k, (3.3)
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in which f ∗
k is the fuzzy extension of fk.

By taking the α-cuts from both sides of (3.3), we have :

[ẋk(t)]α = [f ∗
k (t, x(t), u(t))]α, [xk(t0)]α = [x0k]α. (3.4)

From Theorem 5.2 of Kaleva (1987) we have that :

[ẋk(t)]α = [ẋα
k (t), ẋα

k (t)]. (3.5)

We shall now show the following :

[f ∗
k (t, x(t), u(t))]α = [ min(fk(t, z, w) : zi ∈ [xi(t)]α, wj ∈ [uj(t)]α),

max(fk(t, z, w) : zi ∈ [xi(t)]α, wj ∈ [uj(t)]α)]. (3.6)

Let s ∈ [min(fk(t, z, w) : zi ∈ [xi(t)]α, wj ∈ [uj(t)]α), max(fk(t, z, w) : zi ∈
[xi(t)]α, wj ∈ [uj(t)]α)]. Since fk is continuous with respect to x and u, therefore

there exist τi ∈ [xi(t)]α for 1 ≤ i ≤ n and νj ∈ [uj(t)]α for 1 ≤ j ≤ m, such that

fk(t, τ1, . . . , τn, ν1, . . . , νm) = s. From which it follows that :

f ∗
k (t, x(t), u(t))(s) = sup

(τ,ν)=(τ1,...,τn,ν1,...,νm)|fk(t,τ,ν)=s

{min(x1(t)(τ1), . . . ,

xn(t)(τn), u1(t)(ν1), . . . , um(t)(νm))} ≥ α.

Hence s ∈ [f ∗
k (t, x(t), u(t))]α.

Conversely, assume that s ∈ [f ∗
k (t, x(t), u(t))]α, which implies that

f ∗
k (t, x(t), u(t))(s) ≥ α.

Define

ρ := sup
(τ,ν)=(τ1,...,τn,ν1,...,νm)|fk(t,τ,ν)=s

{min(x1(t)(τ1), . . . , xn(t)(τn), u1(t)(ν1),

. . . , um(t)(νm))}. (3.7)
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Clearly ρ ≥ α. From Eq. (3.7) it follows that, there exists a sequence {ςp}, where

ςp := (τ p
1 , . . . , τ p

n, νp
1 , . . . , ν

p
m)

with fk(t, τ
p
1 , . . . , τ p

n, νp
1 , . . . , ν

p
m) = s, such that

ρ = sup
ς=(τ1,...,τn,ν1,...,νm)∈{ςp}

{min(x1(t)(τ1), . . . ,xn(t)(τn), u1(t)(ν1),

. . . , um(t)(νm))}. (3.8)

From Eq. (3.8) it follows that :

lim sup
p→∞

x1(t)(τ
p
1 ) ≥ lim sup

p→∞
(min(x1(t)(τ

p
1 ), . . . , xn(t)(τ p

n), u1(t)(ν
p
1),

. . . , um(t)(νp
m))) ≥ α.

Without loss of generality it can be assumed that {τ p
1 } ∈ [x1(t)]0 for otherwise the

entries in the sequence {τ p
1 } which do not belong to [x1(t)]0 can be simply ignored.

Since [x1(t)]0 is compact, therefore there exists a subsequence {τ p
(1)
r

1 } of {τ p
1 }(indeed a

subsequence of {τ p
1 }) such that τ p

(1)
r

1 −→ τ ∗
1 as r → ∞ for some τ ∗

1 ∈ R and

lim sup
r→∞

x1(t)(τ
p
(1)
r

1 ) = lim sup
p→∞

x1(t)(τ
p
1 ) ≥ α.

Now by using upper semi-continuity of x1(t) we have :

x1(t)(τ
∗
1 ) ≥ lim sup

r→∞
x1(t)(τ

p
(1)
r

1 ) ≥ α.

Therefore, we have :

τ ∗
1 ∈ [x1(t)]α.

Since {ςp
(1)
r } is a subsequence of {ςp}, therefore we have :

ρ = sup
ς=(τ1,...,τn,ν1,...,νm)∈{ςp

(1)
r }

{min(x1(t)(τ1), . . . ,xn(t)(τn), u1(t)(ν1), . . . ,

um(t)(νm))}.

30



Using the same arguments as for x1(t), we will have a subsequence {ςp
(2)
r } of {ςp

(1)
r }

such that τ p
(2)
r

2 −→ τ ∗
2 as r −→ ∞ and τ ∗

2 ∈ [x2(t)]α.

Continuing in the same fashion, we will have nested subsequences of {ςp
(1)
r }, and

points τ ∗
i ∈ R for 1 ≤ i ≤ n, and ν∗

j ∈ R for 1 ≤ j ≤ m. That is,

{ςp
(n+m)
r } ⊂ . . . {ςp

(n+1)
r } ⊂ {ςp

(n)
r } ⊂ {ςp

(n−1)
r } . . . ⊂ {ςp

(2)
r } ⊂ {ςp

(1)
r },

with the property that for 1 ≤ i ≤ n,

τ p
(i)
r

i −→ τ ∗
i as r −→ ∞, and τ ∗

i ∈ [xi(t)]α,

and for 1 ≤ j ≤ m,

νp
(n+j)
r

j −→ ν∗
j as r −→ ∞, and ν∗

j ∈ [uj(t)]α.

Clearly fk(t, τ
p
(n+m)
r

1 , . . . , τ p
(n+m)
r

n , νp
(n+m)
r

1 , . . . , νp
(n+m)
r

m ) = s for all r ∈ N. Also, for

1 ≤ i ≤ n, τ p
(n+m)
r

i −→ τ ∗
i as r −→ ∞ and for 1 ≤ j ≤ m, νp

(n+m)
r

j −→ ν∗
j as

r −→ ∞. Now by continuity of fk we have :

fk(t, τ
p
(m+n)
r

1 , . . . , τ p
(m+n)
r

n , νp
(m+n)
r

1 , . . . , νp
(m+n)
r

m ) −→ fk(t, τ
∗
1 , . . . , τ ∗

n, ν∗
1 , . . . , ν

∗
m).

Hence it follows that fk(t, τ
∗
1 , . . . , τ ∗

n, ν∗
1 , . . . , ν

∗
m) = s with τ ∗

i ∈ [xi(t)]α for 1 ≤ i ≤ n,

and ν∗
j ∈ [uj(t)]α for 1 ≤ j ≤ m. Thus, we must have :

s ∈ [min(fk(t, z, w) : zi ∈ [xi(t)]α, wj ∈ [uj(t)]α),

max(fk(t, z, w) : zi ∈ [xi(t)]α, wj ∈ [uj(t)]α)].

Hence we have established (3.6). Now the proof of the theorem follows from equations

(3.4), (3.5) and (3.6).

In Lemma 1 of Dubey and George (2012a), a similar result is employed in order to

compute the controllable initial fuzzy states for the linear systems of the form ẋ(t) =

Ax(t) + Bu(t), x(t0) = x0 ∈ (E1)n, u(t) ∈ (E1)m, t > t0 ∈ R+, where A and B are
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real matrices of size n × n, n × m, respectively.

Corollary 3.2.2 (Dubey and George (2012a)). Let f(t, x(t), u(t)) = Ax(t) + Bu(t) in

(3.2), where A, B are real matrices of size n × n and n × m, respectively. Then, the

evolution of system (3.2) is described by a 2n-differential equations corresponding to

the end points of the α-cuts of x(t). That is, for 1 ≤ k ≤ n,





ẋα
k (t) = min((Az + Bw)k : zi ∈ [xα

i (t), xα
i (t)], wj ∈ [uα

j (t), uα
j (t)])

ẋα
k (t) = max((Az + Bw)k : zi ∈ [xα

i (t), xα
i (t)], wj ∈ [uα

j (t), uα
j (t)])

xα
k (t0) = xα

0k

xα
k (t0) = xα

0k,

in which (Az + Bw)k denotes the kth row of (Az + Bw).

If f : R+ × Rn −→ Rn be such that f(t, x) is measurable with respect to t, and

continuous with respect to x. Then the evolution of fuzzy initial value problem

ẋ(t) = f(t, x(t)), x(t0) = x0 ∈ (E1)n, t ≥ t0 ≥ 0 (3.9)

will be given by a 2n-differential equations corresponding to the end points of the α-

cuts of x. Thus, we have the following theorem.

Theorem 3.2.3. Let x(t) = (x1(t), x2(t), . . . , xn(t)), and [xk(t)]α = [xα
k (t), xα

k (t)] be

the α-cut of xk(t) for 1 ≤ k ≤ n. The evolution of system (3.9) is described by the

following set of 2n-levelwise equations corresponding to the end points of the α-cuts of

x(t). That is, for each α ∈ [0, 1] and 1 ≤ k ≤ n, we have :





ẋα
k (t) = min(fk(t, z) : zi ∈ [xα

i (t), xα
i (t)])

ẋα
k (t) = max(fk(t, z) : zi ∈ [xα

i (t), xα
i (t)])

xα
k (t0) = xα

0k

xα
k (t0) = xα

0k,

in which z = (z1, z2, . . . , zn) ∈ Rn and fk is the kth component of f .

Proof. The proof follows along the similar lines of the proof of Theorem 3.2.1.
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As a special case, a similar result for the linear time-invariant systems ẋ(t) =

Ax(t), x(t0) = x0 ∈ (E1)n, where A is n × n real matrix, t ≥ t0 ∈ R+, is used

by Xu et al. (2007).

Corollary 3.2.4 (Xu et al. (2007)). Let f(t, x(t)) = Ax(t), where A is a real matrix

of size n × n. Then, the evolution of the system (3.9) is described by a 2n-differential

equations corresponding to the end points of α-cuts of x(t). That is, for 1 ≤ k ≤ n,





ẋα
k (t) = min((Az)k : zi ∈ [xα

i (t), xα
i (t)])

ẋα
k (t) = max((Az)k : zi ∈ [xα

i (t), xα
i (t)])

xα
k (t0) = xα

0k

xα
k (t0) = xα

0k,

where (Az)k denotes the kth row of (Az).

The following result due to Seikkala (1987) follows immediately from Theorem

3.2.3. Seikkala (1987) considered the fuzzy initial value problem of the type

ẋ(t) = f(t, x(t)), x(t0) = x0 ∈ E, t ≥ t0 ≥ 0, (3.10)

where f : R+ × R → R is measurable in t and continuous in x.

Corollary 3.2.5 (Seikkala (1987)). The evolution of the system (3.10) is described by a

2-differential equations corresponding to the end points of α-cuts of x(t). That is,





ẋα(t) = min(f(t, z) : z ∈ [xα(t), xα(t)])

ẋα(t) = max(f(t, z) : z ∈ [xα(t), xα(t)])

xα(t0) = xα
0

xα(t0) = xα
0 .

3.2.1 Numerical Example

In this section, we provide an example to explain the fuzzification of nonlinear system

of ODEs and the evolution of solutions as prescribed by Theorem 3.2.1.
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Example 3.2.6. Consider the following system of nonlinear ODEs with fuzzy initial

conditions and fuzzy inputs :


 ẋ1(t)

ẋ2(t)


 =


 −x2

2(t) + cos(t) + u1(t)

−x2
1(t) + sin(t) + u2(t)


 . (3.11)

Let the initial membership functions x1(0) = µ1(s) and x2(0) = µ2(s) be defined as

below :

µ1(s) =





s 0 ≤ s ≤ 1

2 − s 1 ≤ s ≤ 2
, µ2(s) =





2s 0 ≤ s ≤ 1/2

2 − 2s 1/2 ≤ s ≤ 1.

Taking the fuzzy inputs u1(t), u2(t) ∈ E1 as defined by the following fuzzy numbers :

u1(t)(s) =





s − t + 1, t − 1 ≤ s ≤ t

−s + t + 1, t ≤ s ≤ t + 1
, u2(t)(s) =





e
1− 1

1−|s−t|2 , | s − t |≤ 1

0, | s − t |≥ 1.

The input functions u1(t) and u2(t) at various time instants are shown in Figure 3.1 and

Figure 3.2, respectively. The evolution of the solutions of system (3.11) is given by the
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(c) u1 at time t = ·4

Figure 3.1: Input function u1 at various time instants
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Figure 3.2: Input function u2 at various time instants

following levelwise decomposed differential equations:





ẋα
1 (t) = −xα

2
2
(t) + cos(t) + (t + α − 1)

ẋα
2 (t) = −xα

1
2
(t) + sin(t) + (t− | (1 − 1

log
�

e
α

�)
1
2 |)

ẋα
1 (t) = −xα

2
2(t) + cos(t) + (t + 1 − α)

ẋα
2 (t) = −xα

1
2(t) + sin(t) + (t+ | (1 − 1

log
�

e
α

�)
1
2 |)

,

with the initial condition

[xα
1 (0), xα

2 (0), xα
1 (0), xα

2 (0)]T = [α,α/2, 2 − α, 1 − (α/2)]T

and α varies in [0, 1]. The propagated fuzzy states at time t = ·2 and t = ·4 starting

from the initial fuzzy state at time t = 0, are shown in Figure 3.3. It must be noted that

the existence of the solutions of Eq.(3.11) is guaranteed only in the interval [0, T ] for

some T > 0 (see Kaleva (1987), Song and Wu (2000)). In this example, the solutions

of system (3.11) exist in the interval [0,T], where ·4 < T < ·6. For t > T the solutions

cease to exist as shown in Figure 3.4. It is clear from the Figure 3.4a that x1(·6) /∈ E1.

Similarly at t = 1, x1(1) /∈ E1 and x2(1) /∈ E1 as indicated in Figure 3.4b. The cross

sections of level sets at various levels (α-values) for x1 and x2 during time interval [0,1]

are shown in Figure 3.5 and Figure 3.6, respectively.
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Figure 3.3: Propagation of membership functions for x1 and x2

3.3 Solutions of Linear Systems with Fuzzy Initial Con-

ditions and Fuzzy Inputs

In this section, we investigate the solutions of the fuzzy differential dynamical systems

of the type : 



ẋ(t) = A(t)x(t) + B(t)u(t)

x(t0) = X0, t1 ≥ t ≥ t0,

(3.12)

where A(·) ∈ C([t0, t1]; Rn×n), B(·) ∈ C([t0, t1]; Rn×m), X0 ∈ (E1)n = E1 × . . . × E1

� �� �
n−times

,

t0 ∈ R+, the input u(t) ∈ (E1)m for each t ∈ [t0, t1], moreover u(·) is assumed to be

integrable in [t0, t1]. We discuss the existence and uniqueness of the solutions of the

system (3.12) and obtain a closed form formula for the solutions of the system (3.12)

by using the levelwise approach and the transition matrix technique.
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Figure 3.4: x1 and x2 at t = ·6 and t = 1

Many authors have investigated the solutions of n-dimensional fuzzy initial value

problem by using the levelwise approach and provided techniques for the computation

of the solutions. For our purpose, we refer to the work of Buckley and Feuring (2001),

Fard and Ghal-Eh (2011), Xu et al. (2010) and Xu et al. (2007).In particular, Xu et al.

(2007) have described the solutions of the systems of type ẋ(t) = Ax(t), x(0) = X0 ∈
(E1)n(time-invariant system) by using complex number representation of the α-level

sets of fuzzy system following the idea given in Pearson (1997). In our work, we extend

some of the results of Xu et al. (2007) to the time-varying systems of type (3.12). The

following lemma describes the evolution of solutions of the system (3.12).

Lemma 3.3.1. Let xα
k (t) = [xα

k (t), xα
k (t)] be the α-cut of xk(t) for 1 ≤ k ≤ n. The

evolution of the system (3.12) is described by the following 2n-differential equations,

corresponding to the end points of α−cuts : For 1 ≤ k ≤ n,





ẋα
k (t) = min((A(t)z + B(t)w)k : zi ∈ [xα

i (t), xα
i (t)], wj ∈ [uα

j (t), uα
j (t)])

ẋα
k (t) = max((A(t)z + B(t)w)k : zi ∈ [xα

i (t), xα
i (t)], wj ∈ [uα

j (t), uα
j (t)])

xα
k (t0) = Xα

0k

xα
k (t0) = Xα

0k,

(3.13)

where (A(t)z+B(t)w)k = Σn
j=1akj(t)zj+Σm

j=1bkj(t)wj is the kth row of A(t)z+B(t)w.

Proof. The proof follows immediately from the Theorem 3.2.1.
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Figure 3.5: Cross sections of the level sets for x1(·) during time interval [0,1]

By using the above lemma, we have the following theorem that provides a compact

formula for the solutions of system (3.12).

Theorem 3.3.2. The unique solution of system (3.12) is characterized by the unique

solution of the following system :





ẋα(t) + iẋα(t) = M(t)(xα(t) + ixα(t)) + N(t)(uα(t) + iuα(t))

xα(t0) + ixα(t0) = Xα
0 + iXα

0 ,
(3.14)

where i2 = −1,α ∈ [0, 1] and entries of M(t) and N(t) are obtained from that of A(t)

and B(t) as follows : mjk(t) = hajk(t), 1 ≤ j, k ≤ n, and njk(t) = hbjk(t), 1 ≤ j ≤
n, 1 ≤ k ≤ m, i.e., M(t) = hA(t) and N(t) = hB(t), where for each s ∈ R

hs =





h1s s ≥ 0

h2s s < 0
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Figure 3.6: Cross sections of the level sets for x2(·) during time interval [0,1]

in which h1s : C → C is the identity operator and is defined as

h1s : a + ib → s(a + ib)

and h2s : C → C corresponds to a flip about the diagonal in the complex plane and is

defined as

h2s : a + ib → s(b + ia)

for every a + ib ∈ C.

Proof. It is clear that h2
2 = h1 and h2h1 = h1h2. It can be easily seen that {shj =

hjs : j = 1, 2}. Given any real matrix P = [pij ] and k ≥ 1 the operator matrix hkP is

obtained by applying the operator hk to the entries on P , that is, hkP = [hkpij ]. It can

be easily shown that system (3.13) and system (3.14) are equivalent, by comparing the

real and imaginary parts from both sides of (3.14). So the evolution of system (3.12)
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will be given by system (3.14). Now we propose a solution to system (3.14) as follows :

xα(t)+ixα(t) = ΦM(t, t0)(X
α
0 +iXα

0 )+

� t

t0

ΦM(t, τ)N(τ)(uα(τ)+iuα(τ))dτ, (3.15)

where ΦM(t, t0) is expressed by a slightly modified Peano-Baker type series :

ΦM(t, t0) = I∗ + h

� t

t0

A(τ)dτ + h2

� t

t0

A(τ)

� τ

t0

A(s)dsdτ+ (3.16)

h3

� t

t0

A(τ)

� τ

t0

A(s)

� s

t0

A(w)dwdsdτ . . . ,

where I∗ = hI and I is n × n identity matrix. It can be shown that the above series is

uniformly bounded in [t0, t1] by using the fact that h1, h2 are bounded linear operators

and A ∈ C([t0, t1]; Rn×n). Thus, ΦM(t, t0) is well defined. Now from (3.16) it follows

that
d

dt
ΦM(t, t0) = M(t)ΦM(t, t0). (3.17)

Further, it can be shown that ΦM(·, ·) satisfies the semigroup property, i.e.,

ΦM(t, t0)Φ
M(t0, t1) = ΦM(t, t1). (3.18)

In equation (3.18) by taking t1 = t, we have :

ΦM(t, t0)Φ
M(t0, t) = I∗. (3.19)

By differentiating Eq. (3.15) and using Eq. (3.17), we have

d

dt
(xα(t) + ixα(t)) =M(t)ΦM(t, t0)(X

α
0 + iXα

0 ) + N(t)(uα(t) + iuα(t))

+ M(t)

� t

t0

ΦM(t, τ)N(τ)(uα(τ) + iuα(τ))dτ (3.20)

d

dt
(xα(t) + ixα(t)) =M(t)(xα(t) + ixα(t)) + N(t)(uα(t) + iuα(t)). (3.21)

From (3.15) and the definition of ΦM(t, t0), it is obvious that xα(t0) + ixα(t0) = Xα
0 +

iXα
0 . Hence (3.15) defines a solution of system (3.14). We claim that solution given
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by (3.15) is unique. Let yα(t) + iyα(t) be another solution of (3.14). Define a function

by :

zα(t)+izα(t) = ΦM(t0, t)

�
yα(t) + iyα(t) −

� t

t0

ΦM(t, τ)N(τ)(uα(τ) + iuα(τ))dτ

�
.

(3.22)

Differentiating Eq. (3.19), we have d
dt

ΦM(t0, t) = −ΦM(t0, t)M(t). Now differentiat-

ing (3.22), it follows that
d

dt
(zα(t) + izα(t)) = 0.

Thus, zα(t) + izα(t) = constant. Setting t = t0 in (3.22) yields zα(t0) + izα(t0) =

Xα
0 + iXα

0 . Thus,

zα(t) + izα(t) = Xα
0 + iXα

0 (3.23)

for all t ∈ [t0, t1]. Substituting (3.23) in (3.22) we have

yα(t) + iyα(t) = ΦM(t, t0)(X
α
0 + iXα

0 ) +

� t

t0

ΦM(t, τ)N(τ)(uα(τ) + iuα(τ))dτ

= xα(t) + ixα(t).

Thus, the solution given by (3.15) is unique.

Remark 3.3.3. If the matrix A(t),
� t

t0
A(τ)d(τ) commutes then ΦM(t, t0) is given by

the following expression :

ΦM(t, t0) = exp

�
h

� t

t0

A(τ)dτ

�
.

Remark 3.3.4. If the matrix A(·) is constant matrix then ΦM(t, t0) can be given by the

following expression :

ΦM(t, t0) = exp (hA(t − t0)) .

A similar result for a special case of the system (3.12), that is when A(t) = A ∈
Rn×n and B(t) = 0, is investigated in Xu et al. (2007). The following result of Xu et al.

(2007) follows immediately from the Theorem 3.3.2.

Corollary 3.3.5. (Xu et al. (2007)) Let A be n × n real matrix. Then for a given
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x0 ∈ (E1)n, the initial value problem





ẋ(t) = Ax(t)

x(0) = x0, t ≥ 0

has a unique solution given by





ẋα(t) + iẋα(t) = B(xα(t) + ixα(t))

xα(0) + ixα(0) = x0
α + ix0

α,

where the elements of the matrix B are determined from that of A as follows :

bij =





h1aij aij ≥ 0

h2aij aij < 0,

in which h1 is just the identity operation and h2 corresponds to a flip about the diagonal

in the complex plane, i.e., ∀a + ib ∈ C,

h1 : a + ib → a + ib,

h2 : a + ib → b + ia.

3.3.1 Numerical Examples

We will end this section by giving examples to demonstrate our results.

Example 3.3.6. Consider the following time-varying fuzzy differential equation :


 ẋ1(t)

ẋ2(t)


 =


 2t 1

0 2t





 x1(t)

x2(t)


 +


 1

−1


 t.

The fuzzy initial condition x(0) = (x1(0), x2(0)), in which x1(0), x2(0) are given by

following membership functions :

x1(0)(s) = e
1− 1

1−s2 , x2(0)(s) = e
1− 1

1−4s2 .
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In this example ΦM(t, 0) is given by the following expression :

ΦM(t, 0) = h


exp


 t2 t

0 t2





 .

The evolution of the system (3.25) is described by the following levelwise decom-

posed system




ẋα
1 (t)

ẋα
2 (t)

ẋα
1 (t)

ẋα
2 (t)




=




2t 1 0 0

0 2t 0 0

0 0 2t 1

0 0 0 2t







xα
1 (t)

xα
2 (t)

xα
1 (t)

xα
2 (t)




+




1 0

−1 0

0 1

0 −1





 t

t


 . (3.24)

Using Theorem 3.3.2, the propagated membership functions at time t = 1 starting from

the initial membership functions at time t = 0 is shown in Figure 3.7.
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Figure 3.7: Fuzzy states for x1(·) and x2(·) at t = 0 and t = 1

Example 3.3.7. Consider the following time-varying fuzzy differential equation with

fuzzy inputs and fuzzy initial condition :


 ẋ1(t)

ẋ2(t)


 =


 2t 1

0 2t





 x1(t)

x2(t)


 +


 t

−t


u(t). (3.25)

In this example the fuzzy initial condition is same as in the Example 3.3.6. The fuzzy
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input u(t) ∈ E1 is defined by the following triangular fuzzy numbers :

u(t)(s) =





s − t + 1, t − 1 ≤ s ≤ t

−s + t + 1, t ≤ s ≤ t + 1.

The input functions u(t) at various time instants are given in Figure 3.8. The evo-
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Figure 3.8: Input function u1 at various time instants

lution of the system (3.25) is described by the following levelwise decomposed system




ẋα
1 (t)

ẋα
2 (t)

ẋα
1 (t)

ẋα
2 (t)




=




2t 1 0 0

0 2t 0 0

0 0 2t 1

0 0 0 2t







xα
1 (t)

xα
2 (t)

xα
1 (t)

xα
2 (t)




+




t 0

0 −t

0 t

−t 0





 uα(t)

uα(t)


 . (3.26)

Fuzzy state of the solution at t = 1 starting from the initial fuzzy state at time t = 0 is

shown in Figure 3.9.
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Figure 3.9: Fuzzy states for x1(·) and x2(·) at t = 0 and t = 1

3.4 Existence and Uniqueness of a System of Fuzzy Dif-

ferential Equations

In this section, we consider a general nonlinear fuzzy initial value problem of the type





ẋ(t) = f(t, x(t))

x(t0) = x0 ∈ (E1)n, t ∈ T,

(3.27)

where f : T × (E1)n → (E1)n is continuous and T = [t0, t1](t1 > t0 ≥ 0) be a com-

pact interval of R. We extend some of the results due to Kaleva (1987), which involves

integrability and differentiability properties of the fuzzy set valued mappings, in a more

general setting. We study the fuzzy differential equations in which the derivative of a

fuzzy process is given by fuzzy n-vector valued mappings whose values are normal,

convex, upper semi-continuous and compactly supported fuzzy sets in R and establish

existence and uniqueness of a solution to such fuzzy differential equations. First, we

discuss the measurability and integrability properties of the fuzzy-vector valued map-

pings. Subsequently, we establish existence and uniqueness of a solution to systems of

type (3.27) by using Banach’s fixed point theorem.
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Let D : E1 × E1 → R+ ∪ 0, defined by the equation

D(u, v) = sup
0≤α≤1

dH([u]α, [v]α), (3.28)

where dH is the Hausdorff metric defined on Pk(R) (refer Definition 2.2.13). It is easy

to show that D is a metric space, and indeed (E1, D) is complete metric space (cf. Puri

and Ralescu (1983)). It is well known that

D(u + w, v + w) = D(u, v), (3.29)

for all u, v, w ∈ E1. Define D∗ : (E1)n × (E1)n → R+ ∪ 0 by the equation

D∗(u, v) = sup
1≤i≤n

D(ui, vi), (3.30)

where u = (u1, u2, . . . , un) ∈ (E1)n and v = [v1, v2, . . . , vn] ∈ (E1)n . By using

equations (3.29) and (3.30), it is easy to show that

D∗(u + w, v + w) = D∗(u, v). (3.31)

Further, it can be easily shown that

D∗(λu,λv) = |λ|D∗(u, v),λ ∈ R. (3.32)

3.4.1 Measurability and Integrability

Theorem 3.4.1. ((E1)n, D∗) is a complete metric space.

Proof. Clearly ((E1)n, D∗) is a metric space. Let {xl} be a cauchy sequence in ((E1)n, D∗).

Given � > 0, there exists N(�) ∈ N such that

D∗(xl, xm) ≤ � for l,m ≥ N(�) . (3.33)
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From equation 3.33 we have,

sup
1≤i≤n

D(xl
i, x

m
i ) ≤ � for l,m ≥ N(�) . (3.34)

Therefore, for each i ∈ {1, 2, . . . , n}, {xl
i} is a cauchy sequence in (E1, D). Since

(E1, D) is complete, therefore there exists x∗
i ∈ E1 such that xl

i −→ x∗
i in (E1, D) for

each 1 ≤ i ≤ n.

Define x∗ = (x∗
1, x

∗
2, x

∗
3, . . . , x

∗
n) ∈ En.

Claim : xl −→ x∗ in ((E1)n, D∗).

Since for each i ∈ {1, 2, . . . , n}, xl
i −→ x∗

i therefore there exists Ni(�) ∈ N such that

D(xl
i, x

∗
i ) < � for every l ≥ Ni(�) . Define N∗ ∈ N such that

N∗ = max(N1(�), N2(�), . . . , Nn(�)).

Then it follows that for all 1 ≤ i ≤ n

D(xl
i, x

∗
i ) ≤ � for l ≥ N∗. (3.35)

From (3.35) it follows that

sup
1≤i≤n

D(xl
i, x

∗
i ) ≤ � for l ≥ N∗. (3.36)

From the above equation it is immediate that D∗(xl, x∗) ≤ � for l ≥ N∗. Hence

(E1)n, D∗) is complete.

Let the mapping F : T → (E1)n defined by

F (t) = (F1(t), F2(t), . . . , Fn(t)).

Definition 3.4.2. A mapping F : T → (E1)n is strongly measurable if the set valued

mappings F α
i : T → Pk(R), where α ∈ [0, 1] and 1 ≤ i ≤ n, defined by

F α
i (t) = [Fi(t)]α
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are Lebesgue measurable, when Pk(R) is endowed with the topology generated by the

Hausdorff metric dH .

Lemma 3.4.3. If F is strongly measurable then it is measurable with respect to the

topology generated by D∗.

Proof. Let � ≥ 0 and u ∈ (E1)n. Define the set,

T1 = {t|D∗(F (t), u) ≤ �} (3.37)

= {t| sup
1≤i≤n

D(Fi(t), ui) ≤ �.} (3.38)

= ∩n
i=1{t| D(Fi(t), ui) ≤ �} (3.39)

By Lemma 3.1 of Kaleva (1987), the set {t| D(Fi(t), ui) ≤ �} is Lebesgue-measurable

for each 1 ≤ i ≤ n. Hence the set T1, being the finite intersection of Lebesgue-

measurable sets, is Lebesgue-measurable. Hence the proof of lemma.

Lemma 3.4.4. If F : T → (E1)n is continuous with respect to the metric D∗ then it is

strongly measurable.

Proof. Let � ≥ 0 be arbitrary and tz ∈ T be any point. By the continuity of F , it follows

that there exists a δ ≥ 0 such that

D∗(F (t), F (tz)) < � whenever |t − tz| < δ.

By definition of D∗, we have dH(F α
i (t), F α

i (t0)) < � whenever |t− t0 <≤ δ for all 1 ≤
i ≤ n. That is, each F α

i (·) is continuous with respect to Housdorff metric. Therefore,

given any open set U ∈ Pk(R), F α
i
−1(U) is open in R and hence measurable.

Definition 3.4.5. A mapping F : T → (E1)n is called integrably bounded if there exists

an integrable function h(·) such that |x| ≤ h(t) for all x ∈ ∪n
i=1F

0
i (t).

Definition 3.4.6. Let F : T → (E1)n. The integral of F over T , denoted by
�

T
F (t)dt

and defined as follows :

�

T

F (t)dt :=

��

T

F1(t)dt,

�

T

F2(t)dt, . . . ,

�

T

Fn(t)dt

�
,
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in which for each 1 ≤ i ≤ n,
�

T
Fi(t)dt is given by the following α−cut representation.

��

T

Fi(t)dt

�

α

=

�

T

F α
i (t)dt :=

��

T

F α
i (t),

�

T

F α
i (t)

�
,

where Fα
i (t), F α

i (t) denote the lower α-cut and upper α-cut of Fi(t), respectively and

α ∈ (0, 1].

A strongly measurable and integrably bounded mapping F : T → (E1)n is said to be

integrable over T if
�

T
F (t)dt ∈ (E1)n.

Theorem 3.4.7. If F : T → (E1)n is strongly measurable and integrably bounded then

F is integrable.

Proof. Since F is integrably bounded therefore each Fi is integrably bounded. Simi-

larly each Fi is strongly measurable. Now the result is immediate from Theorem 4.1 of

Kaleva (1987).

Corollary 3.4.8. If F : T → (E1)n is continuous then it is integrable.

Proof. By Lemma 3.4.4, F is strongly measurable. Let � > 0, and t0 ∈ T . By continu-

ity, there exist a δ > 0 such that whenever |t − t0| ≤ δ we have D∗(F (t), F (t0)) ≤ �.

Therefore for 1 ≤ i ≤ n, Fi is continuous with respect to D metric, which means

that F 0
i (·) is continuous with respect to Hausdorff metric. Since T is compact hence

∪t∈T F 0
i (t) is compact. Thus, each Fi is integrably bounded from which it follows that

F is integrably bounded. Now the corollary follows from Theorem 3.4.7.

The following theorem states the basic properties of fuzzy-integral.

Theorem 3.4.9. Let F,G : T → (E1)n be integrable and let λ ∈ R. Then,

(i)
�

T
F + G =

�
T

F +
�

T
G

(ii)
�

T
λF = λ

�
T

F

(iii) D∗(F,G) is integrable.

(iv) D∗(
�

T
F,

�
T

G) ≤
�

T
D∗(F,G).
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Proof. Since F is integrable which implies that for each 1 ≤ i ≤ n, Fi is integrable.

Now properties (i) and (ii) are obvious from Theorem 4.3 (i-ii) of Kaleva (1987). Now

from Theorem 4.3(iii) of Kaleva (1987), we have that D(Fi, Gi) is integrable. That is,

there exist integrable functions hi(t) such that D(Fi(t), Gi(t)) ≤ hi(t) for 1 ≤ i ≤ n.

Hence D∗(F (t), G(t)) ≤ �n
i=1 hi(t), which means that D∗(F,G) is integrable. This

proves (iii). D∗(
�

T
F,

�
T

G) = sup1≤i≤n D(
�

T
Fi,

�
T

Gi) = D(
�

T
Fk,

�
T

Gk) for some

k ∈ {1, 2, . . . , n}. Now using Theorem 4.3 (iv) of Kaleva (1987), we have,

D∗(

�

T

F,

�

T

G) ≤
�

T

D(Fk, Gk) ≤
�

T

D∗(F,G).

Hence (iv) is proved.

Corollary 3.4.10. Let F : T → (E1)n be integrable and c ∈ T . Then

� t1

t0

F =

� c

t0

F +

� t1

c

F

Proof. Define F1(t) = F (t)χ[t0,c] and F2(t) = F (t)χ[c,t1], where χ[t0,c], χ[c,t1] denote

the characteristic functions on [t0, c] and [c, t1], respectively. By Theorem 3.4.9(i), it

follows that

�

T

F =

�

T

F1 + F2 =

�

T

F1 +

�

T

F2 =

� c

t0

F +

� t1

c

F.

Hence the corollary.

Corollary 3.4.11. If F : T → (E1)n is continuous with respect to metric D∗ then

G(t) =
� t

t0
F is Lipschitz continuous on T .

Proof. Let s, t ∈ T be arbitrary, and s > t. Then by Corollary 3.4.10 and Eq. (3.31)

we have

D∗
�� s

t0

F,

� t

t0

F

�
= D∗

�� s

t

F, 0̂

�
, (3.40)

where 0̂ = [0̂, 0̂, . . . , 0̂]T ∈ (E1)n in which 0̂ is defined as

0̂(t) =





1 if t = 0

0 if t �= 0.
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Using property (iv) of Theorem 3.4.9 in Eq. (3.40),

D∗
�� s

t0

F,

� t

t0

F

�
≤

� s

t

D∗ �
F, 0̂

�
, (3.41)

Using continuity of F with respect to metric D∗ we can show that the set K :=

∪1≤i≤n ∪t∈T F 0
i (t) is compact in R. That is, there exists a constant M > 0 such that

|x| ≤ M for all x ∈ K. Therefore, D∗ �
F (t), 0̂(t)

�
≤ M for all t ∈ T . Hence from

Eq.(3.41), we have,

D∗(G(s), G(t)) ≤ M(s − t).

Hence G is Lipschitz continuous.

3.4.2 Existence and Uniqueness of a Fuzzy Initial Value Problem

Let x, y ∈ (E1)n. If there exists a z ∈ (E1)n such that x = y + z then we call z the H−
difference of x and y, denoted by x − y.

Definition 3.4.12. A mapping F : T → (E1)n is differentiable at t0 ∈ T if there exists

a Ḟ (t0) := (Ḟ1(t0), Ḟ2(t0), . . . , Ḟn(t0)) ∈ (E1)n such that for each 1 ≤ i ≤ n the limits

lim
h→0+

Fi(t0 + h) − Fi(t0)

h
, lim

h→0−

Fi(t0 + h) − Fi(t0)

h
,

exist and equal to Ḟi(t0). Here the limits are taken in metric (E1, D).

Theorem 3.4.13. If F : T → (E1)n is differentiable then it is continuous.

Proof. Let t ∈ T and h ≥ 0, then by triangle inequality for the metric D∗ we have,

D∗(F (t + h), F (t)) = D∗(F (t + h) − F (t), 0̂)

≤ hD∗((F (t + h) − F (t))/h, Ḟ (t)) + hD∗(Ḟ (t), 0̂),

where h is small enough so that the H−difference F (t + h) − F (t) exists. Now by the

differentiability of F the term on R.H.S goes to zero as h → 0+, that is F (·) is right

continuous. Similarly left continuity of F (·) can be proved.

The following two theorems follow immediately from Theorem 5.6 and Theorem

5.7 of Kaleva (1987), respectively.
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Theorem 3.4.14. Let F : T → (E1)n be continuous. Then for all t ∈ T the integral

G(t) =
� t

t0
F is differentiable and Ġ(t) = F (t).

Theorem 3.4.15. Let F : T → (E1)n be differentiable and assume that the derivative

Ḟ is integrable over T . Then for each t ∈ T we have

F (t) = F (a) +

� t

t0

Ḟ .

By using Theorems 3.4.13-3.4.15, the following lemma is immediate.

Lemma 3.4.16. A mapping x : T → (E1)n is a solution to the problem (3.27) if and

only if it is continuous and satisfies the integral equation

x(t) = x0 +

� t

t0

f(s, x(s))ds (3.42)

for all t ∈ T .

If f is Lipschitz continuous then the problem (3.27) has a unique solution on T . The

following theorem depicts this fact.

Theorem 3.4.17. Let f : T × (E1)n → (E1)n be continuous and assume that there

exists a k > 0 such that D∗(f(t, x), f(t, y)) ≤ kD∗(x, y) for all t ∈ T and x, y ∈ E.

Then the problem (3.27) has a unique solution on T .

Proof. Let C(J, (E1)n) denotes the set of all continuous mappings from J to (E1)n,

where J is an interval in R. We metricize C(J, (E1)n) by defining a new metric by

H(φ,ψ) = sup
t∈J

D∗(φ(t),ψ(t)). (3.43)

Since ((E1)n, D∗) is a complete metric space, therefore C(J, (E1)n) is also complete.

Now let (t2, y) ∈ T × (E1)n be arbitrary and η > 0 be such that ηk < 1. We shall

show that the initial value problem

ẋ(t) = f(t, x(t)), x(t2) = y, (3.44)
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has a unique solution on the interval I = [t2, t2 + η].

For ξ ∈ C(I, (E1)n) define G(ξ) on I by the equation

G(ξ)(t) = y +

� t

t2

f(s, ξ(s)ds).

Then by Corollary 3.4.11 G(ξ) ∈ C(I, (E1)n). Furthermore, by Theorem 3.4.9 and the

Lipschitz continuity of f , we have

H(G(φ), G(ψ)) = sup
t∈I

D∗(

� t

t2

f(s,φ(s))ds,

� t

t2

f(s, ψ(s))ds)

≤
� t2+η

t2

D∗(f(s,φ(s)), f(s,ψ(s)))ds

≤
� t2+η

t2

kD∗(φ(s),ψ(s))ds ≤ kηH(φ,ψ).

for all φ,ψ ∈ C(I, (E1)n). Hence by Banach’s contraction mapping theorem, G has a

unique fixed point, which by Lemma 3.4.16 is the desired solution to the problem.

Express T as a union of a finite family of intervals Ik with the length of each interval

less than η. The above analysis guarantees the existence of the unique solution in each

of the interval Ik. Piecewise joining of these solutions together gives the existence of

the unique solution in whole interval T .

Remark 3.4.18. Let A : T → (E1)n×n, be continuous matrix valued functions and

B : T → (E1)n is continuous. Let g : T × (E1)n → (E1)n is given by

g(t, x(t)) = A(t)x(t) + B(t).

Let A(t) := [aij(t)] and [aα
ij(t), a

α
ij(t)] be the α-cut of aij(t). By the proof of Corollary

3.4.8, |aα
ij(t)| and |aα

ij(t)| will be bounded by a constant K free from α and t for all

1 ≤ i, j ≤ n. Then it can be shown that

D∗(f(t, x), f(t, y)) ≤ nKD∗(x, y).

Hence by Thoerem 3.4.17, the fuzzy initial value problem

ẋ(t) = g(t, x(t)), x(t0) = x0
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has a unique solution on T .

3.5 Conclusion

In the chapter, we have studied the behavior of solutions of nonlinear ODEs with fuzzy

initial conditions and fuzzy inputs. Further, for the linear systems with fuzzy initial con-

ditions and fuzzy inputs, we have obtained a closed form formula for the solutions using

the transition matrix for the fuzzified linear system. Also, the existence and uniqueness

of solutions of a fuzzy initial value problem in (E1)n is established. The results of the

chapter can be treated as the generalizations to some of the results in the literature, for

example, Kaleva (1987), Seikkala (1987) and Xu et al. (2007). Clearly, the present

investigation enriches our knowledge about the solutions of the systems considered in

this chapter.
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CHAPTER 4

Controllability of Fuzzy Dynamical Systems

4.1 Introduction

Controllability of the classical crisp systems, that is, systems governed by continuous

time or discrete time differential equations, has been extensively explored in the lit-

erature. So far in the literature only for linear systems the controllability conditions

and computation of controls are easy to determine. However, unfortunately, many of

the real world systems are nonlinear in nature and in general, for nonlinear systems no

such simple criterion for controllability or computation of steering controls exist. Fuzzy

logic control techniques have been proved quite useful to provide a cost effective and

reasonably accurate model that collectively represents nonlinearities and uncertainties

in the underline system. Recently, in the literature there has been growing interests in

tackling the real world control problems by using the fuzzy logic control techniques.

Starting from the seminal work by Zadeh on fuzzy sets (cf. Zadeh (1965)), the

area of fuzzy systems has been enormously grown. Broadly fuzzy systems are catego-

rized in to three main categories, namely, pure fuzzy systems, that is, systems governed

by fuzzy differential equations (cf. Ding and Kandel (2000a,b), Dubey and George

(2013a,c), Feng and Hu (2006), Kwun et al. (2009), Murty and Kumar (2008a), Phu

and Dung (2011)) or fuzzy relational equations (cf. Cai and Tang (2000), Farinwata

and Vachtsevanos (1993), Gupta et al. (1986)), T-S fuzzy systems (cf. Biglarbegian

et al. (2012), Chen et al. (2012), Gassara et al. (2010)) and fuzzy logic systems using

fuzzifiers and defuzzifiers. To the best of our knowledge about the literature, controlla-

bility of fuzzy dynamic systems has been investigated from the two different prospects,

namely, controllability of fuzzy dynamic systems governed by fuzzy relational equa-

tions and controllability of fuzzy dynamic systems governed by fuzzy differential equa-

tions or T-S fuzzy systems. Fuzzy logic control techniques provide a general framework

to deal with the controllability of nonlinear systems or systems with uncertainty. The



basic idea in fuzzy logic control techniques is to combine the differential equation (plant

model) with the expert knowledge in the form of if-then rules or sometimes in terms of

fuzzily modelled parameters. An study of this approach of intelligent control in which

low level linear model of the system is incorporated with the high level supervisory

control in the form of if-them rules is mainly studied by Ding and Kandel (2000a,b).

Moreover, the authors in Ding and Kandel (2000c); Ding et al. (2000) carried out an

observability study (a concept dual of controllability) for the similar fuzzy dynamic

systems. Other methods, in which if-then rules are used, are mainly depending on the

fact that local dynamics of the system in different state space regions is represented

by different linear models depending on if-then fuzzy rules. Then, the overall system

model is represented by the fuzzy interpolation of the various local state-space models.

Many researchers have studied many important properties namely stability (cf. Feng

et al. (1997)), controllability (cf. Biglarbegian et al. (2012), Chen et al. (2009)) and re-

liable control design (cf. Chen and Liu (2004)) of fuzzy dynamic systems based on this

approach. Although this method of fuzzy blending of various state-space linear models

based on if-then rules is computationally efficient, however it has a disadvantage that

the overall model itself can incorporate some undesirable errors due to imprecise if-then

rules.

There are other studies proposed in the literature without any explicit supervisory

if-then rules and the fuzziness in the system is incorporated intrinsically through various

parameters, for example, initial condition, plant parameters, and control variables. Xu

et al. (2007, 2010) have systematically studied the evolution of time-invariant differen-

tial dynamical systems with fuzzy initial condition and fuzzy plant parameters, respec-

tively. Many authors, for instance, Feng and Hu (2006), Ding and Kandel (2000a,b),

Dubey and George (2013a, 2012a) and Kwun et al. (2009, 2008) have studied the con-

trollability of fuzzy differential dynamical systems with intrinsic fuzziness; also com-

putation of fuzzy controls that steer the given initial state to a prescribed target state is

also provided.

In our work, we will investigate controllability of the fuzzy dynamic systems from

the aspects of fuzzy differential equations. We consider linear systems with fuzzy initial

condition and fuzzy inputs and establish results on the controllability properties of the

56



system. We will also introduce a concept of ‘fuzzy-controllability’ a concept weaker

than controllability and provide a computational procedure for estimation of control-

lable initial fuzzy states (cf. Dubey and George (2012a)). Our results on controllability

can be regarded as the extension of some of the results in Feng and Hu (2006) and Ding

and Kandel (2000a). In Feng and Hu (2006), the authors assumed the initial condition

to be in Rn, whereas we establish our results by assuming the initial condition to be in

(E1)n, a much wider class than Rn. Furthermore, we prove that the controllability of

the pair (A∗, B∗) obtained by flip operations (refer to Section 4.2) on the matrix pair

(A,B) is equivalent to the controllability of the pair (A, B) and the pair (|A|, |B|), to-

gether. These results are discussed in Section 4.2. In Section 4.3, we have improved

some of the results on controllability of fuzzy dynamical systems due to Ding and Kan-

del (2000a,b). Particulary, we have relaxed the invertibility assumption of input-to-state

matrix B(t) which is assumed in Ding and Kandel (2000a). Our results are established

for a general input-to-state matrix B(t). We conclude the chapter in Section 4.4.

4.2 Controllability: Levelwise Approach

Our aim in this section is to investigate the controllability of the time-invariant systems

of the type 



ẋ(t) = Ax(t) + Bu(t)

x(t0) = X0, t1 ≥ t ≥ t0 ≥ 0,

(4.1)

where A and B are the n × n, and n × m real matrices respectively. The initial state

X0 ∈ (E1)n and the input u(t) ∈ (E1)m for each t ∈ [t0, t1] and u(·) is fuzzy-integrable

function in [t0, t1].

Let us recall the structure of the solutions of systems (4.1). By Theorem 3.2.1, the

solution of system (4.1) is given by the following lemma.

Lemma 4.2.1. For α ∈ [0, 1], let xα
k (t) = [xα

k (t), xα
k (t)] be the α-cut of xk(t) for

1 ≤ k ≤ n and uα
j (t) = [uα

j (t), uα
j (t)] be the α−cut of uj(t) for 1 ≤ j ≤ m then the
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evolution of system (4.1) is described by the following 2n−differential equations :





ẋα
k (t) = min((Az + Bw)k : zi ∈ [xα

i (t), xα
i (t)],

wj ∈ [uα
j (t), uα

j (t)])

ẋα
k (t) = max((Az + Bw)k : zi ∈ [xα

i (t), xα
i (t)],

wj ∈ [uα
j (t), uα

j (t)])

xα
k (t0) = Xα

0k

xα
k (t0) = Xα

0k,

(4.2)

where 1 ≤ k ≤ n, and (Az+Bw)k = Σn
i=1akizi+Σm

j=1bkjwj is the kth row of Az+Bw.

We now introduce the following new variables :

xα(t) := [xα
1 (t), xα

2 (t), . . . , xα
n(t)]T ,

xα(t) := [xα
1 (t), xα

2 (t), . . . , xα
n(t)]T ,

where [xα
k (t), xα

k (t)] is the α-cut of xk(t) for 1 ≤ k ≤ n. uα(t) and uα(t) are similarly

defined. We denote xα
∗ (t) := [(xα(t))T , (xα(t))T ]T := [xα

1 (t), . . . , xα
n(t), xα

1 (t), . . . , xα
n(t)]T

a column vector of size 2n. uα
∗ (t) is similarly defined.

By using these variables, equations (4.2) can be represented in a compact form as

given below. For α ∈ [0, 1],

ẋα
∗ (t) = A∗xα

∗ (t) + B∗uα
∗ (t), xα

∗ (t0) = Xα
0 ∗,

in which A∗ and B∗ are defined as follows :

(i) If A has all its entries non-negative then A∗ = M and B∗ = N , where

M =


 A 0

0 A


 , N =


 B 0

0 B


 ,

i.e., M is a block diagonal matrix of size 2n × 2n and N is a block diagonal

matrix of size 2n× 2m. We denote M = [mij ], 1 ≤ i, j ≤ 2n and N = [nij ], 1 ≤
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i ≤ 2n, 1 ≤ j ≤ 2m. Let the symbol “mij ←→ mkl” means that the entry in ith

row and jth column of M is swapped by the entry in kth row and lth column of

M , and vice versa. “nij ←→ nkl” is similarly defined.

(ii) If A has some of its entries negative then A∗ is obtained by the following flip

operations on the entries of M .

mij ←→ mi(j+n) if 1 � j � n and mij < 0,

mij ←→ mi(j−n) if n < j � 2n and mij < 0.

(iii) If B has some of its entries negative then B∗ is obtained by the following flip

operations on the entries of N .

nij ←→ ni(j+m) if 1 � j � m and nij < 0,

nij ←→ ni(j−m) if m < j � 2m and nij < 0.

(iv) If u(t) ∈ Rm is a crisp vector instead of being a vector of fuzzy numbers, then

B∗ can be taken as N and in this case uα
∗ (t) = [uT (t), uT (t)]T .

Remark 4.2.2. It can be easily shown that for any matrix A ∈ Rm×n, we have

(A∗)T = (AT )∗,

where AT denotes the transpose of A.

The following examples illustrates the above defined flip operations.

Example 4.2.3. Let

A =


 −1 2

2 −1


 ,M =




−1 2 0 0

2 −1 0 0

0 0 −1 2

0 0 2 −1.




.

Then A∗ is given by

A∗ =




0 2 −1 0

2 0 0 −1

−1 0 0 2

0 −1 2 0




.
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In A∗, the negative entries m11, m22, m33, m44 of the matrix M are flipped by m13, m24,

m31 and m42, respectively.

We will now define the controllability for the fuzzy dynamical system (4.1).

Definition 4.2.4. (Controllability) The system (4.1) with fuzzy initial condition x(t0) =

X0 ∈ (E1)n is said to be controllable to a fuzzy-state X1 ∈ (E1)n at t1(> t0) if there

exists a fuzzy-integrable control u(t) ∈ (E1)m for t ∈ [t0, t1] such that the solution of

system (4.1) with this control satisfies x(t1) = X1.

We will now give sufficient conditions for the controllability of fuzzy dynamical

system (4.1). Note that if the pair (A∗, B∗) is controllable then a control u(·) which

steers the system ẋ(t) = A∗x(t) + B∗u(t) from an initial state x0 in R2n to a desired

state x1 in R2n during time interval [t0, t1] is given by

u(t) � η(t, t0, t1, x0, x1)

:= B∗T Φ∗T (t0, t)W
∗−1(t0, t1)[Φ

∗(t0, t1)x1 − x0],

where Φ∗(t, τ) denotes the transition matrix for the system ẋ(t) = A∗x(t) and W ∗(t0, t1) :=
� t1

t0
Φ∗(t0, τ)B∗B∗T Φ∗T (t0, τ)dτ is the controllability Grammian for the system ẋ(t) =

A∗x(t) + B∗u(t).

Theorem 4.2.5. The system (4.1) with fuzzy initial condition X0 ∈ (E1)n is controllable

to X1 ∈ (E1)n during time interval [t0, t1] if

(i) The Pair (A∗, B∗) is controllable.

(ii) The function u(·), characterized by [u(t)]α = [uα(t), uα(t)], where uα(t), uα(t)

are defined by [(uα(t))T , (uα(t))T ]T := η(t, t0, t1, X
α
0 ∗, X

α
1 ∗), belongs to (E1)m.

Proof. Since the evolution of the system (4.1) is given by the following levelwise set of

equations :

ẋα
∗ (t) = A∗xα

∗ (t) + B∗uα
∗ (t),α ∈ [0, 1]. (4.3)

Using condition (i), it follows that for each α ∈ [0, 1], there exists a control ũα
∗ (t) :=

η(t, t0, t1, X
α
0 ∗, X

α
1 ∗) with which the solution of system (4.3) with initial crisp state
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xα
∗ (t0) = Xα

0 ∗ satisfies xα
∗ (t1) = Xα

1 ∗. Condition (ii) now implies that there exists a

function ũ(·) such that ũ(t) ∈ (E1)m for each t ∈ [t0, t1] and [(ũα(t))T , (ũα(t))T ]T =

η(t, t0, t1, X
α
0 ∗, X

α
1 ∗). Since ũα

∗ (t) is integrable in [t0, t1], therefore
� t1

t0
ũα(t) and

� t1
t0

ũα(t)

are well defined, which implies that ũ(t) is fuzzy-integrable in [t0, t1]. Hence ũ(t) is

a fuzzy-controller with which the solution of system (4.1) with fuzzy initial condition

x(t0) = X0 satisfies

xα
∗ (t1) = Xα

1∗ for all α ∈ [0, 1].

From the above equation it follows that, for all α ∈ [0, 1],

xα(t1) = Xα
1 and xα(t1) = Xα

1 .

From the last equation it follows that x(t1) = X1. Hence system (4.1) with initial

condition X0 ∈ (E1)n is controllable to the fuzzy state X1 ∈ (E1)n during time interval

[t0, t1].

Remark 4.2.6. Note that in the proof of Theorem 4.2.5, we require pair (A∗, B∗) to

be controllable only on a proper subset of R2n therefore we can replace the condition

(i) of Theorem 4.2.5 by a weaker condition. Let S2n be a subset of R2n such that

S2n = {x : x ∈ R2n, x(i) ≤ x(i + n), 1 ≤ i ≤ n}. The condition (i) of Theorem

4.2.5 can be replaced by controllability of the pair (A∗, B∗) on S2n and it is also the

necessary condition for system (4.1) to be controllable, as shown in following theorem.

Theorem 4.2.7. If the system (4.1) is controllable then the pair (A∗, B∗) is controllable

on S2n.

Proof. Let x0, x1 ∈ S2n be any two crisp states. Get two fuzzy-states X0 and X1 in

(E1)n such that x0 = Xα
0 ∗ and x1 = Xα

1 ∗ for some α ∈ [0, 1]. This is always possible

because of the structure of S2n. Since the system (4.1) is controllable, therefore it fol-

lows that there exists a fuzzy-controller ũ(·) with which the solution of (4.1) with initial

condition x(t0) = X0 satisfies x(t1) = X1. Therefore, the control uα
∗ (t) := ũα

∗ (t) with

values in R2m, will steer the levelwise decomposed system ẋα
∗ (t) = A∗xα

∗ (t)+B∗uα
∗ (t)

from x0 to x1 during time interval [t0, t1]. Hence the pair (A∗, B∗) is controllable on

S2n.
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Since controllability of pair (A∗, B∗) is required in establishing the controllability

of system (4.1). In general, checking the controllability conditions for the pair (A∗, B∗)

is computationally inefficient due to the fact that the sizes of A∗ and B∗ are twice that of

the original matrices A and B, respectively. However, alternatively, the controllability

of the pair (A∗, B∗) can be checked in an efficient way as expressed by the following

result. Let |A| denotes the matrix of the size as that of A and whose entries are the

absolute values of the corresponding entries in A. |B| is similarly defined.

Theorem 4.2.8. Pair (A∗, B∗) is controllable if and only if the pair (A,B) and the pair

(|A|, |B|) are both controllable.

Proof. Assume that pair (A∗, B∗) is controllable. We want to show that (A,B) and

(|A|, |B|) are also controllable. We will prove it by the method of contradiction. Sup-

pose first that the pair (A,B) is not controllable, then by PBH test of controllability,

there exists a non-zero eigenvector v and an eigenvalue λ of AT such that

AT v = λv and BT v = 0. (4.4)

Define a vector w = [v, v]T , then from Eq. (4.4) we have

(AT )∗w = λw and (BT )∗w = 0. (4.5)

Since (AT )∗ = (A∗)T and (BT )∗ = (B∗)T , Eq. (4.5) implies

A∗T w = λw and B∗T w = 0. (4.6)

By PBH test, Eq. (4.6) implies that the pair (A∗, B∗) is not controllable contrary to

the assumption. Similarly, if the pair (|A|, |B|) is not controllable then there exists a

non-zero vector v ∈ Rn such that

|A|T v = λv and |B|T v = 0. (4.7)

Now, by taking w = [v,−v]T , (4.6) follows from (4.7), which is again a contradiction.

Conversely, assume that (A,B) and (|A|, |B|) are controllable, we want to show that
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the pair (A∗, B∗) is controllable. Suppose (A∗, B∗) is not controllable, then there exists

a non-zero eigenvector vector x = (x1, x2, . . . , xn, xn+1, . . . , x2n) and an eigenvalue λ

of A∗T such that

A∗T x = λx and B∗T x = 0. (4.8)

Now define a vector v = (v1, v2, . . . , vn) such that vi = xi + xn+i for each i =

1, 2, . . . , n. Then, from (4.8) it follows that

AT v = λv and BT v = 0.

The last equation is contrary to the fact that pair (A,B) is controllable. Next choose

v = (v1, v2, . . . , vn) such that vi = xi − xn+i for each i = 1, 2, . . . , n. Then, from Eq.

(4.8) we have

|A|T v = λv and |B|T v = 0.

The last equation shows that the pair (|A|, |B|) is also not controllable, a contradiction.

Hence the lemma.

Remark 4.2.9. Following closely the proof given above, it can also be shown that pair

(|A∗|, |B∗|) is controllable if and only if the pair (A,B) and the pair (|A|, |B|) are both

controllable.

Using Theorem 4.2.8 and the remark thereof, the following corollary is obvious.

Corollary 4.2.10. Pair (|A∗|, |B∗|) is controllable if and only if the pair (A∗, B∗) is

controllable.

It is worthwhile to note that the condition (ii) of Theorem 4.2.5 inherently states that

the controllability of system (4.1) not only depends on the matrices A and B but also on

the initial and final fuzzy-states, whereas crisp-controllability of system (4.1) depends

only on matrices A and B. Therefore, given any arbitrary initial state X0 ∈ (E1)n it

may not be possible to control the system to an arbitrary state X1 ∈ (E1)n. However,

if the initial state is crisp, that is, X0 ∈ Rn then the set of all reachable fuzzy states

from X0 can be characterized more precisely by using a result due to Feng and Hu

(2006)[Theorem 3.4]. Thus, we have the following theorem.
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Theorem 4.2.11. The fuzzy control system (4.1) with the arbitrary initial condition

x0 ∈ Rn can be steered to any fuzzy state in the admissible controllable state subset

(E1
0)

n of (E1)n if and only if the pair (A∗, B∗) is controllable. And the admissible

controllable state subset (E1
0)

n of (E1)n is given by :

(E1
0)

n = {V ∈(E1)n |V 1 − V 1 ∈
�

t0≤t≤t1

(Ψ(t))−1Rm
+ and

d

dα


 V α

−V
α


 ∈

�

t0≤t≤t1

(Ψ∗(t))−1R2m
+ ,

α ∈ (0, 1]},

where Ψ(t), Ψ∗(t) are defined as follows :

Ψ(t) = |B|T ΦT
|A|(t1, t)W

−1
1 (t1, t0),

in which Φ|A|(t, s) is the transition matrix for the system ẋ = |A|x and W1(t1, t0) is

defined by

W1(t1, t0) =

� t1

t0

Φ|A|(t1, s)|B||B|T ΦT
|A|(t1, s)ds.

Ψ∗(t) = |B∗|T ΦT
|A∗|(t1, t)W

−1
2 (t1, t0),

where Φ|A∗|(t, s) is the transition matrix for the system ẋ = |A∗|x and W2(t1, t0) is

defined by

W2(t1, t0) =

� t1

t0

Φ|A∗|(t1, s)|B∗||B∗|T ΦT
|A∗|(t1, s)ds.

Proof. By Corollary 4.2.10, controllability of the pair (A∗, B∗) is equivalent to the

controllability of pair (|A∗|, |B∗|). Now the proof follows along the similar lines of the

proof of Theorem 3.4 of Feng and Hu (2006).

We will now provide a closed form formula for the steering fuzzy control that can be

applied to the systems of type (4.1) with the matrices A, B having non-negative entries.

For a matrix A, A ≥ 0, we mean that all the entries of A are non-negative. When A ≥ 0

and B ≥ 0, we have the following result.

Theorem 4.2.12. Let A,B ≥ 0 in system (4.1) and the controllability Grammian
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W (t0, t1) :=
� t1

t0
Φ(t0, t)BBT ΦT (t0, t) for the system (4.1) is non singular then a fuzzy-

controller u(·), which steers an initial fuzzy-state X0 ∈ (E1)n to a desired fuzzy-state

X1 ∈ (E1)n during time interval [t0, t1], is given by

[u(t)]α = [BT ΦT (t0, t)W
−1(t0, t1)(Φ(t0, t1)�X1

α − Xα
0 ), (4.9)

BT ΦT (t0, t)W
−1(t0, t1)(Φ(t0, t1)�X1

α − Xα
0 )]

provided [u(t)]α defines a fuzzy number in (E1)m and [�X1

α
, �X1

α
= [Xα

1 +Φ(t1, t0)(Xα
0 −

Xα
0 ), Xα

1 − Φ(t1, t0)(Xα
0 − Xα

0 )].

Proof. Under the condition A,B ≥ 0, the evolution of the system (4.1) is given by the

following set of levelwise decomposed linear differential equations (see Lemma 4.2.1).





ẋα(t) = Axα(t) + Buα(t)

ẋα(t) = Axα(t) + Buα(t)

xα(t0) = Xα
0

xα(t0) = Xα
0 ,

(4.10)

where α ∈ [0, 1]. From (4.9), uα(t) and uα(t) are obtained as below.

uα(t) = BT ΦT (t0, t)W
−1(t0, t1)(Φ(t0, t1)�X1

α − Xα
0 ),

uα(t) = BT ΦT (t0, t)W
−1(t0, t1)(Φ(t0, t1)�X1

α − Xα
0 ).

The solution of system (4.10) is given by following two equations :

xα(t) = Φ(t, t0)X
α
0 +

� t

t0

Φ(t, τ)Buα(τ)dτ. (4.11)

xα(t) = Φ(t, t0)Xα
0 +

� t

t0

Φ(t, τ)Buα(τ)dτ. (4.12)
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From Eq. (4.11) we have,

xα(t1) = Φ(t1, t0)X
α
0 +

� t1

t0

Φ(t1, τ)Buα(τ)dτ,

= Φ(t1, t0)X
α
0 +

� t1

t0

Φ(t1, τ)BBT ΦT (t0, τ)

W−1(t0, t1)(Φ(t0, t1)�X1

α − Xα
0 )dτ,

= Φ(t1, t0)X
α
0 +

Φ(t1, t0)WW−1(Φ(t0, t1)�X1

α − Xα
0 ),

= �X1

α − Φ(t1, t0)(Xα
0 − Xα

0 ) = Xα
1 . (4.13)

Similarly from Eq. (4.12), we can show that

xα(t1) = �X1

α
+ Φ(t1, t0)(Xα

0 − Xα
0 ) = Xα

1 . (4.14)

Equations (4.13) and (4.14) together imply that x(t1) = X1. Hence system (4.1) with

the control u(·) given in Eq. (4.9) steers X0 to X1 during time interval [t0, t1].

Remark 4.2.13. From Theorem 4.2.5 and Theorem 4.2.12, it is evident that not all

states in (E1)n are controllable from an initial state in (E1)n even if the crisp system

is controllable, that is, pair (A∗, B∗) is controllable. This is so because for certain

target states X1 ∈ (E1)n the controller u(t) (as in condition (ii) of 4.2.5) steering the

initial state X0 to X1 during [t0, t1] need not necessarily belong to (E1)m. It is easy

to construct examples of the systems with initial fuzzy state X0 at time t0 and target

fuzzy state X1 at time t1, for which the control u(t) fails to be (E1)m. Conclusively,

complete controllability for the fuzzy systems, in general, can not be achieved. Also,

against the intuition, the controllability of fuzzy system (4.1) is stronger than that of

crisp system. that is, system (4.1) with crisp initial conditions (i.e., X0 ∈ Rn) and crisp

inputs (i.e., u(t) ∈ Rm).

We shall give an example to show that not all fuzzy states are reachable from a given

initial fuzzy state in (E1)n.

Example 4.2.14. Let

ẋ(t) = x(t) + 2u(t)
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and x(0) = X0 and x(1) = X1, where X0 is the initial fuzzy state and X1 is the desired

fuzzy state in E1. X0 and X1 are defined as follows :

X0(s) =





s
2

+ 1 s ∈ [−2, 0]

− s
2

+ 1 s ∈ [0, 2]
,

X1(s) =





s s ∈ [0, 1]

2 − s s ∈ [1, 2].

The α-cut of X0 is given by

[X0]α = [2(α − 1), 2(1 − α)]

and the α cut of X1 given by

[X1]α = [α, 2 − α].

According to the Theorem 4.2.12 the α-level sets [u(t)]α of the control [u(t)] is given by

[u(t)]α =
� e−t

(1 − e2)
(e−1 �X1

α − Xα
0 ),

e−t

(1 − e2)
(e−1 �X1

α − Xα
0 )

�
, (4.15)

where

�X1

α
= X1

α + e(X0
α − X0

α)

= α + 4e(1 − α),

and

�X1

α
= X1

α − e(X0
α − X0

α)

= (2 − α) − 4e(1 − α).

Now from Eq. (4.15), we have

[u(t)]α =
� e−t

(1 − e2)
(e−1α + 2(1 − α)),

e−t

(1 − e2)
(e−1(2 − α) − 2(1 − α))

�
.

We will now show that the control u(t) characterized by [u(t)]α does not belong to
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E1. This can be proved by simply showing that uα(t) > uα(t). Since e−t

(1−e2)
> 0 and

e−1α + 2(1 − α) > e−1(2 − α) − 2(1 − α) for all α ∈ [0, 1). Thus, it follows that

uα(t) > uα(t). Hence u(t) /∈ E1.

We will now provide examples to demonstrate controllability of systems of the type

(4.1). Examples 4.2.15, 4.2.16 apply to Theorem 4.2.12 and Theorem 4.2.5, respec-

tively.

Example 4.2.15. Let

ẋ(t) = x(t) + 2u(t)

and x(0) = X0 and x(1) = X1, where X0 and X1 are in E1 and are defined as follows :

X0(s) =





e
1− 1

1−4s2 |s| ≤ 1
2

0 |s| ≥ 1
2

,

X1(s) =





e
1− 4

4−s2 |s| ≤ 2

0 |s| ≥ 2.

In the setting of above example, we have Φ(t, τ) = et−τ and W (0, 1) = 2(1−e2). Using

equation (4.9) the fuzzy-controller, which steers the initial fuzzy state X0 to target fuzzy

state X1 during time-interval [0, 1], is given by

u(t) =
e−t

(1 − e2)
[e−1 �X1 − X0],

where the fuzzy number �X1 is defined as follows :

∀α ∈ (0, 1], [�X1]α = [Xα
1 + e(Xα

0 − Xα
0 ), Xα

1 − e(Xα
0 − Xα

0 ).

The propagated state at time t = 1 (Figure 4.1d) coincides with the desired target state

(Figure 4.1b). In Figure 4.2, lower and upper cuts of the control and system-states are

plotted corresponding to α = .5. It can be seen in the Figure (4.2b) that [X0]·5 is steered

to [X1]·5 during time-interval [0, 1].

Example 4.2.16. Let

ẋ(t) = −x(t) − 2u(t)
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(c) Propagated system-state at t = 3/4
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Figure 4.2: Control and state plots for α = ·5 during [0, 1]
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and x(0) = X0 and x(1) = X1, where X0 and X1 are in E1 and are defined as follows :

X0(s) =





2s 0 ≤ s ≤ 1
2

2 − 2s 1
2
≤ s ≤ 1

,

X1(s) =





s
4

0 ≤ s ≤ 4

2 − s
4

4 ≤ s ≤ 8.

In this case, the evolution of system is given by the following level-wise equations :


 ẋα(t)

ẋα(t)


 =


 0 −1

−1 0





 xα(t)

xα(t)


 +


 0 −2

−2 0





 uα(t)

uα(t)


 .

Using Theorem 4.2.5, the fuzzy-controller u(·) which steers X0 to X1 during time-

interval [0, 1], is given by the following α-cut representation :

[u(t)]α =[−1.399et + e−t(1.1238α − 1.349),

− 1.399et + e−t(−1.1238α + 1.349)]. (4.16)

It is clear from Figure 4.3 that the initial fuzzy-state X0 is steered to the desired target

state X1 during time-interval [0, 1]. In Figure 4.4, lower and upper α-cuts of the control

and system-states are plotted corresponding to α = .5. It can be easily seen in the

Figure (4.4b) that [X0].5 is steered to [X1].5 during time-interval [0, 1].

4.2.1 Fuzzy-controllability

Now we will introduce the concept of fuzzy-controllability for system (4.1), a concept

weaker than controllability. Terdpravat (2004) in his MS thesis has introduced a similar

concept called "controllability in fuzzy sense" and proved some of the results associated

with it. However, there were some discrepancies in some of his results which we have

rectified and that resulted in to the present investigation.
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In fuzzy-controllability one looks for a control such that the initial fuzzy state can

be steered to within the desired target fuzzy state. We provide an estimate of initial

fuzzy state that can be controlled to a predefined target fuzzy state, that is, given any

two crisp states x0, x1 in Rn, and a fuzzy state X1 around x1, we compute a fuzzy state

X0 around x0 so that X0 is fuzzy-controllable to X1. In a special case, when the plant

matrix has non-negative entries, the fuzzy state X0 is fuzzy-controllable to X1 with the

crisp control that steers x0 to x1.

We will now define the fuzzy-controllability of system (4.1).

Definition 4.2.17. System (4.1) with fuzzy initial condition x(t0) = X0 ∈ (E1)n is said

to be fuzzy-controllable to a fuzzy state X1 ∈ (E1)n at t1(> t0) if there exists a fuzzy-

integrable control u(·) ∈ (E1)n such that the solution of system (4.1) with this control

satisfies x(t1) � X1.

By a fuzzy state X ∈ (E1)n around x ∈ Rn, we mean that X1
∗ = [x, x]T , that is,

X1 = X1 = x. If X ∈ (E1)n around x ∈ Rn with X �= x, in the sense of natural

imbedding of x in (E1)n, then we call X as a nontrivial fuzzy state around x.

We will now show that given a target fuzzy state X1 in (E1)n around x1, we can al-

ways find a nontrivial fuzzy state X0 in (E1)n around x0 so that X0 is fuzzy-controllable

to X1. The following theorem gives an estimate of initial fuzzy state X0 with which the

system (4.1) is fuzzy-controllable to the target fuzzy state X1.

Theorem 4.2.18. Let the system pair (A∗, B∗) be controllable and x0, x1 ∈ Rn. As-

sume further that there exists a control u∗(·) ∈ L2([t0, t1]; R2m) with the following

properties :

(H1) The crisp system ẋ(t) = A∗x(t) + B∗u(t) with the control u∗(·) steers [x0, x0]
T

to [x1, x1]
T during time interval [t0, t1].

(H2) For 1 ≤ k ≤ m, u∗
k(t) ≤ u∗

k+m(t) in which u∗
k(t) is the kth component of u∗(t).

Then given any nontrivial fuzzy state X1 ∈ (E1)n around x1, there exist a nontrivial

fuzzy state X0 ∈ (E1)n around x0 and a control u(·) ∈ (E1)m such that the system (4.1)

with fuzzy initial condition X0 and the control u(·) is fuzzy-controllable to X1 during

time interval [t0, t1].
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Proof. Using hypothesis (H2), define u(t) = [u1(t), u2(t), . . . , um(t)]T ∈ Em for t ∈
[t0, t1] in which each uk(t) for 1 ≤ k ≤ m is a rectangular fuzzy number on R defined

by the following α−cut representation. For α ∈ (0, 1],

[uk(t)]α = [u∗
k(t), u

∗
k+m(t)].

Clearly u(·) is fuzzy-integrable. Let X0 ∈ (E1)n be a fuzzy state around x0, which we

will characterize at the end of proof. Assume without loss of generality that [X1]α =

[x1 − γα, x1 + γα], where γα = [γα
1 , γα

2 , . . . , γα
n ]T with γα

k ∈ R+ for 1 ≤ k ≤ n,

α ∈ (0, 1], that is, α−cut of the kth component of X1 is given by [x1k − γα
k , x1k + γα

k ].

The evolution of system (4.1), with fuzzy initial condition X0 and the control u(·) as

defined above, is given by the following equations (see Lemma 4.2.1). For α ∈ (0, 1],





ẋα
∗ (t) = A∗xα

∗ (t) + B∗uα
∗ (t)

xα
∗ (t0) = X0

α
∗ , t ≥ t0,

(4.17)

The solution of system (4.17) at time t1 is given by

xα
∗ (t1) = Φ∗(t1, t0)x

α
∗ (t0) +

� t1

t0

Φ∗(t1, τ)B∗u∗(τ)dτ, (4.18)

where Φ∗(t, τ) denotes the transition matrix for system ẋ(t) = A∗x(t). Denote [x1, x1]
T ,

a vector in R2n, by x∗1 and similarly [x0, x0]
T by x∗0. Setting α = 1 in Eq. (4.18) and

using hypothesis (H1), we have

x∗1 = Φ∗(t1, t0)x
0
∗ +

� t1

t0

Φ∗(t1, τ)B∗u∗(τ)dτ (4.19)

Subtracting (4.19) from (4.18), we have

�xα
∗ (t1) − x∗1� ≤ �Φ∗(t1, t0)� �xα

∗ (t0) − x∗0�, (4.20)

where �Φ∗(t1, t0)� = sup
x�=0

�
�Φ∗(t1,t0)x�

�x�

�
and �.� denotes the 2-norm. From equation

(4.20) it follows that

�xα
∗ (t1) − x∗1�∞ ≤

√
2n�Φ∗(t1, t0)��xα

∗ (t0) − x∗0�∞, (4.21)
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where �.�∞ denotes the infinity-norm. Let βα =
γα

min√
(2n)�Φ∗(t1,t0)�

, where γα
min =

min[γα
1 , γα

2 , . . . , γα
n ]. Now define the fuzzy initial state x(t0) = X0 ∈ (E1)n by [X0]α =

[x0−βα, x0+βα], where βα = [βα, βα, . . . , βα]T ∈ Rn, α ∈ (0, 1]. With such a choice

of fuzzy initial state X0, Eq. (4.21) implies

�xα
∗ (t1) − x∗1�∞ ≤ γα

min

which in turn shows that the propagated fuzzy state at time t1 satisfies x(t1) ≤ X1.

Hence X0 is the required initial fuzzy state with which system (4.1) is fuzzy-controllable

to X1 with the control u(·) during time interval [t0, t1].

Remark 4.2.19. If the entries of the matrix A are non-negative, then the control u(·) ∈
(E1)m can be taken as a crisp control ũ(·) with values in Rm that steers x0 to x1 during

time interval [t0, t1]. That is, u(·) ∈ (E1)m is obtained from ũ(·) ∈ Rm via the natural

embedding of Rm into (E1)m. Thus, for 1 ≤ k ≤ n, uk(t) ∈ E is obtained as follows :

uk(t)(s) =





1 if s = ũk(t)

0 if s �= ũk(t),
(4.22)

where uk(·) and ũk(·) are the kth component of u(·) and ũ(·), respectively.

Remark 4.2.20. In the case, when A has all its entries nonnegative then the constant

βα can be taken as γα
min√

(n)�Φ(t1,t0)�
because of the block diagonal structure of A∗. Here

Φ(t, τ) denotes the transition matrix for the system ẋ(t) = Ax(t)

In the following example, we compute a controllable initial fuzzy state that can be

controlled to a desired target fuzzy state.

Example 4.2.21. Consider the following differential equation


 ẋ1(t)

ẋ2(t)


 =


 ·5 ·1

·1 ·3





 x1(t)

x2(t)


 +


 1

−1


 u(t). (4.23)

Let x0 = [2, 3]T , x1 = [0, 1]T ∈ R2 and X1 = [X11, X12]
T ∈ E2, a fuzzy state around

x1, where X11, X12 are given by the following membership functions :

X11(s) = e
1− 1

1−s2 , X12(s) = e
1− 1

1−4(s−1)2 .
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(a) Computed initial fuzzy state X0 (b) Target fuzzy state X1 and the propa-

gated fuzzy state x(t) at t = 1

Figure 4.5: Initial fuzzy state X0 (a) is fuzzy-controllable to a desired target

fuzzy state X1 (b)

Here the steering control u(·) is taken as minimum energy control (refer to Eq. (2.4)

of Chapter 2) that steers x0 to x1 during time interval [0, 1](see Remark 4.2.19). In the

setting of above example, we have γα =

��
1 − 1

log( e
α)

� 1
2

, 1
2

�
1 − 1

log( e
α)

� 1
2

�T

.

Therefore, βα =
γα

min√
(2)�eA�

=
γα
2

3.6975
. The fuzzy number X0 = [X01, X02]

T will be given

by the following α-cut representation :

[X01]α = [2 − βα, 2 + βα] [X02]α = [3 − βα, 3 + βα].

It is clear from Figure 4.5 that system (4.23) with fuzzy initial state X0 and control u(·)
is fuzzy-controllable to X1 during time interval [0, 1].

4.3 Controllability: Differential Inclusion Approach

Ding and Kandel (2000a,b) studied the controllability of the following fuzzy dynamical

control system (FDCS) :





ẋ(t) = A(t)x(t) + B(t)U(t)

x(0) = x0, T1 ≥ t ≥ 0,

(4.24)
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where x(t), U(t) ∈ En and x0 ∈ Rn, A(t), B(t) are n × n continuous real matrices

in time interval [0, T1], where T1 is finite time. In Ding and Kandel (2000a,b), the

expressions for controls that steer the system (4.24) from an initial state x0 ∈ Rn to

a desired fuzzy state X1 ∈ En are derived. However, the authors have assumed the

invertibility of the matrix B(t). In many practical situations, the control matrix B(t)

need not be invertible, more generally it need not even be a square matrix. This is

due to the fact that number of control variables must be kept as minimum as possible,

therefore we seek the control u(t) in Em where m < n. Thus, we study controllability

of the following system in which B(t) is n × m matrix :





ẋ(t) = A(t)x(t) + B(t)U(t)

x(0) = x0 ∈ Rn, T1 ≥ t ≥ 0,

(4.25)

where x(t) ∈ (E1)n and u(t) ∈ (E1)m. A(t), B(t) are n × n, n × m continuous real

matrices in time interval [0, T1], respectively. Also, we obtain new formulae for the

controls that steer the system (4.25) from an initial state x0 ∈ Rn to a desired fuzzy

state X1 ∈ (E1)n. Before establishing the controllability results for the system (4.25),

we will briefly describe the solutions of the system (4.25). We will follow the approach

due to Ding and Kandel (2000a) for the evolution of system (4.25). The evolution of

system (4.25) is given by the following family of differential inclusions :





ẋ(t) ∈ A(t)x(t) + B(t)Uα(t), t ∈ [0, T1]

x(0) = x0,

(4.26)

where Uα(t) = Uα
1 (t) × Uα

2 (t) × . . . × Uα
m(t) and for 1 ≤ i ≤ m, Uα

i (t) be the

α-level set of Ui(t). Let Xα be the solution set to (4.26). It can be shown that Xα

is nonempty, compact and convex in C([0, T1], Rn) (for proof refer to Section 3 of

Ding and Kandel (2000a)). Now from the Arzela-Ascoli theorem we have that Xα(t)

is compact in Rn. Furthermore, Xα(t) is convex in Rn; this can be quickly seen as

follows : Let xα
1 (·), xα

2 (·) ∈ Xα. Then, there exist inputs uα
1 (t), uα

2 (t) ∈ Uα(t) for

t ∈ [0, T1], such that

ẋα
1 (t) = A(t)xα

1 (t) + B(t)uα
1 (t), (4.27)
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ẋα
2 (t) = A(t)xα

1 (t) + B(t)uα
2 (t). (4.28)

Using equations (4.27), (4.28) and given any β ∈ [0, 1], we have

βẋα
1 (t)+ (1−β)ẋα

2 (t) = A(t)(βxα
1 (t)+ (1−β)xα

2 (t))+B(t)(βuα
1 (t)+ (1−β)uα

2 (t)).

(4.29)

Since Uα(t) is convex, therefore βuα
1 (t) + (1 − β)uα

2 (t) ∈ Uα(t) for all t ∈ [0, T1],

hence it follows that βxα
1 (t) + (1 − β)xα

2 (t) ∈ Xα(t) for all t ∈ [0, T1]. Thus, we have

shown that Xα(t) ∈ Pk(Rn).

Next, we want to show that as α varies in [0, 1] the family Xα(t) is a fuzzy set

in (E1)n. In order to do so we need to check the conditions of Theorem 2.2.10. We

have already shown that Xα(t) ∈ Pk(Rn). Indeed, the remaining two conditions can be

verified in the same manner as shown in Ding and Kandel (2000a). Therefore, we are

skipping the details.

Thus, there exists X(t) ∈ (E1)n on [0, T1] such that Xα(t) is a solution set to

differential inclusion (4.26). Hence, the system (4.25) is a fuzzy dynamical control

system and the solution set to the equation (4.26) can be given by :

Xα(t) = Φ(t, 0)x0 +

� t

0

Φ(t, τ)B(τ)Uα(τ)dτ, (4.30)

in which Φ(t, τ) denotes the transition matrix corresponding to the homogeneous linear

system

ẋ(t) = A(t)x(t).

Combining Eq. (4.30) for all α ∈ [0, 1], the solution for the fuzzy dynamical control

systems can be given by (cf. Ding and Kandel (2000a))

X(t) = Φ(t, 0)x0 +

� t

0

Φ(t, τ)B(τ)U(τ)dτ. (4.31)

Now the controllability is concerned with the following problem : Given the system

(4.25), for the initial state x0, and a fuzzy state X1 at time T1, find a control U(t), t ∈
[0, T1], that transfers x0 (at 0) to X1 (at T1). The following definition of controllability
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is due to Ding and Kandel (2000a).

Definition 4.3.1. (Controllability) The state x0 of the system (4.24) is said to be con-

trollable on time interval [0, T1] if some control U(·) over [0, T1] exists which transfers

x0 (at 0) to a fuzzy state at T1. Otherwise the state x0 is said to be uncontrollable on

[0, T1].

Throughout the section, let controllability Grammian W (0, T1) be given by

W (0, T1) =

� T1

0

Φ(T1, t)B(t)BT (t)ΦT (T1, t)dt.

For the controllability of the system (4.24) (when B(t) is invertible), Ding and Kandel

(2000a) obtained some sufficient conditions as given in following theorem.

Theorem 4.3.2 (Ding and Kandel (2000a)). The system (4.24) is controllable over

[0, T1], if W (0, T1) is non-singular and B(t)−1 exists for all t. Furthermore, the con-

trol U(t) which transfers the state of the system from x(0) = x0 ∈ Rn to a fuzzy state

x(T1) = X1 ∈ En can be chosen as

U(t) =
1

T1

B−1Φ−1(T1, t)X1 − BT (t)ΦT (T1, t)W
−1(0, T1)Φ(T1, 0)x0.

Proof. (Ding and Kandel)

W (0, T1) =

� T1

0

Φ(T1, t)B(t)BT (t)ΦT (T1, t)dt. (4.32)

Now post-multiply both sides of (4.32) by W−1(0, T1)Φ(T1, 0)x0 to obtain

Φ(T1, 0)x0 =

� T1

0

Φ(T1, t)B(t)BT (t)ΦT (T1, t)W
−1(0, T1)Φ(T1, 0)x0dt. (4.33)

If U(t) exists such that U(t) transfer x0 to X1 during [0, T1], then from Eq. (4.31) we

get

x(T1) = X1 = Φ(T1, 0)x0 +

� T1

0

Φ(T1, t)B(t)U(t)dt. (4.34)

Also by using the fact that X1 = 1
T1

� T1

0
X1dt we have the following relation

X1 =
1

T1

� T1

0

Φ(T1, t)B(t)B−1(t)Φ−1(T1, t)X1dt. (4.35)
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Substituting (4.33) and (4.35) in (4.34), we get,

1

T1

� T1

0

Φ(T1, t)B(t)B−1(t)Φ−1(T1, t)X1 =

� T1

0

Φ(T1, t)B(t)BT (t)ΦT (T1, t)W
−1(0, T1)Φ(T1, 0)x0dt+

� T1

0

Φ(T1, t)B(t)U(t)dt. (4.36)

From above equation we have

� T1

0

Φ(T1, t)B(t)U(t)dt =

� T1

0

Φ(T1, t)B(t)(
1

T1

B−1(t)Φ−1(T1, t)X1− (4.37)

BT (t)ΦT (T1, t)W
−1(0, T1)Φ(T1, 0)x0)dt.

From the last equation it follows that U(t) given by

U(t) =
1

T1

B−1(t)Φ−1(T1, t)X1 − BT (t)ΦT (T1, t)W
−1(0, T1)Φ(T1, 0)x0),

steers x0 to X1 during time-interval [0, T1]. This completes the proof.

The results of the Theorem 4.3.2 are interesting. However, it has a drawback, that

is, the results are applicable only to the class of control systems that has matrix B(t)

invertible for all t. It is worthwhile to note for the crisp linear system if the matrix

B(t) is invertible, then the system is always controllable and infinitely many controls

are possible, for example u(t) = B(t)−1[ζ �(t)−A(t)ζ(t)], where ζ(t) is any differential

trajectory satisfying ζ(0) = x0 and ζ(T1) = x1. To overcome this drawback, we obtain

some sufficient conditions for the controllability of the system (4.25) for a general B(t)

of size n×m. However, it is observed in our analysis that the we do not have complete

controllability in this case. The following remark illustrate this fact.

Remark 4.3.3. It is well known from the crisp control theory that if U(t) ∈ Rm then

the control u(·) given by

U(t) = BT (t)ΦT (T1, t)W
−1(0, T1)(x1 − Φ(T1, 0)x0) (4.38)

steers the system (4.25) to a desired state x1 ∈ Rn during time-interval [0, T1]. Clearly
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the control U(t) belongs to (E1)m if the desired state x1 ∈ (E1)n. However in this

case control U(·) may not always steer the system state to the desired state x1 ∈ (E1)n.

Indeed we will show in the following results that only the target states belonging to a

subset of (E1)n are controllable.

Now we introduce the following definition.

Definition 4.3.4. The fuzzy dynamic system (4.25) is said to be quasi-controllable if

starting from any initial state x0 in Rn, there exist a finite time T1 and admissible con-

trollable subset En
0 of (E1)n such that the system state can be brought to any arbitrary

state X1 ∈ En
0 by the fuzzy control inputs U(t) = BT (t)ΦT (T1, t)W

−1(0, T1)(X1 −
Φ(T1, 0)x0) ∈ (E1)m.

The following theorem describes the quasi-controllable fuzzy states En
0 for the sys-

tem (4.25). Thus, we have the following theorem.

Theorem 4.3.5. The fuzzy control system (4.25) is quasi-controllable if and only if there

exists a finite time T1 such that the controllability Grammian W (0, T1) is non-singular.

And, the admissible controllable state subset En
0 is

En
0 = {X1 ∈ (E1)n|X1 =

� T1

0

Φ(T1, t)B(t)BT (t)ΦT (T1, t)W
−1(0, T1)X1}.

Proof. Let X1 ∈ En
0 be the desired fuzzy state. The solution of the system (4.25) at

time T1 satisfies

x(T1) = Φ(T1, 0)x0 +

� T1

0

Φ(T1, t)B(t)U(t)dt. (4.39)

By taking U(t) = BT (t)ΦT (T1, t)(t)W
−1(0, T1)(X1 − Φ(T1, 0)x0), we have

x(T1) = Φ(T1, 0)x0 +

� T1

0

Φ(T1, t)B(t)BT (t)ΦT (T1, t)W
−1(0, T1)(X1 − Φ(T1, 0)x0)dt.

= Φ(T1, 0)x0 +

� T1

0

Φ(T1, t)B(t)BT (t)ΦT (T1, t)W
−1(0, T1)X1dt − Φ(T1, 0)x0.

=

� T1

0

Φ(T1, t)B(t)BT (t)ΦT (T1, t)W
−1(0, T1)X1dt.

= X1. (4.40)
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Hence the initial state x0 can be brought to X1 by the control U(·).

Remark 4.3.6. The admissible controllable subset En
0 can also be expressed in terms

of the fixed points of the operator T : (E1)n → (E1)n defined by

T x =

� T1

0

Φ(T1, t)B(t)BT (t)ΦT (T1, t)W
−1(0, T1)x.

Clearly

En
0 = {x ∈ (E1)n|T x = x},

that is, En
0 is the set of all fixed points of the operator T .

The following lemma will be useful in establishing the fixed points of the operator

T .

Lemma 4.3.7. Let X1 ∈ (E1)n and f(t) ∈ Rn×n be a matrix valued continuous func-

tion. Let

F =

� T1

0

f(t)dt.

Assume that F is invertible and the matrix f(t)F−1 has non-negative entries for t ∈
[0, T1] then the following relation holds :

X1 =

� T1

0

f(t)F−1X1dt.

Proof. Let X1 = (X11, X12, . . . , X1n) and [f(t)F−1]ij denotes the entry in ith row

and jth column of the matrix [f(t)F−1]. Let [Xα
1j , X

α
1j] denotes the α-cut of X1j for

j = 1, 2, . . . , n. Then

�� T1

0

f(t)F−1X1dt

�

α

=
� � T1

0

�
n�

j=1

[f(t)F−1]1jX1j

�

α

dt,

� T1

0

�
n�

j=1

[f(t)F−1]2jX1j

�

α

dt, . . . ,

(4.41)
� T1

0

�
n�

j=1

[f(t)F−1]njX1j

�

α

dt
�T

.
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Since f(t)F−1 has non-negative entries, therefore we have for i = 1, 2, . . . , n

�
n�

j=1

[f(t)F−1]ijX1j

�

α

=

�� T1

0

n�

j=1

[f(t)F−1]ijX
α
1jdt,

� T1

0

n�

j=1

[f(t)F−1]ijXα
1jdt

�
.

(4.42)

By using Eq. (4.42) in (4.41), we have

�� T1

0

f(t)F−1X1dt

�

α

=
� �� T1

0

n�

j=1

[f(t)F−1]1jX
α
1jdt,

� T1

0

n�

j=1

[f(t)F−1]1jXα
1jdt

�
, . . . ,

�� T1

0

n�

j=1

[f(t)F−1]njX
α
1jdt,

� T1

0

n�

j=1

[f(t)F−1]njXα
1jdt

� �T

=
� � T1

0

f(t)F−1[Xα
11, X

α
12, . . . , X

α
1n]T dt,

� T1

0

f(t)F−1[Xα
11, X

α
12, . . . , X

α
1n]T dt

�

=
�
[Xα

11, X
α
11], [X

α
12, X

α
12], . . . , [X

α
1n, X

α
1n]

�T

= [X1]α.

Hence the lemma is proved.

Remark 4.3.8. It should be noted if the state X1 ∈ Rn, then without any restriction on

the entries of f(t)F−1 the relation

X1 =

� T

0

f(t)F−1X1dt.

holds.

We shall now give an example to show that if some of the entries of f(t)F−1 are

negative then the results of the Lemma 4.3.7 need not hold.

Example 4.3.9. Let f(t) =


 2t 1

0 3t2


, X1 = (2̂, 3̂) ∈ (E1)2 with [2̂]α = [1 + α, 3−

α] and [3̂]α = [2 + α, 4 − α] and t ∈ [0, 1].
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Then, F =
� 1

0
f(t) =


 1 1

0 1


 . The matrix f(t)F−1 is given by

f(t)F−1 =


 2t 1 − 2t

0 3t2


 .

We will now show that [X1]α �= [
� 1

0
f(t)F−1X1dt]α. Clearly

[X1]α =


 [1 + α, 3 − α]

[2 + α, 4 − α]


 . (4.43)

Now we will compute [
� 1

0
f(t)F−1X1dt]α.

[

� 1

0

f(t)F−1X1dt]α =

� 1

0

[f(t)F−1X1]αdt

=




� 1

0
[(2t)2̂ + (1 − 2t)3̂]αdt

� 1

0
[(3t2)3̂]αdt


 . (4.44)

After some more simplification of the terms on R.H.S. of (4.44), we have

� 1

0

[f(t)F−1X1dt]α =




�
−1

2
+ 3α

2
, 7

2
− 3α

2

�

[2 + α, 4 − α]


 . (4.45)

It is clear from Eq. (4.43) and Eq. (4.45) that

[X1]α �= [

� 1

0

f(t)F−1X1dt]α.

Hence

[X1] �=
� 1

0

f(t)F−1X1dt.

In the following theorem we will give a sufficient condition for the admissible con-

trollable subset En
0 to be (E1)n.

Theorem 4.3.10. If there exists a finite time T1 such that the controllability grammian

W (0, T1) is non-singular and the matrix Φ(T1, t)B(t)BT (t)ΦT (T1, t)W
−1(0, T1) has

non negative entries for all t ∈ [0, T1], then x = T x holds for all x ∈ (E1)n or
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equivalently En
0 = (E1)n.

Proof. Let f(t) = Φ(T1, t)B(t)BT (t)ΦT (T1, t) and

F = W (0, T1) =

� T1

0

Φ(T1, t)B(t)BT (t)ΦT (T1, t)dt.

By the assumption of the theorem it follows that f(t)F−1 have nonnegative entries for

all t ∈ [0, T1]. Now by invoking Lemma 4.3.7, it follows that for every x ∈ (E1)n

x =

� T1

0

Φ(T1, t)B(t)BT (t)ΦT (T1, t)W
−1(0, T1)x (4.46)

= T x.

That is En
0 = (E1)n. Hence the theorem.

Remark 4.3.11. The conditions of the Theorem 4.3.10 can be easily satisfied for the

systems of the form

ẋ(t) = a(t)x(t) + b(t)u(t), x(0) = x0 ∈ R,

where a(t), b(t) are continuous non-negative function on some time interval [0, T1] and

u(t) ∈ E. Hence for such systems E1
0 = (E1), that is, the system is completely control-

lable.

4.4 Conclusion

In the chapter, we have investigated the controllability property for the linear systems

with fuzzy initial conditions and fuzzy inputs. We have established the controllability

results by using the levelwise approach and the differential inclusion approach. We also

have introduced the concept of ‘fuzzy-controllability’, a concept weaker than controlla-

bility and a procedure to compute the fuzzy-controllable initial states is provided. Our

results extend some of the results due to Feng and Hu (2006), Kwun et al. (2008) and

Ding and Kandel (2000a). Various illustrative examples are provided to substantiate the

concepts and the results obtained.
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CHAPTER 5

Controllability of Nonlinear Matrix Lyapunov Systems

5.1 Introduction

The tools of applied mathematics have been explored extensively for tackling control

problems in the literature. Many of the real world problems arising in mechanics, bi-

ological systems, finance industry and in space applications are control theoretic in

nature. Vast literature is available on the controllability of linear and nonlinear systems,

for example, George (1995), Joshi and George (1989), Sontag (1998), Zabczyk (2008).

Matrix Lyapunov systems are very important systems and find applications in vari-

ous engineering applications. These systems are usually regarded as the generalization

to usual dynamical systems or control systems. Recently Murty et al. (2006) studied

the controllability of the matrix Lyapunov systems

Ẋ(t) = A(t)X(t) + X(t)B(t) + F (t)U(t). (5.1)

Furthermore, in Murty and Kumar (2008b) the stability of matrix Lyapunov systems of

type (5.1) is investigated. Often the actual system can not be modelled by the linear

system of the form (5.1) due to the presence of inherent nonlinearities in the system.

Therefore, our aim is to investigate the controllability of nonlinear matrix Lyapunov

systems represented by:

Ẋ(t) = A(t)X(t) + X(t)B(t) + F (t)U(t) + G(t,X(t)), (5.2)

where X(t) is an n×n real matrix called state matrix, U(t) is an m×n real matrix called

control matrix and G(·, ·) : R+ × Rn×n → Rn×n is a nonlinear function. A(t), B(t),

F (t) are n × n, n × n and n × m real matrices respectively. All of them are assumed

to be piecewise continuous functions of t on [t0, t1](0 ≤ t0 < t1 < ∞). Furthermore,



the entries in the state matrix X(t) and the control matrix U(t) belong to L2([t0, t1], R).

The function G satisfies the ‘Caratheodory conditions’; that is, G(·, x) is measurable

with respect to t for all x ∈ Rn×n and G(t, ·) is continuous with respect to x for almost

all t ∈ [t0, t1].

Note that under the assumptions G(t, x) ≡ 0 the system (5.2) reduces to sys-

tem (5.1) whose controllability is investigated in Murty et al. (2006). Moreover, if

G(t, x) ≡ 0 and B(t) ≡ 0 then the system (5.2) reduces to linear time-varying control

system whose controllability is well established in the literature, for example, Barnett

and Cameron (1975), Sontag (1998).

In our work, we investigate complete controllability for nonlinear matrix Lyapunov

systems (5.2) using the tools of functional analysis and operator theory. We establish

some sufficient conditions for the complete controllability of nonliner matrix Lyapunov

systems of type (5.2) involving Lipschitzian and non-Lipschitzian nonlinearities. In

case of non-Lipschitzian nonlinearities, we assume that nonlinearities are of monotone

type. The organization of the chapter is as follows: In Section 5.2, we state some

basic results used in the chapter related to Kronecker products and nonlinear functional

analysis. In Section 5.3, nonlinear MLS (5.2) is reduced to a semilinear control systems.

In Section 5.4, we reduce the controllability problem in to a solvability problem solution

to which in turn leads to sufficient conditions for the controllability of nonlinear MLS.

Finally, we conclude the results in Section 5.5 along with few implications for the future

research.

5.2 Preliminaries

We introduce some notations that will be used in this chapter. Given any matrix A =

[aij ] ∈ Cn×n, �A�F denotes its Frobenius norm and is defined as

�A�F :=
� n�

i,j=1

|aij|2
� 1

2 ;

�A� denotes the 2−norm (spectral norm) of A. Given any vector x ∈ Cn, �x� denotes

the 2−norm (Euclidean norm) of x. In denotes the n × n identity matrix. Given any
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matrix A,
�

A denotes the sum of the absolute values of entries of A.

We start with some basic definitions related to Kronecker products which we shall

use in this chapter.

Definition 5.2.1. (Graham (1981)) Let A ∈ Cm×n and B ∈ Cp×q then the Kronecker

product of A and B is written as A ⊗ B and is defined to be the partitioned matrix

A ⊗ B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... . . . ...

am1B am2B · · · amnB




which is an mp × nq matrix and in Cmp×nq.

Definition 5.2.2. Let A = [aij ] ∈ Cm×n. We denote

Â = Vec A =




A.1

A.2

...

A.n




mn×1

, whereA.j =




a1j

a2j

...

amj




, (1 ≤ j ≤ n).

The Kronecker product satisfies the following properties (cf. Graham (1981)):

1. (A ⊗ B)T = (AT ⊗ BT ).

2. (A ⊗ B)−1 = (A−1 ⊗ B−1).

3. (A ⊗ B)(C ⊗ D) = (AC ⊗ BD), provided the dimensions of various matrices

are compatible with matrix product.

4. If A(t) and B(t) are matrices, then

d

dt
(A(t) ⊗ B(t)) =

d

dt
(A(t)) ⊗ B(t) + A(t) ⊗ d

dt
(B(t)).

5. Vec(AY B) = (BT ⊗ A) Vec(Y ).

6. If A and X are matrices of order n × n, then
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(i) Vec(AX) = (In ⊗ A) Vec(X).

(ii) Vec(XA) = (AT ⊗ In) Vec(X).

Proposition 5.2.3. The operator V ec : Cm×n → Cmn satisfies the following properties :

1. V ec : (Cm×n, � · �) → (Cmn, � · �) is a bounded linear operator. Here � · �
denotes the standard 2-norm. Further, the correspondence X → V ec(X) is

surjective and one-to-one.

2. �V ec� ≤ √
n .

3. �V ec−1� ≤ 1.

Proof. Clearly, by definition the operator V ec is linear. Since �X�F ≤ √
n�X� , for

all X ∈ Cm×n and �X�F = �V ec(X)�, therefore we have that

�V ec(X)� ≤ √
n�X�.

This shows that V ec is bounded linear operator with �V ec� ≤ √
n. Moreover, given

any x = (x1, x2, . . . , xnm) ∈ Cmn, there exists unique matrix X ∈ Cm×n defined by

X =




x1 xm+1 · · · x(n−1)m+1

x2 xm+2 · · · x(n−1)m+2

...
... . . . ...

xm x2m · · · xnm




such that V ec(X) = x, this shows that V ec is surjective and one-to-one. Furthermore,

�V ec−1x� = �X� ≤ �x�.

The last equation shows that �V ec−1� ≤ 1. Thus the proof of the proposition follows.

We will now state some essential definitions and results from nonlinear functional

analysis. The following contraction principle will be used in this chapter.
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Theorem 5.2.4. (Joshi (1983)) Let T be a continuous mapping of a Banach space X

into itself such that there exists a positive integer n ≥ 1 such that �T nx − T ny� ≤
k�x − y� for all x, y ∈ X for some positive constant k < 1. Then T has a unique fixed

point.

Remark 5.2.5. When n = 1, the above theorem is known as Banach contraction prin-

ciple. Furthermore, in this case for any arbitrary y ∈ X the sequence defined by

xn+1 = Txn + y

converges to the unique solution of x = Tx + y.

Definition 5.2.6 (Joshi and George (1989)). Let X be a real Banach space. Let “Lip”

be the set of all operators N : X → X which satisfy Lipschitz condition; that is, there

exists a constant α > 0 such that

�Nx1 − Nx2� ≤ α�x1 − x2�, for all x1, x2 ∈ X. (5.3)

For N ∈Lip, we define

�N�Lip = sup
x1,x2∈X
x1 �=x2

�Nx1 − Nx2�
�x1 − x2�

.

Definition 5.2.7 (Joshi and George (1989)). Let H be a real Hilbert space. Let M be

the set of all operators N : H → H such that N ∈ M if and only if

�Nx1 − Nx2, x1 − x2� ≥ α�x1 − x2�2,

for all x1, x2 ∈ H and α is a constant in R. For N ∈ M, we define

µ(N) = inf
x1,x2∈H
x1 �=x2

< Nx1 − Nx2, x1 − x2 >

�x1 − x2�2
.

The operator N is called monotone (strongly monotone) if µ(N) ≥ 0 (µ(N) > 0).

Definition 5.2.8. Let X be a real Banach space and X∗ be the dual of X . Let T :

D(T) ⊂ X → X∗ be any operator. Then T is said to be of type (M) if for any se-
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quence {xn} in X converging to x0 in X with {Txn} converging weakly to y in X∗ and

lim supn→∞(Txn)(xn − x0) ≤ 0, we have y = Tx0.

Definition 5.2.9. Let T be the same as in Definition 5.2.8. T is said to be coercive if

lim
�x�→∞

(Tx)(x)

�x� = ∞

.

Theorem 5.2.10. (Joshi and Bose (1985)) Let X be a real Banach space and T : X →
X∗ is a mapping of type (M). If T is coercive then the range of T is all of X∗.

5.3 Reduction of Nonlinear Matrix Lyapunov System in

to a Semilinear Control System

By applying Vec operator to equation (5.2), we have the following system:

ψ̇(t) = A1(t)ψ(t) + B1(t)u(t) + G1(t,ψ(t)), (5.4)

where ψ(t) = Vec(X(t)), A1(t) = (BT ⊗ In) + (In ⊗ A), B1(t) = In ⊗ F (t), u(t) =

Vec(U(t)) and G1(t,ψ(t)) = Vec(G(t, X(t))).

Definition 5.3.1. The nonlinear matrix Lyapunov system (5.2) is said to be control-

lable on [t0, t1] in the domain of controllability D ⊂ Rn×n if for each pair of matrices

X0, X1 ∈ D, there exists a control U ∈ L2([t0, t1]; Rm×n) such that the solution of (5.2)

together with X(t0) = X0 also satisfies X(t1) = X1.

Remark 5.3.2. If D = Rn in the above definition, then the system (5.2) is called com-

pletely or globally controllable. In this chapter, by controllability we always mean the

complete controllability.

Proposition 5.3.3. The matrix Lyapunov system (5.2) is completely controllable if and

only if the semilinear system (5.4) is completely controllable.

The proof of the above proposition is trivial as system (5.2) and system (5.4) are

equivalent.
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Let us consider the corresponding linear system of (5.4), which is given by

ψ̇(t) = A1(t)ψ(t) + B1(t)u(t) (5.5)

Murty et al. (2006) established the necessary and sufficient conditions for the complete

controllability of the linear system (5.5).

Theorem 5.3.4. (Murty et al. (2006)) The system (5.5) is completely controllable if and

only if the n2 × n2 symmetric controllability matrix

W (t0, t1) =

� t1

t0

Φ(t0, s)(In ⊗ F (s))(In ⊗ F T (s))ΦT (t0, s)ds, (5.6)

is nonsingular, where Φ(t, s) = Φ2(t, s) ⊗ Φ1(t, s) is the transition matrix generated

by A1(t) in which Φ1 and Φ2 are the transition matrices for systems Ẋ(t) = A(t)X(t)

and Ẋ(t) = BT (t)X(t), respectively. In this case the control

u(t) = −(In ⊗ F T (t))ΦT (t0, t)W
−1(t0, t1)[ψ0 − Φ(t0, t1)ψ1], (5.7)

transfers ψ(t0) = ψ0 to ψ(t1) = ψ1.

Remark 5.3.5. In the above theorem W (t0, t1) can also be defined as follows:

W (t0, t1) =

� t1

t0

Φ(t1, s)(In ⊗ F (s))(In ⊗ F T (s))ΦT (t1, s)ds, (5.8)

and in this case the control u will be given by

u(t) = (In ⊗ F T (t))ΦT (t1, t)W
−1(t0, t1)[ψ1 − Φ(t1, t0)ψ0]. (5.9)

Remark 5.3.6. W (t0, t1), as defined in (5.8), can also be written as

CC∗, where C : L2([t0, t1]; Rmn) → Rn2 is defined as

Cu =

� t1

t0

Φ(t1, s)(In ⊗ F (s))u(s)ds,

and C∗ : Rn2 → L2([t0, t1]; Rmn) is the adjoint of C and is defined as follows :

(C∗ψ)(t) = (In ⊗ F T (t))ΦT (t1, t)ψ.
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Proposition 5.3.7. Let Φ(t, s) be the same as in Theorem 5.3.4. Then the solution of

(5.4) with initial condition ψ(t0) = ψ0 is given by the following Volterra-type integral

equation :

ψ(t) = Φ(t, t0)ψ0 +

� t

t0

Φ(t, s)((In ⊗ F (s))u(s) + G1(s,ψ(s)))ds. (5.10)

The proof of the above proposition can be obtained by using the standard technique

of the variation of parameter.

Note that we are interested in the complete controllability of (5.2) which, by Propo-

sition 5.3.3, is equivalent to the complete controllability of (5.4); that is, the domain of

controllability is Rn2 . Furthermore, the controllability results for nonlinear system (5.4)

will mainly depend on the controllability results of corresponding linear system (5.5).

Therefore, we assume that the linear system (5.5) is completely controllable.

5.4 Controllability Results

In this Section, we discuss the complete controllability results for the nonlinear matrix

Lyapunov system (5.2). First we convert the controllability problem in to a solvability

problem which is solved by using results from operator theory and nonlinear functional

analysis, that in turn provide solution for the original controllability problem.

5.4.1 Reduction of Controllability Problem to a Solvability Prob-

lem

Now we shall discuss the controllability of system (5.4) in terms of the solvability of an

equivalent feedback system of the form

e1 = u1 − S2e2

e2 = u2 + S1e1,
(5.11)
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for some appropriate operator S1 : X1 → X2 and S2 : X2 → X1, where X1 and X2 are

some suitable Banach spaces. Now we will define the solvability of the system (5.11).

Definition 5.4.1. Let X1 and X2 be real Banach spaces. The feedback system (5.11)

is said to be globally solvable if for every (u1, u2) ∈ X1 × X2, there exists a solution

(e1, e2) ∈ (X1 × X2) of (5.11). If this solution is unique then it is said to be uniquely

globally solvable.

The following lemma describes the conditions when the system (5.11) is uniquely

globally solvable. Furthermore, it provides an iterative scheme that converge to the

unique solution (e1, e2) of the system starting from any arbitrary initial condition, say,

e0
1 ∈ X1.

Lemma 5.4.2. Let S1 : X1 → X2 and S2 : X2 → X1 belong to the class Lip. If

�S1�Lip�S2�Lip < 1, then the system (5.11) is uniquely globally solvable. Moreover the

iterates [e
(n)
1 ], [e

(n)
2 ] defined by

e
(n+1)
1 = u1 − S2e

(n)
2

e
(n)
2 = u2 + S1e

(n)
1

converge to the unique solution (e1, e2) ∈ (X1 ×X2) starting from arbitrary e
(0)
1 ∈ X1.

Proof. It is clear that the coupled system (5.11) is equivalent to the following system

e1 = u1 − S2(u2 + S1e1),

e2 = u2 + S1e1.
(5.12)

Therefore, solvability of the system (5.11) is equivalent to the solvability of the system

(5.12). Define W : X1 → X2 by We1 = u2 + S1e1. Then the above pair of system is

equivalent to the following system of equations :

e1 = u1 − S2We1, (5.13)

e2 = We1. (5.14)
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Since given any e1
1, e

2
1 ∈ X1, we have

�We1
1 − We2

1� = �S1e
1
1 − S1e

2
1�.

From above equation, it follows that W ∈ Lip with �W�Lip = �S1�Lip. Now by the

hypothesis of the lemma, we have

�S2W�Lip ≤ �S2�Lip�W�Lip = �S2�Lip�S1�Lip < 1.

Now by a variation of Banach contraction principle (see Remark 5.2.5), it follows that

for every u1 ∈ X1, there exists a unique solution e1 ∈ X1 of (5.13). Now take e2 =

We1 = u2 + S1e1. Clearly e2 is also unique. Thus, the feedback system (5.11) is

uniquely globally solvable.

Furthermore, the contraction mapping principle implies that the iterates defined by

e
(n+1)
1 = u1 − S2(u2 + S1e

(n)
1 )

converges to the unique solution e1 ∈ X1 of (5.13) starting from any initial condition

e
(0)
1 ∈ X1. The above equation implies that the iterates

e
(n+1)
1 = u1 − S2e

(n)
2

e
(n)
2 = u2 + S1e

(n)
1 ,

converge to the unique solution (e1, e2) ∈ X1 × X2 of (5.11).

Suppose that the system (5.4) is completely controllable on [t0, t1]. That is, there

exists a control u in L2([t0, t1]; Rmn) which steers the initial state ψ0 ∈ Rn2 of system

(5.4) to the desired final state ψ1 ∈ Rn2 . Then according to Proposition 5.3.7 we have:

ψ1 = ψ(t1) = Φ(t1, t0)ψ0 +

� t1

t0

Φ(t1, τ)B1(τ)u(τ)dτ +

� t1

t0

Φ(t1, τ)G1(τ, ψ(τ))dτ.
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That is,

ψ1 − Φ(t1, t0)ψ0 −
� t1

t0

Φ(t1, τ)G1(τ, ψ(τ))dτ =

� t1

t0

Φ(t1, τ)B1(τ)u(τ)dτ.

Consider now the integral equation

ψ(t) = Φ(t, t0)ψ0 +

� t

t0

Φ(t, τ)G1(τ,ψ(τ))dτ

+

� t

t0

Φ(t, τ)B1(τ)
�
C∗(CC∗)−1

�
ψ1 − Φ(t1, t0)ψ0

−
� t1

t0

Φ(t1, τ)G1(τ,ψ(τ))dτ
��

(τ)dτ.

(5.15)

Suppose that (5.15) is solvable for some ψ. Then it can be verified that ψ(t0) = ψ0 and

ψ(t1) = ψ1. This implies the control u which steers the system (5.4) from ψ0 to ψ1 is

given by

u(t) = (C∗(CC∗)−1[ψ1 − Φ(t1, t0)ψ0 −
� t1

t0

Φ(t1, τ)G1(τ,ψ(τ))dτ ])(t).

Hence the controllability of nonlinear system (5.4) is equivalent to the solvability of

coupled equations:

ψ(t) = Φ(t, t0)ψ0 +

� t

t0

Φ(t, τ)G1(τ,ψ(τ))dτ +

� t

t0

Φ(t, τ)B1(τ)u(τ)dτ,

u(t) = (C∗(CC∗)−1[ψ1 − Φ(t1, t0)ψ0 −
� t1

t0

Φ(t1, τ)G1(τ,ψ(τ))dτ ])(t).

(5.16)

Let X1 = L2([t0, t1]; Rmn), X2 = L2([t0, t1]; Rn2
). Define operators K,N : X2 →

X2, H : X1 → X2 and R : X2 → X1 as follows:

(Kψ)(t) =

� t

t0

Φ(t, τ)ψ(τ)dτ, (Nψ)(t) = G1(t,ψ(t)),

(Hu)(t) =

� t

t0

Φ(t, τ)B1(τ)u(τ)dτ,

(Rψ)(t) = (C∗(CC∗)−1

� t1

t0

Φ(t1, τ)ψ(τ)dτ)(t).
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With this notation, equations (5.16) can be written as a pair of operator equations

ψ = u0 + KNψ + Hu

u = u1 − RNψ,
(5.17)

where u0(t) = Φ(t, t0)ψ0 and u1(t) = (C∗(CC∗)−1[ψ1 −Φ(t1, t0)ψ0])(t). Without loss

of generality ψ0 can be taken as 0 as indicated in the following theorem.

Theorem 5.4.3. The system (5.4) is globally controllable if and only if for x1 ∈ Rn2

there is a control u ∈ L2([t0, t1]; Rmn) which steers 0 to x1.

The proof of the above theorem follows by the same argument as in (Russell, 1979,

Proposition 2.2). Now using the above theorem the coupled system (5.17) can be written

as follows:
ψ = KNψ + Hu,

u = u1 − RNψ,
(5.18)

where u1 = C∗(CC∗)−1ψ1. Thus, the nonlinear system (5.4) is controllable if and only

if the above pair of operator equations (5.18) is solvable. We now introduce operators

M1 : X1 → X2 and M2 : X2 → X1 as follows:

M1 = (I − KN)−1H, M2 = RN.

Now the following lemma is immediate.

Lemma 5.4.4. If the operator (I − KN) is invertible then the controllability of the

system (5.4) is equivalent to the solvability of the feed-back system

ψ = M1u,

u = u1 −M2ψ.
(5.19)

5.4.2 Controllability Results with Lipschitzian Nonlinearities

Now we make the following assumptions :

(A1) Let b = supt0≤t≤t1 �B1(t)� and the transition matrix Φ(t, s) is such that �Φ(t, s)� ≤

96



h(t, s), where h(·, ·) : [t0, t1] × [t0, t1] → R+ is a function satisfying

� � t1

t0

� t

t0

h2(t, s) ds dt
� 1

2
= k < ∞.

(A2) The function G : [t0, t1]×Rn×n → Rn×n satisfies the ‘Caratheodory conditions’.

Further, G satisfies Lipschitz condition with Lipschitz constant α. That is,

�G(t, x) − G(t, y)� ≤ α�x − y�.

Lemma 5.4.5. Under Assumptions (A1)–(A2), the bounds for �K�, �H� and �R� are

estimated as �K� ≤ k, �H� ≤ bk � h and �R� ≤ bk2
1c � γ where c = �(CC∗)−1�

and k1 = [
� t1

t0
h2(t1, s)ds]

1
2 .

Proof. We will show that �K� ≤ k.

�Kx�2
X2

=

� t1

t0

�(Kx)(t)�2dt

=

� t1

t0

�
� t

t0

Φ(t, τ)x(τ)dτ�2dt

≤
� t1

t0

� � t

t0

�Φ(t, τ)x(τ)�dτ
�2

dt.

By using Hölder’s inequality on the last expression, we have

�Kx�2
X2

≤
� t1

t0

� � t

t0

�Φ(t, τ)�2dτ
�� � t

t0

�x(τ)�2dτ
�
dt.

�Kx�2
X2

≤
� � t1

t0

� t

t0

h2(t, τ)dτdt
�
�x�2

X2
.

Now �K� ≤ k follows from the last inequality. In order to compute norm of �H�
consider the following:

�Hu�2
X2

=

� t1

t0

�(Hu)(t)�2dt

=

� t1

t0

�
� t

t0

Φ(t, τ)B1(τ)u(τ)dτ�2dt

≤
� t1

t0

� � t

t0

�Φ(t, τ)B1(τ)u(τ)�dτ
�2

dt.
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Again by using Hölder’s inequality on above term, we have

�Hu�2
X2

≤
� t1

t0

� � t

t0

�Φ(t, τ)�2dτ
�� � t

t0

�B1(τ)u(τ)�2dτ
�
dt.

�Hu�2
X2

≤
� � t1

t0

� t

t0

h2(t, τ)dτdt
�
b2�u�2

X1
.

�Hu�X2 ≤ bk�u�X1 .

This shows that �H� ≤ bk. Now we will show that �R� ≤ bk2
1c.

�Rx�2
X1

=

� t1

t0

�(Rx)(t)�2dt

=

� t1

t0

�(C∗(CC∗)−1

� t1

t0

Φ(t1, τ)x(τ)dτ)(t)�2dt

=

� t1

t0

�(BT
1 (t)ΦT (t1, t)(CC∗)−1

� t1

t0

Φ(t1, τ)x(τ)dτ)(t)�2dt.

≤
� t1

t0

�(BT
1 (t)ΦT (t1, t)�2dt�(CC∗)−1�2

� � t1

t0

h2(t1, τ)dτ
�
�x�2

X2

≤ c2b2
� � t1

t0

h2(t1, τ)dτ
�2

�x�2
X2

.

The last inequality implies that

�Rx�X1 ≤ cb
� � t1

t0

h2(t1, τ)dτ
�
�x�X2 .

�Rx�X1 ≤ cbk2
1�x�X2 .

This shows that norm of �R� ≤ bk2
1c. Hence the lemma.

Lemma 5.4.6. Under Assumption (A1)–(A2) the nonlinear operator N is Lipschitz

continuous and bounded from X2 into itself with Lipschitz constant β =
√

nα.

Proof. We shall prove this lemma by using the following well known matrix norm

inequality (see (Hespanha, 2009, p. 64))

�A� ≤ �A�F ≤ √
n�A� (5.20)

for any matrix A ∈ Rn×n. Given any x1, x2 ∈ Rn×n, let ψ1 = Vec(x1), ψ2 = Vec(x2).
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By using (5.20) the following relation holds for all t ∈ [t0, t1]

�G(t, x1) − G(t, x2)� ≤ �G(t, x1) − G(t, x2)�F ≤ √
n�G(t, x1) − G(t, x2)�. (5.21)

Furthermore, we have

�G1(t,ψ1) − G1(t,ψ2)� = �G(t, x1) − G(t, x2)�F . (5.22)

By using (5.22) in (5.21) we have

�G(t, x1)−G(t, x2)� ≤ �G1(t,ψ1)−G1(t,ψ2)� ≤ √
n�G(t, x1)−G(t, x2)�. (5.23)

Let ψ1(·), ψ2(·) ∈ X2 be arbitrary. Using relation (5.23) and Assumption (A2) we can

show that

�(Nψ1)(t) − (Nψ2)(t)� ≤ √
nα�ψ1(t) − ψ2(t)�. (5.24)

The last inequality will in turn implies that N is Lipschitz continuous with Lipschitz

constant
√

nα.

Theorem 5.4.7. Let β be the Lipschitz constant for nonlinear operator N . Then the

operator I −KN is invertible if Assumptions (A1)–(A2) hold along with the condition

kβ < 1. Furthermore, (I − KN)−1 is Lipschitz continuous with Lipschitz constant
1

1−kβ
.

Proof. First we show that under the assumptions of the theorem the operator KN :

X2 → X2 is a contraction. Since,

�KN(x1) − KN(x2)�X2 ≤ k�N(x1) − N(x2)�X2

≤ kβ�x1 − x2�X2

< �x1 − x2�X2 .

Hence KN is a contraction. Now by using Banach contraction principle it can be shown

that for each fixed y ∈ X2 the equation (I − KN)x = y has the unique solution; say
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xy. Indeed xy is the unique limit of the iterates

xn+1 = KNxn + y.

Now the correspondence (I − KN)−1 : X2 → X2 given by

(I − KN)−1y = xy (5.25)

is well defined. Hence (I − KN)−1 is invertible. Furthermore,

�(I − KN)−1(y1) − (I − KN)−1(y2)� = �xy1 − xy2�

= �KNxy1 + y1 − KNxy2 − y2�

≤ �K��Nxy1 − Nxy2� + �y1 − y2�

≤ kβ�xy1 − xy1� + �y1 − y2�.

Hence,

(1 − kβ)�xy1 − xy2� ≤ �y1 − y2�. (5.26)

That is,

�(I − KN)−1(y1) − (I − KN)−1(y2)� ≤ 1

(1 − kβ)
�(y1 − y2)�. (5.27)

Equation (5.27) shows that (I−KN)−1 is Lipschitz continuous with Lipschitz constant
1

1−kβ
.

Now we have the following theorem which describes the complete controllability

of nonlinear matrix Lyapunov system (5.2)

Theorem 5.4.8. Let β be the Lipschitz constant for the nonlinear operator N . Suppose

that the linear system (5.5) is controllable and Assumptions (A1)–(A2) are satisfied

with kβ < 1 and ( β
1−kβ

)γh < 1 then

1. System (5.2) is completely controllable.

2. The control matrix U(t) ∈ Rm×n steering the zero initial state to desired state

X1 ∈ Rn×n during time interval [t0, t1] can be approximated by the iterates
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U (n)(t) defined by

V ec(U (n))(t) = (C∗(CC∗)−1[V ec(X1)−
� t1

t0

Φ(t1, s)G1(s, V ec(Xn)(s))ds])(t).

(5.28)

The state matrix approximation X(n+1)(t) at n+1th stage is given by the approx-

imation scheme X
(n+1)
j (t)

V ec(X
(n+1)
j+1 )(t) =

� t

t0

Φ(t, s)G1(s, V ec(X
(n+1)
j )(s))ds+

� t

t0

Φ(t, s)B1(s)V ec(U (n))(s)ds. (5.29)

Proof. Since kβ < 1, therefore by using Lemma 5.4.7 the operator I−KN is invertible.

Also, by Lemma 5.4.4 the controllability of semilinear system (5.4) is equivalent to the

solvability of system (5.19). Furthermore,

�M1�Lip = �(I − KN)−1H�Lip <
h

1 − kβ
, �M2�Lip = �RN�Lip < γβ. (5.30)

Therefore, by the assumption ( β
1−kβ

)γh < 1, we have �M1�Lip�M2�Lip < 1. Since

(5.19) is special form of (5.11) and system (5.19) satisfies �M1�Lip�M2�Lip < 1.

Hence Lemma 5.4.2 implies that the feedback system (5.19) is uniquely globally solv-

able, which in turn implies that the nonlinear system (5.4) is completely controllable.

Now Proposition 5.3.3 implies that nonlinear matrix Lyapunov system (5.2) is com-

pletely controllable.

Furthermore, from Lemma 5.4.2, it follows that starting from any initial state ψ0 ∈
X1 the iterates

ψ(n+1) = M1u
(n), (5.31)

u(n) = u1 −M2ψ
(n), (5.32)

where u1 = C∗(CC∗)−1ψ1 and ψ1 is the desired final state at time t1, converges to the
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unique solution of the feedback system (5.19). From (5.32) it follows that

u(n)(t) = u1 − RNψ(n)

= (C∗(CC∗)−1[ψ1 −
� t1

t0

Φ(t1, s)G1(s,ψ
(n))(s)ds])(t).

Substituting u(t) = V ec(U(t)) and ψ(t) = V ec(X(t)) in the above relation, the

iterates for the control U(t) ∈ Rm×n that steers the initial state X0 = 0 ∈ Rn×n at t0 to

a desired state X1 = V ec−1(ψ1) are given by

V ec(U (n))(t) = (C∗(CC∗)−1[V ex(X1) −
� t1

t0

Φ(t1, s)G1(s, V ec(X (n))(s))ds])(t).

(5.33)

This establishes (5.28).

The state matrix approximation at (n + 1)th stage is given by (5.31).

ψ(n+1) = M1u
(n)

= (I − KN)−1Hu(n).

From the above equation, we have

ψ(n+1) = KNψ(n+1) + Hu(n).

Since by hypothesis of the theorem, KN is a contraction. Therefore, ψ(n+1) is the

unique limit of the iterates

ψ
(n+1)
j+1 = KNψ

(n+1)
j + Hu(n).

From the above equation, we have

ψ
(n+1)
j+1 (t) =

� t

t0

Φ(t, s)G1(s,ψ
(n+1)
j (s))ds +

� t

t0

Φ(t, s)B1(s)u
(n)(s)ds (5.34)
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Substituting u(t) = V ec(U(t)) and ψ(t) = V ec(X(t)) in equation (5.35), we have

V ec(X
(n+1)
j+1 )(t) =

� t

t0

Φ(t, s)G1(s, V ec(X
(n+1)
j )(s))ds+

� t

t0

Φ(t, s)B1(s)V ec(U (n))(s)ds

(5.35)

This establishes (5.29). Thus the proof of theorem follows.

Theorem 5.4.9. Suppose that the linear system (5.5) is controllable and Assumptions

(A1)–(A2) hold along with h(s, t) = M (where M being a positive constant). Further-

more, eMβ(t1−t0)γhβ < 1, where β is the Lipschitz constant for G1. Then the conclu-

sions of Theorem 5.4.8 hold.

Proof. We will first show that the operator (I − KN)−1 is Lipschitz continuous with

�(I − KN)−1�Lip ≤ eMβ(t1−t0). Let y ∈ X2 be arbitrary. We will start by showing that

(I − KN)−1(y) is well defined. Consider the Volterra type integral equation

x(t) =

� t

t0

Φ(t, τ)G1(τ, x(τ))dτ + y(t). (5.36)

Define the following iterates

x0(t) = y(t) ∀t ∈ [t0, t1]. (5.37)

xn+1(t) = y(t) +

� t

t0

Φ(t, τ)G1(τ, xn(τ))dτ, n = 0, 1, 2 . . . (5.38)

By using Lipschitz continuity of G1(t, x) and the boundedness of Φ(t, τ) in [t0, t1],

it can shown that the iterates {xn} converges to the solution of (5.36). Furthermore,

by applying Gronwall’s inequality (Zabczyk, 2008, p.92), uniqueness of the solution

of integral equation (5.36) can be easily proved. This in turn shows that the operator

(I−KN)−1 is well defined. Furthermore, given any y1, y2 ∈ X2, let (I−KN)−1(y1) =
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x1 and (I − KN)−1(y2) = x2. Then, we have

�(I − KN)−1(y1)(t) − (I − KN)−1(y2)(t)�

= �x1(t) − x2(t)�

= �y1(t) − y2(t)� +
��

� t

t0

Φ(t, τ)[G1(τ, x1(τ)) − G1(τ, x2(τ))]dτ
��

≤ �y1(t) − y2(t)� +

� t

t0

Mβ�x1(τ) − x2(τ)�dτ.

Now again by applying Gronwall’s inequality, we have

�x1(t) − x2(t)� ≤ eMβ(t1−t0)�y1(t) − y2(t)�.

Hence we have,

�(I − KN)−1(y1) − (I − KN)−1(y2)�X2 ≤ eMβ(t1−t0)�y1 − y2�X2 .

Thus, we have shown that �(I − KN)−1�Lip ≤ eMβ(t1−t0). Now it follows that

�M1�Lip = �(I − KN)−1H�Lip < eMβ(t1−t0)h, �M2�Lip = �RN�Lip < γβ.

By the given condition eMβ(t1−t0)γhβ < 1, it follows that �M1�Lip�M2�Lip < 1. Now

the remaining part of the proof is obvious and is same as in Theorem 5.4.8.

5.4.3 Controllability Results with non-Lipschitzian Nonlinearities

In this section we establish the controllability results for the nonlinear matrix Lyapunov

system (5.2) with non-Lipschitzian nonlinearity. In particular we require monotonicity

type of condition on the nonlinear term G. Such assumptions are quite reasonable

because practically we have situations where the derivatives of the nonlinearities are

bounded below by a constant.

We will use the following lemma which guarantees the solvability of the feedback

system (5.11).

Lemma 5.4.10. Let X1 and X2 be Hilbert spaces. Let S1 : X1 → X2, S2 : X2 → X1
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be the operators satisfying the following conditions:

(i) S1 is compact, continuous and satisfy the growth condition of the type

�S1e1� ≤ s1 + s1�e1�, ∀e1 ∈ X1, ands1, s1 > 0.

(ii) S2 is continuous and satisfy the growth condition of the type

�S2e2� ≤ s2 + s2�e2�, ∀e2 ∈ X2, s2, s2 > 0.

If (1 − s1s2) > 0 then the feedback system (5.11) is solvable.

Proof. Define the operator T : X1 → X1 by

Te1 = S2(u2 + S1e1).

Then the feedback system (5.11) is solvable if and only if

(I + T )e1 = u1 (5.39)

is solvable in X1. It can be easily shown that T is compact and satisfies the growth

condition

�Te1� ≤ (s2 + s2�u2� + s2s1) + s2s1�e1�.

Since [I + T ] is compact and continuous perturbation of the identity map, it is of type

(M) (refer to Theorem 3.6.7 Joshi and Bose (1985)). Further,

< (I + T )e1, e1 > =< e1, e1 > + < Te1, e1 >

≥ �e1�2 − �Te1��e1�

≥ [(1 − s1s2)�e1� − (s2 + s2�u2� + s2s1)]�e1�.

Since (1 − s1s2) ≥ 0, it follows that

lim
�e1�→∞

< (I + T )e1, e1 >

�e1�
= ∞.
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The above equation shows that (I + T ) is coercive and hence by Theorem 5.2.10, it

follows that range of (I + T ) is whole of X1. This implies that equation (5.39) is

solvable which in turn implies that feedback system (5.11) is solvable.

Let us now assume that the system (5.2) satisfies the following assumptions :

(B1) There exists a positive constant µ such that the matrix A1(t) satisfies

< −A1(t)ψ,ψ >≥ µ�ψ�2.

(B2) The nonlinear function −G is monotone. In fact −G should satisfy a weaker

condition than monotonicity as given below. Given any x1, x2 ∈ Rn×n

< (G(t, x1) − G(t, x2))ej , (x1 − x2)ej >≤ 0, 1 ≤ j ≤ n,

where [ej] denotes the canonical basis in Rn.

(B3) G also satisfies a growth condition of the form

�G(t, x)� ≤ d(t) + w�x�,

for all (t, x) ∈ [t0, t1] × Rn×n, d(·) ∈ L2([t0, t1]; R) and w > 0.

Theorem 5.4.11. Under the assumptions (B1)–(B3), the operator (I − KN)−1 exists

and continuous. Furthermore, it satisfies a growth condition of the type

�(I − KN)−1y� ≤ d
√

n

µ
+

�w
√

n

µ
+ 1

�
�y�, (5.40)

where d = �d(·)�L2[t0,t1].

Proof. Assumption (B2) implies that < (G1(t,ψ1) − G1(t,ψ2)), (ψ1 − ψ2) >≤ 0 for

every ψ1 and ψ2 ∈ Rn2 . Furthermore, inequality (5.23) together with assumption [B3]

implies that

�G1(t,ψ)� ≤ √
n(d(t) + w�ψ�),
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for all (t,ψ) ∈ [t0, t1] × Rn2 . Now all the requirements of Theorem 5.1 of Joshi and

George (1989) are satisfied. A careful trace of the Theorem 5.1 of Joshi and George

(1989) will prove the theorem.

Theorem 5.4.12. Suppose that the linear system (5.5) is controllable and the assump-

tions (A1) and (B1)–(B3) are satisfied. If [1−(w
√

n
µ

+1)
√

nwγh] > 0, then the nonlinear

system (5.4) is controllable.

Proof. Let X1 = L2([t0, t1]; Rmn), X2 = L2([t0, t1]; Rn2
). By Lemma 5.4.4 the con-

trollability of system (5.4) is equivalent to the solvability of the coupled system

ψ = M1u,

u = u1 −M2ψ,

where M1 = (I − KN)−1H : X1 → X2 and M2 = RN : X2 → X1. By Theo-

rem 5.4.11 the operator (I − KN)−1 is continuous and satisfies the growth condition

(5.40). Since the operator H is compact, it follows that operator M1 is also compact

and satisfies the following growth condition

�M1u� ≤ hd
√

n

µ
+ (

w
√

n

µ
+ 1)h�u�.

Similarly it can be shown that M2 is continuous with growth condition

�M2ψ� = �R(Nψ)�

≤ γ�G1(·,ψ(·))�

≤ γd
√

n + γw
√

n�ψ�.

Thus, the operator M1 and M2 satisfy all the conditions of Lemma 5.4.10, which

implies the solvability of system (5.19) that in turn implies the controllability of the

nonlinear system (5.4).

We will finally give one example to illustrate our results.
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Example 5.4.13. Consider the matrix Laypunov nonlinear differential equation


ẋ11(t) ẋ12(t)

ẋ21(t) ẋ22(t)


 =


1 2

3 2





x11(t) x12(t)

x21(t) x22(t)


 +


x11(t) x12(t)

x21(t) x22(t)





1 1

2 1




+


1

1




�
u1(t) u2(t)

�
+ c


sin(x11(t)) cos(x12(t))

cos(x21(t)) sin(x22(t))


 ,

(5.41)

By applying the Vec operator to above equation, we have the following equation of the

form (5.4)




ẋ11(t)

ẋ21(t)

ẋ12(t)

ẋ22(t)




=




2 2 2 0

3 3 0 2

1 0 2 2

0 1 3 3







x11(t)

x21(t)

x12(t)

x22(t)




+




1 0

1 0

0 1

0 1





u1(t)

u2(t)


 + c




sin(x11(t))

cos(x21(t))

cos(x12(t))

sin(x22(t))




.

In this example,

A1 =




2 2 2 0

3 3 0 2

1 0 2 2

0 1 3 3




, B1 =




1 0

1 0

0 1

0 1




,

and the nonlinear operator G1 is given by

G1(t, x(t)) = c[sin(x11(t)), cos(x21(t)), cos(x12(t)), sin(x22(t))]
T ,

where x(t) = [x11(t), x21(t), x12(t), x22(t)]
T .

In this example, we take h(t, s) = (
�

eA1t)(
�

e−A1s). Clearly �Φ(t, s)� = �eA1(t−s)� ≤
h(t, s). Let c = 1

140000
. Furthermore, it can be easily shown that

������


sin(x11(t)) − sin(y11(t)) cos(x12(t)) − cos(y12(t))

cos(x21(t)) − cos(y21(t)) sin(x22(t)) − sin(y22(t))




������
≤

√
2

������


x11(t) − y11(t) x12(t) − y12(t)

x21(t) − y21(t) x22(t) − y22(t)




������
.

The above equation shows that Lipschitz constant α is
√

2, which in turn implies that
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the value of Lipschitz constant β for nonlinear operator N is 2c (
√

2α c). Let the time

interval [t0, t1] be [0, ·1].

Using above definition of h(t, s), the bounds for the norm of operators K, H and R

are computed as 1.4390(k), 2.0351(h), and 3.3101 × 104(γ), respectively. Then it can

be easily shown that kβ < 1 and ( β
1−kβ

γh)(= .9623) < 1 for sufficiently small value

of c. Thus, all the conditions of Theorem 5.4.8 are satisfied. Hence the system (5.41) is

completely controllable during time interval [0, ·1].

Remark 5.4.14. Note that sharper bounds for �K�, �H� and �R� can be obtained by

suitably choosing the function h(t, s). Thus, a higher value of c can be obtained.

Remark 5.4.15. The norm �R� is proportional to the norm of the inverse of controlla-

bility Grammian W−1(t0, t1). Therefore value of c can be increased by decreasing the

value of �W−1(t0, t1)�.

5.5 Conclusion

In the chapter, we have studied controllability and established some sufficient condi-

tions for the complete controllability of nonlinear MLS. In Murty et al. (2006), observ-

ability analysis for the linear MLS is done. We feel that our work can be extended to

study the observability analysis of nonlinear MLS. Furthermore, the stabilizability of

linear and nonlinear MLS can also be studied.
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CHAPTER 6

Controllability of Impulsive Matrix Lyapunov Systems

6.1 Introduction

In this chapter, we investigate the complete controllability of the following matrix Lya-

punov systems with impulse effects





Ẋ(t) = A(t)X(t) + X(t)B(t) + F (t)U(t) + G(t, X(t)), t �= tk, t ∈ [t0, T ]

X(t+k ) = [In + DkU(tk)]X(tk), k = 1, 2, . . . , ρ

X(t0) = X0,

(6.1)

where the state X(t) is an n × n real matrix, control U(t) is an m × n real matrix.

A(t), B(t), F (t) are n × n, n × n, n × m real matrices with piecewise continuous

entries and t0 ≤ t1 ≤ t2 . . . ≤ tρ ≤ T are the time points at which impulse control

U(tk) is given to the system. For each k = 1, 2, . . . , ρ, DkU(tk) is an n × n diagonal

matrix such that DkU(tk) =
�m

i=1

�n
j=1 dk

ijUij(tk)In, where In is the identity matrix

on Rn and dk
ij ∈ R. G(·, ·) : R+ × Rn×n → Rn×n is a nonlinear function and satisfies

the ‘Caratheodory conditions’, that is, G(·, x) is measurable with respect to t for all

x ∈ Rn×n and G(t, ·) is continuous with respect to x for almost all t ∈ [t0, T ].

The control u(t) is said to be impulsive if at t = tk, k = 1, 2, . . . , ρ, the pulses are

regulated and chosen arbitrarily in rest of the domain. Study of such systems has re-

ceived much attention in the literature due to the fact that many evolutionary processes,

for instance, some motions of satellites, frequency modulated systems and bursting

rhythm models in biology are impulsive in nature (cf. Lakshmikantham et al. (1989),

Pandit and Deo (1982), Liu and Willms (1996)). Controllability of impulsive systems

has been well investigated in the literature. For instance, in Guan et al. (2002a,b), the

authors study the controllability and observability for a time-varying impulsive control



systems and establish some sufficient and necessary conditions for the state controlla-

bility and state observability of the impulsive control systems. Furthermore, Xie and

Wang (2004) have established necessary and sufficient conditions for the controllability

of switched impulsive control systems.

Indeed, the controllability of many special cases of system (6.1) has been studied in

the literature. For example, if B(t) = 0 and G(t, x) = 0 hold along with DkU(tk) = 0

for k = 1, 2, . . . , ρ, then the system (6.1) reduces to linear time-varying control sys-

tem whose controllability is well established in the literature, for example, Barnett and

Cameron (1975), Zabczyk (2008). Leela et al. (1993) studied the controllability of a

special case of system (6.1) with B(t) = 0, G(t, x) = 0, and A(t), F (t) are con-

stant matrices. In George et al. (2000), complete controllability of system (6.1) with

B(t) = 0 and X(t) ∈ Rn is investigated.

Recently Murty et al. (2006) studied the controllability of linear non-impulsive

matrix Lypunov systems, that is, system (6.1) with G = 0 and DkU(tk) = 0 for

k = 1, 2, . . . , ρ. Furthermore, in Dubey and George (2013b) controllability of semi-

linear non-impulsive matrix Lyapunov systems, that is, system (6.1) with DkU(tk) = 0

for k = 1, 2, . . . , ρ, is established.

In the chapter, first we investigate the complete controllability of unperturbed (lin-

ear) system, that is, system (6.1) with G = 0. We then establish complete controllabil-

ity of perturbed (nonlinear) system, that is, system (6.1) itself. The organization of the

chapter is as follows :

In Section 6.2, we establish some sufficient conditions for the complete controlla-

bility of unperturbed system. Sufficient conditions for the complete controllability of

perturbed system (6.1) are obtained in Section 6.3. The nonlinearities in the perturbed

systems are assumed to be either Lipschitz type or monotone type. Finally, we conclude

the chapter in Section 6.4.
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6.2 Controllability of Linear Impulsive Matrix Lyapunov

Systems

We will first consider the unperturbed (linear) IMLS, that is, the system (6.1) with

G = 0. By applying V ec 1 operator to the unperturbed system, we have the following

system equivalent to the unperturbed IMLS :





ψ̇(t) = A1(t)ψ(t) + B1(t)û(t), t �= tk, t ∈ [t0, T ]

ψ(t+k ) = [In2 + Dkû(tk)]ψ(tk), k = 1, 2, . . . , ρ

ψ(t0) = ψ0,

(6.2)

where ψ(t) = V ec(X(t)), A1(t) = (BT (t) ⊗ In) + (In ⊗ A(t)), B1(t) = In ⊗ F (t),

û(t) = V ec(U(t)), ψ0 = V ec(X0) and Dkû(tk) =
�m

i=1

�n
j=1 dk

ijUij(tk)In2 .

The following lemma follows immediately from the Lemma 2·1 of Murty et al.

(2006).

Lemma 6.2.1. Φ1(t, s) and Φ2(t, s) are the transition matrices for systems Ẋ(t) =

A(t)X(t) and Ẋ(t) = BT (t)X(t), respectively. Then the transition matrix Φ(t, s) for

the system Ẋ(t) = A1(t)X(t) is given by

Φ(t, s) = Φ2(t, s) ⊗ Φ1(t, s),

where A1(t) = (BT (t) ⊗ In) + (In ⊗ A(t)).

It can be shown that the solution of unperturbed (linear) system (6.2) in the time

interval [tρ, T ] is given by

ψ(t) =

ρ�

i=1

� ti

ti−1

�

ti−1<tk<T

(In2 + Dkû(tk))Φ(t, s)B1(s)û(s)ds

+

� t

tρ

Φ(t, s)B1(s)û(s)ds +
�

t0<tk<T

(In2 + Dkû(tk))Φ(t, t0)ψ0, (6.3)

where Φ(t, τ) is the transition matrix for the system Ẋ(t) = A1(t)X(t).
1For the definition and properties of the "Vec" operator, refer Section 5.2 of Chapter 5.
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Definition 6.2.2. (Controllability) The nonlinear matrix Lyapunov system (6.1) is said

to be controllable(completely controllable) on [t0, T ] in the domain of controllability

D ⊂ Rn×n if for each pair of matrices X0, X1 ∈ D, there exists a control u ∈
L2([t0, T ]; Rm×n) such that the solution of (6.1) together with X(t0) = X0 also sat-

isfies X(T ) = X1.

It can be easily shown that controllability of unperturbed matrix Lyapunov system

is equivalent to the controllability of reduced impulsive linear system (6.2) (see Propo-

sition 5.3.3 of Chapter 5).

We now introduce the following operators which we shall use throughout the chap-

ter. Let C : L2([tρ, T ]; Rmn) → Rn2 is defined by

Cu =

� T

tρ

Φ(T, s)(In ⊗ F (s))u(s)ds,

and C∗ : Rn2 → L2([tρ, T ]; Rmn) is the adjoint of C and defined as follows

(C∗ψ)(t) = (In ⊗ F T (t))ΦT (T, t)ψ.

The following lemma is crucial in establishing the controllability of the unperturbed

system.

Lemma 6.2.3. The unperturbed matrix Lyapunov system can be steered from any ini-

tial state X0 ∈ Rn×n to any desired state X1 ∈ Rn×n during time interval [t0, T ], if

V ec(X1) ∈ R(C) + span{Φ(T, t0)V ec(X0)}, where R(C) denotes the range of the

operator C.

Proof. Let V ec(X1) ∈ R(C) + span{Φ(T, t0)V ec(X0)}. Then, there exists an u(·) ∈
L2([tρ, T ]; Rmn) and α ∈ R such that

V ec(X1) =

� T

tρ

Φ(T, s)B1(s)u(s)ds + αΦ(T, t0)V ec(X0). (6.4)

Define a control U(·) in L2([t0, T ]; Rm×n) as follows. First choose U(tk) for k =

0, 1, 2, . . . , ρ, such that
�

t0<tk<T

(In2 + Dkû(tk)) = αIn2 (such a choice is always pos-
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sible) and in the rest of the domain let û(t) = V ec(U(t)) can be given as follows :

û(t) =





0, if t ∈ ∪ρ
k=1(tk−1, tk)

u(t), if t ∈ (tρ, T ].

(6.5)

By using Eq. (6.3), the solution of system (6.2) with the control û(·) in the time interval

[tρ, T ] is given by

ψ(t) = αΦ(t, t0)ψ0 +

� t

tρ

Φ(t, s)B1(s)û(s)ds. (6.6)

By substituting t = T in the equation (6.6), we have

ψ(T ) = V ec(X(T )) = αΦ(T, t0)ψ0 +

� T

tρ

Φ(T, s)B1(s)û(s)ds. (6.7)

Combining Eq. (6.4) and Eq. (6.7), we have V ec(X(T )) = V ec(X1) which in turn

implies that X(T ) = X1. Thus, the control U(·) steers the unperturbed IMLS from the

initial state X0 to the state X1 during time interval [t0, T ]. Hence the proof of the lemma

follows.

Remark 6.2.4. The control U(·) ∈ L2([t0, T ]; Rn×m) that transfers the initial state

X0 ∈ Rn×n to the desired target state X1 ∈ Rn×n is given by the following relation

(V ec(U))(t) =





0, if t ∈ ∪ρ
k=1(tk−1, tk)

BT
1 (t)ΦT (T, s)(t)W−1(tρ, T )(V ec(X1)−
�

t0<tk<T

(In2 + Dkû(tk)Φ(T, t0)V ec(X0)), if t ∈ (tρ, T ].

(6.8)

The following theorem gives the sufficient conditions for the controllability of the

unperturbed system (6.2).

Theorem 6.2.5. The unperturbed matrix Lyapunov system is completely controllable

on time interval [t0, T ] if any of the following conditions holds :

(i) The operator C is surjective.

(ii) W (tρ, T ) =
� T

tρ
Φ(T, τ)B1(τ)BT

1 (τ)ΦT (T, τ)dτ is non-singular.
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Proof. Since we have shown in Lemma 6.2.3 that any desired state X1 ∈ Rn×n is attain-

able from any initial state X0 ∈ Rn×n if V ec(X1) ∈ R(C) + span{Φ(T, t0)V ec(X0)}.

Therefore the system will be completely controllable if

R(C) + span{Φ(T, t0)V ec(X0)} = Rn2

.

And the above holds if and only if R(C) = Rn2 or C is surjective. Hence the theorem

follows under (i).

Since R(C) = R(CC∗), where C∗ is the adjoint of the operator C. Observe that

CC∗ = W (tρ, T ), and invertibility of W (tρ, T ) is equivalent to the fact that CC∗ is

surjective and that holds if and only if C is surjective. Thus, (i) and (ii) are equivalent.

Hence the proof of the theorem follows.

Remark 6.2.6. In general for the linear matrix Lyapunov systems the concept of com-

plete controllability is equivalent to null controllability, that is, steering any state to 0

from any arbitrary initial state X0. However, it is observed that for the impulsive linear

matrix Lyapunov systems null controllability is much weaker than complete controlla-

bility. The impulsive linear matrix Lyapunov system is always null controllable without

any condition due to the fact that 0 ∈ R(C) + span{Φ(T, t0)X0}.

Remark 6.2.7. In case of A(t), B(t) and F (t) are time invariant matrices, so are the

A1(t) and B1(t). Then the unperturbed matrix Lyapunov system is completely control-

lable if

rank[B1|A1B1|A2
1B1| . . . |An2−1

1 B1] = n2.

Theorem 6.2.5 essentially states that the unperturbed system, that is system, (6.1)

with G = 0 can be controlled to any state by suitable a control active only in the time

interval [tρ, T ]. We shall now show that it also possible to control the unperturbed

system to any arbitrary state by some suitable control active in any of the time intervals

[ti−1, ti], for i = 1, 2, . . . , n.

Let the operator Ci : L2([ti−1, ti]; Rmn) → Rn2 , i = 1, 2 . . . , ρ be defined as

follows :

Ciu =

� ti

ti−1

Φ(ti, s)(In ⊗ F (s))u(s)ds.
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The following lemma establishes the controllability in terms of the operator Ci for i =

1, 2 . . . , n.

Lemma 6.2.8. The unperturbed matrix Lyapunov system can be steered from any ini-

tial state X0 ∈ Rn×n to any desired state X1 ∈ Rn×n during time interval [t0, T ] if

Φ(ti, T )(
�

ti−1<tk<T

(In2 +Dkû(tk)))
−1V ec(X1) ∈ R(Ci)+ span{Φ(ti, t0)V ec(X0)} for

some i ∈ {1, 2, . . . , ρ}, where R(Ci) denotes the range of the operator Ci.

Proof. Let Φ(ti, T )(
�

ti−1<tk<T

(In2+Dkû(tk)))
−1V ec(X1) ∈ R(Ci)+span{Φ(ti, t0)V ec(X0)}.

Then, there exists an ui(·) ∈ L2([ti−1, ti]; Rmn) and α ∈ R such that

V ec(X1) =


 �

ti−1<tk<T

(In2 + Dkû(tk))


 Φ(T, ti)×

�� ti

ti−1

Φ(ti, s)B1(s)ui(s)ds + αΦ(ti, t0)V ec(X0)

�
. (6.9)

Define a control U(·) in L2([t0, T ]; Rm×n) as follows. First choose U(tk) for k =

0, 1, 2, . . . , ρ, such that
�

t0<tk<ti

(In2 + Dkû(tk)) = αIn2 and in the rest of the domain let

û(t) = V ec(U(t)) be given as follows :

û(t) =





0, if t ∈ ∪ρ
k=1,k �=i(tk−1, tk) ∪ (tρ, T ]

ui(t), if t ∈ (ti−1, ti).

(6.10)

By using Eq. (6.3), the solution of system (6.2) with the control û(·) in the time interval

[tρ, T ] is given by

ψ(t) =

� �

t0<tk<T

(In2 + Dkû(tk))

�
Φ(t, t0)ψ0+

� ti

ti−1


 �

ti−1<tk<T

(In2 + Dkû(tk))


 Φ(t, s)B1(s)ui(s)ds. (6.11)
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From Eq. (6.11) it follows that

ψ(t) =α


 �

ti−1<tk<T

(In2 + Dkû(tk))


 Φ(t, t0)ψ0+

� ti

ti−1


 �

ti−1<tk<T

(In2 + Dkû(tk))


 Φ(t, s)B1(s)ui(s)ds. (6.12)

Evaluating the above expression at t = T together with (6.9), we have

ψ(T ) = V ec(X(T )) = α(
�

ti−1<tk<T

(In2 + Dkû(tk)))Φ(T, t0)ψ0+

� ti

ti−1


 �

ti−1<tk<T

(In2 + Dkû(tk))


 Φ(T, s)B1(s)ui(s)ds

= V ec(X1). (6.13)

The last equation implies that X(T ) = X1. Thus, U(·) steers the system from the

initial state X0 to the state X1 during time-interval [t0, T ]. Hence the proof of the

lemma follows.

Remark 6.2.9. The control U(·) ∈ L2([t0, T ]; Rn×m) that transfers the initial state

X0 ∈ Rn×n to the desired target state X1 ∈ Rn×n is given by the following relation

(V ec(U))(t) =





0, if t ∈ ∪ρ
k=1,k �=i(tk−1, tk) ∪ (tρ, T ]

BT
1 (t)ΦT (ti, s)(t)W

−1(ti−1, ti)×
�
Φ(ti, T )

�
�

ti−1<tk<T

(In2 + Dkû(tk))

�−1

V ec(X1)−

�
t0<tk<ti

(In2 + Dkû(tk))Φ(ti, t0)V ec(X0)
�
, if t ∈ (tρ, T ].

(6.14)

The following theorem gives the sufficient conditions for the controllability of the

unperturbed system (6.2) on terms of the operator Ci.

Theorem 6.2.10. The unperturbed matrix Lyapunov system is completely controllable

on time-interval [t0, T ] if any of the following conditions holds :

(i) The operator Ci is surjective.
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(ii) W (ti−1, ti) =
� ti

ti−1
Φ(ti, τ)B1(τ)BT

1 (τ)ΦT (ti, τ)dτ is non-singular.

Proof. By Lemma 6.2.8 it follows that any desired state X1 ∈ Rn×n is attainable from

any initial state X0 ∈ Rn×n if Φ(ti, T )(
�

ti−1<tk<T

(In2+Dkû(tk)))
−1V ec(X1) ∈ R(Ci)+

span{Φ(ti, t0)V ec(X0)}. Therefore the system will be completely controllable if

�

ti−1<tk<T

(In2 + Dkû(tk))Φ(T, ti)(R(Ci) + span{Φ(ti, t0)V ec(X0)}) = Rn2

.

Since
�

ti−1<tk<T

(In2 + Dkû(tk))Φ(T, ti) is a non-singular matrix therefore the above

holds if and only if R(Ci) = Rn2 or Ci is surjective.

Further, since R(Ci) = R(CiC
∗
i ), where C∗

i is the adjoint of the operator Ci. Ob-

serve that CiC
∗
i = W (ti−1, ti), and invertibility of W (ti−1, ti) is equivalent to the fact

that CiC
∗
i is surjective and that holds if and only if Ci is surjective. Thus, (i) and (ii)

are equivalent. Hence the proof of theorem follows.

6.3 Controllability of Semilinear Impulsive Matrix Lya-

punov Systems

We will now provide sufficient conditions for the complete controllability of the per-

turbed system (6.1). By applying V ec operator to the equation (6.1), equation (6.1) can

be equivalently written as follows :





ψ̇(t) = A1(t)ψ(t) + B1(t)û(t) + G1(t,ψ(t)), t �= tk, t ∈ [t0, T ]

ψ(t+k ) = [In2 + Dkû(tk)]ψ(tk), k = 1, 2, . . . , ρ

ψ(t0) = ψ0,

(6.15)

where ψ(t) = V ec(X(t)), A1(t) = (BT (t) ⊗ In) + (In ⊗ A(t)), B1(t) = In ⊗ F (t),

û(t) = V ec(U(t)), G1(t, ψ(t)) = V ec(G(t, X(t))), ψ0 = V ec(X0) and Dkû(tk) =
�m

i=1

�n
j=1 dk

ijuij(tk)In2 . Thus, the controllability of the system (6.1) is equivalent to

the controllability of the system (6.15).
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The solution of (6.15) in the time interval [tρ, T ] satisfies

ψ(t) = ψ̃0 +

� t

tρ

Φ(t, s)(In ⊗ F (s))û(s)ds +

� t

tρ

Φ(t, s)G1(s,ψ(s))ds, (6.16)

where ψ̃0 is given by

ψ̃0 =
�

t0<tk<T

(In2 + Dkû(tk))Φ(t, t0)ψ0+

ρ�

i=1

� ti

ti−1

�

ti−1<tk<T

(In2 + Dkû(tk))Φ(t, s)B1(s)û(s)ds+

ρ�

i=1

� ti

ti−1

�

ti−1<tk<T

(In2 + Dkû(tk))Φ(t, s)G1(s,ψ(s))ds. (6.17)

Since we are looking for sufficient conditions for the complete controllability of the

(6.15). Let us first choose the control U(·) in L2([t0, T ]; Rm×n) such that

In2 + Dkû(tk) = 0, k = 1, 2, . . . ρ.

With such a choice of û(·), (6.16) reduces to

ψ(t) =

� t

tρ

Φ(t, s)B1(s)û(s)ds +

� t

tρ

Φ(t, s)G1(s, ψ(s))ds. (6.18)

Suppose further that the control û(·) is such that the Volterra-type integral equation

(6.18) also satisfies ψ(T ) = ψ1. That is,

ψ1 =

� T

tρ

Φ(T, s)B1(s)û(s)ds +

� T

tρ

Φ(T, s)G1(s,ψ(s))ds. (6.19)

By rearrangements of the terms in (6.19)

ψ1 −
� T

tρ

Φ(T, s)G1(s,ψ(s))ds =

� T

tρ

Φ(T, s)B1(s)û(s)ds. (6.20)

A suitable choice of û(t) in time interval [tρ, T ] that satisfies (6.20) can be given as

follows :

û(t) = C∗((CC∗)−1[ψ1 −
� T

tρ

Φ(T, s)G1(s,ψ(s))ds])(t). (6.21)
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This shows that the complete controllability of the system (6.15) is equivalent to the

solvability of (6.18) and (6.21), together. Now we will discuss the solvability of the

coupled equations (6.18) and (6.21). Let us introduce following operators.

Let X1 = L2([tρ, T ]; Rmn), X2 = L2([tρ, T ]; Rn2
). Define operators K,N : X2 →

X2, H : X1 → X2 and R : X2 → X1 as follows:

(Kψ)(t) =

� t

tρ

Φ(t, τ)ψ(τ)dτ, (Nψ)(t) = G1(t,ψ(t)),

(Hu)(t) =

� t

tρ

Φ(t, τ)B1(τ)u(τ)dτ,

(Rψ)(t) = C∗((CC∗)−1

� T

tρ

Φ(T, τ)ψ(τ)dτ)(t).

Using above operators equations (6.18) and (6.21) can be written as a pair of operator

equations

ψ = KNψ + Hu

u = u1 − RNψ,
(6.22)

where u1(t) = C∗((CC∗)−1ψ1)(t). Thus, based on the above discussion we have the

following important result.

Theorem 6.3.1. The nonlinear system (6.1) is completely controllable if the coupled

system (6.22) is uniquely globally solvable.

Proof. If the pair (6.22) is uniquely globally solvable, then the control given by u(t) =

(u1 −RNψ)(t) for t ∈ [tρ, T ] exists and well defined, moreover by substituting control

u(t) in the equation ψ = KNψ + Hu, we have ψ(T ) = ψ1. Now define a control û(·)
in L2([t0, T ], Rmn) as follows :

û(t) =





v(t), t /∈ [tρ, T ], t �= tk, k = 1, 2, . . . , ρ

u1 − RNψ, t ∈ [tρ, T ],

(6.23)

and û(tk) are chosen so that In2 +Dkû(tk) = 0, for each k = 1, 2, . . . , ρ, and v(·) is any

arbitrary function in L2([t0, tρ], Rmn). Then it can be easily shown that the solution of

(6.15) with the control û satisfies ψ(T ) = ψ1. That is, the system (6.15) is completely

controllable and so does (6.1).
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Now we will give sufficient conditions for the solvability of the coupled system

(6.22).

6.3.1 Controllability Results under Lipschitzian Nonlinearities

Let us now make the following assumptions :

(A1) Let b = suptρ≤t≤T �B1(t)� and the transition matrix Φ(t, s) is such that �Φ(t, s)� ≤
h(t, s), where h(·, ·) : [tρ, T ] × [tρ, T ] → R+ is a function satisfying

� � T

tρ

� t

tρ

h2(t, s) ds dt
� 1

2
= k < ∞.

(A2) The function G : [t0, T ]×Rn×n → Rn×n satisfies the ‘Caratheodory conditions’.

Further, G satisfies Lipschitz condition in the time interval [tρ, T ] with Lipschitz

constant α. That is, for t ∈ [tρ, T ] and x, y ∈ Rn×n,

�G(t, x) − G(t, y)� ≤ α�x − y�.

Lemma 6.3.2. Under Assumptions (A1)–(A2), the bounds for �K�, �H� and �R�
are estimated as �K� ≤ k, �H� ≤ bk � h and �R� ≤ bk2

1c � γ, where c =

�(CC∗)−1� and k1 = [
� T

tρ
h2(T, s)ds]

1
2 . Furthermore, the nonlinear operator N is

Lipschitz continuous and bounded from X2 into itself with Lipschitz constant β =
√

nα.

Proof. The proof follows from Lemma 5.4.5 and Lemma (5.4.6) of Chapter 5.

Theorem 6.3.3. Let β be the Lipschitz constant for the nonlinear operator N . Suppose

that controllability Grammian W (tρ, T ) or CC∗ is nonsingular and Assumptions (A1)–

(A2) are satisfied with kβ < 1 and ( β
1−kβ

)γh < 1 then we have :

(i) Coupled system (6.22) is uniquely globally solvable.

(ii) The control matrix U(t) ∈ Rm×n steering the system (6.1) from zero initial state

at time t0 to a desired state X1 at time T can be approximated during time interval
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[tρ, T ] by the iterates Un(t) defined by

V ec(U (n))(t) = (C∗(CC∗)−1[V ec(X1)−
� T

tρ

Φ(T, s)G1(s, V ec(X (n))(s))ds])(t).

(6.24)

The state matrix approximation X(n+1) at (n+1)th stage during the time interval

[tρ, T ] is given by the iterates

V ec(X
(n+1)
j+1 )(t) =

� t

tρ

Φ(t, s)G1(s, V ec(X
(n+1)
j )(s))ds+

� t

tρ

Φ(t, s)B1(s)V ec(U (n))(s)ds. (6.25)

Proof. By using Theorem 5.4.8 of Chapter 5, it can be easily shown that the system

(6.22) is uniquely globally solvable. Furthermore, approximation schemes for the con-

trol and state matrices can be easily obtained by closely following the proof of Theorem

5.4.8.

The conditions of the Theorem 6.3.3 are more general and wide in nature. In par-

ticular, they can be satisfied if one chooses T and tρ sufficiently close to each other.

However, in case when T and tρ are sufficiently close to each other, we establish the

controllability of (6.1) independently without using Theorem 6.3.3. We will first define

the solution operator.

Definition 6.3.4. The solution operator S : L2([tρ, T ]; Rmn) → L2([tρ, T ]; Rn2
) is

defined by Su = ψ, where ψ satisfies the following :

ψ(t) =

� t

tρ

Φ(t, s)B1(s)u(s)ds +

� t

tρ

Φ(t, s)G1(s, ψ(s))ds. (6.26)

There are many conditions under which the solution operator is well defined and

continuous (cf. George (1995), Joshi and George (1989)). The following lemma states

the properties of the solution operator that we will use in our main result.

Lemma 6.3.5. Suppose that Assumptions (A1)–(A2) hold along with the additional

condition kα
√

n < 1, then the solution operator S is well defined and Lipschitz contin-

uous with Lipschitz constant kb
1−kα

√
n

.
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Proof. By using operators K and N , Eq. (6.26) gives rise to the following entity :

Su = KPu + KNSu, (6.27)

where Pu ∈ L2([tρ, T ]; Rn2
) is defined by Pu(t) = B1(t)u(t). From Eq. (6.27), it

follows that

Su = (In2 − KN)−1KPu. (6.28)

For given any u, v ∈ L2([tρ, T ]; Rmn), Eq. (6.28) implies

�Su − Sv� = �(In2 − KN)−1KPu − (In2 − KN)−1KPv�.

Now, by using Theorem 5.4.7 of Chapter 5, it follows that the operator (In2 − KN)−1

is Lipschitz continuous with Lipschitz constant 1
1−kα

√
n

. Thus, we have,

�Su − Sv� ≤ 1

1 − kα
√

n
�K(Pu − Pv)� (6.29)

≤ 1

1 − kα
√

n
kb�u − v�. (6.30)

The last equation implies that S is Lipschitz continuous with Lipschitz constant 1
1−kα

√
n
kb.

By taking u = v, it also follows from the last equation that Su = Sv; this shows that S

is well defined. Hence the lemma.

Theorem 6.3.6. Suppose the following conditions hold :

(i) W (tρ, T ) is non-singular.

(ii) Assumptions (A1)–(A2) hold.

(iii) tρ and T are sufficiently close.

Then the system (6.1) is completely controllable.

Proof. By using (ii), (iii) and Lemma 6.3.5, it can be shown that the solution operator

S is well defined and Lipschitz continuous. Now, the complete controllability of (6.1)
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follows from the solvability of the equation

ψ1 = ψ(T ) =

� T

tρ

Φ(T, s)B1(s)u(s)ds +

� T

tρ

Φ(T, s)G1(s, (Su)(s))ds. (6.31)

By replacing u by C∗(W−1(tρ, T )v) in (6.31), we have

v = ψ1 + N1v, (6.32)

where N1 : Rn2 → Rn2 is a nonlinear operator defined by

N1v = −
� T

tρ

Φ(T, s)G1(s, (SC∗(W−1(tρ, T )v))(s))ds.

By using Lemma 6.3.5 and Lipschitz continuity of G1, it can be shown that N1 is Lip-

schitz continuous. Furthermore, by invoking condition (iii), it follows that N1 is a

contraction. Thus, by the Banach contraction principle (6.32) has a unique solution.

Hence the proof of theorem follows.

Remark 6.3.7. The control u(t) in time interval [tρ, T ] is given by u(t) = C∗(W−1(tρ, T )v)(t),

where v is the unique limit of the iterates {vn}, given by

vn+1 = ψ1 + N1vn

starting from any v0 ∈ Rn2
.

6.3.2 Controllability Results under Monotone Nonlinearities

Now we shall give conditions for the controllability of the system (6.1) when the non-

linear term G is not Lipschitz continuous. However, we assume G satisfies monotone

type of conditions. Let us make following assumptions :

(B1) There exists a positive constant µ such that the matrix A1(t) satisfies

< −A1(t)ψ,ψ >≥ µ�ψ�2 for t ∈ [tρ, T ].
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(B2) The nonlinear function −G is monotone. In fact −G satisfies a weaker condition

than monotonicity as given below. Given any x1, x2 ∈ Rn×n

< (G(t, x1) − G(t, x2))ej , (x1 − x2)ej >≤ 0, 1 ≤ j ≤ n,

where {ej} denotes the canonical basis in Rn and t ∈ [tρ, T ].

(B3) G also satisfies a growth condition of the form

�G(t, x)� ≤ d(t) + w�x�,

for all (t, x) ∈ [tρ, T ] × Rn×n, d(·) ∈ L2([tρ, T ]; R) and w > 0.

The following theorem guarantees the controllability of impulsive matrix Lyapunov

systems with monotone nonlinearities satisfying assumptions (B2) and (B3). Before

establishing the results, we will give examples of monotone but not Lipschitzian non-

linearities satisfying assumptions (B2) and (B3). Let G(t, x) : [tρ, T ] × R → R be

defined as follows :

G(t, x) =





0 if x ∈ [−1, 1]

−|x + 1| 12 if x ∈ (−∞,−1]

|x − 1| 12 if x ∈ (1,∞].

Clearly the function defined above is monotonically increasing and bounded by linear

growth constant w = 1. The function G is not globally Lipschitz as the derivative of G

at points 1 and −1 are unbounded. Many other similar examples can be obtained.

Theorem 6.3.8. Suppose that the linear system (6.2) is controllable and the Assump-

tions (A1) and (B1)–(B3) are satisfied. If [1−(w
√

n
µ

+1)
√

nwγh] > 0, then the nonlinear

system (6.1) is controllable.

Proof. Under the assumptions of the theorem, it follows by using the results of Theorem

5.4.12 that the coupled system (6.22) is solvable which in turn implies that the system

(6.1) is controllable.
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We will now provide an example to demonstrate the controllability of impulsive

systems.

Example 6.3.9. Consider the following nonlinear matrix Laypunov system with impulse

effect


ẋ11(t) ẋ12(t)

ẋ21(t) ẋ22(t)


 =


1 1

3 2





x11(t) x12(t)

x21(t) x22(t)


 +


x11(t) x12(t)

x21(t) x22(t)





1 1

0 1




+


1

1




�
u1(t) u2(t)

�
+ c


sin(x11(t)) cos(x12(t))

cos(x21(t)) sin(x22(t))


 ,

(6.33)

By applying the Vec operator to above equation, we have the following equation of the

form (6.15)




ẋ11(t)

ẋ21(t)

ẋ12(t)

ẋ22(t)




=




2 1 0 0

3 3 0 0

1 0 2 1

0 1 3 3







x11(t)

x21(t)

x12(t)

x22(t)




+




1 0

1 0

0 1

0 1





u1(t)

u2(t)


 + c




sin(x11(t))

cos(x21(t))

cos(x12(t))

sin(x22(t))




.

Let the time interval under consideration is [0, 1] and the impulse point are taken as

·3 ≤ ·6 ≤ ·95. Let

X(·3+) = [I2 + 2U11(·3)I2 + 3U12(·3)I2]X(·3), (6.34)

X(·6+) = [I2 + U11(·6)I2 + 4U12(·6)I2]X(·6), (6.35)

X(·95+) = [I2 + U11(·95)I2 + 5U12(·95)I2]X(·95). (6.36)

In the setting of above example we have taken h(t, s) = (
�

eA1t)(
�

e−A1s). tρ = ·95
and T = 1. The value of c is 1

17000
. The value of Lipschitz constant β for the nonlinear

operator N is 2
17000

. The bounds for the norms of the operators K, H and R are

computed as .3616(k), .5113(h), and 1.6379× 104(γ), respectively. Thus, the constants

kβ < 1 and ( β
1−kβ

)γh = .9853(< 1). Hence in accordance with Theorem 6.3.3 the

system (6.33) is completely controllable. The values of the control at impulse points

can be taken as U(·3) = (1,−1), U(·6) = (1,− · 5) and U(·95) = (4,−1), and in

the time interval [·95, 1] the control U(t) will be synthesized by using the iterates in
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Theorem 6.3.3.

6.4 Conclusion

In the chapter, we have established some sufficient conditions for the complete con-

trollability of linear and nonlinear impulsive matrix Lyapunov systems. For the linear

IMLS, we have shown that if W (ti−1, ti) for any 1 ≤ i ≤ ρ or W (tρ, T ) is invert-

ible then the linear IMLS is completely controllable. For the nonlinear IMLS, we have

shown that if W (tρ, T ) is invertible and tρ and T are sufficiently close, then with smooth

nonlinearities, (for instance, Lipschitzian nonlinearities) the nonlinear IMLS is com-

pletely controllable. For the future work in this direction, we feel that controllability

of the nonlinear impulsive matrix Lyapunov systems can be established by using the

surjectivity of the operators Ci for any 1 ≤ i ≤ ρ.

128



REFERENCES

1. Barnett, S. and Cameron, R. (1975). Introduction to mathematical control theory.

Clarendon Press Oxford.

2. Bede, B. and Gal, S. G. (2005). Generalizations of the differentiability of fuzzy-number-

valued functions with applications to fuzzy differential equations. Fuzzy Sets and Sys-

tems, 151(3):581–599.

3. Bede, B. and Stefanini, L. (2013). Generalized differentiability of fuzzy-valued func-

tions. Fuzzy Sets and Systems, 230:119–141.

4. Biglarbegian, M., Sadeghian, A., and Melek, W. (2012). On the accessibil-

ity/controllability of fuzzy control systems. Information Sciences, 202:58–72.

5. Buckley, J. J. and Feuring, T. (2000). Fuzzy differential equations. Fuzzy Sets and

Systems, 110(1):43–54.

6. Buckley, J. J. and Feuring, T. (2001). Fuzzy initial value problem for nth-order linear

differential equations. Fuzzy Sets and Systems, 121(2):247–255.

7. Cai, Z. and Tang, S. (2000). Controllability and robustness of t-fuzzy control systems

under directional disturbance. Fuzzy Sets and Systems, 115(2):279–285.

8. Chalco-Cano, Y. and Román-Flores, H. (2008). On new solutions of fuzzy differential

equations. Chaos, Solitons & Fractals, 38(1):112–119.

9. Chalco-Cano, Y. and Román-Flores, H. (2009). Comparation between some approaches

to solve fuzzy differential equations. Fuzzy Sets and Systems, 160(11):1517–1527.

10. Chen, B. and Liu, X. (2004). Reliable control design of fuzzy dynamic systems with

time-varying delay. Fuzzy Sets and Systems, 146(3):349–374.

129



11. Chen, S.-h., Ho, W.-h., and Chou, J.-h. (2009). Robust controllability of t-s fuzzy-

model-based control systems with parametric uncertainties. IEEE Transactions on

Fuzzy Systems, 17(6):1324–1335.

12. Chen, S.-H., Ho, W.-H., and Chou, J.-H. (2012). Robust local regularity and control-

lability of uncertain t − s fuzzy descriptor systems. Journal of Applied Mathematics,

2012:1–14.

13. Diamond, P. (1999). Time-dependent differential inclusions, cocycle attractors and

fuzzy differential equations. IEEE Transactions on Fuzzy Systems, 7(6):734–740.

14. Diamond, P. and Kloeden, P. E. (1994). Metric spaces of fuzzy sets: theory and appli-

cations. World Scientific.

15. Ding, Z. and Kandel, A. (2000a). On the controllability of fuzzy dynamical systems (i).

Journal of Fuzzy Mathematics, 8(1):203–214.

16. Ding, Z. and Kandel, A. (2000b). On the controllability of fuzzy dynamical systems

(ii). Journal of Fuzzy Mathematics, 8(2):295–306.

17. Ding, Z. and Kandel, A. (2000c). On the observability of fuzzy dynamical control

systems (ii). Fuzzy Sets and Systems, 115(2):261–277.

18. Ding, Z., Ma, M., and Kandel, A. (2000). On the observability of fuzzy dynamical

control systems (i). Fuzzy Sets and Systems, 111(2):225–236.

19. Dubey, B. and George, R. K. (2012a). Estimation of controllable initial fuzzy states

of linear time-invariant dynamical systems. In Mathematical Modelling and Scientific

Computation, volume 283, pages 316–324. Springer.

20. Dubey, B. and George, R. K. (2012b). On the system of fuzzy differential equations.

Advances in Fuzzy Sets and Systems, 13(1):61–75.

21. Dubey, B. and George, R. K. (2013a). Controllability of linear time-invariant dynamical

systems with fuzzy initial condition. In Proceedings of the World Congress on Engi-

neering and Computer Science, San-Francisco, USA, October 23-25, 2013, volume 2,

pages 879–884.

130



22. Dubey, B. and George, R. K. (2013b). Controllability of semilinear matrix Lyapunov

systems. Electronic Journal of Differential Equations, 2013(42):1–12.

23. Dubey, B. and George, R. K. (2013c). A note on the controllability of fuzzy differential

dynamical systems. Communicated to International J. of Fuzziness Uncertainty and

Knowledge Based Systems.

24. Dubey, B. and George, R. K. (2013d). A note on the evolution of solutions of a system

of ordinary differential equations with fuzzy initial conditions and fuzzy-inputs. Journal

of Uncertain Systems, 7(4):294–302.

25. Dubois, D. and Prade, H. (1982). Towards fuzzy differential calculus part 3: Differen-

tiation. Fuzzy Sets and Systems, 8(3):225–233.

26. Fard, O. S. and Ghal-Eh, N. (2011). Numerical solutions for linear system of first-order

fuzzy differential equations with fuzzy constant coefficients. Information Sciences,

181(20):4765–4779.

27. Farinwata, S. S. and Vachtsevanos, G. (1993). A survey on the controllability of fuzzy

logic systems. In Proceedings of the 32nd IEEE Conference on Decision and Control,

pages 1749–1750. IEEE.

28. Feng, G., Cao, S., Rees, N., and Chak, C. (1997). Design of fuzzy control systems with

guaranteed stability. Fuzzy Sets and Systems, 85(1):1–10.

29. Feng, Y. and Hu, L. (2006). On the quasi-controllability of continuous-time dynamic

fuzzy control systems. Chaos, Solitons & Fractals, 30(1):177–188.

30. Gassara, H., El Hajjaji, A., and Chaabane, M. (2010). Observer-based robust h∞ reli-

able control for uncertain ts fuzzy systems with state time delay. IEEE Transactions on

Fuzzy Systems, 18(6):1027–1040.

31. George, R., Nandakumaran, A., and Arapostathis, A. (2000). A note on controllability

of impulsive systems. Journal of Mathematical Analysis and Applications, 241(2):276–

283.

32. George, R. K. (1995). Approximate controllability of nonautonomous semilinear sys-

tems. Nonlinear Analysis: Theory, Methods & Applications, 24(9):1377–1393.

131



33. Ghazanfari, B., Niazi, S., and Ghazanfari, A. (2012). Linear matrix differential dynam-

ical systems with fuzzy matrices. Applied Mathematical Modelling, 36(1):348–356.

34. Goetschel Jr, R. and Voxman, W. (1986). Elementary fuzzy calculus. Fuzzy Sets and

Systems, 18(1):31–43.

35. Graham, A. (1981). Kronecker products and matrix calculus: with applications. Hor-

wood Chichester.

36. Guan, Z.-H., Qian, T.-H., and Yu, X. (2002a). Controllability and observability of

linear time-varying impulsive systems. IEEE Transactions on Circuits and Systems I:

Fundamental Theory and Applications, 49(8):1198–1208.

37. Guan, Z.-H., Qian, T.-H., and Yu, X. (2002b). On controllability and observability for

a class of impulsive systems. Systems & Control Letters, 47(3):247–257.

38. Gupta, M. M., Trojan, G. M., and Kiszka, J. B. (1986). Controllability of fuzzy control

systems. IEEE Transactions on Systems, Man and Cybernetics, 16(4):576–582.

39. Hespanha, J. P. (2009). Linear systems theory. Princeton university press.

40. Hirschorn, R. M. (1975). Controllability in nonlinear systems. Journal of Differential

Equations, 19(1):46–61.

41. Hüllermeier, E. (1997). An approach to modelling and simulation of uncertain dynam-

ical systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 5(02):117–137.

42. Joshi, M. C. (1983). On the existence of optimal controls in banach spaces. Bulletin of

the Australian Mathematical Society, 27(03):395–401.

43. Joshi, M. C. and Bose, R. K. (1985). Some topics in nonlinear functional analysis.

Wiley.

44. Joshi, M. C. and George, R. K. (1989). Controllability of nonlinear systems. Numerical

Functional Analysis and Optimization, 10(1-2):139–166.

45. Kaleva, O. (1987). Fuzzy differential equations. Fuzzy Sets and Systems, 24(3):301–

317.

132



46. Kaleva, O. (2006). A note on fuzzy differential equations. Nonlinear Analysis: Theory,

Methods & Applications, 64(5):895–900.

47. Kandel, A. and Byatt, W. (1978). Fuzzy differential equations. Proceedings of the

International Conference on Cybernetics and Society, Tokyo-Kyoto, Japan, November

3-7, 1978. IEEE.

48. Kandel, A. and Byatt, W. J. (1980). Fuzzy processes. Fuzzy Sets and Systems, 4(2):117–

152.

49. Khastan, A., Nieto, J. J., and Rodríguez-López, R. (2011). Variation of constant formula

for first order fuzzy differential equations. Fuzzy Sets and Systems, 177(1):20–33.

50. Klir, G. J. and Yuan, B. (1995). Fuzzy sets and fuzzy logic. Prentice Hall New Jersey.

51. Kwun, Y. C., Kim, W. H., Park, J. S., and Park, J. H. (2008). Controllability for the

fuzzy differential equations in n-dimension fuzzy vector space. In FSKD (1), pages

230–234.

52. Kwun, Y. C., Kim, Y. B., Park, J. S., and Park, J. H. (2009). Controllability for the

impulsive semilinear fuzzy intergrodifferential equation in n-dimension fuzzy vector

space. In Sixth International Conference on Fuzzy Systems and Knowledge Discovery,

2009. FSKD’09., volume 6, pages 162–166. IEEE.

53. Lakshmikantham, V., Bainov, D. D., and Simeonov, P. P. S. (1989). Theory of impulsive

differential equations, volume 6. World Scientific.

54. Leela, S., McRae, F., and Sivasundaram, S. (1993). Controllability of impulsive differ-

ential equations. Journal of Mathematical Analysis and Applications, 177(1):24–30.

55. Liu, X. and Willms, A. R. (1996). Impulsive controllability of linear dynamical systems

with applications to maneuvers of spacecraft. Mathematical Problems in Engineering,

2(4):277–299.

56. Mizukoshi, M. T., Barros, L., Chalco-Cano, Y., Román-Flores, H., and Bassanezi, R. C.

(2007). Fuzzy differential equations and the extension principle. Information Sciences,

177(17):3627–3635.

133



57. Murty, M. and Kumar, G. S. (2008a). On controllability and observability of fuzzy

dynamical matrix lyapunov systems. Advances in Fuzzy Systems, 2008:1–16.

58. Murty, M. and Kumar, G. S. (2008b). On ψ-boundedness and ψ-stability of matrix

lyapunov systems. Journal of Applied Mathematics and Computing, 26(1-2):67–84.

59. Murty, M., Rao, B. A., and Kumar, G. S. (2006). Controllability, observability, and

realizability of matrix lyapunov systems. Bulletin of the Korean Mathematical Society,

43(1):149–159.

60. Negoita, C. V. and Ralescu, D. A. (1975). Applications of fuzzy sets to systems analysis.

Wiley New York.

61. Nieto, J. J. (1999). The cauchy problem for continuous fuzzy differential equations.

Fuzzy Sets and Systems, 102(2):259–262.

62. Pandit, S. G. and Deo, S. G. (1982). Differential systems involving impulses. Springer-

Verlag New York.

63. Pearson, D. (1997). A property of linear fuzzy differential equations. Applied Mathe-

matics Letters, 10(3):99–103.

64. Phu, N. D. and Dung, L. Q. (2011). On the stability and controllability of fuzzy control

set differential equations. International Journal of Reliability and Safety, 5(3):320–335.

65. Puri, M. and Ralescu, D. (1986). Fuzzy random variables. Journal of Mathematical

Analysis and Application, 114(1):409–422.

66. Puri, M. L. and Ralescu, D. A. (1983). Differentials of fuzzy functions. Journal of

Mathematical Analysis and Applications, 91(2):552–558.

67. Russell, D. L. (1979). Mathematics of finite-dimensional control systems: theory and

design. M. Dekker.

68. Seikkala, S. (1987). On the fuzzy initial value problem. Fuzzy Sets and Systems,

24(3):319–330.

69. Song, S. and Wu, C. (2000). Existence and uniqueness of solutions to cauchy problem

of fuzzy differential equations. Fuzzy Sets and Systems, 110(1):55–67.

134



70. Sontag, E. D. (1998). Mathematical control theory: deterministic finite dimensional

systems, volume 6. Springer.

71. Szidarovszky, F. (1998). Linear systems theory. CRC press.

72. Terdpravat, A. (2004). An ab initio fuzzy dynamical system theory: controllability and

observability. M.S. Thesis, Georgia Institute of Technology.

73. Wu, C., Song, S., and Lee, E. S. (1996). Approximate solutions, existence, and unique-

ness of the cauchy problem of fuzzy differential equations. Journal of Mathematical

Analysis and Applications, 202(2):629–644.

74. Xie, G. and Wang, L. (2004). Necessary and sufficient conditions for controllability and

observability of switched impulsive control systems. IEEE Transactions on Automatic

Control, 49(34):960–966.

75. Xu, J., Liao, Z., and Hu, Z. (2007). A class of linear differential dynamical systems

with fuzzy initial condition. Fuzzy Sets and Systems, 158(21):2339–2358.

76. Xu, J., Liao, Z., and Nieto, J. J. (2010). A class of linear differential dynamical systems

with fuzzy matrices. Journal of Mathematical Analysis and Applications, 368(1):54–

68.

77. Zabczyk, J. (2008). Mathematical control theory: an introduction. Springer.

78. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3):338–353.

79. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approx-

imate reasoning. Information Sciences, 8(3):199–249.

80. Zimmermann, H. J. (2001). Fuzzy set theory-and its applications. Springer.

135



APPENDIX A

Matlab Simulation Scripts

A.1 M-scripts for Evolution of Solutions of Fuzzy Dy-

namical Systems

The following m-script is used in simulating the Example 3.2.6 in Chapter 3. We have

used the results of Theorem 3.2.1 in this script.

clc

clear all;

close all;

options = odeset(’RelTol’,1e-4,’AbsTol’,

[1e-6 1e-6 1e-6 1e-6]);

s = sym(’s’);

p = 0;

simTime = 1

% Storage variables for propagated membership functions

x1,y1,y2 = [];

% Storage variables for Input grade functions

x3,y3,y4 = [];

out3 = sparse(100,5);

in = sparse(100,5);

for i=1 : 100

p=p+.01;

input = subs([s s/2 2-s 1-(s/2)],p);

[T,Y] = ode45(@ NonLinFuzzyPropwithInput(t,y,p),

[0 simTime], input, options);

% This if condition is used to capture the plot for



% various $\alpha$-sections after every .2 second.

if(mod(i,20) == 0)

figure

plot(T, Y(:,1),’r’, T,Y(:,3),’b’)

title(’Membership grade for x1’)

figure

plot(T, Y(:,2),’r’,T,Y(:,4),’b’)

title(’Membership grade for x2’)

end

n = size(T,1);

out3(i,:) = [p Y(n,1) Y(n,2) Y(n,3) Y(n,4)];

in(i,:) = [p Y(1,1) Y(1,2) Y(1,3) Y(1,4)];

end

% Populate data for plots of initial membership functions.

for i=1 :100

x3([2*i-1 2*i],1) = [in(i,1), in(i,1)]’;

y3([2*i-1 2*i],1) = [in(i,2), in(i,4)]’;

y4([2*i-1 2*i],1) = [in(i,3), in(i,5)]’;

end

figure

% Plot of input membership function $\mu_{1}$

% for variable $x_1$.

plot(y3,x3,’.’)

hold on;

% Plot of input membership function $\mu_{2}$

% for variable $x_2$.

plot(y4,x3,’.’)

ylim([0 1]);

hold off

pause

% Populate data for plots of propagated membership

% functions at time simTime =1.
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for i=1 :100

x1([2*i-1 2*i],1) = [out3(i,1), out3(i,1)]’;

y1([2*i-1 2*i],1) = [out3(i,2), out3(i,4)]’;

y2([2*i-1 2*i],1) = [out3(i,3), out3(i,5)]’;

end

figure

% Plot for propagated membership function for $x_1$

% at time t = 1.

plot(y1,x1,’.’)

hold on;

% Plot for propagated membership function for $x_2$

% at time t = 1.

plot(y2,x1,’.’)

ylim([0,1])

hold off

The function file NonLinFuzzyPropwithInput.m contains the following m− scripts.

function dy = NonLinFuzzyPropwithInput(t,y,a)

delta = sqrt(1-(1/log(exp(1)/a)));

dy = zeros(4,1);

dy(1) = -y(4) * y(4) + cos(t)+(t-1+a);

dy(2) = -y(3) * y(3) + sin(t)+(t-delta);

dy(3) = -y(2) * y(2) + cos(t)+(t+1-a);

dy(4) = -y(1) * y(1) + sin(t)+(t+delta);

The following m-script is used in Example 3.3.6 in Chapter 3.

clear all;

clc;

x1 = -1:.0005:1;

y1 = exp(1).*exp(-(1./(1-(x1.^2))));

x2 = -.5:.0005:.5;
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y2 = exp(1).*exp(-((1/4)./((1/4)-(x2.^2))));

% Plot of membership function for variable x_1.

plot(x1,y1)

hold

% Plot of membership function for variable x_2.

plot(x2,y2)

hold off

ylim([0 1]);

% Transition matrix evaluated at t=1 for the system

% used in Example 3.3.6

A = [1 1 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1]

a = sym(’a’);

s = sym(’s’);

B = [s 0; 0 -s; 0 s; -s 0]

% Initial condition

x0 = [-(1-1/(log(exp(1)/a)))^.5

-((1-1/(log(exp(1)/a)))^.5)/2

(1-1/(log(exp(1)/a)))^.5

((1-1/(log(exp(1)/a)))^.5)/2]’;

incre = .01;

p= .005;

% $\alpha$-level set for the fuzzy control function u(s)

u = [a+s-1 s+1-a]’;

x = (expm(A*1))*x0 +

int(expm(A-[s^2 s 0 0; 0 s^2 0 0;

0 0 s^2 s; 0 0 0 s^2])*B*u,s,0,1);

for i=1 : 100

x_1 = x([1 3],:);

x_2 = x([2 4],:);

level = subs(x_1,p);

level_1 = subs(x_2,p);

x1_a([2*i-1 2*i],1) = level;
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x2_a([2*i-1 2*i],1) = level_1;

y1_a([2*i-1 2*i],1) = [p p]’;

y2_a([2*i-1 2*i],1) = [p p]’;

p = p+incre;

end

figure

% Plot of the propagated membership function for

% variable x_1 at t=1

plot(x1_a,y1_a,’.’);

hold on

% Plot of the propagated membership function for

% variable x_2 at t=1

plot(x2_a,y2_a,’.’);

ylim([0 1]);

hold off

A.2 M-scripts for Controllability of Fuzzy Dynamical

Systems

The following m-scripts is used to simulate the Example 4.2.16 in the Chapter 4. Re-

sults of Theorem 4.2.5 are used in this script.

clear all;

close all;

clc;

% Initial membership function.

x1 = 0:.01:1;

y1(1,1:51) = 2.*x1(1,1:51);

y1(1,52:101) = 2- 2.*x1(1,52:101);

figure

plot(x1,y1);
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% Target membership function at final time.

x1 = 0:.01:8;

y1(1,1:401) = .25.*x1(1,1:401);

y1(1,402:801) = 2- .25.*x1(1,402:801);

figure

plot(x1,y1);

% Final time

T = 1;

% Matrices obtained after the flip operations on the

% original system.

A = [0 -1;-1 0];

B = [0 -2;-2 0];

% Declare some symbolic variables.

s = sym(’s’,’real’);

a = sym(’a’,’real’);

t = sym(’t’,’real’);

% $\alpha$-level sets for initial and

% target membership functions.

x0 = [a/2;1-(a/2)];

x1 = [4*a; 8-4*a];

% Computation of controllability grammian and controller

% that steers initial level set to target level set.

W = int((expm(A*(-t))*B*B’*expm(A’*(-t))),t,0,T);

u = B’*expm(A’*(-t))*inv(W)*(expm(A*(-T))*x1 - x0);

U = subs(u,s);

% Change the value of t to compute state components

% at various instances. Default value for t is 1.

t=1

% State vector computation

x =(expm(A*t))*x0 + int(expm(A*(t-s))*B*U,s,0,t);

incre = .01; p= .01;

% Generating propagated fuzzy state
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for i=1 : 100

level = subs(x ,p);

xdata([2*i-1 2*i],1) = level;

ydata([2*i-1 2*i],1) = [p p]’;

p = p+incre;

end

figure

plot(xdata,ydata,’.’);

ylim([0 1]); xlim([0 9])

set(gca,’XTick’,[1:9]);

t=sym(’t’)

% Plot of state and control function at $\alpha$ = .5"

x0 = [.25;.75];

x1 = [2; 6];

u = B’*expm(A’*(-t))*inv(W)*(expm(A*(-T))*x1 - x0);

U = subs(u,s);

x =(expm(A*t))*x0 + int(expm(A*(t-s))*B*U,s,0,t);

tdata = linspace(0,1,200)

odata = zeros(2,200)

udata = zeros(2,200)

for i=1 : size(tdata,2)

odata(:,i) = subs(x,tdata(i));

udata(:,i) = subs(u,tdata(i));

end

% Plot for the lower and upper cuts of the states

figure

plot(tdata,odata(1,:),’.’,tdata,odata(2,:),’.’)

% Plot for the lower and upper cuts of the control

figure

plot(tdata,udata(1,:),’.’,tdata,udata(2,:),’.’)
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In Example 4.2.15 of Chapter 4, the following m-script is employed. Results of the

Theorem 4.2.12 are used to compute the fuzzy steering control.

clear all;

clc;

% Initial membership function at t=0.

x1 = -.5:.0005:.5;

y1 = exp(1).*exp(-((1/4)./((1/4)-(x1.^2))));

plot(x1,y1);

% Target membership function t=1

x1 = -2:.0005:2;

y1 = exp(1).*exp(-(1./(1-((x1/2).$\^$ 2))));

plot(x1,y1);

% Final time

T = 1;

% Matrices obtained after the flip operations.

A = [1 0;0 1];

B = [1 0;0 1];

s = sym(’s’,’real’);

t = sym(’t’,’real’);

a = sym(’a’,’real’);

% alpha-cuts of initial membership functions

x0 = [-(1/2)*sqrt(1-(1/log(exp(1)/a)));

(1/2)*sqrt(1-(1/log(exp(1)/a)))];

x0_rev = [(1/2)*sqrt(1-(1/log(exp(1)/a)));

-(1/2)*sqrt(1-(1/log(exp(1)/a)))];

% Some metadata variables for calculations

A1 = 1; C = expm(A1*(1-0));

z = sqrt(1-(1/log(exp(1)/a)));

p1 = -2*sqrt(1-(1/log(exp(1)/a)))+ C*z;

p2 = 2*sqrt(1-(1/log(exp(1)/a))) - C*z;

% alpha level sets for the $\widetilde{X_1}$
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x1 = [p1;p2]

% Controllability Grammian and computation of steering control.

W = int((expm(A*(-t))*B*B’*expm(A’*(-t))),t,0,T);

u = B’*expm(A’*(-t))*inv(W)*(expm(A*(-T))*x1 - x0_rev);

U = subs(u,s);

% Change the value of $t \in [0,T]$ to get system state

% at desired time instant. Default value for t is 1 .

t=1

% State vector computation

x =(expm(A*t))*x0 + int(expm(A*(t-s))*B*U,s,0,t);

incre = .01; p= .01;

% Generating propagated fuzzy state

for i=1 : 100

level = subs(x ,p);

xdata([2*i-1 2*i],1) = level;

ydata([2*i-1 2*i],1) = [p p]’;

p = p+incre;

end

% Plot for propagated membership functions at

% desired time instants.

figure

plot(xdata,ydata,’.’);

xlim([-2.5 2.5]);

ylim([0 1])

% Plot of state and control function at "alpha = .5".

t=sym(’t’)

delta = sqrt(1-(1/log(exp(1)/.5)))

x0 = [-delta/2;delta/2];

x1 = [-2*delta;2*delta];

u = B’*expm(A’*(-t))*inv(W)*(expm(A*(-T))*x1 - x0);

U = subs(u,s);

x =(expm(A*t))*x0 + int(expm(A*(t-s))*B*U,s,0,t);
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tdata = linspace(0,1,200)

odata = zeros(2,200)

udata = zeros(2,200)

subs(x,.5)

for i=1 : size(tdata,2)

odata(:,i) = subs(x,tdata(i));

udata(:,i) = subs(u,tdata(i));

end

figure

plot(tdata,odata(1,:),’.’,tdata,odata(2,:),’.’)

figure

plot(tdata,udata(1,:),’.’,tdata,udata(2,:),’.’)

The following m−script is used in demonstrating fuzzy controllability and to compute

fuzzy-controllable initial fuzzy states for Example 4.2.21. We have used the results of

Theorem 4.2.18 in this script.

clear all;

clc;

% Data for target fuzzy states

x1 = -1:.0005:1;

y1 = exp(1).*exp(-(1./(1-(x1.^2))));

x2 = .5:.0005:1.5;

y2 = exp(1).*exp(-((1/4)./((1/4)-((x2-1).^2))));

t = sym(’t’);

s = sym(’s’);

T=1;

% System matrices A and B

A1 = [.5 .1;.1 .3];

B1 = [1 -1]’;

% Initial and target crisp states

x10 = [2 3]’;

x11 = [0 1]’;
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W = int((expm(A1*(T-t))*B1*B1’*expm(A1’*(T-t))),t,0,T);

subs(W)

% Computation of controller

u = B1’*expm(A1’*(T-t))*inv(W)*(x11-expm(A1*T)*x10);

U=subs(u,s);

% System matrices after flip operations

A = [.5 .1 0 0; .1 .3 0 0; 0 0 .5 .1; 0 0 .1 .3];

B = [1 -1 1 -1]’;

a = sym(’a’);

magicfactor = norm(exp(A1))*sqrt(2);

x0 = [2-((1-1/(log(exp(1)/a)))^.5)/(magicfactor*2)

3-((1-1/(log(exp(1)/a)))^.5)/(2*magicfactor)

2+((1-1/(log(exp(1)/a)))^.5)/(2*magicfactor)

3+((1-1/(log(exp(1)/a)))^.5)/(2*magicfactor)]’;

incre = .01; p= .01;

% state vector computation

x = (expm(A*1))*x0 + int(expm(A*(1-s))*B*U,s,0,1);

% Generating various fuzzy states

for i=1 : 100

x_1 = x([1 3],:);

x_2 = x([2 4],:);

level = subs(x_1,p);

level_1 = subs(x_2,p);

x1_a([2*i-1 2*i],1) = level;

x2_a([2*i-1 2*i],1) = level_1;

y1_a([2*i-1 2*i],1) = [p p]’;

y2_a([2*i-1 2*i],1) = [p p]’;

% Plot for initial grade functions

z1_a = x0([1 3],:);

z2_a = x0([2 4], :);

i1 = subs(z1_a,p);

i2 = subs(z2_a,p);
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t1_a([2*i-1 2*i],1) = i1;

t2_a([2*i-1 2*i],1) = i2;

p = p+incre;

end

% Plot for computed initial state vector x(1)

plot(t1_a,y1_a,’.’);

pause

hold on

% Plot for computed initial state vector x(2)

plot(t2_a,y2_a,’.’);

hold off

% Propagated state vector x(1) at time t= 1

plot(x1_a,y1_a,’.’);

hold on

% Prescribed or desired fuzzy state x(1) at time t=1

plot(x1,y1)

pause

% Propagated state vector x(2) at time t= 1

plot(x2_a,y2_a,’.’);

hold on ;

% Prescribed or desired fuzzy state x(2) at time t=1

plot(x2,y2)

A.3 M-scripts for Controllability of Nonlinear Matrix

Lyapunov Systems

In Example 5.4.13, the following m-script is employed to compute the norms for vari-

ous operators used in Theorem 5.4.8 of Chapter 5.

% Enter the matrix A, B, F,

clc
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clear all

A = [1 2; 3 2];

B = [1 1; 2 1]

F = [1; 1]

alpha = 2/140000

t = sym(’t’);

s = sym(’s’);

disp(’The matrix A1 is’)

A1 = kron(B’,eye(2)) + kron(eye(2), A)

B1 = kron(eye(2),F)

% Final time.

T = .1

% Check if the syatem is controllable (rank should be 4))

rank ([B1 A1*B1 A1^2*B1 A1^3*B1])

b = norm(B1);

% The constant k for norm of the operator K

k = int((sum(sum(expm(A1*t))))^2*

(int((sum(sum(expm(-A1*s))))^2,s,0,t)),t,0,T);

normK=sqrt(double(k))

% The constant for the norm of the operator H

normH=b*normK

gramm = int((expm(A1*(T-t))*B1*B1’*expm(A1’*(T-t))),t,0,T);

gr = double(gramm)

eig(gr)

% Norm of the inverse of controllability grammian

c=norm(inv(double(gramm)))

k0 = norm(expm(A1*T));

k1 = double((int((sum(sum(expm(-A1*t))))^2,t,0,T)))

k2 = double(sqrt(k1)*k0)

disp(’The norm for R is’)

% Norm of the operator $R$.

normR= double(b*k2^2*c)
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% The following value should be less than 1.

double(k*alpha)

% The following critical constant should be

% less then 1.

double(normR*normH*alpha*(1\(1-k*alpha)))
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