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ABSTRACT

In this thesis, we first derive the lower dimensional model of linear elastic shallow

shells using gamma convergence. We then justify the scalings used to derive the two

dimensional model and finally we derive the two dimensional approximation of thin

piezoelectric shallow shells with variable thickness.

In chapter 2, we consider the case of linear elastic shallow shells. Here we consider

a boundary value problem in three dimensional elasticity posed over a shell of thickness

2ǫ having a specific geometry and clamped on a portion of its lateral surface. We then

transfer the problem to a domain independent of the thickness parameter by suitable

scalings on the unknowns and data and we show that the energy functionals J(ǫ) of the

three-dimensional problem gamma converges to the energy functional associated with

the two-dimensional problem and hence the sequence of functions which minimizes the

energy associated with the three dimensional problem converge weakly to the function

which minimizes the energy associated with a two dimensional model.

In chapter 3, we justify the scalings on the unknowns and data used to derive the

two dimensional model of linearly elastic shallow shells.

The method of asymptotic analysis for deriving the two-dimensional models of

plates and shells rely in a crucial way on appropriate scalings of the components of

the displacement and appropriate assumptions on the data (Lamé constants and applied

forces). The question is “are these scalings unique”?

This leads to the question of justifying the scalings used to derive these lower di-

mensional models.

We apply the formal asymptotic method to the variational formulation of the three-

dimensional boundary value problems of linear shallow shells. Without making any a

priori assumption of a mechanical or geometrical nature, we provide a complete justi-

fication of the scalings and assumptions.
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In chapter 4, we consider thin piezoelectric shells with variable thickness. We first

pose the problem in variational form and transfer the problem, by making suitable scal-

ings on the unknowns and data, to a domain which is independent of the thickness

parameter. We then show that the scaled solutions converge to a solution of a two di-

mensional model.
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NOTATIONS

Ω domain in IR3 (open, bounded, connected subset with a Lipschitz-

continuous boundary, the set Ω being “locally on one side of

its boundary”).

x = (xi) generic point in Ω.

dx volume element in Ω.

Γ boundary of Ω.

(ni) unit normal vector along Γ.

Φ : Ω ⊂ IR3 −→ IR3 injective and smooth enough mapping such that the three vectors

∂iΦ are linearly independent at each point x ∈ Ω.

gi = ∂iΦ vectors of the covariant bases in the set Φ(Ω).

gi vectors of the contravariant bases in the set Φ(Ω). The vectors

are defined at each x ∈ Ω̄ by the relations gi(x) · gj(x) = δij .

gij = gi · gj covariant components of the metric tensor of the Φ(Ω).

g = det(gij)

Γp
ij = gp · ∂jgi Christoffel symbols.

vi||j = ∂jvi − Γp
ijvp covariant derivatives of a vector field vig

i with covariant components

vi : Ω −→ IR.

ω domain in IR2 (open, bounded, connected subset with a Lipschitz-

continuous boundary, the set ω being “locally on one side

of its boundary”).

γ or ∂ω boundary of the set ω.

dγ length element along γ .

γ0 measurable subset of γ with length γ0 > 0.

x′ = (xα) generic point in the set ω, sometimes also denoted y.

∂α = ∂
∂xα

, ∂αβ = ∂2

∂xαxβ

Ω = ω × (−1, 1).
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(ni) : ∂Ω → IR3 unit outer normal vector along the boundary ∂Ω of Ω.

dΓ area element along ∂Ω.

γ × [−ǫ, ǫ] lateral face of the set Ω̄ǫ .

Γǫ
0 = γ0 × [−ǫ, ǫ] portion of the lateral face where a shell is clamped.

Γǫ
+ = γ0 × ǫ upper face of the set Ω̄ǫ .

Γǫ
− = γ0 ×−ǫ lower face of the set Ω̄ǫ .

Δ = ∂αα Laplacian.

Aijkl = λgijgkl + µ(gikgjl + gilgjk).

contravariant components of the three- dimensional elasticity tensor.

P̂ ijk,ǫ denote the piezoelectric tensors.

∈̂ij,ǫ denote the dielectric tensors.

D(Ω) the space of functions in C∞(Ω) with compact support in Ω.

H1(Ω) = {v ∈ L2(Ω); ∂iv ∈ L2(Ω)}.
H1

0 (Ω) = {v ∈ L2(Ω); v = 0 on ∂Ω}.
H1

Γ(Ω) = {v ∈ L2(Ω); v = 0 on ∂Γ}.

GENERAL CONVENTIONS

1. Latin indices and exponents: i, j, p, . . . , take their values in the set {1, 2, 3},

unless otherwise indicated, as when they are used for indexing sequences.

2. Greek indices and exponents: α, β, σ, . . . except ε, take their values in the set

{1,2}.

3. The symbol “ǫ” designates a parameter that is > 0 and approaches zero.
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CHAPTER 1

Introduction

Two dimensional model of plates and shells and one dimensional models of rods that

rely on a priori assumptions of a mechanical and geometrical nature have been proposed

by T. von Kármán, W. T. Koiter, L. Euler, P. M. Naghdi and others as approximation of

the true three dimensional models when the thickness of the plate or shell or rod is “very

small”. The main reasons for preferring lower dimensional models are their amenability

to numerical computations and their simpler mathematical structure produces richer

variety of results.

Lower dimensional models being widely used, two essential questions arise. Given

a “lower-dimensional” elastic body, together with specific loadings and boundary con-

ditions, how to choose between the many lower-dimensional models that are available?

For instance, given a linearly elastic shell, which theory should be preferred, among

those of W. T. Koiter, M. Naghdi, T. von Kármán, L. Euler, etc? This question is of

paramount practical importance, for it makes no sense to devise accurate methods for

approximating the solution of a “wrong” model! Consequently, before approximating

the exact solution of a given lower-dimensional model, we should first know whether

it is “close enough” to the exact solution of the three-dimensional model it is intended

to approximate. This observation leads to the second question: How to mathematically

justify a lower-dimensional model from the three-dimensional model?

The first approach consists in directly estimating the difference between the three-

dimensional solution and the solution of a given, i.e., “known in advance”, lower-

dimensional model. For linearly elastic plates, the first such estimate seems to be due to

Morgenstern (1959). This approach was likewise successfully applied to linearly elastic

shells by Koiter (1970a), Koiter (1970b) and Simmonds (1971).

The second approach, essentially due to Naghdi (1972) for plates and shells, consists

in using the constraint method, whose governing principle is an a priori assumption that



the admissible displacement fields are restricted to a specific form. References to this

approach are Naghdi (1972) and Destuynder (1980).

These two approaches nevertheless rely on some a priori assumptions of a mechan-

ical or geometrical nature, intended to account for the “smallness” of a geometrical

parameter and intended to be more effective as this parameter approaches zero. Hence

the need arises to mathematically justify these a priori assumptions, together with the

lower-dimensional theories they engender, directly from three dimensional elasticity.

There are many approaches to justify the lower dimensional models. One way of

doing is by formal asymptotic method. In this method, the three dimensional solution

is first scaled in an appropriate manner so as to be defined in a fixed domain, then

expanded as a formal series expansion in terms of ǫ, which is half the thickness of

the material. The formal series expansion of the scaled solution is then inserted into

the three-dimensional problem, and sufficiently many factors of the successive powers

of ǫ found in this fashion are equated to zero until the leading term of the expansion

can be computed and hopefully, identified with the scaled solution of a known lower

dimensional model.

Using this method two dimensional models of linear and nonlinear plates, von Kár-

mán andMargurre von Kármánmodels were derived by Ciarlet (1990). Fox et al. (1993)

have derived the nonlinear invariant plates and Rao (1994) has applied this method

to derive nonlinear spherical shell, nonlinear membrane model was derived by Miara

(1998) and flexural shells were derived by Lods and Miara (1998) .

Another approach is to justify using asymptotic analysis in which one shows that

the three-dimensional scaled solution converge in some Hilbert space to the solution

of the lower-dimensional model. The main idea here is to establish a Korn’s type in-

equality, depending on the geometry of the surface and the order of the forces, which

helps in getting a priori estimates for the unknowns. Using this approach, the boundary

value problems for linear elastic plates and shells were justified by Busse et al. (1997),

Busse (1997), Ciarlet (1997), Ciarlet (2000) and the corresponding eigenvalue prob-

lems were justified by Ciarlet and Kesavan (1981), Kesavan (1979a), Kesavan (1979b),

Kesavan and Sabu (1999), Kesavan and Sabu (2000a), Kesavan and Sabu (2000b), Sabu
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(2002), Sabu (2003). Homogenization of a class of nonlinear eigenvalue problems has

been studied by Baffico et al. (2006). The boundary value problem for rods was con-

sidered by Le Dret (1995). The dynamic problem for flexural shells were studied by

Xiao (2001), membrane shells were studied by Xiao (1998) and generalised membrane

shells were studied by Ji (2003). Busse (1998) has studied the case of linearly elastic

membrane and flexural shells with variable thickness and Sabu (2001) has considered

the case of linearly elastic shallow shells with variable thickness. Error estimation be-

tween the three dimensional and two dimensional solutions were studied by Mardare

(1998a), Mardare (1998b). Regularity result for linear membrane shell has been stud-

ied by Genevey (1997). The idea of asymptotic analysis has been extended to study the

asymptotic behaviour of a fluid in thin layers by Bunoiu and Kesavan (2004).

Third approach to justify the lower dimensional model is through Γ-convergence.

Here the main idea is to show that the sequence of energy functionals associated with

the three dimensional models converges to the energy functional associated with the

lower dimensional model. Using this, Acerbi et al. (1991) have studied the case of elas-

tic string, Bourquin et al. (1992) have justified the two-dimensional model of elastic

plates and Genevey (2000) has justified the two-dimensional model of elastic mem-

brane and flexural shells, Le Dret and Raoult (1995) have derived nonlinear membrane

model, Le Dret and Raoult (1996) have justified the nonlinear membrane shell model.

Mora et al. (2007), Mora and Müller (2008) have studied the case of elastic beams and

Friesecke et al. (2006) have studied the nonlinear elastic plates and Müller and Pakzad

(2008) have studied the von Kármán plates. Sabu (2010) has justified an one dimen-

sional model of elastic rods. Homogenization of second order energies on periodic thin

structures has been studied by Bouchitté et al. (2004).

Piezoelectricity is an electromechanical phenomenon. In general, a piezoelectric

material responds to mechanical forces and generates an electric charge. Conversely, an

electric charge applied to the material induces mechanical stress or strains. Piezoelectric

materials are used as sensors and actuators, reduction of vibrations and noise.

Piezoelectric materials are also used in shape controlling for plane propellers, plane

wings as well as in manufacturing artificial organs in biomechanics. A recent applica-

3



tion of piezoelectric ultrasound sources is piezoelectric surgery, also known as piezo-

surgery.

In the recent past, there has been a phenomenal increase in the development of

fiber-reinforced materials due to the desirability of lightweight, high strength and high-

temperature performance requirements in modern technology. As fundamental struc-

tural elements, plates and shells of various geometries are widely used in various engi-

neering fields such as, aerospace technology, missile technology etc. The appropriate

variation of plate thickness or shell thickness provide the advantage of reduction in

weight and size, and also have significantly greater efficiency for vibrations as com-

pared to the plate of uniform thickness.

Theory of piezoelectric material is well developed by Banks et al. (1996), Ikeda

(1990), Rahmoune et al. (1998), Tzou (1993) and lots of experimental works has been

done in this area. However when the thickness of the material is very small, the be-

haviour of the piezoelectric material requires rigorous mathematical justification of the

various models used - in analogy to the case of purely elastic materials. In this connec-

tion the boundary value problems for piezoelectric plates is studied by Sene (2001) and

shells is studied by Bernadou and Haenel (2002) and Collard and Miara (2002). The

corresponding eigenvalue problems are studied by Sabu (2002), Sabu (2003). Boundary

value problem for piezoelectric membrane and flexural shells with variable thickness

were studied by Sabu (2007).

Finite element method for various models in elasticity has been studied by Braess

et al. (2007), Carstensen et al. (2012), Carstensen and Rabus (2012), Chilton and Suri

(2000), Dauge and Suri (2002), Pitkäranta and Suri (2000) and many others.
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CHAPTER 2

Justification of Two Dimensional Model of Shallow

Shells using Gamma Convergence

2.1 Introduction

In recent year, a lot of works has been done on the mathematical justification of various

classical lower-dimensional models for the study of thin linearly elastic shells.

There are many approaches to justify the lower dimensional models. One way

of doing is through Γ-convergence, a powerful theory initiated by De Giorgi (1975),

De Giorgi (1977). Here the main idea is to show that the sequence of energy func-

tionals associated with the three dimensional models converges to the energy functional

associated with the lower dimensional model.

Busse et al. (1997) have justified the two-dimensional model of elastic shallow

shells using asymptotic analysis.

In this chapter, we justify this model using Γ convergence. We first show that the

scaled energy functional J(ε) associated with the three dimensional problem is weakly

lower semi continuous. Then we construct a class of test functions for which the energy

functional J(ε) converges to the energy functional J(v) of the two dimensional problem

and then we show the strong convergence of the displacements.

2.2 The Three-Dimensional Problem

Throughout this thesis, Latin indices vary over the set {1, 2, 3} and Greek indices over

the set {1, 2} for the components of vectors and tensors. The summation over repeated

indices will be used.



Let ω ⊂ IR2 be a bounded domain with a Lipschitz continuous boundary γ and let

ω lie locally on one side of γ. Let γ0 ⊂ ∂ω with meas(γ0) > 0. Let γ1 = ∂ω\γ0. For
each ε > 0, we define the sets

Ωε = ω × (−ε, ε), Γ±,ε = ω × {±ε}, Γε
0 = γ0 × (−ε, ε), Γε

1 = γ1 × (−ε, ε).

Let xε = (x1, x2, x
ε
3) be a generic point on Ω̄

ε and let ∂α = ∂ε
α = ∂

∂xα
and ∂ε

3 = ∂
∂xε

3

.

We assume that for each ε, we are given a function θε : ω̄ → IR of class C3. We

then define the map φε : ω̄ → IR3 by

φε(x1, x2) = (x1, x2, θ
ε(x1, x2)) for all (x1, x2) ∈ ω̄. (2.2.1)

At each point of the surface Sε = φε(ω̄), we define the normal vector

aε = (|∂1θε|2 + |∂2θε|2 + 1)−
1

2 (−∂1θ
ε,−∂2θ

ε, 1).

For each ε > 0, we define the mapping Φε : Ω̄ε → IR3 by

Φε(xε) = φε(x1, x2) + xε
3a

ε(x1, x2) for all xε ∈ Ω̄ε. (2.2.2)

It can be shown (cf. Ciarlet (2000) ) that there exists an ε0 > 0 such that the mapping

Φε : Ω̄ε → Φε(Ω̄ε) is a C1 diffeomorphism for all 0 < ε ≤ ε0. The set
¯̂
Ωε = Φε(Ω̄ε) is

the reference configuration of the shell.

We define vectors gεi and gi,ε by the relations

gεi = ∂ε
iΦ

ε and gj,ε · gεi = δji ,

which form the covariant and contravariant basis respectively of the tangent plane of

Φε(Ω̄ε) at Φε(xε). The covariant and contravariant metric tensors are given respectively

by

gεij = gεi · gεj and gij,ε = gi,ε · gj,ε.

6



The Christoffel symbols are defined by

Γp,ε
ij = gp,ε · ∂ε

j g
ε
i .

Note however that when the set Ωε is of the special form Ωε = ω × (−ε, ε) and the

mapping Φε is of the form (2.2.2), the following relations hold,

Γ3,ε
α3 = Γp,ε

33 = 0.

The volume element is given by
√
gεdxε where

gε = det(gεij).

It can be shown that for ε sufficiently small, there exist constants g1 and g2 such that

0 < g1 ≤ gε ≤ g2. (2.2.3)

Let Aijkl,ε be the elastic tensor. We assume that the material of the shell is homoge-

neous and isotropic. Then the elasticity tensor is given by

Aijkl,ε = λgij,εgkl,ε + µ(gik,εgjl,ε + gil,εgjk,ε) (2.2.4)

where λ and µ are the Lamè constant of the material.

This tensor satisfies the following coercive relations. There exists a constant C > 0

such that for all symmetric tensors (tij),

Aijkl,εtkltij ≥ C

3�

i,j=1

(tij)
2. (2.2.5)

Moreover we have the symmetries

Aijkl,ε = Aklij,ε = Ajikl,ε.

7



We define the space

V ε = {v ∈ (H1(Ωε))3, v|Γε
0
= 0}. (2.2.6)

Then the variational form of the problem is to find uε ∈ V ε such that

aε(uε, vε) = lε(vε) for all vε ∈ V ε (2.2.7)

where

aε(uε, vε) =

�

Ωε

Aijkl,εeεk||l(u
ε)eεi||j(v

ε)
√
gεdxε, (2.2.8)

lε(vε) =

�

Ωε

f ε · vε√gεdxε, (2.2.9)

eεi||j(v
ε) =

1

2

�
∂vεi
∂xε

j

+
∂vεj
∂xε

i

�
− Γp,ε

ij v
ε
p. (2.2.10)

Also uε can be characterized as the minimizer of the following functional.

Jε(uε) = min
vε∈V ε

Jε(vε) (2.2.11)

where

Jε(vε) =
1

2

��

Ωε

Aijkl,εeεk||l(v
ε)eεi||j(v

ε)
√
gεdxε

�
−

�

Ωε

f ε · vε√gεdxε ∀ vε ∈ V ε.

(2.2.12)

2.3 The Scaled Problem

We now perform a change of variable so that the domain no longer depends on ε.

Let Ω = ω×(−1, 1). With x = (x1, x2, x3) ∈ Ω̄, we associate xε = (x1, x2, εx3) ∈
Ω̄ε. Let

Γ0 = γ0 × (−1, 1), Γ1 = γ1 × (−1, 1), Γ± = ω × {±1}.

With the functions Γp,ε, gε, Aijkl,ε we associate the functions Γp(ε), g(ε), Aijkl(ε) :

8



Ω̄ → IR defined by

Γp(ε)(x) := Γp,ε(xε), g(ε)(x) = gε(xε), Aijkl(ε)(x) = Aijkl,ε(xε). (2.3.1)

Assumption: We assume that the shell is a shallow shell; i.e., there exists a function

θ ∈ C3(ω̄) such that

φε(x1, x2) = (x1, x2, εθ(x1, x2)), for all (x1, x2) ∈ ω̄. (2.3.2)

In this case, we make the following scalings on the unknowns.

uε
α(x

ε) = ε2uα(ε)(x), vα(x
ε) = ε2vα(x), (2.3.3)

uε
3(x

ε) = εu3(ε)(x), v3(x
ε) = εv3(x). (2.3.4)

With the applied body forces f ε, we associate the function f(ε) through the relation

f ε
α(x

ε) = ε2fα(ε)(x), f ε
3 (x

ε) = ε3f3(ε). (2.3.5)

With the tensors eεi||j , we associate the tensors ei||j(ε) through the relation

eεi||j(v
ε)(xε) = ε2ei||j(ε; v)(x). (2.3.6)

We define the space

V = {v ∈ (H1(Ω))3, v|Γ0
= 0}. (2.3.7)

With the energy functional Jε, we associate the energy functional J(ε) as

Jε(vε) = ε4J(ε)(v(ε)). (2.3.8)

9



Then the scaled unknown u(ε) satisfies

�

Ω

Aijkl(ε)ek||l(ε)(u(ε))ei||j(ε)(v)
�
g(ε)dx =

�

Ω

fi(ε)vi
�
g(ε)dx for all v ∈ V

(2.3.9)

and u(ε) is the minimizer of the functional

J(ε)(v) =
1

2

��

Ω

Aijkl(ε)ek||l(ε)(v)ei||j(ε)(v)
�
g(ε)dx

�
−
�

Ω

fi(ε)vi(ε)
�

g(ε)dx ∀v ∈ V.

(2.3.10)

2.4 Technical Preliminaries

In the sequel, we denote by C1, C2, ...Cn various constants whose values do not depend

on ε but may depend on θ.

Lemma 2.4.1. The functions ei||j(ε, v) defined in (2.3.6) are of the form

eα||β(ε)(v) = ẽαβ(v) + ε2e♯α||β(ε)(v), (2.4.1)

eα||3(ε)(v) =
1

ε
{ẽα3(v) + ε2e♯α||3(ε)(v)}, (2.4.2)

e3||3(ε)(v) =
1

ε2
ẽ33(v), (2.4.3)

where

ẽαβ(v) =
1

2
(∂αvβ + ∂βvα)− v3∂αβθ = eαβ(v)− v3∂αβθ, (2.4.4)

ẽα3(v) =
1

2
(∂αv3 + ∂3vα) = eα3(v), (2.4.5)

ẽ33(v) = ∂3v3 = e33(v), (2.4.6)

and there exists constant C1 such that

sup
0<ε≤ε0

max
α,j

||e♯α,j(ε)(v)||0,Ω ≤ C1||v||1,Ω for all v ∈ V. (2.4.7)

Also there exist constants C2, C3 and C4 such that

sup
0<ε≤ε0

max
x∈Ω̄

|g(x)− 1| ≤ C2ε
2, (2.4.8)
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sup
0<ε≤ε0

max
x∈Ω̄

|Aijkl(ε)− Aijkl| ≤ C3ε
2, (2.4.9)

where

Aijkl = λδijδkl + µ(δikδjl + δilδjk), (2.4.10)

and

Aijkl(ε)tkltij ≥ C4tijtij (2.4.11)

for 0 < ε ≤ ε0, for all x ∈ Ω̄, and for all symmetric tensors (tij).

Proof. A simple computation using the assumption (2.3.2) shows that

gα(ε) =




δα1 − ε2x3∂α1θ +O(ε4)

δα2 − ε2x3∂α2θ +O(ε4)

ε∂αθ +O(ε3)


 , g3(ε) =




−ε∂1θ +O(ε3)

−ε∂2θ +O(ε3)

1 + O(ε2)


 ,(2.4.12)

gα(ε) =




δα1 +O(ε2)

δα2 +O(ε2)

ε∂αθ +O(ε2)


 , g3(ε) =




−ε∂1θ +O(ε3)

−ε∂2θ +O(ε3)

1 +O(ε2)


 , (2.4.13)

gαβ(ε) = δαβ + ε2[∂αθ∂βθ − 2x3∂αβθ] +O(ε4), gα3(ε) = O(ε), g33(ε) = 1 +O(ε2),

(2.4.14)

Γσ
αβ(ε) = O(ε2), Γ3

αβ(ε) = ε∂αβ(θ) +O(ε3), Γσ
α3(ε) = O(ε). (2.4.15)

The announced results follows from the above relations.

The following lemma (cf. Busse et al. (1997)) plays an important role in the con-

vergence analysis.

Lemma 2.4.2. Let θ ∈ C3(ω̄) be a given function and let the functions ẽij be defined as

in (2.4.4)-(2.4.6). Then there exists a constant C5 such that the following generalised

Korn’s inequality holds.

||v||1,Ω ≤ C5

�
�

i,j

||ẽij(v)||20,Ω

� 1

2

(2.4.16)
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for all v ∈ V where V is the space defined in (2.3.7).

Definition 2.4.1. Let V be a Banach space and (J(ε))ε>0 a sequence of functionals

J(ε) : V → IR ∪ {∞}. We say that the functional J : V → IR is the Γ−limit of the

functionals J(ε) if the following properties holds.

(i) If (v(ε))ε>0 ⇀ v in V implies J(v) ≤ lim inf
ε→0

J(ε)(v(ε)).

(ii) For every v ∈ V , there exists a sequence (v(ε))ε>0 ∈ V such that

(v(ε))ε>0 ⇀ v and J(ε)(v(ε)) → J(v).

Remark 2.4.1. It can be shown that when the Γ−limit exists, it is unique.

The main result from Γ-convergence is the following, see Dal Maso (1989).

Theorem 2.4.3. Assume that the sequence (J(ε))ε>0, Γ-converges to J, and assume

that there exists a compact subset U of V independent of ε such that, for all ε > 0, there

exists u(ε) satisfying

u(ε) ∈ U and J(ε)(u(ε)) = inf
v∈V

J(ε)(v).

Then there exists u ∈ U such that

u(ε) ⇀ u and J(u) = inf
v∈V

J(v).

Moreover, one has

J(ε)(u(ε)) → J(u).

2.5 Convergence of the Scaled Solutions

Let VKL be the space defined by

VKL = {v = (vi) ∈ (H1(Ω))3; ei3(v) = 0 in Ω, vi = 0 on Γ0}. (2.5.1)
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For any v ∈ V , define

J(v) =





1

2

�

Ω

�
2λµ

λ+ 2µ
ẽσσ(v)ẽττ(v) + 2µẽαβ(v)ẽαβ(v)

�
dx−

�

Ω

fividx if v ∈ VKL,

∞ otherwise.

Theorem 2.5.1. The functional J is the Γ− limit of the functional J(ε) for the weak

topology of the space V .

Proof. Note that the functional J(ε) can be written as

J(ε)(v) =
1

2

�

Ω

2λµ

λ+ 2µ
gαβ(ε)gστ (ε)eα||β(ε)(v)eσ||τ(ε)(v)

�
g(ε)dx

+
1

2

�

Ω

2µgασ(ε)gβτ(ε)eα||β(ε)(v)eσ||τ(ε)(v)
�
g(ε)dx

+
1

2

�

Ω

�
(λ+ 2µ)

�
λ

λ+ 2µ
gαβ(ε)eα||β(ε)(v) + g33(ε)e3||3(ε)(v)

�2��
g(ε)dx

+
1

2

�

Ω

4µgασ(ε)g33(ε)eα||3(ε)(v)eσ||3(ε)(v)
�
g(ε)dx

−
�

Ω

fi(ε)vi
�
g(ε)dx. (2.5.2)

Step 1: We first show that

v(ε) ⇀ v in V ⇒ J(v) ≤ lim inf
ε→0

J(ε)(v(ε)). (2.5.3)

If v /∈ VKL, then from the definition of J , it follows that J(v) = ∞. Hence it is

enough to show that

lim inf
ε→0

J(ε)(v(ε)) = ∞.

Suppose that

lim inf
ε→0

J(ε)(v(ε)) < ∞.

Then it follows that there exists a constant C6 > 0 and a subsequence (v(ε))ε>0

(still denoted by ε) such that

�

Ω

Aijkl(ε)ek||l(ε)(v(ε))ei||j(ε)(v(ε))
�
g(ε)dx ≤ C6. (2.5.4)
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Hence from the relations (2.2.5), (2.4.8)-(2.4.11) and the Lemma 2.4.2, it follows

that

||ei||j(ε)(v(ε)||0,Ω ≤ C7, ||vi(ε)||1,Ω ≤ C7.

Hence there exists subsequence (ei||j(ε)v(ε))ε>0 and functions ei||j ∈ L2(Ω) and

v ∈ H1(Ω) such that

ei||j(ε)(v(ε)) ⇀ ei||j weakly in L2(Ω), (2.5.5)

vi(ε) ⇀ vi weakly in H1(Ω). (2.5.6)

Using the convergences (2.5.5)-(2.5.6), it is a standard argument (cf. Busse et al.

(1997)) to show that ei3(v) = 0, and hence v ∈ VKL which is a contradiction. Hence

lim inf
ε→0

J(ε)(v(ε)) = ∞.

Assume next that v ∈ VKL. Suppose

lim inf
ε→0

J(ε)(v(ε)) = ∞

then (2.5.3) always holds. Suppose that

lim inf
ε→0

J(ε)(v(ε)) < ∞.

As in the first case, there exist subsequence (v(ε))ε>0 such that the convergences

(2.5.5)-(2.5.6) holds and since v(ε) ⇀ v in H1(Ω), it follows from the definition that

eα||β(ε)(v(ε)) ⇀ ẽαβ(v) in L2(Ω).

From the positive definiteness of Aijkl(ε) and (2.5.2) it follows that

J(ε)(v) ≥ 1

2

�

Ω

2λµ

λ+ 2µ
gαβ(ε)gστ (ε)eα||β(ε)(v)eσ||τ (ε)(v)

�
g(ε)dx

+
1

2

�

Ω

2µgασ(ε)gβτ(ε)eα||β(ε)(v)eσ||τ (ε)(v)
�
g(ε)dx

−
�

Ω

fi(ε)vi(ε)
�
g(ε)dx. (2.5.7)
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With the convergence gij(ε) → δij , g(ε) → 1 in C(Ω) and the weak convergence

eα||β(ε)(v(ε)) ⇀ ẽαβ(v), it follows that for any convergent subsequence J(ε)(v(ε)) we

have

lim
ε→0

J(ε)(v(ε)) ≥ 1

2

�

Ω

�
2λµ

λ+ 2µ
ẽσσ(v)ẽττ (v) + 2µẽαβ(v)ẽαβ(v)

�
dx−

�

Ω

fividx

= J(v). (2.5.8)

Hence (2.5.3) follows.

Step 2: We show that for any v ∈ V , there exists a sequence (v(ε))ε>0 such that

v(ε) ⇀ v in V and J(v) = lim
ε→0

J(ε)(v(ε)). (2.5.9)

If v /∈ VKL, then by taking v(ε) = v, it follows from step 1 and the definition of the

functional J that

J(v) = lim inf
ε→0

J(ε)(v(ε)) = ∞ (2.5.10)

and hence the property (2.5.9) holds.

Define the space

W =
�
(ηα − x3∂αη3, η3), ηα ∈ H2(ω), η3 ∈ H2(ω), ηi = ∂νη3 = 0, on γ0

�
.

(2.5.11)

Let v ∈ W . Define v(ε) ∈ V by

vα(ε) = vα, v3(ε) = η3 − ε2
λ

λ+ 2µ

�
x3(∂σησ − η3∂ααθ)−

x2
3

2
Δη3

�
(2.5.12)

Then as ε → 0, we have

v(ε) → v, (2.5.13)

eα||3(v(ε)) = ε
λ

λ+ 2µ
∂α

�
x3(∂σησ − η3∂ααθ)−

x2
3

2
Δη3

�
→ 0, (2.5.14)

λ

λ+ 2µ
eσ||σ(v(ε))+e3||3(v(ε)) = ε2

�
λ

λ+ 2µ

�2�
x3(∂σησ − η3∂ααθ)−

x2
3

2
Δη3

�
→ 0,

(2.5.15)

15



Using the above convergences and relations (2.4.14) in (2.5.2) it follows that

J(ε)(v(ε)) → J(v).

Since the space W is dense in the space VKL the above convergence hold for any

v ∈ VKL.

Theorem 2.5.2. For each ε > 0, let (u(ε)) be the minimizer of the functional J(ε)(v)

defined by (2.3.10). Then

ui(ε) → u in H1(Ω), u ∈ VKL, (2.5.16)

and u is the solution of the minimization problem

J(u) = min
v∈V

J(v). (2.5.17)

Proof. It follows from the inequality (2.4.16) that ||u(ε)||1,Ω are bounded independent

of ε. Thus {u(ε)}ε>0 belong to a weakly compact subset of V . Moreover the weak

limit u of u(ε) belongs to VKL (cf.Busse et al. (1997)). Then it follows from the above

theorem that there exists a subsequence u(εk) such that u(εk) ⇀ u in V and u satisfies

J(u) = inf
v∈V

J(v).

Thus the function is unique and the whole sequence u(ε) converges weakly to u in

V .

To show that the family u(ε) converges strongly to u inH1(Ω), it is enough to show

by virtue of (2.4.16) that

ẽij(u(ε)) → ẽij(u) in L2(Ω). (2.5.18)

Define

Kαβ(ε) = ẽαβ(u(ε)), Kα3(ε) =
1

ε
ẽα3(u(ε)), K33(ε) =

1

ε2
ẽ33(u(ε)) (2.5.19)
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and

Kαβ = ẽαβ(u), Kα3 = 0, K33 = − λ

λ+ 2µ
ẽαα(u). (2.5.20)

Claim: K(ε) = (Kij(ε)) ⇀ K = (Kij) weakly in L2(Ω).

It follows from (2.2.5) and (2.3.9) that

C8

�

i,j

||ei||j(ε; u(ε))||20,Ω ≤
�

Ω

Aijkl(ε)ek||l(ε; u(ε))ei||j(ε; u(ε))
�
g(ε)dx

≤ ||f ||0,Ω||u(ε)||0,Ω. (2.5.21)

Hence (ei||j(ε, u(ε))) is bounded.

From the definition (2.5.20) and relations (2.4.1)-(2.4.6), we have

||K(ε)||20,Ω ≤2
�

i,j

||ei||j(ε; u(ε))||20,Ω+2ε4
�

αβ

||ẽ♯(ε; u(ε))||20,Ω+4ε2
�

α

||ẽ♯(ε; u(ε))||20,Ω.

(2.5.22)

From the boundedness of (ei||j(ε, u(ε))) and the relation (2.4.7) it follows that

(K(ε)) is bounded and henceK(ε) ⇀ K in (L2(Ω))9 weakly.

Clearly Kαβ = ẽαβ(u).

We next note the following result (cf.Ciarlet (1990)).

�

Ω

u∂3vdx = 0 for all v ∈ H1(Ω) with v = 0 on Γ0 ⇒ u = 0. (2.5.23)

Multiplying (2.3.9) by ε and taking v3 = 0 we get

2

�

Ω

Aα3σ3(0)Kα3(ε)∂3vαdx = εR(ε, K(ε), u(ε), v) (2.5.24)

where R(ε, K(ε), u(ε), v) is bounded independent of ε. Passing to the limit as ε → 0

in (2.5.24) we get �

Ω

Kα3∂3vαdx = 0 for all vα. (2.5.25)
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HenceKα3 = 0. Multiplying (2.3.9) by ε2 and letting vα = 0 we get

�

Ω

{A33στ (0)Kστ (ε) + A3333(0)K33(ε)}∂3v3dx =

�

Ω

{λKσσ(ε) + (λ+ 2µ)K33(ε)}∂3v3dx

= εS(ε, K(ε), u(ε), v), (2.5.26)

where S(ε, K(ε), u(ε), v) is independent of ε. Letting ε → 0, we get

�

Ω

{λKσσ + (λ+ 2µ)K33} ∂3v3 dx = 0. (2.5.27)

HenceK33 = − λ
λ+2µ

ẽσσ(u). Since ẽi3(u) = 0 and

�

i,j

||ẽij(u(ε))− ẽij(u)||20,Ω

=
�

α,β

||Kαβ(ε)−Kαβ||20,Ω + 2ε2
�

α

||Kα3(ε)||20,Ω + ε2||K33(ε)||20,Ω (2.5.28)

the convergence (2.5.18) is equivalent to showing thatK(ε) → K strongly in L2(Ω).

For any two symmetric matrices S = (sij) and T = (tij), define

AS : T = Aijkl(0)tkltij = λspptqq + 2µsijtij .

Then

�

Ω

AK : Kdx =

�

Ω

{λKppKqq + 2µKijKij}dx

=

�

Ω

�
2λµ

λ+ 2µ
ẽσσ(u)ẽττ (u) + 2µẽαβ(u)ẽαβ(u)

�
dx

=

�

Ω

fiuidx. (2.5.29)

Taking v = u(ε) in (2.3.9), and using the relations (2.4.1) - (2.4.10), we get

�

Ω

AK(ε) : K(ε)dx =

�

Ω

fiui(ε)dx+ εr(ε, u(ε)), (2.5.30)
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where there exists a constant C9 such that

sup
0<ε≤e1

|r(ε, u(ε))| ≤ C9. (2.5.31)

From the relations (2.5.30) - (2.5.31) and the weak convergence of u(ε) we deduce that

�

Ω

AK(ε) : K(ε)dx →
�

Ω

fiuidx as ε → 0. (2.5.32)

Also, using (2.5.29) - (2.5.32) it follows that

2µ�K(ε)−K�20,Ω ≤
�

Ω

A(K(ε)−K) : (K(ε)−K)dx

=

�

Ω

AK(ε) : K(ε)dx+

�

Ω

AK : (K − 2K(ε))dx

→
�

Ω

fiuidx−
�

Ω

AK : Kdx

= 0. (2.5.33)

Hence the convergence (2.5.18) follows.

Theorem 2.5.3. Let u be the minimizer of the functional J . Let

VH(ω) = {(ηα) ∈ (H1(ω))2 : ηα = 0 on γ0} (2.5.34)

V3(ω) = {η3 ∈ H2(ω) : η3 = ∂νη3 = 0 on γ0} (2.5.35)

Then there exists (ζi) ∈ VH(ω)× V3(ω) such that

(a) uα(x) = ζα − x3∂αη3, u3(x) = ζ3(x3)

(b) (ζi) solves the following variational equations:

−
�

ω

mαβ∂αβη3dω−
�

ω

nαβ∂αβθη3dω =

�

ω

p3η3dω−
�

ω

qα∂αη3dω ∀ η3 ∈ V3(ω),

(2.5.36)�

ω

nαβ∂βηαdω =

�

ω

pαηαdω ∀ ηα ∈ VH(ω). (2.5.37)
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where

mαβ = −
�

4λµ

3(λ+ 2µ)
△ ζ3δαβ +

4

3
µ∂αβζ3

�
, (2.5.38)

nαβ =

�
4λµ

(λ+ 2µ)
ẽρρ(ζ)δαβ + 4µẽαβ(ζ)

�
, (2.5.39)

ẽαβ =
1

2
(∂αζβ + ∂βζα)− ζ3∂αβθ, (2.5.40)

pi =

� 1

−1

fidx3 qα =

� 1

−1

xαf3dx3. (2.5.41)

Proof. Since u is the minimizer of the functional J, u ∈ VKL and satisfies

1

2

�

Ω

�
2λµ

λ+ µ
ẽσσ(u)ẽττ (w) + 2µẽαβ(u)ẽαβ(w)

�
dx =

�

Ω

fiwidx ∀w ∈ VKL.

(2.5.42)

Equations (2.5.36) and (2.5.37) follow by taking ηα = 0 and η3 = 0 respectively in

the above equation.
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CHAPTER 3

Justification of Asymptotic Analysis of Linear Shallow

Shells

3.1 Introduction

Two dimensional models are derived from three dimensional models under suitable

scalings on the unknowns and data when the thickness of the material is very small.

The question is “are these scalings unique”? This leads to the question of justifying

the scalings used to derive these lower dimensional models. In this direction Miara

(1994a), Miara (1994b) has justified the scalings used to derive the linear and nonlinear

plate models respectively. The purpose of this work is to justify the scalings on the

unknowns and data used to derive the two dimensional model of linearly elastic shallow

shells.

The variational formulation of the three-dimensional problem in linearized elasticity

is to find the displacement vector uε ∈ V ε such that

�

Ωε

Aijkl,εeεk||l(u
ε)eεi||j(v

ε)
√
gεdxε =

�

Ωε

f i,εvεi
√
gεdxε ∀ vε ∈ V ε (3.1.1)

Assumption: We assume that the shell is shallow shell, that is there exists θ ∈ C3(ω̄)

such that θε(y) = εθ(y) for all y ∈ ω̄.

To study the behaviour of displacement field uε = (uε
i ) : Ω̄

ε → R
3 as ε goes to zero,

the following three basic ideas are used.

(i) The three dimensional problem whose solution uε is posed over the variable set

Ω̄ε, is transformed into a three-dimensional problem over the fixed set Ω̄ according

to the correspondence :

xε = (xε
i ) ∈ Ω̄ε ↔ x = (xi) ∈ Ω̄ with xα = xε

α, xε
3 = εx3. (3.1.2)



(ii) The components (uε
i ) : Ω̄

ε → R
3 of the displacement field are scaled, in the sense

that functions ui(ε) : Ω̄ε → R
3 are associated to the functions uε

i through the

relations:

uε
α(x

ε) = ε2uα(ε)(x), uε
3(x

ε) = εu3(ε)(x) for all x ∈ Ω. (3.1.3)

(iii) It is assumed that there exists constants λ > 0 and µ > 0 independent of ε such

that

λε = λ, µε = µ (3.1.4)

and that there exist functions f = (fi) : Ω̄ → R
3 independent of ε, such that

f ε
α(x

ε) = ε2fα(x), f ε
3 (x

ε) = ε3f3(x) (3.1.5)

Under the above scalings, it was shown in Busse et al. (1997) (and also in the pre-

vious chapter) that u(ε) −→ u in V, uα = ζα − x3∂αζ3, u3 = ζ3 where ζ = (ζi) is the

solution of two dimensional shallow shell model

−
�

ω

mαβ(ζ)∂αβη3dω−
�

ω

�nαβ(ζ)η3∂αβθdω+

�

ω

�nαβ(ζ)∂βηαdω=

�

ω

piηidω−
�

ω

qi∂αη3dω

(3.1.6)

for all η = (ηi) ∈ V (ω) = VH(ω)× V3(ω).

where

VH(ω) = {η = (ηα) ∈ (H1(ω))2; ηα = 0 on γ0}, (3.1.7)

V3(ω) = {η3 ∈ H2(ω); η3 = ∂νη3 = 0 on γ0}, (3.1.8)

mαβ(ζ) = −
�

4λµ

3(λ+ 2µ)
Δζ3δαβ +

4µ

3
∂αβζ3

�
, (3.1.9)

�nαβ(ζ) =
4λµ

(λ+ 2µ)
�eσσ(ζ)δαβ + 4µ�eαβ(ζ), (3.1.10)

�eαβ(ζ) =
1

2
(∂αζβ + ∂βζα)− ζ3∂αβθ, (3.1.11)

pα =

� 1

−1

f 1
αdx3, p3 =

� 1

−1

f 2
3dx3, qα =

� 1

−1

x3f
1
αdx3. (3.1.12)

Remark 3.1.1. Since the problem is linear the following assumptions on the displace-
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ments and forces are also possible for any real number p.

uε
α(x

ε) = ε2+puα(ε)(x), uε
3(x

ε) = ε1+pu3(ε)(x),

f ε
α(x

ε) = ε2+pfα(x), f ε
3 (x

ε) = ε3+pf3(x).

The objective of this work is to give a mathematical justification of the relative order

of scalings between the ‘horizontal components’ uε
α, f

ε
α and the ‘vertical components’

uε
3, f

ε
3 by assuming only a formal asymptotic expansion of the unknown displacement

field.

3.2 The Three-dimensional Problem in Scaled Domain

With the functions Aijkl,ε, gε we associate the functions Aijkl(ε) : Ω̄ → R and g(ε) :

Ω̄ → R through the relations

Aijkl,ε(xε) = Aijkl(ε)(x), gε(xε) = g(ε)(x) for all x ∈ Ω̄.

With the functions vε ∈ V ε we associate v(ε) ∈ V through the relations

vεα(x
ε) = ε2vα(ε)(x), vε3(x

ε) = εv3(ε)(x).

With the functions eεi||j(v
ε) we associate the functions ei||j(ε; v(ε)) through the rela-

tion

eεi||j(v
ε)(xε) = ei||j(ε; v(ε))(x) for all x ∈ Ω.

Then the variational equation (3.1.1) posed on the fixed domain Ω is to find u(ε) ∈
V such that

�

Ω

Aijkl(ε)ek||l(ε; u(ε))ei||j(ε; v)
�
g(ε)dx =

�

Ω

f ivi
�

g(ε)dx ∀v ∈ V. (3.2.1)
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By Lemma 2.4.1 we get the following relations

gαβ = δαβ + ε2(∂αθ · ∂βθ − 2x3∂αβθ) +O(ε4), gi3(ε) = δi3
�
g(ε) = 1 + ε2g1(x1, x2, x3) +O(ε4)

Γσ
αβ(ε) = 0 + ε2Γσ,2

αβ + ε3Γσ,3
αβ + · · · , Γ3

αβ(ε) = ε∂αβθ + ε3Γ3,3
αβ + · · ·

Γσ
α3(ε) = −ε∂ασθ + ε3Γσ,3

α3 + · · · , Γ3
α3(ε) = Γp

33(ε) = 0





(3.2.2)

Aijkl(ε) = Aijkl(0) + ε2Aijkl,1(x1, x2, x3) + ε4Aijkl,2(x1, x2, x3) + ...

Aijkl(ε)
�

g(ε) = Aijkl(0) + ε2Bijkl,1(x1, x2, x3) + ε4Bijkl,2(x1, x2, x3) + ...

Aijkl(0) = λδijδkl + µ(δikδjl + δilδjk)

Aαβστ (0) = λδαβδστ + µ(δασδβτ + δατδβσ), A3333(0) = (λ+ 2µ)

Aαβ33(0) = λδαβ, A33στ (0) = λδστ , Aα3σ3(0) = µδασ




(3.2.3)

To justify the assumptions (3.1.3) and (3.1.5) we will follow the basic Ansatz of

the asymptotic expansion method (cf. Lions (1973)). Write a priori u(ε) as a formal

expansion

u(ε) =
�

i∈Z

εiui, (3.2.4)

where ui ∈ H1(Ω). Equating to zero the factors of the successive powers εp, p ≥ 0, we

identify the successive terms ui in the equation (3.2.1). For doing so, it is necessary to

express the right-hand side of this equation in terms of power of ε.We are not assuming

the existence of asymptotic expansions of the forces, but rather we are looking for

the right asymptotic order of magnitude in ε. That is, we are trying to decide which

assumption of the form (3.1.5) are appropriate.

Since the problem (3.2.1) is linear with respect to u(ε), there is no restriction in

assuming that expansion (3.2.4) begins with a term of order 0:

u(ε) = u0 + εu1 + ε2u2 + ... (3.2.5)

The boundary condition of place u(ε) = 0 on Γ0 is imposed only on the first non-

vanishing components of the expansion (3.2.5).
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Then we have

eσ||τ (ε; u(ε)) = e0σ||τ (u) + εe1σ||τ(u) + ε2e2σ||τ (u) + ε3e3σ||τ (u) + · · · (3.2.6)

where

e0σ||τ (u) =
1

2
(∂σu

0
τ + ∂τu

0
σ), e1σ||τ (u) =

1

2
(∂σu

1
τ + ∂τu

1
σ)− u0

3∂στ θ

e2σ||τ (u) =
1

2
(∂σu

2
τ + ∂τu

2
σ)− Γγ,2

στ u
0
γ(ε)− ∂στθu

1
3

e3σ||τ (u) =
1

2
(∂σu

3
τ + ∂τu

3
σ)− Γγ,2

στ u
1
γ − Γγ,3

στ u
0
γ − ∂στ θu

2
3 − Γ3,3

στ u
0
3






, (3.2.7)

eσ||3(ε; u(ε)) = ε−1e−1

σ||3(u) + e0σ||3(u) + εe1σ||3(u) + ε2e2σ||3(u) + ε3e3σ||3(u) + · · ·
(3.2.8)

where

e−1

σ||3(u) =
1

2
∂3u

0
σ, e0σ||3(u) =

1

2
(∂σu

0
3 + ∂3u

1
σ), e1σ||3(u) =

1

2
(∂σu

1
3 + ∂3u

2
σ) + u0

γ∂σγθ,

e2σ||3(u) =
1

2
(∂σu

2
3 + ∂3u

3
σ) + u1

γ∂σγθ, e3σ||3(u) =
1

2
(∂σu

3
3 + ∂3u

4
σ) + u2

γ∂σγθ − Γγ,3
σ3 u

0
γ





,

(3.2.9)

e3||3(ε; u(ε)) = ε−1e−1

3||3(u) + e03||3(u) + εe13||3(u) + ε2e23||3(u) + ε3e33||3(u) + ...

(3.2.10)

where

e−1

3||3(u) = ∂3u
0
3, e

0
3||3(u) = ∂3u

1
3, e13||3(u) = ∂3u

2
3,

e23||3(u) = ∂3u
3
3, e33||3(u) = ∂3u

4
3



 . (3.2.11)

For any v ∈ V, we have

eα||β(ε; v) = e0α||β(v) + εe1α||β(v) + ε2e2α||β(v) + ε3e3α||β(v) + · · · (3.2.12)
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where
e0α||β(v) =

1

2
(∂αvβ + ∂βvα), e1α||β(v) = −v3∂αβθ

e2α||β(v) = −Γγ,2
αβ vγ, e3α||β(v) = −Γγ,3

αβ vγ − Γ3,3
αβv3





, (3.2.13)

eα||3(ε; v) = ε−1e−1

α||3(v) + e0α||3(v) + εe1α||3(v) + ε2e2α||3(v) + ε3e3α||3(v) + · · ·
(3.2.14)

where

e−1

α||3(v) =
1

2
∂3vα, e0α||3(v) =

1

2
∂αv3, e1α||3(v) = vγ∂αγθ,

e2α||3(v) = 0, e3α||3(v) = −Γγ,3
α3 vγ





, (3.2.15)

e3||3(ε; v) =
1

ε
∂3v3. (3.2.16)

Equation (3.2.1) can be written as

�

Ω

�
Aαβστ (ε)eσ||τ(ε; u(ε))eα||β(ε; v)

�
g(ε) + 4Aα3σ3(ε)eσ||3(ε; u(ε))eα||3(ε; v)

�
g(ε)

+ Aαβ33(ε)e3||3(ε; u(ε))eα||β(ε; v)
�
g(ε) + A33στ (ε)eσ||τ(ε; u(ε))e3||3(ε; v)

�
g(ε)

+A3333(ε)e3||3(ε; u(ε))e3||3(ε; v)
�
g(ε)

�
dx

=

�

Ω

fi(ε)vi
�
g(ε)dx. (3.2.17)

Using (3.2.5) - (3.2.16), the above equation becomes

�

Ω

�
1

ε2
B−2(u, v) +

1

ε
B−1(u, v) + B0(u, v) + εB1(u, v) + ε2B2(u, v)

�
dx+O(ε3)

=

�

Ω

fi(ε)vidx+ ε2
�

Ω

fi(ε)vig
1(x1, x2, x3)dx+O(ε4) (3.2.18)

where

B−2(u, v) =
�
4Aα3σ3(0)e−1

σ||3(u)e
−1

α||3(v) + A3333(0)e−1

3||3(u)∂3v3

�
, (3.2.19)
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B−1(u, v) =
�
4Aα3σ3(0)(e−1

σ||3(u)e
0
α||3(v) + e0σ||3(u)e

−1

α||3(v)) + A33στ (0)e0σ||τ (u)∂3v3

+A3333(0)e03||3(u)∂3v3 + Aαβ33(0)e−1

3||3(u)e
0
α||β(v)

�
, (3.2.20)

B0(u, v) =
�
Aαβστ (0)e0σ||τ (u)e

0
α||β(v) + 4Aα3σ3(0)(e−1

σ||3(u)e
1
α||3(v) + e0σ||3(u)e

0
α||3(v)

+ e1σ||3(u)e
−1

α||3(v)) + 4Bα3σ3,1e−1

σ||3(u)e
−1

α||3(v) + A33στ (0)e1σ||τ (u)∂3v3

+ A3333(0)e13||3(u)∂3v3 + B3333,1e−1

3||3(u)∂3v3

+Aαβ33(0)(e−1

3||3(u)e
1
α||β(v) + e03||3(u)e

0
α||β(v))

�
, (3.2.21)

B1(u, v) =
�
Aαβστ (0)(e0σ||τ (u)e

1
α||β(v) + e1σ||τ (u)e

0
α||β(v)) + Bαβ33,1e−1

3||3(u)e
0
α||β(v)

+ 4Aα3σ3(0)(e−1

σ||3(u)e
2
α||3(v) + e1σ||3(u)e

0
α||3(v) + e0σ||3(u)e

1
α||3(v)

+ e2σ||3(u)e
−1

α||3(v)) + 4Bα3σ3,1(e−1

σ||3(u)e
0
α||3(v) + e0σ||3(u)e

−1

α||3(v))

+ A33στ (0)e2σ||τ (u)∂3v3 + B33στ,1e0σ||τ (u)∂3v3 + A3333(0)e23||3(u)∂3v3

+ B3333,1e03||3(u)∂3v3 + Aαβ33(0)(e13||3(u)e
0
α||β(v) + e03||3(u)e

1
α||β(v))

+e−1

3||3(u)e
2
α||β(v))

�
, (3.2.22)

B2(u, v) =
�
Aαβστ (0)(e2σ||τ (u)e

0
α||β(v) + e1σ||τ (u)e

1
α||β(v) + e0σ||τ (u)e

2
α||β(v))

+ Bαβστ,1(0)e0σ||τ (0)e
0
α||β(v) + 4Bα3σ3,1(e−1

σ||3(u)e
1
α||3(v) + e0σ||3(u)e

0
α||3(v)

+ e1σ||3(u)e
−1

α||3(v)) + 4Aα3σ3(0)(e1σ||3(u)e
1
α||3(v) + e2σ||3(u)e

0
α||3(v)

+ e−1

σ||3(u)e
3
α||3(v) + e0σ||3(u)e

2
α||3(v) + e3σ||3(u)e

−1

α||3(v)) + A33στe3σ||τ (u)∂3v3

+ B33στ,1e1σ||τ (u)∂3v3 + A3333(0)e33||3(u)∂3v3 + 4Bα3σ3,2e−1

σ||3(u)e
−1

α||3(v)

+ Bαβ33,1(e03||3(u)e
0
α||β(v) + e−1

3||3(u)e
1
α||β(v) + Aαβ33(0)(e13||3(u)e

1
α||β(v)

+ e23||3(u)e
0
α||β(v) + e03||3(u)e

2
α||β(v) + e−1

3||3(u)e
3
α||β(v))

+B3333,1e13||3(u)∂3v3 + B3333,2e−1

3||3(u)∂3v3

�
. (3.2.23)

By close look at the different powers of ε that appear in the variational problem

(3.2.18) shows that there is no need to consider forces whose order would be inferior to

f(ε) =
1

ε2
f−2.
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3.3 Identification of the Successive Terms of the Asymp-

totic Expansion u(ε) :

We define the space

W = {v ∈ H1(Ω) : v = 0 on Γ0}.

Lemma 3.3.1. For the smooth function f : Ω̄ → R the problem: Find u ∈ W such that

�

Ω

∂3u∂3vdx =

�

Ω

fvdx (3.3.1)

for all v ∈ W, has solutions only if the following compatibility conditions are satisfied

�
1

−1

f(x1, x2, t)dt = 0 a.e in ω, (3.3.2)

f = 0 on Γ0. (3.3.3)

If the above relations holds, then the solutions are of the form

u(x1, x2, x3) = ζ(x1, x2)−
� x3

−1

�� s

−1

f(x1, x2, t) dt

�
ds (3.3.4)

where ζ is an arbitrary function in V3(ω).

Thus, for general f problem (3.3.1) has no solution.

Proof. The variational equation (3.3.1) imply that ∂33u = −f in the distribution sense;

this implies u takes the following expression (cf. Le Dret (1991)).

u(x) = ζ(x1, x2) + x3η(x1, x2)−
� x3

−1

�� s

−1

f(x1, x2, t)dt

�
ds in Ω.

Therefore, for all v ∈ W,

�

Ω

∂3u∂3vdx =

�

Ω

η∂3vdx−
�

Ω

�� x3

−1

f(x1, x2, t) dt

�
∂3vdx

=

�

Γ+

ηvda−
�

Γ−

ηvda+

�

Ω

fvdx−
�

Γ+

�� 1

−1

f(x1, x2, t) dt

�
vda,
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and equation (3.3.1) is satisfied only if, for all w ∈ L2(ω),

�

Γ+

�
η −

� 1

−1

f(x1, x2, t) dt

�
wda = 0 and −

�

Γ−

ηwda = 0,

which yields condition (3.3.2). The boundary condition u = 0 on Γ0 implies

ζ(x1, x2) + x3η(x1, x2)−
� x3

−1

�� s

−1

f(x1, x2, t)dt

�
ds = 0 on Γ0.

Hence the functions

h : x ∈ Ω → h(x1, x2, x3) = x3η(x1, x2)−
� x3

−1

�� s

−1

f(x1, x2, t)dt

�
ds

must be independent of x3 for all (x1, x2) ∈ γ0. Hence

∂3h(x1, x2, x3) = η(x1, x2)−
� x3

−1

f(x1, x2, t)dt = 0 on Γ0.

and

∂33h(x1, x2, x3) = f(x1, x2, x3) = 0 on Γ0.

Lemma 3.3.1 will be used in the remainder of this work in the following way; Sup-

pose that equation (3.3.1) (or at least its right-hand side) is the one obtained by equating

to 0 the coefficient of εk, k ≥ −2, in the equation (3.2.18) and that f represent the same

component, indexed by i, of a general system of forces f(ε) acting on Ω, i.e.,

fi(ε) = εkf k
i , f k

i = f on Ω,

the compatibility condition (3.3.2)-(3.3.3) mean that f cannot be chosen arbitrarily.

Therefore we are led to "try" new assumptions of a higher order on the data: fi(ε) =

εk+1f k+1

i . From these, we infer that f = 0 in Ω, and by Lemma 3.3.1, that ∂3u = 0 in

Ω.

Our main result is the following.

Theorem 3.3.2. If the first four terms ui, 0 ≤ i ≤ 3 of the expansion (3.2.5) exists, we
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must assume that the applied forces are of the form

f ε
α(x

ε) = fα(ε)(x) = εf 1
α(x) and f ε

3 (x
ε) = f3(ε)(x) = ε2f 2

3 (x), f 1
α, f

2
3 ∈ L2(Ω).

This implies that there exists a two dimensional vector field ζ = (ζ1α, ζ
0
3) : ω̄ → R

3

satisfies the following variational problem

−
�

ω

mαβ(ζ)∂αβη3dω−
�

ω

�nαβ(ζ)η3∂αβθdω+

�

ω

�nαβ(ζ)∂βηαdω =

�

ω

piηidω−
�

ω

qi∂αη3dω

(3.3.5)

for all η ∈ V (ω),

where

mαβ(ζ) = −
�

4λµ

3(λ+ 2µ)
Δζ3δαβ +

4µ

3
∂αβζ3

�
, (3.3.6)

�nαβ(ζ) =
4λµ

(λ+ 2µ)
�eσσ(ζ)δαβ + 4µ�eαβ(ζ), (3.3.7)

�eαβ(ζ) =
1

2
(∂αζβ + ∂βζα)− ζ3∂αβθ, (3.3.8)

pα =

� 1

−1

f 1
αdx3, p3 =

� 1

−1

f 2
3dx3, qα =

� 1

−1

x3f
1
αdx3. (3.3.9)

Proof. For clarity, the proof is broken into five steps

Step 1: If u0 exists, then f−2 vanishes on Ω and there exists ζ0(x1, x2) ∈ (H1(ω))3

independent of x3 with ζ0 = 0 on γ0, such that u0(x1, x2, x3) = ζ0(x1, x2) in Ω.

Equating the coefficient of ε−2 on both sides of (3.2.18) leads to the problem : Find

u0 ∈ V such that

�

Ω

�
4Aα3σ3(0)e−1

σ||3(u)e
−1

α||3(v) + A3333(0)e−1

3||3(u)∂3v3

�
dx =

�

Ω

f−2

i vidx (3.3.10)

for all v ∈ V.

This implies

�

Ω

�
4µδασ

1

2
∂3u

0
σ

1

2
∂3vα + (λ+ 2µ) ∂3u

0
3 ∂3v3

�
dx =

�

Ω

f−2

i vidx for all v ∈ V.

(3.3.11)

This is a set of three variational problems of the form (3.3.1). Thus for general term
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f−2, there is no solution u0. Therefore we must impose f−2 = 0 on Ω.

This implies ∂3u0
σ = 0 and ∂3u

0
3 = 0. Hence

e−1

σ||3(u) = ∂3u
0
σ = 0, e−1

3||3(u) = ∂3u
0
3 = 0. (3.3.12)

Also, ∂3u0 = 0 implies that there exists a two dimensional vector field ζ0(x1, x2) ∈
(H1(ω))3 independent of x3 with ζ0 = 0 on γ0, such that u0(x1, x2, x3) = ζ0(x1, x2) in

Ω.

Hence we have to try new orders for the forces , i.e., f(ε) =
1

ε
f−1 ∈ L2(Ω).

Step 2: If u1 ∈ H1(Ω) exists, then f−1 = 0 on Ω and there exists a two dimensional

vector field ζ1 = (ζ1i ) ∈ H1(ω) such that

u1
σ = ζ1σ(x1, x2)− x3 ∂σζ

0
3 (x1, x2), (3.3.13)

u1
3 = ζ13 (x1, x2)− x3

λ

2(λ+ 2µ)
δστ (∂σζ

0
τ + ∂τ ζ

0
σ). (3.3.14)

In addition, the two dimensional vector field ζ0 = (ζ0i ) must satisfy the regularity

condition: ∂αζ0α ∈ H1(ω), ∂αζ
0
3 ∈ H1(ω).

Equating the coefficient of ε−1 on both sides of (3.2.18) leads to the problem : Find

u1 ∈ H1(Ω) such that

�

Ω

�
4Aα3σ3(0)(e−1

σ||3(u)e
0
α||3(v) + e0σ||3(u)e

−1

α||3(v)) + A33στ (0)e0σ||τ (u)∂3v3

+A3333(0)e03||3(u)∂3v3 + Aαβ33(0)e−1

3||3(u)e
0
α||β(v)

�
dx =

�

Ω

f−1
i vidx

(3.3.15)

for all v ∈ V. Using (3.3.12) we have

�

Ω

�
4µδασ

1

2
(∂σu

0
3 + ∂3u

1
σ)
1

2
∂3vα + λδστ

1

2
(∂σu

0
τ + ∂τu

0
σ)∂3v3 + (λ+ 2µ)∂3u

1
3∂3v3

�
dx

=

�

Ω

f−1
i vidx for all v ∈ V.

(3.3.16)
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This problem can be split into two decoupled problems of the form (3.3.1) viz.,

�

Ω

�
λδστ

1

2
(∂σu

0
τ + ∂τu

0
σ) + (λ+ 2µ)∂3u

1
3

�
∂3v3dx =

�

Ω

f−1
3 v3dx (3.3.17)

for all v3 ∈ W and

�

Ω

µδασ
�
∂σu

0
3 + ∂3u

1
σ

�
∂3vαdx =

�

Ω

f−1
α vαdx for all (vα) ∈ W ×W. (3.3.18)

The above equations can be written as

�

Ω

∂3

�x3

2
λδστ (∂σζ

0
τ + ∂τ ζ

0
σ) + (λ+ 2µ)u1

3

�
∂3v3dx =

�

Ω

f−1
3 v3dx for all v3 ∈ W

(3.3.19)

and

�

Ω

µδασ∂3{x3∂σζ
0
3 + u1

σ}∂3vαdx =

�

Ω

f−1
α vαdx for all (vα) ∈ W ×W. (3.3.20)

By applying Lemma 3.3.1, we notice that for general terms f−1

i there is no solution

u1. Therefore we must impose f−1

i = 0 which leads to

∂3

�x3

2
λδστ (∂σζ

0
τ + ∂τ ζ

0
σ) + (λ+ 2µ)u1

3

�
= 0 and ∂3(x3∂σζ

0
3 + u1

σ) = 0. (3.3.21)

This implies there exists a two dimensional vector field ζ1 = (ζ1i ) ∈ H1(ω) such

that

u1
σ(x1, x2, x3) = ζ1σ(x1, x2)− x3 ∂σζ

0
3 (x1, x2)

and

u1
3(x1, x2, x3) = ζ13 (x1, x2)− x3

λ

2(λ+ 2µ)
δστ (∂σζ

0
τ + ∂τ ζ

0
σ).

Hence

∂3u
1
3 = − λ

2(λ+ 2µ)
δστ (∂σζ

0
τ + ∂τ ζ

0
σ) (3.3.22)

and

e0σ||3(u) = ∂3u
1
σ + ∂σu

0
3 = 0. (3.3.23)
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Since u1 ∈ H1(Ω), it imposes the regularity conditions on ∂αζ0α and ∂αζ
0
3 .

We now try new orders for the forces; i.e., f(ε) = f 0 ∈ L2(Ω).

Step 3 : If u2 ∈ H1(Ω) exists, then f 0
3 = 0 and there exists ζ23 ∈ H1(ω) such that

u2
3 = ζ23 (x1, x2)−

λ

λ+ 2µ
x3[∂σζ

1
σ(x1, x2)− ζ03∂σσθ] +

λ

λ+ 2µ

x2
3

2
∂σσζ

0
3(x1, x2).

(3.3.24)

In addition to that the vertical component ζ03 and the horizontal component ζ1α must sat-

isfy the regularity condition ∂ααζ03 ∈ H1(ω), ∂αζ
0
α ∈ H1(ω) respectively.

Equating the coefficient of ε0 on both sides of (3.2.18) leads to the problem : Find

u2 ∈ H1(Ω) such that

�

Ω

{Aαβστ (0)e0σ||τ (u)e
0
α||β(v) + 4Aα3σ3(0)(e−1

σ||3(u)e
1
α||3(v) + e0σ||3(u)e

0
α||3(v)

+ e1σ||3(u)e
−1

α||3(v)) + 4Bα3σ3,1e−1

σ||3(u)e
−1

α||3(v) + A33στ (0)e1σ||τ (u)∂3v3

+ A3333(0)e13||3(u)∂3v3 + B3333,1e−1

3||3(u)∂3v3 + Aαβ33(0)(e−1

3||3(u)e
1
α||β(v)

+ e03||3(u)e
0
α||β(v))}dx =

�

Ω

f 0
i vidx for all v ∈ V. (3.3.25)

Using (3.3.12) and (3.3.23), the above equation becomes

�

Ω

�
Aαβστ (0)

1

2
(∂σu

0
τ + ∂τu

0
σ)
1

2
(∂αvβ + ∂βvα) + 4Aα3σ3(0)e1σ||3(u)

1

2
∂3vα

+ λδστ
�
1

2
(∂σu

1
τ + ∂τu

1
σ)− u0

3∂στθ

�
∂3v3 + (λ+ 2µ)∂3u

2
3∂3v3

+ Aαβ33(0)∂3u
1
3

1

2
(∂αvβ + ∂βvα)

�
dx =

�

Ω

f 0
i vidx for all v ∈ V. (3.3.26)

Taking vα = 0, we get

�

Ω

�
(λ+ 2µ)∂3u

2
3 + λδστ

�
1

2
(∂σu

1
τ + ∂τu

1
σ)− u0

3∂στ θ

��
∂3v3dx =

�

Ω

f 0
3 v3dx

(3.3.27)

for all v3 ∈ V.
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Taking v3 = η3 independent of x3, we get

0 =

�

ω

�� 1

−1

f 0
3 (x1, x2, t)dt

�
η3dω for all η3 ∈ H1(ω).

This implies f 0
3 = 0 in Ω. Hence (3.3.27) becomes

�

Ω

�
(λ+ 2µ)∂3u

2
3 + λδστ

�
1

2
(∂σu

1
τ + ∂τu

1
σ)− u0

3∂στθ

��
∂3v3dx = 0 for all v3 ∈ W,

(3.3.28)

which implies

(λ+ 2µ)∂3u
2
3 + λδστ

�
1

2
(∂σu

1
τ + ∂τu

1
σ)− u0

3∂στ θ

�
= 0. (3.3.29)

Hence

∂3u
2
3 = − λ

λ + 2µ
δστ

�
1

2
(∂σu

1
τ + ∂τu

1
σ)− u0

3∂στ θ

�

= − λ

λ + 2µ

�
∂σu

1
σ − u0

3∂σσθ
�

= − λ

λ + 2µ

�
∂σζ

1
σ(x1, x2)− x3∂σσζ

0
3 (x1, x2)− ζ03∂σσθ

�
. (3.3.30)

Therefore there exists ζ23 ∈ H1(ω) such that

u2
3 = ζ23 (x1, x2)−

λ

λ+ 2µ
x3[∂σζ

1
σ(x1, x2)− ζ03∂σσθ] +

λ

λ+ 2µ

x2
3

2
∂σσζ

0
3(x1, x2).

This proves (3.3.24). Since u2
3 ∈ H1(Ω), it imposes the regularity conditions on

∂ααζ
0
3 and ∂αζ

1
α.

Choosing test functions of the form (η1, η2, 0) ∈ V (ω) in equation (3.3.26), we get

�

Ω

�
Aαβστ (0)

1

2
(∂σu

0
τ + ∂τu

0
σ)
1

2
(∂αηβ + ∂βηα) + Aαβ33(0)

1

2
(∂αηβ + ∂βηα)∂3u

1
3

�
dx

=

�

ω

�� 1

−1

f 0
α(x1, x2, t)dt

�
ηαdω ∀ ηα ∈ VH(ω). (3.3.31)
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Using (3.3.22), the above equation become

�

Ω

�
Aαβστ (0)

1

4
(∂σu

0
τ + ∂τu

0
σ)(∂αηβ + ∂βηα)

+Aαβ33(0)
1

2
(∂αηβ + ∂βηα)

�
− λ

λ + 2µ

1

2
δστ (∂σζ

0
τ + ∂τζ

0
σ)

��
dx

=

�

ω

��
1

−1

f 0
α(x1, x2, t)dt

�
ηαdω for all (ηα, 0) ∈ V (ω). (3.3.32)

Substituting the values of Aαβστ (0), Aαβ33(0) given in (3.2.3), we get

�

Ω

�
2µλ

λ+ 2µ
eσσ(ζ

0)eαα(η) + 2µeαβ(ζ
0)eαβ(η)

�
dx =

�

ω

�� 1

−1

f 0
α(x1, x2, t)dt

�
ηαdω

(3.3.33)

for all (ηα, 0) ∈ V (ω).

This problem has a unique solution ζ0α ∈ VH(ω) for f 0
α ∈ L2(Ω).

For test functions v = (−x3∂1η3,−x3∂2η3, 0) ∈ V with ηα, η3 are independent of

x3, the variational problem (3.3.26) reduces to

�

Ω

�
Aαβστ (0)e0σ||τ (u)

1

2
[∂α(−x3∂βη3) + ∂β(−x3∂αη3)] + 4Aα3σ3(0)e1σ||3(u)

1

2
∂3(−x3∂αη3)

+Aαβ33(0)∂3u
1
3

1

2
[∂α(−x3∂βη3) + ∂β(−x3∂αη3)]

�
dx = −

�

Ω

x3f
0
α∂αη3dx

(3.3.34)

for all η3 ∈ V3(ω).

Since e0σ||τ (u) and ∂3u
1
3 are independent of x3, the above equation reduces to

�

Ω

4Aα3σ3(0)e1σ||3(u)
1

2
∂αη3dx =

�

Ω

x3f
0
α∂αη3dx ∀ η3 ∈ V3(ω). (3.3.35)

We now try new orders for the vertical component of the forces which are different

from horizontal components as below

fα(ε) = f 0
α ∈ L2(Ω) and f3(ε) = εf 1

3 ∈ L2(Ω). (3.3.36)
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Step 4 : If u3 ∈ H1(Ω) exists, then f 1
3 = f 0

α = 0 on Ω. In addition

(i) ζ0α = 0,

(ii) (ζ1α) satisfies

�

Ω

�
2λµ

λ+ 2µ
eσσ(ζ

1)eαα(η) + 2µeαβ(ζ
1)eαβ(η)

�
dx

=

�

Ω

�
2λµ

λ + 2µ
ζ03∂σσθeαα(η) + 2µζ03∂αβθeαβ(η)

�
dx+

�

Ω

f 1
αηαdx (3.3.37)

for all ηα ∈ VH(ω).

Equating the coefficient of ε on both sides of (3.2.18) leads to the problem : Find

u3 ∈ H1(Ω) such that

�

Ω

�
Aαβστ (0)(e0σ||τ (u)e

1
α||β(v) + e1σ||τ (u)e

0
α||β(v))

+ 4Aα3σ3(0)(e−1

σ||3(u)e
2
α||3(v) + e1σ||3(u)e

0
α||3(v) + e0σ||3(u)e

1
α||3(v) + e2σ||3(u)e

−1

α||3(v))

+ 4Bα3σ3,1(e−1

σ||3(u)e
0
α||3(v) + e0σ||3(u)e

−1

α||3(v)) + A33στ (0)e2σ||τ (u)∂3v3

+ B33στ,1e0σ||τ (u)∂3v3 + A3333(0)e23||3(u)∂3v3 + B3333,1e03||3(u)∂3v3

+ Aαβ33(0)(e13||3(u)e
0
α||β(v) + e−1

3||3(u)e
2
α||β(v) + e03||3(u)e

1
α||β(v)))

+Bαβ33,1e−1

3||3(u)e
0
α||β(v)

�
dx

=

�

Ω

f 1
i vidx ∀ v ∈ V. (3.3.38)

Using (3.3.12) and (3.3.23), the above equation becomes

�

Ω

�
Aαβστ (0)(e0σ||τ (u)e

1
α||β(v) + e1σ||τ (u)e

0
α||β(v)) + 4Aα3σ3(0)(e1σ||3(u)e

0
α||3(v)

+ e2σ||3(u)e
−1

α||3(v)) + A33στ (0)e2σ||τ (u)∂3v3 + B33στ,1e0σ||τ (u)∂3v3 + B3333,1e03||3(u)∂3v3

+A3333(0)e23||3(u)∂3v3 + Aαβ33(0)(e13||3(u)e
0
α||β(v) + e03||3(u)e

1
α||β(v)))

�
dx

=

�

Ω

f 1
i vidx ∀ v ∈ V. (3.3.39)

If we consider the assumptions (3.3.36) on the forces, we realize that the problem

(3.3.39) must be considered only for test functions with vanishing horizontal compo-
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nents (since the horizontal components of force f 1
α not yet introduced). Hence we have

�

Ω

�
Aαβστ (0)e0σ||τ (u)(−v3∂αβθ) + 4Aα3σ3(0)e1σ||3(u)

1

2
∂αv3

+ A33στ (0)e2σ||τ (u)∂3v3 + A3333(0)∂3u
3
3∂3v3 + Aαβ33(0)e03||3(u)(−v3∂αβθ)

+B3333,1e03||3(u)∂3v3 + B33στ,1e0σ||τ (u)∂3v3
�
dx =

�

Ω

f 1
3 v3dx ∀ v3 ∈ W.

Taking v3 = η3(x1, x2) ∈ V3(ω) we get

�

Ω

�
Aαβστ (0)e0σ||τ (u)(−η3∂αβθ) + 4Aα3σ3(0)e1σ||3(u)

1

2
∂αη3

+Aαβ33(0)e03||3(u)(−η3∂αβθ)
�
dx =

�

Ω

f 1
3 η3dx ∀ η3 ∈ V3(ω). (3.3.40)

From the equations (3.3.35) and (3.3.40), we have

−
�

Ω

�
Aαβστ (0)e0σ||τ (u)(∂αβθ) + Aαβ33(0)e03||3(u)(∂αβθ)

�
η3dx

=

�

Ω

f 1
3 (x1, x2, x3)η3dx−

�

Ω

x3f
0
α(x1, x2, x3)∂αη3dx ∀ η3 ∈ V (ω). (3.3.41)

This implies

�
Aαβστ (0)e0σ||τ (u) + Aαβ33(0)e03||3(u)

�
∂αβθ = f 1

3 + x3∂αf
0
α.

The left hand side is function of x1 and x2 only, whereas the right hand side can be

any arbitrary function.

This lead to impose f 0
α = f 1

3 = 0 on Ω which implies ζ0α = 0 in ω by (3.3.33).

This in turn gives

e0σ||τ (u) = 0 and u1
3 = ζ13 (x1, x2) and hence e03||3(u) = ∂3u

1
3 = 0. (3.3.42)

Thus, we have to try with new order for the forces

fα(ε) = εf 1
α ∈ L2(Ω) and f3(ε) = ε2f 2

3 ∈ L2(Ω). (3.3.43)
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Using f 0
α = 0 in (3.3.35), we get

�

Ω

4Aα3σ3(0)e1σ||3(u)
1

2
∂αη3dx = 0 ∀ η3 ∈ V3(ω). (3.3.44)

Note that since ζ0α = 0 in ω, the horizontal components of the leading term of

the expansion becomes u1
α. The boundary condition of place reads u1

α = 0 on Γ0, or

equivalently ∂αζ03 = ζ1α = 0 on γ0. This implies that ζ = (ζ1α, ζ
0
3) ∈ V (ω).

Taking v = (η1, η2, 0) ∈ V (ω) with ηα are independent of x3 in (3.3.39), we get

�

Ω

�
Aαβστ (0)e1σ||τ (u)

1

2
(∂αηβ + ∂βηα) + Aαβ33(0)e13||3(u)

1

2
(∂αηβ + ∂βηα)

�
dx

=

�

Ω

f 1
αηαdx. (3.3.45)

Using (3.2.3), (3.2.7), (3.3.13) and (3.3.30), the left hand side of above equation

becomes

�

Ω

��
λδαβδστe1σ||τ (u) + λδαβe13||3(u)

�
+ µ(δασδβτ + δατδβτ )e1σ||τ (u)

�
eαβ(η)dx

=

�

Ω

�
λδαβe1p||p(u) + 2µe1α||β(u)

�
eαβ(η)dx.

Now

e1p||p(u) = e11||1(u) + e12||2(u) + e13||3(u)

= (∂1ζ
1
1 − x3∂11ζ

0
3 − ζ03∂11θ) + (∂2ζ

1
2 − x3∂22ζ

0
3 − ζ03∂22θ)

− λ

λ+ 2µ

�
∂σζ

1
σ − x3∂σσζ

0
3 − ζ03∂σσθ

�

= (∂σζ
1
σ − x3∂σσζ

0
3 − ζ03∂σσθ)−

λ

λ+ 2µ

�
∂σζ

1
σ − x3∂σσζ

0
3 − ζ03∂σσθ

�

=
2µ

λ+ 2µ

�
∂σζ

1
σ − x3Δζ03 − ζ03∂σσθ

�
. (3.3.46)
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Hence, left hand side of (3.3.45) becomes

�

Ω

��
2λµ

λ+ 2µ

�
eσσ(ζ

1)− x3Δζ03 − ζ03∂σσθ
��

δαβ

+2µ
��
eαβ(ζ

1)− ζ03∂αβθ
�
− x3∂αβζ

0
3

��
eαβ(η)

=

�

Ω

�
2λµ

λ+ 2µ
eσσ(ζ

1)eαα(η) + 2µeαβ(ζ
1)eαβ(η)

�
dx

−
�� 1

−1

x3dx3

��

ω

2λµ

λ+ 2µ
Δζ03eαα(η)dω

−
�

Ω

�
2λµ

λ+ 2µ
ζ03∂σσθeαα(η) + 2µζ03∂αβθeαβ(η)

�
dx

−
�� 1

−1

x3dx3

��

ω

2µ∂αβζ
0
3eαβ(η)dω

=

�

Ω

�
2λµ

λ+ 2µ
eσσ(ζ

1)eαα(η) + 2µeαβ(ζ
1)eαβ(η)

�
dx

−
�

Ω

�
2λµ

λ+ 2µ
ζ03∂σσθeαα(η) + 2µζ03∂αβθeαβ(η)

�
dx.

Therefore (3.3.45) becomes

�

Ω

�
2λµ

λ+ 2µ
eσσ(ζ

1)eαα(η) + 2µeαβ(ζ
1)eαβ(η)

�
dx

=

�

Ω

�
2λµ

λ+ 2µ
ζ03∂σσθeαα(η) + 2µζ03∂αβθeαβ(η)

�
dx+

�

Ω

f 1
αηαdx ∀ ηα ∈ VH(ω).

(3.3.47)

The left hand side of (3.3.47) is elliptic over VH(ω) and the right hand side is linear

functional in (L2(ω))2. Hence there exists a unique solution (ζ1α) ∈ VH(ω) satisfying

(3.3.47).

Taking v = (η1 − x3∂1η3, η2 − x3∂2η3, η3) ∈ V with ηα, η3 are independent of x3,

using (3.3.44), the relations

e0α||β(v) =
1

2
(∂αηβ + ∂βηα)− x3∂αβη3, e1α||β(v) = −η3∂αβθ,

e−1

α||3(v) = −1

2
∂αη3, e

0
α||3(v) =

1

2
∂αη3,

e13||3(v) = ∂3v3 = 0, e03||3(u) = e0σ||τ (u) = 0






(3.3.48)

39



and f 1
3 = 0, the variational equation (3.3.39) becomes

�

Ω

�
Aαβστ (0)e1σ||τ (u)

�
1

2
(∂αηβ + ∂βηα)− x3∂αβη3

�
+ 4Aα3σ3(0)e2σ||3(u)

�
−1

2
∂αη3

�

+Aαβ33(0)e13||3(u)

�
1

2
(∂αηβ + ∂βηα)− x3∂αβη3

��
dx

=

�

ω

��
1

−1

f 1
α(x1, x2, t)dt

�
ηαdω −

�

ω

��
1

−1

tf 1
α(x1, x2, t)dt

�
∂αη3dω (3.3.49)

Step 5 : ζ = (ζ11 , ζ
1
2 , ζ

0
3) satisfies the variational problem (3.3.5)

Using the new order (3.3.43) for the forces and equating the coefficient of ε2 on both

sides of (3.2.18) leads to the problem : Find u4 ∈ H1(Ω) such that

�

Ω

�
Aαβστ (0)(e2σ||τ (u)e

0
α||β(v) + e1σ||τ (u)e

1
α||β(v) + e0σ||τ (u)e

2
α||β(v))

+ Bαβστ,1(0)e0σ||τ (0)e
0
α||β(v) + 4Aα3σ3(0)(e1σ||3(u)e

1
α||3(v) + e2σ||3(u)e

0
α||3(v)

+ e−1

σ||3(u)e
3
α||3(v) + e0σ||3(u)e

2
α||3(v) + e3σ||3(u)e

−1

α||3(v))

+ 4Bα3σ3,1(e−1

σ||3(u)e
1
α||3(v) + e0σ||3(u)e

0
α||3(v) + e1σ||3(u)e

−1

α||3(v))

+ 4Bα3σ3,2e−1

σ||3(u)e
−1

α||3(v)

+ Aαβ33(0)(e13||3(u)e
1
α||β(v) + e23||3(u)e

0
α||β(v) + e03||3(u)e

2
α||β(v) + e−1

3||3(u)e
3
α||β(v))

+ Bαβ33,1(e03||3(u)e
0
α||β(v) + e−1

3||3(u)e
1
α||β(v)

+ A33στ (0)e3σ||τ (u)∂3v3 + B33στ,1e1σ||τ (u)∂3v3 + A3333(0)e33||3(u)∂3v3

+B3333,1e13||3(u)∂3v3 + B3333,2e−1

3||3(u)∂3v3

�
dx

=

�

Ω

f 2
i vidx. (3.3.50)
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Using (3.3.12), (3.3.23) and (3.3.42), the above equation becomes

�

Ω

�
Aαβστ (0)(e2σ||τ (u)e

0
α||β(v) + e1σ||τ (u)e

1
α||β(v)) + 4Bα3σ3,1e1σ||3(u)e

−1

α||3(v)

+ 4Aα3σ3(0)(e1σ||3(u)e
1
α||3(v) + e2σ||3(u)e

0
α||3(v) + e3σ||3(u)e

−1

α||3(v))

+ Aαβ33(0)(e13||3(u)e
1
α||β(v) + e23||3(u)e

0
α||β(v)) + 4Bα3σ3,1e1σ||3(u)e

−1

α||3(v)

+ A33στ (0)e3σ||τ (u)∂3v3 + B33στ,1e1σ||τ (u)∂3v3 + A3333(0)e33||3(u)∂3v3

+B3333,1e13||3(u)∂3v3
�
dx

=

�

Ω

f 2
i vidx. (3.3.51)

Using (3.2.13) and (3.2.15), it becomes

�

Ω

�
Aαβστ (0){e2σ||τ (u)

1

2
(∂αvβ + ∂βvα) + e1σ||τ (u)(−v3∂αβθ)}

+ 4Aα3σ3(0)(e1σ||3(u)(vγ∂αγθ) + e2σ||3(u)(
1

2
∂αv3) + e3σ||3(u)(

1

2
∂3vα))

+ Aαβ33(0)(e13||3(u)(−v3∂αβθ) + e23||3(u)(
1

2
(∂αvβ + ∂βvα))

+ A33στ e3σ||τ (u)∂3v3 + B33στ,1e1σ||τ (u)∂3v3 + A3333(0)e33||3(u)∂3v3

+B3333,1e13||3(u)∂3v3 + 4Bα3σ3,1e1σ||3(u)
1

2
∂3vα

�
dx

=

�

Ω

f 2
i vidx.

As in the proof of step 4, this problem must be considered only for the test functions

with vanishing horizontal components (since f 2
α is not yet introduced).

Therefore, if we restrict the test functions of the form v = (0, 0, η3) ∈ V3(ω) with

η3 independent of x3, this problem reduces to

�

Ω

�
Aαβστ (0)e1σ||τ (u)(−η3∂αβθ) + 4Aα3σ3(0)(e2σ||3(u)(

1

2
∂αη3)

+ Aαβ33(0)e13||3(u)(−η3∂αβθ)
�
dx =

�

ω

�� 1

−1

f 2
3 (x1, x2, t)dt

�
η3dω. (3.3.52)
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Adding (3.3.49) and (3.3.52), we have

�

Ω

�
Aαβστ (0)e1σ||τ (u)

�
1

2
(∂αηβ + ∂βηα)− x3∂αβη3 − η3∂αβθ

�

+Aαβ33(0)e13||3(u)

�
1

2
(∂αηβ + ∂βηα)− x3∂αβη3 − η3∂αβθ

��
dx

=

�

ω

��
1

−1

f 2
3 (x1, x2, t)dt

�
η3dω +

�

ω

��
1

−1

f 1
α(x1, x2, t)dt

�
ηαdω

−
�

ω

�� 1

−1

tf 1
α(x1, x2, t)dt

�
∂αη3dω.

(3.3.53)

Note that

�eαβ(v) =
1

2
(∂αvβ + ∂βvα)− v3∂αβθ

=
1

2
(∂αηβ + ∂βηα)− x3∂αβη3 − η3∂αβθ when v = (ηα − x3∂αη3, η3).

Using (3.2.3), (3.3.30) and (3.3.46) we have

LHS of (3.3.53) =
�

Ω

��
λδαβδστe1σ||τ (u) + λδαβe13||3(u)

�

+µ(δασδβτ + δατδβτ )e1σ||τ (u)
�
�eαβ(v)dx

=

�

Ω

�
λδαβe1p||p(u) + 2µe1α||β(u)

�
�eαβ(v)dx

= −
�

ω

mαβ(w)∂αβη3dω −
�

ω

�nαβ(w)η3∂αβθdω +

�

ω

�nαβ(w)∂βηαdω

Hence ζ = (ζ11 , ζ
1
2 , ζ

0
3 ) satisfies (3.3.5).

Conclusions: The above asymptotic analysis of the three-dimensional problem (3.1.1)

showed that with the assumption (3.1.4), if the expansion of the displacement field u(ε)

is as in (3.2.5), then the asymptotic orders of force must be:

fα(ε) = εf 1
α ∈ L2(Ω), f3(ε) = ε2f 2

3 ∈ L2(Ω).
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This implies that the asymptotic order of the components of the displacement field is:

uα(ε) = εu1
α, u3(ε) = u0

3.

However these scalings on the data f(ε) and the unknowns u(ε) deviate from those

of (3.1.3) and (3.1.5) by a multiplicative factor of ε, which can be explained by the

linearity of the problem (3.2.18) and the choice of the expansion (3.2.5).
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CHAPTER 4

Two-dimensional Approximation of Piezoelectric

Shallow Shells with Variable Thickness

4.1 Introduction

In this chapter, we consider the boundary value problem for a thin piezoelectric shallow

shell with variable thickness. As the thickness of the shell is small, the question is:

what is the two dimensional approximation of this model?

Thus our aim in this chapter is to identify the two dimensional model which is the

approximation of the three dimensional thin piezoelectric shell with variable thickness.

We first pose the problem in variational form and transfer the problem, by making

suitable scalings on the unknowns and data, to a domain which is independent of the

thickness parameter. Then we derive a Korn’s type inequality which is needed to show

that the solutions are bounded in a suitable Hilbert space which would imply a weakly

convergence subsequence (of solutions) and choosing suitable test functions we pass to

the limit in the variational formulation to obtain the limiting model. We then show that

the limiting model has a unique solution and the solutions converges strongly.

This chapter is organized as follows. In section 4.2, we describe the three dimen-

sional problem. In section 4.3, we transform the problem to scaled domain and in

section 4.4, we discuss the technical preliminaries. In section 4.5, we study the limit

problem.

4.2 The Three-dimensional Problem

Let ω ⊂ IR2 be a bounded domain with a Lipschitz continuous boundary γ and let ω lie

locally on one side of γ. Let γ0, γh ⊂ ∂ω with meas(γ0) > 0 and meas(γh) > 0. Let



γ1 = ∂ω\γ0 and γs = ∂ω\γh. For each ε > 0, we define the sets

Ωε = ω × (−ε, ε), Γ±,ε = ω × {±ε}, Γε
0 = γ0 × (−ε, ε), Γε

1 = γ1 × (−ε, ε),

Γε
N = Γε

1 ∪ Γ±,ε, Γε
h = γh × (−ε, ε), Γε

s = γs × (−ε, ε).

Let xε = (x1, x2, x
ε
3) be a generic point on Ω̄

ε and let ∂α = ∂ε
α = ∂

∂xα
and ∂ε

3 = ∂
∂xε

3

.

We assume that for each ε, we are given a function θε : ω̄ → IR of class C3. We

then define the map φε : ω̄ → IR3 by

φε(x1, x2) = (x1, x2, θ
ε(x1, x2)) for all (x1, x2) ∈ ω̄. (4.2.1)

At each point of the surface Sε = φε(ω̄), we define the normal vector

aε = (|∂1θε|2 + |∂2θε|2 + 1)−
1

2 (−∂1θ
ε,−∂2θ

ε, 1).

The variable thickness of the shell is governed by a function e ∈ W 2,∞(ω) such that

there exists a constant e0 such that

0 < e0 < e(x1, x2) for all (x1, x2) ∈ ω̄.

For each ε > 0, we define the mapping Φε : Ω̄ε → IR3 by

Φε(xε) = φε(x1, x2) + xε
3e(x1, x2)a

ε(x1, x2) for all xε ∈ Ω̄ε. (4.2.2)

Hence at the point Φε(xε) the thickness is 2εe(x1, x2).

The set ¯̂Ωε = Φε(Ω̄ε) is the reference configuration of the shell and we denote a

generic point of the shell by x̂ε.

For 0 < ε ≤ ε0, we define the sets

Γ̂±,ε = Φε(Γ±,ε), Γ̂ε
0 = Φε(Γε

0), Γ̂ε
1 = Φ(Γε

1), Γ̂ε
N = Γ̂1

ε ∪ Γ̂±ε,
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Γ̂ε
h = Φ(Γε

h), Γ̂ε
s = Φ(Γε

s), Γ̂ε
hD = Γ̂+ε ∪ Γ̂−ε ∪ Γ̂ε

h.

We define vectors gεi and gi,ε by the relations

gεi = ∂ε
iΦ

ε and gj,ε · gεi = δji .

which form the covariant and contravariant basis respectively of the tangent plane of

Φε(Ω̄ε) at Φε(xε). The covariant and contravariant metric tensors are given, respec-

tively, by

gεij = gεi · gεj and gij,ε = gi,ε · gj,ε.

The Christoffel symbols are defined by

Γp,ε
ij = gp,ε · ∂ε

j g
ε
i .

Note however that when the set Ωε is of the special form Ωε = ω × (−ε, ε) and the

mapping Φε is of the form (4.2.2), the following relations hold,

Γ3,ε
α3 = Γp,ε

33 = 0.

The volume element is given by
√
gεdxε where

gε = det(gεij).

We assume that the material is mechanically isotropic so that the elasticity tensor

Âijkl,ε is given by

Âijkl,ε = λδijδkl + µ(δikδjl + δilδjk) (4.2.3)

where λ and µ are Lamé constants. Clearly this tensor satisfy the symmetry relations

Âijkl,ε = Âjikl,ε = Âklij,ε (4.2.4)

and the inequality

Âijkl,εtijtkl ≥ C
�

i,j

|tij |2 (4.2.5)
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for all symmetric tensor (tij).

Let P̂ ijk,ε and ∈̂ij,ε denote the piezoelectric and dielectric tensors respectively. We

assume that they are symmetric and there exists C > 0 such that

∈̂ij,ε
titj ≥ C

�

i

|ti|2 (4.2.6)

for all (ti) ∈ IR3.

Let f̂ ε and ϕ̂ε
0 be the applied body force and electric potential.

Then the boundary value problem consists of finding (ûε, ϕ̂ε) such that

−divσ̂ε(ûε, ϕ̂ε) = f̂ ε in Ω̂ε,

σ̂ε(ûε, ϕ̂ε)ν = 0 on Γ̂ε
N ,

ûε = 0 on Γ̂ε
0,





(4.2.7)

divD̂ε(ûε, ϕ̂ε) = 0 in Ω̂ε,

D̂ε(ûε, ϕ̂ε)ν = 0 on Γ̂ε
s,

ϕ̂ε = ϕ̂ε
0 on Γ̂

ε
hD.





(4.2.8)

where

σ̂ε
ij = Âijkl,εêεij − P̂ kij,εÊε

k, (4.2.9)

D̂ε
k = P̂ kij,εêεij + ∈̂kl,ε

Êε
l , (4.2.10)

êεij(û
ε) =

1

2
(∂̂ε

i û
ε
j + ∂̂ε

j û
ε
i ), ∂̂ε

i =
∂

∂x̂ε
i

and Êε
k(ϕ̂

ε) = −▽̂ε
(ϕ̂ε).

Let ϕ̂ε = ϕ̂ε − ϕ̂ε
0, where ϕ̂

ε
0 is a trace lifting in H1(Ω̂ε) of the boundary potential.

We define the spaces

V̂ ε = {v̂ε ∈ (H1(Ω̂ε))3, v̂|
Γ̂ε
0
= 0}, (4.2.11)

Ψ̂ε = {ψ̂ε ∈ H1(Ω̂ε), ψ̂|
Γ̂ε
hD

= 0}. (4.2.12)
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The variational form of the system (4.2.7)-(4.2.8) is to find (ûε, ϕ̂
ε
) ∈ V̂ ε × Ψ̂ε such

that

âε((ûε, ϕ̂
ε
), (v̂ε, ψ̂ε)) = l̂ε(v̂ε, ψ̂ε) for all (v̂ε, ψ̂ε) ∈ V̂ ε × Ψ̂ε (4.2.13)

where

âε((ûε, ϕ̂
ε
), (v̂ε, ψ̂ε)) =

�

Ω̂ε

Âijkl,εêεkl(û
ε)êεij(v̂

ε)dx̂ε +

�

Ω̂ε

∈̂ij,ε
∂̂ε
i ϕ̂

ε
∂̂ε
j ψ̂

εdx̂ε

+

�

Ω̂ε

P̂mij,ε
�
∂̂ε
mϕ̂

ε
êεij(v̂

ε)− ∂̂ε
mψ̂

εêεij(û
ε)
�
dx̂ε (4.2.14)

l̂ε(v̂ε, ψ̂ε) =

�

Ω̂ε

f̂ ε · v̂εdx̂ε−
�

Ω̂ε

∈̂ij,ε
∂̂ε
i ϕ̂

ε
0∂̂

ε
j ψ̂

εdxε−
�

Ω̂ε

P̂mij,εϕ̂ε
0êij(v̂

ε)dxε (4.2.15)

Since the mappings Φε : Ω
ε → Ω̂

ε

are assumed to be C1 diffeomorphism, the

correspondence that associates with every vector v̂ε = (v̂εi ) ∈ V̂ ε (note that (v̂εi ) are

the components of the vector v̂ε = v̂εi ê
i, where (êi)3i=1 is the standard basis in IR3) the

vector vε = (vεi ) defined by

v̂εi (x̂
ε)êi = vεi (x

ε)gi(xε)

induces a bijection between the spaces V̂ ε and V ε, where

V ε = {vε ∈ (H1(Ωε))3|vε = 0 on Γε
0}. (4.2.16)

Then we have (cf. Ciarlet (2000))

∂̂ε
j v̂

ε
i (x̂

ε) = (∂ε
l v

ε
k − Γq,ε

lk v
ε
q)(g

k,ε)i(g
l,ε)j , (4.2.17)

êij(v̂
ε)(x̂ε) = eεk||l(v

ε)(gk,ε)i(g
l,ε)j, (4.2.18)

where

eεi||j(v
ε) =

1

2
(∂ε

i v
ε
j + ∂ε

j v
ε
i )− Γp,ε

ij v
ε
p. (4.2.19)

Also with any scalar function ϕ̂ε ∈ Ψ̂ε, the correspondence ϕ̂ε(x̂ε) = ϕε(xε) in-
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duces a bijection between the spaces Ψ̂ε and Ψε where

Ψε = {ψε ∈ H1(Ωε)|ψε = 0 on Γε
hD}. (4.2.20)

Then

∂̂jϕ̂
ε = ∂̂jϕ

ε(xε) = ∂̂jϕ
ε((Φε)−1(x̂ε)) = ∂lϕ

ε(xε)(gl(xε))j. (4.2.21)

Then the variational problem consists of finding (uε,ϕε) such that

aε((uε,ϕε), (vε,ψε)) = lε(vε,ψε) for all (vε,ψε) ∈ V ε ×Ψε (4.2.22)

where

aε((uε,ϕε), (vε,ψε)) =

�

Ωε

Aijkl,εeεk||l(v
ε)eεi||j(v

ε)
√
gεdxε +

�

Ωε

∈ij,ε ∂ε
iϕ

ε∂ε
jψ

ε√gεdxε

+

�

Ωε

Pmij,ε
�
∂ε
mϕ

εeεi||j(v
ε)− ∂ε

mψ
εeεi||j(u

ε)
�√

gεdxε,

(4.2.23)

lε(vε,ψε) =

�

Ωε

f ε · vε√gεdxε −
�

Ωε

∈ij,ε ∂ε
iϕ

ε
0∂

ε
jψ

ε√gεdxε

−
�

Ωε

Pmij,ε
�
∂ε
mϕ

ε
0e

ε
i||j(v

ε)− ∂ε
mψ

εeεi||j(u
ε)
�√

gεdxε, (4.2.24)

Aijkl,ε = λgij,εgkl,ε + µ(gik,εgjl,ε + gil,εgjk,ε), (4.2.25)

P pqr,ε = P̂ ijk,ε.(gp,ε)i(g
q,ε)j(g

r,ε)k, (4.2.26)

∈pq,ε = ∈̂ij,ε
(gp,ε)i(g

q,ε)j , (4.2.27)

It can be shown that there exists a constantC > 0 such that for all symmetric tensors

(tij)

Aijkl,εtkltij ≥ C

3�

i,j=1

(tij)
2. (4.2.28)

Using (4.2.6) and that (gj,ε) forms contravariant basis, it follows that for any vector
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(ti) ∈ IR3

∈kl,εtktl ≥ C
3�

j=1

t2j . (4.2.29)

Moreover from the symmetry of Âijkl,ε, P̂ ijk,ε, ∈̂ij,ε we have the symmetries

Aijkl,ε = Aklij,ε = Ajikl,ε,∈kl,ε = ∈lk,ε, P ijk,ε = P kij,ε. (4.2.30)

Using (4.2.28) and (4.2.29) we have

aε((uε,ϕε), (uε,ϕε)) =

�

Ωε

Aijkl,εeεk||l(u
ε)eεi||j(u

ε)
√
gεdxε +

�

Ωε

∈ij,ε ∂ε
iϕ

ε∂ε
jϕ

ε√gεdxε

≥ C(||uε||21,Ωε + ||ϕε||21,Ωε). (4.2.31)

Hence the bilinear form aε(·, ·)associated with the left-hand side of (4.2.22) is ellip-

tic and the linear form lε(·) is continuous. Hence by Lax-Milgram theorem there exists

a unique (uε,ϕε) such that

aε((uε,ϕε), (vε,ψε)) = lε(vε,ψε) for all (vε,ψε) ∈ V ε ×Ψε. (4.2.32)

4.3 The Scaled Problem

We now perform a change of variable so that the domain no longer depends on ε. With

x = (x1, x2, x3) ∈ Ω̄, we associate xε = (x1, x2, εx3) ∈ Ω̄ε. Let

Γ0 = γ0 × (−1, 1), Γ1 = γ1 × (−1, 1), Γ± = ω × {±1}, Γh = γh × (−1, 1),

Γs = γs × (−1, 1), ΓN = Γ1 ∪ Γ+ ∪ Γ−, ΓhD = Γ+ ∪ Γ− ∪ Γh.

With the functions Γp,ε, gε, Aijkl,ε, P ijk,ε,∈ij,ε: Ω̄ε → IR, we associate the functions

Γp(ε), g(ε), Aijkl(ε), P ijk(ε), ∈ij (ε) : Ω̄ → IR defined by

Γp(ε)(x) = Γp,ε(xε), g(ε)(x) = gε(xε), Aijkl(ε)(x) = Aijkl,ε(xε), (4.3.1)
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P ijk(ε)(x) = P ijk,ε(xε), ∈ij (ε)(x) =∈ij,ε (xε). (4.3.2)

Assumption: We assume that the shell is a shallow shell; i.e., there exists a function

θ ∈ C3(ω̄) such that θε = εθ(x1, x2);

i.e., φε(x1, x2) = (x1, x2, εθ(x1, x2)) for all (x1, x2) ∈ ω̄. (4.3.3)

In this case, we make the following scalings on the data and unknowns.

f ε
α(x

ε) = ε2fα(ε)(x), f ε
3 (x

ε) = ε3f3(x), ϕε
0(x

ε) = ε3ϕ0(ε), (4.3.4)

uε
α(x

ε) = ε2uα(ε)(x), vα(x
ε) = ε2vα(x), uε

3(x
ε) = εu3(ε)(x), v3(x

ε) = εv3(x),

(4.3.5)

ϕε(xε) = ϕ(ε)(x), (4.3.6)

Eα(ε)(ϕ(ε)) = ε−2Eε
α(ϕ

ε) = −ε∂αϕ(ε), E3(ε)(ϕ(ε)) = ε−2Eε
3(ϕ

ε) = −ε∂3ϕ(ε),

(4.3.7)

Di(ε)(u(ε),ϕ(ε)) = ε−2Dε
i (u

ε,ϕε). (4.3.8)

With the tensors eεi||j , we associate the tensors ei||j(ε) through the relation

eεi||j(v
ε)(xε) = ε2ei||j(ε; v)(x). (4.3.9)

We define the spaces

V (Ω) = {v ∈ (H1(Ω))3, v|Γ0
= 0}, (4.3.10)

Ψ(Ω) = {ψ ∈ H1(Ω),ψ|ΓhD
= 0}. (4.3.11)

52



Then the variational problem (4.2.22) becomes: find (u(ε),ϕ(ε)) ∈ V (Ω) × Ψ(Ω)

such that

�

Ω

Aijkl(ε)ek||l(ε, u(ε))ei||j(ε, v)
�
g(ε)dx+

�

Ω

∈33 (ε)∂3ϕ(ε)∂3ψ
�
g(ε)dx

+

�

Ω

P 3kl
�
∂3ϕ(ε)ek||l(ε, v)− ∂3ψek||l(ε, u(ε))

��
g(ε)dx

+ε

�

Ω

∈3α (ε) [∂αϕ(ε)∂3ψ + ∂3ϕ(ε)∂αψ)]
�

g(ε)dx

+ε

�

Ω

�
P αkl(ε)∂αϕ(ε)ek||l(ε, u(ε))− ∂αψek||l(ε, v)

��
g(ε)dx

+ε2
�

Ω

∈αβ (ε)∂αϕ(ε)∂βψ
�

g(ε)dx

=

�

Ω

f · v
�

g(ε)dx−
�

Ω

∈33 (ε)∂3ϕ0∂3ψ
�

g(ε)dx

−ε

�

Ω

�
∈3α (ε)(∂αϕ0∂3ψ + ∂3ϕ0∂αψ)

��
g(ε)dx− ε2

�

Ω

∈αβ (ε)∂αϕ0∂βψ
�
g(ε)dx

−
�

Ω

P 3kl∂3ϕ0ek||l(ε, v)
�
g(ε)dx− ε

�

Ω

P αij∂3ϕ0ei||j(ε, v)
�
g(ε)dx. (4.3.12)

4.4 Technical Preliminaries

The following lemmas are crucial; they play an important role in the proof of the con-

vergence of the scaled unknowns as ε → 0. In the sequel, we denote by C1, C2, . . . , Cn

various constants whose values do not depend on ε but may depend on θ.

Lemma 4.4.1. The functions ei||j(ε, v) defined in (4.3.9) are of the form

eα||β(ε; v) = ẽαβ(v) + ε2e♯α||β(ε; v), (4.4.1)

eα||3(ε; v) =
1

ε

�
ẽα3(v) + ε2e♯α||3(ε; v)

�
, (4.4.2)

e3||3(ε; v) =
1

ε2
ẽ33(v), (4.4.3)

where

ẽαβ(v) =
1

2
(∂αvβ + ∂βvα)−

v3
e
(∂αβθ + x3∂αβe), (4.4.4)

ẽα3(v) =
1

2
(∂αv3 + ∂3vα), (4.4.5)

ẽ33(v) = ∂3v3. (4.4.6)
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and there exists constant C1 such that

sup
0<ε≤ε0

max
α,j

||e♯α,j(ε; v)||0,Ω ≤ C1||v||1,Ω for all v ∈ V. (4.4.7)

Also there exist constants C2, C3 and C4 such that

sup
0<ε≤ε0

max
x∈Ω̄

|g(x)− e2| ≤ C2ε
2, (4.4.8)

sup
0<ε≤ε0

max
x∈Ω̄

|Aijkl(ε)− Aijkl(0)| ≤ C3ε
2, (4.4.9)

where

Aαβστ (0) = λδαβδστ + µ(δασδβτ + δατδβσ), (4.4.10)

Aαβσ3(0) = 0, Aαβ33(0) =
1

e2
λδαβ , Aα3σ3(0) =

1

e2
µδασ, (4.4.11)

Aα333(0) = 0, A3333 =
1

e4
(λ+ 2µ), (4.4.12)

Aijkl(ε)tkltij ≥ C4tijtij , (4.4.13)

for 0 < ε ≤ ε0, for all x ∈ Ω̄, and for all symmetric tensors (tij).

Proof. A simple computation using (4.3.3) shows that

gα(ε) =




δα1 − ε2x3[e∂α1θ + ∂1θ∂αe] +O(ε2)

δα2 − ε2x3[∂α2θ + ∂2θ∂αe] +O(ε2)

ε[∂αθ + x3∂αe] +O(ε4)


 , (4.4.14)

g3(ε) =




−ε∂1θ +O(ε3)

−ε∂2θ +O(ε3)

e+O(ε2)


 . (4.4.15)

Hence

gαβ(ε) = δαβ + ε2[∂αθ∂βθ − 2x3(e∂αβθ + ∂αθ∂β)e] +O(ε4), (4.4.16)
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gα3(ε) = O(ε), g33(ε) = e2 +O(ε2), (4.4.17)

Γσ
αβ(ε) = O(ε2), Γ3

αβ(ε) =
ε

e
[∂αβθ + x3∂αβe] +O(ε3), Γσ

α3 = O(ε). (4.4.18)

The announced results follows from the above relations.

Lemma 4.4.2. ( Duvaut and Lions (1972)) Let Ω be a Lipschitz continuous domain in

IRn, and let v be a distribution in IRn. Then

v ∈ H−1(Ω) ∂iv ∈ H−1(Ω) for all 1 ≤ i ≤ n ⇒ v ∈ L2(Ω)

Theorem 4.4.3. ( Hörmander (1983)). If P (x, ξ) =
�

ij

aijξiξj where aij are Lipschitz-

continuous in a neighbourhood of zero, P (x, ξ) is elliptic and if u ∈ H1(ω) satisfies

|P (x,D)u| ≤ C
�

|α|≤1

|Dαu| then u = 0 in ω if u vanishes in a neighbourhood of a point

in ω.

Lemma 4.4.4. Let θ ∈ C3(ω) be a given function and let the functions ẽij(v) be defined

as in (4.4.4)-(4.4.6). Then there exists a constant C5 such that

||v||1,Ω ≤ C5

�
�

i,j

||ẽij(v)||2
� 1

2

(4.4.19)

for all v ∈ V (Ω).

Proof. For clarity the proof is divided into four steps.

Step 1: Let the space Eθ be defined by

Eθ(Ω) = {v = (vi) ∈ L2(Ω); ẽij(v) ∈ L2(Ω)}. (4.4.20)

Then

Eθ(Ω) = H1(Ω). (4.4.21)

Let v = (vi) be an element in Eθ(Ω). Then

eαβ(v) = ẽαβ(v) +
v3
e
(∂αβθ + x3∂αβe) ∈ L2(Ω), ei3(v) = ẽi3(v). (4.4.22)

The identity
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∂jkvi = ∂jeik(v) + ∂keij(v)− ∂iejk(v)

shows that ∂jkvi ∈ H−1(Ω). Also v ∈ Eθ(Ω) ⇒ ∂jvi ∈ H−1(Ω). Hence by lemma of

J. L. Lions, we have ∂jvi ∈ L2(Ω) and hence Eθ(Ω) ⊂ H1(Ω). The reverse inclusion

is obvious and hence the equality (4.4.21) follows.

Step 2: The mapping � · � defined by

�v� =

�
�v�0,Ω +

�

i,j

�ẽij(v)�20,Ω

�1/2

(4.4.23)

is a norm over the space H1(Ω), and there exists a constant C6 such that

�v�1,Ω ≤ C6�v� for all v ∈ V (Ω). (4.4.24)

Clearly there exists a constant C7 such that

�v� ≤ C7�v�1,Ω for all v ∈ H1(Ω). (4.4.25)

Hence the identity mapping from the space H1(Ω) equipped with the norm � · �1,Ω
into the space Eθ(Ω) equipped with the norm � ·� is continuous, and it is also surjective
sinceEθ(Ω) = H1(Ω) by the step 1. Since the space Eθ(Ω) is a Hilbert space when it is

equipped with norm � ·�, the open mapping theorem implies the existence of a constant

C6 satisfying (4.4.24).

Step 3: The semi-norm | · |θ is defined by

|v|θ =
�
�

i,j

�ẽij(v)�20,Ω

� 1

2

(4.4.26)

in a norm over the space V (Ω).

The only property that remains to be checked is that

v ∈ V (Ω) and |v|θ = 0 ⇒ v = 0.
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Let v ∈ V (Ω) be such that ẽij(v) = 0. Since ei3(v) = ẽi3(v) = 0, a standard

argument (cf. Busse et al. (1997)) implies that there exists functions ηα ∈ H1(ω), η3 ∈
H2(ω), ηi = ∂νη3 = 0 on γ0 such that vα = ηα − x3∂αη3, v3 = η3. The relation

ẽαβ(v) = 0 then implies that

1

2
(∂αηβ + ∂βηα)−

η3
e
∂αβθ = x3

�
∂αβη3 +

η3
e
∂αβe

�

and whence ∂αβη3 +
η3
e
∂αβe = 0 in ω such that left-hand side of the above equality is

only a function of (x1, x2).

In particular, η3 ∈ H2(ω) satisfies

Δη3 +
η3
e
Δe = 0 in ω,

η3 = ∂νη3 = 0 on γ0. (4.4.27)

Let ω′ be a domain which contains γ0 in its interior. Then the function η
′

3 defined

by

η
′

3 =





η3 in ω,

0 in ω′ − ω
(4.4.28)

satisfies η′

3 ∈ H2(ω
′

),

Δη
′

3 +
η

′

3

e
Δe = 0 in ω

′

,

η
′

3 = 0 in ω
′ − ω, (4.4.29)

and whence �Δη
′

3�0,ω′ ≤ C�η′

3�0,ω′ and η
′

3 = 0 in ω
′ − ω. Hence by Hörmander’s

theorem, we have η′

3 = 0 in ω
′ and hence η3 = 0 in ω.

The functions ηα then satisfies ∂αηβ + ∂βηα = 0 in ω, ηα = 0 in ω, ηα = 0 on γ0

and hence ηα = 0 on ω.

Step 4: There exists a constant C8 such that

�v�1,Ω ≤ C8|v|θ for all v ∈ V (Ω).

Suppose the property is false. Then there exists functions vk ∈ V (Ω), k = 1, 2, 3, · · ·
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such that

�vk�1,Ω = 1 for all k ≥ 1, |vk|θ → 0 as k → ∞.

Since the sequence is bounded in H1(Ω), there exists a subsequence (v)∞l=0 that

converges strongly in the space L2(Ω) by Rellich-Kondrasov theorem. Since |vl|θ →
0 as l → ∞, this subsequence is Cauchy sequence with respect to the norm � · �. Since
this norm is equivalent to the norm � · �1,Ω by step 2, and since the space H1(Ω) is

complete, the subsequence (vl)∞l=1 converges in the space H
1(Ω). On one hand,

�v�1,Ω = lim
l→∞

�vl�1,Ω = 1. (4.4.30)

On the other hand ,

|v|θ = lim
l→∞

|vl|θ = 0 (4.4.31)

and hence v = 0 by step 3, which is impossible by (4.4.30).

4.5 The Limit Problem

Theorem 4.5.1. (a) There exists u ∈ H1(Ω), ϕ ∈ L2(Ω) such that

u(ε) → u inH1(Ω), ϕ(ε) → ϕ in L2(Ω), (4.5.1)

(ε∂1ϕ(ε), ε∂2ϕ(ε), ∂3ϕ(ε)) → (0, 0, ∂3ϕ) in L2(Ω). (4.5.2)

(b) Define the spaces

VH(ω) = {(ηα) ∈ (H1(ω))2; ηα = 0 on γ0}, (4.5.3)

V3(ω) = {η3 ∈ H2(ω); η3 = ∂νη3 = 0 on γ0}, (4.5.4)

VKL = {v ∈ H1(Ω)|v = ηα − x3∂αη3, (ηi) ∈ VH(ω)× V3(ω)}, (4.5.5)

Ψl = {ψ ∈ L2(Ω), ∂3ψ ∈ L2(Ω)}, (4.5.6)

Ψl0 = {ψ ∈ L2(Ω); ∂3ψ ∈ L2(Ω),ψ|Γ± = 0} (4.5.7)
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Then there exists (ζα, ζ3) ∈ VH(ω)× V3(ω) such that

uα = ζα − x3∂αζ3 and u3 = ζ3, (4.5.8)

ϕ =
2�

i=0

ϕm(x1, x2)x
m
3 , (4.5.9)

where

ϕ0 =
ϕ+
0 + ϕ−

0

2
+

p3αβ

2p33
(∂αβζ3 +

∂αβe

e
ζ3), ϕ

±
0 = ϕ|Γ± ,

ϕ1 =
ϕ+
0 − ϕ−

0

2
, ϕ2 =

p3αβ

2p33
(∂αβζ3 +

∂αβe

e
ζ3). (4.5.10)

and (ζ) = (ζα, ζ3) ∈ VH(ω)× V3(ω) satisfies

−
�

ω

mαβ(ζ )∂αβη3edω−
�

ω

�
nθ
αβ(ζ )∂αβθ +mαβ(ζ)∂αβe

�
η3edω

+

�

ω

nθ
αβ∂βηαedω +

2

3

�

ω

p3αβp3ρτ

p33
∂ρτζ3∂αβη3edω

=

�

ω

piηiedω−
�

ω

qα∂αη3edω −
�

ω

ϕ+ − ϕ−

2
p3αβ êαβ(η)edω (4.5.11)

where

mαβ(ζ) = − 4λµ

3(λ + 4µ)

�
△ζ3 + ζ3

△e

e

�
δαβ +

4µ

3

�
∂αβζ3 + ζ3

∂αβe

e

�
, (4.5.12)

nθ
αβ(ζ) =

4λµ

λ+ 2µ
êσσ(ζ)δαβ + 4µêαβ(ζ), (4.5.13)

êαβ(ζ) =
1

2
(∂αζβ + ∂βζα)− ζ3

∂αβθ

e
=

1

2

� 1

−1

ẽαβ(ζ)dx3, (4.5.14)

p33 =
e

µ
P 3α3P 3α3 +

e4

λ+ 2µ
P 333P 333+ ∈33, (4.5.15)

p3αβ = P 3αβ − λe2

λ+ 2µ
P 333δαβ, (4.5.16)

pi =

� 1

−1

f(·, x3)dx3, qα =

� 1

−1

x3f
αdx3. (4.5.17)

Proof. For the sake of clarity, the proof is divided into several steps.

59



Step 1: Define the vector ϕ̃i(ε) by

ϕ̃(ε) = (ϕ̃i(ε)) = (ε∂1ϕ(ε), ε∂2ϕ(ε), ∂3ϕ(ε)). (4.5.18)

Then there exists constant C9 > 0 and ε0 > 0 such that

||u(ε)||1,Ω ≤ C9, |ϕ̃i(ε)| ≤ C9 (4.5.19)

for all 0 < ε ≤ ε0.

Letting (v,ψ) = (u(ε),ϕ(ε)) in (4.3.12), we get

�

Ω

Aijkl(ε)ek||l(ε, u(ε))ei||j(ε, u(ε))
�
g(ε)dx+

�

Ω

∈ij (ε)ϕ̃i(ε)ϕ̃j(ε)
�

g(ε)dx

=

�

Ω

f · u(ε)
�
g(ε)dx−

�

Ω

∈ij (ε)ϕ̃i0(ε)ϕ̃j(ε)
�

g(ε)dx

−
�

Ω

Pmij(ε)ϕ̃m0(ε)ei||j(ε, u(ε))
�
g(ε)dx. (4.5.20)

Using the coerciveness properties (4.2.28) and (4.2.29), the inequality (a − b)2 ≥
a2/2− b2 and the inequality (4.4.19), for ε ≤ min{ε0, 1}, we have

�

Ω

Aijkl(ε)ek||l(ε, u(ε))ei||j(ε, u(ε))
�
g(ε)dx+

�

Ω

∈ij (ε)ϕ̃i(ε)ϕ̃j(ε)
�

g(ε)dx

≥ C10

�

i,j

��ei||j(ε, u(ε))
��2

0,Ω
+ C10

�

i

�ϕ̃i(ε)�20,Ω

= C10

�

α,β

���ẽαβ(u(ε)) + ε2e♯αβ(ε, u(ε))
���
2

0,Ω
+ 2C10

�

α

����
1

ε
ẽα3(u(ε)) + εe♯α3(ε, u(ε))

����
2

0,Ω

+ C10

����
1

ε2
ẽ33(u(ε))

����
2

0,Ω

+ C10

�

i

�ϕ̃i(ε)�20,Ω

≥ C10

�
1

2

�

i,j

�ẽij(u(ε))|20,Ω − 3ε3C2
10�u(ε)�21,Ω

�
+ C10

�

i

�ϕ̃i(ε)�20,Ω

≥ C10

�
1

2
(C5)

−2 − 3ε2C2
10

�
�u(ε)�21,Ω + C10

�

i

�ϕ̃i(ε)�20,Ω

≥ C11

�
�u(ε)�20Ω + �ϕ̃(ε)�20,Ω

�
. (4.5.21)
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Also

�

Ω

f · u(ε)
�
g(ε)dx−

�

Ω

∈ij (ε)ϕ̃i0(ε)ϕ̃j(ε)
�

g(ε)dx

−
�

Ω

Pmij(ε)ϕ̃m0(ε)ei||j(ε, u(ε))
�
g(ε)dx

≤ C (�u(ε)�1,Ω + �ϕ̃(ε)�0,Ω) . (4.5.22)

Relation (4.5.19) follows from (4.5.21) and (4.5.22).

Step 2: From step 1 it follows that there exists a subsequence (ϕ̃(ε)) and ϕ̃ ∈ L2(Ω)

such that

(ε∂1ϕ(ε), ε∂2ϕ(ε), ∂3ϕ(ε)) ⇀ (ϕ̃1, ϕ̃2, ϕ̃3) in (L
2(Ω))3. (4.5.23)

Since ΓhD contains Γ−, we have,

ϕ(ε)(x1, x2, x3) =

� x3

−1

∂3ϕ(ε)(x1, x2, s)ds (4.5.24)

and it follows that �ϕ(ε)�
0,Ω ≤

√
2 �∂3ϕ(ε)�0,Ω. This implies that ϕ(ε) is bounded in

L2(Ω). Therefore there exists a ϕ in L2(Ω) and a subsequence, still indexed by ε, such

that ϕ(ε) converges weakly to ϕ. Hence it follows from (4.5.23) that

(ε∂1ϕ(ε), ε∂2ϕ(ε), ∂3ϕ(ε)) ⇀ (0, 0, ∂3ϕ). (4.5.25)

Step 3: Define the tensor K̃ = (K̃ij) by

K̃αβ(ε) = ẽαβ(u(ε)), K̃α3(ε) =
1

ε
ẽα3(u(ε)), K̃33(ε) =

1

ε2
ẽ33(u(ε)). (4.5.26)

Then there exists a constant C12 such that

���K̃(ε)
���
0,Ω

≤ C12, for all 0 < ε < ε0. (4.5.27)
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Using the definition (4.5.26) and the relations (4.4.1)- (4.4.3)

���K̃(ε)
���
0,Ω

=
�

α,β

��eα||β(ε, u(ε))− ε2e♯(ε, u(ε))
��2

0,Ω

= 2
�

α

���eα||3(ε, u(ε))− εe♯α||3(ε, u(ε))
���
2

0,Ω
+

��e3||3(ε, u(ε))
��2

0,Ω

≤ 2
�

i,j

��ei||j(ε, u(ε))
��2

0,Ω
+ 2ε4Σα,β

��e♯(ε, u(ε))
��2

0,Ω
+ 4ε2

�

α

���e♯α,3(ε, u(ε))
���
2

0,Ω
.

(4.5.28)

Hence the relation (4.5.27) follows by using the inequalities (4.4.7) and (4.5.19).

Step 4: From step 1 it follows that there exists a subsequence (u(ε)) and a function

u ∈ V such that

u(ε) ⇀ u in H1(Ω) as ε → 0.

Then there exist functions (ζα) ∈ H1(ω) and ζ3 ∈ H2(ω) satisfying ζi = ∂νζ3 = 0.

on γ0 such that

uα = ζα − x3∂αζ3 and u3 = ζ3. (4.5.29)

From the definition (4.5.26) and the boundedness of (K̃ij(ε)), we deduce that

�eα3(u(ε))�0,Ω ≤ εC13 and �e33(u(ε))�0,Ω ≤ ε2C13

where eij(v) = 1

2
(∂ivj + ∂jvi). Since norm is a weakly lower semicontinuous function

�ei3(u)�0,Ω ≤ lim inf
ε→0

�ei3(u(ε)�0,Ω = 0 (4.5.30)

hence ei3(u) = 0. Then it is a standard argument that the components ui of the limit u

are of the form (4.5.29).

Step 5: From step 3 there exists a subsequence and an element K̃ = (K̃ij) ∈ L2(Ω)

such that
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K̃ (ε) ⇀ K̃ in L2(Ω) as ε → 0. (4.5.31)

Then

K̃αβ = ẽαβ(u), K̃α3 = − e

µ
P 3α3∂3ϕ, K̃33 = − e2

λ+ 2µ
(e2P 333∂3ϕ+λK̃ββ) (4.5.32)

Since u(ε) ⇀ u in H1(Ω), the definition (4.4.4) of the functions ẽαβ(v) shows that

the function K̃αβ(ε) = ẽαβ(u(ε)) converges weakly in L2(Ω) to the function ẽαβ(u).

We next recall the following result. Let w ∈ L2(Ω) be given. Then

�

Ω

w∂3vdx = 0 for all v ∈ H1(Ω) with v = 0 on Γ0, then w = 0. (4.5.33)

The equation (4.3.12) can be written as

�

Ω

���
Aαβστ (0) + ε2Aαβστ

♯ (ε)
� �

K̃στ (ε) + ε2e♯στ (ε; u(ε))
�
+

�
Aαβ33(0) + ε2Aαβ33

♯ (ε)
�
k̃33(ε)

�

�
1

2
∂αvβ +

1

2
∂βvα − v3

e
(∂αβθ + x3∂αβe) + ε2e♯αβ(ε; v)

�

+ {4[Aα3σ3(0) + ε2Aα3σ3
♯ (ε)][K̃(ε)σ3 + εe♯σ3(ε; u(ε))]}�

1

2ε
∂αv3 +

1

2ε
∂3vα + εe♯α3(ε; v)

�
+

��
A33στ (0) + ε2A33στ

♯ (ε)
� �

K̃στ (ε) + ε2e♯στ (ε; u(ε))
�

+
�
A3333(0) + ε2A3333

♯ (ε)
�
K̃33(ε)

��
1

ε2
∂3v3

���
e2 + ε2g♯(ε) dx

+

�

Ω

∈33 (ε)∂3ϕ(ε)∂3ψ
�
g(ε)dx+

�

Ω

P 3kl
�
∂3ϕ(ε)ek||l(ε, v)− ∂3ψek||l(ε, u(ε))

��
g(ε)dx

+ ε

�

Ω

∈3α (ε) [∂αϕ(ε)∂3ψ + ∂3ϕ(ε)∂αψ)]
�

g(ε)dx+ ε2
�

Ω

∈αβ (ε)∂αϕ(ε)∂βψ
�

g(ε)dx

+ ε

�

Ω

�
P αkl(ε)∂αϕ(ε)ek||l(ε, u(ε))− ∂αψek||l(ε, v)

��
g(ε)dx

=

�

Ω

f ivi
�
e2 + ε2g♯(ε) dx−

�

Ω

∈33 (ε)∂3ϕ0∂3ψ
�

g(ε) dx

− ε

�

Ω

∈3α (ε) [(∂αϕ0∂3ψ + ∂3ϕ0∂αψ)]
�

g(ε) dx+ ε2
�

Ω

∈αβ (ε)∂αϕ0∂βψ
�
g(ε) dx

−
�

Ω

P 3kl(ε)∂3ϕ0ek||l(ε, v)
�
g(ε) dx− ε

�

Ω

P αij(ε)∂3ϕ0ei||j(ε)(v)
�
g(ε) dx ∀ v ∈ V (Ω).

(4.5.34)

63



Multiplying the above equation by ε2, taking vα = 0 and letting ε → 0, we get

�

Ω

�
λ

e2
K̃σσ +

(λ+ 2µ)

e4
K̃33 + P 333∂3ϕ

�
∂3v3edx = 0 (4.5.35)

which implies e2λK̃σσ +(λ+2µ)K̃33+e4P 333∂3ϕ = 0 and hence the third relation

in (4.5.32) follows.

Again, multiplying equation (4.5.34) by ε, taking v3 = 0 and letting ε → 0, we get

�

Ω

�µ
e
K̃α3 + P 3α3∂3ϕ

�
∂3vαdx = 0 (4.5.36)

which implies (µK̃α3 + eP 3α3∂3ϕ) = 0 and hence the second relation in (4.5.32)

follows.

Step 6: The function ϕ is of the form (4.5.9).

Using the scalings (4.3.8) we have

Di(ε)(u(ε),ϕ(ε)) = P ikl(ε) ek||l(ε, u(ε))+ ∈ij (ε)Ej(ε)(ϕ(ε)). (4.5.37)

Passing to the limit, we get

lim
ε→0

Di(ε)(u(ε),ϕ(ε)) = Di = P iklK̃kl− ∈i3 ∂3ϕ. (4.5.38)

In particular

lim
ε→0

D3(ε)(u(ε),ϕ(ε)) = D3 = P 3klK̃kl− ∈33 ∂3ϕ

=

�
P 3α3 − λe2

λ+ 2µ
δαβP 333

�
K̃αβ

=

�
eP 3α3P 3α3

µ
+

e4P 333P 333

λ+ 2µ
+ ∈33

�
∂3ϕ

= p3αβK̃αβ − p33∂3ϕ. (4.5.39)
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Taking v = 0 and letting ε → 0 in equation (4.3.12), we get

�

Ω

D3(u,ϕ)∂3ϕedx = 0. (4.5.40)

i.e.,

�

Ω

�
p3αβK̃αβ − p33∂3ϕ

�
∂3ψedx = 0. (4.5.41)

Since D(Ω) is dense in Ψl0 for the norm ||.||Ψl
, equation (4.5.41) is equivalent to

∂3(p
3αβK̃αβ − p33∂3ϕ) = 0 in D′(Ω) (4.5.42)

which implies that (p3αβK̃αβ − p33∂3ϕ) = d1, with d1 ∈ D′(ω). In fact, due to the

regularity of u and ϕ, d1 is in L2(ω). Then

∂3ϕ =
p3αβ

p33

�
êαβ(ζ )− x3

�
∂αβζ3 +

∂αβe

e
ζ3

��
− 1

p33
d1 (4.5.43)

which gives

ϕ =
p3αβ

p33

�
x3êαβ(ζ )− x2

3

�
∂αβζ3 +

∂αβe

e
ζ3

��
− x3

p33
d1 + d0. (4.5.44)

Since ϕ satisfies the boundary conditions ϕ|Γ+ = ϕ+
0 , ϕ|Γ− = ϕ−

0 , we have

d0 =
ϕ+
0 + ϕ−

0

2
+

p3αβ

2p33

�
∂αβζ3 +

∂αβe

e
ζ3

�
, (4.5.45)

d1 = p3αβ ẽαβ(ζ )− p33
ϕ+
0 − ϕ−

0

2
. (4.5.46)

Thus the conclusion follows.

Step 7: The function (ζi) satisfies (4.5.11).
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Taking ψ = 0 and v ∈ VKL and letting ε → 0 in equation (4.5.34) we have

�

Ω

AαβklK̃klK̃αβ(v)edx+

�

Ω

P 3αβ∂3ϕK̃αβ(v)edx

=

�

Ω

f · vedx−
�

Ω

P 3αβ∂3ϕ0K̃αβ(v)edx. (4.5.47)

Replacing u and K̃ij by the expressions obtained in (4.5.29) and (4.5.32), and taking v

of the form

vα = ηα − x3∂αη3 and v3 = η3 (4.5.48)

with (ηi) ∈ V (ω), it is verified that equation (4.5.47) coincide with equation (4.5.11).

Step 8: To prove the uniqueness of the solution, let B(ζ , η) denote the bilinear form

associated with the left hand side of (4.5.11) and L(η) denote the linear form associated

with the right hand side of (4.5.11) . It has been proved in Sabu (2001) that for η ∈ V (ω)

there exists a constant C such that

−
�

ω

mαβ(η)∂αβη3edω −
�

ω

�
nθ
αβ(η)∂αβθ +mαβ(η)∂αβe

�
η3edω

+

�

ω

nθ
αβ∂βηαedω ≥ C{||ηα||21,ω + ||η3||22,ω} (4.5.49)

Hence

B(η, η) ≥ C{||ηα||21,ω + ||η3||22,ω}+
2

3

�����

�����
p3αβ�
p33

∂αβη3

�����

�����

2

0,ω

≥ C{||ηα||21,ω + ||η3||22,ω} (4.5.50)

Hence the bilinear form B(·, ·) is elliptic. Since the linear form L(η) is continuous,

the uniqueness of solution follows.

Step 9: The strong convergences of u(ε) ⇀ u in H1(Ω) and ϕ(ε) ⇀ ϕ in L2(Ω) can

be proved as in Busse et al. (1997).

Theorem 4.5.2. A smooth enough solution (ζi) of the variational problem (4.5.11) is
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also a solution of the following two dimensional boundary value problem:

−∂αβ(emαβ)− [nθ(ζ)∂αβθ +mαβ(ζ)∂αβe]e+
2

3
∂αβ

�
e
p3αβp3ρτ

p33
∂ρτζ3

�

= p3e+ ∂α(eq
α) +

ϕ+ − ϕ−

2
p3αβ∂αβθ in ω, (4.5.51)

−∂β(en
θ
αβ) = pαe+ ∂β(e

ϕ+ − ϕ−

2
p3αβ) in ω, (4.5.52)

ζi = ∂νζ3 = 0 on γ0, (4.5.53)

∂α(emαβ)νβ + ∂τ (emαβνατβ) +
2

3
∂α

�
e
p3αβp3ρτ

p33
∂ρτζ3

�
νβ

+
2

3
∂τ

�
e
p3αβp3ρτ

p33
∂ρτζ3νατβ

�
= −eqανα on γ1, (4.5.54)

�
mαβ +

2

3

p3αβp3ρτ

p33
∂ρτζ3

�
νανβ = 0 on γ1, (4.5.55)

nθ
αβνβ =

�
ϕ+ − ϕ−

2
p3αβ

�
νβ on γ1. (4.5.56)

Proof. Applying the Green’s formula:

�

ω

ϕ∂αχ dω = −
�

ω

(∂αϕ)χ dω +

�

γ

ϕχνα dγ

we get

−
�

ω

mαβ∂αβη3 edω = −
�

ω

∂αβ(emαβ)η3 dω+

�

γ

∂α(emαβ)νβη3 dγ−
�

γ

emαβνα∂βη3 dγ.

Since ∂βη3 = νβ∂νη3 + τβ∂τη3, we have

�

γ

emαβνα∂βη3 dγ =

�

γ

emαβνανβ∂νη3 dγ +

�

γ

emαβνατβ∂τη3 dγ.

Observing that

�

γ

ϕ∂τη3 dγ = −
�

γ

(∂τϕ)η3 dγ since
�

γ

∂τ (ϕη3) dγ = 0,
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we obtain

−
�

ω

mαβ∂αβη3 edω = −
�

ω

∂αβ(emαβ)η3 dω +

�

γ

{∂α(emαβ)νβ + ∂τ (emαβνατβ)}η3 dγ

−
�

γ

emαβνανβ∂νη3 dγ (4.5.57)

Similarly we have

�

ω

p3αβp3ρτ

p33
∂ρτζ3∂αβη3edω = −

�

ω

∂αβ

�
e
p3αβp3ρτ

p33
∂ρτζ3

�
η3 dω

+

�

γ

�
∂α

�
e
p3αβp3ρτ

p33
∂ρτζ3

�
νβ

+ ∂τ

�
e
p3αβp3ρτ

p33
∂ρτζ3νατβ

��
η3 dγ

−
�

γ

e
p3αβp3ρτ

p33
∂ρτζ3νανβ∂νη3 dγ (4.5.58)

�

ω

nθ
αβ∂βηα edω = −

�

ω

∂β(en
θ
αβ)ηα dω +

�

γ

enθ
αβνβηα dγ, (4.5.59)

−
�

ω

qα∂αη3 edω =

�

ω

∂α(eq
α)η3 dω −

�

γ

eqαναη3 dγ (4.5.60)

�

ω

ϕ+ − ϕ−

2
p3αβ êαβ(η)edω = −

�

ω

∂β

�
e
ϕ+ − ϕ−

2
p3αβ

�
ηαdω

+

�

γ

�
e
ϕ+ − ϕ−

2
p3αβ

�
νβηαdγ

−
�

ω

ϕ+ − ϕ−

2
p3αβ∂αβθη3dω (4.5.61)

Combining the above equations with the boundary conditions ηi = ∂νη3 = 0 on γ0

gives the boundary value problem stated in the theorem.
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CONCLUDING REMARKS

• We have rigorously justified two-dimensional linearly elastic shallow shells model

using gamma convergence.

• We justified the scalings used in Busse et al. (1997) to derive the two dimensional

shallow shell model.

• We consider a thin piezoelectric shallow shell with variable thickness and we

have shown that under suitable scalings on the data, as the thickness of the shell

goes to zero, the solution of the three-dimensional piezoelectric shell converge to

the solution of two-dimensionalmodel of piezoelectric shallow shell with variable

thickness.
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