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ABSTRACT 
 
 
 
The research work described in the thesis is mainly focused on the investigation of 
improving the bandwidth of the conjugate matched feed horn for offset parabolic 
reflector antennas. Although, the offset parabolic reflector configuration offers 
significant advantages as compared to the front-fed parabolic reflector antenna, it 
suffers from two serious drawbacks. Due to the structural asymmetry, when 
illuminated by a linearly polarized primary feed, it generates high cross-
polarization. The presence of high cross-polarization in the antenna radiation 
patterns implies the loss of energy in the undesired polarization, which ultimately 
results into reduction of the antenna efficiency. High degree of cross-polarization 
degrades the performance of the communication channel and can cause 
measurement errors in case of remote-sensing applications. In mono-pulse 
tracking radars, the high cross-polarization creates bore-sight-jitter, which 
severely affects the tracking accuracies. Considering these undesirable effects of 
high cross-polarization, it becomes necessary to develop a suitable technique to 
suppress the unwanted cross-polarization of the offset parabolic reflector antenna 
over a wide bandwidth. In the present thesis, the high cross-polarization of the 
offset parabolic reflector has been suppressed over a wide bandwidth by using a 
wide band conjugate matched feed. The concept of matched feed is thoroughly 
described at the beginning of the thesis. Design of matched feed using symmetric 
triple post discontinuity is also presented. The novel wide band conjugate matched 
feed horn has been designed in smooth as well as in corrugated cylindrical 
structure. The detailed designs of these matched feed structures have been 
presented in the thesis. It has been verified numerically that the proposed matched 
feeds effectively suppress the undesired high cross-polarization of the offset 
parabolic reflector antenna over a wider bandwidth.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Literature Survey 
 
 In satellite communications, remote sensing, radar and radio astronomy, 

cross-polarization over a specified bandwidth is an essential parameter [1]. The 

cross-polarization refers to the radiation of electromagnetic energy into the 

polarization other than the desired polarization. The presence of high cross-

polarization degrades the overall performance of the system and restricts its use 

for many applications. In microwave radiometers, the cross-polarization affects 

the beam efficiency [2]. In communication system, the high cross-polarization 

produces undesired interference between the two orthogonal channels [3].  

 

 The parabolic reflector antenna is the most preferred antenna system for 

many applications due to its higher gain over a wide bandwidth [4]. The cross-

polar properties of various parabolic reflectors have been studied by many 

researchers and are presented in the literature [5]-[22]. It is observed from these 

studies that the cross-polarization in a reflector type of antenna system depends on 

many parameters, e. g., the geometry of the reflector, the focal-length to diameter 

ratio (F/D) of the antenna system, the reflector surface imperfections, support 

struts, etc.  

 

 An axially symmetric parabolic reflector antenna does not generate cross-

polar radiation in the principle planes due to its structural symmetry [4]. Also, 

further improvement in the cross-polar performance of an axially symmetric front-

fed parabolic reflector can be achieved by selecting a larger F/D reflector 

configuration [5]. However, in practical applications, where it is difficult to 

accommodate a reflector with large F/D ratio due to mechanical constraints, a dual 

reflector antenna system can be used to suppress the cross-polarization [3]-[6]. 

Watson and Ghobrial [6] have reported that the cross-polar isolation of a 
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symmetrical cassegrain reflector is better than that of the equivalent prime-focal 

parabolic reflector antenna. 

 

 The axially symmetric parabolic reflectors as well as the symmetric dual 

reflectors suffer from a serious drawback of aperture blocking. Due to this 

aperture blocking, gain, side-lobe levels and cross-polarization of the antenna are 

affected. This aperture blocking effects can be overcome by the use of offset 

parabolic reflector antenna [19].  

 

 In offset reflector antenna system, the feed does not obscure the aperture of 

the main reflector. The absence of feed blockage in an offset parabolic reflector 

antenna ensures high illumination efficiency as compared to the prime focal 

parabolic reflector antenna. Also there is a high isolation between the primary feed 

and the main reflector for offset reflector configuration.  

 

 However, the offset parabolic reflector antennas suffer from a high linear 

cross-polarization field level in the plane of asymmetry when illuminated by a 

conventional linearly polarized feed, operating at its dominant mode. The cross-

polarization pattern has been found to become significantly worse for offset 

reflectors with low F/D and higher offset angle. In the applications where the 

available space is a limitation, the reflectors with smaller F/D are preferable. 

 The cross-polar properties of offset parabolic reflector antennas have been 

studied and reported by many researchers [7]-[11], [23]-[27]. However, very few 

researchers have attended the problem of suppressing the cross-polarization of an 

offset parabolic reflector antenna. Chu and Turrin [7] were the first to publish the 

numerical data on the variation of maximum cross-polarization as a function of 

F/D ratio and offset angle. Gans and Semplak [8] demonstrated that a single offset 

reflector with small offset angle can provide low cross-polarization and low side-

lobes. They also presented a detailed theoretical analysis to compute the cross-

polarization in the  reflector aperture and extended the same to study the cross-

polar performance of the offset reflector in the far-field. Rudge [9] has presented 
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physical optics (PO) based  mathematical expressions to predict the co-polar and 

cross-polar radiation patterns of an offset reflector antenna with offset feeds.  

 

 Chu [23] presented a concept of using polarization-selective grids between 

the reflector and the feed to obtain larger cross-polarization discrimination. In this 

method, the cross-polarization suppression depends on the size and location of the 

grid. He has used a straight strip grid while Dragone [24] proposed a curved strip 

grid for cross-polarization cancellation. However, the polarization selective grids 

may add to the complexity of the antenna system and also increase the cost of the 

overall system. Radiation properties of offset prime focal reflector antennas with 

emphasis on reducing side-lobes and cross-polarization have been studied by 

Strutzman and Terada [25]. 

 

 Dual gridded reflector (DGR) antenna also can be used to get better cross-

polarization isolation [19], [52], [53]. In DGR, a dual polarized system is formed 

by interleaving two orthogonal polarization sensitive reflector surfaces with 

separate foci. Although DGR antenna is having great cross-polar isolation, the 

fabrication complexity and fabrication cost of the structure is very high.  

  

 The cross-polar performance of  the offset parabolic reflector antennas can 

be improved by means of techniques based upon focal region field matching [28] 

using a conjugate matched feed. A matched feed concept for primary feeds used in 

conjunction with offset parabolic reflector antennas which makes use of a higher 

order asymmetric waveguide mode has been described in Rudge and Adatia [26], 

[27]. It has been shown that cross-polarization can be minimized by exciting  

proper amount of higher order mode, TE21 mode along with dominant TE11 mode. 

Design of multimode matched feed horn which combines TE11, TM11 and TE21 

modes in proper amplitude and phase to suppress the unwanted high cross-

polarization in an offset parabolic reflector antenna have also been reported by K. 

Bahadori and Y. Rahmat-Samii [29].  The conjugate matched feed designs in 

rectangular as well as circular corrugated structure are presented by S.B. Sharma 

et. al. in [30]-[33].  
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 The cross-polar bandwidth reported in all the above references [26]-[33] is 

relatively low and is of the order of 2-3%. On the basis of these exhaustive 

literature survey, it is clear that within the limited available literature, no efforts 

have been made to design a conjugate matched feed horns which can be used to 

suppress the high cross-polarization for a broader bandwidth typically of the order 

of 10% or beyond. 

  Thus, it is worthwhile to carry out investigations and evolve a 

configuration of  conjugate matched feed which can mitigate the high cross-

polarization component generated in the offset reflector antenna system for a 

broader bandwidth. 

  

1.2 Proposition of the Problem: 

 Based on the above discussion and the literature survey, detailed 

investigations using full-wave electromagnetic  simulation of the following 

problems have been carried out:   

 An investigation has been carried out on suitable waveguide 

discontinuities [34]-[37] in circular waveguide which can generate only TE21 

mode cancelling all the higher-order modes. To develop conjugate matched feed, 

the only higher order mode required is TE21 mode along with TE11 mode. Single 

[34], dual [35] and triple [36] post discontinuity which can generate TM01, TE21, 

TE21*, TM11 modes etc. in circular waveguide, have been investigated in detail for 

developing a mechanism by which the higher order mode TE21 can be generated 

along with TE11 mode. It has been found out that the symmetrically placed triple 

post discontinuity in the transverse plane of the circular waveguide as shown in 

Fig.1.1(a) can generate TE21 mode cancelling the higher order TM01 mode. Thus 

triple post discontinuity in circular waveguide is a good member for matched feed 

design. To get the broadband cross-polar performance with the post discontinuity, 

a cascading configuration of triple post discontinuity along the axial direction 

shown in Fig.1.1(b) also has been studied. It has been found that for very low F/D 
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and high offset angle, it is difficult to design broadband conjugate matched feed 

using cascaded triple post discontinuity in circular waveguide structure.  

 

Fig. 1.1(a) A circular waveguide loaded with triple post discontinuity 

 
Fig.1.1(b) Schematic of conjugate matched feed horn with cascaded triple post 

discontinuities 

 

 Thus further studies have been carried out on the offset step discontinuities 

[37] in circular waveguide shown in Fig.1.2, which also can generate TM01, TE21, 

TE21*, TE01, TM11 modes etc. It has been found out that the parameters which are 

controlling the amplitude and phase of the higher order modes are offset 

distance(d) and the size of the larger waveguide supporting the higher-order 

modes. Thus unlike post discontinuity in circular waveguide, two parameters are 

there in offset step discontinuity by which modal power in higher order modes can 

be controlled. 

 

Fig. 1.2 Schematic drawing of the off-centre step junction in circular waveguide 

Posts 
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 After the detail investigation of the offset step discontinuity in circular 

waveguide, a novel type of symmetrical waveguide discontinuities in circular 

waveguide using offset step discontinuity has been configured to generate only 

TE21 mode along with TE11 mode. This waveguide discontinuity has been created 

using intersection of three off-centered junctions of circular waveguide placed 

symmetrically with angular spacing of 1200 as shown in Fig.1.3. One such 

discontinuity which is like an iris in the waveguide has been analyzed for 

generating TE21 mode cancelling TM01 and TE21* modes. It has been found that 

required amplitude and phase flatness of TE21 mode relative to TE11 mode over 

the designed frequency band, which is required for broadband performance of the 

matched feed, were not achieved. In order to enhance the cross-polar bandwidth, 

multiple sections with the similar iris structure shown in Fig.1.4 have been placed 

in the axial direction inside an oversized circular waveguide supporting TE11 as 

well as TE21 modes. A study has been carried out for 3, 5 and 7 irises. It has been 

found out that the required amplitude and phase flatness of TE21 mode relative to 

TE11 mode are achieved with both five and seven cascaded iris sections. The axial 

profile of the irises has been optimized to achieve good return loss performance. 

This feed is designed at Ku band for F/D=0.5 and offset angle=530. 

 

Fig.1.3 Modeling of opening of the irises (arrows indicate the offset direction of circles 
making 1200 angle with each other) 
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Fig.1.4 Simulation model of the proposed matched feed structure, (a) side view, (b) front 
view of the horn 

 

 Similar concept of the cascaded iris sections has been applied for 

designing broadband corrugated conjugate matched feed horn as shown in Fig.1.5 

to cancel the high unwanted cross-polar components generated in offset reflector 

geometry having lower F/D and higher offset angle. The feed horn is specifically 

designed to mitigate the cross-polarization generated in 900 offset reflector 

antenna system with F/D=0.7. The secondary radiation patterns have been 

computed. Significant improvement in the cross polarization is achieved in 55-

60GHz frequency band. 

 

Fig.1.5 Simulation model of the proposed corrugated matched feed structure, (a) side 
view, (b) front view of the horn 

 

Based on the above discussion, the thesis has been organized as per section 1.3.  
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1.3 Organization Of The Thesis 

The research work carried out has been presented in total six chapters.  

Chapter 1: The relevance of the present investigations and a brief literature 

survey on the low cross-polarized antenna system have been presented.  

Chapter 2: In this chapter, the conjugate matched feed concept is explained. In a 

conjugate matched feed, the tangential electric fields in the aperture of a primary 

feed are to be matched with the focal region fields of an offset reflector to 

suppress the high cross-polarization. The higher order modes required to achieve 

the focal-field matching are summarized in this chapter. Also detail design and 

analysis of the conjugate matched feed using triple post discontinuity is presented 

in this chapter. 

Chapter 3: This chapter deals with the scattering analysis of cascaded off-

centered junctions in circular waveguide using Mode Matching Technique(MM). 

The study has been carried out to analyze the higher order modes characteristic for 

oversized circular waveguide for different offset distance for single junction. This 

chapter also deals with a novel structure forming with offset step junction in 

circular waveguide, for generating pure TE21 mode.  

Chapter 4:  A novel concept for designing a broadband conjugate matched feed 

horn to cancel the high unwanted cross-polar components generated because of 

offset reflector geometry having low F/D and high offset angle is presented in this 

chapter.  

Chapter 5: This chapter presents the design of a broadband corrugated conjugate 

matched feed horn to cancel the high unwanted cross-polar components generated 

in offset reflector geometry having low F/D and high offset angle. The feed horn 

is specifically designed to mitigate the cross-pol. generated in 900 offset reflector 

antenna system with F/D=0.7.  

Chapter 6: The conclusions drawn from the investigations and the scope for the 

future work have been discussed in this chapter. 
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CHAPTER 2  

CONJUGATE MATCHED FEED FOR OFFSET 
REFLECTOR ANTENNA  

 

 
 This chapter discusses the basic concept of conjugate matched feed and  

study on the design of conjugate matched feed using triple post discontinuity. The 

fundamental principle of the matched feed depends on the field matching theory. 

According to this theory, the cross-polarization caused by the asymmetry of the 

offset parabolic reflector antenna can be controlled, if the tangential electric fields 

at the aperture of the primary feed are complex conjugate to the focal-region fields 

of the offset parabolic reflector antenna. In order to understand this matching 

process, it is necessary to first estimate the focal region fields of an offset reflector 

antenna. Once the focal-region fields are estimated, a multi-mode matched feed 

which is simpler in configuration may be designed to counter-balance the effect of 

the cross-polarization of the reflector antenna. 

 

 In this chapter, using the focal-region field analysis of an offset parabolic 

reflector antenna the cross-polarization variation as a function of F/D ratio and 

offset angle are presented. The higher order modes needed in circular as well as 

corrugated structure to provide the conjugate matching with the reflector focal-

fields are also discussed. Following this, a study has been carried out on the design 

of conjugate matched feed horn using triple post discontinuity.  

 

2.1 Focal Region Field Analysis 
 

 Bem [28] presented the detailed analysis to calculate the focal-region fields 

of an offset parabolic reflector antenna. Bem used the physical optics (PO) 

formulation to derive the closed form expressions of the transverse focal plane 

fields for a plane polarized incident plane wave. The focal field distribution of an 

offset parabolic reflector antenna is obtained by illuminating the reflector surface 
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by a linearly polarized plane wave as shown in Fig. 2.1. Figure 2.1 represents a 

schematic of the offset parabolic reflector antenna having projected diameter D, 

offset angle θo and focal length F. The aperture of the feed horn is placed at the 

focal plane of the reflector. The incident plane wave generates current on the 

reflector surface. Each surface element acts as an elementary dipole and 

produces an elementary field at a point near the focus [28]. Then the total 

electric field at a prescribed point can be found out by integration over the 

entire reflector surface.  

 

 
Fig. 2.1 Offset parabolic reflector antenna 

 

 

Closed form expressions of the focal region fields are 
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where, u=(D/4F)(1+cos(θ0))k.r.sin(θ), D, F and θo are the reflector projected 

diameter, focal length and offset angle respectively and  r, θ are the co-ordinates 

of a point in the focal plane. k is the propagation constant in free space. Ey is the 

cross-polar component generated in the focal plane.  

 

 Investigation of equation 2.1 and 2.2 reveals that the cross-polar 

component Ex is an asymmetric function with a magnitude increasing with the 

offset angle θo and in phase quadrature with the principal axi-symmetric co-polar 

component. Ey presents the cross-polar component in the asymmetric plane. 

Figure 2.2 shows contour plot of the amplitude of the focal region field in the 

vicinity of the geometrical focus. Using the closed form expressions 2.1 and 2.2, 

cross-polar variation as a function of F/D and offset angle are presented in Fig. 2.3 

and 2.4 respectively. It can be concluded from Fig.2.3 that the cross-polarization 

decreases with the increase in F/D ratio for fixed offset angle. Also Fig.2.4 

describes the increase of cross-polarization with the increase in offset angle for 

fixed F/D. 

 

 

 

 

 

 

 

 

 

 

Fig.2.2 Contour plot of focal-field distribution of an offset reflector antenna 

 

 

 

 

 

­3dB 

­6dB 

­15dB  Co­pol. Contour 

Cross­pol. Contour 
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Fig. 2.3 Cross-polarization variation with the variation in F/D (θo=35o) 

 

 
Fig. 2.4 Cross-polarization variation with the variation in offset angle(F/D=0.8) 
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2.2 Higher order modes for conjugate field matching 
 
 Rudge and Adatia [26] first proposed the design of matched feed for an 

offset parabolic reflector antenna using the concept of conjugate field. The 

high cross-polarization generated in the offset reflector antenna can be 

mitigated by matching the radiation field of the primary feed with those of the 

reflector. To satisfy this matching condition, the primary feed horn should 

support appropriate higher order mode in addition to the fundamental mode. 

The modal amplitudes and phases in the feed horn are to be adjusted such that, 

the aperture fields of the feed exhibit similar polarization characteristics as that 

of the focal plane fields of the offset reflector antenna. However, the cross-

polar components of the feed should be in opposite phase with respect to the 

cross-polar components of the offset reflector. In other words, the primary feed 

should provide a conjugate match to the incoming fields. As a result of this 

anti-phase relationship between the cross-polar fields of primary feed and the 

offset reflector, the undesired cross-polarization, generated by the asymmetry 

of the reflector structure, are cancelled out. 

 

 For cylindrical circular waveguide the fundamental mode is TE11 mode. 

The higher order mode required in circular waveguide in addition to this TE11 

mode is TE21 in proper amplitude and phase at the aperture of the guide to 

cancel the cross-polarization component generated in offset reflector antenna. 

The x and y-components of the electric fields of TE21 mode can be derived as 

follows. 

 

 In terms of normalized distance parameter u' and a polar angle o , the 

circular waveguide's aperture fields for TE21 mode[19] can be written as 

(polarization in x-direction) 
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     (2.3) 

     

  (2.4) 

Using the following recursion formula, 
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and putting n=3, we have, 
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Using the recursive relation in equation-(2.5)  ,  Ex and Ey in the principle planes 

for TE21 mode can be written as  
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For TE11 mode, in the principle planes, Ex (co-pol.) and Ey (cross-pol.) can be 

written as  

       u
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             0)2/,(11  uETE
y              (2.11) 

The combined TE11 and TE21 modal pattern's co-polar and cross-polar components 

are 

 u
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K
u
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KuE TETE
x 







 )(
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              (2.12) 
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 )(

4)2/,( 22111         (2.13) 

 The equations (2.12) and (2.13) are the co and cross polar components of the 

aperture fields of TE21 mode respectively. It is observed that the equation (2.13) is 

similar to the equation (2.2) which is cross-polar component of the focal region field. 

Thus mathematically it is also clear that the aperture field of TE21 mode can cancel the 

cross-polar component of the focal region field if the amplitude and phase of the TE21 

mode is adjusted properly. 

 

 The modal power required for TE21 mode relative to TE11 mode for different 

F/D and offset angle can be calculated from equation (2.2).  

 
 
2.3 Conjugate Matched Feed using Triple Post 

Discontinuity 
 
 A conjugate matched feed horn has been designed using symmetrical triple 

post discontinuity in circular waveguide. The HFSS simulation model of the horn 

is shown in Fig.2.5. A separate study has also been carried out for TE21 modal 

power and phase variation relative to TE11 mode at the aperture of the feed horn 

with posts height as a parameter. The variation of TE21 modal power w.r.t 

frequency with posts height as a parameter is shown in Fig.2.6 and Fig.2.7 shows 

the phase variation of TE21 mode relative to TE11 mode with different posts 

heights. It has been observed that TE21 modal power increases with the increase in 

posts heights and there is less variation in phase of TE21 mode relative to TE11 

mode for posts height=3mm and 5mm. 
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 The offset reflector antenna chosen for conjugate matched feed simulation 

are having parameters : reflector diameter=1.2m, F/D=0.8 and offset angle θ0=350 

which is shown in Fig.2.1. The TE21 modal amplitude required in conjugate 

matched feed horn has been calculated using TICRA/GRASP software. The TE21 

modal power required for maximum cancellation of cross-polarization in 

secondary pattern has been calculated to be -13.7dB and required relative phase 

for TE21 mode w.r.t TE11 mode is 900 at 10GHz. The conjugate matched feed horn 

has been optimized according to the above requirements. The input and aperture 

diameter of the horn are 22mm and 34mm respectively. The optimum height of 

the posts and length of the horn are 5.4mm and 57mm respectively. The simulated 

primary pattern of the horn is shown in Fig.2.8 at 10GHz. The simulated 

secondary pattern without and with posts discontinuities in the horn feed are 

shown in Fig.2.9 and 2.10 respectively. The cross-polar suppression bandwidth 

has been presented in Fig.2.11 for this designed matched feed. It is found that 

15dB improvement in the cross-polarization have been observed for very narrow 

bandwidth i.e. for 1% bandwidth. But this improvement cannot be achieved for 

wide bandwidth. It is also observed that better than 10dB improvement in cross-

polarization is achieved for only 2% bandwidth. 5dB improvement in cross-

polarization can be achieved for 6% bandwidth. 

 

 

Fig.2.5  HFSS simulation model of conjugate matched feed (post height=5.4mm, post 
diameter=2mm) 
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Fig.2.6 Simulated power coupling to TE21 mode 

 

Fig.2.7 Simulated phase difference of TE21 and TE11 mode at aperture 
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Fig.2.8 Simulated radiation pattern of the feed horn at 10GHz  

 

Fig.2.9 Simulated secondary pattern without posts discontinuities at 10GHz 
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Fig.2.10 Simulated secondary pattern with posts discontinuities (MF) at 10GHz 

 

 

Fig.2.11 Cross-polar suppression bandwidth  
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 The design has been extended for broader bandwidth using cascaded posts 

discontinuity along the axial direction of the horn as shown in Fig.2.12. The 

design has been carried out for offset parabolic reflector having D=1.2m, F/D=0.8 

and offset angle θ0=350. The input and aperture diameter of the horn are 21mm 

and 32mm respectively. The diameter of the posts are 2mm. The height of the 

posts are 2.5mm, 3.2mm, 3.8mm, 3.2mm and 2.5mm. The gap between the posts 

is 5mm. The secondary cross-polarization has been calculated and the cross-polar 

suppression bandwidth is shown in Fig.2.13. It has been found that better than -

30dB cross-polarization i.e. cross-polarization improvement of 5dB can be 

achieved for 13% bandwidth. But the cross-polarization improvement better than 

10dB is achieved for only 3% bandwidth. Thus it is difficult with cascaded post 

discontinuity to realize a wide band conjugate matched feed for better than 10dB 

improvement in cross-polarization.  

 

 

Fig. 2.12 HFSS model of Conjugate matched feed with multiple post along the axis 

 

Fig. 2.13 Cross-polarization suppression bandwidth of the horn of Fig.2.12 
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2.4 Discussion 

 In the present chapter, the concept of matched feed for the offset parabolic 

reflector has been discussed. From the focal-region field analysis of the offset 

parabolic reflector antenna, it has been observed that, the offset reflector generates 

high cross-polarization because of the structural asymmetry. It has been also 

observed that the cross-polarization increases with the increase in offset angle and 

decrease in F/D ratio. This undesired high cross-polarization can be controlled by 

using a multi-mode matched feed. The higher order mode required for conjugate 

field matching has been discussed. The mathematical expression for TE21 mode at 

the aperture of the horn feed has also been discussed in this chapter. Also a detail 

analysis of conjugate matched feed using triple post discontinuity in circular 

waveguide has been presented in this chapter. For 10dB improvement in cross-

polarization, the bandwidth of the matched feed with symmetric triple post 

discontinuity is 2%. It has also been found out that for cascaded triple post 

discontinuity in conjugate matched feed, 5dB improvement in cross-polarization is 

achieved for 13% bandwidth and cross-polarization improvement better than 10dB 

is achieved for only 3% bandwidth. Thus it is difficult with cascaded post 

discontinuity to realize a wide band conjugate matched feed for better than 10dB 

improvement in cross-polarization. In the following chapters, the investigation has 

been carried out for widening the cross-polar suppression bandwidth of the 

conjugate matched feed horn.  
 

 

 

 

 

 

 



23 
 

CHAPTER 3 

ASYMMETRICAL STEP DISCONTINUITY IN
CIRCULAR WAVEGUIDE AND GENERATION OF 

PURE TE21 MODE 
 

 In the present chapter, off-centered junction of two circular waveguide has 

been analyzed using Mode Matching technique. Detail derivations of the 

scattering matrix of the present problem have been presented. A convergence 

analysis of the problem has been carried out. The reflection coefficient for TE11 

mode and coupling coefficient for TM01, TE21, TE01 and TM11 modes have been 

calculated for a particular offset distance and direction. All the results have been 

compared with Ansys HFSS and very good matching between them has been 

observed. This chapter also presents a concept of a novel structure using this offset 

step discontinuity to get pure TE21 mode along with TE11 mode eliminating TM01 

and TE21* modes.  

 

3.1 Analysis of offset junction 

 

Fig.3.1 Schematic drawing of the off-centre step junction in circular waveguide 
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 The geometry of the off-centre circular waveguide junction is shown in 

Fig.3.1. The conservation of complex power technique (CCPT), which has been 

used to obtain theoretically exact solutions with numerically convergent results to 

the problem of scattering at certain waveguide junctions [40], [41], and [42], and 

Graf’s addition theorem for Bessel functions [44] are employed to obtain an 

analytical solution for the scattering matrix of a junction between two circular 

waveguides with their axes offset. In Fig.3.1 offset distance is denoted as d and θ 

is the direction of the offset.  

The E-field mode matching matrix whose (nm, kp) th element is given by [40] 
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as normalization constant, 1   for 0
2  for 0n

n

n


   

  and '  and nm nmx x are the mth  zeros of 

 'nJ x  and  nJ x  respectively. 

Since the integration in (1) is over the cross section of the small waveguide, we 

must employ a coordinate transformation between ),( 11  and ),( 22   to express 

nme ,2


 in terms of ),( 11  . In order to do so, Graf's addition theorem for Bessel 

functions [40], [44] is used  
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where,   is an arbitrary constant.  

The overall E-field mode-matching matrix M has the following form 
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From [41] the components for the M matrix can be written as  
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After some rigorous derivation, the components of the coupling matrix can be 

written in closed form as 
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Now the scattering matrix of the junction is given as 

  22 21

12 11

S S
S

S S
 

  
             (3.13) 

where,   

   MYMYMYMYS TT
21

1

2111 


        (3.14) 

  2

1

2112 2 YMMYMYS TT 
        (3.15) 

  2

1

2
1

12221 2 YMYMMYYYS TT        (3.16) 

   2
1

122

1

2
1

12222 YMMYYYYMMYYYS TT        (3.17) 

If there are two scattering matrices  aS  and  bS corresponding two sections of a 

waveguide, then the cascaded scattering matrix  cS is given by  

             112111
1

22111211
aababac SSSSSISS 

      (3.18) 
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1

11222122
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
    (3.21) 

 

 

 

 



28 
 

3.2 Results and Discussion  

 Using the formulation as described in section-3.1, a computer program has 

been developed in MATLAB. This code can analyze multiple step junctions as 

well as corrugated structures in circular waveguide. In the present chapter, two 

types of structures have been analyzed. First the single step junction as shown in 

Fig.3.1 having 22mm smaller waveguide diameter and 36mm larger waveguide 

diameter has been considered. The simulation has been carried out in 9GHz-15GHz 

frequency range. The present analysis has been carried out for incident TE11 mode 

in guide-I having polarization in the x-coordinate direction as shown in Fig.3.1. 

Basically in the circular waveguide the type of modes will be TEmn, TEmn*, TMmn 

and TMmn* modes where index terms m and n are azimuthal and radial variations 

of fields respectively in circular waveguide. Let maximum allowable limit for both 

m and n be N. Then the total number of modes in the waveguide will be 4*N*N. 

For our convergence analysis, variation of N= 4 to 16 has been considered. The 

convergence curves of reflection coefficient of TE11 mode and coupling coefficient 

of TM01 mode have been presented in Fig.3.2 and Fig.3.3 respectively for offset 

d=2mm and θ=00. It is clear from the convergence analysis that around 484 modes 

in guide-II will be sufficient for the convergence of the present method. The 

number of modes in guide-I has been calculated from the following relation. 

Number of modes in guide-I= (𝑎1/𝑎2)*Number of modes in guide-II    (3.22)  

Reflection coefficient characteristics with frequency for TE11 mode with θ=00 and 

θ=900 are shown in Figures 3.4 and 3.5 respectively. Figure 3.6 presents the power 

coupling to first higher order mode TM01 with θ=00. Power coupling to next modes 

TE21 and TE01 are shown in Fig.3.7 and 3.8 respectively. TE21 mode will be 

generated for θ=00 only. For θ=00, there will be no TE01 modes generated in guide-

II. Power coupled to TM11 mode is shown in Fig.3.9. All the results obtained using 

the present analysis method have been compared with HFSS and a good agreement 

is observed. For the present offset junction, the simulated amplitude of all the 

generated higher order modes at 12GHz is presented in Table 3.1 for θ=00. It has 

been observed from Table 3.1 that significant amount of power present in TM01 

and TM11 modes along with TE21 mode.       
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Fig.3.2 Convergence curve for reflection coefficient for TE11 mode 

 

Fig.3.3 Convergence curve for coupling coefficient for TM01 mode 
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Fig.3.4 Reflection coefficient for TE11 mode with θ=00 and d=2mm 

 

Fig.3.5 Reflection coefficient for TE11 mode with θ=900 and d=2mm 
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Fig.3.6 Coupling coefficient for TM01 mode with θ=00 and d=2mm 

 

Fig.3.7 Coupling coefficient for TE21 mode with θ=00 and d=2mm 
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Fig.3.8 Coupling coefficient for TE01 mode with θ=900 and d=2mm 

 

Fig.3.9 Coupling coefficient for TM11 mode with θ=00 and d=2mm 

 

Table 3.1 Modal amplitude of higher order modes at 12GHz (d=2mm) 

Modes TM01 TE21 TM11 

Amplitude  0.16 0.17 0.6 
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3.3 Structure for Generation of Pure TE21 Mode  

 The results shown in section 3.2 reveals that single offset step 

discontinuity in circular waveguide generates higher order modes like TM01, TE21,  

TM11 etc. for incident TE11 mode. So if the cutoff of the waveguide is chosen in 

such a way that only TM01 and TE21 modes propagate then it is possible to produce 

TM01 and TE21 modes at the junction of the off-centered circular waveguide as 

shown in Fig.3.10. Now if three such offset-centered junctions are cascaded very 

close to each other but the offset directions are 1200 with each other, then TM01 

mode will be minimized. 

 

 In the present design three such off-centered junctions placed in the same 

plane to make TM01 modal power zero as shown in Fig.3.11. In this figure it is 

shown that the second and third offset waveguides are cancelling the generated 

TM01 modal E fields to wipe out TM01 mode. Also it is observed from Fig.3.11 

that TE21 modal fields are not cancelled by these two offset discontinuities. The 

amplitude of TM01 and TE21 modes are presented in Table 3.2 for smaller 

waveguide diameter 22mm, larger waveguide diameter 31mm and offset d=2mm. 

 

 
Fig.3.10 Schematic showing generation of TM01 and TE21 modes from TE11 mode at the 

offset junction (Transverse plane) 
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Fig.3.11 Schematic showing the fields configuration of three offset junctions co-existing 

at the same transverse plane 120o to each other 
 
 

Table 3.2 Modal amplitude of higher order modes at 12GHz for the structure of Fig.3.11 

Modes TM01 TE21 

Amplitude  0 0.18 

 

3.4 Conclusion 

 A mode matching based code has been developed to analyze off-centric 

junctions in circular waveguides. Convergence of the present analysis has been 

established in terms of number of waveguide modes. Reflection coefficient for 

TE11 mode and coupling coefficients for higher-order modes have been calculated 

for a single off-centric junction using mode matching technique and the calculated 

results have been compared with the FEM based full-wave solver HFSS. A 

concept of a novel structure for generating pure TE21 mode along with TE11 mode 

also has been discussed. This novel waveguide discontinuity which is forming an 

iris like structure in circular waveguide has been used to design conjugate matched 

feed in circular waveguide. The broad banding performance of the conjugate 

matched feed is obtained by cascading these irises. These have been presented in 

chapter 4.     

 



35 
 

CHAPTER 4 

BROADBAND CONJUGATE MATCHED FEED 
HORN 

 
 In the present chapter, a novel type of symmetrical cascaded waveguide 

discontinuities has been conceptualized to achieve wide cross-polar bandwidth. 

One section of the waveguide discontinuity has been created using intersection of 

three off-centered junctions of circular waveguide placed symmetrically with 

angular spacing of 1200. One such discontinuity which is like an iris in the 

waveguide has been analyzed for generating TE21 mode. It has been found that 

required amplitude and phase flatness of TE21 mode relative to TE11 mode over 

the designed frequency band, which is required for broadband performance of the 

matched feed, were not achieved. In order to enhance the cross-polar bandwidth, 

multiple sections with the similar iris structure have been placed in the axial 

direction inside an oversized circular waveguide supporting TE11 as well as TE21 

modes. The required amplitude and phase flatness of TE21 mode relative to TE11 

mode are achieved with these cascaded iris sections. The axial profile of the irises 

has been optimized to achieve good return loss performance. To study the 

broadband performance of the conjugate matched feed horn using cascaded 

discontinuity, three, five and seven irises have been considered and a comparative 

studies have been carried out.  

 

 The amplitude and phase required for TE21 mode to cancel cross-polar 

component has been calculated from the focal region field analysis [28] of the 

offset reflector antenna. The horn has been optimized to achieve required 

amplitude and phase of TE21 mode relative to TE11 mode.  
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4.1 Design of Broadband Conjugate Matched Feed 

 It is known that the field behaviour of TE21 mode in circular horn is close 

to equation-(2.2) as given in [19].  Now to cancel the cross-polar component in 

focal plane, feed horn has to generate TE21 mode along with TE11 mode in proper 

amplitude and phase. The required amplitude of TE21 mode is calculated with 

known parameters D, F ,θ and the relative phase between TE11 and TE21 modes 

has to be 900 as it is seen from equation-(2.2).  

 

 The simulation model of the proposed structure of the conjugate matched 

feed horn using Ansys HFSS-15 is shown in Fig.4.1-4.3. The matched feed with 

three, five and seven irises are shown in Fig. 4.1, 4.2 and 4.3 respectively. In the 

proposed structures, multiple irises have been inserted in equal interval along the 

Z-direction. The cross-section of the iris is shown in Fig.4.1(b). The cross-section 

has been realized using three offset circular waveguide junctions as shown in 

Fig.4.4. Circles are shown using dashed lines and they are showing how the 

smallest cross-section among the multiple irises is realized. The concept behind 

choosing the particular opening of the iris is that asymmetrical offset junction 

discontinuity between two circular waveguide produces TM01,TE21 and TE21* 

modes. For conjugate matched feed design only TE21 mode is required along with 

dominant TE11 mode. So to cancel generated TM01 and TE21* modes, three such 

type of discontinuities have been placed symmetrically in same plane and 

intersection of the three has been chosen as the iris opening as shown in Fig.4.1. 

The relative phase variations between TE21 and TE11 modes have been controlled 

and optimized by the proposed cascaded geometry. The 900 phase difference 

requirement has been achieved through straight section L2 of the horn after 

discontinuities shown in Fig.4.1. Main parameters which are controlling the 

amplitude and relative phase of TE21 mode w.r.t. TE11 mode at the aperture of the 

horn are the radius (R), offset distance(do) of the dashed circle shown in Fig.4.4 

and the gap between the irises (g) which is shown in Fig.4.1(a). For three dashed 

circles in same transverse plane as shown in Fig.4.4,  R and do are equal. The 

flatness of relative amplitude and phase of TE21 mode w.r.t. TE11 mode can be 
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controlled by the parameter g, which is essential for broadband operation of this 

feed horn. 

  

 

 

(a)        (b) 

Fig.4.1 Simulation model of the proposed structure having three irises, (a) side view, 
 (b) front view of the horn 

 

 

Fig.4.2 Simulation model of the proposed structure having five irises 

 

Fig.4.3 Simulation model of the proposed structure having seven irises
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Fig.4.4 Modeling of opening of the irises (arrows indicate the offset direction of circles 
making 1200 angle with each other)

 

The designs have been carried out for three, five and seven irises in the conjugate 

matched feed horn. The details of the same has been discussed in section 4.1.1. 

 
 
4.1.1 Studies of Conjugate Matched Feed using three, five and 

seven irises 
 

 All the designs have been carried out for offset reflector having F/D=0.5, 

offset angle θo=53o as shown in Fig.2.1. The amplitude required in TE21 mode 

relative to TE11 has been calculated using the equation-(4.2). For the above said 

reflector geometry, to cancel cross-polarization component, the amplitude required 

in TE21 mode relative to TE11 mode is -8dB. For conjugate matching, the phase of 

the TE21 mode relative to TE11 mode should be 90o.  

 For the single iris discontinuity, the relative amplitude and phase of TE21 

mode w.r.t. TE11 mode are presented in Fig.4.5 and Fig.4.6 respectively. It has 

been found that the variations of amplitude and phase of TE21 mode relative to 

TE11 mode are large. Thus it is impossible to design a broadband matched feed 

using single iris configuration. Only very narrowband (1%) conjugate matched 

feed can be designed using single iris discontinuity. 
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 For cascaded three iris configuration, as shown in Fig. 4.1. The optimize 

R=18.5mm and do for three irises are 6mm, 7mm and 6mm respectively for having 

required TE21 mode amplitude relative to TE11 mode amplitude. The input and 

output diameter of the horn are 22mm and 31mm respectively. The flaring length 

L1=40mm and length L2=28mm. The amplitude and phase of TE21 w.r.t TE11 

have been presented in Fig.4.7 and Fig.4.8 respectively for different gap between 

the irises. It has been found out that maximum flatness of amplitude and phase of 

TE21 w.r.t TE11 mode for 11-12GHz band has been obtained for g=7mm. Thus it is 

clear that multiple iris configuration can provide amplitude and phase flatness of 

TE21 mode relative to TE11 mode. The cross-polarization in the secondary pattern 

of the offset reflector antenna (F/D=0.5 and offset angle=53o) for the TE11 mode 

feed is -18dB which is shown in Fig.4.9. The secondary cross-polarization has 

been calculated using this feed and the cross-polarization suppression bandwidth 

has been plotted in Fig.4.10.. It is clear from Fig.4.10 that better than 11dB 

improvement in cross-polarization can be obtained for 9.5% bandwidth and 15dB 

improvement can be obtained for 2.5% bandwidth.  

 

 Similar study has been carried out for five and seven irises. The amplitude 

and phase of TE21 w.r.t. TE11 have been presented in Fig.4.11 and Fig.4.12 

respectively for different gap between the five irises having R=18.5mm and do for 

five irises,  5.5mm, 6mm, 7mm, 6mm and 5.5mm respectively. It has been found 

out that the maximum amplitude as well as phase flatness w.r.t frequency of TE21 

mode relative to TE11 mode for five irises are obtained for g=5mm. Similarly, the 

amplitude and phase variation of TE21 mode relative to TE11 mode of seven iris 

configuration are presented in Fig.4.13 and Fig.4.14 respectively. The maximum 

amplitude and phase flatness can be obtained for g=4mm. Finally, it has been 

found out that the amplitude and phase flatness with respect to frequency for five 

and seven irises are comparable and the amplitude and phase flatness are better 

than three iris discontinuity. Finally, these two designs have been considered and 

details of the design and results are discussed in the following sections.     
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Fig. 4.5 Coupled power to TE21 mode relative to TE11 mode for single iris (R=18.5, 

do=8mm) 
 

 
Fig. 4.6 Relative phase of TE21 mode w.r.t. TE11 mode for single iris (R=18.5, do=8mm) 
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Fig.4.7 Coupled power of TE21 mode relative to TE11 mode for different gaps g between 
irises(R=18.5, do for 3 irises are 6mm, 7mm and 6mm) 

 
 
 

 

 

Fig.4.8 Relative phase of TE21 mode relative to TE11 mode for different gaps g between 
irises(R=18.5, do for 3 irises are 6mm, 7mm and 6mm) 
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Fig.4.9 Simulated secondary pattern with TE11 mode feed horn at 11.5 GHz 

 

 
Fig.4.10 Cross-polarization suppression bandwidth for the MF with 3 irises ( F/D=0.5) 
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Fig.4.11 Coupled power of TE21 mode relative to TE11 mode for different gaps g between 

irises (R=18.5, do for 5 irises are 5.5mm, 6mm,7mm, 6mm and 5.5mm) 
 

 
Fig.4.12 Relative phase of TE21 mode w.r.t TE11 mode for different gap=g between irises 

(R=18.5, do for 5 irises are 5.5mm, 6mm,7mm, 6mm and 5.5mm) 
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Fig.4.13 Coupled power of TE21 mode relative to TE11 mode for different gap g between 
irises (R=18.5, do for 7 irises are 5.5mm, 5.5mm, 6mm, 7mm, 6mm, 5.5mm and 

5.5mm) 
 

 

Fig.4.14 Relative phase of TE21 mode w.r.t TE11 mode for different gap g between irises 
(R=18.5, do for 7 irises are 5.5mm, 5.5mm, 6mm, 7mm, 6mm, 5.5mm and 

5.5mm) 
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4.1.2. Design of Conjugate Matched Feed using five irises 
 
 Two designs of broadband conjugate matched feed horns using the five iris 

discontinuity have been carried out for the offset reflector having F/D=0.8, offset 

angle θo=350 and F/D=0.5, θo=530 respectively.  

 

 For the first design i.e. for F/D=0.8 and θo=350, the optimized design 

parameters R=16mm, g=2.5mm and L2=28mm and do are different for five irises 

and they are 3mm, 4mm, 5mm, 4mm and 3mm. Input diameter of the horn is 

22mm whereas the output diameter is 32mm. Thickness of each iris is 1mm and 

L1=40mm. For the second design i.e. for F/D=0.5 and θo=350, the optimized 

design parameters R=18.5mm, g=5mm and L2=22mm and do are 5.5mm, 6mm, 

7mm, 6mm and 5.5mm. Output diameter is 31mm. Input diameter, thickness of 

each iris and L1 are same as the previous design.  

 

 The first design of the horn has been carried out for offset reflector as 

having diameter D=1.2m, F/D=0.8 and offset angle θ0=350. The horn has been 

simulated and designed in Ansys HFSS-15. The operating region of the horn is 11-

12GHz. In this region the return loss is better than 24dB. The coupling power in 

TE21 mode relative to TE11 mode is shown in Fig.4.15. The coupled power is 

varied within 1dB over the frequency band of operation. Also the relative phase of 

TE21 w.r.t TE11 mode at the aperture of the horn is shown in Fig.4.16. It is shown 

in Fig.4.16 that the variation of the relative phases are ±70 over 900. Both 

amplitude and phase of TE21 mode relative to TE11 mode are important for 

designing broadband matched feed horn. Figure 4.17 shows the simulated 

radiation pattern of the horn at 12GHz. The asymmetry in the 00 plane of the 

radiation pattern of the horn is due to the presence of TE21 mode at the aperture of 

the horn along with TE11 mode [19].  

 

 The secondary pattern has been simulated using the feed horn without 

irises i.e. simple TE11 mode horn and the pattern is shown in Fig.4.18. The worst 

secondary cross-pol. using the above said feed horn is -25dB. The secondary 

radiation patterns of the reflector with the designed feed horn are shown in 
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Fig.4.19-4.21. There is no asymmetry in the secondary radiation pattern at 00 

plane as bessel function of order 2 is added in conjugation with the bessel function 

of order 1 as shown in equation-(1). Cross-polarization of the secondary pattern 

over a frequency range of 10.9GHz to 12.5GHz is shown in Fig.4.22. It is clear 

from Fig.4.22 that we can achieve better than -35dB cross-polarization over 10% 

bandwidth. So there is a cross-pol. improvement of 10dB over a frequency range 

of 11GHz to 12.2GHz. Similarly Fig.4.22 also shows that better than -30dB cross-

polarization level can be achieved for 11.5% bandwidth.  

 

 The proposed feed horn has been fabricated and is shown in Fig.4.23. A 

circular to rectangular transition also has been fabricated to measure the 

performance of the feed horn. The simulated and measured return loss 

performances of the horn are shown in Fig.4.24 and the measured radiation pattern 

is shown in Fig.4.25. It is clearly seen that the measured performance of the horn 

are very closely matching with the simulated performance.   

 

 

Fig.4.15  Simulated power coupling to TE21 mode relative to TE11 mode  
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Fig.4.16 Simulated relative phase of TE21 mode w.r.t TE11 mode  

 

 

Fig.4.17 Simulated radiation pattern of the broadband conjugate matched feed horn at 
12GHz 
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Fig.4.18 Simulated secondary pattern with TE11 mode feed horn at 12GHz 

 

Fig.4.19 Simulated secondary pattern with conjugate matched feed horn at 11GHz 
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Fig.4.20 Simulated secondary pattern with conjugate matched feed horn at 11.5GHz 

 

Fig.4.21 Simulated secondary pattern with conjugate matched feed horn at 12GHz 
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Fig.4.22 Cross-polarization suppression bandwidth for MF with 5 irises (F/D=0.8) 

 

 

Fig.4.23 Fabricated broadband conjugate matched feed horn 

 

Fig.4.24 Simulated and Measured return loss characteristics of the horn 
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Fig.4.25 Measured radiation pattern of the horn at 12GHz 

 For the second design with five irises, F/D chosen is 0.5 and the 

corresponding offset angle θ0=530. The diameter of the reflector is the same as the 

previous design i.e. D=1.2m. The simulated return loss of the horn is better than 

20dB over the band. The TE21 modal amplitude and phase variations relative to 

TE11 mode at the aperture of the horn with respect to frequency are shown in 

Fig.4.26 and 4.27 respectively. The radiation pattern of the horn at 11.8 GHz 

where maximum cross-polarization has been achieved in the secondary pattern is 

shown in Fig.4.28. The secondary pattern of the offset reflector without the iris 

discontinuities is shown in Fig.4.29 and with this designed matched feed at 

11.8GHz has been presented in Fig.4.30. The cross-polar suppression bandwidth is 

shown in Fig.4.31. The maximum improvement of cross-polar component is by 

23dB from -18dB to -41dB at 11.8GHz. It is also clear from Fig.4.31 that better 

than 10dB improvement in cross-polarization is achieved for 10% bandwidth.  
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Fig.4.26  Simulated power coupling to TE21 mode relative to TE11 mode  

 

Fig.4.27 Simulated relative phase of TE21 mode w.r.t TE11 mode  
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Fig.4.28 Simulated radiation pattern of the broadband conjugate matched feed horn at 
11.8GHz

 

Fig.4.29 Simulated secondary pattern with TE11 mode feed horn at 11.8 GHz 
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Fig.4.30 Simulated secondary pattern with conjugate matched feed horn at 11.8GHz 

 

 

Fig.4.31 Cross-polarization suppression bandwidth for MF with 5 irises (F/D=0.5) 
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4.1.3. Design of Conjugate Matched Feed using seven irises 
 
  The design of broadband conjugate matched feed horns using the seven iris 

discontinuity have been carried out for the offset reflector having F/D=0.5, θo=530.  

For this design, the optimized design parameters R=18.5mm, g=4mm and 

L2=21mm and do are different for seven irises and they are 5.5mm, 5.5mm, 6mm, 

7mm, 6mm, 5.5mm and 5.5mm. Input diameter of the horn is 22mm whereas the 

output diameter is 31mm. Thickness of each iris is 1mm and L1=40mm.  
 

 The F/D chosen is 0.5 and the corresponding offset angle θ0=530. The 

diameter of the reflector is the same as the previous design i.e. D=1.2m. The 

simulated return loss of the horn is better than 20dB over the band. The TE21 

modal amplitude and phase variations relative to TE11 mode at the aperture of the 

horn with respect to frequency are shown in Fig.4.32 and 4.33 respectively. The 

radiation pattern of the horn at 11.9 GHz where maximum cross-polarization has 

been achieved in the secondary pattern is shown in Fig.4.34. The secondary 

pattern of the offset reflector with this designed matched feed has been presented 

in Fig.4.35 to Fig.4.37. The cross-polar suppression bandwidth is shown in 

Fig.4.38. The maximum improvement of cross-polar component is by 25dB at 

11.9GHz. Here also 10% bandwidth is achieved for 10dB improvement in cross-

polarization. 

 

Fig.4.32  Simulated power coupling to TE21 mode relative to TE11 mode  
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Fig.4.33 Simulated relative phase of TE21 mode w.r.t TE11 mode  

 

Fig.4.34 Simulated radiation pattern of the broadband conjugate matched feed horn at 
11.9GHz
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Fig.4.35 Simulated secondary pattern with conjugate matched feed horn at 11GHz 

Fig.4.36 Simulated secondary pattern with conjugate matched feed horn at 11.5GHz 
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Fig.4.37 Simulated secondary pattern with conjugate matched feed horn at 12GHz 

 

 

Fig.4.38 Cross-polarization suppression bandwidth for MF with 7 irises (F/D=0.5) 
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4.2 Conclusion 
 
 A wideband conjugate matched feed horn has been designed and 

developed using a novel discontinuity configuration. A detail study has been 

performed with this novel discontinuity to achieve wideband performance in the 

conjugate matched feed horn. The cross-polar performance of an offset reflector 

antenna with the feed horn has been simulated. It is shown that the proposed  

matched feed suppresses cross-polarization components by 10dB over a 10% 

frequency bandwidth when used as a primary feed with an offset parabolic 

reflector antenna having low F/D.  
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CHAPTER 5 

BROADBAND CORRUGATED CONJUGATE 
MATCHED FEED HORN 

 

 
 The corrugated horns are in use as primary feeds for reflector antennas. In 

comparison to smooth walled conical horns, the corrugated horns possess two 

important properties, i.e., axial beam symmetry and low cross-polarization over a 

wide bandwidth [49],[50]. These properties ensure high antenna gain, low 

spillover and minimum contribution from the side-lobes. In order to produce 

symmetric E-plane and H-plane patterns with a very low cross-polarization, it is 

necessary that the horn should produce linear aperture electric fields [49]. 

However, it is known that a pure TE or TM mode cannot produce linear electric 

fields and hence the radiation patterns of smooth-walled conical horns (supporting 

TE and/or TM modes) are not symmetric. As reported in the published literature, 

the hybrid mode can only produce the required linear electric fields. The hybrid 

mode is basically a mixture of TE and TM modes, e.g., fundamental HE11 mode is 

a mixture of TE11 and TM11 modes. Such hybrid mode(s) can be generated by a 

horn, whose inner surface is corrugated. In fact, the corrugations on the walls of 

the horn modify the electric and the magnetic fields such that the horn produces 

symmetric co-polar patterns with less cross-polar radiation. 

  

 Although the fundamental HE11 mode guided corrugated horn is the best 

feed option for a symmetrical reflector, however, it is not suitable as a feed for the 

offset parabolic reflector antenna. This is because the conventional corrugated 

feed cannot suppress the cross-polarization introduced by the offset geometry 

of the reflector. Thus, a pure HE11 mode guided cylindrical corrugated feed is 

not suitable for an offset parabolic reflector antenna. As suggested in [19], if a 

corrugated matched feed can be designed, whose aperture fields are a 

conjugate match to the focal region fields of the reflector, it is possible to 

suppress the unwanted cross-polarization of the offset reflector. In a corrugated 
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structure, such a matched feed can be configured by adding an additional 

hybrid mode (HE21 mode) to the fundamental HE11 mode [33]. However, as the 

HE11 and HE21 modes have different phase velocity, the broadband cross-polar 

performance could not be achieved even with corrugated structure.  For the useful 

performance of the onboard communication/microwave remote sensing system 

such low cross-polar bandwidth is not suitable. It is worthwhile to carry out 

investigations and develop a wideband corrugated conjugate matched feed. To the 

best of authors’ knowledge, the design and realization of such feeds offering 

wideband cross-polar radiation performance are not reported in open literature.  

 

 In the present chapter, a similar type of symmetrical cascaded waveguide 

discontinuities which already has been presented in chapter 4, has been used to 

achieve wide cross-polar bandwidth in corrugated horn. One section of the

waveguide discontinuity has been conceptualized using intersection of three off-

centered junctions of circular waveguide placed symmetrically with angular 

spacing of 1200. One such discontinuity which is like an iris in the waveguide has 

been analyzed for generating TE21 mode. When TE21 mode passes through 

corrugated structure of the horn, it is converted to HE21 mode at the aperture of the 

corrugated horn [33]. Similarly incident TE11 mode is converted to HE11 mode at 

the aperture of the corrugated horn. It has been found that the required amplitude 

and phase flatness of HE21 mode relative to HE11 mode at the aperture of the 

corrugated horn over the designed frequency band, which is required for 

broadband performance of the corrugated matched feed were not achieved. In 

order to enhance the cross-polar bandwidth, five sections with the similar iris 

structure have been placed in the axial direction inside circular waveguide at the 

throat section of the corrugated horn. The axial profile of the irises has been 

optimized to achieve good return loss performance.  

 

 The proposed configuration has been used to design a corrugated 

broadband conjugate matched feed horn working in 55-60GHz band i.e. for 8% 

bandwidth.  
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 From the focal region field analysis [28] of the offset reflector antenna, the 

amplitude and phase required in HE21 mode to cancel cross-polar component has 

been calculated. The horn has been optimized to achieve required amplitude and 

phase of HE21 mode relative to HE11 mode. 

 

 In the present chapter, two designs of the broadband corrugated conjugate 

matched horn have been presented. One design is for the offset reflector having 

F/D=0.7 and 900 offset angle and another design for the offset reflector having 

F/D=0.4 and offset angle=90o.  

  

5.1 Field Expressions for the Corrugated Conjugate 
Matched Feed 

 
 In case of a corrugated cylindrical wave-guide structure, the matched feed 

is a dual-mode feed with two modes, i.e., HE11 and HE21. The fundamental HE11 

mode ensures that the feed itself will not radiate high cross-polarization, while a 

small component of HE21 mode compensates the asymmetric cross-polarization 

added by the offset geometry. For the satisfactory operation of the matched feed, it 

is necessary that the HE21 mode should maintain -90° phase relationship with the 

HE11 mode. The field expressions of the dual-mode corrugated matched feed can 

be written as,  

2111 . HEHE EEE        (5.1) 

2111 . HEHE EEE       (5.2) 

where, γ is the arbitrary constant defining the relative power in HE21 mode with 

respect to the fundamental HE11 mode. Using the general expressions for E  and 

E  from [51], the expressions for 11HEE , 21HEE , 11HEE and 21HEE can be 

obtained as,  

  jkRHE ekakaQkakaLjE  ))cos()(())cos(()()cos()( 11111
211   

          (5.3) 
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  jkRHE ekakaQkakaLjE  ))cos()(())cos(()()3cos()( 22222
321 

          (5.4) 

  jkRHE ekakaQkakaLjE  ))cos()(())cos(()()sin()( 11111
211   

          (5.5) 

  jkRHE ekakaQkakaLjE  ))cos()(())cos(()()3sin()( 22222
321 

          (5.6) 

where, 

a = aperture radius of the horn,  

R=distance from the aperture centre to the observation point (in meter),  

λ= wavelength of operation ,  

k= free-space propagation constant,  

1 = normalized phase-change coefficients of HE11 mode,  

2 = normalized phase-change coefficients of HE21 mode,  

1 = normalized hybrid factor (referred as and for the HE11 and HE21 modes, 

respectively),  

)sin(
)()(

1

1

m

mmm
m xx

xJxJ
L




  

)sin(

)()()()(
2

1
2

111

xx

xJxJxxJxJx
Q

m

mmmmmmm
m 


  

kax 1  

1x = the first root of the Bessel function for HE11 mode (=2.405), 

2x = the first root of the Bessel function for HE21 mode (=3.8317),  

)(xJm = Bessel function of the first kind and order m,  

The actual values of 1x and 2x  have been obtained by solving the characteristic 

equation under a balanced hybrid condition [51]. 
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5.2 Broadband Corrugated Matched Feed Design 
 

 It is known that the field behaviour of HE21 mode in circular corrugated 

horn is close to equation-(2.2) as given in [19].  Now to cancel the cross-polar 

component in focal plane, corrugated feed horn has to generate HE21 mode along 

with HE11 mode in proper amplitude and phase. The required amplitude of HE21 

mode is calculated with known parameters D, F, θ and the relative phase between 

HE11 and HE21 modes has to be 900 as it is seen from eq.(2.2). 

 

 The simulation model of the proposed broadband corrugated conjugate 

matched feed horn using FEM based High Frequency Structure Simulator (HFSS) 

is shown in Fig.5.1. In the proposed structure, the TE21 mode converter is modeled 

with five irises inserted in equal interval along the Z-direction in the throat section 

of the horn as shown in Fig.5.1(a). The cross-section of the horn is shown in 

Fig.5.1(b). The cross-section of the TE21 mode generator section has been realized 

using three offset circular waveguide junctions as shown in Fig.5.2. Circles are 

shown using dashed lines and they are showing how the smallest cross-section 

among the 5 irises is realized. The concept behind choosing the particular opening 

of the iris is that asymmetrical offset junction discontinuity between two circular 

waveguide produces TM01, TE21 and TE21* modes. For conjugate matched feed 

horn design only TE21/HE21 (smooth-wall horn/Corrugated horn) mode is required 

along with dominant TE11/HE11 mode. So to cancel generated TM01 and TE21* 

modes, three such type of discontinuities have been placed symmetrically in same 

plane and intersection of the three has been chosen as the iris opening as shown in 

Fig.5.2. 

  

 The relative phase variations between HE21 and HE11 modes at the aperture 

of the horn have been controlled and optimized by the proposed cascaded 

geometry along with phasing sections and corrugated horn. For conjugate 

matching operation, the relative phase between HE11 and HE21 modes should be 

900.  
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Fig.5.1 Simulation model of the proposed structure, (a) side view, (b) front view of the 

horn (c) enlarged view of the iris structure 

 

Fig.5.2 Modeling of opening of the irises (arrows indicate the offset direction of circles 
making 1200 angle with each other)

 

 Main parameters which are controlling the relative amplitude and phase of 

HE21 mode w.r.t. HE11 mode at the aperture of the horn are the radius R, offset 

distance (do) of the dashed circle shown in Fig.5.2 and gap between the irises (g). 

g 
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For three dashed circles in the same transverse plane as shown in Fig.5.2, R and do 

are equal. The flatness of relative amplitude and phase of HE21 mode w.r.t. to 

HE11 mode can be controlled by parameter g, which is essential for broadband 

operation of this feed horn. 

 

 The present designs of the corrugated broadband conjugate matched feed 

have been carried out for F/D=0.7 and offset angle θo=900 and also for F/D=0.4 

and offset angle θo=900. The optimized design parameters for the first design are 

R=3.7mm, g=1mm and do are different for five irises and they are 1.1mm, 1.2mm, 

1.4mm, 1.2mm and 1.1mm. The lengths of the TE21 mode converter section and 

phasing section as shown in Fig.5.1 are 5mm and 1mm respectively. Input 

diameter of the horn is 4.4mm whereas diameter of the phasing section is 6.2mm. 

Length and aperture diameter of the corrugated horn are 20mm and 12mm 

respectively. The thickness of the irises is 0.2mm.  For the second design, the 

optimized parameters R=4.3mm, g=1.2mm and do =1.6mm which is same for all 

the five irises. The lengths of the TE21 mode converter section and phasing section 

are 5.8mm and 0.2mm respectively. All other parameters are same as first design. 
                               

5.3  Results and Discussion  

5.3.1 Corrugated Matched Feed For F/D=0.7 

 The simulated coupling power in HE21 mode relative to HE11 mode for 

different value of g is presented in Fig.5.3 and the relative phase of HE21 w.r.t 

HE11 mode for different value of g is shown in Fig.5.4. It has been found out from 

Fig.5.3 and Fig.5.4 that optimum amplitude and phase flatness are obtained for 

g=1mm. For g=1mm, the coupled power is varied within 3dB over the frequency 

band of operation. Also for g=1mm, the variations of the relative phases are ±250 

over 900. Both amplitude and phase of HE21 mode relative to HE11 mode at the 

aperture of the horn are important for designing broadband matched feed horn. 

The simulated return loss performance of the horn is shown in Fig.5.5. Figure 5.6 

shows the simulated radiation pattern of the horn at 57.5GHz.  

 



68 
 

 The secondary patterns of the offset reflector having diameter D=138mm, 

F/D=0.7 and offset angle θ0=900 as shown in Fig.5.7 have been simulated using 

GRASP/TICRA. The secondary pattern has been simulated using the corrugated 

feed horn without irises i.e. simple HE11 mode horn and the pattern is shown in 

Fig.5.8. Figure 5.9 shows the secondary simulated pattern with the designed 

broadband corrugated matched feed horn. The worst secondary cross-polarization 

using HE11 mode feed horn is -18dB. The simulated secondary cross-polarization 

at 57.5GHz is -35dB when the designed broadband corrugated matched feed is 

used to illuminate the reflector. Secondary performance of the cross-polarization 

of corrugated matched feed using single iris as well as five irises as a function of 

frequency is shown in Fig.5.10. It is clear from Fig.5.10 that better than 7dB 

improvement in cross-polarization is achieved for only 2% bandwidth for 

corrugated matched feed having single iris discontinuity and better than 10dB 

cross-polarization improvement for 1% bandwidth. Figure 5.10 also shows that the 

corrugated matched feed having five cascaded iris discontinuity are improving the 

cross-polarization bandwidth. Better than 10dB improvement in cross-polarization 

is achieved for 8% bandwidth and 7dB improvement in cross-polarization for 

9.5% bandwidth. 

 
Fig. 5.3 Simulated power coupling to HE21 mode relative to HE11 mode at the aperture of  

the horn for different g 
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Fig. 5.4 Simulated relative phase of HE21 mode relative to HE11 mode at the 

aperture of the horn for different g 
 

 
Fig.5.5 Simulated return loss characteristics of the horn 
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Fig.5.6 Simulated radiation pattern of the broadband corrugated conjugate matched feed 
horn at 57.5GHz 

 

 

Fig.5.7 Schematic of 90O offset reflector geometry
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Fig.5.8 Simulated secondary pattern with HE11 mode feed horn at 57.5GHz 

 
Fig.5.9 Simulated secondary pattern with conjugate matched feed horn at 57.5GHz 
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Fig.5.10 Cross-polarization suppression bandwidth (F/D=0.7) 

 

 

5.3.2 Corrugated Matched Feed For F/D=0.4 

 The simulated return loss performance of the corrugated conjugate feed 

horn for reflector having F/D=0.4 and offset angle 90o is shown in Fig.5.11. It is 

seen from Fig.5.11 that the return loss performance of the horn is better than 22dB 

over the band. The simulated coupling power in HE21 mode relative to HE11 mode 

is presented in Fig.5.12 and the relative phase of HE21 w.r.t HE11 mode is shown 

in Fig.5.13. Figure 5.14 shows the simulated radiation pattern of the feed horn at 

56.5GHz.  

 

 The secondary patterns of the offset reflector having diameter D=138mm, 

F/D=0.4 and offset angle θ0=900 as shown in Fig.5.7 have been simulated using 

GRASP/TICRA. The secondary pattern has been simulated using the corrugated 

feed horn without irises i.e. simple HE11 mode horn and the pattern is shown in 

Fig.5.15. Figure 5.16 shows the secondary simulated pattern with the designed 

broadband corrugated matched feed horn. The worst secondary cross-polarization 

using HE11 mode feed horn is -14dB over the operating band. The simulated 

secondary cross-polarization at 56.5GHz is -35dB when the designed broadband 
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corrugated matched feed is used to illuminate the reflector. Thus there is a 

maximum improvement in cross-polarization at 56.5GHz and the improvement in 

cross-polarization is 21dB. Secondary performance of the cross-polarization of the 

corrugated matched feed as a function of frequency is shown in Fig.5.17. Better 

than 8dB improvement in cross-polarization is achieved for 8.7% bandwidth. 

 

 

 
Fig.5.11 Simulated return loss characteristics of the horn 
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Fig.5.12 Simulated power coupling to HE21 mode relative to HE11 mode at the aperture of 

the horn 

 

 

 

 
Fig.5.13 Simulated relative phase of HE21 mode relative to HE11 mode at the aperture 

of the horn 
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Fig.5.14 Simulated radiation pattern of the broadband corrugated conjugate matched 

feed horn at 56.5GHz
 
 

 
 

Fig.5.15 Simulated secondary pattern with HE11 mode feed horn at 56.5 GHz 
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Fig.5.16 Simulated secondary pattern with the conjugate matched feed horn at 56.5GHz 
 

 

 
 

Fig.5.17 Cross-polarization suppression bandwidth (F/D=0.4)
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5.4  Conclusion 
 
 A novel broadband corrugated conjugate matched feed horn has been 

designed and simulation results have been presented. The cross-polar 

performances of 900 offset reflector antenna having F/D=0.7 and 0.4 respectively 

have been simulated using the designed conjugate matched feed horns. It is shown 

that the proposed matched feed suppresses cross-polarization components 

significantly over an 8% frequency bandwidth when used as a primary feed with a 

900 offset parabolic reflector antenna having very low F/D. 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

 
 This chapter presents the conclusions and the summary of the 

investigations carried out on the broadband conjugate matched feed horn. 

Section 6.1 describes the conclusions and the important findings of the 

research. Future scope of work are described in section 6.2.  

 

6.1 Conclusion 
 
 In this thesis, a problem of mitigating the undesired high cross-

polarization generated in offset parabolic reflector antenna for broad range of 

frequencies was undertaken. After carrying out detailed literature survey, it 

was found that no open literature is available dealing with the conjugate 

matched feed for broadband characteristics. An investigation on cascaded 

multiple post discontinuity in circular waveguide has been carried out to 

enhance the bandwidth of the conjugate matched feed horn but it has been 

found out that only 3% bandwidth is achievable for better than 10dB 

improvement in cross-polarization. Thus a new discontinuity study has been 

carried out i.e. off-centered junction in circular waveguide. These discontinuity 

has been utilized to design and develop a novel configuration of conjugate 

matched feed horn which can be used for 10% bandwidth for better than 10dB 

improvement in   cross-polarization. The novel concept has been applied to 

both circular cylindrical structure as well as corrugated structure. Development 

of such feeds leads to the important technological development in the field of 

antenna design. The conclusions drawn from the investigations can be briefly 

summarized as follows:  
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 Matched feed effectively suppresses the unwanted high cross-

polarization introduced by the offset geometry in an offset parabolic reflector 

antenna. In a matched feed, it is necessary that the tangential electric fields at 

the aperture of the primary feed should be complex conjugate to the focal plane 

fields of the offset reflector antenna. In order to achieve this matching, the 

primary feed should support the appropriate higher order mode, in addition to 

the fundamental mode. Such modes in case of a smooth-walled cylindrical feed 

are TE21 with the fundamental TE11 mode, and HE21 mode with the fundamental 

HE11 mode in a cylindrical corrugated feed. 

 For satisfactory operation of the matched feed, it is necessary that the 

higher order mode should be added in proper amplitude and the phase with 

respect to the fundamental mode. It has been observed that the amplitudes of 

the higher order modes strongly depend on the reflector geometry, i.e., F/D 

ratio and offset angle.  

 It was observed that, the higher order asymmetric mode in the matched 

feed generates high cross-polarization in the plane of the primary radiation 

pattern. However, this high cross-polarization of the feed counter balances the 

effect of high cross-polarization in the secondary radiation pattern of an offset 

reflector. 

 

 Matched feeds are very suitable for offset reflector configurations having 

low F/D ratio and high offset angle. Therefore, in practical applications where the 

low F/D reflector is enforced due to space and weight constraints, the matched 

feed can be a more suitable option.  

 In practical applications more wideband performance of the matched feed 

is required. Thus, in the present thesis, a wideband study of the matched feed has 

been carried out. Through this study, a novel concept has been realized to design 

and developed wideband conjugate matched feed horn. With this novel concept, 

wideband smooth-wall and corrugated conjugate matched feed horn have been 
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designed. It was found that 10% bandwidth can be achievable for 10dB 

improvement in the cross-polarization for F/D=0.5 and offset angle=53o.  

 It is expected that, in near future, for many practical applications, including 

the beam-scanning, multiple spot beam generation, remote-sensing radiometers, 

mono-pulse tracking radars, etc. the matched feed will become the most preferred 

feed option with the offset parabolic reflector antenna.  

 

6.1 Scope for Future Work 
 
 In the present thesis, the design of a novel broadband conjugate matched 

feed horn in cylindrical and corrugated structure have been presented for very low 

F/D. Presently, 10dB improvement in the cross-polarization has been achieved for 

10% bandwidth but as a future work using the same novel concept, further study 

for improving the bandwidth can be attempted.  

 Investigations on a multi-mode matched feed using elliptical wave guide 

structure may be carried out as an advancement of this work. This type of 

elliptical matched feed will be useful for an application where different beam-

widths are required in both E and H planes, while maintaining the low cross-

polarization in the secondary radiation pattern. Also wide band design of these 

feeds can be also studied and carried out. The broadband characteristics of the 

rectangular matched feed can be studied as a future work. 

 In the thesis, matched feed designs have been proposed for a single offset 

parabolic reflector antenna. A new matched feed can also be designed for a shaped 

offset reflector [19] in which the offset reflector profile is deformed to generate a 

contoured beam or a shaped beam. 
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