INVESTIGATIONS ON WAVE PROPAGATION THROUGH PSEUDO-RANDOM-PHASE-PLATE USING He-Ne LASER AT 633 nm

A thesis submitted in partial fulfillment for the degree of

Doctor of Philosophy

by

RICHA SHARMA

INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY Thiruvananthapuram

September, 2015

ABSTRACT

Turbulence mimicking media in experimental laboratories have proved to be very helpful for investigating the properties and effects of a realistic turbulent medium. Researchers have constantly attempted on improvising the existing turbulence mimicking capacities to create robust and repeatable turbulence models for laboratory purposes. In this thesis, Pseudo-Random-Phase-Plates (PRPPs) which belong to the class of aforesaid media have been investigated by using a 633 nm He-Ne laser wave-field.

In the first place, a collimated 633 nm laser wave-field is used in two classical interferometers namely the Mach-Zehnder and the Michelson's interferometer, to determine the nature of PRPPs, which amounts to revealing whether they behave like Kolmogorov or non-Kolmogorov turbulence simulators. It is found that the two PRPPs in question behave like non-Kolmogorov turbulence simulators at 633 nm wavelength, whether used individually or as a combination. It is also observed that the behavior of PRPPs tends to approach towards Kolmogorov turbulence regime on increasing the number of passages of wave-field through them. Also, to discuss one of the applications of the characterized PRPPs, a phase-sharing experiment involving a Mach-Zehnder interferometer using a PRPP as object in one of the interferometric arms is mentioned.

This is followed by wave-propagation analysis using the Variance matrix on the said PRPPs with a 633 nm laser wave-field. Variance matrix, along with some derivable physical quantities is calculated using the Shack-Hartmann-Wavefront-Sensor (SHWFS) data at different propagation distances. The estimated quantities for a wave-field subjected to a propagation through PRPP (either once or twice) are compared with those for a wave-field not subject to a propagation through the PRPP. The comparison though shows an increased fluctuation in all the quantities with a passage through the PRPP, but it also reveals a decreased wave-field asymmetry on an average.

Towards the end, an attempt on PRPP characterization is made using the standard statistical parameters usually used for characterizing surface roughness.