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ABSTRACT

Turbulence mimicking media in experimental laboratories have proved to be very help-

ful for investigating the properties and effects of a realistic turbulent medium. Re-

searchers have constantly attempted on improvising the existing turbulence mimicking

capacities to create robust and repeatable turbulence models for laboratory purposes. In

this thesis, Pseudo-Random-Phase-Plates (PRPPs) which belong to the class of afore-

said media have been investigated by using a 633 nm He-Ne laser wave-field.

In the first place, a collimated 633 nm laser wave-field is used in two classical in-

terferometers namely the Mach-Zehnder and the Michelson’s interferometer, to deter-

mine the nature of PRPPs, which amounts to revealing whether they behave like Kol-

mogorov or non-Kolmogorov turbulence simulators. It is found that the two PRPPs

in question behave like non-Kolmogorov turbulence simulators at 633 nm wavelength,

whether used individually or as a combination. It is also observed that the behavior

of PRPPs tends to approach towards Kolmogorov turbulence regime on increasing the

number of passages of wave-field through them. Also, to discuss one of the applications

of the characterized PRPPs, a phase-sharing experiment involving a Mach-Zehnder in-

terferometer using a PRPP as object in one of the interferometric arms is mentioned.

This is followed by wave-propagation analysis using the Variance matrix on the

said PRPPs with a 633 nm laser wave-field. Variance matrix, along with some derivable

physical quantities is calculated using the Shack-Hartmann-Wavefront-Sensor (SHWFS)

data at different propagation distances. The estimated quantities for a wave-field sub-

jected to a propagation through PRPP (either once or twice) are compared with those

for a wave-field not subject to a propagation through the PRPP. The comparison though

shows an increased fluctuation in all the quantities with a passage through the PRPP,

but it also reveals a decreased wave-field asymmetry on an average.

Towards the end, an attempt on PRPP characterization is made using the standard

statistical parameters usually used for characterizing surface roughness.
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CHAPTER 1

Introduction

In nature, one often encounters turbulent media having an inherent capacity of introduc-

ing random fluctuations in refractive index in the path of a beam propagating through

them. The effects of these fluctuations in a beam’s path can be seen in the resultant

wave-field. It is important to study such a wave-field as this can throw some light on

aspects related to turbulence. In laboratories, such a study can be carried out using tur-

bulence mimicking media. Pseudo-Random-Phase-Plates (PRPPs) are a class of such

turbulence mimicking media and in this thesis, these have been investigated, using a

633 nm laser wave-field.

1.1 Literature Survey and Motivation

Owing to the ubiquitous presence of turbulent media in nature, the study of their effects

on the wave-fields propagating through them has been a subject of great interest over the

years for the researchers Strohbehn (1968); Sasiela (2007); Al-Habash et al. (2001);

Rickett (1990); Fried (1966); Conan et al. (1995); Andrews and Phillips (2005). It

is a well known fact that when a coherent wave-field propagates through a turbulent

medium, random changes are acquired in both its amplitude as well as phase Andrews

and Phillips (2005); Ishimaru (1978); Charnotskii (2013); Tatarskii (1971); Booker

et al. (1950); Roddier (1981); Tatarskii (1961).

It is important to note that the atmospheric turbulence is one such interesting tur-

bulent medium and the study of an optical wave-field propagating through it has impli-

cations in fields such as adaptive optics Beckers (1993); Roddier (1999); Tyson (2010);

Hardy (1998); Vorontsov and Shmalgauzen (1985), optical communication McAulay

and Li (1999); Andrews and Phillips (2005); Zhu and Kahn (2002); Paterson (2005);

Li et al. (2007); Nistazakis et al. (2009); Ricklin and Davidson (2003), optical imag-

ing Roggemann et al. (1996); Conan et al. (1995); Charnotskii et al. (1990); Tubbs

(2003); Buades et al. (2005) etc.



Past attempts on studying and characterizing such turbulence have resulted in some

seminal works by researchers like A.N. Kolmogorov Kolmogorov (1941), V.I. Tatarskii

Tatarskii (1961, 1971) etc. Kolmogorov, in his work on the statistics of turbulent

flow Kolmogorov (1941), derived an expression for the velocity structure function in

a turbulent flow, given by,

Dv(r) = �[v(ri + r)− v(ri)]
2� = C2

vr
2
3 (1.1)

with l0 < r < L0. The angle brackets in the above expression denote the statistical

expectation operator, the scalar r is the magnitude of the vector r, v(ri) is the velocity

vector at point ri, Cv is the velocity structure constant, l0 and L0 are the inner and outer

scales, respectively. The domain of r between l0 and L0 is called the inertial subrange.

This expression was further extended by Tatarskii Tatarskii (1961) by first employing

the notion of a conservative passive additive to relate the velocity structure function and

the structure function for potential temperature and then, by using the Gladstone-Dale

relation Roddier (1981); Shapiro and Strohbehn (1978), to derive the expression for

refractive index structure function:

Dn(r) = �[n(ri + r)− n(ri)]
2� = C2

nr
2
3 (1.2)

where, n(ri) is the index of refraction at the point ri and Cn is the index structure

constant which represents the strength of turbulence Tatarskii (1961); Tyson (2010);

Hardy (1998). Further, many researchers have derived the expressions for the structure

functions for amplitude, wavefront and phase as well. The phase structure function has

been linked to the strength of atmospheric turbulence in the following manner :

Dφ(r) = 2.914k2r
5
3

� ∞

0

C2
n(h)dh (1.3)

wherein, k is the spatial wavenumber and h is the vertical height. The class of turbu-

lence falling within the ambit of these expressions represents the Kolmogorov model

for turbulence, which is the most widely accepted and explored model for describing

a locally homogeneous, isotropic and incompressible turbulence Kolmogorov (1941).

Other models like von Karman and Tatarskii have also been proposed and have fur-

ther been combined to yield a modified von Karman spectrum which accommodates

2



the shortcomings of the Kolmogorov model for turbulence, by including the inner and

outer scale factors used to describe the size of turbulent eddies Andrews and Phillips

(2005); Roggemann et al. (1996).

With these expressions in the background, many scientists have derived other useful

statistical parameters for turbulence interpretation. One such parameter is the Fried’s

parameter, given by D. L. Fried Fried (1966), which relates the statistics of wave distor-

tion in a turbulent medium to optical resolution of the detecting system. Also, Green-

wood’s frequency Greenwood (1977); Tyson and Frazier (2004), named after its in-

ventor Greenwood, gives a simplified expression for the frequency or bandwidth of an

adaptive optics system required for an effective wavefront correction of distorted wave-

fronts traveling through a turbulent medium. Furthermore, Zernike polynomials are

used towards describing aberrations introduced in a wavefront traveling through tur-

bulence Noll (1976); Roddier (1990); Wang and Silva (1980); Bhatia and Wolf (1954);

Mahajan and Shannon (1994) and Strehl ratio, to check the quality of astronomical see-

ing in the presence of atmospheric turbulence and evaluate the performance of any adap-

tive optical correction system Mahajan (1983); Perrin et al. (2003); Mahajan (1982);

Andrews et al. (2006).

It is evident that the most widely explored turbulence regime is that of Kolmogorov,

though with time, researches have also revealed the possibility of existence of turbu-

lence regimes other than the Kolmogorov regime, often called the non-Kolmogorov

turbulence regime Stribling et al. (1995). This has also got support from prompt exper-

imental evidences, which include the observation of non-Kolmogorov statistics in tro-

posphere and stratosphere in the atmosphere Beland (1995); Buser (1971); Dalaudier

et al. (1994); Dayton et al. (1992). A flurry of simulations and analysis has since then

emerged describing the properties and effects of this turbulence regime on various kinds

of wave-fields propagating through it Rao et al. (2000); Stribling et al. (1995); Toselli

et al. (2008, 2007); Boreman and Dainty (1996); Shchepakina and Korotkova (2010);

Khrennikov (2000); Korotkova and Shchepakina (2010); Wu et al. (2010); Zilberman

et al. (2008).

In order to study the effects of different turbulence regimes on propagating wave-

fields, researchers usually engage in the development of a realistic, well-defined and

repeatable turbulence at laboratory level. Such turbulence-mimicking capacities also

prove to be very helpful for accurately validating new generation systems used in areas

3



such as adaptive optics and optical communication. Several attempts have been made in

this regard, which include near index matching Rhoadarmer et al. (2001), hot air cham-

bers Keskin et al. (2006), liquid filled chambers Davis et al. (1998), hair sprays Thomas

(2004), spatial light modulators Phillips et al. (2005), paints Rampy et al. (2012), ion

exchange phase screens Hippler et al. (2004) and surface etching Jia and Zhang (2012).

The primary focus of these methods though has remained on experimentally achieving

a Kolmogorov turbulence regime, other regimes are also being explored. Such well de-

fined media at laboratory level facilitate the study of the effects that a realistic medium

such as that of atmospheric turbulence can bring in on various kinds of wave-fields

propagating through them.

One of the important quantities for the study of such a wave-field is the Variance

matrix (V ). It can capture the changes in wave-field characteristics upon its passage

through a turbulent medium at the level of second moments Simon et al. (1994); Simon

and Mukunda (2000). The Variance matrix can be easily estimated with the available

data for intensity and wave-field centroid position extracted from a Shack-Hartmann-

Wavefront-Sensor (SHWFS) Neal et al. (1996, 1999, 2000); Schäfer and Mann (2000,

2002); Schäfer et al. (2006). This does not involve any inbuilt wavefront reconstruction

algorithm as is generally the case with SHWFS Lane and Tallon (1992); Hudgin (1977);

Fried (1977); Southwell (1980); Herrmann (1980); van Dam et al. (2002); Talmi and

Ribak (2006). The Variance matrix estimation is thus universal and repeatable, given

the same kind of wave-field. In addition to this, the Variance matrix can also give

certain other quantities of physical significance such as the Twist Allen et al. (1992);

Beijersbergen et al. (2003), the Symplectic eigenvalues Simon et al. (1994); Simon and

Mukunda (2000), and a distance measure between two Variance matrices.

The Twist parameter measures the overall beam twist or rotation along the propa-

gation direction and the Symplectic eigenvalues are direct indicators of the presence of

higher-order modes in a laser wave-field. The distance measure between two Variance

matrices can be used as an effective tool towards checking the wave-field’s symmetry

in the x and y directions and at the same time can compare the asymmetry between two

Variance matrices calculated for the same wave-field in two different situations. Fur-

ther the uncertainty principle, which puts a restriction on the Variance matrices that are

physically possible, can be effectively used for the purpose of discarding the invalid

data i.e. those Variance matrices which do not obey the principle can be neglected, thus

4



acting as a check on the experimental estimations of Variance matrices.

As is evident, there are many ways in which one can explore a wave-field that has

propagated through turbulence. It is worth mentioning here that, some researchers have

recently demonstrated the possibility of using the random phase acquired by a light field

on propagation through atmospheric turbulence for cryptographic purposes Marangon

et al. (2014); Drake et al. (2013); Donnangelo et al. (2012). In Marangon et al. (2014),

random-key generation using phase fluctuations of a light field that has propagated

through a turbulent atmosphere was demonstrated. In Drake et al. (2013); Donnan-

gelo et al. (2012), it was shown that the phase acquired by a light field on propagation

through atmospheric turbulence like conditions can be used by two remote observers to

distill a shared random key.

Motivated from these works, two PRPPs, which have been claimed as turbulence

mimicking media Mantravadi et al. (2004) are considered in the present thesis, and are

characterized at 633 nm wavelength, by using phase extracted from interference fringe

patterns in two well known classical interferometric geometries, namely the Mach-

Zehnder and the Michelson’s interferometer Born and Wolf (1964). The extracted phase

in the two geometries is different in the sense that in Mach-Zehnder interferometer, the

beam propagates through the object (here PRPP/PRPPs in-a-combination) only once,

on the other hand, in Michelson’s interferometer, the beam travels twice through the

object. The Mach-Zehnder geometry therefore is also called the single passage geome-

try and similarly, the Michelson’s geometry is called the double passage geometry. This

phase introduced to a propagating beam on its passage through the turbulent medium is

random and can be effectively used to determine its nature Ikeda et al. (2005); Popescu

et al. (2005); Lue et al. (2009); Xue et al. (2011) by employing the well documented

parameters like the phase structure function. In the present context thus, the PRPPs are

analyzed using the phase structure function, and a robust conclusion is drawn on their

nature. An interesting phenomenon in which the nature of turbulence depends upon

the number of passages the wave-field travels through these media is also witnessed.

In fact, a tendency of approaching towards Kolmogorov turbulence regime is observed

on increasing the number of passages through the PRPP or PRPPs-in-a-combination.

A PRPP then is used as a mediating medium to demonstrate the possibility of shar-

ing a secret key between two observing ends separated by a realistic atmosphere, thus

presenting one of the applications of the PRPPs in the field of optical communication.
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Further, the Variance matrix of a coherent wave-field is estimated, upon its passage

through a PRPP, using the Shack-Hartmann-Wavefront-Sensor (SHWFS). This includes

a comparison of the quantities of physical relevance that can be extracted from the

Variance matrix, namely the Twist (τ ), the Symplectic eigenvalues (κ1 and κ2), and a

distance measure between two Variance matrices (Vδ). The uncertainty principle, which

puts a restriction on the Variance matrices that are physically possible, is effectively

used for the purpose of discarding invalid data.

Towards the end of this thesis, on the basis of observation that the extracted phases

(from a wave-field that has propagated through a PRPP) resemble random rough sur-

faces, the statistical parameters routinely used for characterizing surface roughness

Sedlaček et al. (2012); Rhee et al. (2005); Duparre et al. (2002); Banat (2003); Gadel-

mawla et al. (2002); Kendall and Yule (1950) are also used for an attempt on PRPP

characterization.

Thus, overall, the thesis primarily investigates the PRPPs using a 633 nm He-Ne

laser beam. The PRPPs are first characterized as non-Kolmogorov turbulence simula-

tors and further their effects on the propagating 633 nm He-Ne laser beam are explored

through the Variance matrix. A possible application of these PRPPs in classical cryp-

tography is also mentioned.

1.2 Research Contributions

The contributions of the thesis are summarized as follows:

1. Characterization of two PRPPs (individually/in-a-combination) as non-Kolmogorov

turbulence simulators at 633 nm wavelength using the Mach-Zehnder and Michel-

son’s interferometric geometries.

• The results reveal wavelength dependence of characteristics of PRPPs.

• It is observed that on an increase in the number of passages through the PRP-

P/PRPPs in-a-combination, there is a possibility of achieving Kolmogorov

turbulence regime. This trend is found to be more pronounced with individ-

ual PRPP than with the PRPPs in-a-combination.

2. A brief mention about the application of PRPP in a phase-sharing scheme, wherein
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the PRPP is inserted in one of the arms of the Mach-Zehnder interferometric setup

to distill a shared random secret key between two remote observers.

3. Study of a coherent wave-field on its passage through a PRPP using the Variance

matrix by computing the quantities of physical interest such as Twist parameter,

Symplectic eigenvalues, and a distance measure between two Variance matrices.

4. An attempt on characterization of PRPP by evaluating the standard statistical pa-

rameters, which are usually used for characterizing surface roughness.

The chapter-wise organization of this thesis has been given in the next section.

1.3 Organization of Thesis

• Chapter 2 discusses the characterization of PRPPs at 633 nm wavelength, using

the two well known classical interferometric geometries, 1) the Mach-Zehnder

and 2) the Michelson’s interferometer. It also analyses the nature of PRPPs, when

used in combinations. The chapter ends with an application of PRPPs in a phase

sharing experiment.

• In Chapter 3, a 633 nm laser beam is propagated through PRPP to obtain the

corresponding distorted wave-fields at various propagation distances. Also, the

undistorted wave-fields are obtained when the PRPP is removed from the prop-

agation path. Subsequently, some physically meaningful quantities are obtained

for such distorted and undistorted wave-fields from the Variance matrix calcula-

tions.

• Chapter 4 explores another method of PRPP characterization, which involves the

usage of standard statistical parameters that are usually used for determining sur-

face roughness.

• Finally, Chapter 5 provides the conclusion of the work and its possible future

scope.
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CHAPTER 2

Single and Double Passage Interferometric Analysis of

Pseudo-Random-Phase-Plates and their Application to

Classical Cryptography

2.1 Introduction

In order to simulate atmosphere-like-conditions at the laboratory level, several methods

have been attempted by the researchers across the world Rhoadarmer et al. (2001);

Keskin et al. (2006); Davis et al. (1998); Thomas (2004); Phillips et al. (2005); Rampy

et al. (2012); Hippler et al. (2004); Jia and Zhang (2012). Most of these methods

try to achieve Kolmogorov turbulence regime that simulates either single or multiple

layers of atmosphere. Out of them, the one proposed by Mantravadi et al. (2004) is

a popularly used technique which employs static phase plates manufactured by Near-

Index-Matching (NIM) process. One usually relies on the PRPPs manufactured by this

method for carrying out various experiments on a turbulent medium at the laboratory

level.

It is often observed that the manufacturers claim the designed phase plate’s behav-

ior as a Kolmogorov turbulence simulator at a few specified wavelengths. However,

it is quite possible that their behavior falls into non-Kolmogorov turbulence regime at

some other wavelength having practical significance. In such cases, before employing

the plates for an experiment, it becomes important to check whether they exhibit Kol-

mogorov or non-Kolmogorov behaviour at the wavelength under consideration. The

present chapter considers two such Pseudo-Random-Phase-Plates (PRPPs) supplied

by Lexitek motors (which have been claimed as Kolmogorov turbulence simulators at

1550 nm wavelength by the supplier) and characterizes them at a wavelength of 633 nm

. Furthermore, as an application of the PRPPs, the chapter mentions an experiment in-

volving the Mach-Zehnder interferometric geometry with a PRPP in one of its arms for

demonstrating the possibility of sharing a secret key between two spatially separated

observers.



2.2 Description of Interference, Interferometric Geome-

tries, and PRPPs

This section gives some prior knowledge about the interference phenomenon, the two

classical interferometric geometries and the Pseudo-Random-Phase-Plates (PRPPs), which

is essential for understanding our experiment (as will be presented later in Section 2.3).

2.2.1 Interference and Interferometers

A superposition of two or more light waves/beams derived from the same source, re-

sults in an intensity distribution, in which the maximum has an intensity greater than the

summation of two waves and minimum has an intensity reaching towards zero. This is

called interference Born and Wolf (1964). The superposition of two strictly monochro-

matic waves, arising from the same source always gives rise to an interference pattern.

This is attributed to the fact that the two waves arising from the same source are cor-

related to each other in either complete or partial sense, i.e. they are coherent. This

can be contrasted with the incoherence of beams arising from different sources, the su-

perposition of which does not result in an interference pattern in ordinary experimental

circumstances.

An interference measuring arrangement is referred to as an interferometer. In an

interferometer, interference from the same source can be achieved in two ways, which

also forms the basis for classifying the interferometric arrangements. The first being, the

division of wavefront, in which a beam originating from a point source is divided into

two or more point sources by means of apertures placed side by side. An example for the

same is Young’s double slit experiment. The second is called the division of amplitude,

in which the wave amplitude or intensity is in general divided into two by means of

beam splitters. This is used in case of extended sources. The familiar examples for the

same being the Mach-Zehnder and the Michelson’s interferometers.

In our experiment, the latter case, involving the division of amplitude in the Mach-

Zehnder and Michelson’s interferometric geometries has been used. In the following

subsection, the phenomenon of superposition of two monochromatic waves forming an

interference pattern has been derived mathematically.
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2.2.2 Interference of two Monochromatic Waves

For a monochromatic wave, the electric field vector E is given as,

E(r, t) = Re
�
A(r)e−iωt

�
=

1

2

�
A(r)e−iωt +A∗(r)eiωt

�
(2.1)

Where, A is the complex vector having Cartesian coordinate representation,

Ax = a1(r)e
ig1(r), Ay = a2(r)e

ig2(r), Az = a3(r)e
ig3(r) (2.2)

In Eqn. (2.2), aj and gj (j= 1, 2, 3) are real. From Eqn. (2.1) one can write E2 as:

E2 =
1

2

�
A(r)e−iωt +A∗(r)eiωt

�
.
1

2

�
A(r)e−iωt +A∗(r)eiωt

�

=
1

4

�
A(r)2e−2iωt +A∗(r)2e2iωt + 2A(r).A∗(r)

�

=
1

4

��
A2

x + A2
y + A2

z

�
e−2iωt +

�
A∗2

x + A∗2
y + A∗2

z

�
e2iωt + 2A(r).A∗(r)

�

=
1

4
[
�
a21e

2ig1 + a22e
2ig2 + a23e

2ig3
�
e−2iωt +

�
a21e

−2ig1 + a22e
−2ig2 + a23e

−2ig3
�
e2iωt

+ 2A(r).A∗(r)]

=
1

4
[a21

�
e2i(g1−ωt) + e−2i(g1−ωt)

�
+ a22

�
e2i(g2−ωt) + e−2i(g2−ωt)

�
+

a23
�
e2i(g3−ωt) + e−2i(g3−ωt)

�
+ 2A(r).A∗(r)]

=
1

2

�
a21 (cos(g1 − ωt)) + a22 (cos(g2 − ωt)) + a23 (cos(g3 − ωt)) +A(r).A∗(r)

�

(2.3)

The average of E2 over a time period much greater than T = 2π
ω

is written as:

�E2� = �1
2

�
a21 (cos(g1 − ωt)) + a22 (cos(g2 − ωt)) + a23 (cos(g3 − ωt)) +A(r).A∗(r)

�
�

=
1

2

�
a21�(cos(g1 − ωt))�+ a22�(cos(g2 − ωt))�+ a23�(cos(g3 − ωt))�+ �A(r).A∗(r)�

�

=
1

2
�A(r).A∗(r)� = 1

2
�
�
|Ax|2 + |Ay|2 + |Az|2

�
�

=
1

2

�
a21 + a22 + a23

�
(2.4)

Now, when the vector E is a superposition of two waves E1 and E2, then:

E2 = (E1 + E2)
2 =

�
E1

2 + E2
2 + 2E1.E2

�
(2.5)
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In terms of intensity:

I = (I1 + I2 + J12) (2.6)

Where, I1 and I2 are understood as �E1
2� and �E2

2� respectively and the average

�·� is taken over a time interval which is much greater than the time period T . These

two terms are nothing but the individual intensities of the two respective superimposing

waves. Term J12 = 2�E1.E2� is the interference term.

The complex amplitudes of the two superimposing waves are:

Ax, Ay, Az = a1e
ig1 , a2e

ig2 , a3e
ig3

Bx, By, Bz = b1e
ih1 , b2e

ih2 , b3e
ih3

(2.7)

Now, in terms of A and B,

E1.E2 =
1

2

�
A(r)e−iωt +A∗(r)eiωt

�
.
1

2

�
B(r)e−iωt +B∗(r)eiωt

�

=
1

4

�
A.Be−2iωt +A∗B∗e2iωt +A.B∗ +A∗.B

�
(2.8)

Proceeding in a similar manner as was done for Eqn. (2.3),

J12 = 2�E1.E2� =
1

2
(A.B∗ +A∗.B)

= a1b1cos(g1 − h1) + a2b2cos(g2 − h2) + a3b3cos(g3 − h3) (2.9)

If the experimental arrangement is made such that the same phase difference is

introduced in all the components, then:

g1 − h1 = g2 − h2 = g3 − h3 = δ (2.10)

Substituting Eqn. (2.10) in Eqn. (2.9),

J12 = 2�E1.E2� = (a1b1 + a2b2 + a3b3) cosδ (2.11)

As is clear from the above equation, the interference term depends on amplitudes of

components of two superimposing waves and the phase difference them. The phase δ
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depends on the path difference between two waves. This property can thus be manipu-

lated to determine the phase adding properties of transparent transmissive objects.

In the next subsection, the basic principle and working of these two classical inter-

ferometers namely the Mach-Zehnder and the Michelson’s interferometer (which are

the familiar examples for interferometers based on division of amplitude) has been ex-

plained.

2.2.3 Two Beam Interference Based on Division of Amplitude

2.2.3.1 (i) Mach-Zehnder Interferometer

The diagram of a basic Mach-Zehnder interferometer has been shown in Figure 2.1. In

this arrangement, a laser source is coupled with spatial filtering assembly (SFA), the

purpose of which is to filter out the central lobe of Airy pattern formed in the far field

as a result of diffraction from circular aperture at the laser source.

Figure 2.1: The Mach-Zehnder Interferometer

This is followed by a collimating lens L1 of an appropriate focal length. The front

focal plane of L1 is adjusted such that it lies at the pinhole of spatial filtering assembly,

thus giving a collimated beam. This beam now splits up at the beam splitter BS1 into

two equal intensity beams, one is transmitted out of the beam splitter and another is

reflected from its surface. These beams propagate at an angle of 90◦ with respect to each

other. The beam going in line with the propagation direction of the unsplitted beam is

labeled, the reference beam, and the corresponding arm of the interferometric set up, the

reference arm. Similarly, the beam propagating perpendicular to the unsplitted beam is
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labeled the object beam and the corresponding interferometric arm, the object arm.

The mirrors, M1 and M2 are both placed at equal distance with respect to the beam-

splitter BS1 so as to make the path length traveled by both the object and reference

beams approximately equal. The object and reference beams, after traveling through

their respective paths combine at the beam splitter BS2 and form an interference fringe

pattern, which can be seen at any of beam splitter end. The fringes formed are circu-

lar, when the mirrors M1 and M2 are parallel. These can be made convex inwards or

outwards or approximately straight parallel by suitably adjusting the mirror tilts.

2.2.3.2 (ii) Michelson’s Interferometer

In Michelson’s interferometer Figure 2.2, in a similar manner, a spatial filtering assem-

bly (SFA) and a collimating lens (L1) render the incoming laser beam parallel, after

which it is split by a beam splitter BS1 into two mutually perpendicular plane propagat-

ing beams.

Figure 2.2: The Michelson’s Interferometer

The beam propagating parallel to the direction of propagation of the unsplitted beam

is labeled the reference beam and the corresponding arm, the reference arm and the

beam propagating perpendicular to the unsplitted beam is labeled the object beam and

the corresponding arm, the object arm. Both these beams combine at the beam splitter

BS1 after respective reflections from mirrors M2 and M1. The fringes thus formed are

circular when M1 is parallel to the virtual image of M2. The mirror tilts can be adjusted
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accordingly to get desirable fringes.

It should be noted that though both the above interferometric geometries are similar

in the sense of mechanism of obtaining the interference fringes (i.e. division of ampli-

tude), they differ in their geometries. In Michelson’s interferometer, on account of back

reflection from the mirrors M1 and M2, both the object and reference beams travel in

their respective arms twice, retracing their paths, before combining again at the source

beam splitter. This should be contrasted with the Mach-Zehnder geometry, in which the

object and reference beams split up and combine at a separate beam splitters and do not

retrace their path. Thus, one can refer to the Mach-Zehnder geometry as single passage

and Michelson’s geometry as double passage geometry. In both these interferomet-

ric arrangements, when an unknown transmissive medium is inserted as object in one

of their arms, an additional phase is added to the object beam once in Mach-Zehnder

and twice in Michelson’s interferometer. This added phase can be extracted from the

acquired fringe pattern images.

In the next part, slight modifications to the above said geometries have been ex-

plained. This involves adding a 4f imaging system, to image the object wave-field

appearing right after the inserted object directly into the imaging system.

2.2.3.3 (iii) Modified Interferometers by Inclusion of the 4f Imaging Systems

A 4f imaging system uses the Fourier transforming property of a lens and gives an

exact image of the object field distribution (Figure. 2.3).

When an object is placed at the first focal plane of a converging lens, its Fourier

transform or the Fraunhoffer diffraction pattern appears at the back focal plane of the

lens. This pattern can act as object for another convex or converging lens, when its focal

plane coincides with the back focal plane of the first lens (and hence the pattern), the

second lens further acts as a Fourier transformer (to the pattern appearing at the back

focal plane of the first lens) and the Fourier transform of the said pattern can be seen at

its back focal plane. This final Fourier transform is nothing but the original object field

distribution. Therefore, in order to retrieve the exact object field distribution, from a 4f

imaging system, one needs to place the object-in-question at the front focal plane and

the detecting system at the back focal plane of this system.

The scheme of a 4f imaging system has been shown in Figure 2.3. The object to
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Figure 2.3: 4f Imaging System

be imaged is kept at the object plane which is at a distance f (i.e. focal length of

converging lens 1 and 2) with respect to the first converging lens. The image is captured

at the imaging plane which is at the back focal plane of the second converging lens. The

two lenses are 2f distance apart.

The interferometric arrangement which is being used for calculating the phase adding

properties of an unknown transmissive medium, can be modified by the insertion of a

4f imaging system, placed strategically such that its first focal plane coincides with the

exit plane of the object (when present) and the detecting system with the second focal

plane (Figure 2.4 (a) and (b)).

The system thus formed is then capable of measuring the phase added to the prop-

agating beam at the exit plane of the object-in-question rather than after some propa-

gation in free space behind it. This method of including a 4f imaging system in the

interferometric geometry is advantageous in the sense that, since the beam traversing

through the object is captured right at its exit plane, there is no inclusion of any other

effects because of its propagation through another medium (i.e. free space). In other

words, the phase added purely due to a propagation inside the object can be computed.

Thus, while analyzing phase added to the propagating beam due to the said object, one

can achieve results which are purely for wave propagation through the object.

The modified schemes of Mach-Zehnder and Michelson’s interferometers have been

shown in Figure 2.4(a) and (b) (with the insertion of 4f imaging system) respectively.

The object is inserted at the indicated places.
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(a)

(b)

Figure 2.4: Modified Mach-Zehnder (a) and Michelson’s (b) Interferometers

Since the basic aim of the work requires to retrieve the additional phase added to a

633 nm wavelength on its propagation through the PRPPs, both the modified geometries

of the Mach-Zehnder and Michelson’s interferometers are considered for the purpose.

The said PRPPs have been manufactured in such a fashion that they have the capacity

of introducing a random phase to a beam propagating through them without affecting

its amplitude. The PRPPs’ composition has been explained in detail in the following

section.
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2.2.4 Details of Pseudo-Random-Phase-Plates

The mentioned phase plates (referred to as PRPP1 and PRPP2) along with their control-

ling systems have been bought from Lexitek motors Mantravadi et al. (2004). These

have been designed and tested for providing atmospheric turbulence like conditions to

a propagating beam at 1550 nm wavelength. The phase plates apparently are packed,

static, circular and transparent media having annular regions. They are approximately

10 mm thick (refer Figure 2.5).

Figure 2.5: Photograph of a Pseudo-Random-Phase-Plate

Inside, these have been designed using optical glass, acrylic, and a unique near-

index-matching polymer that gives them a stable mechanical structure. As can be seen

in Figure 2.6, they are composed of 5 layers : 2 outer optical windows of BK7 glass,

2 inner layers of near-index-matching polymer, and 1 layer of acrylic with the desired

turbulence profile written on one side.

In order to manufacture such a configuration, the acrylic layer is first machined with

the turbulence onto one surface. A layer of polymer is then placed onto each side of

the acrylic resulting in a near-index matching sandwich. Next, the plate is sealed with

optical window glass which holds the entire package together in a mechanically stable

configuration. The BK7 glass is then coated with an anti-reflective coating. The ar-

rangement of layers is seen to be mechanically symmetric so that environmental factors

such as stress due to thermal expansion are less likely to cause the PRPPs to sepa-

rate into their individual layers. Owing to their design, the PRPPs are mechanically

robust enough to be mounted easily without deformation. The PRPPs’ design was de-

veloped at the Starfire Optical Range, and they were manufactured by Lexitek corpo-
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Figure 2.6: A Pseudo-Random-Phase-Plate (PRPP)

ration Mantravadi et al. (2004). These PRPPs have been imprinted with Kolmogorov

turbulence, with a known Fried’s parameter. This was done by generating phase screens

using standard Fourier transform techniques filtered with a Kolmogorov spectrum. Each

phase screen had 4096 sample phase points across a side. The turbulence was written

on a 3.28" diameter acrylic annulus, with a 1.35" diameter obscuration, resulting in ap-

proximately 20µ m sample spacing (Figure 2.6). Before machining the phase profile

into the acrylic, two modes of tilt were removed to help with fabrication tolerances.

The two PRPPs, differ in the sense of Fried’s coherence length for a particular wave-

length. Once mounted on specially designed high speed rotary stage, the PRPPs can be

controlled and rotated with speeds ranging from 0.15625 rpm to 2470.2 rpm. The pho-

tograph of the PRPP mount (which is connected to stepper motor controller for rotation)

has been shown in Figure 2.7.

The varying refractive index profile in a PRPP lies only in the middle of the annular

region and the whole phase plate is divided into 4096 sample phase points Figure 2.6.

The diameters of various regions have been indicated in Figure 2.6 and a section show-

ing layers involved in the manufacture of a phase plate has been shown towards the right

in the same figure.

These specially designed phase plates are used as objects in the modified Mach-

Zehnder and Michelson’s interferometers and the additional phase added by them to

the propagating 633 nm laser beam is retrieved. The following sections explain the
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Figure 2.7: Photograph of a PRPP Mount

experimental algorithm for the same.

2.3 Experimental Procedure and Theory

The interference pattern in a modified interferometer (i.e. inserted with a 4f imaging

system) can be recorded in the following two situations :

1. When the unknown medium (here, PRPP) has not been inserted.

2. When the unknown medium has been inserted in the object arm.

In situation 1, straight line fringes tilted with respect to the horizontal axis at an

angle of about 45◦ (obtained by suitably tilting mirrors M1 and M2) are captured. In

situation 2, the fringes seen in situation 1 shift or get distorted in accordance with the

properties of the medium in question (PRPP). This additional phase introduced due

to the medium can be retrieved and analysed by subtracting the phase retrieved from

fringes in situation 1 from those retrieved in situation 2. This is done with the intention

of understanding the behavior of two PRPPs i.e. PRPP1 and PRPP2 (available in the

laboratory) at a wavelength of 633 nm using a low power (12mW) He-Ne laser.

Both the interferometric geometries for the modified Mach-Zehnder and the Michel-

son’s interferometer are used for retrieving the phase added due to these phase plates to

a 633 nm wavelength laser beam. These phases are subsequently analysed by calculat-

ing the phase structure function.

20



As has been previously discussed, in Mach-Zehnder interferometer, the object beam

traverses through the unknown medium kept in the object arm only once before com-

bining with the reference beam at the second beam splitter to form the fringe pattern.

Thus, the object beam experiences only a single passage through the medium under

consideration (i.e. here, PRPP1 or PRPP2). On the other hand, in case of Michelson’s

interferometer, the object beam passes through the medium twice, thereby experiencing

a double passage through the medium. Therefore, eventually a total of four different

cases are to be dealt with :

1. PRPP1 inserted as object in the object arm of the Mach-Zehnder interferometer.

2. PRPP2 inserted as object in the object arm of the Mach-Zehnder interferometer.

3. PRPP1 inserted as object in the object arm of the Michelson’s interferometer.

4. PRPP2 inserted as object in the object arm of the Michelson’s interferometer.

Figure 2.8 illustrates modified interferometric schemes used in the laboratory for the

present experimental purposes.

Here, in both (a) and (b), SFA is the spatial filtering assembly, ND is the neutral

density filter, BS1 and BS2 are 50-50 beam splitters, M1 and M2 are the reflecting

mirrors, L1 is f = 10 cm collimating lens, L2 and L3 are convex lenses with focal length

f = 25 cm each, PRPP is one single Pseudo-Random-Phase-Plate (either of PRPP1 or

PRPP2), and CCD is the charge coupled device. In Figure 2.8 (a), the interferometric

geometry has been shown for the experimental step in which one PRPP (any of PRPP1

or PRPP2) has been inserted in the object arm of the Mach Zehnder interferometer.

Similarly, Figure 2.8 (b) shows the experimental step in which one PRPP (any of PRPP1

or PRPP2) is inserted in the object arm of the Michelson’s interferometer. The readings

for the step in which any PRPP is not inserted are taken by just omitting the PRPP from

the indicated position in both the shown cases.

In Mach-Zehnder set up, as can be seen in Figure 2.8 (a), a 4f imaging system is

inserted after the beam splitter BS2 such that the object to be analysed can be placed

at the first focal plane of lens L2 and the imaging system (i.e. the CCD) at the second

focal plane of lens L3. The reference beam on reflection from mirror M1 reaches the

beam splitter BS2 and combines with the object beam. The fringe pattern formed due

to the superposition of 1) wave field appearing at the second focal plane of lens L3
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(a)

(b)

Figure 2.8: Mach-Zehnder and Michelson’s Schemes used in Laboratory

(which is same as the one transmitted just out of the object) and 2) reference beam,

is captured by the CCD at the second focal plane of lens L3. Thus, in this geometry,

the random phase added solely due to the object is isolated by capturing fringes in two

situations, 1) without the object, 2) with the object inserted at the specified location and

subtracting the phase retrieved in situation 1) i.e. when no object has been inserted from

that retrieved in 2), when the object is inserted.

In Michelson’s interferometer (Figure 2.8 (b)), again, a 4f imaging system is in-

serted in the object arm and the images are captured using a CCD carefully placed at

the second focal plane of lens L3. In this interferometric geometry the object (PRPP1 or

PRPP2) is placed very close to the mirror M1, so that the distance between the object and
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mirror is negligible, hence ensuring that the beam after traversing through the PRPP

(1 or 2), suffers almost a negligible propagation through free space, before getting re-

flected from the mirror M1 again into the PRPP. Here also, the wavefront appearing

right after the object is captured into the CCD using the same 4f system as was done in

the Mach-Zehnder arrangement (Figure 2.8 (a)) The random phase added solely due to

the object is isolated by capturing the fringes in the same two situations, i.e., 1) without

the object, 2) with the object inserted at the specified location and subtracting the phase

retrieved in 1) from that in 2).

The CCD used in both the experiments is a 640 × 480 camera having pixel size

9.9 × 9.9µm2 and a frame capturing speed of 51.9 frames per second. During the

experiments, the PRPPs are always rotated with the same velocity so that the object

beam sees different portions of the phase plates, but the rotation speed is kept such that

for all practical purposes, the camera always captures a static phase plate scenario. In

the next section, the theory and the steps involved in phase retrieval from the fringe

pattern images has been explained.

2.3.1 Phase Retrieval

The spatial frequency of a captured fringe pattern is always kept high, so that while

analyzing the fringe pattern images, the interference term (Eqn. (2.11)) can be easily

isolated from the dc term (i.e. first two terms in Eqn. (2.8)) by high pass filtering in the

Fourier domain. It should be noted that in Eqn. (2.8), the first two terms represent the

intensities of the two interfering beams. These have been rendered uniform owing to

collimation and hence the summation of these two gives a uniform background intensity

(or dc) to the fringe images. The sinusoidal interference term can thus be isolated

by Fourier High pass filtering of the fringe pattern image. Since this isolated signal

now is real, one can form a complex analytic signal out of this given real signal by

suppressing the negative spatial frequencies in its Fourier domain and inverse Fourier

transforming the remaining signal. The angle of the finally obtained complex signal�
i.e. tan−1

�
Imaginary part of the obtained complex signal

Real part of the obtained complex signal

��
gives the phase δ.
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2.3.1.1 Phase Retrieval Steps using MATLAB Code

As has been discussed above, the obtained fringe pattern images are analysed one-by-

one by realizing the following steps Ikeda et al. (2005) using a MATLAB program.

1. A captured fringe image matrix is converted to a gray scale matrix, retaining only

the intensity information (Figure 2.9)

2. This gray scale matrix is first resized from 640 × 480 to 480 × 480 and then is

padded with zeros equally on all four sides, so that the matrix size now increases

to a size, 960× 960 and the corresponding image looks like an image embedded

in a black background. The padding with zeros is done to increase the spatial

resolution. This new image matrix is denoted as Ipadded(i, j), where i and j are

the row and column indices respectively of this matrix and both go from 1 to 960.

(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 2.9: Row 1: (a1), (b1) and (c1) respectively show captured images of

the undistorted fringes, fringes when PRPP1 is inserted and fringes

when PRPP2 is inserted in Mach-Zehnder interferometer. Row 2:

(a2), (b2) and (c2) now show captured images of the undistorted

fringes, fringes when PRPP1 is inserted and fringes when PRPP2 is

inserted (respectively) in Michelson’s interferometer.

The figures above (in Figure 2.9) show the captured (resized and gray-scaled)
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images when PRPP1 and PRPP2 are inserted as objects in the Mach-Zehnder and

Michelson’s interferometric geometries respectively. The first row images, i.e.

(a1), (b1) and (c1) respectively show the undistorted fringes (i.e. fringes without

the insertion of any phase plate), the distorted fringes due to insertion of PRPP1

as object and the distorted fringes due to insertion of PRPP2 as object in Mach-

Zehnder (single passage) interferometer. The second row (i.e. (a2), (b2) and

(c2)) shows the fringes in a similar sequence but with the respective insertions in

Michelson’s interferometer.

3. Ipadded(i, j) is now Fourier transformed using the MATLAB command fft2 and

the Fourier transform of Ipadded(i, j) is called Ifourier(i, j). It should be noted

that Ifourier(i, j) is also of the size 960× 960.

4. Ifourier(i, j) is now centered using the MATLAB command fftshift. This com-

mand swaps the first quadrant with the fourth quadrant and second quadrant with

the third quadrant.

(a3) (b3) (c3)

(a4) (b4) (c4)

Figure 2.10: The above zoomed in images show the (fftshifted) Fourier domain

representations of the images shown in Figure 2.9 in the same or-

der.

The new centered matrix is called, Ifftshift(i, j) (Figure. 2.10). Due to centering

by fftshift, in the matrix Ifftshift(i, j), the whole dc term comes to the center i.e.
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at the pixel position i = 480, j = 480 and the side frequency bands can also be

easily located. In this matrix, the frequencies to the left of the column j = 480

are the negative spatial frequencies and those towards its right are the positive

ones.

Figures in 2.10 show the centered (zoomed in) Fourier transforms of the captured

images. (a3), (b3) and (c3) respectively show the centered Fourier transforms of

the undistorted fringes (i.e. fringes without the insertion of any phase plate), the

distorted fringes due to insertion of PRPP1 as object and the distorted fringes due

to insertion of PRPP2 as object in Mach-Zehnder (single passage) interferometer.

The second row (i.e. (a4), (b4) and (c4)) similarly shows the centered Fourier

transforms with the insertions in Michelson’s interferometer in the same sequence

as the first row.

5. The Butterworth High pass filter matrix H(i, j), which is defined as:

H(i, j) =
1

(1 + ( r0
r(i,j)

)2n)
(2.12)

with r0 = 40, n = 1 and r2(i, j) = (i − 480)2 + (j − 480)2, the radial distance

corresponding to each (i, j)th location in the matrix, with respect to i = 480, j =

480 is now computed.

6. This, H(i, j) is point-wise multiplied with Ifftshift(i, j), thus filtering out the dc

term and the lower spatial frequencies from the Ifftshift(i, j). With the removal

of the dc term, one is only left with the desired sinusoidal phase term. The But-

terworth High pass filtered Ifftshift(i, j) is now referred to as Ifilter(i, j). This

has been shown in Figure 2.11, where, the centered Fourier transforms shown in

Figures 2.10 have been filtered using the Butterworth High pass filter.

7. From Ifilter(i, j), the negative spatial frequencies are removed, by assigning a

zero value to all the matrix entries before j = 480. The new matrix is now named

as Ifilterpositive(i, j).

8. This Ifilterpositive(i, j) is now again decentered using fftshift in MATLAB and the

480 × 480 quadrant containing the side band with higher spatial frequencies is

retained as a new matrix Ifftfinal(i, j) with i and j now going from 1 to 480.
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(a5) (b5) (c5)

(a6) (b6) (c6)

Figure 2.11: The Fourier domain images shown in Figure 2.10 are now filtered

using Butterworth high pass filter and the resultant images have

been shown above in the same order as previous.

Figure 2.12 shows the finally selected, zoomed in portions of Ifftfinal(i, j) for

each of the said case, in the usual sequence.

9. The inverse Fourier transform of Ifftfinal(i, j) is the required complex analytic

signal Ikeda et al. (2005) and is named as Ifinal(i, j). It is of size 480× 480.

10. Finally, tangent-inverse of the ratio of imaginary part by the real part of every

entry in Ifinal(i, j) gives the required phase angle for each matrix entry and hence

the initial image. The resultant is the phase angle matrix denoted as Φ(i, j).

11. Since, the phase extracted from an image, Φ(i, j) is in a highly wrapped form, the

MATLAB command unwrap is used on the matrix Φ(i, j) to unwrap it.

Using the above algorithm, the phase matrix Φ(i, j) is extracted out of the retrieved

fringe pattern images for all cases (i.e. insertion of PRPP1/PRPP2 as object) in both

single and double passage interferometric geometries. Also, in both the said geome-

tries, the phase matrix when no object is inserted in the object arm (using the same

algorithm as above) is extracted and is called Φdirectmach(i, j) for the phase extracted

27



(a7) (b7) (c7)

(a8) (b8) (c8)

Figure 2.12: Here, the finally selected, zoomed in portions of Ifftfinal(i, j) (i.e.

the finally selected portion in Fourier domain of an image) for

each of the said case, in the usual sequence have been shown.

in Mach-Zehnder interferometric geometry (single passage) and Φdirectmich(i, j) for the

corresponding phase in Michelson’s geometry (double passage).

Now, to retrieve the phase added to the beam just because of the inserted object for

all cases, in both the geometries, Φdirectmach(i, j) is point-wise subtracted from Φ(i, j)

extracted for object insertions in Mach-Zehnder geometry and similarly Φdirectmich(i, j)

is point-wise subtracted from Φ(i, j), extracted for object insertions in Michelson’s

geometry. This gives the desirable phase introduced into the beam due to its passage

just through PRPP1/PRPP2. Only 55 × 55 sized faithfully unwrapped matrix could be

retrieved in this manner, since the removal of all phase discontinuities could only be

done within this sized portion for all cases (Figure 2.13).

In (a9) and (a10) in Figure 2.13, the phase unwrapped portions extracted for the

undistorted fringe pattern images (with no object inserted) in Mach-Zehnder (Φdirectmach(i, j))

and Michelson’s interferometers (Φdirectmich(i, j)) respectively have been shown. These

are further subtracted point wise from the phase unwrapped portions retrieved when any

of PRPP1 or PRPP2 is inserted in the mentioned interferometers. (b9) shows one such

55×55 phase unwrapped portion when PRPP1 is inserted as object in the Mach-Zehnder
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(a9) (b9) (c9)

(a10) (b10) (c10)

Figure 2.13: In the above, the phase unwrapped portions extracted from fringe

pattern images (shown in the sequence of figures from (Figure 2.9

to Figure 2.12) have been presented in similar sequence.

interferometer. (c9) on the other hand shows another 55× 55 phase unwrapped portion

when PRPP2 is inserted as object in the Mach-Zehnder interferometer. Similarly, (b10)

and (c10) show the 55 × 55 phase unwrapped portions when PRPP1 and PRPP2 are

respectively inserted in the Michelson’s interferometer.

The steps given above are repeated for all the captured fringe pattern images in

single (Mach-Zehnder interferometer) as well as double passage (Michelson’s interfer-

ometer) cases to get the corresponding 55 × 55 retrieved phase matrix portions. Each

entry of these retrieved matrices is indicative of the phase introduced in the beam due

to its passage just through PRPP1/PRPP2.

In the next section, the analysis done on these retrieved phase matrices has been

explained. This is required to decide about the nature (Kolmogorov/non-Kolmogorov)

of the PRPP1/PRPP2 under consideration and pursue a further discussion on them.
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2.3.2 Analysis, Results, and Discussion

2.3.2.1 (i) Theoretical Background

Let the retrieved single passage phase matrices be denoted as Φsingle(i, j) and the double

passage phase matrices as Φdouble(i, j), where the pixel positions are the (i, j)th matrix

entries owing to discretization of the detector area (CCD surface). The corresponding

structure functions are calculated from Φsingle(i, j) and Φdouble(i, j) as follows:

DΦsingle
(r) = �(Φsingle(i, j)− Φsingle(i + r, j))2� (2.13)

DΦdouble
(r) = �(Φdouble(i, j)− Φdouble(i + r, j))2� (2.14)

where r varies from 1 to 54 in units of pixels. �·� denotes the ensemble average which

is taken for the given case (single or double passage) over all the considered phase

portions.

The following are the relations between DΦ(r) and r for the Kolmogorov and non-

Kolmogorov behavior of the given transmission medium Rao et al. (2000):

DΦ(r) =





γβ

�
r
ρ0

�β−2

2 < β < 4

−2β−2 Γ(β/2)

Γ( 2−β
2 )

γβ

�
K4−β

0

(β−2)(β−4)

�
r2

ρβ−2
0

β > 4
(2.15)

Where, γβ =
2β−1[Γ(β+2

2 )]
2
Γ(β+4

2 )
Γ(β

2 )Γ(β+1)
and K0 =

2π
L0

.

L0 represents the turbulence outer scale.

In Eq. (2.15), β is the factor which determines the power law for r and has a value
11
3

for the Kolmogorov case. γβ is the consistency parameter that depends on β (for

β = 11
3

, γβ ≈ 6.88). ρ0 is the generalized coherence length, which is equal to Fried’s

coherence length r0 for β = 11
3

. It can also be observed from Eqn. (2.15) that:

• For 2 < β < 4, the slope of the plot between log10(DΦ(r)) and log10(r) lies in

(0, 2) (for Kolmogorov case where, β = 11
3
, slope = β − 2 = 5

3
≈ 1.67) and,

• For β > 4, the slope is 2.

For the present case, the computed DΦsingle
(r) and DΦdouble

(r) are tested for the na-

ture of their dependence on r. Using a separate MATLAB code, the phase structure
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function is calculated using Eq. (2.13) and (2.14) from the collected samples (for single

and double passage cases) and the slope for linear curve fits between log10(DΦsingle/double
(r))

and log10(r) are obtained for each case.

The characterization of the PRPPs as Kolmogorov/non-Kolmogorov turbulence sim-

ulators is done according to the values of the obtained slopes as has been outlined above.

2.3.2.2 (ii) Tables, Plots, and Interpretations

For the purpose of characterizing the PRPPs, an ensemble of 1200, 55 × 55 phase

unwrapped portions is collected for every case defined in Section 2.3. Then, for each

case, through a separate MATLAB code, an increasing number of phase unwrapped

portions is randomly selected as an ensemble, out of the given total of 1200. Starting

with an ensemble size of 200, the ensemble size is increased in steps of 200, until the

maximum available size of 1200 is reached. Each process for random sample selection

of a given size and the subsequent phase structure function calculation from it (for the

determination of slope for linear fit between log10(DΦ(r)) vs. log10(r)) is repeated 10

times and finally the mean for all the 10 slopes is taken as the slope value corresponding

to the ensemble size in question.

In this manner, the values of slopes for the linear fits between log10(DΦsingle
(r))

vs. log10(r) and log10(DΦdouble
(r)) vs. log10(r) obtained for a single passage in Mach-

Zehnder interferometer and double passage in Michelson’s interferometer respectively

are calculated for all cases. Table 2.1 summarizes the results for the mean values of

slopes for log10(DΦsingle
) vs. log10(r) calculated for 10 iterations each of an increasing

number of randomly selected phase unwrapped portions from a total available 1200

Table 2.1: Single Passage: Slope calculation

No. of Randomly Selected Slope

Phase Unwrapped Portions PRPP1 PRPP2

200 0.91 ± 0.35 1.24 ± 0.31

400 0.94 ± 0.35 1.24 ± 0.36

600 0.93 ± 0.31 1.24 ± 0.34

800 0.93 ± 0.35 1.24 ± 0.35

1000 0.93 ± 0.34 1.24 ± 0.34

1200 0.93 ± 0.34 1.24 ± 0.34
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portions for single passage in Mach-Zehnder geometry.

Similarly, Table 2.2 shows the mean values of slopes for log10(DΦdouble
) vs. log10(r),

again calculated for 10 iterations each of an increasing number of randomly selected

phase unwrapped portions, for double passage in Michelson’s interferometer geometry.

Table 2.2: Double Passage: Slope Calculation

No. of Randomly Selected Slope

Phase Unwrapped Portions PRPP1 PRPP2

200 1.34 ± 0.27 1.64 ± 0.18

400 1.34 ± 0.26 1.64 ± 0.21

600 1.34 ± 0.28 1.64 ± 0.22

800 1.34 ± 0.29 1.64 ± 0.21

1000 1.34 ± 0.27 1.64 ± 0.21

1200 1.34 ± 0.28 1.64 ± 0.21

As is evident from these tables, the slope calculation is fairly robust and repro-

ducible till the second decimal place, thus the slope values for the whole ensemble i.e.

sample number 1200 are considered as final results for further analysis and interpre-

tations. Figure 2.14 shows plots for the obtained results for all the cases discussed in

Section 2.3.

Frame (a) and (b) show the linear curve fit plots between log10(DΦsingle
(r)) vs.

log10(r) for cases with the insertion of PRPP1 and PRPP2 respectively in Mach Zehnder

(or single passage) geometry (Eqn. 2.13) and frames (c) and (d) show the linear curve

fits between log10(DΦdouble
(r)) vs. log10(r) for the same cases in Michelson’s (or dou-

ble passage) geometry (Eqn. 2.14). The averaging for the calculation of phase structure

function has been done over a sample number of 1200 in all the cases.

The violet straight line in each case shows the linear curve for Kolmogorov’s case,

wherein the slope is 5
3
. It should be noted that for a realistic Kolmogorov turbulence,

the violet straight line shown will have a finite intercept depending on Fried’s coherence

length (r0) and will not pass from zero on the y axis. Here, the straight line has been

drawn like this, just for a visual comparison. Also, error bars (calculated on the lines of

APPENDIX A) for each point in all plots have been shown as green dots.
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(a)

(b)

(c)

(d)

Figure 2.14: Plots Obtained for Characterization
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The slopes obtained from the linearly fitted curves for all cases can be seen in the

equations mentioned in the corresponding frames. It is evident from the plots that all the

four considered cases represent non-Kolmogorov turbulence regimes Eqn. (2.15) with

varying levels of closeness with respect to the Kolmogorov regime (which has been

drawn as a violet line in each plot with a slope value of 5
3
). The closest possible case

(i.e. the slope which shows the maximum closeness to the Kolmogorov slope) is that

for a double passage through PRPP2. Table 2.3 and Table 2.4 show the obtained results

for the slopes obtained for both single and double passage geometries, when PRPP1

and PRPP2 respectively were used as objects. For a comparison between the two slopes

obtained in the two geometries (single and double passage), a criterion Difference(%),

is defined and is given as :

Difference (%) =
(xdouble − xsingle)

xsingle

× 100 (2.16)

where, x denotes the parameter in question i.e, slope. It compares the Difference per-

centage introduced due to double passage with respect to its single passage value.

It can be seen from the Difference (%) value in these tables, that, there is an increas-

ing tendency of approaching towards the slope value for Kolmogorov turbulence on an

increase in the number of passages through the phase plate. PRPP2 (with the double

passage slope value of 1.64) almost approaches Kolmogorov slope value of 1.67 with

a Difference (%) equal to 32. On the other hand, though the measured increase in the

Difference (%) for PRPP1 is greater, the slope value approaches only 1.34.

Therefore, it is evident from the results summarized in Tables 2.3 and 2.4 that by

increasing the number of passages through a PRPP, which otherwise presents a non-

Kolmogorov turbulence regime in the path of the propagating beam, one can possibly

approach the Kolmogorov turbulence regime.

To summarize, two Pseudo-Random-Phase-Plates (PRPP1 and PRPP2) have been

characterized, using the Mach-Zehnder and Michelson’s interferometers respectively.

The Michelson’s interferometer geometry allows a double passage through the object

in question, in contrast to the single passage allowed through the object in the Mach-

Zehnder interferometer. The phase introduced due to a PRPP is retrieved in both the

cases and is analysed by calculating the phase structure function. It is found that though

both the PRPPs behave like non-Kolmogorov turbulence simulators in both single and
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Table 2.3: Slope Comparison for PRPP1

Interferometric Scheme PRPP1

Single Passage 0.93

Double Passage 1.34

Difference (%) 44

Table 2.4: Slope Comparison for PRPP2

Interferometric Scheme PRPP2

Single Passage 1.24

Double Passage 1.64

Difference (%) 32

double passage cases for 633 nm wavelength, the characteristics of turbulence in the two

cases are different. The difference in these characteristics has been summarized in Ta-

bles 2.3 and 2.4 by means of the Difference(%). The results show that on increasing the

number of passages through the PRPPs, there is a possibility of achieving Kolmogorov

turbulence regime.

In the next section, an analysis of the interferometric experiments done with the two

possible combinations of PRPP1 and PRPP2 has been presented.

2.4 Analysis on Combinations of PRPPs

Now, a combination of PRPPs (i.e. PRPP1 and PRPP2) which have been characterized

at 633 nm as non-Kolmogorov turbulence simulators is used in the Mach-Zehnder (sin-

gle passage through the object) and Michelson’s (double passage through the object)

interferometer as a combined object. The retrieved phases from the fringe pattern im-

ages in these two geometries are again analysed using the phase structure function. The

experiments are performed using both Mach-Zehnder (single passage through the ob-

ject) and Michelson’s (double passage through the object) interferometers as has been

shown in the Figures 2.15 (a) and (b).

The above Figure 2.15 shows the interferometric schemes used for the experiment.

These are similar to those discussed in Figures. 2.8 (a) and (b), except for the fact that
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Figure 2.15: Interferometric Schemes for Combined Object

now the inserted objects are PRPP combinations.

It must be noted that the sequence of insertion, when looked in the direction of

the propagating beam in object arm is PRPP1 → PRPP2 → Beam-Splitter, the inserted

object together has been named as PRPP21. On the other hand, the name PRPP12 refers

to the sequence PRPP2 → PRPP1 → Beam-Splitter. The phases added to the 633nm

collimated He-Ne laser beam propagating through PRPP12 and PRPP21 are retrieved,

by performing phase retrievals on images, using Hilbert-transform pair technique Ikeda

et al. (2005) in MATLAB codes (discussed earlier in Section 2.3.1.1).

Subsequently, a 55 × 55 phase unwrapped portion is selected out of each and the
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phase structure function Dφsingle/double
Rao et al. (2000) is calculated on this collected

ensemble for each case (Eqns. (2.13) and (2.14)).

Figure 2.16 illustrates the procedure for obtaining 55 × 55 unwrapped phase por-

tions from the fringe pattern images obtained in Mach Zehnder (or single passage)

and Michelson’s (or double passage) interferometric geometry for the above discussed

cases. The sequence a (i.e. (a1), (a2), (a3), (a4) and (a5)) illustrates the steps involved

in phase extraction from fringe pattern images when the combination PRPP12 is in-

serted as object (in the focal plane of lens L2) in the Mach-Zehnder interferometer (Fig-

ure 2.15 (a)). (a1) shows a captured fringe image from the CCD, (a2) shows the zoomed

in version of the Fourier transform for (a1), (a3) shows the same zoomed in version

of the Fourier transform after high pass filtering, (a4) is the finally selected zoomed in

portion in the Fourier domain and (a5) shows one of the extracted phase unwrapped

portions introduced just due to PRPP12. Similarly, the sequence b ((b1), (b2), (b3), (b4)

and (b5)) corresponds to the case where PRPP12 was inserted in the focal plane of lens

L2 as object in the Michelson’s interferometer (Figure 2.15 (b)). It shows one of the

images taken by the CCD in (b1), its Fourier transform in (b2), its high pass filtered

Fourier transform in (b3), the zoomed in finally selected portion in Fourier domain in

(b4) and one of the retrieved phase unwrapped portion of size 55× 55 in (b5). In a sim-

ilar fashion, the phase unwrapped portions and the involved steps for the cases where

PRPP21 was inserted as object (in the focal plane of lens L2) in the Mach-Zehnder and

the Michelson’s interferometer have been shown in sequences c and d respectively.

The slope for log10Dφsingle/double
(r) vs. log10(r) with r going from 1 to 54 in pixel

units for each case, along with the equation for its linear fitted curve has been shown in

Figure 2.17. These figures show the results for the possible combinations of the PRPPs

in the two interferometric geometries considered, i.e. Mach-Zehnder (single passage)

and Michelson’s (double passage). Also, the slope for Kolmogorov regime has been

drawn in violet for all the cases.
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PRPP12 PRPP12 PRPP21 PRPP21

in Single Passage in Double Passage in Single Passage in Double Passage

Geometry Geometry Geometry Geometry

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d4)

(a4) (b4) (c4) (d4)

(a5) (b5) (c5) (d5)

Figure 2.16: Steps Involved in Phase Retrieval for PRPP Combinations
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(a)

(b)

(c)

(d)

Figure 2.17: Plots Obtained for the Two respective cases for Combined PRPPs
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Table 2.5 shows the results obtained for the two possible combinations of PRPP1

and PRPP2 for both single and double passage cases using the Difference(%) (refer

Eq. (2.16)) as the comparison criterion.

Table 2.5: Slope Comparison for PRPP12 and PRPP21

Interferometric Scheme PRPP12 PRPP21

Single Passage 1.31 1.43

Double Passage 1.50 1.56

Difference (%) 14 9

It is found that though all the considered cases fall into the non-Kolmogorov tur-

bulence regime, the non-Kolmogorov regime presented is different for PRPP12 and

PRPP21. Therefore, it can be concluded that the random phase profile added to the

propagating beam by these two random phase plates is dependent on the sequence in

which the beam passes through these phase plates. The tendency of approaching to-

wards Kolmogorov turbulence regime on increasing the number of passages through

the combined objects (PRPP12 and PRPP21) is also apparent.

In the next section, a phase-sharing experiment involving a Mach-Zehnder inter-

ferometric geometry has been mentioned. This is one of the applications of PRPP in

classical cryptography.

2.5 Phase Sharing using Mach-Zehnder Interferometer

To demonstrate the usage of PRPP (here, PRPP2), a phase-sharing scheme using the

Mach-Zehnder interferometric set-up has also been designed. In this scheme, two co-

herent light fields of the same wavelength having orthogonal polarizations are used as

sources at the two ends of a Mach-Zehnder interferometer. These are made to interfere

independently at the opposing ends of the interferometer, so that the phase estimated

by two observers at the two opposing ends of the interferometer is nearly identical. The

PRPP now, is inserted in one of the arms of the interferometer to demonstrate that such

a phase-sharing scheme could be converted to a secret-key sharing scheme.

The experimental scheme for the mentioned experiment has been shown in Fig-

ure 2.18. Coherent light field from 633 nm He-Ne laser (which is fully polarized) is
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Figure 2.18: Phase-sharing Experiment with the Mach-Zehnder Interferometer

attenuated (using a neutral density filter ND), spatially filtered (with a spatial filtering

assembly SFA), collimated, and passed through a rotated half-wave plate (HWP), be-

fore being split by a polarizing beam-splitter (PBS) into two light field sources with

orthogonal polarizations. These two light field sources act as the two inputs at the two

arms of the Mach-Zehnder interferometer. Both these sources are split and recombined

by Beam-splitter 1 and Beam-splitter 2 (BS1, BS2) to obtain the interference patterns at

the two observer ends of the interferometer. The PRPP is inserted in one of the arms

of the interferometer so that both the light field sources with orthogonal polarizations

encounter the same phase difference in the two arms of the interferometer.

Through the evaluation of the phase correlates of the shared phase samples avail-

able at the respective ends of the interferometer, the shared secret-key generation can

be demonstrated. The scheme could be in principle used by two remote observers to

simultaneously monitor and study a phase object inserted in one of the arms of the

interferometer.

Also, one of the major ways of tapping the suggested experiment’s potential is when

the two remote observers are well-separated spatially so that atmospheric turbulence in

the arms of the interferometer generates the shared random phases. It is worth notic-

ing that, the shared random phases could also be used in a more direct manner by the

respective observers for random phase encryption of images as well as other crypto-

graphic applications.
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2.6 Summary

In total, in the present work, the random phase introduced by two PRPPs (either individ-

ually or in-a-combination) in the path of a propagating 633 nm He-Ne laser wave-field

has been analysed. This has been done by inserting the PRPPs as objects (individ-

ually or in-a-combination) in one of the arms of a Mach-Zehnder and a Michelson’s

interferometers. It is found that both the PRPPs under consideration (which have been

claimed by the manufacturers as Kolmogorov turbulence simulators at 1550 nm) behave

like non-Kolmogorov turbulence simulators at 633 nm , when introduced individually

or jointly. Therefore, the work has quite emphatically revealed the wavelength depen-

dence of the characteristics of these media. It is also noticed that the nature of turbulence

depends upon the number of passages the beam travels through these PRPPs (individu-

ally or in-a-combination) and there is a tendency of approaching towards Kolmogorov

turbulence regime with an increase in the number of passages for 633 nm wavelength.

This shows the number of passage dependence of the characteristics of these media for

a particular wavelength.

It should also be noted that the employment of the two well known interferometric

geometries, namely the Mach-Zehnder and Michelson’s interferometer for single and

double passage respectively through the medium (PRPP1/PRPP2/PRPPs in-a-combination)

is also a novel approach for the exploration of such random media. Finally, a charac-

terized PRPP (PRPP2) has been used in a phase-sharing experiment involving a Mach-

Zehnder interferometric geometry to demonstrate the possibility of sharing a secret key

between two remote observers.
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CHAPTER 3

Wave Propagation Analysis using the Variance Matrix

3.1 Introduction

To characterize a given wave-field, one usually computes the expectation value of

the observable operators (such as position and momentum) on the wave-field Siegman

(1990); Wright et al. (1992); Simon et al. (1994); Simon and Mukunda (2000); Bas-

tiaans (1979). For a coherent wave-field, this can be done in a restricted manner by

evaluating its second moments which form the Variance matrix (V ) Simon et al. (1994);

Simon and Mukunda (2000). When a coherent wave-field propagates through a medium

capable of inducing random changes to its phase and amplitude, the wave-field gets

distorted, which is captured through V . This V can then be compared with the V cor-

responding to the undistorted wave-field, i.e. the one, which is not subject to passage

through random medium in question.

The present chapter considers one of the Pseudo-Random-Phase-Plates (PRPPs) be-

longing to the class of such media (which were characterized earlier in Chapter 2 as

non-Kolmogorov turbulence simulators with a 633 nm He-Ne laser source) and esti-

mates the V at different propagation distances, by allowing a single and double passage

of the wave-field through it.

3.2 Variance Matrix (V): Genesis, Properties, and Ap-

plications

The complete characterization of a beam upto the level of second moments can be done

using the Variance matrix, V Simon et al. (1994); Simon and Mukunda (2000). It is a

2n× 2n (with n being the number of modes), real, symmetric, positive-definite matrix.

For a realistic beam propagating along z direction (say), completely described by the x

and y modes in one particular transverse plane, V is a 4× 4 matrix with 10 independent

second moments.



In the present section, the genesis of V , and some of its important properties have

been put forth. Also, some physically significant entities derivable out of V are de-

scribed. These are subsequently used to investigate the effects of propagation of a

633 nm laser beam through the PRPP.

3.2.1 Basics of V

First, an arrangement of Hermitian operators Simon et al. (1994) q̂s and p̂s in the form

of a 2n component column vector Δξ̂, is considered. This is expressed as follows:

Δξ̂ =




Δq̂1 = q̂1 − �q̂1�
Δp̂1 = p̂1 − �p̂1�
Δq̂2 = q̂2 − �q̂2�
Δp̂2 = p̂2 − �p̂2�

...

Δq̂n = q̂n − �q̂n�
Δp̂n = p̂n − �p̂n�




(3.1)

where, �.� denotes the ensemble average of the respective variable.

n = 2 case is of importance here, i.e. a system described by a set of 2 variables/-

modes, such that: q̂1 = x̂, q̂2 = ŷ, p̂1 = p̂x and p̂2 = p̂y. Therefore, Δξ̂ becomes,

Δξ̂ =




Δx̂

Δp̂x

Δŷ

Δp̂y




(3.2)

Considering
�
Δξ̂i,Δξ̂j

�
, where [·] are the well known commutator brackets and

both i and j go from 1 to 4, all the commutation relationships between the elements of

the matrix Δξ̂ can be derived in the manner shown in APPENDIX B.1
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[ΔξiΔξj], when written explicitly in a matrix form, becomes :

[ΔξiΔξj] =




[Δξ1,Δξ1] [Δξ1,Δξ2] [Δξ1,Δξ3] [Δξ1,Δξ4]

[Δξ2,Δξ1] [Δξ2,Δξ2] [Δξ2,Δξ3] [Δξ2,Δξ4]

[Δξ3,Δξ1] [Δξ3,Δξ2] [Δξ3,Δξ3] [Δξ3,Δξ4]

[Δξ4,Δξ1] [Δξ4,Δξ2] [Δξ4,Δξ3] [Δξ4,Δξ4]




=




0 iň 0 0

−iň 0 0 0

0 0 0 iň

0 0 −iň 0




= iň




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0




(3.3)

The above deduced relations can be written in a concise form as follows :

[Δξ̂i,Δξ̂j] = iňβ (3.4)

where, both the indices i, j go from 1 to 4, and in (3.4), β is defined as :

β =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0



=


iσ2 0

0 iσ2


 (3.5)

with, σ2 being the Pauli’s matrix :

σ2 =


0 −i

i 0


 (3.6)

Now, considering the matrix , Δξ̂Δξ̂T :

45



Δξ̂Δξ̂T =




Δx̂

Δp̂x

Δŷ

Δp̂y




�
Δx̂ Δp̂x Δŷ Δp̂y

�
(3.7)

=




(Δx̂)2 Δx̂Δp̂x Δx̂Δŷ Δx̂Δp̂y

Δp̂xΔx̂ (Δp̂x)
2 Δp̂xΔŷ Δp̂xΔp̂y

ΔŷΔx̂ ΔŷΔp̂x (Δŷ)2 ΔŷΔp̂y

Δp̂yΔx̂ Δp̂yΔp̂x Δp̂yΔŷ (Δp̂y)
2




(3.8)

The elements of the above matrix can be evaluated further by considering the equa-

tions (B.1) to (B.16), as derived earlier. For instance, let the term Δx̂Δp̂x can be written

as :

Δx̂Δp̂x =
1

2
(2Δx̂Δp̂x)

=
1

2
(Δx̂Δp̂x +Δx̂Δp̂x) (3.9)

From (B.2) :

Δx̂Δp̂x = Δp̂xΔx̂+ iň (3.10)

Using (3.9) and (3.10) the expression for Δx̂Δp̂x becomes :

Δx̂Δp̂x =
1

2
(Δx̂Δp̂x +Δp̂xΔx̂+ iň) (3.11)

In a similar manner, all other entries in the matrix (3.8) can be deduced using Eqs. (B.1)
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to (B.16) to obtain the following :

Δξ̂Δξ̂T =




1
2
(Δx̂Δx̂+Δx̂Δx̂) 1

2
(Δx̂Δp̂x +Δp̂xΔx̂+ iň) 1

2
(Δx̂Δŷ +ΔŷΔx̂) 1

2
(Δx̂Δp̂y +Δp̂yΔx̂)

1
2
(Δp̂xΔx̂+Δx̂Δp̂x − iň) 1

2
(Δp̂xΔp̂x +Δp̂xΔp̂x)

1
2
(Δp̂xΔŷ +ΔŷΔp̂x)

1
2
(Δp̂xΔp̂y +Δp̂yΔp̂x)

1
2
(ΔŷΔx̂+Δx̂Δŷ) 1

2
(ΔŷΔp̂x +Δp̂xΔŷ) 1

2
(ΔŷΔŷ +ΔŷΔŷ) 1

2
(ΔŷΔp̂y +Δp̂yΔŷ + iň)

1
2
(Δp̂yΔx̂+Δx̂Δp̂y)

1
2
(Δp̂yΔp̂x +Δp̂xΔp̂y)

1
2
(Δp̂yΔŷ +ΔŷΔp̂y − iň) 1

2
(Δp̂yΔp̂y +Δp̂yΔp̂y)




(3.12)

=




1
2
{Δx̂,Δx̂} 1

2
{Δx̂,Δp̂x}+ iň

2
1
2
{Δx̂,Δŷ} 1

2
{Δx̂,Δp̂y}

1
2
{Δp̂x,Δx̂}− iň

2
1
2
{Δp̂x,Δp̂x} 1

2
{Δp̂x,Δŷ} 1

2
{Δp̂x,Δp̂y}

1
2
{Δŷ,Δx̂} 1

2
{Δŷ,Δp̂x} 1

2
{Δŷ,Δŷ} 1

2
{Δŷ,Δp̂y}+ iň

2

1
2
{Δp̂y,Δx̂} 1

2
{Δp̂y,Δp̂x} 1

2
{Δp̂y,Δŷ}− iň

2
1
2
{Δp̂y,Δp̂y}




(3.13)

In matrix (3.13), {·} denotes the anti-commutator brackets, such that {Â, B̂} = ÂB̂ +

B̂Â for any two operators Â and B̂. Furthermore, the diagonal entries in the matrix

(3.13) can be simplified which leads to :

Δξ̂Δξ̂T =




Δx̂2 1
2
{Δx̂,Δp̂x}+ iň

2
1
2
{Δx̂,Δŷ} 1

2
{Δx̂,Δp̂y}

1
2
{Δp̂x,Δx̂}− iň

2
Δp̂x

2 1
2
{Δp̂x,Δŷ} 1

2
{Δp̂x,Δp̂y}

1
2
{Δŷ,Δx̂} 1

2
{Δŷ,Δp̂x} Δŷ2 1

2
{Δŷ,Δp̂y}+ iň

2

1
2
{Δp̂y,Δx̂} 1

2
{Δp̂y,Δp̂x} 1

2
{Δp̂y,Δŷ}− iň

2
Δp̂y

2




=




Δx̂2 1
2
{Δx̂,Δp̂x} 1

2
{Δx̂,Δŷ} 1

2
{Δx̂,Δp̂y}

1
2
{Δp̂x,Δx̂} Δp̂x

2 1
2
{Δp̂x,Δŷ} 1

2
{Δp̂x,Δp̂y}

1
2
{Δŷ,Δx̂} 1

2
{Δŷ,Δp̂x} Δŷ2 1

2
{Δŷ,Δp̂y}

1
2
{Δp̂y,Δx̂} 1

2
{Δp̂y,Δp̂x} 1

2
{Δp̂y,Δŷ} Δp̂y

2



+




0 iň
2

0 0

− iň
2

0 0 0

0 0 0 iň
2

0 0 − iň
2

0




=




Δx̂2 1
2
{Δx̂,Δp̂x} 1

2
{Δx̂,Δŷ} 1

2
{Δx̂,Δp̂y}

1
2
{Δp̂x,Δx̂} Δp̂x

2 1
2
{Δp̂x,Δŷ} 1

2
{Δp̂x,Δp̂y}

1
2
{Δŷ,Δx̂} 1

2
{Δŷ,Δp̂x} Δŷ2 1

2
{Δŷ,Δp̂y}

1
2
{Δp̂y,Δx̂} 1

2
{Δp̂y,Δp̂x} 1

2
{Δp̂y,Δŷ} Δp̂y

2



+

iň
2




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0




(3.14)

The above expression, with the substitutions,
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1.




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0



= β (recollecting from Eqn. (3.5)) and

2.




Δx̂2 1
2
{Δx̂,Δp̂x} 1

2
{Δx̂,Δŷ} 1

2
{Δx̂,Δp̂y}

1
2
{Δp̂x,Δx̂} Δp̂x

2 1
2
{Δp̂x,Δŷ} 1

2
{Δp̂x,Δp̂y}

1
2
{Δŷ,Δx̂} 1

2
{Δŷ,Δp̂x} Δŷ2 1

2
{Δŷ,Δp̂y}

1
2
{Δp̂y,Δx̂} 1

2
{Δp̂y,Δp̂x} 1

2
{Δp̂y,Δŷ} Δp̂y

2



= 1

2
{Δξ̂i,Δξ̂j}

becomes:

Δξ̂Δξ̂T =
1

2
{Δξ̂i,Δξ̂j}+

iň
2
βij . (3.15)

where, i, j both go from 1 to 4.

On taking the ensemble average on both sides of Eqn. (3.15), the following equa-

tions are reached at :

�Δξ̂Δξ̂T� = 1

2
�{Δξ̂,Δξ̂}�+ iň

2
β (3.16)

The term 1
2
�{Δξ̂i,Δξ̂j}� in (3.16) is nothing but the variance matrix V . Therefore,

(3.16) is written as :

�Δξ̂Δξ̂T� = V +
iň
2
β (3.17)

In the next section, the evaluation of V in the above expression for the case of a

monochromatic, scalar, paraxial beam has been done.

3.2.2 Calculation of V for a Monochromatic, Scalar, Paraxial Beam

A monochromatic scalar beam (or wave-field) propagating along the z direction (parax-

ially) can be expressed as a complex-valued function,

Ψ(x, y, z) = ψ(x, y, z)e−2πiνt (3.18)

where ψ(x, y, z) specifies the transverse spatial dependence of the wave-field for a given

z, and ν its frequency. The transverse space-dependent part for a given z, denoted by
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ψ(x, y), can be written as :

ψ(x, y) = A(x, y)eiφ(x,y). (3.19)

where, A(x, y) denotes the real, amplitude part of the beam, and φ(x, y), the phase.

Both amplitude and phase are functions of x and y. It should be noted that the intensity

of this beam is calculated as:

I(x, y) = ψ(x, y)∗ψ(x, y)

=
�
A(x, y)eiφ(x,y)

�∗
A(x, y)eiφ(x,y)

= A(x, y)e−iφ(x,y)A(x, y)eiφ(x,y)

= (A(x, y))2

A(x, y)∗ = A(x, y) because A(x, y) is real. Also, from the above, the following can be

inferred:

1. The amplitude and intensity are related as :

A(x, y) = ±
�

I(x, y) (3.20)

2. Partial differentiation of intensity with respect to x and y is given as :

∂I(x, y)

∂x
=

∂(A2(x, y))

∂x
= 2A(x, y)

∂A(x, y)

∂x
(3.21)

∂I(x, y)

∂y
=

∂(A2(x, y))

∂y
= 2A(x, y)

∂A(x, y)

∂x
(3.22)

Recall that the variance matrix (V ) (3.16) is given as follows :

V =




�(Δx̂)2� 1
2
�{Δx̂,Δp̂x}� �Δx̂Δŷ� �Δx̂Δp̂y�

1
2
�{Δp̂x,Δx̂}� �(Δp̂x)

2� �Δp̂xΔŷ� �Δp̂xΔp̂y�
�ΔŷΔx̂� �ΔŷΔp̂x� �(Δŷ)2� 1

2
�{Δŷ,Δp̂y}�

�Δp̂yΔx̂� �Δp̂yΔp̂x� 1
2
�{Δp̂y,Δŷ}� �(Δp̂y)

2�




(3.23)

49



Each element of V is now simplified in the manner shown in APPENDIX B.2 and V

can now be written as,

V =




�(Δx̂)2� 1
2
�{Δx̂,Δp̂x}� �Δx̂Δŷ� �Δx̂Δp̂y�

1
2
�{Δp̂x,Δx̂}� �(Δp̂x)

2� �Δp̂xΔŷ� �Δp̂xΔp̂y�
�ΔŷΔx̂� �ΔŷΔp̂x� �(Δŷ)2� 1

2
�{Δŷ,Δp̂y}�

�Δp̂yΔx̂� �Δp̂yΔp̂x� 1
2
�{Δp̂y,Δŷ}� �(Δp̂y)

2�




=




�(x̂)2� − c21
1
2
�{x̂, p̂x}� − c1c3 �x̂ŷ� − c1c2 �x̂p̂y� − c1c4

1
2
�{p̂x, x̂}� − c1c3 �(p̂x)2� − c23 �p̂xŷ� − c3c2 �p̂xp̂y� − c3c4

�ŷx̂� − c1c2 �ŷp̂x� − c2c3 �(ŷ)2� − c22
1
2
�{ŷ, p̂y}� − c2c4

�p̂yx̂� − c1c4 �p̂yp̂x� − c3c4
1
2
�{p̂y, ŷ}� − c2c4 �(p̂y)2� − c24




=




�(x̂)2� 1
2
�{x̂, p̂x}� �x̂ŷ� �x̂p̂y�

1
2
�{p̂x, x̂}� �(p̂x)2� �p̂xŷ� �p̂xp̂y�
�ŷx̂� �ŷp̂x� �(ŷ)2� 1

2
�{ŷ, p̂y}�

�p̂yx̂� �p̂yp̂x� 1
2
�{p̂y, ŷ}� �(p̂y)2�



−




c21 c1c3 c1c2 c1c4

c1c3 c23 c3c2 c3c4

c1c2 c2c3 c22 c2c4

c1c4 c3c4 c2c4 c24




(3.24)

In the next section, a discussion on some properties of the above generated V have

been given. Also, the calculation of some measurable quantities of physical signifi-

cance, from this matrix has been shown.

3.2.3 Uncertainty Principle and the Variance Matrix

In the block representation, V (3.16) can be written as,

Vij =


V11 V12

V21 V22


 (3.25)
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where,

V11 =


 �Δx̂2� 1

2
�{Δx̂,Δp̂x}�

1
2
�{Δx̂,Δp̂x}� �Δp̂x

2�


 (3.26)

V12 = V T
21 =


 �Δx̂Δŷ� �Δx̂Δp̂y�
�Δp̂xΔŷ� �Δp̂xΔp̂y�


 (3.27)

V22 =


 �Δŷ2� 1

2
�{Δŷ,Δp̂y}�

1
2
�{Δŷ,Δp̂y}� �Δp̂y

2�


 (3.28)

The 2× 2 matrices V11 and V22 can be recognized individually as variance matrices for

the variables, Δx̂ and Δŷ or the matrices for two separate single modes. For V11,

V11 =


 �Δx̂2� 1

2
�{Δx̂,Δp̂x}�

1
2
�{Δx̂,Δp̂x}� �Δp̂x

2�




thus,

detV11 = �Δx̂2��Δp̂x
2� − 1

4
(�{Δx̂,Δp̂x}�)2

= �Δx̂2��Δp̂x
2� − 1

4
|�{Δx̂,Δp̂x}�|2 (3.29)

It should be noted that for two hermitian operators Δx̂ and Δp̂x,

1. {Δx̂,Δp̂x} is always hermitian i.e.,

{Δx̂,Δp̂x}† = {Δx̂,Δp̂x} (3.30)

2. [Δx̂,Δp̂x] is always anti-hermitian i.e.,

[Δx̂,Δp̂x]
† = − [Δx̂,Δp̂x] (3.31)

The proof for the uncertainty principle for the above mentioned operators, derived by

using the Schwarz inequality has been given in APPENDIX B.3. From Eqs. (3.29) and

(B.31) now, it is evident that :

det(V11) ≥
ň2

4
(3.32)

51



Similarly, by the same arguments, for the single mode variance matrix, V22, det(V22) ≥ ň2

4
.

Or so to say, any physically realizable variance matrix of a state is bound to obey this

basic condition.

It is worth noticing that when the 2× 2 matrix V11/22 (V11 orV22) has a (canonical)

diagonal form,

V11/22 =


κ 0

0 κ


 (3.33)

then the statement of uncertainty principle takes the following form :

det
�
V11/22

�
≥ ň2

4

=⇒κ2 ≥ ň2

4

=⇒κ ≥ ň
2

(3.34)

Remark 3.1. From Eqn. (3.34), one gets the following equivalent statement for the

uncertainty principle:

κ− ň

2
≥ 0 (3.35)

3.2.4 Computation of Physically Significant Parameters from V

In the present subsection, the calculation of physically significant parameters such as

symplectic eigen-values and twist from the given variance matrix (V ) has been dis-

cussed. Also a distance measurement criterion between two variance matrices has been

proposed.

3.2.4.1 (i) Symplectic Eigen-values

A real linear transformation on the variables ξ̂ with a 4× 4 real matrix S such that,

ξ̂ → ξ̂
�
= Sξ̂ (3.36)

is considered. This transformation Eqn. (3.36) is canonical iff ξ̂� obeys the same com-

mutation relationships as do ξ̂. This restriction amounts to saying,

β = SβST (3.37)
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where, S ∈ Sp(2n,R). Since, n = 2 is being considered here, S ∈ Sp(4, R).

Eqn. (3.37) is the defining property for elements of the real symplectic group, Sp(4, R).

The symmetric symplectic transform of the 4× 4 matrix V under such S is as follows :

V
�
= SV ST (3.38)

If a given V is physically realizable, then so is its symplectic transform V
� and the

invertibility of S also guarantees the opposite statement. Therefore, in order to check

realizability of a variance matrix, one needs to check the feasibility of the Symplectic

transform of V . A simple (canonical) form for the same with only diagonal entries is

guaranteed by the following Williamson’s Theorem:

For any real symmetric positive-definite 2n × 2n matrix V , there exists an S ∈
Sp(2n,R) such that the Symplectic transform of V by S has the canonical scaled diag-

onal form, unique upto the ordering of κj .

For n = 2 case,

V
��

= SV ST

=




κ1 0 0 0

0 κ1 0 0

0 0 κ2 0

0 0 0 κ2




(3.39)

Here, κ1 and κ2 are referred to as the symplectic eigen values of V .

The transformation expressed in Eqn. (3.39) is not a similarity transformation, hence,

the eigen values of V �� are not in general the eigen values of V . But the transformation :

�
V

��
β
�2

= S (V β)2 S−1 (3.40)

= −diag(κ2
1, κ

2
1, κ

2
2, κ

2
2)

is a similarity transformation, and so, the eigen values of (V β)2 are the same as those for
�
V

��
β
�2

or, − (V β)2 = − (V β) (V β) has a spectrum (of eigen values) i.e. κ2
1, κ

2
1, κ

2
2, κ

2
2.

Thus,one can evaluate the eigen values of − (V β)2 in order to calculate the Symplectic

eigen values.

Remark 3.2. It can be seen in Eqn. (3.39) that the matrix V
��

is composed of two 2× 2
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diagonal matrices,


κ1 0

0 κ1


 and


κ2 0

0 κ2


 , which one can handle independently.

Recalling Eqn. (3.33), it is straightforward to see that for these diagonal matrices, one

gets the following condition :

κ1,κ2 ≥
ň

2
(3.41)

The inequality (3.41) is the uncertainty principle, which is the condition for physical

possibility of V
��

and hence V .

Remark 3.3. The matrix V
��
+ iňβ

2
=




κ1 iň
2

0 0

−iň
2

κ1 0 0

0 0 κ2 iň
2

0 0 −iň
2

κ2




has a spectrum of

eigen values κj ± ň
2

, with j = 1, 2.

From Eqn. (3.41), κ1, κ2 ≥ ň
2

. This implies, κ1 ± ň
2
, κ2 ± ň

2
≥ 0. Therefore, the

matrix V
��
+ iňβ

2
is positive semidefinite. It is known that, for the relation V

��
+ iňβ

2
=

S
�
V + iňβ

2

�
ST , the positive semi-definiteness of V

��
+ iňβ

2
implies the positive semi-

definiteness of V + iňβ
2

. Therefore, the statement of the uncertainty principle, expressed

in Eqn. (3.41) can also be written as:

“A real symmetric positive-definite 2n × 2n matrix V (with, n = 2 for our case),

is a bonafide variance matrix if and only if the Hermitian matrix V + iňβ
2

is positive

semidefinite i.e.: V + iňβ
2

≥ 0.”

3.2.4.2 (ii) Twist parameter (τ)

The twist parameter is defined as:

τ =
1

ň
(�x̂p̂y� − �ŷp̂x�) (3.42)

So that when the variance matrix has been defined with the variables Δx̂ = x̂−�x̂� and

Δp̂x = p̂x − �p̂x�, as is for the above discussed case, the twist parameter is defined as:

τ =
1

ň
(�Δx̂Δp̂y� − �ΔŷΔp̂x�) (3.43)
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3.2.4.3 (iii) Distance Measure between two Variance Matrices

The inspiration defining the distance measure between two variance matrices, is drawn

from already known measure of non-Gaussian character of a quantum state, defined in

Genoni et al. (2007) as:

δ =
Tr

�
(ρ− τ)2

�

2Tr (ρ2)

=

Tr[(ρ−τ)2]
2

Tr(ρ2)+Tr(ρ2)
2

(3.44)

In (3.44),
Tr[(ρ−τ)2]

2
denotes the square Hilbert-Schmidt distance between two Gaussian

states (ρ and τ). Further, Tr(ρ2) represents the purity of the Gaussian state ρ.

Along similar lines, a distance (Vδ) between two given variance matrices V1 and V2

is defined as follows:

Vδ =

Tr[(V1−V2)
2]

2

Tr(V 2
1 )+Tr(V 2

2 )
2

=
Tr

�
(V1 − V2)

2�

Tr(V1)2 + Tr(V2)2
(3.45)

Here,
Tr[(V1−V2)

2]
2

has been normalized with the average, Tr(V1)
2+(V2)

2

2
.

It must be noted that either V1 and V2 are two separate 4 × 4 variance matrices or

V1 = V11 and V2 = V22 as defined in Eqs. (3.26) and (3.28).

The importance of the proposed distance measure (Vδ) can be realized in the fol-

lowing manner:

1. The quantity Vδ can be used, to compare two wave-fields at the level of the second

moments. If the two wave-fields are identical, then Vδ = 0, and if the two wave-

fields are not identical, then 0 ≤ Vδ ≤ 1.

2. The asymmetry measurement criterion: Assuming V1 = V11 and V2 = V22, Vδ ≡
Vas can also be used to capture the asymmetry of a wave-field in the x and y

variables in the following manner:

• If the wave-field in consideration is symmetric, one gets Vas = 0.

• If the wave-field is asymmetric in variables x and y, then 0 ≤ Vas < 1.

In the upcoming section now, the details of our experiment done have been given. The
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estimation of Variance matrices and other derivable quantities (mentioned in the previ-

ous Section) of a wave-field that has propagated either once (single passage) or twice

(double passage) through a PRPP is done by using the Shack-Hartmann-Wavefront-

Sensor (SHWFS). The experimental details are preceded by a description of the SHWFS.

3.3 Details of the Experiments

The Variance matrix calculations and also the changes in derivable physical quantities

mentioned previously are done for two cases :

1. A free propagating beam.

2. A beam which has propagated either once or twice through the PRPP.

For both the above mentioned cases, the Variance matrix calculations are performed

at various propagation distances and the achieved results are studied. The detecting

system used for the purpose (i.e the SHWFS) is first described in the next Section and

then the experimental details are presented.

3.3.1 The Shack-Hartman-Wavefront-Sensor

The Shack-Hartman-Wavefront-Sensor (SHWFS) Figure 3.1 is a widely used device for

indirect wavefront measurements Geary (1995). Originally conceived for imaging of

astronomical objects through Earth’s atmosphere, it has proved its worth in measuring

wavefront aberrations introduced by many optical media in the path of propagating

beams. SHWFS can optimize the wavefronts of laser sources dynamically. It also has

the capability of characterizing the wavefront distortions if any in the incoming wave-

field and can be used to provide real-time feedback for the control of adaptive optics.

A SHWFS usually consists of a CCD camera coupled in front with a lenslet array

made up of converging microlenses. This array is designed such that the focal length of

all the lenses forming the array is equal. The CCD surface is placed right at their focal

point.

Figure 3.2 shows the 2D view of the layer of lenslet array and the CCD surface. In

this figure, the diagram to the left shows an incoming ideal plane wavefront impinging
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Figure 3.1: A Thorlabs Shack-Hartman-Wavefront-Sensor

on the CCD surface and that to the right shows an incoming distorted wavefront. The

shift of the focal points from their ideal positions is apparent.

Figure 3.2: 2D View of a Layer of Lenslet Array (LA) and the CCD Surface

Figure 3.3 on the other hand shows, a single lenslet. The position shift of the spot

from ideal plane wavefront spot is measured as xc − xr where xc and xr are to be

understood as any of x or y coordinates and the subscripts c and r indicate centroid and

the reference respectively, in which case xc−xr

f
gives the angle β or the slope/gradient

of the incoming distorted wavefront. Also, Figure 3.4 shows the pixelated CCD surface

which gets divided into domains according to the size of the lenslets. Frame (a) in this

figure shows the intensity spot pattern distribution from an impinging ideal plane beam
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Figure 3.3: One Lenslet

with a plane wavefront and frame (b) shows that from a distorted beam.

(a) (b)

Figure 3.4: CCD Surface Divided into Domains

When an incoming ideal plane beam impinges on the lenslet array system, an ar-

ray of spots is formed on the CCD surface (one in each domain). The spot centroid of

each spot is located right into the middle of each domain. If the incoming wavefront

on the other hand, is distorted, the spot centroids shift from their ideal positions in their

respective domains (Figure 3.4). This shift is actually the wavefront slope/gradient

corresponding to the wavefront portion seen in that domain and can be subsequently

determined by subtracting the ideal reference spot position from the shifted spot po-

sition and further dividing the result by focal length of the microlenses. In order to

reconstruct the wavefront, these gradients (calculated in each domain for both trans-

verse coordinates) can be integrated in the 2 dimensions. Thus, the working principle

of this instrument is based on the fact that spot deviations or displacements from ideal

spot positions are a measure of wavefront slope or gradient of incoming wavefront.
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Figure 3.5 now, sums up the working principle of a SHWFS Courtesy (2011). The

first undulating red layer in the Figure represents a distorted incoming wavefront im-

pinging on the second layer of lenslet array system made up of plano convex lenses.

This lenslet array system (or the microlens array (MLA)) divides the incoming wave-

front and the total intensity into small domains, each of size equal to one lenslet and acts

to collect and focus the respective local intensities into spots in each domain as has been

shown in the third layer. The zoomed in version of one single domain has been shown

in the figure to the right, wherein the shift of spot (to coordinates xc, yc) from its ideal

coordinates xr,yr has been shown. The slope is measured as angle β. The fourth or the

last layer (in the left diagram) shows the intensity distribution in one of the domains.

Figure 3.5: Working Principle of a Shack-Hartman-Wavefront-Sensor

For the present experimental purpose, a Thorlabs Shack-Hartmann-Wavefront-Sensor

WFS150-5C has been used. In WFS150-5C, each lenslet is of size 150µm. The lenslet

array system is collectively referred to as the microlens array MLA. The gap between

two microlenses is covered with a chrome mask, which prevents light going in between

the microlenses directly to the CCD detector. This arrangement is done to increase

the image contrast of the detected spot pattern and to improve the instrument accuracy,

especially in case of strong wavefront deformations Figure 3.4.

According to the manufacturer (Thorlabs) Thorlabs (2010), the lenslets used in WFS

150-5C, have been made from fused silica for transmission characteristics from the

deep UV to IR and have a plano-convex shape, that allows nearly refraction limited

spots. The lenses have been formed using photolithographic techniques based on semi-
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conductor processing technology, which allows for excellent uniformity in the shape

and position of each microlens. The MLA150-5C has a chrome mask that blocks light

from being transmitted unless it goes through a microlens and therefore increases image

contrast.

In Figure 3.6, a lenslet array, from microscopic view to the naked eye view (mounted

in a SHWFS) has been shown sequence wise. The first frame in Figure 3.6 shows the

mechanism of focusing done by the microlens array MLA150-5C, the next frame to-

wards the right shows an unmounted microlens array, then further frames towards the

right respectively show the mounted microlens array, in a specially designed mount and

then inside SHWFS.

Figure 3.6: Microlens Array Unmounted and Mounted

The specifications for the Camera and the microlens array of MLA150-5C have

been shown in the tables (D.1) and (D.2) Thorlabs (2010) in APPENDIX D.

In SHWFS, the spot intensity measurements in each domain are done by calculating

the summation of intensity over all pixels present in that domain. Say, if each domain

is labeled by indices i, j, then a pixel in that domain can be labeled by k. Therefore,

the spot intensity in that domain would be:

�

k

Nk
ij = Iij (3.46)

where, k is the pixel index of (i, j)th domain going from 1 to the total pixel number in

that domain and N is the intensity value stored by the SHWFS in kth pixel of (i, j)th

domain. Figure 3.7 shows, a portion of the pixelated CCD surface divided into domains

(in accordance with the MLA used). The top left domain shows the displaced spot

centroid with local coordinates (xc, yc) shown with respect to the ideal plane wavefront

spot centroid coordinates, (xr, yr). As can be seen, the domains are labeled in terms of
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i, j with both i and j going from 1 to 31. The domain labeling in terms of indices i, j

has been shown in the picture. Each pixel in one domain contributes to the calculation

of the detected spot’s intensity in that domain and is labeled as k, with k going from 1

to total pixel number in that domain.

It should be noted that the conventional x direction in Euclidean coordinate system

coincides with the increasing j index or column index in SHWFS CCD grid and simi-

larly, the conventional y direction coincides with the decreasing row index in the grid.

Figure 3.7: SHWFS Grid

The area of the detectable spots in Thorlabs SHWFS is selectable as has been shown

in fig. 3.8. Out of 39 × 31 available domains, a 31 × 31 square domain grid has been

selected, so that in the present case, i, j = 1 to 31. Figure 3.8 shows the (selectable)

available detection surface areas in Thorlabs SHWFS (MLA150-5C). 1024× 1024 pix-

els corresponding to 4.76 × 4.76 mm area has been selected. Thus, the used domains

have been restricted to 31×31 as against the maximum available 39×31 corresponding

to 5.95× 4.76 mm area.
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Figure 3.8: Selectable Detection Areas in Thorlabs SHWFS (MLA150-5C)

The slope or gradient of wavefront is related to the spot shift in one particular do-

main as:

xcij − xrij

f
= ň

∂φ(x, y)

∂x
,

ycij − yrij
f

= ň
∂φ(x, y)

∂y
, (3.47)

Schäfer and Mann (2002) where, ň is λ
2π

with λ = 633 nm. In order to make a global

coordinate system, for the calculation of slopes, both the coordinate axis are appropri-

ately translated and rotated so that the center of the selected 31 × 31 CCD grid is the

coordinate (0, 0), with all pixel units converted to millimeters and the focal length f is

the effective focal length i.e. 3.7 mm of MLA.

Also, the centroid coordinates of the ideal plane beam, xrij , yrij are calculated using

the fact that for ideal plane beam, these lie at exact centre of their respective domains.

Knowing all this, the slope of the impinging distorted wavefront with respect to the

ideal plane wavefront is effectively calculated.

Using the expressions in Eqs. (3.47), the modified entries of the Variance matrix are

calculated. These have been given in APPENDIX C in Section C.2. The experiment
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performed for Variance matrix estimation in different situations using the SHWFS has

been presented in the following section.

3.3.2 Experiment for Single Passage through PRPP

The schematic of Figure (3.9) shows the single passage geometry of the experiment.

It has been performed in two procedures. In the first procedure or Procedure A, a

TEM00 wave-field of wavelength 633 nm and 12mW power from a He-Ne laser source

is attenuated using three neutral density filters and is then allowed to propagate for a

distance d before getting detected by SHWFS. The distance d is varied from 34 to 74 cm

at an interval of 2.5 cm, and the Variance matrix, estimated for more than 300 wave-field

samples of this wave-field at each distance.

Figure 3.9: The Experimental Scheme for Single Passage

In the second procedure or Procedure B, PRPP (PRPP2) is introduced at a distance

d1 = 24 cm from the laser source and as in the first procedure, the SHWFS is placed at a

distance d from the laser source, and the Variance matrices of the wave-field samples are

estimated at each distance. Note that the distance of the SHWFS from PRPP denoted

by d2 in Figure (3.9) is such that d1 + d2 = d. To generate the wave-field samples, the

inserted PRPP is rotated at a speed of 0.0104 rotations per second, and the recordings

are made with the SHWFS exposure time set at 0.079msec. with a maximum frame rate
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of 15Hz.. The second sample reading for beam centroids and intensities from SHWFS

is collected at 66.779msec. after the first one. And, for all practical purposes, the PRPP

is deemed stationary with regard to the SHWFS measuring time scales.

Of the measured Variance matrices, not all of them are found to obey the uncer-

tainty principle listed in Eqn. (B.28). This may be attributed to the discretisation of

the measured moments Eqs. (C.15)-(C.25). Only the Variance matrices which obey the

uncertainty principle are taken into account.

From the Variance matrix calculations at different distances, the Twist parameter

Eqn. (3.43), the Symplectic eigen values Eqn. (3.39) and the distance measure between

two Variance matrices Eqn. (3.45) is calculated. The results obtained have been pre-

sented in the following subsection.

3.3.3 Results and Analysis

In Figure (3.10), in frame (a), the values of Twist parameter measured at distance

d = 64 cm for 300 samples have been shown. Frame (a) shows the measured values

of the Twist parameter (at d = 64 cm) in black color for the first part of the experi-

mental procedure, in which the PRPP was not inserted in the laser wave-field path. The

measured Twist values for the second part of the experimental procedure wherein the

PRPP was inserted at d1 = 24 cm have been shown in red color. Clearly, there is notice-

able enhancement in the values of Twist for the second case. This has been illustrated
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Figure 3.10: Results for Twist Parameter in the Single Passage Experiment

in Frame (b), which shows the plot of fluctuations of Twist with respect to mean val-
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ues 1 for 300 samples at each d at an interval of 2.5 cm, starting from d = 34 cm for

both the procedures of the experiment, i.e., with and without the insertion of the PRPP.

Fluctuations of Twist with the insertion of PRPP at d1 = 24 cm are represented by �,

colored red and connected with red lines, and fluctuations of Twist without the insertion

of PRPP are represented by ◦, colored black and connected by black lines. In a similar

fashion, the smaller and larger Symplectic eigenvalues κ1 and κ2 have been analyzed in

Figure (3.11).

Frames (a), (b) and (c) correspond to the smaller Symplectic eigenvalues κ1, while

frames (d), (e) and (f) correspond to the larger Symplectic eigenvalues κ2. In frames

(a) and (d), the Symplectic eigenvalues κ1 and κ2 have been plotted against the sample

number (total 300 samples). These have been shown for d = 64 cm, and ň here has

been set to 1. While frame (a) corresponds to the smaller Symplectic eigenvalue κ1,

(without and with the insertion of PRPP at d1 = 24 cm), frame (d) corresponds to the

larger Symplectic eigenvalue κ2, (again without and with the insertion of the PRPP at

d1 = 24 cm). In both frames (a) and (d), the case where PRPP was not inserted has

been shown in black and that where PRPP was inserted at d1 = 24 cm from laser source

has been shown in red.

The line κ1 = 1
2

in frame (a), and the line κ2 = 1
2

in frame (d), saturates the

uncertainty principle. It can be seen from frames (a) and (d) that κ1 and κ2 are well

above the saturating value 1
2

(refer Eq. (3.34)), indicating the presence of higher order

modes Simon and Mukunda (2000), and this is even without the insertion of the PRPP.

Also, clearly, there is an increase in fluctuations in the measured values of κ1 and κ2

with the insertion of the PRPP, and this has been captured in frames (b) and (e), where

the fluctuations of κ1 and κ2 with increasing d have been plotted.

Here also, 300 samples were considered at each d at an interval of 2.5 cm starting

from d = 34 cm. Fluctuations of κ1 or κ2 with the insertion of the PRPP, have been

represented by �, colored red (connected by red lines) and fluctuations of κ1 or κ2

without the insertion of the PRPP are represented by ◦, colored black and joined by

black lines. In frames (c) and (f) the values of κ1 and κ2 estimated from the average

Variance matrix evaluated for over 300 samples for each d have been plotted against

increasing d (for both with and without the insertion of the PRPP cases).

1Fluctuation of a random variable X over N samples is given by 1
N

�
N (XN − �X�)2, with �X� =

1
N

�
N XN
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Figure 3.11: Results for κ1 and κ2 for Single Passage Experiment

Clearly there is an enhancement of the values of κ1 and κ2 on an average with the

insertion of the PRPP, which is indicative of the increased presence of higher order

modes on an average with the insertion of the PRPP.

Frame (a) of Figure (3.12) now shows the estimated values of the asymmetry pa-

rameter Vas for distance d = 64 cm, for 300 samples, for both the cases, i.e. without the

insertion of the PRPP, which has been shown in black color, and with the PRPP inserted

at d1 = 24 cm, shown in red color. Frame (b) on the other hand, plots the fluctuations of

Vas about its mean for an increasing d for both with and without insertion of the PRPP
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at d1 = 24 cm. Fluctuations of Vas, when the PRPP was not inserted have been repre-

sented by black ◦ connected with black lines and fluctuations of Vas with the insertion

of the PRPP at d1 = 24 cm have been represented by red �, connected with red lines.

Frame (c) shows the average value of Vas estimated for 100 samples each for varying d.

Black ◦ represents the average value of Vas when the PRPP was not inserted, and red �

represents the average value of Vas with the insertion of the PRPP at d1 = 24 cm.
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Figure 3.12: Results for Vas and Vδ in the Single Passage Experiment

An enhancement of fluctuation of wave-field asymmetry with the insertion of the

PRPP can be clearly seen. Frame (b) of Figure (3.12), captures this enhancement by

plotting the fluctuations of asymmetry parameter Vas is for increasing d at an interval

of 2.5 cm starting from d = 34 cm. It can be seen that the fluctuations of asymmetry

parameter are enhanced with increasing d. This may be contrasted with the plot in

frame (c) where the Vas estimated from an average of 300 Variance matrices for each d

has been plotted against increasing d.

Thus it is seen that, on an average, the asymmetry of wave-field decreases with the
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insertion of the PRPP (as expected), even though the fluctuations of Vas are enhanced

with the insertion of the PRPP as seen in frame (b). In frame (d) of Figure 3.12 a

comparison of the measured Variance matrices obtained from the first and the second

procedures of the experiment using the quantity Vδ has been done. Here V1 corresponds

to the average Variance matrix estimated at a particular distance d without the insertion

of the PRPP, and V2 to the average Variance matrix measured at the same distance d

with the insertion of the PRPP at d1 = 24 cm. As before d is incremented at an interval

of 2.5 cm starting from d = 34 cm and Vδ is calculated each time. The average in

each instance is taken over 300 samples. The nonzero value of Vδ suggests that the

wave-fields with and without the insertion of the PRPP are qualitatively different.

3.3.4 Experiment for Double passage through PRPP

Drawing inspiration from the interferometric schemes shown in Chapter 2, the Variance

matrix calculations are performed for a beam which traverses twice through the PRPP,

i.e. double passage through PRPP and the results achieved are again compared with

those obtained for a free propagating beam.

In Figure 3.13 the experimental schemes for double passage geometry used for the

said purpose have been shown. As can be seen, this geometry is inspired from the

familiar Michelson’s geometry with the transmissive arm blocked. Procedure A and

Procedure B have been schematically shown in Figure 3.13 along with an equivalent

diagram of Procedure B in which the double passage traversed through the PRPP has

been shown in the manner of single passage, such that the beam which originally gets

reflected by mirror (M), retracing its path is shown in the forward direction with a virtual

repetition of components it encounters in its path.

It should be noted that here, the source is now considered at the beam splitter (BS)

and the SHWFS is successively kept at distances (39 + (d = 0)) cm to (39 + (d =

20)) cm (incrementing in steps of (39 + 2) cm) from the source, with the distance d

being the incremental distance after 39 cm which is varied in steps of 2 cm. The exper-

iment is performed on similar lines of Section 3.3. The distance of SHWFS this time

is incremented in steps of 2 cm and as usual the invalid Variance matrices are discarded

based on uncertainty principle. The results achieved have been shown in the form of

plots in the following subsection.
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Figure 3.13: Double Passage through PRPP
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3.3.5 Results and Analysis

In frame (a) of Figure 3.14, the Twist parameter values for a distance of (39 + (d =

10)) cm have been shown. In frame (b) the same have been zoomed in for more visual

clarity. The black colored lines in frame (a) and (b) are for the case where PRPP was

not inserted in the double passage geometry and the red colored lines are for the case

where the PRPP was inserted at a distance of 9.5 cm from the beam splitter (BS).
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Figure 3.14: Twist parameter at d = 10 cm for Double Passage Geometry

It is clear that there is an enhancement in the values of Twist on insertion of PRPP.

Also, an offset value for twist (which is greater than zero) can be seen in both the frames

(a) and (b). This can be attributed to some component in the experimental geometry

(apart from the PRPP), which is providing an overall non-zero rotation to the beam.

Figure 3.15 on the other hand shows the Fluctuations of twist for double passage

geometry for all the considered distances. Here, the black ◦ (joined by lines of the same

color) are for no insertion of PRPP in this case and similarly the red squares � (joined

by dotted lines of the same color) are for the case where the PRPP was inserted in

between the source and the detector. The fluctuations of Twist are greater when PRPP is

inserted, than when it is not inserted. It would be insightful to compare the Figures 3.14,

3.15 with those presented in Figure 3.10. The minimum and maximum fluctuations

in Twist values presented in Figure 3.14 (a) are seen to be higher by more than an

order as compared to the maximum and minimum values presented in Figure 3.10 (a).

This clearly indicates that on a double passage through the PRPP, the random rotations
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become even more pronounced. Similarly, the Fluctuations in Twist values shown in

Figure 3.15 are more than 3 orders higher than those seen in Figure 3.14 (b).
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Figure 3.15: Fluctuations of Twist Parameter in the Double Passage Geometry

In Figure 3.16, in frame (a) and frame (b), the smaller and the larger symplectic

eigen values, κ1 and κ2 respectively have been shown for a distance of (39 + (d =

10)) cm. The black colored lines in frame (a) and (b) are for the case where PRPP was

not inserted and the red colored lines are for the case where the PRPP was inserted at

a distance of 9.5 cm from the beam splitter (BS). In both these frames, the blue colored

line drawn at κ1 , κ2 = 0.5, shows the saturating value of κs. It is seen from the

above frames that there is a pronounced enhancement in the values of both κ1 and κ2 on

insertion of PRPP when compared with those obtained when the PRPP was not inserted.

A comparison of both these frames with frames (a) and (d) of Figure 3.11 hints towards

the enhanced possibility of presence of higher order modes on a double passage through

the PRPP.

Frame (c) and frame (d) show the Fluctuations of κ1 and κ2 respectively for the dou-

ble passage geometry for all the considered distances. Here again, the black ◦ (joined

by lines of the same color) are for no insertion of PRPP and similarly the red squares �
(joined by dotted lines of the same color) are for the case where the PRPP was inserted

in between the source and the detector. As expected, these fluctuations are higher when

the beam travels twice through the PRPP. The order of fluctuations has increased by one

order for κ1 in comparison to that found in frame (b) of Figure 3.11 and for κ2, it has

jumped by four orders when compared with frame (d) of Figure 3.11.
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Figure 3.16: Results for κ1 and κ2 in the Double Passage Geometry
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The two frames (e) and (f) of Figure 3.16, the mean values (calculated from a sample

number of 400) of κ1 and κ2 respectively for all the considered distances have been

shown. Here also, the black ◦ (joined by lines of the same color) are for no insertion of

PRPP and similarly the red � (joined by dotted lines of the same color) are for the case

where the PRPP was inserted in between the source and the detector. In these frames

also, the blue colored line drawn at κ1, κ2 = 0.5, shows the saturating value of κs. The

mean values themselves (for both κ1 and κ2) show a marked increase if compared with

those in frames (c) and (f) of Figur 3.11. The presence of higher order modes thus, is

more pronounced when the beam traverses the said PRPP twice.

Figures 3.17 and 3.18 explore the distance measures Vas and Vδ respectively via the

presented plots. Frame (a) of Figure 3.17 shows the calculated Vas from 400 Variance

matrices for a distance of (39 + (d = 10)) cm, and frame (b) shows the zoomed in

version of the same. The color scheme for with and without the insertion of PRPP has

not been changed. The pronounced increase in the beam asymmetry on the insertion of

PRPP is clear. Frame (c) on the other hand shows the calculated Vas for an average of

400 Variance matrices, for both the cases for all distances. As usual the beam asymme-

try decreases on an average with the passage through the PRPP. Frame (d) now, shows

the Fluctuations of Vas calculated with a sample number of 400 Variance matrices at

each of the considered distances.

Lastly, Vδ has been calculated with V1 being the average Variance matrix for 400

samples, for the case where PRPP was inserted and V2 being the average Variance

matrix for 400 samples, for the case where PRPP was not inserted in double passage

geometry. This has been shown in Figure 3.18. There is an order increase in the value of

Vδ in Figure 3.18, when it is compared with frame (d) of Figure 3.12, i.e. to say, that the

distance between two Variance matrices V1 and V2 increases further when V1 represents

the average Variance matrix for a beam that has traversed twice through the PRPP.
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Figure 3.17: Results for Vas in Double Passage Geometry
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3.4 Summary

To summarize, a coherent wave-field on a single and double passage through a PRPP

using the Variance matrix has been studied. The uncertainty principle has been used as

a tool for discriminating the data. The quantities of physical interest such as the Twist

parameter, the Symplectic eigenvalues, and the distance measure between two Variance

matrices have been studied. It is found that there is an enhancement of fluctuations in

all these parameters on the insertion of PRPP in both single and double passage cases,

the fluctuations being more pronounced in latter case. Nevertheless, it is also seen that

the wave-field asymmetry on an average decreases on such passages through PRPP. It

is evident that this study can be applied to more general situations such as passage of a

wave-field through atmospheric turbulence and other random media.
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CHAPTER 4

Characterization of Pseudo-Random-Phase-Plate using

Surface Roughness Measurement Parameters

4.1 Introduction

Previously in Chapter 2, the nature of Pseudo-Random-Phase-Plates (PRPPs) was deter-

mined by calculating the phase structure function from the extracted phase portions in

interferometric experiments. It was also observed therein that the extracted phase por-

tions (refer Figure 2.13 or 2.16) always resemble a rough surface. This motivates one

to determine the nature of a PRPP by using standard statistical parameters, which are

usually used for characterizing surface roughness. For this purpose, one can estimate

such statistical parameters for the extracted phases from an interferometric experiment

and compare them with those estimated for known, numerically generated Kolmogorov

phase screens.

In the present chapter, one of the available PRPPs (PRPP2, as referred in Chapter 2)

is considered for such an investigation1 and an attempt has been made to evaluate the

nature of its turbulence regime (i.e. non-Kolmogorov) at a wavelength of 633 nm using

the standard statistical parameters.

4.2 Experimental Procedure and Theory

The retrieved phase profiles of PRPP2, obtained using coherent laser wave-field of

633 nm wavelength in the Mach-Zehnder interferometric set up with an additional 4f

imaging system, are statistically compared with numerically generated Kolmogorov

phase screens. The numerically generated phase screens are obtained using atmospheric

structure constants ranging from very weak to very strong turbulence conditions.

1Note that the PRPP was characterized as a non-Kolmogorov turbulence simulator at 633 nm in Chap-

ter 2



4.2.1 Experimental Arrangement

Figure 4.1: Mach-Zehnder Set-up

The experimental arrangement has been illustrated in Figure 4.1. Here, a 633 nm

He-Ne laser beam with an output power of 12mW is coupled with a spatial filtering

assembly (SFA) and a collimating lens (L1), giving a collimated beam with diameter of

approximately 2 cm at the lens output. This beam further falls on beam-splitter, BS1,

which splits it into two equal intensity beams propagating at an angle of 90◦ with respect

to each other. The beam going in line with the propagation direction of the unsplitted

beam, is labeled the object beam, and the corresponding arm of the interferometric set

up, the object arm (Figure 4.1). Similarly, the beam propagating perpendicular to the

unsplitted beam is labeled the reference beam and the corresponding interferometric

arm, the reference arm. The mirrors, M1 and M2 are both placed at equal distance with

respect to the beam-splitter BS1.

The 4f system Figure 2.3 is now inserted in the object arm itself, and the object

(PRPP2) is kept at the first focal plane of lens L2 (Figure 4.1). This is a slight modifica-

tion to the previously discussed Mach-Zehnder set up (in Chapter 2). Nevertheless, the

phase introduced solely due to PRPP2 can still be retrieved .
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Beam-splitter BS2 now, acts to recombine the object and the reference beam and

the image of interference pattern thus formed is captured in CCD screen placed at the

second focal plane of lens L3. The undistorted fringes (i.e. without the insertion of

PRPP2) are first collected and then the distorted interference fringes (i.e. PRPP2 inserted

in the object arm right at the first focal plane of lens L2) are collected. PRPP2, after

insertion is rotated such that for all practical purposes, it is stationary with regard to the

exposure time of the CCD camera.

The phase introduced solely due to PRPP2 is eventually extracted by point wise

subtraction of the unwrapped phase of undistorted fringe images from the unwrapped

phase of distorted fringe images (as has been explained in Chapter 2, part 2.3.1.1). Note

that here, the phase matrices of size 200× 200 could be faithfully retrieved (Figure 4.2)

for a further comparison with numerically generated phase screens.

4.2.2 Numerical Generation of Kolmogorov Phase Screens

The retrieved random phase arrays from the above discussed experiment on PRPP2

(using 633 nm wavelength), are now compared with the numerically generated Kol-

mogorov random phase screens. These random phase screens are generated using a

well known method, outlined in Knepp (1983); Macaskill and Ewart (1984); Martin

and Flatté (1988). This method originally involves the simulation of beam propaga-

tion through a turbulent medium by successive addition of phases acquired by the beam

on propagation through a distance δz in the medium, while simultaneously taking care

of the diffractive effects by interlacing the phase additions with Fresnel propagation

through the same distance. The phase acquired by the beam through propagation of dis-

tance δz can be numerically computed with the knowledge of the Kolmogorov power

spectrum.

In order to compare the phases introduced by the said PRPP with that of a turbulent

atmosphere, the random phase obtained from the Kolmogorov power spectral density,

(with the diffraction effect ignored) are taken into consideration. The phase spectrum of

a random phase screen is related to the Kolmogorov power spectral density as Tatarskii

(1961) :

Φθ(K) = 2πκ2δzΦn(K), (4.1)

where κ = 2π
λ

, δz is the distance of propagation during which the random phase is
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acquired, and

Φn(K) = 0.033C2
nK

−11
3 , (4.2)

the Kolmogorov power spectral density, with C2
n being the atmospheric structure con-

stant. The strength of atmospheric turbulence is reflected in the value of atmospheric

structure constant, C2
n. A C2

n of the order of 10−15m
−2
3 implies very weak turbulence

conditions. As one goes on increasing its order, i.e. from 10−15m
−2
3 to 10−14m

−2
3 ,

10−13m
−2
3 , 10−12m

−2
3 and 10−11m

−2
3 , the strength of turbulence successively increases

from very weak to very strong conditions Tyson (2010). Now, to obtain the phase screen

from the spectrum Φθ(K), a 512× 512 grid with entries (Kx, Ky) is constructed, with

Kx = i�K and Ky = j�K , so that K2 = K2
x +K2

y . The indices i and j run from 1 to

512, and �K = 2π
L

, where L2 is the detection area of the wave-field. A 512 × 512 ar-

ray of pseudo random complex numbers is then point wise multiplied to the discretized

version of the square root of the spectrum Φθ(K) given by

�−1
K

�
Φθ(i�K , j�K), (4.3)

and the resulting 512 × 512 matrix is discrete Fourier transformed to obtain the ran-

dom phase matrix with entries (θ1 + iθ2)(ΔLi,ΔLj). Either of the 512× 512 matrices

(θ1(ΔLi,ΔLj)) or (θ2(ΔLi,ΔLj)) yields the desired random phase screen θ(ΔL i,ΔLj),

where ΔL = L/512. These Kolmogorov phase screens are generated for different val-

ues of atmospheric structure constants ranging from very weak to very strong turbulence

conditions, the distances δz’s are also varied accordingly.

4.2.3 Statistical Estimates

To compare the phase of PRPP2 estimated from the above mentioned experiment with

that of numerically generated Kolmogorov phase screens, the well known statistical

indicators typically used in optical testing to compare the smoothness/roughness of sur-

faces Sedlaček et al. (2012); Rhee et al. (2005); Duparre et al. (2002); Gadelmawla

et al. (2002); Banat (2003) are used. Since the measured and numerically generated

phases are points on a surface taking the values θij = θ(i, j) labeled by indices i and j,

they can be compared in this manner. In the present context, since the experimentally

retrieved phase data is of the form θexpij with i and j taking values from 1 to 200, and
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the phase data obtained numerically, i.e., θnumij is of size 512 × 512, the numerically

obtained phase values are clipped to size 200 × 200 and then the quantities of inter-

est Gadelmawla et al. (2002) are evaluated for comparison. The quantities of interest

are as follows:

• Mean : The mean value of a surface Kendall and Yule (1950); Gadelmawla et al.

(2002) specified by the array of values θij is given as

�θ� = 1

M ×N

M�

i=1

N�

j=1

θij . (4.4)

In the present context, M = N = 200.

• RMS : The RMS or root mean squared value of a surface specified by values θij

is defined as Kendall and Yule (1950); Gadelmawla et al. (2002)

RMS(θ) =

���� 1

M ×N

M�

i=1

N�

j=1

θ2ij . (4.5)

Both the mean and RMS of a surface give an estimate of the average height of the

surface.

• Ra : The parameter Ra denotes the roughness average for a surface and is defined

as Rhee et al. (2005); Gadelmawla et al. (2002)

Ra =
1

M ×N

M�

i=1

N�

j=1

|θij − �θ�|. (4.6)

Here �θ� is the mean and || denotes absolute value.

• Rq : The standard deviation from mean of a surface is defined as Kendall and Yule

(1950); Gadelmawla et al. (2002)

Rq =

���� 1

M ×N

M�

i=1

N�

j=1

(θij − �θ�)2. (4.7)

Both roughness average, Ra and standard deviation Rq are the measures of fluc-

tuations from the mean value.
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• Rt : The peak to valley distance denoted by Rt for a surface is defined as Rhee

et al. (2005); Gadelmawla et al. (2002):

Rt = |θmax − �θ�|+ |�θ� − θmin|, (4.8)

where θmax is the maximum value the phase {θij} can take in the M × N array

and θmin similarly is the minimum value, the phase {θij} can take in the same

array.

The comparison using above parameters has been presented in the following Section.

4.3 Comparison Results

Figure (4.2) shows a sample of interference fringes obtained from the experiment and

the corresponding phase array estimated from the interference fringes.
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Figure 4.2: Interference Fringes (Distorted and Undistorted) and the Phase Por-

tions (Experimental and Numerical)
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In Figure (4.2), frames (a) and (b) show the captured and numerically reconstructed

fringes of one of the CCD images for first step of the experimental procedure wherein

PRPP2 was not inserted in the Mach-Zehnder interferometric set up. Frames (c) and (d)

on the other hand show the captured and reconstructed fringes respectively of one of the

images for the second step of experimental procedure in which PRPP2 was inserted at

the first focal plane of the lens L2 (refer Figure (4.1)). Frame (e) shows the unwrapped

portion of the phase estimated from the fringes shown in frame (c). Frame (f) shows a

numerically generated random phase screen in comparison to frame (e).

Figure (4.3 and 4.4) now, show a comparison between the statistical estimates (of

Section 4.2.3), calculated for the experimentally obtained 400 unwrapped phase sample

arrays, θexpij ’s, each of size 200 × 200 with the numerically generated phase screens

θnumij ’s of the same size. While generating the phase screens, the value of atmospheric

structure constant, C2
n has been kept at 10−15m

−2
3 (i.e. very weak turbulence conditions)

and 400 samples have been collected for each δz starting from δz = 50000 Km to

δz = 200000 Km, incrementing in steps of 25000 Km.

The first plot (plotted in pink color) in column (a) (in Figure 4.3) is a plot for the

calculated Mean values of the 400 experimentally obtained phase sample arrays. The

plots that follow downwards (plotted in blue) in column (a) are all for C2
n = 10−15m

−2
3 ,

with increasing δz from 50000 Km to 200000 Km in steps of 25000 Km. It can be seen

that the experimentally obtained result for mean values does not match faithfully with

any of the numerically produced mean values. Though, on an average, the mean value

of 7.6348 for the case of δz = 75000 Km looks comparable to experimentally obtained

7.1025 (as can be seen from the marked black lines in the respective graphs), but the

fluctuations about this (experimental) value are far more higher than the numerically

simulated case.

On similar lines, the RMS values have been compared in column (b) (in Figure 4.3),

roughness average, Ra in column (c) (in Figure 4.3), Standard deviation Rq in column

(d) (in Figure 4.4) and lastly, peak to valley distance Rt in column (e) (in Figure 4.4).

83



0 200 400
2

7.1025

22

Sample number

M
ea

n 
(θ

ex
p )

0 200 400
2

7.4933

22

Sample number

R
M

S 
(θ

ex
p )

0 200 400
0.5

1.9219

5.5

Sample number

R
a (θ

ex
p )

0 200 400
2

6.2463

22

Sample number

M
ea

n 
(θ

nu
m

)

50000 Km 

0 200 400
2

6.5817

22

Sample number

R
M

S 
(θ

nu
m

)

50000 Km 

0 200 400
0.5

1.6604

5.5

Sample number

R
a (θ

nu
m

)

50000 Km 

0 200 400
2

7.6348

22

Sample number

M
ea

n 
(θ

nu
m

)

75000 Km 

0 200 400
2

8.0504

22

Sample number

R
M

S 
(θ

nu
m

)

75000 Km 

0 200 400
0.5

2.0464

5.5

Sample number

R
a (θ

nu
m

)

75000 Km 

0 200 400
2

8.9209

22

Sample number

M
ea

n 
(θ

nu
m

)

100000 Km 

0 200 400
2

9.3941

22

Sample number

R
M

S 
(θ

nu
m

)

100000 Km 

0 200 400
0.5

2.3535

5.5

Sample number

R
a (θ

nu
m

)

100000 Km 

0 200 400
2

9.74

22

Sample number

M
ea

n 
(θ

nu
m

)

125000 Km 

0 200 400
2

10.2727

22

Sample number

R
M

S 
(θ

nu
m

)

125000 Km 

0 200 400
0.5

2.6118

5.5

Sample number

R
a (θ

nu
m

)

125000 Km 

0 200 400
2

10.8628

22

Sample number

M
ea

n 
(θ

nu
m

)

150000 Km 

0 200 400
2

11.4349

22

Sample number

R
M

S 
(θ

nu
m

)

150000 Km 

0 200 400
0.5

2.8523

5.5

Sample number

R
a (θ

nu
m

)

150000 Km 

0 200 400
2

11.9157

22

Sample number

M
ea

n 
(θ

nu
m

)

175000 Km 

0 200 400
2

12.5326

22

Sample number

R
M

S 
(θ

nu
m

)

175000 Km 

0 200 400
0.5

3.1036

5.5

Sample number

R a (θ
nu

m )

175000 Km 

0 200 400
2

12.4741

22

Sample number

M
ea

n 
(θ

nu
m

)

200000 Km 

0 200 400
2

13.1471

22

Sample number

R
M

S 
(θ

nu
m

)

200000 Km 

0 200 400
0.5

3.3222

5.5

Sample number

R
a (θ

nu
m

)

200000 Km 

(a) Comparison of Mean (b) Comparison of RMS (c) Comparison of Ra

Figure 4.3: C2
n = 10−15m

−2
3 (Mean, RMS, and Roughness Average)
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Figure 4.4: C2
n = 10−15m

−2
3 (Standard Deviation and Peak to Valley Distance)
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It is clear from the comparison presented in these columns that none of the statisti-

cal estimates is reproduced faithfully in numerical simulations using Kolmogorov phase

screens with C2
n = 10−15m

−2
3 . For higher values of δz, the fluctuations about the av-

erage values of all statistical estimates increase along with an increase in their average

values themselves, which is surely a mismatch as regards the experimental results.

In Figure (4.5 and 4.6), the same exercise of comparing the statistical estimates for

experimental and numerical phase arrays has been repeated, keeping again the num-

ber of samples, 400 and the size of each sample 200 × 200, but changing C2
n now to

10−14m
−2
3 and accordingly varying δz in steps of 2500 Km starting with δz = 5000

Km going uptill δz = 20000 Km for numerical simulations. From columns (a) to (c) in

Figure 4.5 and columns (d) and (e) in Figure 4.6, statistical estimates calculated for 400

experimentally estimated unwrapped phase sample arrays θexpij and the same number of

numerically generated phase screens θnumij , obtained for weak turbulence conditions i.e.

C2
n = 10−14m

−2
3 and increasing δz have been compared. Again, the first plot in each

column ((a) to (c) in Figure 4.5 and columns (d) and (e) in Figure 4.6) corresponds to

the statistical estimate values plotted for experimentally obtained 400 unwrapped phase

sample arrays. This is followed downwards in all columns by the plots of the cor-

responding statistical estimates for 400 sample arrays of numerically generated phase

screens for one δz at a time (keeping C2
n = 10−14m

−2
3 constant), incrementing δz in

steps of 2500 Km, starting with δz = 5000 Km. Clearly, again there is a mismatch

between calculated statistical estimates in the two cases. Nowhere do the experimental

and numerical cases show a faithful correspondence.

Similarly, Figure (4.7 and 4.8); Figure (4.9 and 4.10) and Figure (4.11 and 4.12)

show a one by one comparison of all statistical estimates of Section 4.2.3, of numerical

cases having C2
n = 10−13m

−2
3 ; C2

n = 10−12m
−2
3 and C2

n = 10−11m
−2
3 respectively

with the experimentally retrieved sample phase arrays. The distances δz in Figure (4.7)

and (4.8) vary from δz = 500Km to δz = 1000Km in steps of 250Km, whereas in

Figure (4.9) and (4.10), i.e. for strong turbulence case, with C2
n = 10−12m

−2
3 , δz starts

from 50Km and goes till 200Km varying in steps of 25Km. Lastly in Figure (4.11) and

(4.12), for very strong turbulence, with C2
n = 10−11m

−2
3 , δz starts with 5Km, goes in

steps of 2.5Km, and ends with 20Km.
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Figure 4.5: C2
n = 10−14m

−2
3 (Mean, RMS, and Roughness Average)
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Figure 4.6: C2
n = 10−14m

−2
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Figure 4.7: C2
n = 10−13m

−2
3 (Mean, RMS, and Roughness Average)
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Figure 4.8: C2
n = 10−13m

−2
3 (Standard Deviation and Peak to Valley Distance)
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From columns (a) to (e) of Figures 4.7 and 4.8, statistical estimates calculated for

400 experimentally estimated unwrapped phase sample arrays θexpij and the same num-

ber of numerically generated phase screens θnumij , obtained now for turbulence condi-

tions with C2
n = 10−13m

−2
3 and increasing δz have been compared. The first plot in

each column (from (a) to (e) in both the figures) corresponds to the statistical estimate

values plotted for experimentally obtained 400 unwrapped phase sample arrays. This

is followed downwards in all columns by the plots of the corresponding statistical esti-

mates for 400 sample arrays of numerically generated phase screens for one δz at a time

(keeping C2
n = 10−13m

−2
3 constant), incrementing δz in steps of 250 Km, starting with

δz = 500 Km.

Similarly, a comparison of statistical estimates of Section 4.2.3, calculated for 400

experimentally estimated unwrapped phase sample arrays θexpij and the same number of

numerically generated phase screens θnumij , obtained for strong turbulence conditions

i.e. C2
n = 10−12m

−2
3 and increasing δz has been shown in Figures 4.9 and 4.10. The

first plot on top in each column (from (a) to (e) in both the figures) again corresponds to

the statistical estimate values plotted for experimentally obtained 400 unwrapped phase

sample arrays. Further downwards in all columns, the corresponding plots for statistical

estimates for 400 sample arrays of numerically generated phase screens for one δz at a

time (keeping C2
n = 10−12m

−2
3 constant), incrementing δz in steps of 25 Km, starting

with δz = 50 Km have been shown.

Finally, a comparison of statistical estimates of Section 4.2.3 calculated for 400 ex-

perimentally estimated unwrapped phase sample arrays θexpij and the same number of

numerically generated phase screens θnumij , obtained for very strong turbulence condi-

tions, i.e. with strength C2
n = 10−11m

−2
3 has been shown in Figures 4.11 and 4.12. The

first plot on top in each column ((a) to (e)) corresponds to the statistical estimate values

plotted for experimentally obtained 400 unwrapped phase sample arrays, followed as

usual downwards in all columns by plots of the corresponding statistical estimates for

400 sample arrays of numerically generated phase screens with one value of δz at a time

(keeping C2
n = 10−11m

−2
3 constant), incrementing δz in steps of 2.5 Km, starting with

δz = 5 Km.
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Figure 4.9: C2
n = 10−12m

−2
3 (Mean, RMS, and Roughness Average)
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The trend visible from all the figures is similar in the sense that, the fluctuations

about average values of statistical estimates for numerically generated phases increase

with their increasing average values. These in turn increase with increasing δz for one

particular C2
n. The mismatch with respect to the calculated statistical estimates of ex-

perimentally retrieved phase sample arrays is apparent in all the cases.

Thus, this extensive quantitative analysis, done for atmospheric structure constant

values ranging from 10−15m
−2
3 (very weak turbulence conditions) to 10−11m

−2
3 (very

strong turbulence conditions) shows that the retrieved phases from PRPP (PRPP2) used

in this experiment represent some different class of phase arrays for a wavelength of

633 nm and they do not exactly match with that of Kolmogorov phase screens. But,

with this method, nothing can be said emphatically about PRPPs nature.

It should noted here that with the previous experiments shown in Chapter 2, the

considered PRPP has already been characterized as a non-Kolmogorov turbulence sim-

ulator at 633 nm. Therefore, the method that uses the phase structure function for PRPP

characterization is better than the method of statistical parameter estimation. This is

attributed to the fact that no conclusion on the said PRPP’s nature could be reached

at with the latter method, whereas with the phase structure function analysis, a robust

conclusion about the PRPP’s nature was drawn.

4.4 Summary

In this Chapter, the characterization of Pseudo-Random-Phase-Plate (PRPP2) has been

attempted by using statistical parameters generally employed for characterizing surface

roughness. Results of the method used hint towards the possibility of PRPP being a

different class of turbulence simulator at 633 nm wavelength and not the conventional

Kolmogorov simulator as has been claimed in Mantravadi et al. (2004) (for 1550 nm),

but nothing can be said emphatically about its nature. However, in Chapter 2, a clear

conclusion that the PRPP presents a non-Kolmogorov turbulence regime at 633 nm

wavelength was arrived at. Therefore, it is concluded that the method involving the

phase structure function is more appropriate for characterizing a PRPP.
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CHAPTER 5

Conclusions and Future Scope

The main focus of this thesis was to reveal the nature of specially designed turbulence

mimicking media, i.e. the Pseudo-Random-Phase-Plates (PRPPs) and to measure their

effects on a propagating 633 nm He-Ne laser beam. Overall, the thesis presented an

analysis on the extracted phase using the phase structure function, a demonstration of

phase sharing between two spatially separated observers, an estimation of Variance

matrix and its derivatives, and an attempt on characterization of a PRPP using standard

statistical parameters which are usually used for surface roughness.

• The thesis began with the characterization of PRPPs as non-Kolmogorov turbu-

lence simulators as regards 633 nm wavelength. This was done by calculating

phase structure function on the extracted phase in the two classical interfero-

metric geometries namely the Mach-Zehnder and the Michelson’s interferometer.

It was noticed that the nature of turbulence depends upon the number of pas-

sages the beam travels through the PRPPs. More specifically, the tendency of

approaching towards Kolmogorov turbulence regime on increasing the number

of passages through the given PRPP or PRPPs-in-a-combination was witnessed.

Also, a Phase-sharing experiment using the Mach-Zehnder interferometer to dis-

till a shared random secret key between two spatially separated observers was

mentioned as an application of PRPP.

• Further, in order to study the effects that these PRPPs can introduce to a prop-

agating 633 nm He-Ne laser wave-field, the thesis focused on the calculation of

Variance matrices at different propagation planes (of a 633 nm He-Ne laser wave-

field) with the help of intensity and beam centroid data extracted from a Shack-

Hartmann-Wavefront-Sensor (SHWFS) at these planes. This was preceded by a

description of the Variance matrix genesis and its properties. The Variance matrix

calculation at different propagation planes was done for both a freely propagating

laser beam and a beam that has encountered a PRPP in its path (either once or



twice). These were subsequently compared using physically significant quanti-

ties derived from the Variance matrix. It was found that there is enhancement of

the fluctuation in all the measured quantities upon the insertion of the PRPP. Nev-

ertheless, it was seen that the wave-field asymmetry on average decreases upon

passage through the PRPP.

• The thesis also presented a comparison of the statistical parameters usually used

for characterizing surface roughness, calculated on the phase matrices extracted

in the Mach-Zehnder interferometric geometry, with the statistical parameters for

known, numerically generated Kolmogorov phase screens, to again determine the

nature of one of the said PRPP. It was found that the already discussed method

involving phase structure determination is better than the current one for charac-

terizing PRPP at a particular wavelength.

The future scope for the research work in this thesis is as follows:

• Since the static turbulent media (PRPPs) (which have been claimed as Kolmogorov

turbulence simulators at 1550 nm wavelength by the suppliers) have been found

to be non-Kolmogorov for 633 nm wavelength, these can henceforth be used as

either Kolmogorov or non-Kolmogorov simulators at the respective wavelengths.

Also, the tendency of approaching towards Kolmogorov turbulence regime on

increasing the number of passages through a PRPP or PRPPs-in-a-combination

leaves a big future scope for further experimentation and theoretical analysis on

such a dependence. In future, one may also consider designing interferomet-

ric geometries which can facilitate more than two passages through an inserted

medium.

• In phase sharing scheme, the two remote observers can be in principle well-

separated spatially so that atmospheric turbulence in the arms of the interferom-

eter generates the shared random phases. The shared random phases can also be

used by the respective observers for image encryption purposes as well as other

cryptographic applications.

• Wave propagation analysis on a PRPP using the Variance matrix and the derived

physically significant parameters can be further extended to more realistic random

media such as atmospheric turbulence. Study of the Variance matrix and these
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parameters on multiple passages through the PRPP/PRPPs-in-a-combination for

various possible wavelengths can also be initiated in future. One can as well con-

sider the propagation study of vortex beams of different charges through single

or multiple PRPPs for various possible wavelengths and geometries.
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APPENDIX A

Error calculation

The error in calculation of slopes of linear curves (shown in Chapter 2) has been done

in the following manner :

For a variable y plotted with respect to x, such that y = f(x), one usually represents

the absolute error δy in a plot as :

yi = f(xi)± δyi (A.1)

with δyi being the standard deviation with respect to mean value of yi for the xth
i point,

i.e. :

δyi =

���� 1

N

N�

i=1

(yi − �yi�)2 (A.2)

N is the total number of data points collected for the xth
i point.

On a logarithmic scale though, instead of representing the absolute error discussed

above, a relative error is calculated. This is done in the following manner :

Let, zi = log10(yi) (A.3)

=⇒δzi = δ(log10(yi))

for small error, =⇒dzi ≈ d(log10(yi))

=⇒dzi =
1

2.303
d(ln(yi))

=⇒dzi = 0.434
dyi
yi

=⇒dzi ≈ 0.434
δyi
yi

(A.4)

Therefore, Eqn. (A.4) is used for the calculation of error in the log scale graphs for

log10Dφ(r) Vs. log10(r) with r being x and Dφ(r) being y (as has been referred above).

Now, once the error has been calculated and represented on the said graphs, the

uncertainty in the measured slope is calculated in the following manner :



• The respective slopes for the best fitted lines obtained with minimum and maxi-

mum relative error points are calculated.

• The uncertainty is then calculated as :

uncert = 0.5 ∗ (slopemax − slopemin) (A.5)

This has been shown with ± in all the calculated slopes in graphs as well as tables

in Chapter 2.
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APPENDIX B

Some Important Deductions

B.1 Δξ̂ Commutation Relations

The commutation relationships between the elements of the matrix Δξ̂ :

�
Δξ̂1,Δξ̂1

�
= Δξ̂1Δξ̂1 −Δξ̂1Δξ̂1

= Δx̂Δx̂−Δx̂Δx̂

= 0 (B.1)
�
Δξ̂1,Δξ̂2

�
= Δξ̂1Δξ̂2 −Δξ̂2Δξ̂1

= Δx̂Δp̂x −Δp̂xΔx̂

= (x̂− �x̂�) (p̂x − �p̂x�)− (p̂x − �p̂x�) (x̂− �x̂�)

= x̂p̂x − x̂�p̂x� − p̂x�x̂�+ �x̂��p̂x� − (p̂xx̂− p̂x�x̂� − x̂�p̂x�+ �p̂x��x̂�)

= x̂p̂x − p̂xx̂

= iň (B.2)
�
Δξ̂1,Δξ̂3

�
= Δξ̂1Δξ̂3 −Δξ̂3Δξ̂1

= Δx̂Δŷ −ΔŷΔx̂

= (x̂− �x̂�) (ŷ − �ŷ�)− (ŷ − �ŷ�) (x̂− �x̂�)

= x̂ŷ − x̂�ŷ� − ŷ�x̂�+ �x̂��ŷ� − (ŷx̂− ŷ�x̂� − x̂�ŷ�+ �ŷ��x̂�)

= x̂ŷ − ŷx̂

= 0 (B.3)



�
Δξ̂1,Δξ̂4

�
= Δξ̂1Δξ̂4 −Δξ̂4Δξ̂1

= Δx̂Δp̂y −Δp̂yΔx̂

= (x̂− �x̂�) (p̂y − �p̂y�)− (p̂y − �p̂y�) (x̂− �x̂�)

= x̂p̂y − x̂�p̂y� − p̂y�x̂�+ �x̂��p̂y� − (p̂yx̂− p̂y�x̂� − x̂�p̂y�+ �p̂y��x̂�)

= x̂p̂y − p̂yx̂

= 0 (B.4)
�
Δξ̂2,Δξ̂1

�
= Δξ̂2Δξ̂1 −Δξ̂1Δξ̂2

= Δp̂xΔx̂−Δx̂Δp̂x

= (p̂x − �p̂x�) (x̂− �x̂�)− (x̂− �x̂�) (p̂x − �p̂x�)

= p̂xx̂− p̂x�x̂� − x̂�p̂x�+ �p̂x��x̂� − (x̂p̂x − x̂�p̂x� − p̂x�x̂�+ �x̂��p̂x�)

= p̂xx̂− x̂p̂x

= −iň (B.5)
�
Δξ̂2,Δξ̂2

�
= Δξ̂2Δξ̂2 −Δξ̂2Δξ̂2

= Δp̂xΔp̂x −Δp̂xΔp̂x

= 0 (B.6)
�
Δξ̂2,Δξ̂3

�
= Δξ̂2Δξ̂3 −Δξ̂3Δξ̂2

= Δp̂xΔŷ −ΔŷΔp̂x

= (p̂x − �p̂x�) (ŷ − �ŷ�)− (ŷ − �ŷ�) (p̂x − �p̂x�)

= p̂xŷ − p̂x�ŷ� − ŷ�p̂x�+ �p̂x��ŷ� − (ŷp̂x − ŷ�p̂x� − p̂x�ŷ�+ �ŷ��p̂x�)

= p̂xŷ − ŷp̂x

= 0 (B.7)
�
Δξ̂2,Δξ̂4

�
= Δξ̂2Δξ̂4 −Δξ̂4Δξ̂2

= Δp̂xΔp̂y −Δp̂yΔp̂x

= (p̂x − �p̂x�) (p̂y − �p̂y�)− (p̂y − �p̂y�) (p̂x − �p̂x�)

= p̂xp̂y − p̂x�p̂y� − p̂y�p̂x�+ �p̂x��p̂y� − (p̂yp̂x − p̂y�p̂x� − p̂x�p̂y�+ �p̂y��p̂x�)

= p̂xp̂y − p̂yp̂x

= 0 (B.8)
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�
Δξ̂3,Δξ̂1

�
= Δξ̂3Δξ̂1 −Δξ̂1Δξ̂3

= ΔŷΔx̂−Δx̂Δŷ

= (ŷ − �ŷ�) (x̂− �x̂�)− (x̂− �x̂�) (ŷ − �ŷ�)

= ŷx̂− ŷ�x̂� − x̂�ŷ�+ �ŷ��x̂� − (x̂ŷ − x̂�ŷ� − ŷ�x̂�+ �x̂��ŷ�)

= ŷx̂− x̂ŷ

= 0 (B.9)
�
Δξ̂3,Δξ̂2

�
= Δξ̂3Δξ̂2 −Δξ̂2Δξ̂3

= ΔŷΔp̂x −Δp̂xΔŷ

= (ŷ − �ŷ�) (p̂x − �p̂x�)− (p̂x − �p̂x�) (ŷ − �ŷ�)

= ŷp̂x − ŷ�p̂x� − p̂x�ŷ�+ �ŷ��p̂x� − (p̂xŷ − p̂x�ŷ� − ŷ�p̂x�+ �p̂x��ŷ�)

= ŷp̂x − p̂xŷ

= 0 (B.10)
�
Δξ̂3,Δξ̂3

�
= Δξ̂3Δξ̂3 −Δξ̂3Δξ̂3

= ΔŷΔŷ −ΔŷΔŷ

= 0 (B.11)
�
Δξ̂3,Δξ̂4

�
= Δξ̂3Δξ̂4 −Δξ̂4Δξ̂3

= ΔŷΔp̂y −Δp̂yΔŷ

= (ŷ − �ŷ�) (p̂y − �p̂y�)− (p̂y − �p̂y�) (ŷ − �ŷ�)

= ŷp̂y − ŷ�p̂y� − p̂y�ŷ�+ �ŷ��p̂y� − (p̂yŷ − p̂y�ŷ� − ŷ�p̂y�+ �p̂y��ŷ�)

= ŷp̂y − p̂yŷ

= iň (B.12)
�
Δξ̂4,Δξ̂1

�
= Δξ̂4Δξ̂1 −Δξ̂1Δξ̂4

= Δp̂yΔx̂−Δx̂Δp̂y

= (p̂y − �p̂y�) (x̂− �x̂�)− (x̂− �x̂�) (p̂y − �p̂y�)

= p̂yx̂− p̂y�x̂� − x̂�p̂y�+ �p̂y��x̂� − (x̂p̂y − x̂�p̂y� − p̂y�x̂�+ �x̂��p̂y�)

= p̂yx̂− x̂p̂y

= 0 (B.13)
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�
Δξ̂4,Δξ̂2

�
= Δξ̂4Δξ̂2 −Δξ̂2Δξ̂4

= Δp̂yΔp̂x −Δp̂xΔp̂y

= (p̂y − �p̂y�) (p̂x − �p̂x�)− (p̂x − �p̂x�) (p̂y − �p̂y�)

= p̂yp̂x − p̂y�p̂x� − p̂x�p̂y�+ �p̂y��p̂x� − (p̂xp̂y − p̂x�p̂y� − p̂y�p̂x�+ �p̂x��p̂y�)

= p̂yp̂x − p̂xp̂y

= 0 (B.14)
�
Δξ̂4,Δξ̂3

�
= Δξ̂4Δξ̂3 −Δξ̂3Δξ̂4

= Δp̂yΔŷ −ΔŷΔp̂y

= (p̂y − �p̂y�) (ŷ − �ŷ�)− (ŷ − �ŷ�) (p̂y − �p̂y�)

= p̂yŷ − p̂y�ŷ� − ŷ�p̂y�+ �p̂y��ŷ� − (ŷp̂y − ŷ�p̂y� − p̂y�ŷ�+ �ŷ��p̂y�)

= p̂yŷ − ŷp̂y

= −iň (B.15)
�
Δξ̂4,Δξ̂4

�
= Δξ̂4Δξ̂4 −Δξ̂4Δξ̂4

= Δp̂yΔp̂y −Δp̂yΔp̂y

= 0 (B.16)

B.2 Simplification of V

1. The term �(Δx̂)2�:

�(Δx̂)2� = �(x̂− �x̂�) (x̂− �x̂�)�

= �
�
x̂2 − x̂�x̂� − x̂�x̂�+ �x̂�2

�
�

= �x̂2� − �x̂��x̂� − �x̂��x̂�+ �x̂�2

= �x̂2� − 2�x̂�2 + �x̂�2

= �x̂2� − �x̂�2

= �x̂2� − (c1)
2 (B.17)

where, it should be noted that �x̂� = c1 has been defined.
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2. The term �(Δŷ)2� :

�(Δŷ)2� = �ŷ2� − �ŷ�2

= �ŷ2� − (c2)
2 (B.18)

where, �ŷ� = c2.

3. The term �(Δp̂x)
2� :

�(Δp̂x)
2� = �(p̂x − �p̂x�) (p̂x − �p̂x�)�

= �
�
p̂2x − p̂x�p̂x� − p̂x�p̂x�+ �p̂x�2

�
�

= �p̂2x� − �p̂x��p̂x� − �p̂x��p̂x�+ �p̂x�2

= �p̂2x� − 2�p̂x�2 + �p̂x�2

= �p̂2x� − �p̂x�2

= �p̂2x� − (c3)
2 (B.19)

where again, �p̂x� = c3 has been defined.

4. The term �(Δp̂y)
2� :

�(Δp̂y)
2� = �p̂2y� − �p̂y�2

= �p̂2y� − (c4)
2 (B.20)

where, �p̂y� = c4.
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5. The term �1
2
{Δx̂,Δp̂x}� :

�1
2
{Δx̂,Δp̂x}� = �1

2
{Δp̂x,Δx̂}� = 1

2
(�(x̂− �x̂�) (p̂x − �p̂x�) + (p̂x − �p̂x�) (x̂− �x̂�)�)

=
1

2
(�(x̂p̂x − p̂x�x̂� − x̂�p̂x�+ �x̂��p̂x�) + (p̂xx̂− x̂�p̂x� − p̂x�x̂�+ �p̂x��x̂�)�)

=
1

2
(�x̂p̂x� − �p̂x��x̂� − �x̂��p̂x�+ �x̂��p̂x�+ �x̂p̂x�

− �p̂x��x̂� − �x̂��p̂x�+ �x̂��p̂x�)

=
1

2
(�x̂p̂x� − 4�x̂��p̂x�+ �p̂xx̂�+ 2�x̂��p̂x�)

=
1

2
(�x̂p̂x�+ �p̂xx̂� − 2�x̂��p̂x�)

=
1

2
(�x̂p̂x�+ �p̂xx̂�)− (c1c3)

=
1

2
(�x̂p̂x + p̂xx̂�)− (c1c3)

= �1
2
{x̂, p̂x}� − (c1c3) (B.21)

6. The term �1
2
{Δŷ,Δp̂y}� :

�1
2
{Δŷ,Δp̂y}� = �1

2
{Δp̂y,Δŷ}� = 1

2
(�ŷp̂y�+ �p̂yŷ�)− 2�ŷ��p̂y�

=
1

2
(�ŷp̂y + p̂yŷ�)− (c2c4)

= �1
2
{ŷ, p̂y}� − (c1c3) (B.22)

7. The term �Δx̂Δŷ� :

�Δx̂Δŷ� = �ΔŷΔx̂� = �(x̂− �x̂�) (ŷ − �ŷ�)�

= �(x̂ŷ − x̂�ŷ� − ŷ�x̂�+ �x̂��ŷ�)�

= �x̂ŷ� − �x̂��ŷ� − �ŷ��x̂�+ �x̂��ŷ�

= �x̂ŷ� − 2�x̂��ŷ�+ �x̂��ŷ�

= �x̂ŷ� − �x̂��ŷ�

= �x̂ŷ� − (c1c2) (B.23)

118



8. The term �Δx̂Δp̂y� :

�Δx̂Δp̂y� = �Δp̂yΔx̂� = �(x̂− �x̂�) (p̂y − �p̂y�)�

= �(x̂p̂y − x̂�p̂y� − p̂y�x̂�+ �x̂��p̂y�)�

= �x̂p̂y� − �x̂��p̂y� − �p̂y��x̂�+ �x̂��p̂y�

= �x̂p̂y� − 2�x̂��p̂y�+ �x̂��p̂y�

= �x̂p̂y� − �x̂��p̂y�

= �x̂p̂y� − (c1c4) (B.24)

9. The term �ΔŷΔp̂x� :

�ΔŷΔp̂x� = �Δp̂xΔŷ� = �(ŷ − �ŷ�) (p̂x − �p̂x�)�

= �(ŷp̂x − ŷ�p̂x� − p̂x�ŷ�+ �ŷ��p̂x�)�

= �ŷp̂x� − �ŷ��p̂x� − �p̂x��ŷ�+ �ŷ��p̂x�

= �ŷp̂x� − 2�ŷ��p̂x�+ �ŷ��p̂x�

= �ŷp̂x� − �ŷ��p̂x�

= �ŷp̂x� − (c2c3) (B.25)

10. The term �Δp̂xΔp̂y� :

�Δp̂xΔp̂y� = �Δp̂yΔp̂x� = �(p̂x − �p̂x�) (p̂y − �p̂y�)�

= �(p̂xp̂y − p̂y�p̂x� − p̂x�p̂y�+ �p̂x��p̂y�)�

= �p̂xp̂y� − �p̂y��p̂x� − �p̂x��p̂y�+ �p̂x��p̂y�

= �p̂xp̂y� − 2�p̂x��p̂y�+ �p̂x��p̂y�

= �p̂xp̂y� − �p̂x��p̂y�

= �p̂xp̂y� − (c3c4) (B.26)

B.3 Proof of the Uncertainty Principle

Invoking the Schwarz inequality for any two states α and β,

�α|α��β|β� ≥ |�α|β�|2 (B.27)

119



Taking the state |α� = Δx̂|ψ� and |β� = Δp̂x|ψ� (where ψ(x, y) is as defined in

Eqn. (3.19)),

(|α�)† = (Δx̂|ψ�)†

= (|ψ�)† (Δx̂)†

= �ψ|Δx̂

where, �ψ| = |ψ�†, i.e. conjugate transpose of |ψ� and (Δx̂)† = (Δx̂). Similarly,

(|β�)† = (Δp̂x|ψ�)†

= (|ψ�)† (Δp̂x)
†

= �ψ|Δp̂x

since, (Δp̂x)
† = (Δp̂x).

On account of the above equations, the Schwarz inequality can be rewritten as :

�ψ| (Δx̂)2 |ψ��ψ| (Δp̂x)
2 |ψ� ≥ |�ψ|Δx̂Δp̂x|ψ�|2

=⇒� (Δx̂)2��(Δp̂x)
2� ≥ |�Δx̂|Δp̂x�|2 (B.28)

The term |�Δx̂Δp̂x�|2 in the RHS of above equation can be expanded in terms of com-

mutator and anti commutator brackets in the following manner :

Δx̂Δp̂x =
1

2
{Δx̂,Δp̂x}+

1

2
[Δx̂,Δp̂x]

=⇒�Δx̂Δp̂x� =
1

2
�{Δx̂,Δp̂x}�+

1

2
�[Δx̂,Δp̂x]�

=⇒|�Δx̂Δp̂x�|2 =
1

4
|�{Δx̂,Δp̂x}�|2 +

1

4
|�[Δx̂,Δp̂x]�|2. (B.29)

Keeping in view the Eqns. (3.30),(3.31) and Eqn. (B.2), Eqn. (B.29) becomes :

|�Δx̂Δp̂x�|2 =
1

4
|�{Δx̂,Δp̂x}�|2 +

ň2

4
. (B.30)
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Substituting Eqn. (B.29) in Eqn. (B.28) :

�Δx̂2��Δp̂x
2� ≥ 1

4
|�{Δx̂,Δp̂x}�|2 +

ň2

4

=⇒�Δx̂2��Δp̂x
2� − 1

4
|�{Δx̂,Δp̂x}�|2 ≥

ň2

4
(B.31)

which is nothing but the well known statement for the uncertainty principle.

121



APPENDIX C

Derivation of Moments

C.1 Continuous Version

The second order moments for a beam, can be calculated in the following manner:

�x̂2� =

� +∞
−∞

� +∞
−∞ ψ(x, y)∗x̂2ψ(x, y)dxdy

� +∞
−∞

� +∞
−∞ ψ(x, y)∗ψ(x, y)dxdy

=

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y)x2A(x, y)eiφ(x,y)dxdy

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y)A(x, y)eiφ(x,y)dxdy

as ψ(x, y) = A(x, y)eiφ(x,y), A(x, y) real (refer Eqn. (3.19)) and x̂2 → x2

=

� +∞
−∞

� +∞
−∞ (A(x, y))2x2dxdy

� +∞
−∞

� +∞
−∞ (A(x, y))2dxdy

=

� +∞
−∞

� +∞
−∞ I(x, y)x2dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

(C.1)

In discretised form, one can write the above equation in the following manner:

�x2� =

�
ij x

2
ijIij�

ij Iij
(C.2)

where, i and j are the addressing indices of each of discretized location in the transverse

detecting plane, over which the summation is carried out. This, for instance in our case

is the CCD detection surface.

Similarly,

�ŷ2� =

� +∞
−∞

� +∞
−∞ I(x, y)y2dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

�y2� =

�
ij y

2
ijIij�

ij Iij
(C.3)



�p̂2x� =

� +∞
−∞

� +∞
−∞ ψ(x, y)∗p̂2xψ(x, y)dxdy� +∞
−∞

� +∞
−∞ I(x, y)dxdy

=

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y)

�
−iň ∂

∂x

� �
−iň ∂

∂x

�
A(x, y)eiφ(x,y)dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

= −ň2

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y) ∂

∂x

�
∂
∂x

�
A(x, y)eiφ(x,y)

��
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

. (C.4)

Considering :

∂

∂x
u(x)v(x) = u(x)

∂

∂x
v(x) + v(x)

∂

∂x
u(x)

Integrating on both sides :� +∞

−∞

∂

∂x
u(x)v(x)dx =

� +∞

−∞
u(x)

∂

∂x
v(x)dx+

� +∞

−∞
v(x)

∂

∂x
u(x)dx

� +∞

−∞
u(x)

∂

∂x
v(x)dx. =

� +∞

−∞

∂

∂x
u(x)v(x)dx−

� +∞

−∞
v(x)

∂

∂x
u(x)dx

In the present case, in Eqn.(C.4) :

u(x) = A(x, y)e−iφ(x,y)

v(x) =
∂

∂x

�
A(x, y)eiφ(x,y)

�
(C.5)

so that :

A(x, y)e−iφ(x,y) ∂

∂x

�
∂

∂x

�
A(x, y)eiφ(x,y)

��
=

∂

∂x

��
A(x, y)e−iφ(x,y)

�� ∂

∂x
A(x, y)eiφ(x,y)

��
−

∂

∂x

�
A(x, y)eiφ(x,y)

� ∂

∂x

�
A(x, y)e−iφ(x,y)

�
(C.6)
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and thus :

� +∞

−∞
A(x, y)e−iφ(x,y) ∂

∂x

�
∂

∂x

�
A(x, y)eiφ(x,y)

��
dx =

� +∞

−∞

∂

∂x

��
A(x, y)e−iφ(x,y)

�� ∂

∂x
A(x, y)eiφ(x,y)

��
dx−

� +∞

−∞

∂

∂x

�
A(x, y)eiφ(x,y)

� ∂

∂x

�
A(x, y)e−iφ(x,y)

�
dx

=��
A(x, y)e−iφ(x,y)

�� ∂

∂x
A(x, y)eiφ(x,y)

��+∞

−∞
−

� +∞

−∞

∂

∂x

�
A(x, y)eiφ(x,y)

� ∂

∂x

�
A(x, y)e−iφ(x,y)

�
dx

Now since, A(x, y)eiφ(x,y) is a well behaved wave function which goes to zero at −∞
or +∞,

��
A(x, y)e−iφ(x,y)

� �
∂
∂x
A(x, y)eiφ(x,y)

��+∞
−∞ = 0. Hence,

� +∞

−∞
A(x, y)e−iφ(x,y) ∂

∂x

�
∂

∂x

�
A(x, y)eiφ(x,y)

��
dx =

−
� +∞

−∞

∂

∂x

�
A(x, y)eiφ(x,y)

� ∂

∂x

�
A(x, y)e−iφ(x,y)

�
dx

Eqn. (C.4) becomes,

�p̂2x� = ň2

� +∞
−∞

� +∞
−∞

∂
∂x

�
A(x, y)eiφ(x,y)

�
∂
∂x

�
A(x, y)e−iφ(x,y)

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

= ň2

� +∞
−∞

� +∞
−∞

�
∂A(x,y)

∂x
eiφ(x,y) + iA(x, y)eiφ(x,y) ∂φ(x,y)

∂x

�

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

×
� +∞
−∞

� +∞
−∞

�
∂A(x,y)

∂x
e−iφ(x,y) − iA(x, y)e−iφ(x,y) ∂φ(x,y)

∂x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

= ň2

� +∞
−∞

� +∞
−∞

�
∂A(x,y)

∂x

�2

+
�
A(x, y)∂φ(x,y)

∂x

�2

dxdy
� +∞
−∞

� +∞
−∞ I(x, y)dxdy

= ň2

� +∞
−∞

� +∞
−∞

�
∂A(x,y)

∂x

�2

+
�
A(x, y)∂φ(x,y)

∂x

�2

dxdy
� +∞
−∞

� +∞
−∞ I(x, y)dxdy

From Eqn. (3.20),
�

∂A(x,y)
∂x

�2

= 1
4I(x,y)

�
∂I(x,y)

∂x

�2

and
�
A(x, y)∂φ(x,y)

∂x

�2

= I(x, y)
�

∂φ(x,y)
∂x

�2

.
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Therefore,

�p̂2x� = ň2

� +∞
−∞

� +∞
−∞

1
4I(x,y)

�
∂I(x,y)

∂x

�2

+ I(x, y)
�

∂φ(x,y)
∂x

�2

dxdy
� +∞
−∞

� +∞
−∞ I(x, y)dxdy

.

The discretised version of the same is:

�p2x� = ň2

�
ij

1

4Iij

�
∂I

∂x

�2

ij�
ij Iij

+ ň2

�
ij

�
∂φ(x, y)

∂x

�2

ij

Iij

�
ij Iij

. (C.7)

By similar arguments,

�p̂2y� = ň2

� +∞
−∞

� +∞
−∞

1
4I(x,y)

�
∂I(x,y)

∂y

�2

+ I(x, y)
�

∂φ(x,y)
∂y

�2

dxdy
� +∞
−∞

� +∞
−∞ I(x, y)dxdy

.

In discrete form:

�p2y� = ň2

�
ij

1

4Iij

�
∂I

∂y

�2

ij�
ij Iij

+ ň2

�
ij

�
∂φ(x, y)

∂y

�2

ij

Iij

�
ij Iij

. (C.8)

�p̂xp̂y� =

� +∞
−∞

� +∞
−∞ ψ∗(x, y)

�
−iň ∂

∂x

� �
−iň ∂

∂y

�
ψ(x, y)dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

=

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y)

�
−iň ∂

∂x

� �
−iň ∂

∂y

�
A(x, y)eiφ(x,y)dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

= −ň2

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y)

�
∂
∂x

�
∂
∂y

�
A(x, y)eiφ(x,y)

���
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

Using Eqs. (C.5), with u(x) = A(x, y)e−iφ(x,y) and v(x) = ∂
∂y

�
A(x, y)eiφ(x,y)

�
,

A(x, y)e−iφ(x,y)

�
∂

∂x

�
∂

∂y

�
A(x, y)eiφ(x,y)

���
=

∂

∂x

�
A(x, y)e−iφ(x,y)

�
∂

∂y

�
A(x, y)eiφ(x,y)

���
−

∂

∂y

�
A(x, y)eiφ(x,y)

� ∂

∂x

�
A(x, y)e−iφ(x,y)

�
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Integrating with respect to x on both the sides,

� +∞

−∞
A(x, y)e−iφ(x,y)

�
∂

∂x

�
∂

∂y

�
A(x, y)eiφ(x,y)

���
dx =

� +∞

−∞

∂

∂x

�
A(x, y)e−iφ(x,y)

�
∂

∂y

�
A(x, y)eiφ(x,y)

���
dx−

� +∞

−∞

∂

∂y

�
A(x, y)eiφ(x,y)

� ∂

∂x

�
A(x, y)e−iφ(x,y)

�
dx

from which the first term in R.H.S. is zero because ψ(x, y) is well behaved wave func-

tion. Hence,

� +∞

−∞
A(x, y)e−iφ(x,y)

�
∂

∂x

�
∂

∂y

�
A(x, y)eiφ(x,y)

���
dx =

−
� +∞

−∞

∂

∂y

�
A(x, y)eiφ(x,y)

� ∂

∂x

�
A(x, y)e−iφ(x,y)

�
dx

Now, Eqn. (C.9) becomes,

�p̂xp̂y� = ň2

� +∞
−∞

� +∞
−∞

∂
∂y

�
A(x, y)eiφ(x,y)

�
∂
∂x

�
A(x, y)e−iφ(x,y)

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

= ň2

� +∞
−∞

� +∞
−∞

�
∂A(x,y)

∂y
eiφ(x,y) + iA(x, y)∂φ(x,y)

∂y
eiφ(x,y)

�

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

×
� +∞
−∞

� +∞
−∞

�
∂A(x,y)

∂x
e−iφ(x,y) − iA(x, y)∂φ(x,y)

∂x
e−iφ(x,y)

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

= ň2

� +∞
−∞

� +∞
−∞

�
∂A(x,y)

∂y
+ iA(x, y)∂φ(x,y)

∂y

��
∂A(x,y)

∂x
− iA(x, y)∂φ(x,y)

∂x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

= ň2

� +∞
−∞

� +∞
−∞

�
∂A(x,y)

∂y
∂A(x,y)

∂x
+ iA(x, y)∂φ(x,y)

∂y
∂A(x,y)

∂x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

+

ň2

� +∞
−∞

� +∞
−∞

�
−iA(x, y)∂A(x,y)

∂y
∂φ(x,y)

∂x
+ A2(x, y)∂φ(x,y)

∂y
∂φ(x,y)

∂x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

= ň2

� +∞
−∞

� +∞
−∞

�
∂A(x,y)

∂y
∂A(x,y)

∂x
+ A2(x, y)∂φ(x,y)

∂y
∂φ(x,y)

∂x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

+

ň2

� +∞
−∞

� +∞
−∞

�
iA(x, y)∂φ(x,y)

∂y
∂A(x,y)

∂x
− iA(x, y)∂A(x,y)

∂y
∂φ(x,y)

∂x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy
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Again refering to Eqns. (C.5), with u(x) = A2(x, y) = I(x, y), v(x) = ∂φ(x,y)
∂y

,

� +∞

−∞

∂

∂x

�
I(x, y)

∂φ(x, y)

∂y

�
dx =

� +∞

−∞

∂I(x, y)

∂x

∂φ(x, y)

∂y
dx+

� +∞

−∞
I(x, y)

∂

∂x

�
∂φ(x, y)

∂y

�
dx

�
I(x, y)

∂φ(x, y)

∂y

�+∞

−∞
=

� +∞

−∞

∂I(x, y)

∂x

∂φ(x, y)

∂y
dx+

� +∞

−∞
I(x, y)

∂

∂x

�
∂φ(x, y)

∂y

�
dx

0 =

� +∞

−∞

∂I(x, y)

∂x

∂φ(x, y)

∂y
dx+

� +∞

−∞
I(x, y)

∂

∂x

�
∂φ(x, y)

∂y

�
dx

as I(x, y) = 0 at −∞ or +∞

� +∞

−∞

∂I(x, y)

∂x

∂φ(x, y)

∂y
dx = −

� +∞

−∞
I(x, y)

∂

∂x

�
∂φ(x, y)

∂y

�
dx

Therefore,
� +∞

−∞
A(x, y)

∂A(x, y)

∂x

∂φ(x, y)

∂y
dx = −1

2

� +∞

−∞
I(x, y)

∂

∂x

�
∂φ(x, y)

∂y

�
dx

Similarly,
� +∞

−∞
A(x, y)

∂φ(x, y)

∂x

∂A(x, y)

∂y
dy = −1

2

� +∞

−∞
I(x, y)

∂

∂y

�
∂φ(x, y)

∂x

�
dy

Substituting the above in Eqn. (C.9),

�p̂xp̂y� = ň2

� +∞
−∞

� +∞
−∞

�
∂A(x,y)

∂y
∂A(x,y)

∂x
+ A2(x, y)∂φ(x,y)

∂y
∂φ(x,y)

∂x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

+

iň2

� +∞
−∞

� +∞
−∞ −1

2
I(x, y) ∂

∂x

�
∂φ(x,y)

∂y

�
+ 1

2
I(x, y) ∂

∂y

�
∂φ(x,y)

∂x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

The second term in R.H.S. in the above equation is equal to 0 since ∂
∂x

�
∂φ(x,y)

∂y

�
=

∂
∂y

�
∂φ(x,y)

∂x

�
. So,

�p̂xp̂y� = ň2

� +∞
−∞

� +∞
−∞

�
∂A(x,y)

∂y
∂A(x,y)

∂x
+ A2(x, y)∂φ(x,y)

∂y
∂φ(x,y)

∂x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

from Eqn. (3.20),

= ň2

� +∞
−∞

� +∞
−∞

�
1

4I(x,y)
∂I(x,y)

∂y
∂I(x,y)

∂x
+ I(x, y)∂φ(x,y)

∂y
∂φ(x,y)

∂x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

In discretised form:

�p̂xp̂y� = ň2

�
ij

1
4Iij

�
∂I
∂x

�
ij

�
∂I
∂y

�
ij�

ij Iij
+ ň2

�
ij

�
∂φ(x,y)

∂x

�
ij

�
∂φ(x,y)

∂y

�
ij
Iij

�
ij Iij

(C.9)
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Also, since �p̂xp̂y� = �p̂yp̂x�,

�p̂yp̂x� = ň2

� +∞
−∞

� +∞
−∞

�
1

4I(x,y)
∂I(x,y)

∂y
∂I(x,y)

∂x
+ I(x, y)∂φ(x,y)

∂y
∂φ(x,y)

∂x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

and,

�p̂yp̂x� = ň2

�
ij

1
4Iij

�
∂I
∂y

�
ij

�
∂I
∂x

�
ij�

ij Iij
+ ň2

�
ij

�
∂φ(x,y)

∂y

�
ij

�
∂φ(x,y)

∂x

�
ij
Iij

�
ij Iij

(C.10)

�1
2
{x̂, p̂x}� =

� +∞
−∞

� +∞
−∞ ψ(x, y)∗ 1

2
{x̂, p̂x}ψ(x, y)dxdy� +∞

−∞
� +∞
−∞ I(x, y)dxdy

=

� +∞
−∞

� +∞
−∞ ψ(x, y)∗ 1

2
(x̂p̂x + p̂xx̂)ψ(x, y)dxdy� +∞

−∞
� +∞
−∞ I(x, y)dxdy

=

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y) 1

2
(x̂p̂x + p̂xx̂)A(x, y)e

iφ(x,y)dxdy
� +∞
−∞

� +∞
−∞ I(x, y)dxdy

=

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y) 1

2
(x̂p̂x)A(x, y)e

iφ(x,y)dxdy
� +∞
−∞

� +∞
−∞ I(x, y)dxdy

+

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y) 1

2
(p̂xx̂)A(x, y)e

iφ(x,y)dxdy
� +∞
−∞

� +∞
−∞ I(x, y)dxdy

=

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y) 1

2

�
x

�
−iň

∂

∂x

��
A(x, y)eiφ(x,y)dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

+

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y) 1

2

��
−iň

∂

∂x

�
x

�
A(x, y)eiφ(x,y)dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy
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=

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y) 1

2

�
x(−iň)

∂A(x, y)

∂x
eiφ(x,y)

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

+

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y) 1

2

�
xňA(x, y)

∂φ(x, y)

∂x
eiφ(x,y)

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

+

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y) 1

2

�
(−iň)

∂A(x, y)

∂x
eiφ(x,y)x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

+

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y) 1

2

�
ňA(x, y)

∂φ(x, y)

∂x
eiφ(x,y)x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

+

� +∞
−∞

� +∞
−∞ A(x, y)e−iφ(x,y) 1

2

�
(−iň)A(x, y)eiφ(x,y)

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

=

� +∞
−∞

� +∞
−∞

�
(−iň)A(x, y)x∂A(x,y)

∂x
+ 1

2
(−iň)A2(x, y) + ňA2(x, y)x∂φ(x,y)

∂x

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

Considering,

(−iň)
1

2

� +∞

−∞

∂

∂x
A2(x, y)xdx = (−iň)

� +∞

−∞
A(x, y)x

∂A(x, y)

∂x
dx+(−iň)

1

2

� +∞

−∞
A2(x, y)dx

Here, the amplitude square term (A2(x, y) in the R.H.S.) is an even function of x. A

multiplication by another x makes the term inside the integral, an odd function with

respect to x. Therefore, the integral has a value zero. On applying the above argument

to Eqn. (C.11), it becomes:

=

� +∞
−∞

� +∞
−∞ ňA2(x, y)x∂φ(x,y)

∂x
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

= ň

� +∞
−∞

� +∞
−∞ I(x, y)x∂φ(x,y)

∂x
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

In a discrete fashion:

�1
2
{x̂, p̂x}� = ň

�
ij xij

�
∂φ(x, y)

∂x

�

ij

Iij

�
ij Iij
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Similar arguments lead to,

�1
2
{ŷ, p̂y}� = ň

� +∞
−∞

� +∞
−∞ I(x, y)y ∂φ(x,y)

∂y
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

�1
2
{ŷ, p̂y}� = ň

�
ij yij

�
∂φ(x, y)

∂y

�

ij

Iij

�
ij Iij

(C.12)

�x̂p̂y� =

� +∞
−∞

� +∞
−∞ ψ(x, y)∗x̂p̂yψ(x, y)dxdy� +∞
−∞

� +∞
−∞ I(x, y)dxdy

=
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iφ(x,y)dxdy
� +∞
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=
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�
−iň ∂

∂y

�
A(x, y)eiφ(x,y)dxdy

� +∞
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� +∞
−∞ I(x, y)dxdy

=
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−∞
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�
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Considering,
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∂y
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� +∞
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Therefore,
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−∞

� +∞
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and,

�x̂p̂y� = ň

�
ij xij

�
∂φ(x,y)

∂y

�
ij
Iij

�
ij Iij

Since, �x̂p̂y� = �p̂yx̂�,

�p̂yx̂� = ň

� +∞
−∞

� +∞
−∞ I(x, y)x∂φ(x,y)

∂y
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

,

the discretised version being,
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�
ij xij

�
∂φ(x,y)

∂y

�
ij
Iij

�
ij Iij

Similarly,
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� +∞
−∞ I(x, y)y ∂φ(x,y)

∂x
dxdy
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−∞

� +∞
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which can be written in a dicrete manner as:
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�
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�
ij
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�
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The discrete version of the above is:

�x̂ŷ� =
�

ij Iijxijyij�
ij Iij

(C.13)

132



Since, �x̂ŷ� = �ŷx̂�,

�ŷx̂� =

� +∞
−∞

� +∞
−∞ I(x, y)yxdxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

and,

�ŷx̂� =
�

ij Iijyijxij�
ij Iij

(C.14)

C.2 Discrete Version

Considering the Eqns. (3.8), the discrete versions of the equations for the first moments

and the second moments can be written as :

�x̂� =

� +∞
−∞

� +∞
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� +∞
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� +∞
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, (C.15)
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−∞ I(x, y)dxdy

=

�
ij yijIij�
ij Iij

(C.16)
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and similarly the second moments are given by :
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� +∞
−∞

� +∞
−∞ x

�
∂φ(x,y)

∂x

�
I(x, y)dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

=

�
ij xij

�
x− x0

f

�

ij

Iij

�
ij Iij

, (C.20)
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� +∞
−∞

� +∞
−∞

1
4I(x,y)

�
∂I(x,y)

∂x

�2

dxdy
� +∞
−∞

� +∞
−∞ I(x, y)dxdy

+

ň2

� +∞
−∞

� +∞
−∞

�
∂φ
∂x

�2
I(x, y)dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

= ň2

�
ij

1

4Iij

�
∂I

∂x

�2

ij�
ij Iij

+

�
ij

�
x− x0

f

�2

ij

Iij

�
ij Iij

. (C.23)

134
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�pxpy� = ň2

� +∞
−∞

� +∞
−∞

1
4I(x,y)

�
∂I(x,y)

∂x

��
∂I(x,y)

∂y

�
dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

+

ň2

� +∞
−∞

� +∞
−∞

�
∂φ
∂x

� �
∂φ
∂y

�
I(x, y)dxdy

� +∞
−∞

� +∞
−∞ I(x, y)dxdy

= ň2

�
ij

1
4Iij

�
∂I
∂x

�
ij

�
∂I
∂y

�
ij�

ij Iij
+

�
ij

�
x−x0

f

�
ij

�
y−y0
f

�
ij
Iij

�
ij Iij

(C.25)

135



APPENDIX D

Details of Wavefront Sensor and Microlens Array

Table D.1: Wavefront Sensor Specifications

Wavefront Sensor Description

Aperture size 5.95 mm × 4.76 mm max.

Camera resolution 1280 × 1024 Pixels max., selectable

Pixel size 4.65 µm × 4.65µm

Shutter Global

Number of active lenslets 39 × 31

Wavefront accuracy λ
15

rms (@ 633 nm)

Wavefront sensitivity λ
50

rms (@ 633 nm)

Wavefront dynamic range > 100λ (@ 633 nm)

Local Wavefront curvature > 7.4mm

Exposure range 79 µs - 65 ms

Frame rate 15 Hz. max.

Image digitization 8 bit

Optical input connector C-Mount

Physical size (H × W × D) 34 mm × 32 mm × 45.5 mm

Power supply < 1.5 W, via USB



Table D.2: Microlens Array Specifications

Microlens Array Description

Included Microlens array MLA150M-5C

Substrate material Fused silica (quartz)

Wavelength range 300-1100 nm

Free aperture � 9 mm

Lenslet grid type Square grid

Lenslet pitch 150 µm

Lens shape Round, Plano convex spherical

Lens diameter 146 µm

Coating Chrome apertures

Reflectivity < 25%

Nominal focal length 5.2 mm

Effective focal length (mounted in SHWFS) 3.7 mm
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