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ABSTRACT
The performance of the conventional two-noded Equivalent Single Layer (ESL) extension mode

piezoelectric beam finite elements is affected by ‘locking’ phenomena. The conventional for-

mulations available in the literature employ independent polynomials for the interpolation of

mechanical displacements and transverse electric potential. ‘Material locking’ due to bending-

extension coupling and ‘shear locking’ due to bending-shear coupling hamper the finite ele-

ment convergence, while ‘piezolocking’ due to induced potential coupling affects the accuracy.

Hence, the conventional formulations demand a refined mesh in the axial direction, to overcome

shear and material locking effects and a sublayered modelling of the electric potential in the

transverse direction, to overcome piezolocking effects. However, these measures to circumvent

locking effects are inefficient because they lead to increase in number of nodal degrees of free-

dom and computational effort. In this thesis, accurate and efficient ESL piezoelectric beam finite

elements are developed using coupled polynomials for field interpolations, without increasing

the number of nodal degrees of freedom. The formulations are developed for Euler-Bernoulli

theory (EBT), first-order (FSDT) and higher-order (HSDT) shear deformation theories.

The higher-order through-thickness distribution of electric potential in a physical piezoelec-

tric layer, consistent with the respective ESL theory, is derived from an electrostatic equilibrium

equation to eliminate piezolocking. This consistent potential contains, in addition to conven-

tional linear terms, higher-order coupled term(s) which depends only on the bending strain and

hence does not bring in any additional nodal electric potential degree of freedom in the formu-

lation. The governing equilibrium equations derived from a variational formulation are used to

establish the relationship between field variables involved in the ESL theory based formulations

with respective consistent potential. These relationships lead to a set of coupled polynomials for

their interpolations. A set of coupled shape functions obtained from these polynomials incor-

porate the bending-extension, bending-shear and induced potential couplings in a variationally

consistent manner.

The proposed coupled polynomial based piezoelectric beam finite element formulations are

validated by benchmark solutions from ANSYS 2D simulations. Comparison of results for

numerous test problems proves improved accuracy and efficiency of the proposed formulations

over their conventional counterparts.
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CHAPTER 1

INTRODUCTION

1.1 Piezoelectric Smart Structures

In the recent years, the need of self controllable structures has motivated the research

and development of smart structures. A structure which can respond to any change

in the external environment can be termed as ‘smart or intelligent structure’. Such

structures make use of special materials called ‘smart materials’. Smart materials have

couplings between different physical fields present in them, which can be used effec-

tively to control their behaviour. Piezoelectric smart materials have coupling between

mechanical and electrical fields. The history of piezoelectricity dates to 1880 when

Pierre and Jacques Curie discovered the piezoelectric effect in several substances such

as the quartz crystal, which is a naturally occurring piezoelectric material. Lead Zir-

conate Titanate (PZT) and Polyvinylidene Fluride (PVDF) are widely used ceramic and

polymer based piezoelectric materials, respectively.

Due to their high reliability, piezoelectric smart structures are widely used in the

shape and vibration control technologies. In piezoelectric materials, the presence of

mutual dependency between stress/strain field and electric field/voltage makes them

capable of responding to the subjected loading (electrical or mechanical) environment

in a real time. A piezoelectric material can be used as a sensor to generate the voltage

corresponding to the subjected mechanical field or as an actuator to generate corrective

force corresponding to the subjected electric field.

Piezoelectric beams are widely employed in the modern structural applications. The

application of piezoelectric beams generally involves two modes of operation: Exten-

sion mode and Shear mode. In the extension mode, the coupling between longitudinal

strain and transverse electric field is utilised while in the shear mode, the coupling be-

tween shear strain and transverse electric field is utilised. The directional nature of

the electromechanical coupling in piezoelectric material is achieved by ‘poling’ pro-

cess in which a high electric field is applied to re-orient the electric dipoles. In the



extension mode beams, transversely poled piezoelectric material is used whereas in the

shear mode beams, axially poled piezoelectric material is used. Design of piezoelec-

tric smart beams essentially involves mathematical modelling and structural analyses.

The present research work focuses on the finite element modelling and analysis of the

extension mode piezoelectric smart beams.

Piezoelectric beams in extension mode of operation is one of the widely used mech-

anisms to control the behaviour of structures. In a typical extension mode of operation,

piezoelectric layers are bonded to the top and bottom surfaces of the host structure, as

shown in Fig. 1.1, in which P is the poling direction and E3 is the applied electric field

in the transverse direction. The host cantilever beam of conventional material is bended

upward due to the contraction and extension of the oppositely poled top and bottom

piezoelectric layers, respectively, under the applied electric field.

Figure 1.1: Extension mode operation of piezoelectric smart beam.

1.2 Analysis of Extension-Mode Piezoelectric Smart Beams

Structural analysis to predict the response under the field conditions plays an important

role in the design of piezoelectric beams. Unlike beams of conventional materials, the

presence of electro-mechanical coupling presents great challenges in the development

of reliable and efficient tools for modelling and analysis of piezoelectric beams.

The electromechanical coupling renders analytical solutions extremely cumbersome,

even for simple geometries and loadings. Among the numerical methods for solving

field problems, the Finite Element Method (FEM) has emerged as a versatile tool for

the analysis of piezoelectric structures with complex geometry, boundary condition and

loading. In the FEM, the structure is visualized as an assemblage of simple geometric

shapes called finite elements, defined by nodal points. The field variables (displace-
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ment, stress, strain, electric potential, electric field, electric displacement etc.) are in-

terpolated within each element using simple assumed functions. The field equations

for whole structure are obtained as an assemblage of elements in terms of nodal val-

ues of the field variables chosen. Based on the particular variational method, different

types of piezoelectric beam finite element formulations are available. However, the

displacement based piezoelectric beam finite element models have been very popular

by virtue of their simplicity and adaptability. The general constitutive relations for the

displacement based piezoelectric finite elements are given as:

σij = CE
ijklεkl − ekijEk

Dm = emklεkl + ϵεmkEk

where σ= Stress tensor (Nm−2), C= Stiffness when electric field is constant (Nm−2),

ε= Strain tensor, D= Electric displacement vector (Cm−2), E= Electric field vector

(V m−1), e= Piezoelectric constant (NV −1m−1) or (Cm−2), ϵ= Permittivity under con-

stant strain (Fm−1).

The Equivalent Single Layer (ESL) theory based two-noded beam finite elements

are widely used to model piezoelectric beam structures. ESL theories employ a single

function to define the beam deformation kinematics across the whole thickness. There

are various types of ESL theories based on the approximation of the transverse shear

strain across the thickness of the beam, as mentioned below:

• Euler-Bernoulli Theory (EBT): Considers linear longitudinal displacement across

the thickness and neglects deformation due to transverse shear strain, as:

u(x, z) = u0(x)− zw
′
0(x); w(x, z) = w0(x) and

γ(x, z) = ∂u(x, z)/∂z + ∂w(x, z)/∂x = 0

where u(x, z) and w(x, z) are the displacements along the longitudinal (x) and

transverse direction (z), respectively. The sub-functions u0(x) and w0(x) are the

longitudinal and transverse displacements at the centroidal axis of the beam, re-

spectively. γ(x, z) is the transverse shear strain and ()
′ denotes d/dx.

• First-order Shear Deformation Theory (FSDT): Considers linear longitudinal

displacement and constant shear strain across the thickness, as:

u(x, z) = u0(x) + zθ(x); w(x, z) = w0(x) and

3



γ(x, z) = ∂u(x, z)/∂z + ∂w(x, z)/∂x = θ(x) + w
′
0(x)

where θ(x) is the section rotation.

• Higher-order Shear Deformation Theory (HSDT): Considers cubic longitudi-

nal displacement and quadratic shear strain across the thickness. The usual form

of Reddy’s HSDT field is given as:

u(x, z) = u0(x) + zθ(x)− 4
3h2 z

3
[
θ(x) + w

′
0(x)

]
; w(x, z) = w0(x) and

γxz(x, z) = ∂u(x, z)/∂z + ∂w(x, z)/∂x =
(
1− z2 4

h2

) [
θ(x) + w

′
0(x)

]

where h is the total thickness of the beam.

In extension mode ESL based piezoelectric beam finite elements, the coupling between

longitudinal mechanical stress and transverse electric field is accommodated in the for-

mulation through constitutive relations, using piezoelectric stress coefficient e31. The

electric field in the transverse direction is obtained as Ez(x, z) = −∂φ(x, z)/∂z (V/m),

the order of which depends on the order of interpolation of φ(x, z) in the transverse di-

rection.

1.3 Performance Related Issues in Displacement Based

Piezoelectric Beam Finite Element Models

Numerous displacement based piezoelectric beam finite element formulations with var-

ious theories and assumptions are available in the literature. The performance of a finite

element formulation can be best assessed by evaluating the convergence characteristic

and accuracy of the solution.

1.3.1 Issues related to convergence

In the displacement based methods, convergence characteristic of a beam finite element

essentially depends on the order of polynomial employed for field variable interpolation

in the longitudinal direction. The minimum order of polynomial for each field variable

is governed by continuity requirements imposed by the variational formulation em-

ployed. Use of lowest permissible order of polynomial naturally leads to the two-noded

beam elements, which are widely used for structural analyses. However, it is observed

4



that the nature of the convergence characteristic of low-order beam elements depends on

the extent of bending-extension coupling and bending-shear coupling. These couplings

in turn depend on the geometric and/or material configurations of the beam.

Bending-extension coupling

Generally, most of the piezoelectric beams are made up of host structure of conven-

tional materials with asymmetrically bonded/embedded piezoelectric layers/patches.

The asymmetry in the material distribution over the cross-section of the beam activates

the ‘bending-extension’ coupling mechanism in the piezoelectric beam finite elements.

The two noded EBT, FSDT and HSDT based piezoelectric beam finite elements which

use assumed linear polynomial approximations for the interpolation of axial displace-

ment (u0), are inefficient in handling bending-extension coupling and hence show poor

convergence. The deterioration in the convergence due to bending-extension coupling

is generally termed as material locking.

Presence of material locking effects demands refinement of finite element mesh to

yield reliable results. Use of higher-order polynomial interpolation for u0 also tend

to eliminate ill-effects of material locking. However, use of higher order independent

polynomial necessitates either the addition of intermediate nodes or the use of derivative

of u0 as additional degrees of freedom at the existing nodes. Hence, these methods to

yield a reliable solutions increase the number of global nodal degrees of freedom and

hence increase the computational costs.

Bending-shear coupling

In the conventional two-noded FSDT and HSDT beam finite element formulations,

there exists a coupling between bending and shear by virtue of the definition of shear

strain field. The shear strain field is computed as the sum of the bending rotation (θ)

and derivative of the transverse displacement (w′
0) of the beam.

In the two-noded isoparametric FSDT beam formulation, where linear polynomials

are employed for interpolating w0 and θ, the polynomial expression for transverse shear

strain would contain a linear term from θ field, which has no matching contribution from

w0 field. This unmatched or inconsistent linear term in the shear strain, contributed by θ

5



leads to a significantly poor bending response in the thin regimes and adversely affects

the convergence characteristics. This phenomenon is widely known as ‘shear locking’.

Various methods have been practised to eliminate the ill-effects of shear locking in

FSDT beam elements.

Reduced integration (RI) techniques have been widely used to alleviate shear lock-

ing in FSDT-based elements. A one-order-lower reduced integration of transverse shear

energy can be shown to nullify one or more higher order components of the shear strain

field which lead to spurious constraints in the thin beam limits. Indiscriminate use of

reduced integration can introduce zero-energy modes and should therefore be used with

caution. The reduced integration procedures are meaningful in the domain of computa-

tion of stiffness matrix only. Hence in the case of distributed static and inertial loadings,

the use of fully integrated consistent load vector and consistent mass matrix with the

under-integrated stiffness matrix, cannot be free of associated errors.

Use of consistent order of independent polynomial interpolation for the displace-

ment fields participating in the definition of shear strain field eliminates shear locking.

Typically, a quadratic interpolation for w0 and a linear interpolation for θ will not pro-

duce any spurious terms in the shear strain field. However, use of quadratic polynomial

for w0 would demand a third (mid) node for its interpolation, increasing the number of

nodal variables and the computational cost.

In the HSDT beam formulation, a cubic interpolation for w0 and a linear interpola-

tion for θ is employed. Hence, in the polynomial expression for transverse shear strain,

an inconsistent quadratic term contributed by w
′
0 field will exist, which has no match-

ing contribution of the same order from θ. As this inconsistent term in HSDT shear

strain field is of higher order and hence weaker, the shear locking effects are insignifi-

cant. However, as the interpolation for section rotation (θ) is only linear, derivative of

which forms the major component in the curvature strain field, the convergence char-

acteristics are still not impressive. The convergence behaviour may be improved by

introducing shear strain (γ0) as a nodal degree of freedom and defining a section rota-

tion as (γ0 − w
′
0). However, use of γ0, which is not an engineering degree of freedom,

invites difficulties in the application of certain boundary conditions.
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1.3.2 Issues related to accuracy

In general, the through-thickness distribution of applied electric potential in the actu-

ator configuration and the developed electric potential in the sensor configuration of a

piezoelectric beam is generally approximated as linear. In a piezoelectric beam under

pure extension where the normal strain is uniform across the thickness, the linear as-

sumption of through-thickness potential is appropriate. However, under bending defor-

mations, the curvature strain causes the distribution of electric potential to be nonlinear

across the thickness. The nonlinear part of the through-thickness distribution of electric

potential is generally termed as the induced potential. The effect of induced potential

is more significant when the piezoelectric material dominates the beam cross-section.

In such cases, the use of linear polynomial to approximate the through-thickness distri-

bution of electric potential will lead to inaccurate results. This phenomenon leading to

inaccurate converged results, due to single layer modelling of transverse electric poten-

tial with linear approximation is termed here as piezolocking.

The conventional methods to relieve piezolocking and yield accurate results, taking

the nonlinear nature of the induced potential into consideration are (i) use of sublayers

in the mathematical modelling of the piezoelectric physical layer, leading to addition

of sublayerwise nodal electric potential degrees of freedom and/or (ii) use of higher

order polynomial interpolation for through-thickness electric potential field, leading to

additional nodal electric potential degrees of freedom. Both methods would increase

the computational effort and cost.

1.4 Scope for Research

Piezoelectric materials provide many advantages in the design of lightweight and con-

trollable structures. Extension mode piezoelectric beams are extensively used in aerospace,

defence, automotive structures. They offer the most reliable structural control with ease.

Numerical simulation using finite element method serves as a powerful tool for the

analysis of the piezoelectric beam structures. Assessment of static, dynamic and stabil-

ity characteristics of structures provides crucial information for efficient and optimized

design. It will be highly beneficial to use computationally efficient, numerically well-
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behaved and accurate finite elements for reliable analysis of piezoelectric structures.

ESL piezoelectric beam finite elements based on assumed displacements in the form

of polynomial functions are very attractive and extensively used, by virtue of its sim-

plicity. However, they are plagued by material-locking, shear-locking and piezolocking

phenomena. Despite the existence of some techniques to circumvent these problems, it

is worthwhile to put further efforts to look for more efficient methods of handling these

locking effects.

It would be interesting to develop simple elements which, with their original poly-

nomial displacement fields, perform consistently over a wide range of geometric and

material parameters, without the requirements of any special technique to eliminate

locking effects. Such finite elements would definitely have wider applications as they

present more economic, reliable and accurate elements. Any investigation in this di-

rection becomes very essential and significant in the context of ESL piezoelectric beam

finite elements as they are widely used for the analysis of smart structures. In this re-

gard, an extensive literature survey on the existing extension mode piezoelectric beam

finite element formulations has been carried out.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In general, displacement-based finite element formulations for piezoelectric beams avail-

able in the literature, can be classified as:

• 3D solid models (Allik and Hughes, 1970; Tzou and Tseng, 1991, 1988; Ha et al.,

1992; Koko et al., 1997; Duczek and Gabbert, 2013)

• Sandwich beam theory (Benjeddou et al., 1997, 2000; Raja et al., 2002, 2004),

• Layerwise beam theory (Robbins and Reddy, 1991; Saravanos and Heyliger,

1995; Donthireddy and Chandrashekhara, 1996; Ahmad et al., 2005; Plagianakos

and Saravanos, 2005),

• Sinus beam model (Beheshti-Aval and Lezgy-Nazargah, 2010; Beheshti-Aval et al.,

2011; Lezgy-Nazargah et al., 2013)

• Zig-zag beam model (Kapuria et al., 2004; Kapuria and Alam, 2006; Kapuria and

Hagedorn, 2007)

• Global-Local beam theory (Beheshti-Aval and Lezgy-Nazargah, 2012, 2013) and

• Equivalent Single Layer (ESL) beam theories.

In line with the scope of the present investigation discussed in Chapter 1, the ex-

tensive literature survey reported here, places major emphasis on the ESL beam theory

based extension-mode piezoelectric beam analytical solutions and finite element formu-

lations with special attention to:

(i) The kind of assumed polynomial interpolation for displacement and electric po-

tential fields in the longitudinal direction



(ii) Approximation for distribution of transverse electric potential in the piezoelectric

layer

(iii) Locking phenomena and their effects

(iv) Methods of eliminating adverse effects of locking.

2.2 ESL-based Analytical Solutions for Piezoelectric Beams

Equivalent Single Layer (ESL) Euler-Bernoulli Theory (EBT) was used by Crawley

and deLuis (1987), Crawley and Anderson (1990) and Abramovich and Pletner (1997)

in their analytical formulations for analysis of piezoelectric beams. They considered

the strain induced by the piezoelectric actuators as an equivalent applied mechanical

force. Crawley and deLuis (1987) derived static and dynamic models for segmented

piezoelectric actuators that are either bonded to an elastic substructure or embedded in

a laminated composite. They discussed the optimal location for the actuator placement.

The scaling analysis carried out by them, indicated that the nondimensional effective-

ness of the piezoelectric actuator remains constant if the dimension of the piezoelectrics

increase in scale with those of the structure. Crawley and Anderson (1990) extended

these solutions to establish the range of parameters for which the simpler analytical so-

lutions are valid. They proved the accuracy of the EBT based beam model to predict

extensional and bending deformation. Abramovich and Pletner (1997) provided analyt-

ical solutions for induced axial strains and the curvature leading to the calculation of

equivalent mechanical loads produced by piezoceramic actuators in a newly proposed

sandwich structure.

ESL First-order Shear Deformation Theory (FSDT) which considers constant shear

strain across the beam cross-section was used by Abramovich (1998); Krommer and

Irschik (1999); Wang et al. (1999); Sun and Huang (2000); Huang and Sun (2001);

Edery-Azulay and Abramovich (2004); Waisman and Abramovich (2002); Zhou et al.

(2005) and Khdeir et al. (2012) for their analytical solutions for piezoelectric beams.

Abramovich (1998) presented closed form solutions for the bending angle and the axial

and lateral displacements along the beam for various configurations of lay-up, boundary

conditions and mechanical loading. A closed-loop approach was then applied to control
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the lateral deflection of an axially loaded piezolaminated beam based on the measure-

ment of the average bending slope. Edery-Azulay and Abramovich (2004) extended

this formulation for parametric study of the effects of actuator location and number of

patches on actuator’s performance in various configurations and loading. Krommer and

Irschik (1999) studied free transverse vibrations of smart beams using a Timoshenko

based analytical formulation which considered the shear and rotary inertia. The effec-

tive stiffness parameters given by correction of electrical coupling, were used to study

the influence of electric field on free vibration of beams. Wang et al. (1999) derived

optimality conditions and analytical expressions based on FSDT for determining the

optimal voltages to be applied to piezoelectric actuators so as to bend the beam in the

desired shape. Sun and Huang (2000); Huang and Sun (2001) developed a FSDT-based

electromechanical model for the active vibration control of smart composite beam struc-

tures with embedded piezoelectric actuators and sensors. The analytical model was

developed using the displacement potential function and the transformation method of

complex numbers. Waisman and Abramovich (2002) studied the active stiffening ef-

fects of the smart piezolaminated composite beams with a FSDT-based formulation.

They evaluated the influence of actuator using the pin-force model. It is demonstrated

that the stiffness of the beam can be actively altered using the piezoelectric bonded ac-

tuators, producing significant changes in the natural frequencies and mode shapes of

the beam. Zhou et al. (2005) provided analytical solutions for piezoelectric bimorphs

based on improved FSDT beam model. A general electric field function was proposed to

reasonably approximate the through-the-thickness distribution of the applied and devel-

oped electric potentials. Khdeir et al. (2012) proposed FSDT-based analytical solution

for the free vibration of cross-ply laminated beams with multiple distributed extension

piezoelectric actuators, using the state space approach.

ESL Higher-order Shear Deformation Theory (HSDT) which considers the parabolic

nature of transverse shear was used by Gaudenzi (1998); Aldraihem and Khdeir (2000);

Khdeir and Aldraihem (2001); Aldraihem and Khdeir (2003) for their analytical formu-

lations to study the behaviour of piezoelectric beams. Gaudenzi (1998) presented exact

higher order solutions for simple adaptive structures for the cases of membrane actu-

ation and pure bending. This formulation allows to evaluate the importance of higher

order effects in the modelling of the interaction between induced strain actuators and

a simple beam structure. Aldraihem and Khdeir (2000) presented analytical models
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and exact solutions for smart beam bending problem by using the state-space approach

along with the Jordan canonical form. Khdeir and Aldraihem (2001) extended this for-

mulation for smart beams with segmented actuators. They proved the validity of ESL

theories for the analysis of extension mode smart beams. Aldraihem and Khdeir (2003)

presented precise deflection models of beams with a number of pairs of piezoelectric

patches and checked the performance of their previous formulation (Khdeir and Aldrai-

hem, 2001), using various parametric studies.

2.3 ESL-based Piezoelectric Beam Finite Elements

2.3.1 EBT beam elements

The Euler-Bernoulli Theory (EBT) based piezoelectric beam finite elements neglect

transverse shear deformation in their formulation, which can be reliably used for the

analysis of slender beams. The two-noded EBT finite element essentially use a Hermite

cubic interpolation for transverse displacement (w).

The EBT-based beam bending element was used by Hanagud et al. (1992); Gaudenzi

et al. (2000); Stavroulakis et al. (2005) for vibration control studies with piezoelectric

material. This element does not incorporate axial displacement in the formulation and

has transverse displacement (w) and its derivative (w′) as mechanical nodal degrees of

freedom. Hanagud et al. (1992) used EBT-based beam bending element for the de-

velopment of optimal active control procedures by minimizing a quadratic performance

index of state and control vectors using output feedback for a flexible structure equipped

with sensors and actuators. Gaudenzi et al. (2000) addressed vibration attenuation ef-

fects in active cantilever beams with position and velocity control approaches. The

numerical simulation was performed using FEM with subsequent modal factorisation.

Stavroulakis et al. (2005) used EBT beam bending element in the design of a vibration

control mechanism for a beam with bonded piezoelectric sensors and actuators and an

application of the arising smart structure for vibration suppression. These finite ele-

ments developed are without electric potential as a nodal degree of freedom and the

piezoelectric effects were incorporated as the equivalent applied nodal forces.

The EBT-based piezoelectric beam bending finite element with a bilinear variation
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of potential in the piezoelectric layer was used by Zemcik and Sadilek (2007) and

Sadilek and Zemcik (2010) for modal and frequency response analysis of piezoelec-

tric beams, respectively. This formulation incorporated, apart from w and w
′ , layerwise

nodal electric potential degrees of freedom. Zemcik and Sadilek (2007) carried out the

sensitivity analysis for the case of modal analysis of steel beam with and without ap-

plied piezoelectric patches. Sadilek and Zemcik (2010) carried out frequency response

analysis of hybrid aluminium beam with piezoelectric actuators using the developed

element. The piezoelectric actuators were driven by harmonic signals around the first

eigen frequency and the beam oscillations were investigated.

The Euler-Bernoulli piezoelectric beam finite element with w, w′ and u0 as me-

chanical nodal degrees of freedom and a single electric potential degree of freedom for

each piezoelectric layer was used by Carpenter (1997); Balamurugan and Narayanan

(2001) and Kumar and Narayanan (2008). The axial deformation (u0) was interpolated

by a linear polynomial. They considered the developed/applied voltage constant over

the surface of the piezoelectric layer and linear through the thickness. Carpenter (1997)

used energy methods to derive beam finite elements for piezoelectric smart beams and

obtained the EBT-based beam model as a special case. Balamurugan and Narayanan

(2001) developed a finite element model based on the EBT for studying active vibration

control of beam structures with distributed sensor and actuator layers, using different

control strategies. Kumar and Narayanan (2008) discussed the strategy of determining

the optimal location of piezoelectric sensor-actuator pairs in active vibration control of

structures using the linear quadratic regulator (LQR) performance criterion, with the

help of the EBT-based piezoelectric beam finite element formulation.

The EBT-based piezoelectric beam finite element with element-wise electric po-

tential degree of freedom for each piezoelectric layer was developed by Bruant et al.

(2001). They simulated the active vibration control of beam structures with piezoelec-

tric actuators and sensors. A linear quadratic control method including a state observer

was used to compute the control.

The EBT-based piezoelectric beam finite element with electric potential as a nodal

degree of freedom for each piezoelectric layer was used by Bendary et al. (2010) for

static and dynamic analysis of intelligent beam structures. They carried out various

parametric studies of surface mounted piezoelectric beams.
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2.3.2 FSDT beam elements

The FSDT-based two-noded beam bending element with Lagrange linear interpolations

for transverse displacement (w) and section rotation (θ) was used by Foutsitzi et al.

(2002, 2003) to study vibration control of a beam with bonded piezoelectric sensors

and actuators using optimal LQR control strategy and H2 controller, respectively. The

piezoelectric effect was introduced through equivalent applied nodal forces and electric

potential is not a nodal degree of freedom. They assumed a linear through-thickness

potential distribution.

The FSDT-based two-noded beam bending formulation with interdependent inter-

polations for w and θ was used by (Aldraihem et al., 1996, 1997; Moutsopoulou et al.,

2012, 2013) for their studies on vibration control using piezoelectric smart beams.

These interpolations were originally derived by Friedman and Kosmatka (1993) based

on the governing equations for conventional/composite materials. The electric potential

was not considered as a nodal degree of freedom and the piezoelectric actuation was

incorporated in terms of equivalent mechanical load and sensing voltage was calculated

from the derived quantities. Aldraihem et al. (1996, 1997) compared EBT and FSDT

smart beam bending finite elements for distributed control of laminated beams. They

reported that use of an EBT based controller to suppress beam vibration can lead to in-

stability caused by inadvertent excitation of unmodelled modes and recommended use

of FSDT. Moutsopoulou et al. (2012) presented modelling and numerical analysis of

piezoelectric systems and smart structures with embedded control. Moutsopoulou et al.

(2013) studied active control of piezoelectric smart structures in vibration and noise

attenuation applications with the FSDT-based finite element model.

The FSDT-based two-noded beam bending formulation with interdependent inter-

polations for w and θ and a single electric potential degree of freedom for each piezo-

electric layer was used by Bona et al. (1994) for the analysis of structures with em-

bedded piezoelectric sensors/actuators. The electric potential was considered linearly

varying across the thickness of piezoelectric layer.

The FSDT-based two-noded beam bending formulation with interdependent inter-

polations for w and θ and element-wise electric potential degree of freedom for each

piezoelectric layer was used by Manjunath and Bandyopadhyay (2006) for study of vi-
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bration control. They discussed on the smallest magnitude of the control effort required

to control the vibrations of the smart cantilever beam with surface bonded piezoelectric

patches.

The isoparametric FSDT-based two-noded piezoelectric beam element with La-

grange linear interpolations for u0, w and θ was used by Sedaghati et al. (2006) to

develop a design optimization methodology. The electric potential was not considered

as a nodal degree of freedom and the piezoelectric effect was introduced by means of

equivalent nodal forces. They combined the finite element model and the sequential

quadratic programming technique to improve the structural performance of laminated

composite beams with piezoelectric actuators.

The isoparametric FSDT-based two-noded piezoelectric beam finite element with

Lagrange linear interpolations for u0, w and θ and layerwise nodal electric potential

degrees of freedom was used by Narayanan and Balamurugan (2003) to study active

vibration control of piezolaminated smart structures using distributed sensors and actu-

ators. They employed a layerwise assumed linear through-thickness potential.

Three-noded FSDT piezoelectric beam elements based on higher-order interpola-

tions for mechanical field variables were developed by Ray and Mallik (2004); Bland-

ford et al. (1999); Neto et al. (2009) for the analysis of piezoelectric beams. However,

all these formulations used only linear interpolation of through-thickness electric po-

tential.

2.3.3 HSDT beam elements

The Reddy’s HSDT incorporates the accurate parabolic distribution of through-thickness

shear strain. Finite elements with Reddy’s usual displacement field use assumed La-

grange linear interpolation for axial displacement (u0) and section rotation (θ) and Her-

mite cubic interpolation for transverse displacement (w0). This form of HSDT was used

by Chandrashekhara and Varadarajan (1997), Peng et al. (1998), Komeili et al. (2011)

and Elshafei and Alraiess (2013) for their piezoelectric beam formulation with a lay-

erwise linear through-thickness potential. Chandrashekhara and Varadarajan (1997)

presented numerical results from HSDT-based finite element to demonstrate the ef-

fectiveness of piezoelectric actuators and position sensors for adaptive shape control.
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The model is without electrical nodal degrees of freedom and the piezoelectric effect is

brought in through equivalent nodal forces. Peng et al. (1998) developed a finite element

model for the active position control and vibration control of composite beams with

distributed piezoelectric sensors and actuators. This model used equivalent forces gen-

erated by the electric potential applied to the actuator in the calculation. Komeili et al.

(2011) used the HSDT-based finite element as well as analytical solutions by Fourier

series, for static analysis of functionally graded piezoelectric material (FGPM) beams

under thermo-electro-mechanical loads. Equivalent nodal forces were incorporated to

bring in the piezoelectric effect. Elshafei and Alraiess (2013) used the HSDT-based fi-

nite element for static analysis of piezoelectric smart beams with layerwise nodal elec-

tric potential degrees of freedom. The formulation is validated by comparing the results

for various parametric studies with standard solutions.

A modified form of Reddy’s HSDT displacement field with shear angle (γ0) as a

variable instead of section rotation (θ) in the description of displacement field was used

by Chee et al. (1999). This improved the curvature representation and the element

convergence characteristic. This model considered nodal electric potential degrees of

freedom with layerwise linear through-thickness distribution. In some cases they used

sublayers within piezolayer and sublayer-wise linear through-thickness potential. Wang

et al. (2007) and Jiang and Li (2007) used a modified form of HSDT given by Chee

et al. (1999) with an assumed layerwise cubic function to approximate the higher-order

through-thickness potential. The potential difference between top and bottom surfaces

(V ), electric fields at top and bottom surfaces (Eb and Et) were used as electrical degrees

of freedom. The Eb and Et were statically condensed out to reduce the size of the global

finite element matrices.

2.4 Modelling of Through-thickness Potential

Most of the finite elements available in the literature used an assumed distribution of

through-thickness potential with various orders of interpolation (linear, quadratic and

cubic). Wang (2004) studied the effect of higher-order through-thickness potential on

the accuracy of the piezoelectric finite element solutions, with the help of sublayered

modelling in which the sublayerwise linear interpolation for through-thickness potential
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was employed. Sze et al. (2004) carried out the review of the assumptions used for

electric variables in the piezoelectric analysis with a FSDT-based plate model. They

compared results from constant electric field (EC), linear electric field (EL) and constant

electric displacement (DC) models for piezoelectric laminates in their numerical study.

Rachmadini et al. (2005) tested the effect of full coupling stiffness on the through-

thickness electric potential distribution in the piezoelectric actuator/sensor using their

earlier three dimensional finite element developed in Lee et al. (2004).

2.5 2D FE Simulation Results as Benchmark

The literature survey reveals the concepts and methodology adopted by various re-

searchers for developing new piezoelectric beam finite element formulations. In the

context of studying beam bending, shear and extension, the deformations in the 2-

dimensional (longitudinal:X and transverse:Z) plane are essentially addressed. The

loading and deformations are limited to the XZ plane. For validation of such beam

formulations, many researchers (Zhang and Sun, 1996; Kapuria et al., 2004; Kapuria

and Alam, 2006; Wang et al., 2007) have used results from the analysis of the corre-

sponding two-dimensional geometry, modelled by appropriate piezoelectric 2D finite

elements as a benchmark. Finite element analysis using a refined 2D mesh is able

to extract the exact variation of the field variables in the longitudinal and transverse

directions. This approach would reveal the efficacy and adequacy of the beam formula-

tions in extracting the two-dimensional structural behaviour using the one-dimensional

(beam) finite element. Lin et al. (1994) verified in detail, the use of ANSYS 2D fi-

nite element simulations as benchmark for validating both static and dynamic analyses

results of piezoelectric extension mode smart beam formulations.

2.6 Summary of Literature Survey

Piezoelectric smart structures are dominating the shape and vibration control technolo-

gies. Many numerical models are available in the literature for modeling the piezo-

electric smart structures, depending on their application. The selection of a particular

model depends on the complexity of the structural behaviour to be modelled. The exact
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or analytical solutions are suitable for simple and regular geometries. Ability to han-

dle geometric and loading complexities have made the finite element analysis a most

preferred numerical tool for the structural analysis of the piezoelectric smart systems.

Numerous piezoelectric finite elements based on different theories are available in the

literature. ESL theories are mostly preferred in the literature for piezoelectric beams by

virtue of their simplicity and adaptability. The specific observations from the literature

survey are summarised here for each ESL beam theory:

• EBT:

– The conventional two-noded EBT-based piezoelectric beam element uses

independent Lagrange linear interpolations for both axial displacement (u0)

and electric potential (φ) and Hermite cubic interpolation for transverse dis-

placement (w0).

– As the field interpolations are independent, the inherent coupling between

mechanical and electrical field variables is accommodated only through con-

stitutive relations.

– The material locking effects in EBT-based piezoelectric beam finite ele-

ments due to material asymmetry are not addressed.

– An assumed linear through-thickness distribution of electric potential is

widely used. The piezolocking effects of higher-order induced potential

are not addressed.

• FSDT:

– The conventional two-noded isoparametric FSDT-based piezoelectric beam

element uses independent Lagrange interpolations for axial displacement

(u0), transverse displacement (w0), section rotation (θ) and electric potential

(φ).

– As the field interpolations are independent, the inherent coupling between

mechanical and electrical field variables is accommodated only through con-

stitutive relations.

– Shear locking has been generally eliminated by the use of Reduced Integra-

tion technique. Some researchers used interdependent interpolations for w0

and θ, which relieved shear locking and improved the performance.
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– The material locking effects in FSDT-based piezoelectric beam finite ele-

ments due to material asymmetry are not addressed.

– The through-thickness distribution of electric potential has been approxi-

mated as linear. Some researchers suggested use of sublayered modelling to

accommodate the higher order induced potential effects.

• HSDT:

– The conventional two-noded piezoelectric beam element based on Reddy’s

HSDT uses Lagrange linear interpolations for axial displacement (u0), sec-

tion rotation (θ) and electric potential (φ) and Hermite cubic interpolation

for transverse displacement (w0).

– As the field interpolations are independent, the coupling between mechani-

cal and electrical field variables is accommodated only through constitutive

relations.

– Use of shear angle (γ0) as a variable instead of section rotation (θ) improves

the bending behaviour of the HSDT-based elements.

– The material locking effects in HSDT-based piezoelectric beam finite ele-

ments due to material asymmetry are not addressed.

– An assumed linear approximation for through-thickness potential is applied

by most of the researchers. Some of the researchers used assumed cubic

variation of through-thickness potential and sublayered modelling to accom-

modate the effects of higher-order induced potential.

ANSYS 2D finite element simulations can be effectively used to obtain a set of

reference values to validate the newly developed piezoelectric beam finite elements.

2.7 Motivation and Objective of the Thesis

It is observed from the review of the literature that delayed convergence due to shear

locking and material locking and loss of accuracy due to piezolocking are the main

factors which affects the performance of conventional displacement based ESL beam

finite elements employed for the analysis of extension mode piezoelectric smart beams.
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The literature review also indicates that in the displacement based finite element formu-

lations, the nature of assumed interpolation polynomials has a direct influence on the

basic performance characteristics of the element.

A basic cause for the above mentioned deficiencies can be attributed to the coupling

among the various participating fields. Material locking is the outcome of coupling

between axial and bending deformations of the beam which is termed as ‘bending-

extension’ coupling. The shear locking is the outcome of ‘bending-shear’ coupling by

virtue of shear strain definition in the respective formulation. The ‘piezolocking’ due

to the nonlinear nature of the induced potential arises from coupling between electric

potential and flexural strain. In the case of piezoelectric beam finite elements, these

couplings are governed by the coefficients of the coupled constitutive matrix relating

the mechanical and electrical quantities.

In the domain of assumed polynomial displacement based finite element proce-

dures, the apparently competitive ways of overcoming the above locking problems in

the piezoelectric beam finite elements are (i) use of higher order polynomials for inter-

polation of displacements and through-thickness electric potential or (ii) use of refined

descretization in the axial direction for mechanical field variables and in the thickness

direction (by means of sublayered modelling) for electric potential. However, these

methods are computationally expensive.

A more natural and economical way to tackle these problems seems to be the in-

corporation of an inherent coupling among the assumed polynomial fields, consistent

with element kinematics. A natural and reliable source for bringing in such coupling

is obviously the element equilibrium equations, which can be used for deriving a set

of coupled polynomial approximations for the participating fields. The investigation

reported in this thesis is a humble attempt in this direction.

The main objective of the present investigations are as follows:

• Development of ESL-based EBT, FSDT and HSDT extension mode piezoelectric

smart beam finite elements using coupled polynomial fields, which involves:

1. Formulation of element kinematics.

2. Derivation of governing equations with the help of a variational formulation.
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3. Derivation of coupled polynomial interpolations for the displacement and elec-

tric potential field variables which incorporate all the field couplings at the inter-

polation level itself.

4. Application of the derived field interpolations for the proposed beam finite

elements.

5. Validation of the finite elemets by applying it to numerical test problems of

static and free vibration analyses.

6. Critical evaluation of the elements by comparing its performance with the

conventional finite elements, in terms of accuracy and computational efficiency.

2.8 Organization of the Thesis

In additional to Chapter 1 Introduction which presents basic ideas about extension mode

piezoelectric smart beams and issues related with their finite element modelling and

Chapter 2 Literature Review which provides the extensive review and objective of the

research, the thesis contains four more chapters.

The Chapter 3 develops the coupled polynomial interpolations for ESL EBT-based

extension mode piezoelectric beam finite element with a layerwise consistent through-

thickness potential. The proposed EBT-Coupled formulation is validated with numeri-

cal test problems.

The Chapter 4 develops the coupled polynomial interpolations for ESL FSDT-based

extension mode piezoelectric beam finite element with a layerwise consistent through-

thickness potential. The proposed FSDT-Coupled formulation is validated with numer-

ical test problems.

The Chapter 5 develops the coupled polynomial interpolations for ESL HSDT-based

extension mode piezoelectric beam finite element with a layerwise consistent through-

thickness potential. The proposed HSDT-Coupled formulation is validated with numer-

ical test problems.

The Chapter 6 contains the major conclusions from the present investigation. Con-

clusions have been derived with respect to the performance of the coupled polynomial

interpolations in terms of accuracy and computational economy. A brief outline of work
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for future investigation is also given.

References arranged in alphabetical order are presented at the end of the thesis.
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CHAPTER 3

COUPLED EBT PIEZOELECTRIC BEAM FINITE

ELEMENT

3.1 Introduction

In this chapter, coupled polynomial interpolations are proposed for ESL-EBT (Equiva-

lent Single Layer Euler-Bernoulli Theory) based piezoelectric beam formulation. The

conventional EBT-based piezoelectric beam element suffers from loss of accuracy due

to piezolocking and slow convergence due to material locking.

Piezolocking arises from the use of linear approximation to model the nonlinear na-

ture of the through-thickness potential. The effect of piezolocking tends to be more

significant when the piezoelectric material dominates the beam cross-section. The

conventional EBT-based piezoelectric beam finite element formulations employ linear

polynomial to approximate the through-thickness potential and hence converge to inac-

curate results, in spite of finite element refinement in the longitudinal direction of the

beam. Therefore, conventional formulations demand either the use of higher-order ap-

proximation for through-thickness potential or the use of sublayers in the mathematical

formulation of the piezoelectric layer with electric potential as a degree of freedom at

each interface between sublayers. In any case, it increases the number of nodal degrees

of freedom and the computational effort. A coupled consistent potential derived from

the electrostatic equilibrium equation is used here in the present formulation to elimi-

nate piezolocking, without increasing the number of nodal degrees of freedom. Use of

the consistent potential interpolation is shown to improve and consistently maintain the

accuracy of results, irrespective of the proportion of piezoelectric material in the beam

cross-section.

Material locking arises from the activation of bending-extension coupling due to

asymmetric distribution of material over the beam cross-section. The conventional

EBT-based piezoelectric beam finite element which uses linear interpolation of axial



displacement exhibits poor convergence of solutions, when the beam cross-section is

asymmetric. Hence, the conventional formulations demand the use of a more number

of elements or the use of higher order polynomial interpolation of axial displacement, to

yield converged solutions. In the present formulation, a coupled quadratic polynomial

for axial displacement of the beam is derived from the governing equilibrium equa-

tions obtained using the variational formulation. The polynomial expression for axial

displacement of the beam contains a quadratic coupled term with contributions from

an assumed cubic polynomial for transverse displacement and linear polynomials for

layerwise electric potentials.

The shape functions derived using the coupled polynomials for through-thickness

electric potential and the axial displacement handle the induced potential coupling and

the bending-extension coupling in a variationally consistent manner. The comparison

of results from numerical experiments proves the improved performance of the present

coupled polynomial based formulation over the conventional formulations.

3.2 Theoretical Formulation

The present formulation is based on the equivalent single layer (ESL) Euler-Bernoulli

theory (EBT) for mechanical field and a layerwise model for electric potential (φ ). A

multilayered piezoelectric smart beam is considered, as shown in Fig. 3.1. The layer(s)

can be host layers of conventional/composite material or bonded/embedded layer(s)

of piezoelectric material. The beam layers are assumed to be made up of isotropic or

specially orthotropic materials, with perfect bonding between them. The top and bottom

faces of the piezoelectric layers are fully covered with electrodes. The mechanical and

electrical quantities are assumed to be small enough to apply linear theories of elasticity

and piezoelectricity.

3.2.1 Mechanical displacements and strain

The displacement field expressions for EBT are given as (Bendary et al., 2010):

u(x, z) = u0(x)− zw′
0(x) (3.1)
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Figure 3.1: EBT formulation: Geometry of a general multilayered extension

mode piezoelectric smart beam.

w(x, z) = w0(x) (3.2)

where ()′ denotes d/dx. u(x, z) and w(x, z) are the displacements in the longitudinal

and transverse directions, respectively. The sub-functions u0(x) and w0(x) are the lon-

gitudinal and transverse displacements at the centroidal axis of the beam, respectively.

L, b and h are the length, width and the total thickness of the structure, respectively.

Substituting Eqs. (3.1) and (3.2) in the usual strain-displacement relations, the fol-

lowing expression for axial strain is obtained:

εx(x, z) =
∂u(x, z)

∂x
= u′

0(x)− zw′′
0(x) (3.3)

3.2.2 Electric potential and electric field

The layerwise through-thickness distribution of the electric potential is assumed as

shown in Fig. 3.1. The two dimensional electric potential of the ith piezoelectric layer

φi(x, z), takes the values of ϕi+1(x) and ϕi(x) at the top and bottom surfaces of the

piezoelectric layer with thickness hi, respectively. The electric field in the transverse

(z) direction is derived from the electric potential as (Benjeddou et al., 1997):

Ei
z(x, z) = −∂φi(x, z)

∂z
(3.4)
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3.2.3 Constitutive relations

The reduced constitutive relations for EBT-based piezoelectric beam formulation are

given as (Appendix A):

σk

x

Di
z


 =


Q̃

k
11 −ẽi31

ẽi31 ϵ̃i3




εx

Ei
z


 (3.5)

where (i=1....number of piezoelectric layers in beam) and (k=1....total number of layers

in beam).

3.3 Derivation of Potential Consistent with EBT

For the free volumic charge density assumption, the electrostatic equilibrium equation

of the ith piezoelectric layer reduces to (Benjeddou et al., 1997):

∂Di
z(x, z)

∂z
= 0 (3.6)

as Di
x = Di

y = 0 form Eq. (3.5).

Using Eqs. (3.3), (3.4), (3.5) and (3.6), we get:

∂2φi(x, z)

∂z2
= − ẽi31

ϵ̃i3
w

′′
0 (x) (3.7)

On solving Eq. (3.7), we have:

φi(x, z) = − ẽi31
ϵ̃i3

z2

2
w

′′
0 (x) + C i

1(x)z + C i
2(x) (3.8)

where, C i
1 and C i

2 are the constants to be obtained from boundary conditions for φi

in z-direction. For ith piezolayer boundary conditions are φz=zi(x, z) = ϕi(x) and

φz=zi+1
(x, z) = ϕi+1(x). After solving Eq. (3.8) and simplifying, we get (Benjeddou

et al., 1997):

φi(x, z) = φ̄i(x) +

(
z − z̄i
hi

)
φ̃i(x) +

1

2

[(
hi

2

)2

− (z − z̄i)
2

]
ẽi31
ϵ̃i3

w
′′
0 (x) (3.9)
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where φ̄i = (ϕi+1 + ϕi) /2; φ̃i = (ϕi+1 − ϕi) ; z̄i = (zi+1 + zi)/2

From Eq. (3.9), it is clear that the potential distribution consistent with the EBT is

quadratic in the transverse direction. The first two terms describe the conventional linear

part in which φ̄ and φ̃ are the mean and difference of potentials on the top and bottom

faces of the ith piezoelectric layer, respectively. The third term which is quadratic

denotes the bending strain contribution to the potential. This nonlinear term constitutes

the induced potential and plays an important role in the formulation, as it changes the

stiffness of the structure. The induced potential depends on the geometrical location

along transverse direction (z̄i) and (ẽi31/ϵ̃
i
3) ratio.

The transverse electric field is derived from Eq. (3.9) as:

Ei
z(x, z) = −∂φi(x, z)

∂z
= − φ̃i(x)

hi

+
ẽi31
ϵ̃i3

(z − z̄i)w
′′
0 (x) (3.10)

3.4 Variational Formulation

Hamilton’s principle is used to formulate the smart beam. It is expressed as (Chee et al.,

1999):

δ

∫ t2

t1

(K −H +W )dt =

∫ t2

t1

(δK − δH + δW )dt = 0 (3.11)

where K is the kinetic energy, H is the electric enthalpy density function for the piezo-

electric material and the mechanical strain energy for the linear elastic material and W

is the work done by external forces.

3.4.1 Variation of electromechanical/strain energy

For the jth conventional material layer, the variation of mechanical strain energy is

written as:

δHj =

∫

V

(
σj
xδε

j
x

)
dV (3.12)

The electromechanical energy variation of the ith piezoelectric layer is given by (Chee

et al., 1999):

δHi =

∫

V

(
σi
xδε

i
x −Di

zδE
i
z

)
dV (3.13)
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Substituting values of axial strain (εx ), electric field (Ez ) from Eqs. (3.3), (3.10)

and using them along with constitutive relations given by Eq. (3.5) in expressions (3.12)

and (3.13), the total variation on the potential energy of the smart beam is given as:

∫ t2

t1

δHdt =

∫ t2

t1

∫

x



δu

′
0


(Q̃k

11I
k
0 )u

′
0 −

[
Q̃k

11I
k
1 + ((ẽi31)

2/ϵ̃i3) (I
i
1 − I i0z̄i)

]
w

′′
0

+(ẽi31I
i
0/hi) φ̃i


 +

δw
′′
0




−
[
Q̃k

11I
k
1 + ((ẽi31)

2/ϵ̃i3) (I
i
1 − I i0z̄i)

]
u

′
0

+
[
Q̃k

11I
k
2 + ((ẽi31)

2/ϵ̃i3) (I
i
2 − I i0z̄

2
i )
]
w

′′
0

− (ẽi31I
i
0z̄i/hi) φ̃i


+

δφ̃i

(
(ẽi31I

i
0/hi)u

′
0 − (ẽi31I

i
0z̄i/hi)w

′′
0 − (ϵ̃i3I

i
0/(hi)

2) φ̃i

)}
dxdt (3.14)

where (i=1....number of piezoelectric layers in the beam); (k=1....total number of layers

in the beam) and Ikq = b
(
zq+1
k+1 − zq+1

k

)
/(q + 1).

3.4.2 Variation of kinetic energy

Electrical variables do not enter into the expression for kinetic energy, which is given

as (Chee et al., 1999):

K =
1

2
b

∫

x

∫ zk+1

zk

ρk
(
u̇2 + ẇ2

)
dzdx (3.15)

where ρk is the mass density of kth layer in kg/m3 and (k=1....total number of layers

in the beam). Substituting values of u and w from Eqs. (3.1) and (3.2) and applying

variation to get:

∫ t2

t1

δKdt =− ρk

∫ t2

t1

∫

x

{
δu0

(
Ik0 ü0 − Ik1 ẅ

′
0

)
+ δw

′
0

(
−Ik1 ü0 + Ik2 ẅ

′
0

)

+δw0

(
Ik0 ẅ0

)}
dxdt (3.16)

where (̇) denotes ∂/∂t.
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3.4.3 Variation of the work of external forces

The total virtual work on the structure can be defined as the product of the virtual

displacements with forces for the mechanical work and the product of the virtual electric

potential with the charges for the electrical work. The variation of the total work done

by the external mechanical and electrical loading is given as (Chee et al., 1999):

∫ t2

t1

δWdt =

∫ t2

t1

{∫
V
(δuf v

u + δwf v
w)dV +

∫
S
(δuf s

u + δwf s
w)dS

+
∑

(δuf c
u + δwf c

w)−
∫
Sφ

δφq0dSφ

}
dt (3.17)

in which f v,f s,f c are volume, surface, point forces, respectively; q0 and Sφ are the

surface charges and area on which charge is applied.

3.5 Derivation of Coupled Field Relations

The relationship between the field variables is established here with the help of gov-

erning equilibrium equations. For static condition without any external loading, the

variational principle given in Eq. (3.11) reduces to:

δH = 0 (3.18)

We apply a variation to the basic variables to get static equilibrium equations from

expression (3.14) as:

δu0 :


−(Q̃k

11I
k
0 )u

′′
0 +

[
Q̃k

11I
k
1 + ((ẽi31)

2/ϵ̃i3) (I
i
1 − I i0z̄i)

]
w

′′′
0

− (ẽi31I
i
0/hi) φ̃

′
i


 = 0 (3.19)

δw0 :




−
[
Q̃k

11I
k
1 + ((ẽi31)

2/ϵ̃i3) (I
i
1 − I i0z̄i)

]
u

′′′
0

+
[
Q̃k

11I
k
2 + ((ẽi31)

2/ϵ̃i3) (I
i
2 − I i0z̄

2
i )
]
w

′′′′
0

− (ẽi31I
i
0z̄i/hi) φ̃

′′
i


 = 0 (3.20)

From Eq. (3.19), we can write the relationship between axial displacement (u0),
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total transverse displacement (w0) and electric potential (φi) as:

u
′′
0 = βu

1w
′′′
0 + βui

2 φ̃
′
i (3.21)

where βu
1 =

[
Q̃k

11I
k
1 + ((ẽi31)

2/ϵ̃i3) (I
i
1 − I i0z̄i)

]
/(Q̃k

11I
k
0 ) and βui

2 = − (ẽi31I
i
0/hi) /(Q̃

k
11I

k
0 ).

The constants βu
m (m = 1, 2) which relate the field variables, are functions of geo-

metric and material properties of the beam. It is noteworthy that their values depend on

intensity of bending-extension coupling and induced potential coupling. This relation

is used in the next section, to derive coupled polynomials for the interpolation of the

field variables.

3.6 Finite Element Formulation

Using the variational formulation described above, a finite element model is developed

here. The model consists of two mechanical variables ( u0 and w0) and layerwise elec-

trical variables (φ̃i ) where (i=1.....number of piezoelectric layers in the beam).

In terms of natural coordinate (ξ), a cubic polynomial for transverse displacement

(w0) and linear polynomials for layerwise electric potentials (φ̃i) are assumed as given

in Eqs. (3.22a) and (3.22b), respectively. The transformation between coordinate ξ and

global coordinate (x) along the length of the beam is given as ξ = [2(x− x1)/(x2 − x1)]−
1 and x2 − x1 = l, length of the beam element.

w0 = b0 + b1ξ + b2ξ
2 + b3ξ

3 (3.22a)

φ̃i = ci0 + ci1ξ (3.22b)

Using these polynomials for w0 and φ̃i in Eq. (3.21) and integrating with respect to ξ,

we get the coupled polynomial for midplane axial displacement (u0) as:

u0 = [(6βu
1 /l)b3 + (βui

2 l/4)ci1]ξ
2 + a1ξ + a0 (3.23)

It is noteworthy that the polynomial approximation for u0 given by Eq. (3.23) contains,

in addition to the conventional linear polynomial terms, a coupled quadratic term which

takes care of the bending-extension coupling and induced potential couplings at field
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interpolation level itself. As seen from Eqs. (3.22a), (3.22b) and (3.23), while employ-

ing this quadratic polynomial for interpolation of axial displacement, the generalized

degrees of freedom are maintained the same as that of the conventional formulation.

Hence, no additional nodal degrees of freedom are introduced. Using Eqs. (3.22a),

(3.22b) and (3.23), the coupled shape functions in Eq. (3.24) are derived by usual

method.





u0

w0

w
′
0

φ̃i





=




Nu
1 Nu

2 Nu
3 Nui

4 Nu
5 Nu

6 Nu
7 Nui

8

0 Nw
1 Nw

2 0 0 Nw
3 Nw

4 0

0 Nw′
1 Nw′

2 0 0 Nw′
3 Nw′

4 0

0 0 0 Nφi
1 0 0 0 Nφi

2








u1
0

w1
0

w
′1
0

φ̃1
i

u2
0

w2
0

w
′2
0

φ̃2
i





(3.24)

The expressions for these shape functions in the natural coordinate system are given

as:

Nu
1 =

(1− ξ)

2
; Nu

2 =
3βu

1

2l
(ξ2 − 1); Nu

3 =
3βu

1

4
(ξ2 − 1); Nui

4 =
βui
2 l

8
(1− ξ2);

Nu
5 =

(1 + ξ)

2
; Nu

6 =
3βu

1

2l
(1− ξ2); Nu

7 =
3βu

1

4
(ξ2 − 1); Nui

8 =
βui
2 l

8
(ξ2 − 1);

Nw
1 =

ξ

4
(ξ2 − 3) +

1

2
; Nw

2 =
l

8
(ξ3 − ξ2 − ξ + 1);

Nw
3 =

ξ

4
(3− ξ2) +

1

2
; Nw

4 =
l

8
(ξ3 + ξ2 − ξ − 1);

Nw′
1 =

3

2l
(ξ2 − 1); Nw′

2 =
ξ

2

(
3ξ

2
− 1

)
− 1

4
;

Nw′
3 =

3

2l
(1− ξ2); Nw′

4 =
ξ

2

(
3ξ

2
+ 1

)
− 1

4
;

Nφi
1 =

(1− ξ)

2
; Nφi

2 =
(1 + ξ)

2
.

Now, the variation on the basic mechanical and electrical variables can be trans-

ferred to the nodal degrees of freedom. Substituting the shape functions from Eq. (3.24)

in Eqs. (3.14), (3.16), (3.17) and using Eq. (3.11), we get the descretized from of finite
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element equations as:



[
M

]
0

0 0





{
Ü
}

{
Φ̈
}

+



[
Kuu

] [
Kuφ

]
[
Kφu

] [
Kφφ

]




{
U
}

{
Φ
}

 =



{
F
}

{
Q
}

 (3.25)

where M is the mass matrix. Kuu, Kuφ, Kφu, Kφφ are the global stiffness sub-matrices.

U , Φ are the global mechanical and electrical nodal degrees of freedom vectors, respec-

tively. F , Q are global mechanical and electrical nodal force vectors, respectively. Now

the general formulation has been converted to matrix equations which can be solved

according to the electrical conditions (closed/open circuit), mode of operation ( actua-

tion/sensing) and type of analysis (static/dynamic).

3.7 Numerical Examples and Discussions

The proposed formulation is validated here for accuracy and efficiency in static (actu-

ation and sensing) and modal analyses (open and closed circuit) of piezoelectric smart

beams. The software implementation of the present finite element formulation has been

carried out in MATLAB environment. The performance of the present formulation is

compared against the conventional two-noded EBT based formulations available in the

literature and 2D finite element simulation results using ANSYS software. The finite

element formulations used for the comparative study are designated here as:

EBT-Coupled : The present formulation which uses coupled polynomials (cubic

for w0 given by Eq. (3.22a), coupled quadratic for u0 given by Eq. (3.23) and

linear for φ̃i given by Eq. (3.22b) ) for interpolation of field variables and lay-

erwise consistent through-thickness potential ( coupled quadratic in z direction

given by Eq. (3.9) ). It does not employ any sublayers within the piezoelectric

layer, for modelling. This formulation is expected to be free from piezolocking

and material locking.

EBT : The conventional EBT-based piezoelectric beam finite element formulation

(Bendary et al., 2010) which uses independent polynomials for field interpolation

( Hermite cubic for w0, linear for u0 and φ̃i) and assumed linear through-thickness

potential. This element suffers from piezolocking and material locking.
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Figure 3.2: Example 1: Geometry of the three-layer cantilever beam with sym-

metrically bonded oppositely poled piezoelectric layers in exten-

sion mode.

EBT (with sublayers) : The piezolocking in the above EBT model may be elim-

inated by using a sufficient number of sublayers for modelling each piezoelectric

layer. The through-thickness distribution of potential in each piezolayer is repre-

sented by sublayer-wise linear approximations. In this sublayered version of EBT,

we have used four sublayers per physical piezoelectric layer, which are found

adequate to yield reasonably accurate results. However, each sublayer would in-

troduce an additional nodal electric potential degree of freedom and hence this

element is computationally expensive.

ANSYS 2D : For a comparative evaluation of the above EBT formulations, bench-

mark solutions have been obtained from a refined 2-dimensional analysis using

ANSYS finite element software (ANSYS-Release12, 2009), for which PLANE

183 elements are used to mesh conventional material layers, while PLANE 223

elements are used to mesh piezoelectric material layers.

3.7.1 Example 1: A three-layer symmetric piezoelectric beam

The test problem chosen here is an aluminum core with surface bonded oppositely poled

piezoelectric layers of G1195N material, as shown in Fig. 3.2.

The material properties of the three layer beam are:

Aluminum (Kapuria and Hagedorn, 2007): E = 70.3GPa, ν = 0.345, ρ = 2710 kgm−3

PZT G1195N (Peng et al., 1998): E = 63 GPa, ν = 0.3, d31 = 254 × 10−12 m/V ,

ϵ3 = 15× 10−9 F/m, ρ = 7600 kgm−3.
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This example is expected to show the adverse effects of piezolocking on the accu-

racy of the conventional EBT-based piezoelectric beam finite element. Material locking

will be absent in this test case by virtue of the symmetry of the material distribution

over the beam cross-section.

To study the performance of EBT-based smart beam formulations over a wide range

of piezoelectric material proportion in the total thickness (thickness ratio: r = (2hp)/h),

the length (L) and total height (h) are taken as constant with values 500mm and 10mm,

respectively, while the thicknesses of piezoelectric layer (hp) and aluminum layer (hal)

are varied for the present study. For a comparative evaluation of the various EBT formu-

lations, converged results from ANSYS 2D analysis with a refined mesh size of 100×20

are used.

Static analysis: Actuator configuration

For actuator configuration, the interfaces of piezoelectric layers with aluminum layer

are grounded and potentials of ∓10 volts are applied on the free surfaces of the piezo-

electric layer. The variation of tip deflection over a wide range of thickness ratio is plot-

ted in Fig. 3.3. It is evident that the present EBT-Coupled formulation gives accurate

results as that of ANSYS 2D simulation. Due to piezolocking effect, the conventional

EBT formulation converges to inaccurate results and demands sublayered modelling

to achieve the same level of accuracy as of the present formulation. The results clearly

show the advantage of EBT-Coupled formulation, to efficiently handle the piezolocking

effects.

The variation of error (%) in the tip deflection with thickness ratio due to piezolock-

ing in the conventional EBT formulation is plotted in Fig. 3.4. As the proportion of

piezoelectric material in the beam increases, the error due to the linear assumption of

through-thickness potential becomes significant. The maximum difference is observed

for a beam of pure piezoelectric material i.e. a bimorph configuration. Hence, the bi-

morph shown in Fig. 3.5 is considered for a detailed study of the induced potential

effects.

Table 3.1 shows the results for the tip deflection of the bimorph for various numbers

of sublayers in the modelling with EBT formulation of Bendary et al. (2010). As seen
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Figure 3.3: Example 1: Actuator configuration: Variation of the tip deflection

with thickness ratio (r) for the three-layer cantilever beam actuated

by ∓10 volts.
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Figure 3.4: Example 1: Actuator configuration: Variation of error (%) in the tip

deflection with thickness ratio (r), due to use of the conventional

EBT formulation for the three-layer cantilever beam actuated by

∓10 volts.
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Figure 3.5: Example 1: Bimorph cantilever beam in the actuator configuration.

Table 3.1: Example 1: Actuator configuration: Tip deflection of the bimorph

cantilever beam actuated by ∓10 volts (h = 10mm, L = 500mm).

Formulation Tip deflection (µm)

EBT (Bendary et al., 2010) -19.05

EBT (with sublayers)

2 sublayers/layer -18.13

4 sublayers/layer -17.91

ANSYS 2D -17.84

EBT-Coupled -17.84

from results, only with a sufficient number of sublayers in the modelling of piezoelectric

layers, the conventional formulation converges to the accurate values as predicted by

EBT-Coupled and ANSYS 2D simulation.

Also, the comparison of results for transverse deflection along the length, through-

thickness distributions of potential and axial stress for the bimorph are plotted in Figs.

3.6, 3.7 and 3.8, respectively. The results prove the ability of EBT-Coupled to model

the piezoelectric beam accurately as of ANSYS 2D and EBT (with sublayers). The

conventional EBT formulation of Bendary et al. (2010) suffers from loss of accuracy

due to piezolocking.
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Figure 3.6: Example 1: Actuator configuration: Transverse deflection along the

length of the bimorph cantilever beam actuated by ∓10 volts.
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Figure 3.7: Example 1: Actuator configuration: Through-thickness potential

distribution in the bimorph cantilever beam actuated by ∓10 volts.
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Figure 3.8: Example 1: Actuator configuration: Through-thickness axial stress

distribution in the bimorph cantilever beam actuated by ∓10 volts.

Static analysis: Sensor configuration

For sensor configuration, the three-layer cantilever shown in Fig. 3.2 is subjected to a

tip load of −1000 N . The variations of tip deflection and potential developed across

the piezoelectric layer at the root of the beam, with thickness ratio are plotted in Figs.

3.9 and 3.10, respectively. The graphs reveal the accuracy of EBT-Coupled to analyse

piezoelectric beam in sensor configuration. It consistently produces accurate results

as that of ANSYS 2D simulation, over the entire range of thickness ratio. The con-

ventional EBT (Bendary et al., 2010) is incapable of exhibiting the desired accuracy

consistently and the errors are significant for higher thickness ratios. It demands sub-

layered modelling to achieve same accuracy as that of EBT-Coupled. The inaccuracy

due to piezolocking is quantified in the error (%) plotted in Fig. 3.11.

The variation of error (%) with thickness ratio shows that as we move from a beam

of purely conventional material to a purely piezoelectric material beam i.e. bimorph,

the error in the results increases significantly. Hence, the bimorph structure shown in

Fig. 3.12 is considered here for detailed study of the induced potential effects.

Table 3.2 shows the results for the tip deflection and potential developed at the root

of the bimorph for various numbers of sublayers in the modelling with conventional

EBT formulation of Bendary et al. (2010). As seen from results, only with sufficient
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Figure 3.9: Example 1: Sensor configuration: Variation of the tip deflection

with thickness ratio (r) for the three-layer cantilever beam sub-

jected to a tip load of −1000 N .
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Figure 3.10: Example 1: Sensor configuration: Variation of the potential de-

veloped across each piezoelectric layer at the root with thickness

ratio (r) for the three-layer cantilever beam subjected to a tip load

of −1000 N .
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Figure 3.11: Example 1: Sensor configuration: Variation of error (%) in the

tip deflection and the potential developed with thickness ratio (r),

due to use of the conventional EBT formulation for the three-layer

cantilever beam subjected to a tip load of −1000 N .

number of sublayers in the modelling of piezoelectric layers, the conventional formu-

lation converges to the accurate results as predicted by EBT-Coupled and ANSYS 2D

simulation.

Also, the results for transverse deflection along the length, potential developed

across each layer along the length, through-thickness potential and axial stress dis-

tributions at the root of the bimorph are plotted in Figs. 3.13 to 3.16, respectively. It

is evident from the figures that results of the present EBT-Coupled formulation closely

match with 2D simulation, while conventional EBT formulation of Bendary et al. (2010)

needs sublayered model to eliminate loss of accuracy due to piezolocking. It may be

noted that in Fig. 3.16, the conventional EBT formulation exhibit a large discontinuity

in the axial stress at the interface, which tend to disappear with the addition of sufficient

number of sublayers.

Modal analysis

The present formulation is validated here for the accuracy to predict the natural fre-

quencies of smart cantilever shown in Fig. 3.2. The natural frequencies are evaluated

for closed and open circuit electrical boundary conditions. For open circuit, only the
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Figure 3.12: Example 1: Bimorph cantilever beam in the sensor configuration.

Table 3.2: Example 1: Sensor configuration: Tip deflection and potential de-

veloped at the root of the bimorph cantilever beam subjected to a tip

load of −1000 N (h = 10 mm, L = 500 mm).

Formulation Tip deflection Potential
(mm) (volts)

EBT (Bendary et al., 2010) -6.60 1055

EBT (with sublayers)

2 sublayers/layer -6.33 1012

4 sublayers/layer -6.26 1002

ANSYS 2D -6.25 995.4

EBT-Coupled -6.24 999.2
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Figure 3.13: Example 1: Sensor configuration: Transverse deflection along the

length of the bimorph cantilever beam subjected to a tip load of

−1000 N .
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Figure 3.14: Example 1: Sensor configuration: Potential developed across

each piezoelectric layer along the length of the bimorph cantilever

beam subjected to a tip load of −1000 N .
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Figure 3.15: Example 1: Sensor configuration: Through-thickness potential

distribution at the root of the bimorph cantilever beam subjected

to a tip load of −1000 N .
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Figure 3.16: Example 1: Sensor configuration: Through-thickness axial stress

distribution at the root of the bimorph cantilever beam subjected

to a tip load of −1000 N .
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Table 3.3: Example 1: Natural frequencies in Hz for the bimorph cantilever

beam (h = 10 mm, L = 500 mm).

Electrical Mode EBT EBT ANSYS 2D EBT-

Boundary No. (Bendary et al., 2010) (with Coupled

condition sublayers)

Open 1st 20.40 20.94 20.97 20.97

Circuit 2nd 127.8 131.1 131.1 131.3

3rd 357.6 366.9 365.8 367.5

Closed 1st 18.60 19.18 19.22 19.22

Circuit 2nd 116.5 120.2 120.2 120.4

3rd 326.0 336.2 335.6 336.9

interfaces of piezoelectric layers with aluminum core are grounded, while for closed

circuit all the faces of piezoelectric layers are grounded. The variations of first natural

frequencies in open and closed circuit electrical boundary conditions, with thickness

ratio are plotted in Fig. 3.17 (a) and 3.17 (b), respectively. As seen from the plots,

the present EBT-Coupled predicts the accurate results as given by ANSYS 2D simula-

tion. The conventional EBT formulation shows significant errors due to piezolocking

and requires sublayered modelling to achieve acceptable results. The variation of er-

rors (%) with thickness ratio is plotted in Fig. 3.18 which is maximum for bimorph

configuration.

The results for the first three natural frequencies for the bimorph cantilever are tab-

ulated in Table 3.3. As seen from the results, the conventional EBT formulation suffers

form piezolocking and requires a number of sublayers to reproduce the accurate results.

3.7.2 Example 2: A two-layer asymmetric piezoelectric beam

The test problem chosen here is a two-layer asymmetric piezoelectric cantilever beam

having a host layer made up of steel with a surface bonded piezoelectric layer of

G1195N material at the top, as shown in Fig. 3.19. The material properties used are:

Steel (Carrera and Brischetto, 2008): E = 210 GPa, ν = 0.3, ρ = 7850 kgm−3
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(a) Open circuit
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(b) Closed circuit

Figure 3.17: Example 1: Modal analysis: Variation of the first natural fre-

quency with thickness ratio (r) for the three-layer cantilever beam.
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Figure 3.18: Example 1: Modal analysis: Variation of error (%) in the first

natural frequency with thickness ratio (r), due to use of the con-

ventional EBT formulation for the three-layer cantilever beam.

PZT G1195N (Peng et al., 1998): E = 63 GPa, ν = 0.3, d31 = 254 × 10−12 m/V ,

ϵ3 = 15× 10−9 F/m, ρ = 7600 kgm−3.

This configuration is expected to show, in addition to piezolocking, the adverse

effects of material locking on the convergence of the conventional EBT piezoelectric

beam finite elements and improved performance of the proposed EBT-Coupled formu-

lation.

For the present study, the length and total height of the beam are taken as constant

Figure 3.19: Example 2: Geometry of the two-layer cantilever beam with an

asymmetrically bonded piezoelectric layer in extension mode.
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(L = 100 mm, h = 5 mm), while thicknesses of the piezoelectric layer (hp) and

the host layer (hc) are varied. The performances of the EBT-based piezoelectric beam

finite elements are evaluated over a wide range of piezoelectric material proportion in

the total beam thickness ( thickness ratio: r = hp/h ). For a comparative evaluation

of various EBT-based formulations, the converged results from ANSYS 2D simulation

with a mesh of 200× 20 elements are used.

Static analysis: Sensor configuration

For sensor configuration, the beam shown in Fig. 3.19 is subjected to a tip load of

−1000 N . The variations of tip deflection, axial deflection and potential developed

across the piezoelectric layer at the root of the beam with thickness ratio are plotted in

Figs. 3.20, 3.21 and 3.22, respectively.

As seen from these graphs, the present EBT-Coupled formulation consistently gives

accurate predictions of results as given by ANSYS 2D simulation, over the entire range

of thickness ratio and proves the versatility of the coupled polynomial based formu-

lation. Due to the piezolocking effects, the conventional EBT formulation (Bendary

et al., 2010) does not perform consistently accurate. It demands sublayers in the mod-

elling of piezolayer, to achieve the same consistent level of accuracy as of the present

EBT-Coupled formulation. The error (%) due to piezolocking in the conventional EBT

formulation is quantified in Fig. 3.23 for various thickness ratios. It is seen that the

error increases rapidly in the higher thickness ratio regimes.

Figs. 3.24 and 3.25 show the comparison of convergence characteristics of EBT-

based piezoelectric beam finite element formulations, for the tip deflection and potential

developed at the root, respectively. It is noteworthy that EBT-Coupled exhibits single-

element convergence, closely reproducing the ANSYS-2D solutions for both the tip

deflection and the potential developed. As evident from these figures, the conventional

EBT formulation (Bendary et al., 2010) and EBT (with sublayers) exhibit delayed con-

vergence due to material locking effects. It is observed that the EBT-sublayered model

eventually converges to the accurate results for tip deflection (= −0.2598mm) and po-

tential (= 376.09 volts). However, the conventional EBT model (Bendary et al., 2010)

overestimates the response and converges to inaccurate results, due to piezolocking ef-

fects. This example clearly reveals the efficiency of the present coupled polynomial
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Figure 3.20: Example 2: Sensor configuration: Variation of the tip deflection

with thickness ratio (r) for the asymmetric cantilever beam sub-

jected to a tip load of −1000 N .

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

A
xi

al
 d

ef
le

ct
io

n 
(µ

m
)

Thickness ratio (r)
 

 

EBT−Coupled
EBT (Bendary et al., 2010)
EBT (with sublayers)
ANSYS 2D

Figure 3.21: Example 2: Sensor configuration: Variation of the axial deflec-

tion with thickness ratio (r) for the asymmetric cantilever beam

subjected to a tip load of −1000 N .
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Figure 3.22: Example 2: Sensor configuration: Variation of the potential de-

veloped across piezoelectric layer at the root with thickness ratio

(r) for the asymmetric cantilever beam subjected to a tip load of

−1000 N .
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Figure 3.23: Example 2: Sensor configuration: Variation of error (%) in re-

sults with thickness ratio (r), due to use of the conventional EBT

formulation.
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Figure 3.24: Example 2: Sensor configuration: Convergence characteristics of

the EBT-based piezoelectric beam finite elements to predict the tip

deflection of the asymmetric cantilever beam (r = 0.5) subjected

to a tip load of −1000 N .
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Figure 3.25: Example 2: Sensor configuration: Convergence characteristics of

the EBT-based piezoelectric beam finite elements to predict the

potential developed at the root of the asymmetric cantilever beam

(r = 0.5) subjected to a tip load of −1000 N .
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Figure 3.26: Example 2: Actuator configuration: Variation of the tip deflec-

tion with thickness ratio (r) for the asymmetric cantilever beam

actuated by 100 volts.

interpolation over the conventional independent polynomial interpolations.

Static analysis: Actuator configuration

For actuator configuration, the beam shown in Fig. 3.19 is subjected to a voltage of

100 volts. The variations of tip deflection and axial deflection, with thickness ratio are

plotted in Figs. 3.26 and 3.27, respectively. As seen from these graphs, the present

EBT-Coupled formulation consistently gives accurate predictions of results as given by

ANSYS 2D simulation, over the entire range of thickness ratio. Due to the piezolocking

effects, the conventional EBT formulation (Bendary et al., 2010) does not yield consis-

tently accurate results. It demands sublayers in the modelling of piezolayer, to achieve

the same consistent level of accuracy as of the present EBT-Coupled formulation. The

error (%) due to piezolocking in the conventional EBT formulation is quantified in Fig.

3.28 for various thickness ratios.

Modal analysis

The present EBT-Coupled formulation is evaluated here for its accuracy and efficiency

to predict the natural frequencies of piezoelectric smart beams. The first natural fre-
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Figure 3.27: Example 2: Actuator configuration: Variation of the axial deflec-

tion with thickness ratio (r) for the asymmetric cantilever beam

actuated by 100 volts.
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Figure 3.28: Example 2: Actuator configuration: Variation of error (%) in re-

sults with thickness ratio (r), due to use of the conventional EBT

formulation.

52



0 0.2 0.4 0.6 0.8 1
220

240

260

280

300

320

340

360

380

400

420

Thickness ratio (r)

Fi
rs

t n
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

 

 

EBT−Coupled
EBT (Bendary et al., 2010)
EBT (with sublayers)
ANSYS 2D

OPEN CIRCUIT

Figure 3.29: Example 2: Modal analysis: Variation of the first natural fre-

quency with thickness ratio (r) for the asymmetric cantilever beam

in open circuit electrical boundary condition.

quency of the asymmetric piezoelectric beam shown in Fig. 3.19 is evaluated for both

open and closed circuit electrical boundary conditions. For open circuit, only the in-

terface of piezoelectric layer with host layer is grounded while for closed circuit, both

faces of the piezoelectric layer are grounded. The variations of first natural frequen-

cies with thickness ratio are plotted in Figs. 3.29 and 3.30 for open and closed circuit

electrical boundary conditions, respectively. The results from the present EBT-Coupled

formulation agree very well with the results from ANSYS 2D simulation. This validates

the use of the present coupled polynomial based interpolation for displacement fields,

to generate consistent element mass matrix. Due to piezolocking effects, which are pre-

dominant in the higher thickness ratio regimes, the results from the conventional EBT

formulation of Bendary et al. (2010) significantly deviate from the accurate results and

hence requires sublayered modelling to yield acceptable level of accuracy. The error

(%) due to piezolocking in the conventional EBT formulation is quantified in Fig. 3.31

for various thickness ratios.

The convergence graphs for first natural frequency in both open and closed circuit

electrical boundary conditions are plotted in Figs. 3.32 and 3.33, respectively. The

figures prove that the present coupled polynomial interpolation based element stiffness

matrix and the corresponding consistent element mass matrix are capable of eliminat-
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Figure 3.30: Example 2: Modal analysis: Variation of the first natural fre-

quency with thickness ratio (r) for the asymmetric cantilever beam

in closed circuit electrical boundary condition.
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Figure 3.31: Example 2: Modal analysis: Variation of error (%) in results with

thickness ratio (r), due to use of the conventional EBT formula-

tion.
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Figure 3.32: Example 2: Modal analysis: Convergence characteristics of the

EBT-based piezoelectric beam finite elements to predict the first

natural frequency of the asymmetric cantilever beam (r = 0.5) in

open circuit electrical boundary condition.

ing the ill-effects of material locking on the the convergence of natural frequency. As

the conventional EBT formulation (Bendary et al., 2010) suffers from piezolocking, it

requires sublayers in its modelling, to converge to accurate results. Both conventional

EBT and EBT-sublayered exhibit poor convergence due to material locking effects.

The role of the coupled quadratic term in the axial displacement given by Eq. (3.23),

in eliminating material locking and improving the convergence is evident from the Table

3.4, where the results obtained with and without the coupled quadratic term are tabu-

lated. The results prove the role of the coupled quadratic term in enabling EBT-Coupled

to yield quick convergence for the natural frequencies. The results for the asymmetric

beam with r = 0.5 given in Table 3.4 are normalized with respect to the converged

values from the EBT-Coupled.

3.8 Summary

A coupled polynomial interpolation scheme for EBT-based piezoelectric beam finite

element has been proposed here to enhance its performance by eliminating material

locking and piezolocking phenomena. A consistent interpolation for through-thickness
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Table 3.4: Example 2: Role of coupled quadratic term in the field interpolation

for axial displacement (Eq. (3.23)) in improving the convergence

characteristics of EBT-Coupled in modal analysis.

Number of Normalized natural frequency

elements 1st 2nd 3rd

coupled linear coupled linear coupled linear

Open circuit

1 1.005 1.035 1.649 1.735 2.130 2.136

2 1.000 1.007 1.009 1.065 1.177 1.233

4 1.000 1.002 1.001 1.012 1.006 1.032

8 1.000 1.000 1.000 1.003 1.000 1.007

16 1.000 1.000 1.000 1.001 1.000 1.002

Closed circuit

1 1.005 1.048 1.648 1.778 2.200 2.207

2 1.000 1.011 1.009 1.092 1.224 1.282

4 1.000 1.003 1.001 1.019 1.007 1.051

8 1.000 1.001 1.000 1.005 1.000 1.011

16 1.000 1.000 1.000 1.001 1.000 1.003
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Figure 3.33: Example 2: Modal analysis: Convergence characteristics of the

EBT-based piezoelectric beam finite elements to predict the first

natural frequency of the asymmetric cantilever beam (r = 0.5) in

closed circuit electrical boundary condition.

potential, derived from the electrostatic equilibrium equation has been used in the for-

mulation to eliminate piezolocking. A coupled polynomial expression has been derived

for axial displacement of the beam using the governing equilibrium equations. The

resulting coupled shape functions handle bending-extension coupling in an efficient

manner to eliminate material locking. The merits of the present formulation over the

conventional formulations have been proved by the comparison of the results for the set

of test problems.
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CHAPTER 4

COUPLED FSDT PIEZOELECTRIC BEAM FINITE

ELEMENT

4.1 Introduction

In this chapter, coupled polynomial interpolations are proposed for ESL-FSDT (Equiv-

alent Single Layer First-order Shear Deformation Theory) based piezoelectric beam

finite element formulation. The conventional FSDT piezoelectric beam element suffers

from loss of accuracy due to piezolocking and slow convergence due to material locking

as well as shear locking.

The conventional FSDT piezoelectric beam finite element formulations employ lin-

ear polynomial to approximate the through-thickness potential and hence converge to

inaccurate results due to piezolocking. The traditional methods like use of higher-order

approximation for through-thickness potential and the use of sublayers in the mathe-

matical formulation of the piezoelectric layer increase the number of nodal degrees of

freedom and the computational cost.

The conventional FSDT piezoelectric beam finite element which uses linear inter-

polation of axial displacement leads to a poor convergence of results when the beam

cross-section is materially asymmetric due to material locking. The traditional method

of using higher order polynomial for interpolation of axial displacement leads to in-

creased number of nodal degrees of freedom and the computational cost.

Shear locking is due to the bending-shear coupling which originates from the def-

inition of shear strain. According to FSDT, the shear strain is defined as the sum of

the derivative of transverse deflection (w′) and the the section rotation (θ). The con-

ventional isoparametric two-noded FSDT beam element uses linear polynomials to in-

terpolate both w and θ fields. Accordingly, for the shear strain field, the linear term

contributed by θ field has no matching linear term from the w′ field. In the thin limits of

vanishing shear strains, the individual coefficients of the shear strain field should tend



to vanish. When the unmatched coefficient of the shear strain field contributed by θ

tends to zero, it acts as a spurious constraint on the bending strain where θ is primary

variable. This results in a very poor bending response and demands an unacceptably

high number of elements to get converged results. The shear locking can be elimi-

nated by the use of a higher-order interpolation for the transverse deflection w, which

increases computational cost. The Reduced Integration technique used in the literature,

which depends on the one-order lower numerical integration of shear stiffness, is a good

alternative without increasing the number of nodal degrees of freedom. However, the

overall convergence behaviour of the two-noded isoparametric beam element remains

unimpressive, due to constant curvature strain interpolation.

In the proposed coupled FSDT formulation presented here, a coupled consistent

through-thickness potential distribution is derived using an electrostatic equilibrium

equation, which eliminate piezolocking, without increasing the number of nodal de-

grees of freedom. A coupled quadratic polynomials for axial displacement (u0) and

section rotation (θ) of the beam are derived using governing equilibrium equations ob-

tained from the variational formulation, which eliminate material locking and shear

locking.

4.2 Theoretical Formulation

The formulation is based on ESL-FSDT with layerwise electric potential. Consider a

general multilayered extension mode piezoelectric cantilever beam as shown in Fig. 4.1.

The layer(s) can be host layers of conventional/composite material or bonded/embedded

layer(s) of piezoelectric material. The beam layers are assumed to be made up of

isotropic or specially orthotropic materials, with perfect bonding between them. The

top and bottom faces of the piezoelectric layers are fully covered with electrodes. The

mechanical and electrical quantities are assumed to be small enough to apply linear

theories of elasticity and piezoelectricity.
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Figure 4.1: FSDT formulation: Geometry of a general multilayered extension

mode piezoelectric smart beam.

4.2.1 Mechanical displacements and strains

The displacement fields in the longitudinal and transverse directions for FSDT are given

as (Narayanan and Balamurugan, 2003):

u(x, z) = u0(x) + zθ(x) (4.1)

w(x, z) = w0(x) (4.2)

The sub-functions u0(x) and w0(x) are the longitudinal and transverse displacements

at the centroidal axis of the beam, respectively. θ is the section rotation of the beam.

The dimensions L, b and h are the length, width and the total thickness of the beam,

respectively.

Substituting Eqs. (4.1) and (4.2) in the usual strain-displacement relations, the fol-

lowing expressions for axial and shear strains are obtained:

εx(x, z) =
∂u(x, z)

∂x
= u

′
0(x) + zθ

′
(x) (4.3)

where ()′ denotes d/dx.

γxz(x, z) =
∂u(x, z)

∂z
+

∂w(x, z)

∂x
= θ(x) + w

′
0(x) (4.4)
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4.2.2 Electric potential and electric field

The layerwise through-thickness distribution of the electric potential is assumed as

shown in Fig. 4.1. The two dimensional electric potential of the ith piezoelectric layer

φi(x, z), takes the values of ϕi+1(x) and ϕi(x) at the top and bottom surfaces of the

piezoelectric layer with thickness hi, respectively. The electric field in the transverse

(z) direction is derived from electric potential as (Benjeddou et al., 1997):

Ei
z(x, z) = −∂φi(x, z)

∂z
(4.5)

4.2.3 Constitutive relations

Coupled constitutive relations for FSDT-based piezoelectric beam formulation are given

as (Appendix A): 


σk
x

τ kxz

Di
z


 =




Q̃k
11 0 −ẽi31

0 Q̃k
55 0

ẽi31 0 ϵ̃i3







εx

γxz

Ei
z


 (4.6)

where (i=1......number of piezoelectric layers in the beam) and (k=1.......total number

of layers in the beam).

4.3 Derivation of Potential Consistent with FSDT

For the free volumic charge density assumption, the electrostatic equilibrium equation

of the ith piezoelectric layer reduces to (Benjeddou et al., 1997):

∂Di
z(x, z)

∂z
= 0 (4.7)

as Di
x = Di

y = 0 form Eq. (4.6).

Using Eqs. (4.3), (4.5), (4.6) and (4.7), we get:

∂2φi(x, z)

∂z2
=

ẽi31
ϵ̃i3

θ
′
(x) (4.8)
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On solving Eq. (4.8), we have:

φi(x, z) =
ẽi31
ϵ̃i3

z2

2
θ
′
(x) + C i

1(x)z + C i
2(x) (4.9)

where, C i
1 and C i

2 are the constants to be obtained from boundary conditions for φi

in z-direction. For ith piezolayer boundary conditions are φz=zi(x, z) = ϕi(x) and

φz=zi+1
(x, z) = ϕi+1(x). After solving Eq. (4.9) and simplifying, we get:

φi(x, z) = φ̄i(x) +

(
z − z̄i
hi

)
φ̃i(x)−

ẽi31
ϵ̃i3

h2
i

8

(
1− 4 (z − z̄i)

2

h2
i

)
θ
′
(x) (4.10)

where φ̄i = (ϕi+1 + ϕi) /2; φ̃i = ϕi+1 − ϕi and z̄i = (zi+1 + zi) /2.

Form Eq. (4.10), it is clear that, the electric potential consistent with FSDT me-

chanical field is quadratic in the transverse direction. The first two terms describe the

conventional linear part in which φ̄ and φ̃ are the mean and difference of potentials

on the top and bottom faces of the ith piezoelectric layer, respectively. The third term

which is quadratic denotes the bending strain contribution to the potential. This nonlin-

ear term constitutes the induced potential and plays an important role in the formulation,

as it changes the stiffness of the structure. The coefficient of the induced potential term

depends on the geometric and material properties of the piezoelectric layer.

The transverse electric field is derived from Eq. (4.10) as:

Ei
z(x, z) = −∂φi(x, z)

∂z
= − φ̃i(x)

hi

− ẽi31
ϵ̃i3

(z − z̄i) θ
′
(x) (4.11)

4.4 Variational Formulation

Hamilton’s principle is used to formulate the smart beam. It is expressed as (Chee et al.,

1999):

δ

∫ t2

t1

(K −H +W ) dt =

∫ t2

t1

(δK − δH + δW ) dt = 0 (4.12)

where K is the kinetic energy, H is the electric enthalpy density function for the piezo-

electric material and the mechanical strain energy for the linear elastic material and W

is the work done by the external forces.
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4.4.1 Variation of electromechanical/strain energy

For the jth conventional material layer, the variation of mechanical strain energy δH is

given by:

δHj =

∫

V

(
σj
xδε

j
x + τ jxzδγ

j
xz

)
dV (4.13)

The variation of electromechanical energy for the ith piezoelectric layer is given by:

δHi =

∫

V

(
σi
xδε

i
x + τ ixzδγ

i
xz −Di

zδE
i
z

)
dV (4.14)

Substituting values of axial strain (εx), shear strain (γxz), transverse electric field (Ez)

from Eqs. (4.3), (4.4), (4.11) and using them along with constitutive relations from Eq.

(4.6) in Eqs. (4.13) and (4.14), variation on total electromechanical/strain energy of the

beam is written as:

∫ t2

t1

δHdt =

∫ t2

t1

∫

x



δu

′
0


(Q̃

k
11I

k
0 )u

′
0 +

(
Q̃k

11I
k
1 +

(
(ẽi31)

2
/ϵ̃i3

)
(I i1 − I i0z̄i)

)
θ
′

+(ẽi31I
i
0/hi) φ̃i


+

δθ
′




(
Q̃k

11I
k
1 +

(
(ẽi31)

2
/ϵ̃i3

)
(I i1 − I i0z̄i)

)
u

′
0

+
(
Q̃k

11I
k
2 +

(
(ẽi31)

2
/ϵ̃i3

)
(I i2 − I i0z̄

2
i )
)
θ
′

+(ẽi31I
i
0z̄i/hi) φ̃i


+

δθ
[
Q̃k

55I
k
0

](
θ + w

′
0

)
+ δw

′
0

[
Q̃k

55I
k
0

](
θ + w

′
0

)
+

δφ̃i


(ẽ

i
31I

i
0/hi)u

′
0 + (ẽi31I

i
0z̄i/hi) θ

′

−(ϵ̃i3I
i
0/h

2
i )φ̃i





 dxdt (4.15)

where i=(1.....number of piezolayers), k=(1......total number of layers) and

Ikq = b
(
zq+1
k+1 − zq+1

k

)
/(q + 1).

4.4.2 Variation of kinetic energy

The electrical variables do not enter into the expression for kinetic energy and it is given

as (Chee et al., 1999):

K =
1

2
b

∫

x

∫ zk+1

zk

ρk
(
u̇2 + ẇ2

)
dzdx (4.16)
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where ρk is the mass density of kth layer in kgm−3 and (k=1....total number of layers in

beam). Substituting values of u and w from Eqs. (4.1) and (4.2) and applying variation

to get:

−
∫ t2

t1

δKdt =ρk

∫ t2

t1

∫

x

{
δu0

(
Ik0 ü0 + Ik1 θ̈

)
+ δθ

(
Ik1 ü0 + Ik2 θ̈

)

+ δw0

(
Ik0 ẅ0

)}
dxdt (4.17)

where (̇) denotes ∂
∂t

.

4.4.3 Variation of the work of external forces

The total virtual work on the structure can be defined as the product of the virtual

displacements with forces for the mechanical work and the product of the virtual electric

potential with the charges for the electrical work. The variation of the total work done

by the external mechanical and electrical loading is given as (Chee et al., 1999):

∫ t2

t1

δWdt =

∫ t2

t1

{∫

V

(δuf v
u + δwf v

w)dV +

∫

S

(δuf s
u + δwf s

w)dS

+
∑

(δuf c
u + δwf c

w)−
∫

Sφ

δφq0dSφ

}
dt (4.18)

in which f v,f s,f c are volume, surface, point forces, respectively; q0 and Sφ are the

surface charges and area on which charge is applied.

4.5 Derivation of Coupled Field Relations

The relationship between the field variables is established here, using static governing

equilibrium equations. For static condition without any external loading, the variational

principle given in Eq. (4.12) reduces to:

δH = 0 (4.19)

Applying variation to the basic variables in Eq. (4.15) and using them in Eq. (4.19),
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we get the static equilibrium equations as:

δu0 :


(Q̃

k
11I

k
0 )u

′′
0 +

(
Q̃k

11I
k
1 +

(
(ẽi31)

2
/ϵ̃i3

)
(I i1 − I i0z̄i)

)
θ
′′

+(ẽi31I
i
0/hi) φ̃

′
i


 = 0 (4.20)

δθ :




−
(
Q̃k

11I
k
1 +

(
(ẽi31)

2
/ϵ̃i3

)
(I i1 − I i0z̄i)

)
u

′′
0

−
(
Q̃k

11I
k
2 +

(
(ẽi31)

2
/ϵ̃i3

)
(I i2 − I i0z̄

2
i )
)
θ
′′ − (ẽi31I

i
0z̄i/hi) φ̃

′
i

+
(
Q̃k

55I
k
0

) (
θ + w

′
0

)


 = 0 (4.21)

δw0 :
[(

Q̃k
55I

k
0

) (
θ
′
+ w

′′
0

)]
= 0 (4.22)

From Eq. (4.22), we can write:

θ
′′
= −w

′′′
0 (4.23)

Using Eqs. (4.20) and (4.23), the relation between axial displacement (u0), trans-

verse displacement (w0) and electric potential (φi) is derived as:

u
′′
0 = β1w

′′′
0 + βi

2φ̃
′
i (4.24)

where

β1 =

(
Q̃k

11I
k
1 +

(
(ẽi31)

2
/ϵ̃i3

)
(I i1 − I i0z̄i)

)

(Q̃k
11I

k
0 )

; βi
2 = −(ẽi31I

i
0/hi)

(Q̃k
11I

k
0 )

Using Eqs. (4.20), (4.21) and (4.23), we can write the relation between section

rotation (θ), transverse displacement (w0) and electric potential (φi) as:

θ = −w
′
0 + β3w

′′′
0 + βi

4φ̃
′
i (4.25)
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where

β3 =

(
Q̃k

11I
k
1 +

(
(ẽi31)

2
/ϵ̃i3

)
(I i1 − I i0z̄i)

)2

(
Q̃k

11I
k
0

)(
Q̃k

55I
k
0

) −

(
Q̃k

11I
k
2 +

(
(ẽi31)

2
/ϵ̃i3

)
(I i2 − I i0z̄

2
i )
)

(
Q̃k

55I
k
0

)

βi
4 =

(ẽi31I
i
0z̄i/hi)(

Q̃k
55I

k
0

) −

[
Q̃k

11I
k
1 +

(∑np

j=1

((
ẽj31

)2
/ϵ̃j3

) (
Ij1 − Ij0 z̄j

))]

(
Q̃k

55I
k
0

) (ẽi31I
i
0/hi)(

Q̃k
11I

k
0

)

where np=total number of piezoelectric layers in the beam.

From Eqs. (4.24) and (4.25), it is clear that the coupling constants βm, (m = 1...4)

depend on the geometric and material properties of the beam and these constants relate

all field variables by properly accommodating bending-extension, bending-shear and

induced potential couplings. These expressions are used in the next section to derive

coupled polynomial expressions for field variables.

4.6 Finite Element Formulation

Using the variational formulation described above, a finite element model is developed

here. For the two-noded finite element model developed here, the degrees of freedom

consist of three mechanical ( u0, w0 and θ ) and layerwise electric potential variables

(φ̃i) where (i=1.....number of piezoelectric layers in the beam).

In terms of the natural coordinate (ξ), a cubic polynomial for transverse displace-

ment (w0) and linear polynomials for layerwise electric potentials (φ̃i) are assumed

as given in Eqs. (4.26a) and (4.26b), respectively. The transformation between co-

ordinate ξ and global coordinate (x) along the length of the beam is given as ξ =

[2(x− x1)/(x2 − x1)]− 1 and x2 − x1 = l, length of the beam element.

w0 = b0 + b1ξ + b2ξ
2 + b3ξ

3 (4.26a)

φ̃i = ci0 + ci1ξ (4.26b)

Using these polynomials for w0 and φ̃i in equation (4.24) and integrating with re-
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spect to ξ, we get the coupled polynomial for midplane axial displacement (u0) as:

u0 = [(6β1/l)b3 + (βi
2l/4)c

i
1]ξ

2 + a1ξ + a0 (4.27)

Using Eqs. (4.26a) and (4.26b) in Eq. (4.25), the coupled polynomial for section rota-

tion (θ) is obtained as:

θ = −b1(2/l)− b2(2ξ(2/l))− b3
(
3ξ2(2/l)− 6β3(2/l)

3
)
+ ci1(β

i
4(2/l)) (4.28)

It is noteworthy that Eqs. (4.27) and (4.28) take care of bending-extension and bending-

shear couplings along with the change in stiffness due to induced potential, in a vari-

ationally consistent manner. Although an assumed cubic polynomial for transverse

displacement and quadratic polynomials for axial displacement and section rotation of

the beam are used in the formulation, the number of nodal degrees of freedom are main-

tained the same as of the conventional formulation. The elemental shear strain field is

given as:

γxz = θ + w
′
0 = b3(6β3(2/l)

3) + ci1(β
i
4(2/l)) (4.29)

The above shear strain is constant over the element. Also, it does not lead to any spu-

rious constraints in the thin limits, as the coefficients β3 and β4 tend to vanish as beam

thickness approaches zero. Hence, no shear locking shall be experienced.

Using Eqs. (4.26a), (4.26b), (4.27) and (4.28), the coupled shape functions in Eq.

(4.30) are derived by usual method.





u0

w0

θ

φ̃i





=




Nu
1 Nu

2 Nu
3 Nui

4 Nu
5 Nu

6 Nu
7 Nui

8

0 Nw
1 Nw

2 Nwi
3 0 Nw

4 Nw
5 Nwi

6

0 N θ
1 N θ

2 N θi
3 0 N θ

4 N θ
5 N θi

6

0 0 0 Nφi
1 0 0 0 Nφi

2








u1
0

w1
0

θ1

φ̃1
i

u2
0

w2
0

θ2

φ̃2
i





(4.30)
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The expressions for these shape functions in natural coordinate system are given as:

Nu
1 =

(1− ξ)

2
; Nu

2 =
3β1l

24β3 − 2l2
(1− ξ2);

Nu
3 =

3β1l
2

48β3 − 4l2
(ξ2 − 1); Nui

4 =
βi
2l

3 + 12l(β1β
i
4 − βi

2β3)

96β3 − 8l2
(ξ2 − 1);

Nu
5 =

(1 + ξ)

2
Nu

6 =
3β1l

24β3 − 2l2
(ξ2 − 1);

Nu
7 =

3β1l
2

48β3 − 4l2
(ξ2 − 1); Nui

8 =
βi
2l

3 + 12l(β1β
i
4 − βi

2β3)

96β3 − 8l2
(1− ξ2);

Nw
1 =

1

2
− l2ξ3 + ξ(24β3 − 3l2)

48β3 − 4l2
; Nw

2 =

[
l

8
+

l3ξ

96β3 − 8l2

]
(ξ2 − 1);

Nwi
3 =

βi
4l

2ξ

48β3 − 4l2
(ξ2 − 1); Nw

4 =
1

2
+

l2ξ3 + ξ(24β3 − 3l2)

48β3 − 4l2
;

Nw
5 =

[
l

8
− l3ξ

96β3 − 8l2

]
(1− ξ2); Nwi

6 =
βi
4l

2ξ

48β3 − 4l2
(1− ξ2);

N θ
1 =

3l

24β3 − 2l2
(ξ2 − 1); N θ

2 =
24β3 + l2(1− 3ξ2)

48β3 − 4l2
− ξ

2
;

N θi
3 =

3βi
4l

24β3 − 2l2
(1− ξ2); N θ

4 =
3l

24β3 − 2l2
(1− ξ2);

N θ
5 =

24β3 + l2(1− 3ξ2)

48β3 − 4l2
+

ξ

2
; N θi

6 =
3βi

4l

24β3 − 2l2
(ξ2 − 1);

Nφi
1 =

(1− ξ)

2
; Nφi

2 =
(1 + ξ)

2
;

Now, the variation on the basic mechanical and electrical variables can be trans-

ferred to nodal degrees of freedom. Substituting Eq. (4.30) in Eqs. (4.15), (4.17),

(4.18) and using them in equation (4.12), we get the descretized form of finite element

equations as:



[
M

]
0

0 0





{
Ü
}

{
Φ̈
}

+



[
Kuu

] [
Kuφ

]
[
Kφu

] [
Kφφ

]




{
U
}

{
Φ
}

 =



{
F
}

{
Q
}

 (4.31)

where M is the mass matrix. Kuu, Kuφ, Kφu, Kφφ are the global stiffness sub-matrices.

U , Φ are the global mechanical and electrical nodal degrees of freedom vectors, re-
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spectively. F and Q are global mechanical and electrical nodal force vectors, respec-

tively. These matrix equations now can be solved according to the electrical conditions

(closed/open circuit) and mode of operation (actuation/sensing) for static/dynamic anal-

yses.

4.7 Numerical Examples and Discussions

The proposed formulation is validated here for accuracy and efficiency in static (actu-

ation and sensing) and modal analyses (open and closed circuit) of piezoelectric smart

beams. The software implementation has been carried out in MATLAB environment.

The performance of the present formulation is compared against the conventional two-

noded isoparametric FSDT formulations available in the literature and 2D finite element

simulation using ANSYS software. The finite element formulations used for the com-

parative study are designated here as:

FSDT-Coupled : The present formulation which uses coupled polynomials ( cu-

bic for w0 given by Eq. (4.26a), coupled quadratic for u0 given by Eq. (4.27),

coupled quadratic for θ given by Eq. (4.28) and linear for φ̃i given by Eq. (4.26b)

) for interpolation of field variables and layerwise consistent through-thickness

potential ( coupled quadratic approximation in z direction given by Eq. (4.10)

). It does not employ any sublayers within the piezoelectric layer, for modelling.

This formulation is expected to be free from piezolocking, shear locking and ma-

terial locking.

FSDT : The conventional FSDT formulation (Narayanan and Balamurugan, 2003)

which uses independent polynomials for field interpolation (linear for u0, w0, θ

and φ̃i) and assumed linear through-thickness potential in each physical piezo-

electric layer. This element suffers from piezolocking, shear locking and material

locking. The traditional Reduced Integration technique has been used to eliminate

shear locking in this element.

FSDT (with sublayers) : The piezolocking in the above FSDT model may be

eliminated by using a sufficient number of sublayers for modelling each piezo-

electric layer. The through-thickness distribution of potential in each piezolayer
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is represented by sublayer-wise linear approximations. In this sublayered version

of FSDT, we have used four sublayers per physical piezoelectric layer, which

are found adequate to yield reasonably accurate results. However, each sub-

layer would introduce an additional nodal electric potential degree of freedom

and hence this element is computationally expensive.

ANSYS 2D : For a comparative evaluation of the above FSDT formulations,

benchmark solutions have been obtained from a refined 2-dimensional analy-

sis using ANSYS finite element software (ANSYS-Release12, 2009), for which

PLANE 183 elements are used to mesh conventional material layers, while PLANE

223 elements are used to mesh piezoelectric material layers.

4.7.1 Example 1: A three-layer symmetric piezoelectric beam

The example chosen here is an aluminum core with surface bonded oppositely poled

piezoelectric layers of PZT 5H material, as shown in Fig. 4.2. The material properties

of the beam are (Kapuria and Hagedorn, 2007):

Aluminum: E = 70.3 GPa, ν = 0.345, ρ = 2710 kgm−3

PZT 5H: C11 = C22 = 126 GPa, C12 = 79.5 GPa, C13 = C23 = 84.1 GPa, C33 =

117 GPa, C44 = C55 = 23 GPa,C66 = 23.25 GPa, e31 = e32 = −6.5 Cm−2,

e33 = 23.3 Cm−2, ϵ33 = 1.3 × 10−8 Fm−1, ρ = 7500 kgm−3 (The reduced properties

used are: Q̃11 = 60.013 GPa, Q̃55 = 23 GPa, ẽ31 = −16.4921 Cm−2, ϵ̃3 = 2.5885 ×
10−8 Fm−1)

This example is expected to show the improvement in terms of accuracy and effi-

ciency of the present FSDT-Coupled formulation over the conventional FSDT. To study

the performance of the FSDT-based smart beam formulations over a wide range of

piezoelectric material proportion in the total thickness (Thickness ratio: r = (2hp)/h),

the length (L) and total height (h) are taken as constant with values 100mm and 10mm,

respectively, while the thicknesses of piezoelectric layer (hp) and aluminum layer (hal)

are varied. For a comparative evaluation of the various FSDT formulations, converged

results from ANSYS 2D analysis with a refined mesh size of 100× 40 are used.
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Figure 4.2: Example 1: Geometry of the three-layer cantilever beam with sym-

metrically bonded oppositely poled piezoelectric layers in exten-

sion mode.

Static analysis: Actuator configuration

For actuator configuration, the interfaces of piezoelectric layers with aluminum layer

are grounded and potentials of ±10 volts are applied on the free surfaces of the piezo-

electric layer. The variation of tip deflection over a wide range of thickness ratio is

plotted in Fig. 4.3.

It is evident that the present FSDT-Coupled formulation gives accurate results as

that of ANSYS 2D simulation. In the higher thickness ratio regimes, the conventional

FSDT formulation converges to inaccurate results due to piezolocking effect. It de-

mands sublayered modelling to achieve the same level of accuracy as of the present

formulation. The results clearly show the advantage of FSDT-Coupled formulation, to

efficiently handle the piezolocking effects.

The variation of error (%) in the tip deflection due to use of conventional FSDT

formulation with thickness ratio is plotted in Fig. 4.4. As the proportion of piezoelec-

tric material in the beam increases, the error due to the linear assumption of through-

thickness potential becomes significant. The maximum difference is observed for a

beam of pure piezoelectric material i.e. a bimorph configuration. Hence, the bimorph

shown in Fig. 4.5 is considered for a detailed study of the induced potential effects.

Table 4.1 shows the results for the tip deflection of the bimorph for various numbers

of sublayers in the modelling with FSDT formulation of Narayanan and Balamurugan

(2003). As seen from results, only with sufficient number of sublayers in the modelling

of piezoelectric layers, the conventional FSDT formulation converges to the accurate
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Figure 4.3: Example 1: Actuator configuration: Variation of the tip deflection

with thickness ratio (r) for the three-layer cantilever beam actuated

by ±10 volts.
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Figure 4.4: Example 1: Actuator configuration: Variation of error (%) in the tip

deflection with thickness ratio (r), due to use of the conventional

FSDT formulation for the three-layer cantilever beam actuated by

±10 volts.
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Figure 4.5: Example 1: Bimorph cantilever beam in the actuator configuration.

Table 4.1: Example 1: Actuator configuration: Tip deflection of the bimorph

cantilever beam actuated by ±10 volts (h = 10mm, L = 100mm).

Formulation Tip deflection (µm)

FSDT (Nar/Bal, 2003) 0.824

FSDT (with sublayers)

2 sublayers/layer 0.798

4 sublayers/layer 0.792

ANSYS 2D 0.790

FSDT-Coupled 0.789

values as predicted by FSDT-Coupled and ANSYS 2D simulation.

Also, the comparison of results for transverse deflection along the length, through-

thickness distributions of potential and axial stress for the bimorph are plotted in Figs.

4.6, 4.7 and 4.8, respectively. The results prove the ability of FSDT-Coupled to model

the piezoelectric beam accurately as of ANSYS 2D and FSDT (with sublayers). The

conventional FSDT formulation of Narayanan and Balamurugan (2003) suffers from

loss of accuracy due to piezolocking.

Static analysis: Sensor configuration

For sensor configuration, the three-layer cantilever beam shown in Fig. 4.2 is subjected

to a tip load of −1000 N . The results for tip deflection and potential developed at mid-
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Figure 4.6: Example 1: Actuator configuration: Transverse deflection along the

length of the bimorph cantilever beam actuated by ±10 volts.
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Figure 4.7: Example 1: Actuator configuration: Through-thickness potential

distribution in the bimorph cantilever beam actuated by ±10 volts.
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Figure 4.8: Example 1: Actuator configuration: Through-thickness axial stress

distribution in the bimorph cantilever beam actuated by ±10 volts.

span are plotted in Figs. 4.9 and 4.10, for various thickness ratios. From these plots, it

is clear that present FSDT-Coupled formulation is able to yield accurate results as that

of ANSYS 2D simulation over the entire range of thickness ratio. The conventional

FSDT formulation of Narayanan and Balamurugan (2003) suffers form piezolocking

and does not maintain the accuracy consistently. It demands sublayered modelling to

achieve same accuracy as that of FSDT-Coupled. The inaccuracy due to piezolocking is

quantified in the error (%) plotted in Fig. 4.11. The variation of error (%) with thickness

ratio shows that as we move from a beam of purely conventional material to a purely

piezoelectric material beam i.e. bimorph, the error in the results increases significantly.

Hence, the bimorph structure shown in Fig. 4.12 is considered here for detailed study

of the induced potential effects.

Table 4.2 shows the results for tip deflection and potential developed across each

piezoelectric layer at mid-span of the bimorph, for different number of sublayers in the

modelling with conventional FSDT formulation of Narayanan and Balamurugan (2003).

As seen from results, only with a sufficient number of sublayers in the modelling of

piezoelectric layers, the conventional formulation converges to the accurate results as

predicted by FSDT-Coupled and ANSYS 2D simulation.

Also, the results for transverse deflection along the length, potential developed

across each layer along the length, through-thickness potential at mid-span and axial

stress distributions at the root of the bimorph are plotted in Figs. 4.13, 4.14, 4.15
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Figure 4.9: Example 1: Sensor configuration: Variation of the tip deflection

with thickness ratio (r) for the three-layer cantilever beam sub-

jected to a tip load of −1000 N .
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Figure 4.10: Example 1: Sensor configuration: Variation of the potential devel-

oped across each piezoelectric layer at the mid-span with thick-

ness ratio (r) for the three-layer cantilever beam subjected to a tip

load of −1000 N .
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Figure 4.11: Example 1: Sensor configuration: Variation of error (%) in the

tip deflection and the potential developed with thickness ratio (r),

due to use of the conventional FSDT formulation for the three-

layer cantilever beam subjected to a tip load of −1000 N .

Figure 4.12: Example 1: Bimorph cantilever beam in the sensor configuration.
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Table 4.2: Example 1: Sensor configuration: Tip deflection and potential de-

veloped at the mid-span of the bimorph cantilever beam subjected to

a tip load of −1000 N (h = 10 mm, L = 100 mm).

Formulation Tip deflection Potential

(µm) (volts)

FSDT (Nar/Bal, 2003) -59.3 70.38

FSDT (with sublayers)

2 sublayers/layer -57.7 68.40

4 sublayers/layer -57.3 67.91

ANSYS 2D -57.2 67.76

FSDT-Coupled -57.2 67.75

and 4.16, respectively. It is evident from the figures that results of the present FSDT-

Coupled formulation closely match with 2D simulation, while conventional FSDT for-

mulation of Narayanan and Balamurugan (2003) needs sublayered model to eliminate

loss of accuracy due to piezolocking. It may be noted that in Fig. 4.16, the conventional

FSDT formulation exhibit a large discontinuity in the axial stress at the interface which

tend to disappear with addition of sufficient number of sublayers.

Figs. 4.17 and 4.18 show the comparison of convergence characteristics of the

FSDT-based piezoelectric beam finite element formulations, for the tip deflection and

potential developed at the root of the bimorph, respectively. It is noteworthy that FSDT-

Coupled shows single-element convergence, closely reproducing the ANSYS-2D so-

lutions for both the tip deflection and the potential developed. As evident from these

figures, both the conventional FSDT (Narayanan and Balamurugan, 2003) and FSDT

(with sublayers) models show a similar pattern of slow convergence. It is observed that

the sublayered FSDT model eventually converges to the accurate results for tip deflec-

tion (= −57.213 µm) and potential (= 135.52 volts). However, the conventional FSDT

(Narayanan and Balamurugan, 2003) model overestimates the response and converges

to inaccurate results, due to piezolocking effects. This example clearly reveals the role

of the coupled polynomial interpolation in improving the accuracy and efficiency of the

FSDT-based piezoelectric beam finite elements.
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Figure 4.13: Example 1: Sensor configuration: Transverse deflection along the

length of the bimorph cantilever beam subjected to a tip load of

−1000 N .
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Figure 4.14: Example 1: Sensor configuration: Potential developed across

each piezoelectric layer along the length of the bimorph cantilever

beam subjected to a tip load of −1000 N .
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Figure 4.15: Example 1: Sensor configuration: Through-thickness potential

distribution at the mid-span of the bimorph cantilever beam sub-

jected to a tip load of −1000 N .
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Figure 4.16: Example 1: Sensor configuration: Through-thickness axial stress

distribution at the root of the bimorph cantilever beam subjected

to a tip load of −1000 N .
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Figure 4.17: Example 1: Sensor configuration: Convergence characteristics of

the FSDT-based piezoelectric beam finite elements to predict the

tip deflection of the bimorph cantilever beam subjected to a tip

load of −1000 N .
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Figure 4.18: Example 1: Sensor configuration: Convergence characteristics of

the FSDT-based piezoelectric beam finite elements to predict the

potential developed across a piezoelectric layer at the root of the

bimorph cantilever beam subjected to a tip load of −1000 N .
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Figure 4.19: Example 1: Modal analysis: Variation of the first natural fre-

quency with thickness ratio (r) for the three-layer cantilever beam

in open circuit electrical boundary condition.

Modal analysis

The present formulation is validated here for accuracy and efficiency to predict natural

frequencies of the smart cantilever shown in Fig. 4.2. The natural frequencies are eval-

uated for closed and open circuit electrical boundary conditions. For open circuit, only

the interfaces of piezoelectric layers with aluminum core are grounded while, for closed

circuit all the faces of piezoelectric layers are grounded. The variations of first natural

frequencies in open and closed circuit electrical boundary conditions, with thickness ra-

tio are plotted in Figs. 4.19 and 4.20, respectively. As seen from the figures, the present

FSDT-Coupled predicts the accurate results as given by ANSYS 2D simulation over the

entire range of thickness ratio. The conventional FSDT formulation shows significant

errors due to piezolocking in the higher thickness ratio regimes and requires sublayered

modelling to achieve accurate results. The variation of errors (%) with thickness ra-

tio is plotted in Fig. 4.21. As seen from the figure, the bimorph configuration shows

maximum error.

The results for first three natural frequencies for the bimorph cantilever are tabulated

in Table 4.3. As seen from the results the conventional FSDT formulation suffers form

piezolocking and requires a number of sublayers to reproduce accurate results.

Figs. 4.22 and 4.23 show the comparison of convergence characteristics of FSDT-
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Figure 4.20: Example 1: Modal analysis: Variation of the first natural fre-

quency with thickness ratio (r) for the three-layer cantilever beam

in closed circuit electrical boundary condition.
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Figure 4.21: Example 1: Modal analysis: Variation of error (%) in the first

natural frequency with thickness ratio (r), due to use of the con-

ventional FSDT formulation for the three-layer cantilever beam.
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Table 4.3: Example 1: Natural frequencies in Hz for the bimorph cantilever

beam (h = 10 mm, L = 100 mm).

Electrical Mode FSDT FSDT ANSYS 2D FSDT

Boundary No (Nar/Bal, 2003) (with Coupled

condition sublayers)

Open 1st 482.4 491.0 491.2 491.5

Circuit 2nd 2898 2944 2929 2949

3rd 7650 7666 7658 7666

Closed 1st 453.8 462.9 464.3 463.5

Circuit 2nd 2736 2788 2783 2792

3rd 7072 7072 7093 7072

based piezoelectric beam finite element formulations, to predict the first natural fre-

quency in open and closed circuit electrical boundary conditions, respectively. It is note-

worthy that FSDT-Coupled shows very fast convergence, accurately reproducing the

ANSYS-2D solutions. As evident from these figures, the conventional FSDT and FSDT

(with sublayers) formulations exhibit poor convergence. Both conventional FSDT and

subalyered FSDT models show the similar pattern of slow convergence. It is observed

that the sublayered FSDT model eventually converges to the accurate results for open

circuit (= 491.23 Hz) and closed circuit (= 464.29 Hz). However, the conventional

FSDT model (Narayanan and Balamurugan, 2003) underestimates the response and

converges to inaccurate results, due to piezolocking effects. This example clearly re-

veals the efficiency of the present coupled polynomial interpolation over the conven-

tional independent polynomial interpolations.

4.7.2 Example 2: A two-layer asymmetric piezoelectric beam

The test problem chosen here is a two-layer asymmetric piezoelectric cantilever beam

having a host layer made up of steel with a surface bonded piezoelectric layer of

G1195N material at the top, as shown in Fig. 4.24. The material properties used are:

Steel (Carrera and Brischetto, 2008): E = 210 GPa, ν = 0.3, ρ = 7850 kgm−3

PZT G1195N (Peng et al., 1998): E = 63 GPa, ν = 0.3, d31 = 254 × 10−12 m/V ,
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Figure 4.22: Example 1: Modal analysis: Convergence characteristics of the

FSDT-based piezoelectric beam finite elements to predict the first

natural frequency of the bimorph cantilever beam in open circuit

electrical boundary condition.
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Figure 4.23: Example 1: Modal analysis: Convergence characteristics of the

FSDT-based piezoelectric beam finite elements to predict the first

natural frequency of the bimorph cantilever beam in closed circuit

electrical boundary condition.
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Figure 4.24: Example 2: Geometry of the two-layer cantilever beam with an

asymmetrically bonded piezoelectric layer in extension mode.

ϵ3 = 15× 10−9 F/m, ρ = 7600 kgm−3.

This configuration is expected to show, in addition to piezolocking, the adverse ef-

fects of material locking on the convergence of the conventional FSDT piezoelectric

beam finite elements and improved performance of the proposed FSDT-Coupled for-

mulation.

For the present study, the length and total height of the beam are taken as constant

(L = 100 mm, h = 5 mm), while thicknesses of the piezoelectric layer (hp) and the

host layer (hc) are varied. The performances of the FSDT-based piezoelectric beam

finite elements are evaluated over a wide range of piezoelectric material proportion in

the total beam thickness ( thickness ratio: r = hp/h ). For a comparative evaluation of

various FSDT-based formulations, the converged results from ANSYS 2D simulation

with a mesh of 200× 20 elements are used.

Static analysis: Sensor configuration

For sensor configuration, the beam shown in Fig. 4.24 is subjected to a tip load of

−1000 N . The variations of tip deflection, axial deflection and potential developed

across the piezoelectric layer at the root of the beam, with thickness ratio are plotted in

Figs. 4.25, 4.26 and 4.27, respectively.

As seen from these graphs, the present FSDT-Coupled formulation consistently

gives accurate predictions of the results as given by ANSYS 2D simulation, over the
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Figure 4.25: Example 2: Sensor configuration: Variation of the tip deflection

with thickness ratio (r) for the asymmetric cantilever beam sub-

jected to a tip load of −1000N .

entire range of thickness ratio and proves the versatility of the coupled polynomial

based formulation. Due to the piezolocking effects, the conventional FSDT formula-

tion (Narayanan and Balamurugan, 2003) does not perform consistently accurate. It de-

mands sublayers in the modelling of piezolayer, to achieve the same consistent level of

accuracy as of the present FSDT-Coupled formulation. The error (%) due to piezolock-

ing in the conventional FSDT formulation is quantified in Fig. 4.28 for various thickness

ratios. It is seen that the error increases rapidly in the higher thickness ratio regimes.

Figs. 4.29 and 4.30 show the comparison of convergence characteristics of FSDT-

based piezoelectric beam finite element formulations, for the tip deflection and the po-

tential developed at the root, respectively. It is noteworthy that FSDT-Coupled shows

single-element convergence, closely reproducing the ANSYS-2D solutions. Both con-

ventional FSDT (Narayanan and Balamurugan, 2003) and FSDT (with sublayers) mod-

els show slow convergence patterns which are similar. It is observed that the sub-

layered FSDT model eventually converges to the accurate results for tip deflection

(= −0.2598 mm) and potential (= 376.09 volts). However, the conventional FSDT

model (Narayanan and Balamurugan, 2003) overestimates the response and converges

to inaccurate results, due to piezolocking effects. This example clearly reveals the effi-

ciency of the present coupled polynomial interpolation over the conventional indepen-
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Figure 4.26: Example 2: Sensor configuration: Variation of the axial deflec-

tion with thickness ratio (r) for the asymmetric cantilever beam

subjected to a tip load of −1000N .
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Figure 4.27: Example 2: Sensor configuration: Variation of the potential de-

veloped across piezoelectric layer at the root with thickness ratio

(r) for the asymmetric cantilever beam subjected to a tip load of

−1000 N .
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Figure 4.28: Example 2: Sensor configuration: Variation of error (%) in re-

sults with thickness ratio (r), due to use of the conventional FSDT

formulation.

dent polynomial interpolations.

The improved performance of the FSDT-Coupled can be attributed to the coupled

polynomial representations of section rotation and axial displacement. The role of the

coupled quadratic term in the axial displacement given by Eq. (4.27), in eliminating

material locking is evident from the Table 4.4, where the results obtained with and

without the coupled quadratic term are tabulated. The results prove the role of the

coupled quadratic term in enabling FSDT-Coupled to yield single element convergence

for the tip deflection and the potential developed. The results of asymmetric beam with

r = 0.5 given in Table 4.4 are normalized with respect to the converged values obtained

from ANSYS 2D simulation, −0.2598 mm for the tip deflection and 376.09 volts for

the potential developed at the root.

Static analysis: Actuator configuration

For actuator configuration, the beam shown in Fig. 4.24 is subjected to a voltage of

100 volts. The variations of tip deflection and axial deflection, with thickness ra-

tio are plotted in Figs. 4.31 and 4.32, respectively. As seen from these graphs, the

present FSDT-Coupled formulation consistently gives accurate predictions of results

as given by ANSYS 2D simulation, over the entire range of thickness ratio. Due to
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Figure 4.29: Example 2: Sensor configuration: Convergence characteristics of

the FSDT-based piezoelectric beam finite elements to predict the

tip deflection of the asymmetric cantilever beam (r = 0.5) sub-

jected to a tip load of −1000 N .
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Figure 4.30: Example 2: Sensor configuration: Convergence characteristics of

the FSDT-based piezoelectric beam finite elements to predict the

potential developed at the root of the asymmetric cantilever beam

(r = 0.5) subjected to a tip load of −1000 N .
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Table 4.4: Example 2: Role of coupled quadratic term in the field interpolation

for axial displacement (Eq. (4.27)) in improving the convergence

characteristics of FSDT-Coupled in static analysis.

Number of Normalized tip Normalized potential

elements deflection developed at root

(with coupled (without coupled (with coupled (without coupled

quadratic term) quadratic term) quadratic term) quadratic term)

1 1.000 0.962 1.000 0.793

2 1.000 0.992 1.000 0.953

4 1.000 0.998 1.000 0.972

8 1.000 0.999 1.000 0.985

16 1.000 1.000 1.000 0.992

the piezolocking effects, the conventional FSDT formulation (Narayanan and Bala-

murugan, 2003) does not yield consistently accurate results. It demands sublayers in

the modelling of piezolayer, to achieve the same consistent level of accuracy as of the

present FSDT-Coupled formulation. The error due to piezolocking in the conventional

FSDT formulation is quantified in Fig. 4.33 for various thickness ratios.

Modal analysis

The present FSDT-Coupled formulation is evaluated here for its accuracy and efficiency

to predict the natural frequencies of piezoelectric smart beams. The first natural fre-

quency of the asymmetric piezoelectric beam shown in Fig. 4.24 is evaluated for both

open and closed circuit electrical boundary conditions. For open circuit, only the inter-

face of piezoelectric layer with host layer is grounded while for closed circuit, both faces

of the piezoelectric layer are grounded. The variations of first natural frequencies with

thickness ratio are plotted in Figs. 4.34 and 4.35 for open and closed circuit electrical

boundary conditions, respectively. The results from the present FSDT-Coupled formu-

lation agree very well with the results from ANSYS 2D simulation. This validates the

use of the present coupled polynomial based interpolation displacement fields, to gener-

ate consistent element mass matrix. Due to piezolocking effects which are predominant

in the higher thickness ratio regimes, the results from the conventional FSDT formu-
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Figure 4.31: Example 2: Actuator configuration: Variation of the tip deflec-

tion with thickness ratio (r) for the asymmetric cantilever beam

actuated by 100 volts.
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Figure 4.32: Example 2: Actuator configuration: Variation of the axial deflec-

tion with thickness ratio (r) for the asymmetric cantilever beam

actuated by 100 volts.
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Figure 4.33: Example 2: Actuator configuration: Variation of error (%) in re-

sults with thickness ratio (r), due to use of the conventional FSDT

formulation.

lation of Narayanan and Balamurugan (2003) significantly deviate from the accurate

results and hence requires sublayered modelling to yield acceptable level of accuracy.

The error (%) due to piezolocking in the conventional formulation is plotted in Fig. 4.36

for various thickness ratios.

The convergence graphs for first natural frequency in both open and closed circuit

electrical boundary conditions are plotted in Figs. 4.37 and 4.38, respectively. The fig-

ures prove the efficacy of the present coupled polynomial interpolation based element

stiffness matrix and the corresponding consistent element mass matrix in achieving im-

proved convergence of natural frequencies. Both conventional FSDT and FSDT (with

sublayers) models show slow and similar convergence patterns. As the conventional

FSDT formulation (Narayanan and Balamurugan, 2003) suffers from piezolocking, it

requires sublayers in its modelling, to converge to accurate results.

The role of the coupled quadratic term in the axial displacement given by Eq. (4.27),

in eliminating material locking and improving the convergence is evident from the Ta-

ble 4.5, where the results obtained with and without the coupled quadratic term are

tabulated. The results prove the role of the coupled quadratic term in enabling FSDT-

Coupled to yield quick convergence for natural frequencies. The results of asymmetric

beam with r = 0.5 given in Table 4.5 are normalized with respect to the converged

values from FSDT-Coupled.
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Figure 4.34: Example 2: Modal analysis: Variation of the first natural fre-

quency with thickness ratio (r) for the asymmetric cantilever beam

in open circuit electrical boundary condition.
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Figure 4.35: Example 2: Modal analysis: Variation of the first natural fre-

quency with thickness ratio (r) for the asymmetric cantilever beam

in closed circuit electrical boundary condition.
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Figure 4.36: Example 2: Modal analysis: Variation of error (%) in results with

thickness ratio (r), due to use of the conventional FSDT formula-

tion.
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Figure 4.37: Example 2: Modal analysis: Convergence characteristics of the

FSDT-based piezoelectric beam finite elements to predict the first

natural frequency of the asymmetric cantilever beam (r = 0.5) in

open circuit electrical boundary condition.
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Table 4.5: Example 2: Role of coupled quadratic term in the field interpolation

for axial displacement (Eq. (4.27)) in improving the convergence

characteristics of FSDT-Coupled in modal analysis.

Number of Normalized natural frequency

elements 1st 2nd 3rd

coupled linear coupled linear coupled linear

Open circuit

1 0.995 1.027 5.170 5.066 2.198 2.366

2 1.000 1.007 0.983 1.040 1.300 1.384

4 1.000 1.002 1.000 1.012 1.002 1.029

8 1.000 1.000 1.000 1.003 1.001 1.008

16 1.000 1.000 1.000 1.001 1.000 1.002

Closed circuit

1 0.995 1.041 5.102 5.079 2.294 2.491

2 1.000 1.011 0.983 1.068 1.369 1.449

4 1.000 1.002 1.001 1.019 1.003 1.048

8 1.000 1.000 1.000 1.005 1.001 1.012

16 1.000 1.000 1.000 1.001 1.000 1.003
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Figure 4.38: Example 2: Modal analysis: Convergence characteristics of the

FSDT-based piezoelectric beam finite elements to predict the first

natural frequency of the asymmetric cantilever beam (r = 0.5) in

closed circuit electrical boundary condition.

4.8 Summary

A coupled polynomial interpolation scheme for FSDT-based piezoelectric beam finite

element has been proposed here to enhance its performance by eliminating material

locking, shear locking and piezolocking phenomena. A consistent interpolation for

through-thickness potential derived from an electrostatic equilibrium equation has been

proposed to eliminate piezolocking. A polynomial expression with a coupled quadratic

term has been derived for axial displacement using the governing equilibrium equations.

Similarly, a fully coupled quadratic polynomial expression has been derived for section

rotation of the beam. The resulting coupled shape functions handle bending-extension

coupling and bending-shear coupling in an efficient manner to eliminate material lock-

ing and shear locking. The merits of the present formulation over the conventional

formulations have been proved by the comparison of the results for a set of test prob-

lems.
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CHAPTER 5

COUPLED HSDT PIEZOELECTRIC BEAM FINITE

ELEMENT

5.1 Introduction

In this chapter, coupled polynomial interpolations are proposed for ESL-HSDT (Equiv-

alent Single Layer Higher-order Shear Deformation Theory) based piezoelectric beam

finite element formulation. The conventional HSDT piezoelectric beam element suffers

from loss of accuracy due to piezolocking and slow convergence due to material lock-

ing. The conventional HSDT piezoelectric beam finite element formulations employ

linear polynomial to approximate the through-thickness potential and hence converge

to inaccurate results, due to piezolocking. The traditional methods like use of higher-

order approximation for through-thickness potential and the use of sublayers in the

mathematical modelling of the piezoelectric layer in the conventional HSDT formula-

tion increase number of nodal degrees of freedom and the computational cost.

In HSDT-based beam finite elements, shear locking effects are insignificant and

hence negligible. The conventional HSDT piezoelectric beam finite elements which

use linear interpolation of axial displacement lead to poor convergence due to mate-

rial locking, when the beam cross-section is materially asymmetric. The traditional

method of using higher order polynomial for interpolation of axial displacement leads

to increased nodal degrees of freedom and the computational cost.

To eliminate piezolocking effects, instead of the conventional linear polynomial,

a coupled quartic consistent through-thickness potential distribution derived using an

electrostatic equilibrium equation is proposed. Coupled quadratic polynomials for axial

displacement and section rotation of the beam are derived using governing equilibrium

equations obtained from the variational formulation, which eliminate material locking

and improves the convergence. While adopting coupled polynomials for field inter-

polations, the number of mechanical degrees of freedom are effectively reduced from



Figure 5.1: HSDT formulation: Geometry of a general multilayered extension

mode piezoelectric smart beam.

four for conventional formulation to three for the present formulation, without affecting

applicability of the element.

5.2 Theoretical Formulation

The formulation is based on ESL-HSDT beam theory with layerwise electric potential.

Consider a general multilayered extension mode piezoelectric smart beam as shown

in Fig. 5.1. The layer(s) can be host layers of conventional/composite material or

bonded/embedded layer(s) of piezoelectric material. The beam layers are assumed to

be made up of isotropic or specially orthotropic materials, with perfect bonding be-

tween them. The top and bottom faces of the piezoelectric layers are fully covered with

electrodes. The mechanical and electrical quantities are assumed to be small enough to

apply linear theories of elasticity and piezoelectricity.
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5.2.1 Mechanical displacements and strains

The displacement fields in the longitudinal and transverse directions for Reddy’s HSDT

are given as (Heyliger and Reddy, 1988):

u(x, z) = u0(x) + zθ(x)− z3
4

3h2

(
w

′
0(x) + θ(x)

)
(5.1)

w(x, z) = w0(x) (5.2)

where ()′ denotes d/dx. The sub-functions u0(x) and w0(x) are the longitudinal and

transverse displacements at the centroidal axis of the beam, respectively. θ is the section

rotation of the beam. The dimensions L, b and h are the length, width and the total

thickness of the beam, respectively.

Substituting Eqs. (5.1) and (5.2) in the usual strain-displacement relations, the fol-

lowing expressions for axial and shear strains are obtained:

εx(x, z) =
∂u(x, z)

∂x
= u

′
0(x) + zθ

′
(x)− z3

4

3h2

(
w

′′
0 (x) + θ

′
(x)

)
(5.3)

γxz(x, z) =
∂u(x, z)

∂z
+

∂w(x, z)

∂x
=

(
1− z2

4

h2

)(
w

′
0(x) + θ(x)

)
(5.4)

5.2.2 Electric potential and electric field

The layerwise through-thickness distribution of the electric potential is assumed as

shown in Fig. 5.1. The two dimensional electric potential of the ith piezoelectric layer

φi(x, z), takes the values of ϕi+1(x) and ϕi(x) at the top and bottom surfaces of the

piezoelectric layer with thickness hi, respectively. The electric field in the transverse

(z) direction is derived from electric potential as (Benjeddou et al., 1997):

Ei
z(x, z) = −∂φi(x, z)

∂z
(5.5)
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5.2.3 Constitutive relations

Constitutive relations for HSDT based piezoelectric beam formulation are given as (Ap-

pendix A): 


σk
x

τ kxz

Di
z


 =




Q̃k
11 0 −ẽi31

0 Q̃k
55 0

ẽi31 0 ϵ̃i3







εx

γxz

Ei
z


 (5.6)

where (i=1......number of piezoelectric layers in the beam) and (k=1.......total number

of layers in the beam).

5.3 Derivation of Potential Consistent with HSDT

For the free volumic charge density assumption, the electrostatic equilibrium equation

of the ith piezoelectric layer reduces to (Benjeddou et al., 1997):

∂Di
z(x, z)

∂z
= 0 (5.7)

as Di
x = Di

y = 0 from Eq. (5.6).

Using Eqs. (5.3), (5.5), (5.6) and (5.7), we get:

∂2φi

∂z2
(x, z) =

ẽi31
ϵ̃i3

θ
′
(x)− ẽi31

ϵ̃i3
3αz2

(
θ
′
(x) + w

′′
0 (x)

)
(5.8)

where, α = 4/(3h2).

On solving Eq.(5.8), we get:

φi(x, z) =
ẽi31
ϵ̃i3

z2

2
θ
′
(x)− ẽi31

ϵ̃i3
α
z4

4

(
θ
′
(x) + w

′′
0 (x)

)
+ C i

1(x)z + C i
2(x) (5.9)

where C i
1 and C i

2 are the constants to be obtained from boundary condition for φ

in z-direction. For ith layer boundary conditions are φ(z=zi+1)(x, z) = ϕi+1(x) and

φ(z=zi)(x, z) = ϕi(x). After solving Eq. (5.9) and simplifying, we obtain the expres-

sion for electric potential as:
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φi(x, z) = φ̄i(x) +

(
(z − z̄i)

hi

)
φ̃i(x) +K i

1θ
′
(x)−K i

2

(
θ
′
(x) + w

′′
0 (x)

)
(5.10)

where

K i
1 =

ẽi31
ϵ̃i3

h2
i

8

(
(z − z̄i)

2

(hi/2)2
− 1

)
;

K i
2 =

ẽi31
ϵ̃i3

α
h4
i

64

{(
z

hi/2

)4
−
(

z̄i
hi/2

)4
− 4

[(
z̄i

hi/2

)3
+

(
z̄i

hi/2

)]
(z − z̄i)

(hi/2)

−6

(
z̄i

hi/2

)2
− 1

}
;

φ̄i = (ϕi+1 + ϕi) /2; φ̃i = (ϕi+1 − ϕi) ; z̄i = (zi+1 + zi)/2

From Eq. (5.10), it is clear that the consistent electric potential is of fourth-order

for HSDT. The first two terms of expression (5.10) describe the conventional linear part

in which φ̄i and φ̃i are the mean and difference, respectively, of the top and bottom

surface potentials. The last two terms constitute the induced part of the potential which

plays an important role as it changes the stiffness of the piezoelectric layer. These

quadratic and quartic terms represent the contribution to induced potential by bending

strain and shear strain, respectively. The coefficients of induced potential terms depend

on geometric and material properties of the piezoelectric layer.

The electric field can be obtained from Eq. (5.10) as:

Ei
z(x, z) = −∂φi(x, z)

∂z
=− φ̃i(x)

hi

− ẽi31
ϵ̃i3

[(
z − αz3

)
− z̄i
(
1− αK i

3

)]
θ
′
(x)

− ẽi31
ϵ̃i3

(
−αz3 + αz̄iK

i
3

)
w

′′
0 (x) (5.11)

where

K i
3 =

h2
i

4

[(
z̄i

hi/2

)2
+ 1

]
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5.4 Variational Formulation

Hamilton’s principle is used to formulate the smart beam. It is expressed as (Chee et al.,

1999):

δ

∫ t2

t1

(K −H +W ) dt =

∫ t2

t1

(δK − δH + δW ) dt = 0 (5.12)

where K is the kinetic energy, H is the electric enthalpy density function for the piezo-

electric material and the mechanical strain energy for the linear elastic material and W

is the work done by the external forces.

5.4.1 Variation of electromechanical/strain energy

For the jth conventional material layer, the variation of mechanical strain energy δH is

given by:

δHj =

∫

V

(
σj
xδε

j
x + τ jxzδγ

j
xz

)
dV (5.13)

The variation of electromechanical energy for the ith piezoelectric layer is given by:

δHi =

∫

V

(
σi
xδε

i
x + τ ixzδγ

i
xz −Di

zδE
i
z

)
dV (5.14)

Substituting values of axial strain (εx), shear strain (γxz), transverse electric field

(Ez) from Eqs. (5.3), (5.4), (5.11) and using them along with constitutive relations

from (5.6) in Eqs. (5.13) and (5.14), variation on total electromechanical/strain energy

of beam can be written as:

∫ t2

t1

δHdt =

∫ t2

t1

∫

x





δu
′
0




(Q̃k
11I

k
0 )u

′
0+[

Q̃k
11(I

k
1 − αIk3 ) +

(ẽi31)
2

ϵ̃i3
(I i1 − αI i3 − I i0z̄i (1− αK i

3))
]
θ
′

−
[
Q̃k

11αI
k
3 +

(ẽi31)
2

ϵ̃i3
α (I i3 − I i0z̄iK

i
3)
]
w

′′
0

+(ẽi31I
i
0/hi) φ̃i




+
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δθ
′




[
Q̃k

11(I
k
1 − αIk3 ) +

(ẽi31)
2

ϵ̃i3
(I i1 − αI i3 − I i0z̄i (1− αK i

3))
]
u

′
0

+


 Q̃k

11(I
k
2 − 2αIk4 + α2Ik6 )+

(ẽi31)
2

ϵ̃i3

[
I i2 − 2αI i4 + α2I i6 − I i0 (z̄i − αz̄iK

i
3)

2
]

 θ

′

−


 Q̃k

11(αI
k
4 − α2Ik6 )

+
(ẽi31)

2

ϵ̃i3
[αI i4 − α2I i6 − I i0αz̄

2
iK

i
3 (1− αK i

3)]


w

′′
0

+(ẽi31I
i
0 (z̄i − αz̄iK

i
3) /hi) φ̃i




+

δw
′′
0




−
[
Q̃k

11αI
k
3 +

(ẽi31)
2

ϵ̃i3
α (I i3 − I i0z̄iK

i
3)
]
u

′
0−

 Q̃k
11(αI

k
4 − α2Ik6 )

+
(ẽi31)

2

ϵ̃i3
[αI i4 − α2I i6 − I i0αz̄

2
iK

i
3 (1− αK i

3)]


 θ

′

+
[
Q̃k

11α
2Ik6 +

(ẽi31)
2

ϵ̃i3
α2 (I i6 − I i0z̄

2
iK

i2
3 )
]
w

′′
0

− (ẽi31αI
i
0z̄iK

i
3/hi) φ̃i




+

δθ
(
Q̃k

55(I
k
0 − 2βIk2 + β2Ik4 )

)
(θ + w

′
0)+

δw
′
0

(
Q̃k

55(I
k
0 − 2βIk2 + β2Ik4 )

)
(θ + w

′
0)+

δφ̃i


(ẽ

i
31I

i
0/hi) u

′
0 + (ẽi31I

i
0 (z̄i − αz̄iK

i
3) /hi) θ

′

− (ẽi31αI
i
0z̄iK

i
3/hi)w

′′
0 − (ϵ̃i3I

i
0/h

2
i )φ̃i





 dxdt (5.15)

where i=(1.....number of piezolayers), k=(1......total number of layers); β = 4/h2 and

Ikq = b(zq+1
k+1− zq+1

k )/(q+1). From Eq. (5.15), it is clear that induced potential changes

the stiffness of the structure.

5.4.2 Variation of kinetic energy

The electrical variables do not enter into the expression for kinetic energy and it is given

as (Chee et al., 1999):

K =
1

2
b

∫

x

∫ zk+1

zk

ρk
(
u̇2 + ẇ2

)
dzdx (5.16)

where ρk is mass density of kth layer in kgm−3 and (k=1....total number of layers in

beam). Substituting values of u and w from Eqs. (5.1) and (5.2) and applying variation
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to get:

−
∫ t2

t1

δKdt =ρk

∫ t2

t1

∫

x

{
δu0

(
Ik0 ü0 + (Ik1 − αIk3 )θ̈ − αIk3 ẅ

′
0

)
+

δθ


(I

k
1 − αIk3 )ü0 + (Ik2 − 2αIk4 + α2Ik6 )θ̈

−(αIk4 − α2Ik6 )ẅ
′
0


+

δw
′
0

(
−αIk3 ü0 − (αIk4 − α2Ik6 )θ̈ + α2Ik6 ẅ

′
0

)
+

δw0

(
Ik0 ẅ0

)}
dxdt (5.17)

where, (̇) denotes ∂
∂t

.

5.4.3 Variation of the work of external forces

The total virtual work on the structure can be defined as the product of the virtual

displacements with forces for the mechanical work and the product of the virtual electric

potential with the charges for the electrical work. The variation of the total work done

by the external mechanical and electrical loading is given as (Chee et al., 1999):

∫ t2

t1

δWdt =

∫ t2

t1

{∫

V

(δuf v
u + δwf v

w)dV +

∫

S

(δuf s
u + δwf s

w)dS

+
∑

(δuf c
u + δwf c

w)−
∫

Sφ

δφq0dSφ

}
dt (5.18)

in which f v,f s,f c are volume, surface, point forces, respectively; q0 and Sφ are the

surface charges and area on which charge is applied.

5.5 Derivation of Coupled Field Relations

For static condition without any external loading, the variational principle given in Eq.

(5.12) reduces to:

δH = 0 (5.19)
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Applying variation to the basic variables in Eq. (5.15) and using them in Eq. (5.19), we

get the static equilibrium equations as:

δu0 :




(Q̃k
11I

k
0 )u

′′
0+[

Q̃k
11(I

k
1 − αIk3 ) +

(ẽi31)
2

ϵ̃i3
(I i1 − αI i3 − I i0z̄i (1− αK i

3))
]
θ
′′

−
[
Q̃k

11αI
k
3 +

(ẽi31)
2

ϵ̃i3
α (I i3 − I i0z̄iK

i
3)
]
w

′′′
0

+(ẽi31I
i
0/hi) φ̃

′
i




= 0 (5.20)

δθ :




−
[
Q̃k

11(I
k
1 − αIk3 ) +

(ẽi31)
2

ϵ̃i3
(I i1 − αI i3 − I i0z̄i (1− αK i

3))
]
u

′′
0

−


 Q̃k

11(I
k
2 − 2αIk4 + α2Ik6 )+

(ẽi31)
2

ϵ̃i3

[
I i2 − 2αI i4 + α2I i6 − I i0 (z̄i − αz̄iK

i
3)

2
]

 θ

′′

+
[
Q̃k

11(αI
k
4 − α2Ik6 ) +

(ẽi31)
2

ϵ̃i3
(αI i4 − α2I i6 − I i0αz̄

2
iK

i
3 (1− αK i

3))
]
w

′′′
0

+
(
Q̃k

55(I
k
0 − 2βIk2 + β2Ik4 )

)
(θ + w

′
0)

− (ẽi31I
i
0 (z̄i − αz̄iK

i
3) /hi) φ̃

′
i




= 0

(5.21)

δw0 :




−
[
Q̃k

11αI
k
3 +

(ẽi31)
2

ϵ̃i3
α (I i3 − I i0z̄iK

i
3)
]
u

′′′
0 −[

Q̃k
11(αI

k
4 − α2Ik6 ) +

(ẽi31)
2

ϵ̃i3
(αI i4 − α2I i6 − I i0αz̄

2
iK

i
3 (1− αK i

3))
]
θ
′′′

+
[
Q̃k

11α
2Ik6 +

(ẽi31)
2

ϵ̃i3
α2 (I i6 − I i0z̄

2
iK

i2
3 )
]
w

′′′′
0

−
(
Q̃k

55(I
k
0 − 2βIk2 + β2Ik4 )

)
(θ

′
+ w

′′
0 )

− (ẽi31αI
i
0z̄iK

i
3/hi) φ̃

′′
i




= 0

(5.22)

These equations can be written in simplified form as:

δu0 : Au
1u

′′
0 + Au

2θ
′′
+ Au

3w
′′′
0 + Aui

4 φ̃
′
i = 0 (5.23)

δθ : Aθ
1u

′′
0 + Aθ

2θ
′′
+ Aθ

3w
′′′
0 + Aθ

4(θ + w
′
0) + Aθi

5 φ̃
′
i = 0 (5.24)

δw0 : Aw
1 u

′′′
0 + Aw

2 θ
′′′
+ Aw

3 w
′′′′
0 + Aw

4 (θ
′
+ w

′′
0 ) + Awi

5 φ̃
′′
i = 0 (5.25)
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From equation (5.25), neglecting higher order terms, we can write:

θ
′′
= −w

′′′
0 (5.26)

Using Eqs. (5.23) and (5.26), the relation between axial displacement (u0), trans-

verse displacement (w0) and electric potential (φi) is derived as:

u
′′
0 = λ1w

′′′
0 + λi

2φ̃
′
i (5.27)

where λ1 = (Au
2 − Au

3)/A
u
1 and λi

2 = −Aui
4 /A

u
1 .

Using Eqs. (5.23), (5.24) and (5.26), we can write the relation between section

rotation (θ), transverse displacement (w0) and electric potential (φi) as:

θ = −w
′
0 + λ3w

′′′
0 + λi

4φ̃
′
i (5.28)

where

λ3 =
Au

3 − Au
2

Au
1

Aθ
1

Aθ
4

+
Aθ

2 − Aθ
3

Aθ
4

λi
4 =

Aui
4

Au
1

Aθ
1

Aθ
4

− Aθi
5

Aθ
4

From Eqs. (5.27) and (5.28), it is clear that the constants λm (m=1,2,3,4) depends

on geometric and material properties of the beam and these constants relates all the

field variables by properly accommodating bending-extension, bending-shear and in-

duced potential couplings. These expressions are used in next section to derive coupled

polynomial expressions for the field variables.

5.6 Finite Element Formulation

Using the variational formulation described above, a finite element model is developed

here. The model consists of three mechanical variables (u0, w0 and θ) and layerwise

electrical variables (φ̃i) where (i=1.....number of piezoelectric layers in the beam).

In terms of natural coordinate (ξ), a cubic polynomial for transverse displacement
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(w0) and linear polynomials for electric potentials (φ̃i) are assumed as given in Eqs.

(5.29a) and (5.29b), respectively. The transformation between coordinate ξ and global

coordinate (x) along the length of the beam is given as ξ = [2(x− x1)/(x2 − x1)] − 1

and x2 − x1 = l, length of the beam element.

w0 = b0 + b1ξ + b2ξ
2 + b3ξ

3 (5.29a)

φ̃i = ci0 + ci1ξ (5.29b)

Using these polynomials for w0 and φ̃i in Eq. (5.27), and integrating with respect to

ξ, we get the coupled polynomial for midplane axial displacement (u0) as:

u0 = [(6λ1/l)b3 + (λi
2l/4)c

i
1]ξ

2 + a1ξ + a0 (5.30)

Using Eqs. (5.29a) and (5.29b) in Eq. (5.28), the coupled polynomial for section

rotation (θ) is obtained as:

θ = −b1(2/l)− b2(2ξ(2/l))− b3
(
3ξ2(2/l)− 6λ3(2/l)

3
)
+ ci1(λ

i
4(2/l)) (5.31)

It is noteworthy that the coefficients λi (i=1,2,3,4) present in Eqs. (5.30) and (5.31)

takes care of bending-shear, bending-extension and induced potential couplings in a

variationally consistent manner.

Using Eq. (5.4), the shear strain field (at midplane) is derived as:

γxz(x, 0) = θ + w
′
0 = b3(6λ3(2/l)

3) + ci1(λ
i
4(2/l)) (5.32)

The above variationally consistent shear strain field is constant over the element.

Also, it does not lead to any spurious constraints in the thin limits, as the coefficients λ3

and λ4 tend to vanish as beam thickness approaches zero. Hence no shear locking shall

be experienced.

Using Eqs. (5.29a), (5.29b), (5.30) and (5.31) the coupled shape functions in Eq.
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(5.33) are derived by usual method.





u0

w0

θ

φ̃i





=




Nu
1 Nu

2 Nu
3 Nui

4 Nu
5 Nu

6 Nu
7 Nui

8

0 Nw
1 Nw

2 Nwi
3 0 Nw

4 Nw
5 Nwi

6

0 N θ
1 N θ

2 N θi
3 0 N θ

4 N θ
5 N θi

6

0 0 0 Nφi
1 0 0 0 Nφi

2








u1
0

w1
0

θ1

φ̃1
i

u2
0

w2
0

θ2

φ̃2
i





(5.33)

The expressions for these shape functions in natural coordinate system are:

Nu
1 =

(1− ξ)

2
; Nu

2 =
3λ1l

24λ3 − 2l2
(1− ξ2);

Nu
3 =

3λ1l
2

48λ3 − 4l2
(ξ2 − 1); Nui

4 =
λi
2l

3 + 12l(λ1λ
i
4 − λi

2λ3)

96λ3 − 8l2
(ξ2 − 1);

Nu
5 =

(1 + ξ)

2
Nu

6 =
3λ1l

24λ3 − 2l2
(ξ2 − 1);

Nu
7 =

3λ1l
2

48λ3 − 4l2
(ξ2 − 1); Nui

8 =
λi
2l

3 + 12l(λ1λ
i
4 − λi

2λ3)

96λ3 − 8l2
(1− ξ2);

Nw
1 =

1

2
− l2ξ3 + ξ(24λ3 − 3l2)

48λ3 − 4l2
; Nw

2 = (ξ2 − 1)

[
l

8
+

l3ξ

96λ3 − 8l2

]
;

Nwi
3 = (ξ2 − 1)

λi
4l

2ξ

48λ3 − 4l2
; Nw

4 =
1

2
+

l2ξ3 + ξ(24λ3 − 3l2)

48λ3 − 4l2
;

Nw
5 = (1− ξ2)

[
l

8
− l3ξ

96λ3 − 8l2

]
; Nwi

6 = (1− ξ2)
λi
4l

2ξ

48λ3 − 4l2

N θ
1 =

3l

24λ3 − 2l2
(ξ2 − 1); N θ

2 =
24λ3 + l2(1− 3ξ2)

48λ3 − 4l2
− ξ

2
;

N θi
3 =

3λi
4l

24λ3 − 2l2
(1− ξ2); N θ

4 =
3l

24λ3 − 2l2
(1− ξ2);

N θ
5 =

24λ3 + l2(1− 3ξ2)

48λ3 − 4l2
+

ξ

2
; N θi

6 =
3λi

4l

24λ3 − 2l2
(ξ2 − 1);

Nφi
1 =

(1− ξ)

2
; Nφi

2 =
(1 + ξ)

2
;
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As noted from Eq. (5.33), the present formulation uses only three mechanical degrees of

freedom i.e. {u0, w0, θ}, while the conventional HSDT based formulations uses four eg.

Peng et al. (1998) and Elshafei and Alraiess (2013) uses {u0, w0, w
′
0, θ} and Chee et al.

(1999) uses {u0, w0, w
′
0, γ0}. The present formulation saves one nodal degree of free-

dom without affecting the applicability of the element because all the three engineering

degrees of freedom corresponding to axial force, shear force and bending moment are

retained.

Now, the variation on the basic mechanical and electrical variables can be trans-

ferred to nodal degrees of freedom. Substituting Eq. (5.33) in Eqs. (5.15), (5.17), (5.18)

and using equation (5.12), we get the descretized form of finite element equations as:



[
M
]

0

0 0





{
Ü
}
{
Φ̈
}

+



[
Kuu

] [
Kuφ

]
[
Kφu

] [
Kφφ

]




{
U
}
{
Φ
}

 =



{
F
}
{
Q
}

 (5.34)

where M is the mass matrix. Kuu, Kuφ, Kφu, Kφφ are the global stiffness sub-matrices.

U , Φ are the global mechanical and electrical nodal degrees of freedom vectors, re-

spectively. F and Q are global mechanical and electrical nodal force vectors, respec-

tively. These matrix equations now can be solved according to the electrical conditions

(closed/open circuit) and mode of operation (actuation/sensing) for static/dynamic anal-

yses.

5.7 Numerical Examples and Discussions

The proposed formulation is validated here for accuracy and efficiency in static (actu-

ation and sensing) and modal analyses (open and closed circuit) of piezoelectric smart

beams. The software implementation has been carried out in MATLAB environment.

The performance of the present formulation is compared against the conventional two-

noded HSDT formulations available in the literature and 2D finite element simulation

using ANSYS software. The finite element formulations used for the comparative study

are designated here as:

HSDT-Coupled : The present formulation which uses coupled polynomials (

cubic for w0 given by Eq. (5.29a), coupled quadratic for u0 given by Eq. (5.30),
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coupled quadratic for θ given by Eq. (5.31) and linear for φ̃i given by Eq. (5.29b)

) for interpolation of field variables and layerwise consistent through-thickness

potential ( coupled quartic approximation in z direction given by Eq. (5.10) ).

This formulation is expected to be free from piezolocking and material locking.

The element has three mechanical nodal degrees of freedom: u0, w0, θ and i

electrical nodal degrees of freedom: φ̃i (i=1....number of piezoelectric layers). It

does not employ any sublayers within the piezoelectric layer, for modelling.

HSDT-1 : The conventional HSDT formulation of Elshafei and Alraiess (2013)

which uses independent polynomials for field interpolation ( linear for u0, θ and

φ̃i, Hermite cubic for w0 ) and assumed linear through-thickness potential. This

element suffers from piezolocking and material locking. The element has four

mechanical nodal degrees of freedom: u0, w0, w
′
0, θ and i electrical nodal degrees

of freedom: φ̃i (i=1....number of piezoelectric layers).

HSDT-2 : The modified form of conventional HSDT formulation (Chee et al.,

1999) which uses shear angle (γ0) as a nodal variable instead of section rotation

(θ). This formulation uses independent polynomials for field interpolation ( linear

for u0,γ0 and φ̃i, Hermite cubic for w0 ) and assumed linear through-thickness

potential. This element suffers from piezolocking and material locking. The

element has four mechanical nodal degrees of freedom: u0, w0, w
′
0, γ0 and i

electrical nodal degrees of freedom: φ̃i (i=1....number of piezoelectric layers).

Though both HSDT-1 and HSDT-2 converges to same results, HSDT-2 has better

convergence characteristic than HSDT-1.

HSDT-1 (with sublayers) and HSDT-2 (with sublayers) : The piezolocking

in the above HSDT-1 and HSDT-2 models may be eliminated by using a suffi-

cient number of sublayers for modelling each piezoelectric layer. The through-

thickness distribution of potential in each piezolayer is represented by sublayer-

wise linear approximations. In these sublayered versions of conventional HSDT

beam elements, we have used five sublayers per physical piezoelectric layer,

which are found adequate to yield reasonably accurate results. However, each

sublayer would introduce an additional nodal electric potential degree of freedom

and hence these elements are computationally expensive.

ANSYS 2D : For a comparative evaluation of the above HSDT formulations,
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Figure 5.2: Example 1: Geometry of the three-layer cantilever beam with sym-

metrically bonded oppositely poled piezoelectric layers in exten-

sion mode.

benchmark solutions have been obtained from a refined 2-dimensional analy-

sis using ANSYS finite element software (ANSYS-Release12, 2009), for which

PLANE 183 elements are used to mesh conventional material layers, while PLANE

223 elements are used to mesh piezoelectric material layers.

5.7.1 Example 1: A three-layer symmetric piezoelectric beam

The example chosen here is an aluminum core with surface bonded oppositely poled

piezoelectric layers of G1195N material, as shown in Fig. 5.2. The material properties

of the beam are:

Aluminum (Kapuria and Hagedorn, 2007): E = 70.3GPa, ν = 0.345, ρ = 2710 kgm−3

G1195N (Peng et al., 1998): E = 63 GPa, ν = 0.3, d31 = 254 × 10−12 mV −1,

ϵ3 = 15× 10−9 Fm−1, ρ = 7600 kgm−3

This example is expected to show the improvement in terms of accuracy and efficiency

of the present HSDT-Coupled formulation over the conventional HSDT formulations.

To study the performance of HSDT-based smart beam formulations over a wide range of

piezoelectric material proportion in total thickness (Thickness ratio: r = (2hp)/h), the

length (L) and total height (h) are taken as constant with values 100 mm and 10 mm,

respectively while the thicknesses of piezoelectric layer (hp) and aluminum layer (hal)

are varied. For a comparative evaluation of the various HSDT formulations, converged

results from ANSYS 2D analysis with a refined mesh size of 100× 40 are used.
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Figure 5.3: Example 1: Actuator configuration: Variation of the tip deflection

with thickness ratio (r) for the three-layer cantilever beam actuated

by ±10 volts.

Static analysis: Actuator configuration

For actuator configuration, the interfaces of piezoelectric layers with aluminum are

grounded and potentials of ±10 volts are applied on the free surface of the piezoelectric

layers. The variation of tip deflection over a wide range of thickness ratio is plotted in

Fig. 5.3. It is evident that the present HSDT-Coupled formulation gives accurate results

as that of ANSYS 2D simulation. In the higher thickness ratio regimes, the both con-

ventional HSDT-1 and HSDT-2 formulations converge to same inaccurate results, due

to piezolocking effect. They demand sublayered modelling to achieve the same level

of accuracy as of the present formulation. The results clearly show the advantage of

HSDT-Coupled formulation, to efficiently handle the piezolocking effects.

The variation of error (%) in the tip deflection due to use of conventional HSDT

formulations, with thickness ratio is plotted in Fig. 5.4. As the proportion of piezoelec-

tric material in the beam increases, the error due to the linear assumption of through-

thickness potential becomes significant. For both HSDT-1 and HSDT-2 formulations,

the maximum difference is observed for a beam of pure piezoelectric material i.e. a bi-

morph configuration. Hence, the bimorph shown in Fig. 5.5 is considered for a detailed

study of the induced potential effects.
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Figure 5.4: Example 1: Actuator configuration: Variation of error (%) in the

tip deflection with thickness ratio (r), due to use of the conventional

HSDT-1/2 formulations for the three-layer cantilever beam actuated

by ±10 volts.

Figure 5.5: Example 1: Bimorph cantilever beam in the actuator configuration.
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Table 5.1: Example 1: Actuator configuration: Tip deflection of the bimorph

cantilever beam actuated by ±10 volts ( h = 10mm, L = 100mm).

Formulations Tip deflection (µm)

HSDT-1/2 0.762

HSDT-1/2 (with sublayers)

2 sublayers/layer 0.725

3 sublayers/layer 0.719

4 sublayers/layer 0.716

5 sublayers/layer 0.715

ANSYS 2D 0.714

HSDT-Coupled 0.713

Table 5.1 shows the results for the tip deflection of the bimorph for various numbers

of sublayers in the modelling with HSDT-1 and HSDT-2 formulations. Both the formu-

lations converge to the same results. As seen from results, only with a sufficient number

of sublayers in the modelling of piezoelectric layers, the HSDT-1 and HSDT-2 formu-

lations converge to the accurate values as predicted by HSDT-Coupled and ANSYS 2D

simulation.

Also, the comparison of results for transverse deflection along the length, through-

thickness distributions of potential and axial stress for bimorph are plotted in Figs. 5.6,

5.7 and 5.8, respectively. The conventional HSDT-1 (Elshafei and Alraiess, 2013) and

HSDT-2 (Chee et al., 1999) formulations suffer from loss of accuracy due to piezolock-

ing. The results prove the ability of HSDT-Coupled to model the piezoelectric beam

accurately as of ANSYS 2D and sublayered HSDT.

Static analysis: Sensor configuration

For sensor configuration, the three-layer cantilever beam shown in Fig. 5.2 is subjected

to a tip load of −1000 N . The results for tip deflection and potential developed at mid-

span are plotted in Figs. 5.9 and 5.10, for various thickness ratios. From these plots, it is

clear that present HSDT-Coupled formulation is able to yield accurate results as that of

ANSYS 2D simulation over the entire range of thickness ratio. The conventional HSDT
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Figure 5.6: Example 1: Actuator configuration: Transverse deflection along the

length of the bimorph cantilever beam actuated by ±10 volts.
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Figure 5.7: Example 1: Actuator configuration: Through-thickness potential

distribution in the bimorph cantilever beam actuated by ±10 volts.
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Figure 5.8: Example 1: Actuator configuration: Through-thickness axial stress

distribution in the bimorph cantilever beam actuated by ±10 volts.

formulations (Elshafei and Alraiess, 2013; Chee et al., 1999) suffer form piezolocking

and do not maintain the accuracy consistently. They demand sublayered modelling to

achieve same accuracy as that of HSDT-Coupled. The inaccuracy due to piezolocking is

quantified in the error (%) plotted in Fig. 5.11. The variation of error (%) with thickness

ratio shows that as we move from a beam of purely conventional material to a purely

piezoelectric material beam i.e. bimorph, the error in the results increases significantly.

Hence, the bimorph structure shown in Fig. 5.12 is considered here for detailed study

of the induced potential effects.

Table 5.2 shows the results for tip deflection and potential developed across each

piezoelectric layer at the mid-span of the bimorph, for different number of sublayers

in the modelling with the conventional HSDT-1/2 formulations (Elshafei and Alraiess,

2013; Chee et al., 1999). As seen from results, only with sufficient number of sublay-

ers in the modelling of piezoelectric layers, the conventional HSDT-1/2 formulations

converge to the accurate results as predicted by HSDT-Coupled and ANSYS 2D simu-

lation.

Also, the results for transverse deflection along the length, potential developed

across each layer along the length, through-thickness potential at the mid-span of the

bimorph are plotted in Figs. 5.13, 5.14 and 5.15, respectively. It is evident from the fig-

ures that results of the present HSDT-Coupled formulation closely match with 2D sim-

118



0 0.2 0.4 0.6 0.8 1
−58

−57

−56

−55

−54

−53

−52

−51

−50

T
ip

 d
ef

le
ct

io
n 

(µ
m

)

Thickness ratio (r)
 

 

HSDT−Coupled
HSDT−1/2
HSDT−1/2 (with sublayers)
ANSYS 2D

Figure 5.9: Example 1: Sensor configuration: Variation of the tip deflection

with thickness ratio (r) for the three-layer cantilever beam sub-

jected to a tip load of −1000 N .

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Thickness ratio (r)

Po
te

nt
ia

l d
ev

el
op

ed
 (v

ol
ts

)

 

 

HSDT−Coupled
HSDT−1/2
HSDT−1/2 (with sublayers)
ANSYS 2D

Figure 5.10: Example 1: Sensor configuration: Variation of the potential devel-

oped across each piezoelectric layer at the mid-span with thick-

ness ratio (r) for the three-layer cantilever beam subjected to a tip

load of −1000 N .
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Figure 5.11: Example 1: Sensor configuration: Variation of error (%) in the tip

deflection and the potential developed with thickness ratio (r), due

to use of the conventional HSDT-1/2 formulations for the three-

layer cantilever beam subjected to a tip load of −1000 N .

Figure 5.12: Example 1: Bimorph cantilever beam in the sensor configuration.

120



ulation, while conventional HSDT-1/2 formulations (Elshafei and Alraiess, 2013; Chee

et al., 1999) need sublayered models to eliminate loss of accuracy due to piezolocking.

The axial stress distribution at the root of the bimorph is plotted in Fig. 5.16. As

seen from the stress plot, the conventional HSDT-1/2 formulations under-predict the

maximum value of stress developed and show discontinuity at the interface, which can

be improved by the addition of sublayers in the models. The shear stress distribution

across the thickness of the beam is plotted in Fig. 5.17. It is clear that the effect of the

induced potential on the shear stress distribution is insignificant and hence the results

from all the formulations considered are in good agreement.

Table 5.2: Example 1: Sensor configuration: Tip deflection and potential de-

veloped at the mid-span of the bimorph cantilever beam subjected to

a tip load of −1000 N (h = 10 mm, L = 100 mm).

Formulation Tip deflection Potential

(µm) (volts)

HSDT-1/2 -53.3 105.55

HSDT-1/2 (with sublayers)

2 sublayers/layer -51.1 101.23

3 sublayers/layer -50.7 100.52

4 sublayers/layer -50.6 100.25

5 sublayers/layer -50.6 100.13

ANSYS 2D -50.5 99.92

HSDT-Coupled -50.5 99.92

Figs. 5.18 and 5.19 show the comparison of convergence characteristics of HSDT-

based piezoelectric beam finite element formulations, for the tip deflection and potential

developed at the root of the bimorph, respectively. It is noteworthy that HSDT-Coupled

shows single-element convergence, closely reproducing the ANSYS-2D solutions for

both the tip deflection and the potential developed. As evident from these figures,

HSDT-1 (Elshafei and Alraiess, 2013) and HSDT-1 (with sublayers) models show a

similar pattern of slow convergence. However, the HSDT-2 and HSDT-2 (with sublay-

ers) models based on formulation of Chee et al. (1999) show improvement, exhibiting
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Figure 5.13: Example 1: Sensor configuration: Transverse deflection along the

length of the bimorph cantilever beam subjected to a tip load of

−1000 N .
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Figure 5.14: Example 1: Sensor configuration: Potential developed across

each piezoelectric layer along the length of the bimorph cantilever

beam subjected to a tip load of −1000 N .
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Figure 5.15: Example 1: Sensor configuration: Through-thickness potential

distribution at the mid-span of the bimorph cantilever beam sub-

jected to a tip load of −1000 N .
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Figure 5.16: Example 1: Sensor configuration: Through-thickness axial stress

distribution at the root of the bimorph cantilever beam subjected

to a tip load of −1000 N .
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Figure 5.17: Example 1: Sensor configuration: Through-thickness shear stress

distribution in the bimorph cantilever beam subjected to a tip load

of −1000 N .

single element convergence. It is observed that the sublayered versions of HSDT-1/2

models eventually converge to the accurate results. However, the conventional HSDT-

1/2 models (Elshafei and Alraiess, 2013; Chee et al., 1999) overestimate the response

and converge to inaccurate results, due to piezolocking effects. This example clearly

reveals the role of the coupled polynomial interpolation in improving the accuracy and

efficiency of the HSDT-Coupled formulation.

Modal analysis

The present formulation is validated here for accuracy and efficiency to predict natural

frequencies of the smart cantilever shown in Fig. 5.2. The natural frequencies are eval-

uated for closed and open circuit electrical boundary conditions. For open circuit, only

the interfaces of piezoelectric layers with aluminum core are grounded while, for closed

circuit all the faces of piezoelectric layers are grounded. The variations of first natural

frequencies in open and closed circuit electrical boundary conditions, with thickness ra-

tio are plotted in Figs. 5.20 and 5.21, respectively. As seen from the figures, the present

HSDT-Coupled predicts the accurate results as given by ANSYS 2D simulation over

the entire range of thickness ratio. The conventional HSDT-1/2 formulations (Elshafei

and Alraiess, 2013; Chee et al., 1999) show significant errors due to piezolocking in
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Figure 5.18: Example 1: Sensor configuration: Convergence characteristics of

the HSDT-based piezoelectric beam finite elements to predict the

tip deflection of the bimorph cantilever beam subjected to a tip

load of −1000 N .
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Figure 5.19: Example 1: Sensor configuration: Convergence characteristics of

the HSDT-based piezoelectric beam finite elements to predict the

potential developed across a piezoelectric layer at the root of the

bimorph cantilever beam subjected to a tip load of −1000 N .
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Figure 5.20: Example 1: Modal analysis: Variation of the first natural fre-

quency with thickness ratio (r) for the three-layer cantilever beam

in open circuit electrical boundary condition.

the higher thickness ratio regimes and require sublayered modelling to achieve accurate

results. The variation of errors (%) with thickness ratio is plotted in Fig. 5.22. As seen

from the error plot, the bimorph configuration shows maximum error.

The results for first five natural frequencies for the bimorph cantilever beam are

tabulated in Table 5.3. As seen from the results the conventional HSDT-1/2 formula-

tions suffer form piezolocking and require a number of sublayers to reproduce accurate

results.

Figs. 5.23 and 5.24 show the comparison of convergence characteristics of HSDT-

based piezoelectric beam finite element formulations to predict the first natural fre-

quency of the bimorph in open and closed circuit conditions, respectively. It is notewor-

thy that HSDT-Coupled shows quick convergence, closely reproducing the ANSYS-2D

solutions for both open and closed circuit conditions. HSDT-1 (Elshafei and Alraiess,

2013) and HSDT-1 (with sublayers) models show a similar pattern of slow convergence.

The HSDT-2 and HSDT-2 (with sublayers) models based on formulation of Chee et al.

(1999) show improved convergence compared to HSDT-1 and HSDT-1 (with sublay-

ers). It is observed that the sublayered versions of HSDT- 1 and HSDT-2 eventually

converge to the accurate results. However, conventional HSDT-1/2 models (Elshafei
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Figure 5.21: Example 1: Modal analysis: Variation of the first natural fre-

quency with thickness ratio (r) for the three-layer cantilever beam

in closed circuit electrical boundary condition.
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Figure 5.22: Example 1: Modal analysis: Variation of error (%) in the first nat-

ural frequency with thickness ratio (r), due to use of the conven-

tional HSDT-1/2 formulations for the three-layer cantilever beam.
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Table 5.3: Example 1: Natural frequencies in Hz for the bimorph cantilever

beam (h = 10 mm, L = 100 mm).

Electrical Mode HSDT-1/2 HSDT-1/2 ANSYS 2D HSDT

Boundary No (with Coupled

condition sublayers)

Open 1st 505.5 519.0 519.8 519.4

Circuit 2nd 3012 3089 3089 3090

3rd 7867 8063 8046 8057

4th 8115 8115 8120 8115

5th 14169 14458 14448 14487

Closed 1st 461.5 476.2 477.2 477.0

Circuit 2nd 2768 2851 2857 2855

3rd 7198 7198 7206 7198

4th 7290 7493 7508 7506

5th 13247 13585 13610 13613
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Figure 5.23: Example 1: Modal analysis: Convergence characteristics of the

HSDT-based piezoelectric beam finite elements to predict the first

natural frequency of the bimorph cantilever beam in open circuit

electrical boundary condition.

and Alraiess, 2013; Chee et al., 1999) underestimate the response and converges to in-

accurate results, due to piezolocking effects. This example clearly reveals the role of

the coupled polynomial interpolation in improving the accuracy and efficiency of the

HSDT-Coupled formulation.

5.7.2 Example 2: A two-layer asymmetric piezoelectric beam

The test problem chosen here is a two-layer asymmetric piezoelectric cantilever beam

having a host layer made up of steel with a surface bonded piezoelectric layer of

G1195N material at the top, as shown in Fig. 5.25. The material properties used are:

Steel (Carrera and Brischetto, 2008): E = 210 GPa, ν = 0.3, ρ = 7850 kgm−3

PZT G1195N (Peng et al., 1998): E = 63 GPa, ν = 0.3, d31 = 254 × 10−12 m/V ,

ϵ3 = 15× 10−9 F/m, ρ = 7600 kgm−3.

This configuration is expected to show, in addition to piezolocking, the adverse ef-

fects of material locking on the convergence of the conventional HSDT piezoelectric

beam finite elements and improved performance of the proposed HSDT-Coupled for-
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Figure 5.24: Example 1: Modal analysis: Convergence characteristics of the

HSDT-based piezoelectric beam finite elements to predict the first

natural frequency of the bimorph cantilever beam in closed circuit

electrical boundary condition.

Figure 5.25: Example 2: Geometry of the two-layer cantilever beam with an

asymmetrically bonded piezoelectric layer in extension mode.
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mulation.

For the present study, the length and total height of the beam are taken as constant

(L = 100 mm, h = 5 mm), while thicknesses of the piezoelectric layer (hp) and the

host layer (hc) are varied. The performances of the HSDT-based piezoelectric beam

finite elements are evaluated over a wide range of piezoelectric material proportion in

the total beam thickness ( thickness ratio: r = hp/h ). For a comparative evaluation of

various HSDT-based formulations, the converged results from ANSYS 2D simulation

with a mesh of 200× 20 elements are used.

Static analysis: Sensor configuration

For sensor configuration, the beam shown in Fig. 5.25 is subjected to a tip load of

−1000 N . The variations of tip deflection, axial deflection and potential developed

across the piezoelectric layer at the root of the beam, with thickness ratio are plotted in

Figs. 5.26, 5.27 and 5.28, respectively.

As seen from these graphs, the present HSDT-Coupled formulation consistently

gives accurate predictions of the results as given by ANSYS 2D simulation, over the

entire range of thickness ratio and proves the versatility of the coupled polynomial based

formulation. Due to the piezolocking effects, the conventional HSDT-1/2 formulations

(Elshafei and Alraiess, 2013; Chee et al., 1999) do not perform consistently accurate.

They demand sublayers in the modelling of piezolayer, to achieve the same consistent

level of accuracy as of the present HSDT-Coupled formulation. The error (%) due to

piezolocking in the conventional HSDT-1/2 formulations is quantified in Fig. 5.29 for

various thickness ratios. It is seen that the error increases rapidly in the higher thickness

ratio regimes.

Figs. 5.30 and 5.31 show the comparison of convergence characteristics of HSDT-

based piezoelectric beam finite element formulations, for the tip deflection and the po-

tential developed at the root, respectively. It is noteworthy that HSDT-Coupled shows

single-element convergence, closely reproducing the ANSYS-2D solutions. Both HSDT-

1 (Elshafei and Alraiess, 2013) and HSDT-1 (with sublayers) models show slow con-

vergence patterns which are similar. It may be noted that HSDT-2 and HSDT-2 (with

sublayers), which showed single element convergence for symmetric beam in the pre-
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Figure 5.26: Example 2: Sensor configuration: Variation of the tip deflection

with thickness ratio (r) for the asymmetric cantilever beam sub-

jected to a tip load of −1000N .
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Figure 5.27: Example 2: Sensor configuration: Variation of the axial deflec-

tion with thickness ratio (r) for the asymmetric cantilever beam

subjected to a tip load of −1000N .
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Figure 5.28: Example 2: Sensor configuration: Variation of the potential de-

veloped across piezoelectric layer at the root with thickness ratio

(r) for the asymmetric cantilever beam subjected to a tip load of

−1000 N .
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Figure 5.29: Example 2: Sensor configuration: Variation of error (%) in results

with thickness ratio (r), due to use of the conventional HSDT-1/2

formulations.
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Figure 5.30: Example 2: Sensor configuration: Convergence characteristics of

the HSDT-based piezoelectric beam finite elements to predict the

tip deflection of the asymmetric cantilever beam (r = 0.5) sub-

jected to a tip load of −1000 N .

vious example (Example 1: Figs. 5.18 and 5.19) failed here for asymmetric beam,

to reproduce the same performance, due to material locking. It is observed that the

sublayered versions of HSDT-1/2 models eventually converges to the accurate results.

However, the conventional HSDT-1/2 models (Elshafei and Alraiess, 2013; Chee et al.,

1999) overestimate the response and converge to inaccurate results, due to piezolocking

effects. This example clearly reveals the efficiency of the present coupled polynomial

interpolation over the conventional independent polynomial interpolations.

The improved performance of the HSDT-Coupled can be attributed to the coupled

polynomial representations of section rotation and axial displacement. The role of the

coupled quadratic term in the axial displacement given by Eq. (5.30), in eliminating

material locking is evident from the Table 5.4, where the results obtained with and

without the coupled quadratic term are tabulated. The results prove the role of the

coupled quadratic term in enabling HSDT-Coupled to yield single element convergence

for the tip deflection and the potential developed. The results of asymmetric beam with

r = 0.5 given in Table 5.4 are normalized with respect to the converged values obtained

from ANSYS 2D simulation, −0.2598 mm for the tip deflection and 376.09 volts for
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Figure 5.31: Example 2: Sensor configuration: Convergence characteristics of

the HSDT-based piezoelectric beam finite elements to predict the

potential developed at the root of the asymmetric cantilever beam

(r = 0.5) subjected to a tip load of −1000 N .

Table 5.4: Example 2: Role of coupled quadratic term in the field interpolation

for axial displacement (Eq. (5.30)) in improving the convergence

characteristics of HSDT-Coupled in static analysis.

Number of Normalized tip Normalized potential

elements deflection developed at root

(with coupled (without coupled (with coupled (without coupled

quadratic term) quadratic term) quadratic term) quadratic term)

1 1.000 0.963 1.000 0.793

2 1.000 0.993 1.000 0.953

4 1.000 0.999 1.000 0.971

8 1.000 1.000 1.000 0.983

16 1.000 1.000 1.000 0.990
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Figure 5.32: Example 2: Actuator configuration: Variation of the tip deflec-

tion with thickness ratio (r) for the asymmetric cantilever beam

actuated by 100 volts.

the potential developed at the root.

Static analysis: Actuator configuration

For actuator configuration, the beam shown in Fig. 5.25 is subjected to a voltage of

100 volts. The variations of tip deflection and axial deflection, with thickness ra-

tio are plotted in Figs. 5.32 and 5.33, respectively. As seen from these graphs, the

present HSDT-Coupled formulation consistently gives accurate predictions of results

as given by ANSYS 2D simulation, over the entire range of thickness ratio. Due to the

piezolocking effects, the conventional HSDT-1/2 formulations (Elshafei and Alraiess,

2013; Chee et al., 1999) do not yield consistently accurate results. They demand sub-

layers in the modelling of piezolayer, to achieve the same consistent level of accuracy

as of the present HSDT-Coupled formulation. The error due to piezolocking in the

conventional HSDT-1/2 formulations is quantified in Fig. 5.34 for various thickness

ratios.
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Figure 5.33: Example 2: Actuator configuration: Variation of the axial deflec-

tion with thickness ratio (r) for the asymmetric cantilever beam

actuated by 100 volts.
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Figure 5.34: Example 2: Actuator configuration: Variation of error (%) in

results with thickness ratio (r), due to use of the conventional

HSDT-1/2 formulations.
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Figure 5.35: Example 2: Modal analysis: Variation of the first natural fre-

quency with thickness ratio (r) for the asymmetric cantilever beam

in open circuit electrical boundary condition.

Modal analysis

The present HSDT-Coupled formulation is evaluated here for its accuracy and efficiency

to predict the natural frequencies of piezoelectric smart beams. The first natural fre-

quency of the asymmetric piezoelectric beam shown in Fig. 5.25 is computed for both

open and closed circuit electrical boundary conditions. For open circuit, only the inter-

face of piezoelectric layer with host layer is grounded while for closed circuit, both faces

of the piezoelectric layer are grounded. The variations of first natural frequencies with

thickness ratio are plotted in Figs. 5.35 and 5.36 for open and closed circuit electrical

boundary conditions, respectively. The results from the present HSDT-Coupled formu-

lation agree very well with the results from ANSYS 2D simulation. This validates the

use of the present coupled polynomial based interpolation displacement fields, to gener-

ate consistent element mass matrix. Due to piezolocking effects which are predominant

in the higher thickness ratio regimes, the results from the conventional HSDT-1/2 for-

mulations (Elshafei and Alraiess, 2013; Chee et al., 1999) significantly deviate from the

accurate results and hence requires sublayered modelling to yield acceptable level of ac-

curacy. The error (%) due to piezolocking in the conventional HSDT-1/2 formulations

is plotted in Fig. 5.37 for various thickness ratios.

The convergence graphs for first natural frequency in both open and closed circuit
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Figure 5.36: Example 2: Modal analysis: Variation of first natural frequency

with thickness ratio (r) for the asymmetric cantilever beam in

closed circuit electrical boundary condition.

0 0.2 0.4 0.6 0.8 1
−12

−10

−8

−6

−4

−2

0

E
rr

or
 in

 fi
rs

t n
at

ur
al

 fr
eq

ue
nc

y 
(%

)

Thickness ratio (r)
 

 

Open circuit
Closed circuit

Figure 5.37: Example 2: Modal analysis: Variation of error (%) in results with

thickness ratio (r), due to use of the conventional HSDT-1/2 for-

mulation.
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Figure 5.38: Example 2: Modal analysis: Convergence characteristics of the

HSDT-based piezoelectric beam finite elements to predict the first

natural frequency of the asymmetric cantilever beam (r = 0.5) in

open circuit electrical boundary condition.

electrical boundary conditions are plotted in Figs. 5.38 and 5.39, respectively. The fig-

ures prove the efficacy of the present coupled polynomial interpolation based element

stiffness matrix and the corresponding consistent element mass matrix in achieving im-

proved convergence of natural frequencies. Both conventional HSDT-1 (Elshafei and

Alraiess, 2013) and HSDT-1 (with sublayers) models show slow and similar conver-

gence patterns. While comparing the performance of HSDT-2 (Chee et al., 1999) and

HSDT-2 (with sublayers) models for symmetric beam case ( Example 1: Figs. 5.23

and 5.24), it may be noted that there is noticeable deterioration of convergence charac-

teristic for the present asymmetric beam. This deterioration is due to the presence of

material locking effects. Also, the conventional HSDT-1/2 formulations (Elshafei and

Alraiess, 2013; Chee et al., 1999) suffer from piezolocking, they require sublayers in

the modelling, to converge to accurate results.

The role of the coupled quadratic term in the axial displacement given by Eq. (5.30),

in eliminating material locking and improving the convergence is evident from the Ta-

ble 5.5, where the results obtained with and without the coupled quadratic term are

tabulated. The results prove the role of the coupled quadratic term in enabling HSDT-
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Table 5.5: Example 2: Role of coupled quadratic term in the field interpolation

for axial displacement (Eq. (5.30)) in improving the convergence

characteristics of HSDT-Coupled in modal analysis.

Number of Normalized natural frequency

elements 1st 2nd 3rd

coupled linear coupled linear coupled linear

Open circuit

1 1.005 1.035 1.665 1.751 2.202 2.208

2 1.000 1.007 1.011 1.067 1.211 1.268

4 1.000 1.001 1.002 1.014 1.012 1.038

8 1.000 1.000 1.000 1.004 1.003 1.011

16 1.000 1.000 1.000 1.001 1.000 1.003

Closed circuit

1 1.005 1.049 1.663 1.793 2.266 2.273

2 1.000 1.011 1.011 1.094 1.255 1.311

4 1.000 1.002 1.002 1.021 1.013 1.057

8 1.000 1.000 1.000 1.005 1.003 1.015

16 1.000 1.000 1.000 1.002 1.000 1.004
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Figure 5.39: Example 2: Modal analysis: Convergence characteristics of the

HSDT-based piezoelectric beam finite elements to predict the first

natural frequency of the asymmetric cantilever beam (r = 0.5) in

closed circuit electrical boundary condition.

Coupled to yield quick convergence for natural frequencies. The results of asymmetric

beam with r = 0.5 given in Table 5.5 are normalized with respect to the converged

values from HSDT-Coupled.

5.8 Summary

A coupled polynomial interpolation scheme for HSDT piezoelectric beam finite element

has been proposed here to enhance its performance by eliminating material locking

and piezolocking phenomena. A consistent interpolation for through-thickness poten-

tial derived from an electrostatic equilibrium equation has been proposed to eliminate

piezolocking. A polynomial expression with a coupled quadratic term has been derived

for axial displacement using the governing equilibrium equations. Similarly, a fully

coupled quadratic polynomial expression has been derived for section rotation of the

beam. The resulting coupled shape functions handle bending-extension coupling and

bending-shear coupling in an efficient manner to eliminate material locking and im-

prove curvature representation. While adopting coupled polynomial interpolation, the
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number of nodal mechanical degrees of freedoms are reduced by one for the present

formulation. The merits of the present formulation over the conventional formulations

have been proved by the comparison of the results for a set of test problems.
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CHAPTER 6

CONCLUSIONS AND SCOPE FOR FUTURE WORK

6.1 Conclusions

This chapter outlines the important conclusions based on the results of study carried out

in this thesis. The conclusions are presented in two categories:

(i) General conclusions pertaining to broad application of coupled polynomial interpo-

lations in the field of displacement based extension mode piezoelectric finite elements.

(ii) Specific conclusions on the application of coupled polynomial interpolations for

ESL extension mode piezoelectric beam elements studied in the chapters 3, 4 and 5.

6.1.1 General conclusions

• Coupled polynomial scheme facilitates use of additional higher-order consistent

terms in the interpolation of the field variables. As the generalized coefficients

associated with the higher-order terms are shared ones, they have far less total

number of generalized coefficients compared to the independent polynomials of

same order. Thus the coupled fields can be utilized to develop simple elements of

improved efficiency and with lesser number of degrees of freedom.

• By properly incorporating the couplings in the polynomial description of field

variables, the sensitiveness of the element performance to the geometric and ma-

terial variations can be eliminated. This leads to finite elements which can per-

form consistently over a wide range of geometric and material parameter varia-

tions.

• The use of coupled polynomial fields significantly improves the convergence

characteristics and accuracy of the present coupled piezoelectric element com-

pared to their conventional counterparts.



• By making the best use of available generalized coefficients (and hence the ele-

ment degrees of freedom) by the way of coupled coefficients in the field interpo-

lations, the coupled displacement field elements prove to be the best cost effective

compromise between complex higher-order elements and simple low-order ele-

ments based on the independent polynomial interpolations.

6.1.2 Specific conclusions

• The effect of induced potential coupling has been established which affects the

accuracy of the piezoelectric beam finite elements. The loss of accuracy due to in-

duced potential coupling is significant when the piezoelectric material dominates

the beam cross-section.

• The use of a consistent field approximation for through-thickness electric poten-

tial makes the beam element capable of dealing with these accuracy loss due to

piezolocking. The induced potential effects have been accommodated through

higher-order terms coupled with the curvature strain in the description of the con-

sistent electric potential. The versatility of the present coupled polynomial based

EBT, FSDT, HSDT formulations is noteworthy, which yield accurate results irre-

spective of the piezoelectric material proportion of the beam cross-section.

• The present formulations with coupled consistent potential eliminate the require-

ment of sublayers in the mathematical modelling of piezolayers, for yielding ac-

curate results.

• By properly incorporating the bending-extension coupling at the field interpo-

lation of axial displacement, the piezoelectric beam element is rendered free of

material locking. Hence the ESL EBT, FSDT and HSDT piezoelectric elements

can be efficiently used for materially asymmetric beams.

• By properly incorporating the bending-shear coupling at the field interpolation of

section rotation, the FSDT piezoelectric beam element is rendered free of shear

locking. Hence the FSDT-Coupled piezoelectric elements can be efficiently used

over a wide range of beam thickness regimes.

• The use of coupled quadratic polynomial for section rotation in FSDT and HSDT
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based formulations has enhanced the convergence by improved representation of

curvature strain.

• In the proposed EBT-Coupled and FSDT-Coupled piezoelectric beam elements,

the number and type of the nodal degrees of freedoms are preserved as of the

conventional elements. The use of coupled polynomials have reduced the number

of mechanical nodal degrees of freedom from four for the conventional HSDT to

three for the proposed HSDT-Coupled, without affecting the applicability.

• The proposed coupled polynomial interpolation based piezoelectric elements are

able to maintain the same level of accuracy and convergence characteristics over

the entire range of material properties and geometric configuration of the piezo-

electric beams.

In a nutshell, the proposed coupled polynomial based interpolation scheme proves

to be the most accurate and efficient way to reduce a refined 2D piezoelectric finite

element model to a truly 1D piezoelectric beam element model.

6.2 Scope for Future Work

• Extension of above methodologies to the development of efficient and accurate

piezoelectric plate finite elements.

• Development of coupled polynomial based beam finite elements for the shear

mode beams.
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APPENDIX A

REDUCED CONSTITUTIVE RELATIONS

A piezoelectric material with isotropic/specially orthotropic properties is considered

here. It has axes of material symmetry parallel to the beam axes, in which an electric

field is applied in the transverse (z) direction. The elastic, piezoelectric and dielectric

material constants are denoted by Cij , ekj (i, j = 1, ..., 6) and ϵk (k = 1, 2, 3), respec-

tively. For extension mode of operation, the transversely poled piezoelectric material

is bonded/embedded in the host structure. The coupled constitutive equation for such a

material is given as (Ikeda, 1996):




σx

σy

σz

τyz

τxz

τxy

Dx

Dy

Dz




=




C11 C12 C13 0 0 0 0 0 −e31

C12 C22 C23 0 0 0 0 0 −e32

C13 C23 C33 0 0 0 0 0 −e33

0 0 0 C44 0 0 0 −e24 0

0 0 0 0 C55 0 −e15 0 0

0 0 0 0 0 C66 0 0 0

0 0 0 0 e15 0 ϵ1 0 0

0 0 0 e24 0 0 0 ϵ2 0

e31 e32 e33 0 0 0 0 0 ϵ3







εx

εy

εz

γyz

γxz

γxy

Ex

Ey

Ez




(A.1)

in which σ, τ , ε, γ, D and E denote normal stress (N/m2), shear stress (N/m2), normal

strain, shear strain, electric displacement (C/m2) and electric field (V/m), respectively.

For a one-dimensional beam, plane stress condition exists and also the width in y-

direction is stress-free. Hence we can set σy = σz = τyz = τxy = γyz = γxy = 0, while

εy ̸= 0; εz ̸= 0. For electric fields, we can assume Ex = Ey = 0. Only the coupling

between the longitudinal motion and transverse electric field is effective for extension

mode beams, hence we can neglect other coupling coefficients. Using these conditions



in Eq. (A.1), the reduced form of relations can be written as:




σx

τxz

Dz


 =




Q̃11 0 −ẽ31

0 Q̃55 0

ẽ31 0 ϵ̃3







εx

γxz

Ez


 (A.2)

where

Q̃11 = Q11 − (Q2
12/Q22), Q̃55 = Q55 and Qij = Cij −

(
Ci3Cj3

C33

)
(i, j = 1, 2, 5);

ẽ31 = ē31 − ē32

(
Q12

Q22

)
and ē3i = e3i − e33 (Ci3/C33) (i = 1, 2);

ϵ̃3 = ϵ̄3 + (ē232/Q22) and ϵ̄3 = ϵ3 + (e233/C33).

For Euler-Bernoulli beam theory which neglects the shear effects, Eq. (A.2) reduces to:


σx

Dz


 =


Q̃11 −ẽ31

ẽ31 ϵ̃3




εx

Ez


 (A.3)
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APPENDIX B 
 
 

COMPARATIVE EVALUATION OF THE 

BEAM FORMULATIONS  
 
 

A comparative evaluation of all the ESL piezoelectric beam finite element 

formulations is presented. The test problem chosen is a G1195N bimorph, which 

has highest thickness ratio with a very high piezoelectric coupling coefficient. The 

geometric parameters are: length L = 100 mm and height h = 10 mm. The results 

from the conventional EBT (Bendary et al., 2010), FSDT (Narayanan and 

Balamurugan, 2003), HSDT (Elshafei and Alraiess, 2013), EBT-Coupled, FSDT-

Coupled and HSDT-Coupled, for static and modal analyses, are tabulated in Table 

B.1. Also, the errors (in percentage) with respect to the benchmark solutions from 

ANSYS 2D analysis are given in brackets. 
 

 
      Results from the present Coupled formulations closely match with the ANSYS 

2D benchmark solutions, while the conventional formulations show significant 

errors. In the sensor configuration, the effects of shear deformation can be seen 

from the results of a tip loaded cantilever. In the actuator configuration, EBT, 

FSDT and HSDT predict the same value for tip defection, as a constant moment 

(no shear effects) is induced due to actuation in bimorph. 

Table B.1: Comparative evaluation of piezoelectric beam finite elements for the analysis 
of  the G1195N bimorph cantilever beam (h=10 mm,  L=100 mm) 

 
 Conventional Coupled ANSYS

-2D 
EBT FSDT HSDT EBT FSDT HSDT 

Tip defection (µm) for 
actuation by ±10 volts 

0.762 
(6.72 %) 

0.762 
(6.72 %) 

0.762 
(6.72 %) 

0.713 
(-0.14 %) 

0.713 
(-0.14 %) 

0.713 
(-0.14 %) 0.714 

Tip defection (µm) for a 
tip load of -1000 N 

-52.8 
(4.55 %) 

-53.2 
(5.34 %) 

-53.3 
(5.54 %) 

-50.0 
(-0.99 %) 

-50.4 
(-0.19 %) 

-50.5 
(0.00 %) -50.5 

Potential at root (volts) 
for a tip load of -1000 N 

208.9 
(4.55 %) 

210.4 
(5.30 %) 

211.1 
(5.65 %) 

198.1 
(-0.85 %) 

199.4 
(-0.20 %) 

199.8 
(0.00 %) 198.8 

First natural frequency 
(Hz) in open circuit 

509.2 
(-2.03 %) 

506.2 
(-2.61 %) 

505.5 
(-2.75 %) 

523.3 
(0.67 %) 

520.3 
(0.09%) 

519.4 
(-0.07 %) 519.8 

First natural frequency 
(Hz) in closed circuit 

464.2 
(-2.72%) 

461.9 
(-3.20%) 

461.5 
(-3.29%) 

479.7 
(0.52 %) 

477.6 
(0.08 %) 

477.0 
(-0.04%) 477.2 
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