
i

COMPUTATION OF HIGH SPEED

CHEMICALLY REACTING VISCOUS FLOWS

WITH CARTESIAN MESH ON A GPU BASED

PARALLEL SYSTEM

A Thesis submitted

 in partial fulfillment for the Degree of

Doctor of Philosophy

by

V.ASHOK

Department of Aerospace Engineering

INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY

THIRUVANANTHAPURAM

MARCH, 2013

ii

COMPUTATION OF HIGH SPEED

CHEMICALLY REACTING VISCOUS FLOWS

WITH CARTESIAN MESH ON A GPU BASED

PARALLEL SYSTEM

A Thesis submitted

 in partial fulfillment for the Degree of

Doctor of Philosophy

by

V.ASHOK

Department of Aerospace Engineering

INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY

THIRUVANANTHAPURAM

MARCH 2013

iii

CERTIFICATE

This is to certify that the thesis entitled Computation of High Speed

Chemically Reacting Viscous Flows with Cartesian Mesh on a GPU

Based Parallel System submitted by V.Ashok to the Indian Institute of

Space Science and Technology, Thiruvananthapuram, in partial fulfillment

for the award of the degree of Doctor of Philosophy is a bona fide record

of research work carried out by him under our supervision. The contents of

this thesis, in full or in parts, have not been submitted to any other

Institution or University for the award of any degree or diploma.

Dr. V.Adimurthy Dr. George Joseph

 Supervisor Co-Supervisor

Dean, R&D, IIST Prof. Brahmprakash Professor

 Vikram Sarabhai Space Centre

Thiruvananthapuram Counter signature of HOD with seal

March, 2013

iv

v

DECLARATION

I declare that this thesis entitled Computation of High Speed Chemically

Reacting Viscous Flows with Cartesian Mesh on a GPU Based Parallel

System submitted in partial fulfillment of the degree of Doctor of

Philosophy is a record of original work carried out by me under the

supervision of Dr. V.Adimurthy and Dr. George Joseph and has not

formed the basis for the award of any other degree or diploma, in this or

any other Institution or University. In keeping with the ethical practice in

reporting scientific information, due acknowledgements have been made

wherever the findings of others have been cited.

 V.Ashok

 SC08D001

Thiruvananthapuram

March-2013

vi

vii

ACKNOWLEDGEMENTS

 At the outset, I would like to express my sincere gratitude to Dr.V.Adimurthy, my

supervisor at Indian Institute of Space Science and Technology, for playing a very vital

role by guidance, constant encouragement, and constructive review of my doctoral

work. I had the good fortune of working with him for more than two decades as my

superior in the Aerodynamics group of Vikram Sarabhai Space Centre and now as my

supervisor at the Indian Institute of Space Science and Technology. His in depth and

distilled understanding of the subject with eye for details has gone a long way in

enhancing the quality of this work. In spite of his very busy schedule, he always took

special interest in the review of my work for which I am greatly indebted.

 My sincere gratitude to Dr.George Joseph my co-supervisor at Vikram Sarabhai

Space Centre, for giving me constant encouragement, useful reviews and also for

regular monitoring of the progress of my work. Next, I would like to express my sincere

gratitude to Shri. Thomas.C.Babu, Prof. Brahmprakash Scientist at Vikram Sarabhai

Space Centre, my long time teacher in high performance computing, and the chief

architect of GPU based SAGA supercomputer which was extensively used for this

work. It is indeed a privilege to have been officially associated with him for more than

one and a half decades which provided me a good learning opportunity on parallel

computing. His deep knowledge in the subject of high performance GPU based

computing and programming aspects has really made GPU computing part of this work

possible. I also take this opportunity to sincerely thank Dr.B.N.Suresh, founder Director

of IIST who gave encouragement and a good opportunity to pursue research work at

IIST. My sincere thanks to Professor N.Balakrishnan of IISc Bangalore and Professor

T. Sundararajan of IIT Madras who were my doctoral committee members for their

constructive review and very useful suggestions. I also sincerely thank Professor Kurien

Issac, Head of Department of Aerospace Engineering, IIST and my doctoral committee

member for constructive suggestions. My thanks also to Prof. C.S.Narayanamurthy,

Head, Department of Physics, IIST for his contribution as doctoral committee member.

viii

This is also the opportunity to thank Dr.K.S.Dasgupta, Director of IIST for enabling me

to pursue doctoral work at IIST.

 My special thanks to Shri. M.V.Harichand of Aero parallel computing facility for

useful discussions and help provided on GPU programming aspects. I thank Shri.

Amitkumar Singh for rendering help in post processing of some of the CFD outputs. My

sincere appreciation to Dr.S.L.N Desikan for help provided during the thesis

preparation.

 My special thanks to Dr.T.Jayachandran and Shri. Hemant Jha for very useful

discussions on CFD aspects. I also thank, Dr.Dipankar Das, Shri.Lazar Chittilappily and

Shri. Gnanasekar for useful discussions related to Scramjet engine simulations. I also

take this opportunity to thank Shri. R.Swaminathan, former head Aerodynamics R&D

Division, Dr.Pradeep Kumar, former Group Director, Aerodynamics and Aerothermal

Group and former Deputy Directors of Aeronautics entity, Shri.S.V.Sharma,

Dr.K.Sivan, Dr.S.Swaminathan and the present Deputy Director Shri.S.Pandian whose

support I received while pursuing my doctoral program. My special thanks are also to

Shri. P.S.Veeraraghavan, former Director VSSC for allowing me to pursue doctoral

studies along with my official duties. I wish to place on record my special gratitude to

Dr.K.Radhakrishnan, Chairman of ISRO who motivated me to pursue doctoral studies

when he was the Director of VSSC.

 Since most of the doctoral work had to be done beyond regular office hours,

support from my family members was very essential. In this regard, I am deeply

indebted to my parents, my wife Uma and my two daughters, Pooja and Nandini. They

allowed me to pursue my doctoral work on a regular basis at house without many

complaints.

ix

ABSTRACT

 The computation of high speed chemically reacting flows during reentry of a

vehicle from outer atmosphere and Scramjet propulsion involving high speed turbulent

combustion of hydrogen and air are some of the important technologies for low-cost

access to space. The solutions to such problems using Cartesian mesh framework have a

tremendous advantage in terms of very fast turnaround time from geometry to solution

because of completely automated grid generation. However the Cartesian mesh has a

very serious limitation in terms of handling the near wall viscous resolution and hence

requires some special treatment near the wall. With regard to solving complex flow

problems pertaining to Scramjet combustion the turn- around time can be reduced in a

very cost effective way through parallel computing with latest high performance

computing technology engaging cluster of multi core processors with Graphic

Processing Unit called GPU which accelerates the computation. The present work

addresses all the above three issues namely, the near wall resolution of hypersonic

viscous flows with a Cartesian mesh based system and computations of finite rate

chemically reacting turbulent flow in Scramjet engines with Cartesian mesh and

performing the Scramjet computations on a GPU based parallel system. Thus the work

carried out has three main objectives. The first objective is to obtain the solution of high

speed laminar viscous flows both non-reacting and reacting for reentry type problems

with a hybrid approach of unstructured prism layer near the wall and Cartesian mesh

way from the wall The second objective is to develop a turbulent finite rate chemically

reacting code with hydrogen air combustion for Scramjet computations involving

complex geometries with Cartesian mesh from an existing perfect gas Cartesian mesh

turbulent flow code which uses a wall function approach. The third objective is to

develop parallel computing algorithms and necessary code for GPU based parallel

computing to perform tip-to-tail simulation for a typical Scramjet vehicle with

combustion on a cluster of machines with GPU accelerators.

 The Cartesian mesh based viscous laminar flow solution is achieved by creating

an unstructured prism layer near the wall by the normal projection of Cartesian mesh

panels and stitching with the outer Cartesian mesh and performing a hybrid solution

having a combination of unstructured prism layer solution near the wall and Cartesian

mesh solution away from the wall. As for the numerical scheme, the inviscid fluxes are

computed using Advective Upstream Splitting Method and linear reconstruction of

primitive variables with limiter is employed. The viscous fluxes are evaluated from

gradients estimated using standard Green-Gauss procedure. The solution is fully explicit

and marched using backward Euler time marching mode with local time stepping for

convergence acceleration. The developed code is first validated for perfect gas

conditions against available experimental results for typical sphere-cone-cylinder-flare

geometry at hypersonic Mach number for zero angle of attack. For three dimensional

cases with angle of attack, the prism layers extruded from the Cartesian mesh from

surface panels which are of 3 sides to 6 sides are not stitched with the outer Cartesian

x

mesh. Hence in this approach, first an Euler solution is obtained for the Cartesian mesh

and this solution is mapped on to the hybrid unstructured prism layer near the wall and

the laminar Navier-Stokes solution carried out for the unstructured prism layer alone

with the Euler solution data as the boundary condition for the outermost unstructured

prism layer. This solution procedure was validated against available experimental heat

flux data at angle of attack for hypersonic Mach number. For hypersonic chemically

reacting flows the hybrid solution methodology with 7 species finite rate air chemistry

model (Park-87) is used. Results of species mass fractions, temperature profiles, wall

heat flux and shock stand-off distance from the present code are validated for standard

test cases like chemically reacting flow over wedge and Lobb sphere by comparing with

the reported results of other CFD code solutions with structured mesh and with limited

experimental results.

 The solution of turbulent flow in Scramjet engines with finite rate Hydrogen-air

chemistry was achieved by developing a code starting from an existing Cartesian mesh

perfect gas turbulent code with wall function. 7 species 7 reaction ONERA chemistry

model was used to obtain the species production rates from Hydrogen-air reactions. The

developed code was validated against available experimental data on pressure and total

temperature from ground test results of a typical Scramjet combustor in connected pipe

mode conditions. Since the ground test conditions are not the same as flight conditions,

numerical experiments were performed to bring out the effects of inlet pressure and

vitiation on the Scramjet combustor performance.

 The finite-rate chemically reacting flow in Scramjet engines involve highly

compute intensive operations on a very large mesh which typically demands use of high

performance computing platforms. In this regard, the utility of latest GPU based

computing platforms has been explored for such applications. To obtain good

performance from GPU accelerators with Cartesian mesh solvers was a real challenge as

the rectangular adaptive Cartesian mesh with hanging node is not inherently data

parallel. To achieve good parallel computing performance with GPU accelerators,

suitable data parallel algorithms as applicable to adaptive Cartesian mesh and good

memory management techniques were developed. Data parallelism was achieved by

grouping the Cartesian mesh cells into eight different cell groups with each group

having almost identical computational flow and group-wise computation is launched in

the GPU kernel one after another. Parallel computing performance on cluster of GPU

machines and factors affecting the performance are brought out.

 Tip-to-tail computation with combustion for a representative Scramjet vehicle

with a cone cylinder fore body and two Scramjet engines mounted was carried out with

the developed Cartesian mesh solver on a cluster of GPU machines. The performance of

the vehicle in terms of pressure, combustion efficiency and thrust was evaluated for a

typical flight condition for two air fuel equivalence ratios. The parallel computing

performance on the GPU cluster for such a large size problem is also brought out.

 In this thesis, Cartesian mesh based solution to laminar hypersonic flows both

non-reacting and chemically reacting flow as in re-entry type vehicles and Scramjet

engine turbulent flows with Hydrogen-air combustion which are the two critical

technologies for low-cost access to space have been addressed Also development of

suitable data parallel computing algorithms has been done to enable the use of adaptive

xi

Cartesian mesh solver on a cluster of GPU based machines to reduce the turnaround

time for Scramjet engine solution which is very essential for a faster design cycle.

xii

xiii

TABLE OF CONTENTS

CERTIFICATE iii

DECLARATION v

ACKNOWLEDGEMENTS vii

ABSTRACT ix

LIST OF FIGURES xvii

LIST OF TABLES xxiii

ABBREVIATIONS xxv

NOTATIONS xxvii

NOMENCLATURE xxix

1 INTRODUCTION 1

 1.1 Re-entry hypersonic flow 2

 1.2 Reacting flow in Scramjet engines 10

 1.3 Survey of work done on hypersonic flow

 with air chemistry using Cartesian mesh 12

 1.4 Survey of work done on Scramjet turbulent flow

 computation with combustion using Cartesian mesh 15

 1.5 Survey of work done in CFD with GPU computing 17

 1.6 Motivation and research objectives of the present study 18

 1.7 Outline of the Thesis 20

2 FORMULATION FOR CHEMICAL NON-EQUILIBRIUM 23

 2.1 Laminar hypersonic flow with air chemistry 24

 2.2 Turbulent flow with Hydrogen-air combustion 26

 2.3 Thermodynamic model and transport properties for

 hypersonic chemically reacting air 28

 2.4 Thermodynamic model and transport properties for

 Hydrogen-air combustion 31

 2.5 Air chemistry model 32

 2.6 Hydrogen-air chemistry model with 7 species 35

xiv

3 NUMERICAL METHOD 37

 3.1 Computation of inviscid fluxes 37

 3.2 Solution reconstruction and limiter 39

 3.3 Computation of viscous fluxes 41

 3.4 Local time stepping and update procedure 42

 3.5 Point implicit method for source terms 44

 3.6 Species under-relaxation 46

 3.7 Global mass conservation 47

4 CARTESIAN MESH BASED SOLUTIONS FOR HIGH SPEED

 VISCOUS FLOWS 49

 4.1 Combined hybrid prism layer and Cartesian grid approach for

 laminar hypersonic flows 50

 4.1.1 Procedure for generation of hybrid prism layers from

 Cartesian mesh 53

 4.1.2 Computation of flow over HB-2 geometry 55

 4.1.3 Near wall resolution with Cartesian mesh based prism

 layer stitched with outer Cartesian mesh 61

 4.1.4 Heat flux estimation for a typical bulbous heat shield 70

 4.1.5 Hybrid solution for three dimensional flows 71

 4.2 Computation of laminar chemically reacting hypersonic flow 75

 using Cartesian mesh with near wall viscous resolution

 4.2.1 Chemically reacting hypersonic flow over a 10
0
 wedge 75

 4.2.2 Chemically reacting hypersonic flow over Lobb sphere 81

 4.3 Computation of high speed flows with combustion 84

 4.3.1 Prediction of shock induced combustion for Lehr cylinder 85

 4.4 Computation of high speed turbulent flows with combustion 89

 for Scramjet engines with Cartesian mesh

 4.4.1 Modified wall function approach for εκ − turbulence 90

 model with Cartesian mesh

 4.4.2 Computation of turbulent flow with combustion for a 93

 typical Scramjet combustor

 4.5 Effect of connected pipe mode test conditions on the performance

 of Scramjet combustor 109

xv

 4.5.1 Effect on inlet pressure on combustor performance 110

‘ 4.5.2 Effected of vitiation on combustor performance 113

5 PARALLEL COMPUTING WITH GPU ACCELERATORS 117

 5.1 SIMD and MIMD architecture 119

 5.1.1 Task parallelism 120

 5.1.2 Data parallelism 121

 5.2 GPU implementation using CUDA 124

 5.3 Parallel computation of a Cartesian mesh solver 126

 5.3.1 Domain decomposition 127

 5.3.2 Setting up communication links 131

 5.3.3 Cell grouping for data parallelism 134

 5.3.4 Load sharing between CPU and CPU 138

 5.4 Programming and algorithmic aspects of GPU

 computations for a Cartesian mesh solver 139

 5.4.1 Handling recursive data structure of Cartesian mesh 139

 5.4.2 Programming data structure and implementation for

 GPU computation 140

 5.4.3 Thread synchronization 141

 5.4.4 Memory management aspects 141

 5.4.5 Effects of GPU memory hierarchy 142

 5.4.6 Solution process overview 143

 5.5 Parallel computing on a cluster of GPU machines 144

 5.5.1 Configuration of SAGA supercomputer 144

 5.5.2 Parallel computing performance with GPU accelerators 146

6 TIP-TO-TAIL SIMULATION OF FLOW OVER A TYPICAL

 SCRAMJET VEHICLE WITH COMBUSTION 151

 6.1 Description of the problem 153

 6.2 Results and discussion 156

 6.3 Parallel computing performance of tip-to-tail simulations

 on GPU cluster 172

xvi

7 CONCLUSIONS AND FUTURE WORK 177

 7.1 Conclusions 177

 7.1.1 Near-wall viscous resolution with hybrid method for

 laminar hypersonic flow over re-entry capsules 177

 7.1.2 Scramjet combustion simulation with Cartesian mesh 178

 solver

 7.1.3 Parallel computation of scramjet combustion on adaptive 179

 Cartesian mesh with GPU accelerators

 7.2 Future work 180

REFERENCES 183

Appendix-1 Data structure and sample program for GPU computing 193

PUBLICATIONS BASED ON THE THESIS 203

xvii

LIST OF FIGURES

FIGURE TITLE PAGE NUMBER

1.1. Flow regimes encountered at stagnation region 6

 of 0.35m radius sphere

1.2 Space capsule of SRE mission of ISRO 9

1.3 Various Propulsion options as a function of Mach number from 10

 Fry Ronald (2004)

1.4 Schematic of a typical Scramjet engine 11

1.5 Schematic of a typical Scramjet combustor 11

3.1 Linear reconstruction from cell center I and J 40

3.2 Viscous flux computation stencil with cell centers I and J. 41

4.1 Cartesian mesh for a typical geometry with enlarged portion

 of the nose cone showing partial cell and air cells. 50

4.2 Surface panel of 3 sides to 6 sides produced by Cartesian cell 51

 intersecting with a plane

4.3 Panels formed by the intersection of Cartesian Mesh with a cone

 cylinder flare body with zoomed portion of the nose cone 52

4.4 Hybrid prism layer for select panels with nose portion in 54

 zoomed view

4.5 HB-2 geometry from Kuchi-Ishi et al. (2005) 55

4.6 Basic Cartesian Mesh over HB-2 geometry 56

4.7 Mach number field from the Cartesian mesh Euler Solution 56

4.8 Hybrid prism layer with prism layer height of 5cm generated 57

 from the background Cartesian mesh

4.9 Velocity vector plot for the near wall prism layer cells 60

4.10 Comparison of computed cold wall heat flux with experiments 61

 from Kuchi-Ishi et al. (2005)

4.11 Prism layer at sphere cone region without merging of small panels 63

4.12 Prism layer at sphere cone region with merging of small panels 63

4.13 Prism layer mesh for the full geometry 64

xviii

4.14 Hybrid prism layer stitched with outer Cartesian mesh with six 64

 types of cells shown in inset

4.15 Iteration convergence in heat flux 65

4.16 Mach number profile at X =0.335 m 66

4.17 Mach number profile at X = 0.153 m 66

4.18 Mach number contours over the HB-2 geometry 67

4.19 Static pressure along the wall 67

4.20 Comparison of Heat flux along the wall for different prism 69

 layer grids

4.21 Enlarged view of the heat flux along the wall 69

4.22 Schematic of a typical bulbous heat shield 70

4.23 Cold wall heat flux along the wall of the bulbous heat shield 71

4.24 Inviscid solution obtained from Cartesian mesh for HB-2 73

 geometry at 15 degree angle of attack

4.25 Rectangular adaptive Cartesian mesh with extruded prism layer 73

 at section z=0.0

4.26 Windward heat flux along HB-2 geometry at 15
0
 angle of attack 74

4.27 10 degree wedge with hybrid prism layer stitched with outer

 Cartesian mesh 77

4.28 Temperature profile at the exit section of wedge for different 78

 numbers of cells in prism layer

4.29 Convergence plot of temperature profile at the exit section of 79

 wedge

4.30 Temperature profile at the exit section of wedge compared with 79

 the results of EURANUS code from Alavilli (1997)

4.31 Comparison of Nitric oxide mass fraction profile at the exit 80

 section of wedge with EURANUS results from Alavilli (1997)

4.32 Comparison of atomic oxygen mass fraction profile at the wedge 80

 exit with EURANUS results from Alavilli (1997)

4.33 Comparison of heat transfer coefficient along the wedge with 81

 EURANUS results from Alavilli (1997)

4.34 Hybrid mesh for Lobb sphere 82

4.35 Convergence plot of temperature along stagnation line for 83

 Lobb sphere

xix

4.36 Temperature along the stagnation stream line for Lobb sphere 83

4.37 Convergence plot of temperature along stagnation line for Lehr 87

 cylinder

4.38 Temperature plot for Lehr cylinder at M=3.55 in stoichiometric 87

mixture of Hydrogen-Oxygen

4.39 Temperature along the stagnation stream line computed for Lehr 88

 Cylinder at M=3.55 along with positions of shock and combustion

 front from experiments by Lehr (1972)

4.40 Water vapour mass fraction plot for Lehr cylinder at M=3.55 88

4.41 Mass fraction of various species along the stagnation stream line 89

 for Lehr cylinder at Mach number 3.55

4.42 Typical Scramjet combustor with strut based injection 93

4.43 Geometry of the Scramjet combustor 94

4.44 Schematic of the Scramjet test combustor 96

4.45 Mach number field at section Y= 0.047 m for equivalence 98

 ratio 0.778

4.46 Pressure distribution at section Y=0.047 m for equivalence 98

 ratio 0.778

4.47 Initial grid with 122600 cells with zoomed portion near strut 100

4.48 Final grid with 4.4 million cells after 3 levels of adaptation with 100

 zoomed portion near strut

4.49 Grid independence plot for centerline pressure 101

4.50 Mass fraction of water vapour at a section 47 mm from 101

 bottom wall

4.51 Hydrogen mass fraction at a section Y=47 mm from 103

 bottom wall

4.52 Cumulative combustion efficiency plot along the combustor 104

4.53 Computed non-dimensional pressure along the center line of 104

 bottom wall compared with experimental results

4.54 Stagnation temperature plot at the exit section of the combustor 106

 with experimental results for three locations

4.55 Static temperature plot at a section Y=47 mm 106

4.56 Total pressure plot at the exit of the combustor 107

4.57 Mach number plot at the exit section of the combustor 107

xx

4.58 Combustor geometry to study the effects of inlet pressure 109

 and vitiation

4.59 Computational domain and initial grid 110

4.60 Hydrogen consumption along the combustor for various inlet 111

 static pressures and fuel equivalence ratios

4.61 Hydrogen consumption along the combustor for various inlet 112

 static pressures for equivalence ratio 0.65

4.62 Hydrogen conversion to water vapour for various inlet 112

 pressures for an equivalence ratio of 0.65

4.63 Percentage of Hydrogen converted to H for various inlet 113

 pressures for equivalence ratio 0.65

4.64 Total temperature rise with vitiated and clean air 114

4.65 Effect of vitiation on pressure rise 114

5.1 Schematic of GPU architecture (adapted from NVIDIA (2011)) 119

5.2 Schematic of CPU architecture (adapted from NVIDIA (2011)) 120

5.3 Schematic of task parallelism 121

5.4 Schematic of Data Parallel computation 122

5.5 Grid of Thread Blocks (adapted from NVIDIA (2011)) 125

5.6 Data Parallelism in GPU (adapted from NVIDIA (2011)) 125

5.7 Computational domain of a typical Cartesian mesh 127

5.8 A Cartesian cell with three levels of division 128

5.9 Domain decomposition by consecutive splitting 130

5.10 Schematic of communication 132

5.11 Communication links in the sub-domains 133

5.12 Mach number field in supersonic flow for a typical launch 135

 vehicle with jet on condition.

5.13 Flow adapted Cartesian mesh for the flow field shown in 135

 Figure 5.12

5.14 Schematic of 8 different cell groups 136

5.15 Schematic of cell with 12 and 120 cells data dependency 137

5.16 Schematic of oct-tree structure and bitwise identification 140

 of leaf cell

5.17 Schematic of memory layout 142

xxi

5.18 Photograph of SAGA supercomputing cluster 145

5.19 Layout of SAGA supercomputer 146

5.20 Speed up efficiency for a typical flow problem over a launch 147

 vehicle on cluster of GPU machines

6.1 Schematic of an airframe integrated Scramjet vehicle 152

6.2 Typical Scramjet vehicle with Scramjet engine module 153

6.3 Representative Scramjet vehicle showing the engine module with 154

 three struts

6.4 Body at section Z=0 155

6.5 Section view at X=6.34 m with zoomed view in the inset 155

6.6 Body at section Y=0.55 m 155

6.7 Grid independence plot for surface pressure along the centerline 156

 between two struts along bottom wall (ER=0.6)

6.8 Final grid at section Z=0.0 in the Scramjet region after 3 levels of 157

 refinements

6.9 Mach number plot at section Z=0.02m over complete vehicle 158

 from tip-to-tail simulation

6.10 Mach number plot in the Scramjet engine region at 158

 section Z=0.02m

6.11 Mass average total pressure along the length of the 159

 engine (ER=0.6)

6.12 Mass averaged Mach number along the engine (ER=0.6) 160

6.13 Pressure distribution in the Scramjet engine with 160

 combustion (ER=0.6)

6.14 Water vapour mass fraction at section Z=0. (ER=0.6) 163

6.15 Water vapour mass fraction at section Y=0.559 m (ER=0.6) 163

6.16 Mass flow rate of hydrogen along the engine after the 164

 strut base (ER=0.6)

6.17 Combustion efficiency along the combustor for equivalence 164
 ratio of 0.6

6.18a Pressure distribution along the centerline between two struts for 165

 of bottom wall equivalence ratio of 0.6

6.18b Pressure at section YY=0.55 m 165

6.19 Mass-averaged static temperature along the engine for 165

xxii

 equivalence ratio of 0.6

6.20 Cumulative axial force along the length of the Scramjet 166

 vehicle for equivalence ratio of 0.6

6.21 Mass-averaged Mach number along the engine for equivalence 168

 ratio of 1.0

6.22 Mass-averaged static temperature along the engine for 168

 equivalence ratio of 1.0

6.23 Mass-averaged total pressure along the engine for equivalence 169

 ratio of 1.0

6.24 Pressure distribution along the centerline between two struts 169

 of bottom wall for equivalence ratio of 1.0

6.25 Hydrogen mass flow rate downstream of strut for equivalence 170

 ratio 1.0

6.26 Body pressure of the Scramjet engine with three struts with 170

 enlarged view of the strut region for equivalence ratio =1.0

6.27 Surface pressure along the centerline between two struts for 171

 reacting and non-reacting cases

6.28 Cumulative axial force coefficient for equivalence ratio 0.6 171

 and 1.0 compared with non reacting case

6.29 Different cell groups for GPU computation 172

6.30 Speed up performance on 180 node GPU cluster 175

6.31 Speed up performance up to 20 GPU machines 175

xxiii

LIST OF TABLES

TABLE TITLE PAGE NUMBER

2.1 Enthalpy curve fit coefficients for species used in air 28

 chemistry model for temperature range 150 K to 7250 K

 from Moss (1974)

2.2 Enthalpy curve fit coefficients for species used in air 29

 chemistry model for temperature range 7250 K to 40000 K

 from Moss (1974)

2.3 Constants for calculation of species viscosity from 29

 Blottner (1971)

2.4 Table of enthalpy curve fit coefficients of species used in 31

 Hydrogen-air combustion for the temperature range 300-1000 K

 from Kee et al. (1992)

2.5 Table of enthalpy curve fit coefficients of species used in 31

 Hydrogen-air combustion for the temperature range 1000-5000 K

 from Kee et al. (1992)

2.6 Kang-Dunn chemistry model (1973) 33

2.7 Park-87 chemistry model by Park (1987) 34

2.8 ONERA Hydrogen-air chemistry model reported by 35

 Dmitry et al. (2003)

4.1 Free stream conditions for HB-2 geometry from 55

 Kuchi-Ishi et al. (2005)

4.2 Geometry details of a typical bulbous heat shield 70

4.3 Flow conditions of the shock tunnel experiment (Srinivasa [1991]) 70

4.4 Free stream conditions for flow over HB-2 geometry at angle of 72

 attack from Kuchi-Ishi et al (2005)

6.1 Distribution of cell groups between CPU and GPU in 2 machines 173

6.2 Distribution of cell groups between CPU and GPU in 4 machines 174

xxiv

xxv

ABBREVIATIONS

AGARD Advisory Group for Aerospace Research and Development

AIAA American Institute of Aeronautics and Astronautics

ALU Arithmetic Logic Unit

AUSM Advective Upstream Splitting Method

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy, Time step constraint for numerical scheme

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DRAM Dynamic Random Access Memory

DRDBD Distributed Relocated Block Device

ER Equivalence Ratio

EURANUS European Aerodynamic Numerical Simulator

FLOPS Floating Point Operations Per Second

GFLOPS Giga Floating Point Operations Per Second (10
9
 FLOPS)

GPU Graphic Processing Unit

HIEST High Enthalpy Shock Tunnel

HPC High Performance Computing

ISRO Indian Space Research Organisation

JAXA Japanese Space Exploration Agency

LAURA Langley Aerothermodynamic Upwind Relaxation Algorithm

LES Large Eddy Simulation

xxvi

LINPACK Linear Algebra Package

MIMD Multiple Instruction Multiple Data

MPI Message Passing Interface

NASCART-GT Numerical Aerodynamic Simulation via CARTesian Grid

 Techniques, Solution adaptive Cartesian grid flow solver

NFS Network File System

OS Operating System

PetaFLOP Peta Floating Point Operations Per Second (10
15

 FLOPS)

PSLV Polar Satellite Launch Vehicle

RAM Random Access Memory

RANS Reynolds Averaged Navier-Stokes

SAGA Supercomputer for Aerospace with GPU Architecture

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SMP Symmetric Multi Processor

SRE Space Recovery Experiment

TFLOPS Tera Floating Point Operations Per Second (10
12

FLOPS)

TPS Thermal Protection System

TSTO Two Stage To Orbit

xxvii

NOTATIONS

M Absolute value of M

Pr Prandtl number

Sc Schmidt number

Le Lewis number

xxviii

xxix

NOMENCLATURE

a speed of sound

pC coefficient of specific heat at constant pressure

iD diffusion coefficient of species i

e internal energy

E total energy

cF vector of convective fluxes

vF vector of viscous fluxes

H total enthalpy

h static enthalpy

K coefficient of thermal conductivity, reaction rate coefficient,

 parameter in Venkatakrishnan limiter

M Mach number

iMW molecular weight of species i

zyx nnn ,, components of unit normal vector in x, y and z direction

p static pressure

P production of turbulent kinetic energy

TPr turbulent Prandtl number

q heat flux

R characteristic gas constant, residue

xxx

UR universal gas constant

dS surface element

zyx SSS ,, cartesian components of the face vector

T temperature

t time, third body coefficients

t∆ time step

u velocity in x direction

U vector of conserved variables

v velocity in y direction

V contravariant velocity

w velocity in z direction

iw& production rate of species i

W source vector

iX mole fraction of species i

iZ mass fraction of species i

α angle of attack, under-relaxation parameter,

 stoichiometric coefficient of reactant

β stoichiometric coefficient of product

κ Kinetic energy of turbulence

ε rate of dissipation of turbulent kinetic energy, parameter in limiter

ρ density

Ωd volume element

xxxi

ijτ viscous stress on the i plane in j direction

κτ ii normal turbulent viscous stress related to κ

ετ ii normal turbulent viscous stress related to ε

lµ molecular viscosity

Tµ turbulent viscosity

ϕ equivalence ratio

ψ limiter, chemical symbol, flow refinement criteria

γ ratio of specific heat

σ CFL number

z

C

y

C

x

C ΛΛΛ ,, convective spectral radius in x,y and z directions

z

v

y

v

x

v ΛΛΛ ,, viscous spectral radius in x,y and z directions

Subscripts

∞ ,inf free stream

diff diffusion

ref reference

2

1
+i cell interface

L left

R right

C convective, constant in estimation of reaction rate coefficient

v viscous

xxxii

fr forward

br backward

s i, species s ,species i , cell i

r reaction r

0 Stagnation

superscript

c convective

p pressure

Chemical nomenclature

2N molecular nitrogen

2O molecular oxygen

NO nitric oxide

O atomic oxygen

N atomic nitrogen

+

NO nitric oxide ion

e electron

2H molecular hydrogen

OH 2 water vapour

OH hydroxyl

H atomic hydrogen

2CO carbon-dioxide

1

CHAPTER-1

INTRODUCTION

 Low-cost access to space has been an important area of focus for the launch

vehicle community. In this regard, recoverability and reusability play a dominant role

and most of the space faring nations are exploring newer and better methods to

achieve this. Also the urge for the scientific community to know more about other

planets and their satellites has led to a number of planetary entry missions and

payload capsule recovery experiments. Mars Pathfinder, Huygens Probe, Beagle-2,

Stardust, Galileo and Space Recovery Experiment are some of the very exciting

missions undertaken by various space agencies. All this has led to a gamut of

activities in the area of Aerothermodynamics and considerable progress has been

made in experimental as well as computational methods. In the experimental

methods, shock tunnels and plasma wind tunnels are mainly used to get data for high

speed reentry conditions where chemical reactions associated with high temperature

conditions are important. However, shock tunnels and plasma tunnels do not simulate

all the important flight parameters like the Mach number, Reynolds number,

Damkohler number and stagnation enthalpy conditions. Under such circumstances,

the computational fluid dynamics (CFD) becomes a valuable tool wherein the codes

are first validated against shock tunnel or plasma wind tunnel results and thereafter

used for predicting for the actual flight conditions.

 Apart from the aerothermodynamic aspect, low-cost access to space also

depends on efficient propulsion systems. In this context, considerable studies are

being carried out in the area of advanced propulsion systems like the air-breathing

propulsion because of its high specific impulse. This has led to active research in the

area of Ramjet and Scramjet engines. In order to arrive at a good design of an air-

breathing engine, a number of configurations in the design space need to be

evaluated. In this regard, using high fidelity CFD tools in the initial design phase will

2

be highly beneficial as one can arrive at a good design in the initial stage itself. This

would help in avoiding costly configuration changes later in the future which

otherwise would have occurred by resorting to low fidelity tools during design phase.

Using high fidelity CFD tools for air-breathing engine design would mean solution of

turbulent chemically reacting flows with air fuel chemistry for a large number of

candidate configurations in a very reasonable time frame. In this regard, it is well

known that CFD employing Cartesian mesh has considerable advantage over other

types of meshes for the simulation of complex geometries in terms of very less

turnaround time for mesh generation. Owing to this, considerable effort is being

undertaken by the hypersonic CFD community to solve such finite-rate chemically

reacting flows during hypersonic reentry and Scramjet combustion with Cartesian

mesh based solvers. Also since such problems demand large computational time due

to the solution of large number of equations with chemical reactions on a large mesh

size, high performance computing plays a very important role. With the advent of

Graphic Processing Unit (GPU) based parallel computing, the CFD solvers are

getting adapted for such kind of hardware. Hence the work focusing on chemically

reacting flow with air-chemistry and turbulent flow with hydrogen air combustion on

Cartesian meshes coupled with high performance computing using cluster of GPU

based computing platforms will be very beneficial for the efficient design and

analysis of space systems that would be promising candidates for low-cost access to

space.

1.1 Reentry Hypersonic Flow

 A space capsule that has to be recovered from the orbit has to be deboosted to

reenter the earth’s atmosphere. During the course of reentry of a space capsule from

rarefied atmosphere of about 120 km to the touch down, the capsule encounters free

molecular, transitional, and continuum flow regimes. In the case of free molecular

flow, the molecules are so far apart that the distance traveled by the molecules before

collision with other molecules, called mean free path, is much larger than the

3

characteristic dimension of the body. This phenomenon is characterized by the

Knudsen number which is the ratio of mean free path to the characteristic dimension

of the capsule. Flows with Knudsen number greater than 10 are generally treated as

free molecular. For Knudsen numbers between 0.01-10 the flow is considered

transitional and less than 0.01 the flow can be considered continuum. In the

continuum flow regime there are different classes of flows, namely, (i) thermal non-

equilibrium and chemical non-equilibrium flow, (ii) thermal equilibrium and

chemical non-equilibrium, (iii) thermal equilibrium and chemical equilibrium and (iv)

perfect gas flow conditions. Figure 1.1 shows the various flow regimes encountered

in the stagnation region of sphere of radius 0.305m as it reenters the earth atmosphere

as given by Gupta et al. (1990). The ballistic reentry from the orbit will result in large

velocities of the order of thousands of meters per second and such high velocities in

the continuum flow regime result in a strong shock in front of the vehicle. Behind the

shock there will be sharp rise in the static temperature which can give rise to

chemical reactions of the constituent species of air. Molecules behind the shock

which will have energy content in translational, rotational, vibrational and electronic

modes and will also exchange energy between these various modes. It is to be noted

that there are time scales associated with various phenomenon associated with the

hypersonic chemically reacting flow over such reentry bodies. First one is the fluid-

dynamic time scale which is the time taken for the flow to cross the characteristic

length dimension of the reentry body and the second one is the reaction time scale

which is the time taken for the chemical reactions to occur. The third time scale is the

relaxation time scale which is the time taken for the energy transfer between various

internal energy modes namely translational, rotational, vibrational and electronic

modes. Depending on the ratio of fluid dynamic time scale to chemical reaction time

scale, called as the Damkohler number the high temperature hypersonic flows are

classified as Frozen, Chemical Equilibrium and Chemical Non-equilibrium flows

which are described below.

4

a) Frozen flows

 If the reaction time scale is much larger than the fluid-dynamic time scale, the

flow can be treated as frozen. In this case, the reactions take a large time to complete

and by this time the fluid would have already crossed the characteristic length

dimension which means that the composition of the fluid does not change in the

domain of interest. Hence frozen flows can be treated as non-reacting flows with

perfect gas equation of state to describe the thermodynamic state of gas.

b) Chemical Equilibrium flows

 If the reaction time scale is much smaller than the fluid-dynamic time scale, the

flow is considered to be in chemical equilibrium. In this case, when the gas flows

from one point to another point, the local pressure and temperature changes and the

reactions are so fast that the fluid reaches the local equilibrium state corresponding to

the temperature and pressure at the point. This results in change in composition from

point to point and the thermodynamic properties have to be evaluated from the

equilibrium composition.

c) Chemical Non-equilibrium

 The flow is said to be in chemical non-equilibrium when reaction time scale

and fluid-dynamic time scale are of the same order. In this case the flow is not able to

reach the local equilibrium value corresponding to the pressure and temperature at

each point. In this case, the species continuity equations have to be solved to get the

non-equilibrium composition at each point.

 Just like the flows are classified based on the Damkohler number associated

with chemical reactions, the flows can be also be classified into thermal equilibrium

and thermal non-equilibrium based on the ratio of relaxation time scale (time taken

for energy transfer between various internal energy modes) to fluid-dynamic time

scale also called as Damkohler number associated with thermal non-equilibrium and

is given below.

d) Thermal Non-equilibrium

 If the relaxation time scale is of the order of the fluid-dynamic time scale, then

the flow is said to be in thermal non-equilibrium. The relaxation time scale would

5

essentially depend on the number of collisions that would take place among the

molecules which is a function of density and temperature of the gas. Of the internal

energy modes, the translational and rotational modes quickly equilibrate as only very

few collisions are needed to reach equilibrium between translational and rotational

modes. This is not the case with vibrational modes and hence for thermal non-

equilibrium flow, the vibrational energy equation is also to be solved along with the

translational energy equation. Hence this will give rise to vibrational temperature

associated with vibrational mode of energy apart from the usual translational

temperature. In such cases, the energy transfer between vibrational and translational

modes (V-T) and vibration vibration modes (V-V) have to be taken into account in

the vibrational energy equation which would give rise to a two temperature model. In

some cases, the electronic mode of energy would not have equilibrated with other

modes and hence electronic energy equation also has to be solved from which the

electronic temperature associated with electronic energy can be calculated which will

give rise to a three temperature model.

e) Thermal equilibrium

 If the relaxation time scale is much smaller than the fluid-dynamic time

scale, then the energy transfer between the various internal energy modes would

quickly equilibrate before the characteristic flow time and the flow is said to be

thermal equilibrium. Such flows are characterized by single temperature model and

only one energy equation is solved which corresponds to the translational temperature

that has equilibrated with rotational, vibrational and electronic modes.

 Figure 1.1 shows the various flow regimes for a particular combination of

velocity and altitude occurring during reentry. At the start of the reentry when the

altitudes are very high, the flow is in chemical and thermal non-equilibrium. As the

altitude decreases, due to increase in density, the flow tends to chemical non-

equilibrium but thermal equilibrium. This means that the vibrational relaxation times

are very small or in other words the number of collision increases and hence

vibrational energy exchanges are quickly equilibrated. As the altitude further reduces

6

during the reentry, the flow is characterized by thermal and chemical equilibrium. In

this case both the vibrational relaxation time and the chemical reaction time are much

smaller than the characteristic flow time.

Figure 1.1 Flow regimes encountered at stagnation region of 0.305m radius sphere [Gupta

 et al. (1990)]

 At further lower altitudes when sufficient deceleration of the reentry capsule

has already taken place because of the drag, the velocities are not high enough to

cause sufficient rise in temperature to cause chemical reactions. Hence the high

temperature effects are not present and thus perfect gas computations would be

sufficient to compute the flow. All these aspects are shown in Figure 1.1 and also

number of species equations to be solved for various altitude velocity combinations is

also shown in the figure. It is seen that 7 species air chemistry model is adequate for

7

typical ballistic reentry vehicles and the peak heating mostly occurs in the regime

when the flow is in chemical non-equilibrium and thermal equilibrium.

 High temperature effects for air at different temperature conditions under sea

level pressure are described by Anderson (1989). At temperatures less than 800 K the

gas stays calorifically perfect. Only translational and rotational internal energy modes

are fully excited while the excitations of vibration mode are negligible and chemical

reactions are not present. In this regime the specific heats are essentially constant and

this corresponds to Mach number less than 3 at sea level condition. For temperatures

between 800 K and 2000 K, the vibrational mode of energy becomes an important

portion along with translational and rotational modes. In this regime the specific heat

is a function of temperature and hence the gas is thermally perfect. At temperatures

between 2000 K and 2500 K, the vibrational modes are fully excited and the

molecular Oxygen starts dissociating. Around 4000 K the molecular Oxygen is

completely dissociated and also the molecular Nitrogen starts to dissociate. At 9000

K, the molecular Nitrogen is almost completely dissociated. At 12000 K, all the gases

are completely dissociated and sufficient ionization has taken place to have good

amount of free charges.

 The reentry conditions impose severe thermal load on the recovery module and

hence the thermal protection system should be able to take into account of this

thermal load. The thermal protection system (TPS) like Carbon Phenolic are of the

ablative type which were the ones that was used for the first manned earth reentry

missions of Apollo. One of the disadvantages of the ablative type TPS is the shape

change due to ablation which would make the aerodynamics not so much predictable

resulting in deviations on the touch down point. In the case of non ablative TPS like

silica tiles, the shape change due to reentry heating is not present and hence the

landing point can be more precisely predicted as compared to ablative type TPS.

Heat flux prediction during entire reentry trajectory is one of the important inputs for

8

TPS design. The total thermal load would decide the thickness of the TPS and the

maximum heat flux will decide the type of material for TPS to be used.

 The wall heat flux due to hypersonic aerothermodynamics depends on the type

of flow regime and the wall characteristics. The high temperature behind the shock at

hypersonic flow will trigger chemical reactions of the constituents of air, like Oxygen

and Nitrogen dissociation and the extent of dissociation is mainly a function of

temperature. The dissociation reactions are essentially endothermic and hence the

temperature reduces. However at the wall, the atomic Nitrogen and Oxygen formed

due to dissociation can recombine and the heat of recombination is given to the wall.

This would depend on the material of the wall which could provide active sites for

recombination reaction. The wall which aids the recombination process is termed as

catalytic wall. Thus the catalytic wall will have in addition to convective heat flux

due to the temperature gradient at the wall, a diffusive heat flux component due to

heat of recombination. In the case of a non-catalytic wall the diffusive component of

heat flux is absent as the gradient of the species mass fraction at the wall is zero.

 Silica tiles with Borosilicate glass coating prevent recombination at the wall

and hence are non-catalytic coatings. The above mentioned aspects of catalytic wall

are for the chemical non-equilibrium regimes. In the case of equilibrium flow, the

reaction time is much shorter than the flow time and hence the recombination process

takes place in the boundary layer itself which will deliver the heat of recombination

in the boundary layer making the boundary layer hotter. This would result in a large

convective heat flux. Usually the equilibrium heat flux and the non equilibrium fully

catalytic heat flux are of the same order. Figure 1.2 shows capsule which was part of

Space Recovery Experiment (SRE) in which the reentry capsule was put in orbit by

the Polar Satellite Launch Vehicle (PSLV) of Indian Space Research Organisation

(ISRO) on January 20, 2007 and recovered at Bay of Bengal on January 22, 2007.

The nose cap which experienced very high heat flux of the order of 200 W/sq.cm was

9

made of Carbon Phenolic and the cone and flare portion TPS was made of Silica

Tiles with Borosilicate Glass coating to make the wall non-catalytic.

 Figure 1.2 Space Capsule of SRE mission (www.ISRO.org)

 Another important aerothermodynamic phenomenon associated with reentry is

the communication black out. If the post-shock temperatures during reentry are large

enough to cause ionization, the free electrons present can severely hamper the

communication signals from the spacecraft to ground stations depending on the

electron number density of the plasma around the capsule. Hence it is essential to

correctly predict the period of communication blackout during reentry so that the data

can be stored on board during this period and later transmitted to ground once the

blackout period is over.

 Shock layer radiation during reentry becomes important when the reentry

velocities exceed 10 km/s which would give rise to shock layer temperatures of the

order of 20000 K, and is typical of earth reentry like Apollo missions. For the Galileo

spacecraft that undertook the planetary entry to Jupiter, the heat flux at stagnation

was almost entirely due to radiation as reported by Gnoffo (1999) since the spacecraft

entry velocity to Jovian atmosphere was as high as 56 km/s.

10

1.2 Reacting Flow in Scramjet Engines

 The air-breathing engines have a very high specific impulse as compared to the

conventional solid, liquid and cryogenic engines and are good candidates for low-cost

access to space. This is because, the Oxidizer weight in a rocket motor is more than

70% of the total weight and if this oxygen can be drawn from atmosphere during the

atmospheric phase of flight, the total weight would substantially reduce resulting in

substantial increase of specific impulse. Figure 1.3 shows the various propulsion

system options as a function of Mach number as given by Fry Ronald (2004)

Figure 1.3 Various Propulsion options as a function of Mach number from Fry

 Ronald(2004)

At lower speeds, the rocket assisted turbojets have to be used and when the Mach

number exceeds 3, the air-breathing in the Ramjet mode of operation can be exercised

up to Mach number around 6 and beyond Mach number 6 and up to 14 the Scramjet

(Supersonic Combustion Ramjet) mode of air-breathing flight is essential. In order to

reduce the weight and complexities of having multiple propulsion systems, a dual

mode ramjet scramjet is often proposed which will operate in Ramjet mode of

operation from Mach number 3 to 6 and in Scramjet mode from 6 to 14. For the

space access application, there are many advantages in applying the Scramjet as the

propulsion system for the second stage of a Two-Stage-to-Orbit (TSTO),

11

hydrocarbon fuelled aerospace plane as shown by Townend (2001). The turbo jet and

Ramjet mode of flight operation is relatively well known as compared to the

Scramjet. Hence lot of research is taking place in this area of Scramjets by first

having technology demonstration flights. The successful flight of X-43A described

by Voland et al. (2006) and the first flight test of X-51A on 26
th

 May 2010 is a case in

point. Figure 1.4 shows the schematic of a typical Scramjet engine.

Figure 1.4 Schematic of a typical Scramjet engine

Figure 1.5 Schematic of a typical Scramjet combustor

 In the supersonic combustion Ramjet, the ignition of fuel which is either

hydrogen or hydrocarbon based has to take place at supersonic speeds. The

12

combustion and the flame stabilization under supersonic speeds is quite complex and

is likened to as “lighting a candle in a hurricane”. The real challenge in the Scramjet

engine operation is to burn as much fuel as possible in the combustion chamber

without causing the unstart of air-intake. The three key components of the Scramjet

engine is the hypersonic air intake, the geometry of the struts for the strut based fuel

injection and the nozzle. Additionally the structures have to withstand the extremes

of temperature during hypersonic flight combined with additional temperature due to

combustion. The intake and the strut together should have as much mass recovery as

possible with minimum total pressure loss and at the same time achieve the desired

combustion entry Mach number for supersonic combustion. The strut design should

be such that, with minimum blockage one should be able to have maximum injection

and mixing.

 Figure 1.5 shows a typical Scramjet combustor with strut-based injection. The

strut helps to introduce stream wise vorticity and thus enhance mixing of fuel with the

incoming air. The chemical reactions involving the fuel and the air are very complex

processes in the presence of turbulence and involve multi-step reactions. Also

sometimes, the turbulence chemistry interaction would further complicate the

process. However if the turbulent time scales are much smaller than the reaction time

scales then the flow is mixing dominated and the interaction terms would not be

dominant. Before Scramjet engines are incorporated in the full-scale flights, the

engines are first characterized by conducting technology demonstrator missions in a

scale down mode that would give a total picture of the flight performance of the

entire system including the individual system performance.

1.3 Survey of Work Done on Hypersonic Flow with

 Air Chemistry Using Cartesian Mesh

 The Cartesian mesh has tremendous advantage in terms of completely

automated mesh generation of very complex geometries and since the mesh

generation is the most time consuming process for a complex geometry, the

13

turnaround time from geometry to solution will be much smaller as compared to other

CFD solution techniques with structured mesh. However the Cartesian mesh has

limitations in handling viscous flows because of its inability to have near wall viscous

resolution due to lack of uniformly fine mesh near the wall. A number of research

activities exist on Euler equations with Cartesian mesh and are reported by Gaffney et

al. (1987), Berger and LeVeque (1989), De. Zeeuw and Powell (1991), Chiang et al.

(1992), Epstein et al. (1992), Melton et al. (1995), Yang et al. (1997a,1997b). Many

of these researchers have applied it to very complex geometries. Also work has been

carried out on Navier-Stokes solution with Cartesian Mesh and reported by Frymier

et al. (1988), Corier (1994), Karman Jr (1995), Wang (1996,1998), Xiangying Chen

and Zha (2009), Ya’eer Kidron et al. (2010) which are either pure Cartesian Mesh or

hybrid mesh with Cartesian mesh away from the wall and Prismatic cells near the

wall. There are also other approaches like grid stitching approach, reported by Partha

Mondal et al. (2007). In this work, a stretched Cartesian mesh is employed over the

streamline bodies like aerofoil and certain Cartesian grid points are moved towards

the wall which would avoid small cut cells. Such types of grids are called Cartesian-

like grids and have given good solutions to Navier-Stokes equation for relatively low

Reynolds numbers. Other Cartesian grid based approach reported by Munikrishna

and Balakrishnan (2011) is a meshless approach wherein the mesh points are obtained

from the Cartesian mesh and meshless solution of Navier-Stokes equation is carried

out. In this procedure, implementing a positive viscous discretisation procedure is

shown to be the most crucial part. The solution for viscous turbulent flow solution

has also been very successfully obtained with a combination of structured grid near

the wall and Cartesian mesh away from the wall with a point cloud in between the

two as reported by Katz and Jameson (2009). This work has brought in new concepts

like multi- cloud and meshless interface which would compliment the grid based

approaches. Another method to solve the Navier-Stokes equation with Cartesian grids

is by the immersed boundary method which was originally devised by Peskin (1997)

for heart valve modeling using Navier-Stokes equation in two dimensions. In this

method, the cells that contain the surface have a body force added to their momentum

14

equations which represent the reactive force that the body is applying to the fluid in

response to the fluid pressure and shear stress and which will eventually make the

velocity of the fluid at the wall equal to zero. Subsequently, some of the work with

this method is reported by Georgi Kalitzin and Iaccarino (2003), Rajat Mittal and

Iaccarino (2005), M.D.Tullio et al. (2007). Computations of turbulent viscous flows

have also been carried out by Jae-doo Lee (2006) with Cartesian grids with immersed

boundary approach with ghost cell boundary conditions so as to increase the accuracy

and minimize the unrealistic fluctuation of flow properties. The turbulence model in

this work used was the standard εκ − model of Launder and Spalding with a new

wall function approach for unstructured Cartesian grid solver. There is also yet

another modified wall function approach applied to a Rectangular Adaptive Cartesian

grid solver for turbulent viscous flows reported by Hagemann et al. (1996) and

successfully applied to plug nozzle cluster problems. However all the above methods

namely the hybrid mesh methods, pure Cartesian mesh, immersed boundary methods,

hybrid Cartesian and meshless methods and Cartesian mesh methods with suitable

wall function have so far not been extended to hypersonic flows and in particular to

reentry type flows so as to obtain near wall quantities like heat flux. As for the work

on chemically reacting hypersonic flows, considerable work is reported in literature

with structured mesh and the work reported by Candler (1989,1991), Gnoffo (1989),

Alavilli (1997), and Ghislain et al. (2008) are a few of them. However, very little

work is reported on computation of chemically reacting hypersonic flow with

Cartesian mesh.

 The work on chemically reacting hypersonic flow with Cartesian mesh was

possibly first reported by Shuang-Zhang Tu and Ruffin (2002). In this work, the

inviscid flow with thermochemical non-equilibrium was carried out for certain 2D

geometries with rectangular adaptive Cartesian mesh. Subsequently, using an

existing 3-D Cartesian grid based solver (NASCART –GT), Jin Wook Lee (2007)

and Jin Wook Lee et al. (2010) extended it to handle 3-D inviscid flows with thermal

and chemical non-equilibrium with grid adaptation for complex geometries and also

15

with the capability to compute on a large cluster of machines in a parallel mode using

a Space-Filling-Curve (SFC) based domain decomposition technique. This analysis

was applied to non-equilibrium hypersonic flow analysis of Ballutes. In this work,

since the computations were inviscid, the important quantities like convective heat

flux on the wall due to high speed chemically reacting flow had to be done through

approximate method of coupling inviscid analysis with an integral boundary layer

method. Based on the survey of work done it is found that chemically reacting

hypersonic viscous flow computations with a Cartesian mesh based approach is still a

topic to be explored so as to obtain near wall quantities like convective heat flux.

1.4 Survey of Work Done on Scramjet Turbulent

 Flow Computation with Combustion Using

 Cartesian Mesh

 The Scramjet technology being one of the forefront technologies in the area of

air-breathing propulsion, considerable amount of work has taken place during the past

two decades. Curran and Murthy (2000) describe the design and technical challenges

encountered in Scramjet propulsion. Considerable amount of work with structured

and unstructured mesh is reported in literature for computational simulation of

Scramjet components like intake, combustion chamber and nozzle. Work on air

intake has been reported by Tani.K et al. (2001,2006), Krause et al. (2006), Evgeny et

al. (2008), Krause and Ballmann (2007). Extensive work has been reported by

Gerlinger et al. (1994,1998,2001,2005,2008,2010) which are on supersonic mixing

and combustion, strut based injection and mixing, implicit multigrid method to

compute turbulent combustion, studies on lobe strut injectors to improve mixing by

generating streamwise vortices and factors affecting supersonic combustion in terms

of reaction rate mechanism, grid spacing and initial conditions. Gerlinger (2012) has

also very recently brought out a low diffusion version of multi-dimensional limiting

process (MLP) of Kim et al. (2005) and applied it to turbulent combustion process

which proved to be an efficient and simple method to extend conventional second

order schemes to higher accuracies and also improve convergence which is especially

16

attractive for unsteady flows. Mixing and combustion has also been reported by

Jeong-Yeol Choi et al. (2005), Sebastian Karl et al. (2006), Rainer et al. (2010),

Michael Emory et al. (2011), Soumyajit Saha and Debasis Chakraborty (2011) ,

Huang Wei et al. (2011) , Rahul Ingle and Debasis Chakraborty (2012). Kindler et al.

(2011) reports on TASCOM3D which is a scientific code capable of performing wide

range of chemically reacting flows coupled with high performance computing. In the

case of Scramjet engine, the tip to tail simulation is more meaningful as the coupling

effect of intake and combustor like intake un-start if any due to pressure rise from

combustion will come out of the simulation. Some work is also reported with tip-to-

tail simulation of Scramjet engine with intake, combustor and nozzle wherein the

performance of the Scramjet engine in terms of thrust produced could be obtained.

Kodera et al. (2003) has reported one such simulation wherein the entire Scramjet

engine from intake to nozzle was simulated with unstructured mesh on the Japanese

supercomputer and the simulations were compared with the experimental results

obtained from HIEST shock tunnel. Recently Gaitonde et al. (2009) showed the

integrated analysis of Scramjet flow path with three intake configurations by

employing high performance computing. The three types of inlets considered in this

work were of traditional rectangular cross-section configuration and two were of

streamlined shaped inlets. The combustor that followed the inlet was a cavity based

flame holding combustor. The simulations were performed to analyze the important

parameters like inlet distortion, fuel air mixing, ignition and thrust generation at free

stream Mach numbers between 6 and 8. Other aspects investigated in this paper are

the effect of fidelity in chemistry models from frozen to finite-rate chemistry models

of increasing complexity and also fidelity in turbulence closure models from

Reynolds averaged to Large Eddy Simulation models (LES). It was found that small

scales resolved with superior LES method were essential to understand the shock

dynamics and ignition delay time. All the above computational work on tip-to-tail

simulations are from structured or conventional unstructured mesh. Considering the

advantages of Cartesian mesh for completely automated grid generation from CAD

model; evolving a suitable design of a Scramjet engine mounted on a test vehicle for

17

a desired performance with a number of simulations by varying the design parameters

of intake, combustor and nozzle would be very fast with latest high performance

computing platforms. Most of the high performance computations reported in

literature for such large scale problems are mainly the conventional CPU based

computing. With the advent of latest hardware like GPU accelerators, the

computational cost for the same computing power as CPU would be substantially

lower in terms of lesser hardware cost and lower power consumption. Based on the

literature survey carried out, it is noted that such tip-to-tail simulations of Scramjet

engine with Cartesian mesh and using the latest hardware platforms like cluster of

CPU compute nodes with GPU accelerators is not very much explored and hence

needs more attention.

1.5 Survey of work done in CFD with GPU Computing

 The Graphic Processing Unit (GPU) is fast becoming a very cost effective tool

for high performance computing and its application is now encompassing wide range

of applications including CFD. Recently there has been a spurt of activity on the use

of GPU accelerators with CFD and are reported by many researchers. Julien Thibault

and Inanc Senocak (2009) give the implementation of Navier-Stokes equation for

incompressible flow using desktop machines with multi GPU’s and using NVIDIA’s

CUDA (Compute Unified Device Architecture) programming model. A speed up of

21X (21 times) was obtained when simulations were done on Intel Core 2 Duo 3 GHz

processor with 2 GPU (NVIDIA S870 Tesla) accelerators as compared to single core

2.4 GHz AMD Opteron processor. Everett et al. (2010) describes the work carried out

to simulate unsteady turbulent flow on a cluster of GPU’s with double precision

accuracy for the multi block turbulent flow solver. High performance could be

obtained by optimizing the data layout on the GPU and optimizing data transfers and

also using asynchronous memory copies so as to overlap GPU execution with

communication. A speed up of 70X was quoted for a cluster of 8 Tesla 2050 “Fermi”

GPU’s as against the serial solver. Dana and Inanc Senocak (2011) present the dual

18

level parallel implementation of the Navier-Stokes equation to simulate buoyancy

driven incompressible flows with parallel geometric Multigrid solver. Here CUDA

programming model is used for fine-grain data parallel operations within each GPU,

and MPI for coarse-grain parallelization across the cluster. Rey DeLeon and Inanc

Senocak (2012) have demonstrated the use of GPU for the computation of

incompressible turbulent channel flow with Large Eddy Simulation. Hai P Le and

Cambier (2012) report on the implementation of reacting gas solver with detailed

chemical kinetics on a GPU. A speed up factor of 40 was obtained for a 9 species gas

mixture with 38 reactions. Based on the survey of work done on GPU applications to

HPC in CFD, it is seen that solution of large scale flow problems on a cluster of GPU

based machines using Rectangular Adaptive Cartesian Mesh and with Combustion is

an area that needs to be explored. In an industrial perspective, such type of High

Performance Computing with GPU accelerators for solving Scramjet type of flow

with combustion using adaptive Cartesian mesh will be of great benefit in

significantly reducing turnaround time for solution. This will enable the designers to

explore a large number of candidate configurations so as to explore larger area in the

design space to arrive at a near optimal design of a Scramjet engine configuration.

1.6 Motivation and Research Objectives of the

 Present Study

 The computation of high speed chemically reacting flows during reentry of a

vehicle from outer atmosphere and Scramjet propulsion involving high speed

turbulent combustion of hydrogen are some of the important technologies for low-

cost access to space. Because of completely automated grid generation, solutions of

such problems using Cartesian mesh framework has a tremendous advantage in terms

of very fast turnaround time from geometry to solution particularly when the

configurations of interest are complex. Also the turnaround time can be further

reduced in a very cost effective way through parallel computing. In recent times, the

use of GPU accelerated multi cores, have further enhanced the utility of such parallel

codes, both from view point of computational cost and speed up.

19

 However the Cartesian mesh has a limitation in terms of handling the near wall

viscous resolution and hence requires some special treatment near the wall to obtain

wall quantities like heat flux. Often a near-wall resolution realizable from the use of

suitable wall functions is considered adequate from the view point of obtaining

solutions in a typical industrial framework. Nevertheless, there can be instances

where resolving the wall layer adequately can be important for the problem. In this

context, we have explored the feasibility of Cartesian mesh based solutions for

laminar hypersonic flows and also reentry hypersonic chemically reacting flows as

applicable to recovery modules.

 Simulating a Scramjet engine flow with all its geometric complexities can be a

challenge to the conventional CFD tools, but becomes an ideal candidate for

Cartesian mesh based computations. This problem further becomes compute intensive

because of the need to simulate Hydrogen-air combustion with finite-rate chemistry.

It is noted that this complex problem has not been addressed so far within a Cartesian

grid framework. The fact that good estimates of pressure distribution with turbulent

combustion can very well be obtained with approximate wall functions suggest the

use of full Cartesian mesh to resolve the geometry and flow. To achieve this, the

existing Cartesian mesh based perfect gas turbulent flow code which has already been

applied to many problems and reported by Ashok and Babu (1999), Chakraborty et

al. (2003), Manokaran et al. (2003), and Singh et al. (2009) can be extended to handle

finite-rate chemically reacting flow of Hydrogen-air combustion. This is one of the

aims of the present work.

 The computations involving finite-rate chemistry of Hydrogen-air combustion

on three dimensional complex geometries inherently are compute intensive with large

solution turnaround times. The use of High Performance Computing (HPC) capability

becomes imperative in any meaningful use of this strategy in a typical design setting.

Therefore, in this context, the HPC capability offered by GPU accelerators with

substantial cost and power consumption advantages is a very natural choice for

20

effecting such computations. But the challenge would be to implement GPU based

parallelism in a Cartesian grid based solver, typically allowing hanging nodes. Based

on the survey of work carried out on GPU computing, it is found that such type of

very large scale computations of tip-to-tail Scramjet simulations with finite-rate

combustion using an adaptive Cartesian mesh on a GPU based parallel system, is an

area that needs to be explored. Hence the present work has the following three

objectives

a) Obtain the solution of non-reacting and finite-rate chemically reacting laminar

hypersonic flow for reentry type problems, with a hybrid Cartesian approach

involving unstructured prism layer solution for near wall resolution and

Cartesian mesh solution in the outer region.

b) Develop a turbulent finite-rate chemically reacting code for Hydrogen-air

combustion for Scramjet computations from existing Cartesian mesh perfect

gas turbulent flow solver having a wall function approach.

c) Develop parallel computing algorithms for Cartesian grid solver exploiting

GPU cores for chemically reacting turbulent flows and perform tip-to-tail

simulations for a typical Scramjet vehicle with an objective of predicting its

thrust.

1.7 Outline of the Thesis

 Introduction and objectives of the present study are described in this first

chapter. The second chapter describes the formulation of the chemical non-

equilibrium flow with description about the transport properties and chemical

reactions considered for air chemistry as well as Hydrogen-air chemistry. The third

chapter deals with the numerical method used with details about the reconstruction

scheme, inviscid flux computation, viscous flux computation, local time stepping,

point implicit scheme and species under-relaxation of source terms and the time

marching method. Fourth chapter describes the hybrid solution methodology with

details about generation of prism layer from background Cartesian mesh panels and

21

validation cases for near-wall viscous resolution for hypersonic flow so as to obtain

heat flux for non-reacting and reacting flows with Cartesian mesh. The chapter also

describes the computation and validation of flows with Hydrogen-air combustion in

Scramjet engines involving complex geometries with pure Cartesian mesh using a

wall function approach. The effect of various flow parameters like vitiation and inlet

pressure on the combustor performance is also brought out in this chapter. Fifth

chapter deals with parallel computation with GPU accelerators wherein parallel

computing algorithms developed for GPU computations for Cartesian mesh solvers

with hanging node are described. The computational load distribution between CPU

and GPU and type of cells that are allotted to CPU and GPU in the order of priority,

communication methodology and parallel computing performance on a cluster of

GPU based machines are given in this chapter. The sixth chapter describes the tip-to-

tail simulation of a typical Scramjet vehicle with external flow and internal flow with

combustion in Scramjet engine attached to the vehicle. Also the performance in terms

of combustion efficiency and axial force due to combustion is highlighted. The

parallel computing performance of this large scale combustion problem on a cluster

of GPU machines is also brought out. Chapter seven gives important conclusions and

future work needed for further improvements.

22

23

CHAPTER-2

FORMULATION FOR CHEMICAL NON-

EQUILIBRIUM

 During reentry of a spacecraft or a reusable launch vehicle, the high

temperature effects start dominating which requires consideration of real or high

temperature gas effects. The high temperature effects include chemical reactions and

excitation of vibration and electronic modes. If the chemical reaction time and

characteristic flow time are comparable then the flow is said to be in chemical non-

equilibrium. In this chapter, the formulation for earth atmospheric reentry flows with

chemical non-equilibrium and thermal equilibrium as well as finite-rate turbulent

chemically reacting non-equilibrium flow of Hydrogen and air will be considered.

The maximum heat flux during reentry flows for ballistic reentry normally occurs for

flows in chemical non-equilibrium and thermal equilibrium as shown in Figure 1.1

and hence is a design driver case. Taking this into consideration, the flows considered

for the studies are in thermal equilibrium and hence the single temperature model is

used which means that the temperature term that appears in the energy equation is

essentially the translation temperature that is in equilibrium with the vibrational and

electronic temperature. In this formulation, the species conservation equations are to

be solved for each of the constituent species of air. Typically in a 7-species model of

air, N2, O2, NO, O, N, NO
+
, and e species are considered. The production rates of

species are governed by finite-rate chemistry models. In the case of Hydrogen-air

combustion in Scramjets, the species considered in the formulation are H2, O2, H2O,

OH, H, O, and N2. For the species conservation equations while the molecular

diffusion due to concentration gradient which is the dominant part is modeled, the

diffusion due to pressure and temperature gradients is neglected

24

2.1 Laminar Hypersonic Flow with Air Chemistry

The Navier-Stokes equation for the solution of laminar finite-rate chemically reacting

flow of air is as given below in Equation (2.1).

∫ ∫ ∫
Ω

Ω
Ω=−+Ω

∂

∂
WddSFFUd

t
vc)((2.1)

Where U is vector of conserved variables and cF and vF are vector of convective and

viscous fluxes and W is the source vector as given below.

),,,,,,,0,0,0,0,0(22 eNOONNOON wwwwwwwW &&&&&&& += are the vector of species production

rates .













































=

+

e

NO

O

N

NO

O

N

Z

Z

Z

Z

Z

Z

Z

E

w

v

u

U

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

2

2















































+

+

+

=

+

VZ

VZ

VZ

VZ

VZ

VZ

VZ

HV

pnwV

pnvV

pnuV

V

F

e

NO

O

N

NO

O

N

z

y

x

c

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

2

2

()

















































+++

++

++

++

=

++

∑

ediffe

NOdiffNO

OdiffO

NdiffN

NOdiffNO

OdiffO

NdiffN

i

idiffiizzyyxx

zzzzyyzxx

yzzyyyyxx

xzzxyyxxx

v

VZ

VZ

VZ

VZ

VZ

VZ

VZ

Vhnnn

nnn

nnn

nnn

F

_

_

_

_

_

_

_

_

22

22

0

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρθθθ

τττ

τττ

τττ

 (2.2)

Where iZ is the mass fraction of species i and V is the contravariant velocity at the

face of the cell defined as the scalar product of velocity vector and the unit normal

vector at the surface. This can be expressed by Cartesian velocity components

25

wvu ,, in x, y and z directions and components of the outward normal of the cell face

which are zyx nnn ,, .

zyx wnvnunV ++= (2.3)

2/)(222

1

wvueZE i

N

i

i

s

+++=∑
=

 (2.4)

is the total energy per unit mass and ie is the internal energy of species i

and total internal energy i

N

i

ieZe
s

∑
=

=
1

 (2.5)

And =idiffV _ Contravariant diffusion velocity of i
th

 species at the face of the cell

defined as the scalar product of diffusion velocity vector and the unit normal vector to

the surface of a face and is given by

zidiffyidiffxidiffidiff nwnvnuV ____ ++= (2.6)

Where
x

X
Du i

i

i

idiff
∂

∂
=

ρ

ρ
_ where iD , iX and iρ are the diffusion coefficient, mole

fraction and density of i
th

 species respectively

ρ

pwvu
eH +

++
+=

2

222

 (2.7)

x

T
Kwvu xzxyxxx

∂

∂
+++= τττθ (2.8)

y

T
Kwvu yzyyyxy

∂

∂
+++= τττθ (2.9)

z

T
Kwvu zzzyzxz

∂

∂
+++= τττθ (2.10)









∂∂+∂∂+∂∂−

∂

∂
=)///(

3

1
2 zwyvxu

x

u
xx µτ (2.11)









∂∂+∂∂+∂∂−

∂

∂
=)///(

3

1
2 zwyvxu

y

v
yy µτ (2.12)









∂∂+∂∂+∂∂−

∂

∂
=)///(

3

1
2 zwyvxu

z

w
zz µτ (2.13)

26










∂

∂
+

∂

∂
=

x

v

y

u
xy µτ (2.14)










∂

∂
+

∂

∂
=

x

w

z

u
xz µτ (2.15)










∂

∂
+

∂

∂
=

y

w

z

v
yz µτ (2.16)

2.2 Turbulent Flow with Hydrogen-air Combustion

The Navier-Stokes equation for the solution of finite-rate chemically reacting flow of

Hydrogen and air is as given below in Equation (2.17)

∫ ∫ ∫
Ω

Ω
Ω=−+Ω

∂

∂
WddSFFUd

t
vc)((2.17)

Where U is vector of conserved variables and cF and vF are vector of convective and

viscous fluxes and W is the source vector as given below.

(2.18)

























































+

+

+

=

VZ

VZ

VZ

VZ

VZ

VZ

VZ

VZ

V

V

HV

pnwV

pnvV

pnuV

V

F

CO

N

O

H

OH

OH

O

H

z

y

x

c

2

2

2

2

2

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρε

ρκ

ρ

ρ

ρ

ρ

ρ

()





























































++

++

+++

++

++

++

=

∑

22

22

22

22

22

_

_

_

_

_

_

_

_

_

0

COdiffCO

NdiffN

OdiffO

HdiffH

OHdiffOH

OHdiffOH

OdiffO

HdiffH

zzzyyyxxx

zzzyyyxxx

i

idiffiizzyyxx

zzzzyyzxx

yzzyyyyxx

xzzxyyxxx

v

VZ

VZ

VZ

VZ

VZ

VZ

VZ

VZ

nnn

nnn

Vhnnn

nnn

nnn

nnn

F

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

τττ

τττ

ρθθθ

τττ

τττ

τττ

εεε

κκκ

























































=

2

2

2

2

2

CO

N

O

H

OH

OH

O

H

Z

Z

Z

Z

Z

Z

Z

Z

E

w

v

u

U

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρε

ρκ

ρ

ρ

ρ

ρ

ρ

27

T

CONOHOHOHOHK wwwwwwwwSSW),,,,,,,,,,0,0,0,0,0(
22222

&&&&&&&&ε= is the vector of

species production rates. ,2CO is also included as a species to take into account

vitiated air used in the ground testing of Scramjet combustor.

zzx nnn ,, are the components of outward normal of each face of the cell and V is the

contravariant velocity which is the velocity normal to each face given by

zyx wnvnunV ++= as given in Equation (2.3)

xK

T

lxx
∂

∂








+=

κ

σ

µ
µτ κ ,

yK

T

lyy
∂

∂








+=

κ

σ

µ
µτ κ ,

zK

T

lzz
∂

∂








+=

κ

σ

µ
µτ κ (2.19)

x

T

lxx
∂

∂








+=

ε

σ

µ
µτ

ε

ε ,
y

T

lyy
∂

∂








+=

ε

σ

µ
µτ

ε

ε ,
z

T

lzz
∂

∂








+=

ε

σ

µ
µτ

ε

ε (2.20)

The production rates of turbulent kinetic energy κ and turbulent dissipation ε is

given by










ε

κ

S

S
 =

() 













−

−

κ

ε
ρε

ρε

εε 21 CPC

P

 (2.21)

The production of turbulent kinetic energy P is given by










∂

∂
+

∂

∂
+








∂

∂
+

∂

∂
+








∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
=

y

w

z

v

x

w

z

u

x

v

y

u

z

w

y

v

x

u
P

T

yz

T

xz

T

xy

T

zz

T

yy

T

xx ττττττ (2.22)

The turbulent viscosity
ε

ρκ
µ

µ
2

C
T = (2.23)

The closure coefficients used in εκ − equations and turbulent Prandtl number are as

given below by Launder and Sharma (1974)

09.0=µC , 44.11 =εC , 2εC =1.92, 0.1=Kσ , 3.1=εσ , 9.0Pr =T

28

2.3 Thermodynamic Model and Transport

 Properties for Hypersonic Chemically Reacting

 Air

Internal energy of mixture of gases is the sum of internal energy of the individual

species and is given by

∑
=

=
sN

i

iieZe
1

 (2.24)

Similarly enthalpy of the mixture of gases is obtained as the sum of enthalpies of

individual species

∑
=

=
sN

i

ii hZh
1

 (2.25)

The values for the enthalpy of individual species is given by polynomial curve fits

from Moss (1974)

T

aTaTaTaTa
a

TR

h

U

i 6

4

5

3

4

2

32
1

5432
+++++= (2.26)

The value of 1a to 6a is given in the table below for various species used is given

below in Table 2.1 and Table 2.2.

Table 2.1 Enthalpy curve fit coefficients for species used in air chemistry model for

 temperature range 150 K to 7250 K from Moss (1974)

Species Coefficients

1a 2a

3a 4a 5a 6a

N 0.247732e1 0.82901e-4 -76069e-7 0.22462e-10 -0.15404e-14 0.56133e5

NO 0.31968e1 0.11769e-2 -0.38778e-6 0.55731e-10 -0.28806e-14 0.98652e4

N2 0.32066e1 0.96095e-3 -0.26764e-6 0.33488e-10 -0.15440e-14 -0.99993e3

O 0.26848e1 -0.24358e-3 0.96464e-7 -0.13271e-10 0.65179e-15 0.29177e5

O2 0.32206e1 0.13129e-2 -0.46651e-6 0.70960e-10 -0.38179e-14 -0.10143e4

NO+ 0.32070e1 0.95464e-3 -0.26312e-6 0.32660e-10 -0.14946e-14 0.11809e6

e- 0.2500e1 0.0 0.0 0.0 0.0 -0.74537e3

29

Table 2.2 Enthalpy curve fit coefficients for species used in air chemistry model for

 temperature range 7250 K to 40000 K from Moss (1974)

Species Coefficients

1a 2a

3a 4a 5a 6a

N 0.29580e1 0.72397e-4 -19304e-8 0.65165e-14 -0.85711e-21 0.52845e5

NO 0.44678e1 0.22696e-4 -0.14025e-9 0.16592e-14 0.63494e-22 0.86956e4

N2 0.44517e1 0.21996e-4 -0.20502e-9 0.24036e-14 0.82543e-22 -0.23784e4

O 0.25750e1 0.22027e-4 0.50533e-10 -0.11758e-13 -0.13901e-20 0.28692e5

O2 0.44763e1 0.33173e-4 -0.11257e-9 0.13687e-14 0.68543e-22 -0.20125e4

NO+ 0.44517e1 0.23791e-4 -0.20057e-9 0.23327e-14 0.73176e-22 0.11670e6

e- 0.2500e1 0.0 0.0 0.0 0.0 -0.74537e3

Non uniform spatial distribution of velocity, temperature and species concentrations

cause the molecule transport and in macroscopic dimensions these are well known

phenomenon like viscosity, heat conduction, and diffusion.

The coefficient of viscosity for individual species is given by Blottner (1971)

10/)ln(BTAC

i Te
+=µ (kg/m-s) (2.27)

For temperatures less than 1000 K i.e. temperatures below dissociation temperatures,

the values of CBA ,, are as follows

A =-0.1045186, B =1.9790489, C =-16.48024

For temperatures from 1000 K to 30000 K, the constants to estimate the coefficients

of each of the species for Air-chemistry is given by Blottner (1971) and is showed in

Table 2.3.

Table 2.3 Constants for calculation of species viscosity from Blottner (1971)

Species A B C

N2 0.0268142 0.3177836 -11.3155513

O2 0.0440290 -0.0826158 -9.2019475

NO 0.0436378 -0.0335511 -9.5767430

N 0.0203144 -0.0826158 -11.6031403

O 0.1155720 0.3177836 -12.4327495

NO+ 0.3030141 -3.5039791 -3.7355157

30

Mixture viscosity is given by Wilke’s relation

∑
∑=

=

=
s

s

N

i
N

j

ijj

ii

mix

X

X

1

1

ϕ

µ
µ (2.28)

where


































+




























+

=

25.0

5.0

5.0

18

1

j

i

j

ii

ij

MW

MW

MW

MW

j
µ

µ

φ (2.29)

Thermal conductivity for monatomic gas and molecule are given by Svehla (1962)

For mono-atomic gas









=

i

i
i

MW

R
K

µ

4

15
 (2.30)

And for molecule

























−+=

i

iipi

i
MW

R

R

MWC

Sc
K

µ

2

51

4

15
 (2.31)

LeD
Sc

Pr
==

ρ

µ
 ,

K

C pµ
=Pr ,

K

DC
Le

pρ
=

Where Sc is the Schmidt number, Pr is the Prandtl number and Le is the Lewis

number

The diffusion coefficient is calculated from specified Schmidt number.

Sc
D

ρ

µ
= and the effective species diffusion coefficients are obtained from the

equation

i

iii

i
X

DMWMWMW
D

−

−
=

1

)/1)(/(ρ
 (2.32)

In the above expression MW is the mixture molecular weight. The diffusion

coefficient of ions is generally assumed to be twice as that of neutral species, due to

linking of electron and ion diffusion in the presence of electric field. The effective

31

diffusion coefficient of electrons eD is obtained by equating the diffusion velocity of

ions with that of electrons.

2.4 Thermodynamic Model and Transport

 Properties for Hydrogen- Air Combustion

The enthalpy of each species formed during Hydrogen-air combustion is expressed in

terms of polynomial curve fit given by Kee et al. (1992) and is given below.

T

aTaTaTaTa
a

TR

h

U

i 6

4

5

3

4

2

32
1

5432
+++++= (2.33)

Table 2.4 Table of enthalpy curve fit coefficients used for species in Hydrogen-air

 combustion for the temperature range 300-1000 K from Kee et al. (1992)

Species Coefficients

1a 2a

3a 4a 5a 6a

H2 0.03298e02 0.08249e-02 -0.08143e-05 -0.09475434e-09 .04134872e-11 -0.10125e04

O2 0.03212e02 0.11274e-02 -0.05756e-05 0.13138773e-08 -0.08768554e-11 0.100524e04

H2O 0.033868e02 0.0347498e-01 -0.06354e-04 0.06968581e-07 -0.02506588e-10 -.030208e06

OH 0.036372e02 0.018509e-02 -0.16761e-05 0.02387202e-07 -0.08431442e-11 0.03606e05

H 0.0250e02 0.0 0.0 0.0 0.0 0.025471e06

O 0.02946e02 -0.16381e-02 0.02421e-04 -0.16028431e-08 0.03890696e-11 0.029147e06

N2 0.03298e02 0.140824e-02 -0.39632e-04 0.05641515e-07 -0.02444854e-10 -0.10208e04

CO2 0.022757e02 0.099220e-01 -0.10409e-04 0.06866686e-07 -0.02117280e-10 -.048373e06

Table 2.5 Enthalpy curve fit coefficients for species used in Hydrogen-air combustion in

 the temperature range 1000 K-5000 K from Kee et al. (1992)

Species Coefficients

1a 2a

3a 4a 5a 6a

H2 0.029914e02 0.070006e-02 -.056338e-06 -0.09231578e-10 0.15827519e-14 -0.08350e04

O2 0.036975e02 0.0613519e-02 -0.125884e-06 0.01775281e-09 -0.11364354e-14 -0.12339e04

H2O 0.026721e02 0.0305629e-01 -0.08730e-05 0.12009964e-09 -0.06391618e-13 -0.029899e06

OH 0.028827e02 0.1013974e-02 -0.022768e-05 0.02174683e-09 -0.05126305e-14 0.038836e05

H 0.0250e02 0.0 0.0 0.0 0.0 0.025471e06

O 0.025420e02 -0.027550e-03 -0.031028e-07 0.04551067e-09 -0.04368051e-14 0.029230e06

N2 0.029266e02 0.1487976e-02 -0.056847e-05 0.10097038e-09 -0.06753351e-13 -0.09227e04

CO2 0.044536e02 0.0314016e-01 -0.12784e-05 0.02393996e-08 -0.16690333e-13 -0.04896e06

32

As for the transport properties used for turbulent Hydrogen- air computations, the

laminar viscosity is obtained from the Sutherland law of viscosity given as follows

110

110
2/3

+

+














=

T

T

T

T ref

refrefµ

µ
 (2.34)

Where refµ is the viscosity of air at reference temperature, refT and the turbulent

viscosity is obtained from standard κ -.ε turbulence model. It is to be noted that the

turbulent viscosity is much higher than laminar viscosity and hence the computations

are dominated by turbulent viscosity. For this reason, the viscosity evaluation for

turbulent flow combustion computations was carried out using Sutherland law to

reduce the computational effort.

The diffusion coefficient is obtained from the assumption of unity Lewis number and

thermal conductivity is obtained from laminar Prandtl number of 0.72 and turbulent

Prandtl number of 0.95. It is worth noting that in the case of supersonic combustion

in Scramjets, the flow is convection dominated and diffusion velocity is very small

compared to the convective velocity.

2.5 Air Chemistry Model

For a general set of elementary chemical reactions involving sn species, the reactions

can be written as

∑∑
==

⇔
ss n

s

srs

n

s

srs

1

,

1

, ψβψα where sψ are the chemical symbols and the time rate of

production of species per unit volume, sw& can be written as

∑
=

−−=
rN

r

rbrfrsrsSs RRMWw
1

,,,,))((αβ& (2.35)

sr
sN

s s

s

rfrf
MW

KR

α
ρ

∏
=









=

1

,, and

sr
sN

s s

s

rbrb
MW

KR

β
ρ

∏
=









=

1

,, (2.36)

The Dunn-Kang air chemistry model (1973) for 7 species is given in Table 2.6.

Forward and Backward reaction rate coefficients are given by

33

)/(,

,,
, kTErnf

rfrf

rfeTCK
−

= (2.37)

)/(,

,,
, kTErnb

rbrb
rbeTCK

−
= (2.38)

Table 2.6 Dunn-Kang chemistry model (1973)

No Reaction

rfC , rfn , kE rf /, rbC , rbn , kE rb /,

1

),(

22

NONM

MOMO

=

+⇔+

0.36e19 -1.0 0.595e05 0.30e16 -0.5 0.0

3 OOO 32 ⇔+ 0.9e20 -1.0 0.595e05 0.75e17 -0.5 0.0

4 OOO 22 22 +⇔ 0.324e20 -1.0 0.595e05 0.27e17 -0.5 0.0

5 ONON 2222 +⇔+ 0.72e19 -1.0 0.595e05 0.60e16 -0.5 0.0

6

),,(

2

2

2

ONOOM

MNMN

=

+⇔+

0.19e18 -0.5 0.113e06 0.11e17 -0.5 0.0

7 NNNN 2222 +⇔+ 0.47e18 -0.5 0.113e06 0.272e17 -0.5 0.0

8

),(22 NOM

MONMNO

=

++⇔+

0.39e21 -1.5 0.755e05 0.10e21 -1.5 0.0

9

),,(NONOM

MONMNO

=

++⇔+

0.78e21 -1.5 0.755e05 0.20e21 -1.5 0.0

10 NOONO +⇔+ 2 0.32e10 1.0 0.197e05 0.13e11 1.0 0.358e04

11 NNOON +⇔+2 0.70e14 0.0 0.38e05 0.156e14 0.0 0.0

12 −+ +⇔+ eNONO 0.14e07 1.5 0.319e05 0.67e22 -1.5 0.0

13

)(

2

NM

MNNMN

=

++⇔+

0.4085e23 -1.5 0.113e06 0.227e22 -1.5 0.0

14 −+ ++⇔+ eNONOON 22 0.138e21 -1.84 0.141e06 0.10e25 -2.5 0.0

15 −+ ++⇔+ eNONNON 22 0.22e16 -0.35 0.108e06 0.22e27 -2.5 0.0

In the case of Park-87 model as given in Table 2.7 the backward rate coefficient is

given by
eq

rcrfrb KKK ,,, /= (2.39)

where eq

rcK , is the equilibrium reaction coefficient and is given by

=eq

rcK ,

3

5

2

4321 lnexp(zBzBzBzBB
rrrrr ++++ (2.40)

where Tz /10000=

34

Table 2.7 Park-87 reaction model by Park(1987)

Sl no

REACTION

rfC ,

rfn ,

kE rf /,

r
B1

r

B2

rB3

r
B4

rB5

1 O2+M 2O+M(M=N,O) 2.900E+23 -2.00 5.975E+

04

2.855 0.988 -6.181 -0.023 -0.001

2 O2+M 2O+M(M=N2,O2,

NO ions)

9.680E+22 -2.00 5.975E+

04

2.855 0.988 -6.181 -0.023 -0.001

3 N2+N 2N+N 1.600E+22 -1.60 1.132E+

05

1.858 -1.325 -9.856 -0.174 0.008

4 N2+O 2N+O 4.980E+22 -1.60 1.132E+

05

1.858 -1.325 -9.856 -0.174 0.008

5 N2+M 2N+M(M=N2, O2) 3.700E+21 -1.60 1.132E+

05

1.858 -1.325 -9.856 -0.174 0.008

6 N2+NO 2N+NO 4.980E+21 -1.60 1.132E+

05

1.858 -1.325 -9.856 -0174 0.008

7 N2+ions 2N+ions 8.300E+24 -1.60 1.132E+

05

1.858 -1.325 -9.856 -0174 0.008

8 NO+M N+O+M(M≠elect

rons)

7.950E+23 -2.00 7.550E+

04

0.792 -0.492 -6.761 -0.091 0.004

9 NO+O O2+N 8.370E+12 0 1.945E+

04

-2.063 -1.480 -0.580 -0.114 0.005

10 N2+O NO+N 6.440E+17 -1.00 3.837E+

04

1.066 -0.833 -3.095 -0.084 0.004

11 O2
++O O2+O+ 6.850E+13 -0.52 1.860E+

04

-0.276 0.888 -2.180 0.055 -0.003

12 N2+N+ N2
++O 9.850E+12 -0.18 1.210E+

04

0.307 -1.706 -0.878 -0.004 -0.001

13 N O++O NO+ O+ 2.750E+13 0.01 5.100E+

04

0.148 -1.011 -4.121 -0.132 0.006

14 N2+O+ N2
++O 6.330E+13 -0.21 2.220E+

04

2.979 0.382 -3.237 0.168 -0.009

15 N O++ O2 NO+ O2
+ 1.030E+16 -0.17 3.240E+

04

0.424 -1.098 -1.941 -0.187 0.009

16 N O++N N2
++O 1.700E+13 0.40 3.550E+

04

2.061 0.204 -4.263 0.119 -0.006

17 N+O N O++e- 1.530E+09 0.37 3.200E+

04

-7.053 -0.532 -4.429 0.150 -0.007

18 O+O O2
+ +e- 3.850E+09 0.49 8.060E+

04

-8.692 -3.110 -6.950 -0.151 0.007

19 N+N N2
++ e- 1.790E+09 0.77 6.750E+

04

-4.992 -0.328 -8.693 0.269 -0.013

20 O+ e- O++ e-+ e- 3.900E+33 -3.78 1.585E+

05

-6.113 -2.035 -15.311 -0.073 0.004

21 N+ e- N++ e-+ e- 2.500E+33 -3.82 1.686E+

05

-3.441 -0.577 -17.671 0.099 -0.005

35

2.6 Hydrogen-Air Chemistry Model with 7 Species

 The species considered in the 7 species chemistry model are H2, O2, H2O, OH,

H, O, and N2. The chemical kinetics corresponds to the ONERA chemical kinetics

model developed by ONERA is reported by Dmitry et al. (2003) is shown in Table

2.8 below

Table 2.8 ONERA Hydogen-air chemistry model reported by Dmitry et al. (2003)

No Reaction A,mol-cm-s b C(K)
1 OHOH 222 >−+

222 OHOH +>−

1.700X10
13

4.032X10
10

0.0

0.317

24044

14554

2 MHMH +>−+ 22

MHMH +>−+ 22

5.086X10
16

9.791X1016
-0.362

-0.6

52105

0.0

3 HOHOHH +>−+ 22

OHHHOH +>−+ 22

1.024X108

7.964X10
8

1.6

1.528

1660

9300

4 OOHOH +>− 22

OHOOH 22 >−+

1.506X10
9

2.220X10
10

1.14

1.089

50

8613

5 HOHOH +>−+2

OHHOH +>−+ 2

5.119X10
4

2.701X10
4

2.67

2.649

3163

2240

6 OOHOH +>−+ 2

2OHOOH +>−+

1.987X10
14

8.930X10
11

0.0

0.338

8456

-118

7 MOHMOHH +>−++ 2

MOHHMOH ++>−+2

2.212X10
22

8.963X1022
-2.0

-1.835

0.0

59743

H2-O2 reactions have chain reaction mechanism wherein an intermediate product

produced in one step generates a reactive intermediate species in a subsequent step

which in turn generates another reactive intermediate and so on. In such reaction

process, highly reactive species are atoms such as H and O or radical species like OH.

These chemical species which have unpaired electrons and can react very actively

with other molecules are called free radicals. Elementary reactions which produce

free radicals are called chain initiation reactions. The first and second reactions

mentioned in the Table 2.8 are chain initiation reactions. While the first reaction

produces highly reactive free radical OH, the second reaction produces a highly

36

reactive free radical species like H. Formation of Hydroxyl radical (OH) is a very

important step in the combustion of H2 and O2. In the third and fourth reactions, the

ratio of free radicals in the product to that in the reactants is 1 and such elementary

reactions are called chain propagation or chain carrying reactions. The fifth and sixth

reactions are called chain-branching reactions wherein the total number of free

radicals in the products is more than that of reactants. The seventh reaction is a chain

termination reaction which has the destruction of free radical OH.

The production rate of species involving a third body as given by Kee et al. (1986) is

given below

)(
~

)(,,

1

,, rbrf

N

r

rrsrsss RRTMWw
r

−−= ∑
=

αβ& Where ∑
=

=
sN

s s

s

rsr
MW

tT
1

,

~ ρ
 (2.41)

Where rfR , and rbR , are given by Equation (2.36) and reaction rate coefficient K

(forward and backward) is given by

TCb
eATK

/−= (2.42)

The coefficients bA, and C for forward and backward reactions are given in Table-

2.8 and rst , are the third body efficiencies for the reaction r . If all component species

of the mixture contribute equally as third bodies in a particular reaction then all
rst ,

are unity for this case. Any particular species may be excluded from being a third

body in a reaction by setting its third body efficiency to zero for that reaction. The

third body efficiency of water vapour is taken as 12 and of Hydrogen 2.5, and for all

other species the third body efficiency is taken as 1.

37

CHAPTER-3

NUMERICAL METHOD

 The numerical solution of the Navier-Stokes equation in a finite volume

scheme consists of the important steps of computation of inviscid fluxes and viscous

fluxes across the faces, calculation of production rate of species in the control volume

and update of the variables. Before the computation of inviscid fluxes, the primitive

variables are linearly reconstructed at the interface. The gradients computed for linear

reconstruction are limited by means of limiters like Min-Mod or Venkatakrishnan

limiter proposed by Venkatakrishnan (1995). After the reconstruction of primitive

variables, the interface fluxes are calculated by means of an approximate Riemann

solver. The approximate Riemann solver used for the present work is Advective

Upstream Splitting Method (AUSM). The viscous fluxes are evaluated at each face

from gradients obtained using the Green-Gauss approach. Local time stepping is done

and the local time step ensures that the disturbance do not propagate more than the

particular cell in one time step. The numerical scheme is fully explicit and based on

the local time step, the conserved variables are updated by a backward Euler method.

In the case of species conservation equations, point implicit scheme is used to

compute the species density at the next time step.

3.1 Computation of Inviscid Fluxes

The inviscid fluxes across the interfaces are computed using the AUSM scheme. The

Advective Upstream Splitting Method developed by Liou and Stefen (1993) is

formulated using the time-dependent Euler equations and relies on splitting the flux

vector F into convective component F
(c)

 and a pressure component F
(p)

.

The basic

idea of this approach is from the observation as given in equation (3.1) that the

convective flux vector consists of two physically distinct parts, namely the convective

and the pressure part. The first term of the Equation (3.1) represents the scalar

quantities which are convected with the contravariant velocity, V and the second

38

term consisting of pressure is governed by acoustic wave speed. The convective

terms are discretised in purely upwind manner by taking the left or the right state,

depending on the sign of the contravariant velocityV . The pressure term on the other

hand includes both states in the subsonic case and becomes fully upwind in the

supersonic flow case.













































=

+

e

NO

N

O

NO

O

N

Z

Z

Z

Z

Z

Z

Z

H

w

v

u

VUF

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

2

2

)(+













































0

0

0

0

0

0

0

0

0

pn

pn

pn

z

y

x

 (3.1)

 For the x split three dimensional flux, the intercell numerical flux Fi+1/2 is defined as

Fi+1/2= Fi+1/2
(c)

+Fi+1/2
(p)

 where the convective flux component is given by

()
2

1
)(

2

1

)(

2

1
ˆ

+
++

= i

c

i

c

i
FMF (3.2)

[] []ii •=• +
2

1 if 0
2

1 ≥
+i

M (3.3)

[] [] 1
2

1
++ •=• ii if 0

2

1 ≤
+i

M (3.4)

The flux vector in Equation (3.2) is upwinded according to the sign of the convection

or advection speed implied in the inter-cell Mach number
2

1
+i

M . Thus this scheme is

called Advection Upstream Splitting Method. The cell interface Mach number is

given by splitting

39

−
+

+

+
+= 1

2

1 ii
i

MMM (3.5)

The splitting of Mach number into positive and negative component is done as

follows

2)1(
4

1
±±=±

MM if 1≤M (3.6)

)(
2

1
MMM ±=± if M >1 (3.7)

The pressure is split as follows

)1(
2

1
Mpp ±=± if 1≤M (3.8)

M

MM
pp

)(

2

1 ±
=± if M >1 (3.9)













































=

+

+

e

NO

N

O

NO

O

N

i

aZ

aZ

aZ

aZ

aZ

aZ

aZ

aH

aw

av

au

a

MUF

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

2

2

2/1)(+













































0

0

0

0

0

0

0

0

0

pn

pn

pn

z

y

x

 (3.10)

3.2 Solution Reconstruction and Limiter

 In order to have second order accuracy, the primitive variables from the cell

center are linearly extrapolated to the cell face by assuming a linear variation. This

can be expressed as follows where U is the vector of primitive variables

).(LIIIL rUUU
r

∇+= ψ (3.11)

40

J

I

RU

LU

Lr
r

Rr
r

).(RJJJR rUUU
v

∇+= ψ (3.12)

Where IU∇ (gradient of U) =(T
zUyUxU)/,/,/ ∂∂∂∂∂∂ at the cell center I and ψ

denotes the a limiter function. RL rr
rv

, are vectors from the cell centroid to the face

midpoint as shown in Figure 3.1.

Figure 3.1 Linear reconstruction from cell center I and J

The second and higher order upwind discretisations require the use of limiters in

order to prevent oscillations and spurious solutions in regions of large gradients like

shocks. This means that a monotone preserving scheme is sought after which will

have a non-increasing maxima and non-decreasing minima. The limiter limits the

slopes of the primitive variables during reconstruction procedure and in regions of

very strong gradients the slope reduces to zero or in other words reduces to a first

order scheme. The existing Cartesian mesh solver has a Min-Mod limiter and

Venkatakrishnan limiter is incorporated for unstructured solver. The Venkatakrishnan

limiter (1995) is widely used for unstructured solvers because of its good

convergence properties. The limiter reduces the reconstructed gradient U∇ at the cell

center I by the factor

























+∆∆+∆+∆

∆∆+∆+∆

∆
=

2

2max,1

2

2

2

max,1

max.1

2

22

22

max,1

2 2

2)(1
min

ε

ε
ψ JI if 02 >∆ (3.13)

























+∆∆+∆+∆

∆∆+∆+∆

∆
=

2

2min,1

2

2

2

min,1

min.1

2

22

22

min,1

2 2

2)(1
min

ε

ε
ψ JI if 02 <∆ (3.14)

1=Iψ if 2∆ =0 (3.15)

41

I
J

Where iUU −=∆ maxmax,1 and iUU −=∆ minmin,1 (3.16)

).(2 Li rU
r

∇=∆ and)max,max(max jji UUU = ,)min,min(min jji UUU = (3.17)

In Equation (3.15), maxU and minU stand for the maximum and minimum values of all

surrounding cells including the cell I. Lr
r

 is the vector from cell center to the mid

point of corresponding cell face. The parameter 2ε controls the amount of limiting

and in practice it should be proportional to a local length scale as follows

32)(hK∆=ε (3.18)

where h∆ is the cube root of the control volume. The value of K varies from 0 to 50.

As the K value increases the solution value gradually tends to be unlimited resulting

in overshoot at the shock location.

3.3 Computation of Viscous Fluxes

 For the evaluation of diffusive fluxes vF in Equation (2.1), the flow quantities

and their first derivatives have to be known at the faces of the control volumes. The

control volume for the viscous fluxes is chosen to be the same as that of the

convective fluxes in order to obtain a consistent spatial discretisation and to simplify

the data structure. Because of the elliptic nature of the viscous fluxes, values of the

velocity components, the dynamic viscosity, and the heat conduction coefficient

which are needed for the computation of viscous fluxes are simply averaged at a face.

Figure 3.2 Viscous flux computation stencil with cell centers I and J.

42

Thus for a cell centered finite volume scheme, the values of the variables at face

between cell I and cell J as shown in Figure 3.2 of the control volume is given by

)(
2

1
JIIJ UUU += (3.19)

 However, for the gradients at the cell face, the simple averaging of gradients of the

two adjoining cells of the face would give rise to decoupling of the solution on

quadrilateral and hexahedral grids. This decoupling can be overcome by using the

directional derivative along the connection between cell centroids i.e.

IJ

IJ

IJ l

UU

l

U −
≈









∂

∂
 (3.20)

Where IJl represents the distance between the cell centroids I and J . The unit vector

IJt
r

along the line connecting I and J is given by

IJ

IJ

IJ
l

r
t

r
r

= (3.21)

Considering all the above points the average gradient is written by Crumpton et al.

(1997)

IJ

IJ

IJIJIJIJ t
l

U
tUUU

rr


















∂

∂
−∇−∇=∇ . (3.22)

Where IJU∇ is the average of cell center gradient at cells I and J and expressed as

IJU∇ =)(
2

1
JI UU ∇+∇ (3.23)

The cell center gradients are evaluated by the standard Green-Gauss procedure. The

Equation (3.21) when implemented leads to strongly coupled stencils on tetrahedral,

prismatic, and hexahedral grids.

3.4 Local Time-Stepping and Update Procedure

An explicit scheme starts from a known solution t
U and employs the corresponding

residual t
R in order to obtain a new solution at time)(tt ∆+ . The time-stepping

43

scheme remains stable only up to a certain value of time step t∆ . To be stable, a time-

stepping scheme has to satisfy the Courant-Freidrichs-Levy (CFL) criterion. This

physically means that the disturbance should not propagate more than one cell in the

explicit scheme. In the one dimensional condition, the time step for a linear

convection equation is

C

x
t

Λ

∆
=∆ σ (3.24)

Where σ is the CFL number and is a positive coefficient, x∆ is the cell size and CΛ

denotes the maximum eigen value of the convective flux Jacobian. For linear

equation, the maximum time step can be calculated with the help of von Neumann

stability analysis. However, for non-linear equations in multiple dimensions, there is

no exact theory to compute the maximum time step for a particular cell size and flow

conditions. The time step calculation for any general type of mesh can be estimated

with the following expression of Vijayan and Kallinderis (1994)

cell

z

v

y

v

x

vcell

z

C

y

C

x

C

cell

cellt
)()(Λ+Λ+Λ+Λ+Λ+Λ

Ω
=∆ σ (3.25)

where σ is the CFL number and z

C

y

C

x

C ΛΛΛ ,, are the convective spectral radii which

are given as

x

x

C Sau ∆+=Λ)(

y

y

C Sav ∆+=Λ)(
 (3.26)

z

z

C Saw ∆+=Λ)(

The viscous spectral radii for the x direction is expressed as

cell

x

turbulent

turbulent

arla

arlax

v

S

Ω

∆
+=Λ

2

min

min)(
)(

PrPr
)(,

3

4
max(

µµ

ρ

γ

ρ
 (3.27)

The variables zyx SSS ∆∆∆ ,, are the projections of the control volume on the y-z, x-z,

and x-y plane. They are given by the following expressions

44

j

N

j

xx

F

SS ∑
=

=∆
12

1

j

N

j

yy

F

SS ∑
=

=∆
12

1
 (3.28)

j

N

j

zz

F

SS ∑
=

=∆
12

1

Where xS , yS , zS are the x,y and z component of the face vector SnS ∆= .
rr

. To have

faster convergence local time stepping is employed i.e each cell will have different

time step. However if unsteady time accurate solutions are needed then the minimum

of the local time step over all the cells should be used for all cells. The update

procedure can be explained from equation below, which the governing Navier-Stokes

equation is already given by Equation (2.1) in Section 2.1

∫ ∫ ∫
Ω

Ω
Ω=−+Ω

∂

∂
WddSFFUd

t
vc)(

This equation can be expressed as

 cell

cell

t

cell

tt

cell

t

UU
Ω

∆

−
∆+

)(
= t

cellR (3.29)

Where t

cellR is the residue of the cell at time t. From the above equation tt

cellU
∆+ can be

easily calculated using the backward Euler method since that is the only unknown.

3.5 Point Implicit Method for Source Terms

 In chemically reacting flows, the characteristic time of chemical reaction can be

much smaller than the characteristic flow time. Under such circumstances the explicit

treatment of source term would give rise to stiffness if the time step is based on flow

time. Stiffness of system of equations is defined as the ratio of largest to smallest time

scales present. In spite of local time stepping, the chemical species change is much

45

more rapid than the evolution of the fluid dynamic variables such as momentum and

make the system stiff to the explicit time integration methods. This problem can be

alleviated by individually scaling the time scales associated with each of the species

equation to the same order of magnitude as the global fluid dynamic equation. This

effect is introduced through the point implicit treatment of the source terms by

Bussing and Murman (1988) as given below

From Equation (2.1) the solution from explicit scheme would give rise to

)(. tttt
URtUU ∆+=∆+ (3.30)

For the point implicit scheme the above expression can be written as

),(. tttttt
UURtUU

∆+∆+ ∆+= (3.31)

∑ ∆
Ω

−= ∆+∆+

faces

ttttt
SnFWUUR).(

1
),(

rr
 (3.32)

Where the flux vector F
r

 has both inviscid and viscous fluxes and the source vector

W is evaluated at tt ∆+ i.e. at next time level instead of the current time level t . A

Newton linearisation of the source term gives rise to

)(ttt

t

ttt
UU

U

W
WW −









∂

∂
+= ∆+∆+ (3.33)

Which leads to

).(

)(.
t

t

ttt

HtI

URt
UU

∆−

∆
+=∆+ (3.34)

Where H is the source term Jacobian expressed as

tt
UWH)/(∂∂= (3.35)

∑ ∏ ∏
= 








−−=
∂

∂ R

riri

N

r i i

iribririfrriri

i

i

i

i XKXK
MW

U

W

1

,,,,
,,)()()(

βα
βααβ

ρ
 (3.36)

Where ri,α is the stoichiometric coefficient of th
i species reactant in th

r reaction and

ri ,β is the stoichiometric coefficient of th
i species product in th

r reaction. frK and

brK are the forward and backward reaction rate coefficients and iX is the mole

fraction of th
i species. Solution of Equation (3.32) involves solution of simultaneous

46

equations and for 7 species chemistry model, a 7X7 matrix inversion is needed to

estimate species production terms. However, if only the diagonal terms of the source

term Jacobian is calculated which are the most dominant terms, then the scheme is

called Diagonal Point Implicit Scheme and thus no matrix inversion is involved in the

solution of equations. The point implicit scheme essentially under-relaxes the species

source terms, while allowing the flow solution to be updated by t∆ dictated by the

CFL condition for stability. This would result in each of the species advancing with a

different time step and hence the chemical composition no longer consistent, or the

method time accurate. However, the correct final steady state solution is reached

much more rapidly. In conjunction with the local time stepping, this provides faster

signal propagation and improvement in the convergence to steady state.

3.6 Species Under-Relaxation

 Species under-relaxation is an explicit method for handling the source terms of

the chemical reactions. In the time marching method of driving the solution to steady

state, the chemical species evolve rather violently over the initial stages of the

solution. The effect manifests as wild oscillations in the convergence history and

could also lead to solution blow up because of the interaction of wildly errant

transient chemical states with other flow variables like temperature. If this oscillation

is controlled in the initial phase, then the algorithm would stably attain the steady

state solution as the mixture reaches the final composition and temperature. A simple

method to damp these wild oscillations in the initial phase is to under relax the

solution updates. Thus only a fraction of the changes in the species mass fractions are

applied while updating for the next level. However the species limiting during update

must be physically consistent, lest the reaction kinetics are numerically modified

resulting in an erroneous steady state solution. The changes in species mass fractions

over a time step are computed from changes in species densities as developed by

Palmer (1989) is given below

47

tt

t

ii

i

Z
Z

∆+

∆−∆
=∆

ρ

ρρ
 (3.37)

A parameter, α which is the species under-relaxation parameter, controls the

maximum allowable change in the species mass fraction over a time step. If α>∆ iZ

then the changes are rescaled as follows

maxZ

Z
Z i

i
∆

∆
=∆ α (3.38)

And the species mass fractions are updated as per the following equations

i

t

i

tt

i ZZZ ∆+=∆+ and tttt

i

tt

i Z ∆+∆+∆+ = ρρ (3.39)

The above mentioned procedure retains the basic physics of the evolving reactions.

For example if the original system produced twice as much atomic oxygen as atomic

nitrogen, the nature is retained after scaling. This method is very useful for cold start-

ups.

 While the Point implicit scheme has also species under relaxation in its solution

methodology, the species under-relaxation of Palmer is more explicit in nature. The

species under-relaxation parameter converges to correct physical solutions over a

large range of values from 0.0001 <α <0.1. It is best to have this value as large as

possible without the solution diverging. Setting this parameter to a very small value

would result in very slow convergence although to a physically correct solution.

Based on studies conducted, α value of 0.001 was found to give solutions with out

diverging for wide range of problems.

3.7 Global Mass Conservation

 The species mass conservation equations track the evolution of each of the

chemical species. In the course of computations, the sum of the species densities

would not add up to equal the global density obtained from the global mass

conservation equation. This happens because of either numerical round off errors or

48

inconsistencies in forming the diffusive fluxes. Although such errors are not

substantial, this could lead to deterioration of convergence and sometimes even

solution divergence. This problem can be overcome by rescaling the species densities

obtained either from point implicit or under-relaxation procedure so as to satisfy the

global mass conservation as follows

∑

∆+
∆+ =

i

i

tt

i

tt

i '

'

ρ

ρ
ρρ (3.40)

Where '

iρ is the density obtained after species under-relaxation or point implicit

method. The above procedure can be considered as an effective over-relaxation

method applied to species densities. By rescaling the species densities to satisfy the

global density at each cell, which is at a higher time level of evolution, the chemical

state of the gas is effectively extrapolated to larger time level.

49

CHAPTER-4

CARTESIAN MESH BASED SOLUTION FOR HIGH

SPEED VISCOUS FLOWS

 Solution of hypersonic viscous flow with Cartesian mesh based approach as

applicable to reentry type flow and Scramjet engine flows with turbulent combustion

is described in this Chapter. Laminar hypersonic flow is normally encountered for a

substantial portion of ballistic reentry vehicle trajectory due to lower level of

Reynolds number because of low atmospheric density at high altitudes. For such type

of laminar flows, a mesh of Cartesian grid based prism layer near the wall and

standard Cartesian grid away from the wall is adopted. The near wall prism layer is

meant to resolve high gradients in the near wall viscous region so as to obtain wall

quantities like heat flux. This approach is applied to laminar hypersonic perfect gas

flows as well as to laminar real gas flows in chemical non-equilibrium. For the

solution of high speed flows in Scramjet engines wherein the flow is turbulent and

undergoes combustion, Cartesian mesh with wall function approach is followed. In

this approach, the flow and geometry are both complex and the focus is to obtain the

pressure distribution in the combustion chamber of the engine. Hence this method

was found suitable from point of view of obtaining good accuracy in pressure with

very low turnaround time owing to a completely automated grid generation and

solution process.

 The first approach of combined hybrid prism layer and Cartesian mesh

approach is validated against experimental results for certain standard geometries and

flow conditions. The second approach of pure Cartesian mesh approach with wall

function is compared with that of the experimental results available for a typical

Scramjet combustor tested with vitiated air under connected pipe mode conditions.

The factors affecting the performance of the Scramjet engine and the effect of

50

vitiation of air in ground test conditions which are absent in the actual flight are also

brought out in this chapter.

4.1 Combined Hybrid Prism Layer and Cartesian grid

 Approach for Laminar Hypersonic Flows

 Cartesian grid that is generated for an arbitrary three dimensional body is a

body piercing mesh which gives rise to three types of cells namely, the cells which

are fully inside the body called the body cells, the cells which are fully outside the

body called the air cells and cells which are partially inside the body and partially

outside the body called as the partial cells. It is the partial cell that actually represents

the body in a Cartesian mesh.

Figure.4.1 Cartesian mesh for a typical geometry with enlarged portion of the nose cone

 showing partial cell and air cells.

 Figure 4.1 above shows typical sphere cone cylinder flare geometry captured

with a basic Cartesian mesh and the enlarged region of the nose cone is shown which

shows the partial cells near the body. A Cartesian mesh that intersects a three

dimensional body in a plane would give rise to surface panels of 3 sides to 6 sides.

Partial cell

Air cell

51

3 sided panel

4 sided panel

5 sided panel

6 sided panel

Figure 4.2 Surface panel of 3 sides to 6 sides produced by Cartesian cell intersecting

 with a plane

52

Figure.4.3 Panels formed by the intersection of Cartesian Mesh with a cone-cylinder-

 flare body with zoomed portion of the nose cone

3 sided panel

6 sided panel

53

Figure.4.2 shows the panels formed by the intersection of body with a Cartesian cell.

Figure 4.3 shows the panels formed on the surface of the body by intersection of

Cartesian mesh with a cone-cylinder-flare body. The procedure to generate hybrid

prism layers from Cartesian mesh is listed in next section.

4.1.1 Procedure for generation of hybrid prism layers from

 Cartesian mesh

Step-1 Generate the Cartesian Mesh with the existing Cartesian mesh generator

Step-2 Find out the panels formed from the intersection of Cartesian mesh with

 the body

Step-3 Find out the average normal at each panel node. Normal of each panel is

the normal corresponding to the largest triangle of the panel. To find out

the normal at each panel node, the panels sharing a node is found out and

from there the average normal at the node is found out.

Step-4 Along the average normal, the points are generated in a stretched fashion

so as to capture the boundary layer. The stretching used is an algebraic

stretching function with a stretching parameter varying from 1.01 to 1.2.

The first prism layer height, ∆ is given by the following expression

1)(

)1(

−

−
=∆

np

o

sp

sph
 (4.1)

Where oh is height from the wall up to which the prism layer has to be

constructed, sp is the stretching parameter which is generally between

1.01 to 1.2 and np is the number of cells in the prism layer. The height of

the second cell of the prism layer will be stretching parameter times the

first cell height of prism layer. The number of points and the height up to

which the prism layer are to be constructed are user defined inputs.

Normally the height from the wall up to which the prism layer is to be

constructed would be almost same as boundary layer thickness which can

be estimated from approximate empirical relations.

54

Step-5 Join the points so that prism layer cells are obtained near the wall from

the Cartesian mesh panels.

Step-6 In case there is cross over of the cells at regions of concave corners,

which will give rise to negative volumes, the height up to which the prism

layer has to be constructed is reduced or the average normal has to be

changed so that the crossover of normals are avoided. Change of average

normal is achieved by a user defined normal in the code. However this

correction made is not automated.

Figure 4.4 Hybrid prism layer for select panels with nose portion in zoomed view

In the above procedure, the stitching of the prism layer with the outer Cartesian mesh

is not addressed and hence will not have flux continuity in the interface of prism layer

cells and Cartesian mesh. Owing to this, the solution is obtained in two steps, namely

55

the Cartesian mesh solution on the initial mesh in the first step and the Navier-Stokes

solution in the prism layer cells alone with the outer boundary condition being the

Cartesian mesh solution in the next step. Figure 4.4 shows the hybrid prism layer

extruded for select panels from the Cartesian mesh panels with the zoomed hybrid

prism layer for one select panel.

4.1.2 Computation of flow over HB-2 geometry

 To validate, the hybrid solver, a standard AGARD HB-2 model, which is a

sphere- cone-cylinder-flare geometry, as shown in Figure.4.5 is chosen and for which

hypersonic wind tunnel experiments conducted by Kuchi-Ishi et al. (2005) is

available. The experiments are conducted in JAXA 1.27 m blow-down cold type

hypersonic wind tunnel and one of the objectives of the tests is for generating

accurate experimental data for HB-2 geometry, which would serve as benchmark for

hypersonic computational fluid dynamics codes. The free stream conditions for which

the numerical simulations are carried out are shown in Table.4.1.

Figure 4.5 HB-2 geometry from Kuchi-Ishi et al. (2005) – (All dimensions in mm)

Table 4.1 Free stream conditions for HB-2 geometry from Kuchi-Ishi et al. (2005)

P0

(Mpa)

T0 (K) M∞ ρ∞

(Kg/m
3
)

T∞

(K)

p∞

(Pa)

U∞

(m/sec)

Re

(X10
5
)

α

(deg)

Twall

(K)

2.515 1027.4 9.59 0.00469 55.20 74.6 1430.8 1.85 0.0 300

 Initially a basic Cartesian grid of 100X100 cells is generated as shown in

Figure 4.6. An Euler solution is carried out with available Cartesian mesh solver,

PARAS-3D which is widely used for solution to flow problems and reported by

56

Chakraborty et al.(2003), Manokaran et al. (2003) and Singh et al.(2009). The

boundary conditions are supersonic inflow in the left boundary and supersonic

outflow at all other outer boundaries and symmetry boundary conditions in the

symmetry plane and slip condition for Euler solution and no slip and isothermal

conditions on the wall for Navier-Stokes solution. The Cartesian mesh solution is

given in Figure 4.7 and the figure shows that the all the flow features associated with

inviscid flow field at high Mach numbers like the bow shock, expansion from the

cone cylinder junction and the flare shock are captured satisfactorily. With this as the

initial solution, the hybrid prism layer is generated for a prism layer height of 5cm

and the Cartesian mesh Euler solution is mapped on to the hybrid prism layer. The

laminar axi-symmetric Navier-Stokes solution is carried out for the prism layer alone

with pressure of the Euler solution as boundary condition applied on the outer prism

layer.

Figure.4.6 Basic Cartesian Mesh over HB-2 geometry

Figure 4.7 Mach number field from the Cartesian mesh Euler Solution

57

The hybrid prism layer and Cartesian mesh is represented by a suitable data structure

The cell data structure written in C- language and used for the computations is given

below.

.

typedef union cell{ typedef struct SPCL{

 struct{ CELLS dcells[8];

 char level; }DCELLS;

 char ncel;

 char hybrid; typedef struct PTCL{

 char type; double Pt[10];

 double *U; char ncut;

 struct PTCL *pcp; int pnl;

 }item; } PCELL;

 struct {

 char st;

 struct SPCL *next;

 }attr;

}CELL;

 Figure 4.8 Hybrid prism layer with prism layer height of 5cm generated from the background

 Cartesian mesh

58

typedef struct panel{

 int panel_number; double nx; double ny; double nz;

 struct Node *node; CELL *partial_cell; struct hybrid **hybrid_cell;

 struct side *side;int I; int J; int K;

 char i_arr[3][8];

}

typedef struct face{

 int nb_pnl_no; int nb_face_no; double dU[U_DIM]; double ddU[U_DIM]; char

flux_flag; char split; double d; double crd[3]; CELL **cart_cell;

} FACE

typedef struct hybrid_cell{

Int icell; double *Nx; doublel *Ny; double *Nz;;

double *Area; double Volume; struct face *face

} HYBRID_CELL;

 The Cartesian mesh cell is a union of two structures where in if the cell is split

into 8 children, it is represented by split cell structure, “SPCL”. Each cell has a level

represented by a character (“char lev”) i.e denoting to what level it is already split (up

to 8 levels is what is allowed in the present program) and another character “ncel”,

representing whether it is partial cell, air cell or body cell. It also has a pointer to

conserved variable vector U and depending on the type of problem Euler, Turbulent,

or Chemically reacting flow, the number of flow variables are allocated during the

start of the problem. If the cell is a partial cell then a pointer to the partial cell

structure can get all the information about the partial cell, namely the partial fluxing

area, outward normal of the panel of the partial cell, the number of sides of the panel

of the partial cell and also the panel number corresponding to the partial cell.

 The panel is represented by a data structure having the information regarding

the pointer to the Cartesian partial cell which contains the panel, the number of sides

of the panel (“char ncut”) which varies from 3 to 6 sides, normals to the panel, the

59

position “I, J, K” of the parent cell of the Cartesian mesh and also its position as a

child represented by “char i_arr [3][8]”, if it is a panel corresponding to a split partial

cell. If the partial cell is split, then the position of the child cell in I, J and K

directions will be either 0 or 1 because of the oct-tree structure. Thus by knowing the

split position in each level of split, the exact position of the split partial cell can be

found out. The panel also has pointer to the array of hybrid prism layer cells and each

hybrid prism layer cell has all the information about its face neighbours and the

normals of each face. Each face is also a structure which has all the geometric

information like area, normals and also the inviscid and viscous flux vector

information. The panel also has information about coordinates of its node points.

 As for the code modification to the existing Cartesian solver code; as the

program encounters a partial cell, the solution branches to the calculation of

unstructured hybrid prism layer which is a separate function added to the Cartesian

solver code. The only user-defined inputs to the program are the number of prism

layer cells, the stretching factor to adjust the first prism layer height and the normal

distance from the wall up to which the prism layer has to constructed i.e. the extent to

which the Cartesian mesh panels need to extruded in the normal direction.

 For the above mentioned problem, the prism layer is not stitched with the outer

Cartesian mesh and hence the coupling of unstructured prism layer viscous solution

to the inviscid solution of the outer Cartesian mesh is not accounted. If the

unstructured prism layer extends beyond the viscous inviscid interaction zone of the

hypersonic flow, then the decoupled solution as done in the present case will yield

good results. Figure.4.8 shows the Cartesian mesh with prism layer near the wall and

figure 4.9 shows the velocity vector of the hybrid prism layer portion with the

zoomed region clearly showing the boundary layer.

 Figure 4.10 shows the cold wall heat flux along the length of the model

compared with experimental results of Kuchi-Ishi et al. (2005). Wall heat flux is

60

obtained from the temperature gradient values evaluated at the wall based on the

temperature of first wall cell and a cell above it. A good match is seen between the

computations and the experiments. The solution converged after 20000 iterations.

The maximum cold wall heat flux is as expected and is at the stagnation point and

sharp reduction is seen in the conical portion. A slight increase in the flare region is

noticed due to the presence of flare shock.

Figure.4.9 Velocity vector plot for the near wall prism layer cells

 These computations are done in two steps, namely the inviscid computation on

the Cartesian mesh for the whole domain in the first step and the near wall viscous

computation for the unstructured prism layer in the subsequent step. To achieve this,

the prism layer has to extend sufficiently to the outer region which encompasses the

boundary layer region. In order to avoid the two step method of inviscid solution

followed by boundary layer type solution, the prism layer has to be stitched with the

outer Cartesian mesh and hence the next logical step in the near wall resolution

within the framework of Cartesian mesh is to have a hybrid mesh with prism layer

generated from background Cartesian mesh stitched with the outer Cartesian mesh to

have flux continuity at the interface of prism layer and the outer Cartesian mesh.

61

Figure.4.10 Comparison of computed cold wall heat flux with experiments from

 Kuchi-Ishi et al. (2005)

4.1.3 Near-wall resolution with Cartesian mesh based prism layer

 stitched with outer Cartesian mesh

 In this methodology, the strong viscous gradients near the wall are resolved

through the unstructured prism layer and away from the wall where the inviscid

effects are dominant, the Cartesian mesh is used. In order to have flux continuity and

to capture the viscous inviscid interaction effects, the prism layer is stitched to the

outer Cartesian mesh. The methodology to generate the hybrid mesh is described

below.

62

Steps to generate near wall prism layer stitched with outer Cartesian mesh

1) Start with the Cartesian mesh having information on the intersection point of

mesh with the body. The surface of the body is essentially the panels formed by

intersection of Cartesian mesh with the body. For 3D geometry, the surface panels

have 3 to 6 sides whereas for a 2D geometry surface panels have 4 sides with one

grid in the third direction as in the present problem.

2) The normal of each panel corresponds to the normal of the largest triangle of the

panel. Find out the average normal at each node which is essentially the average

of the normal of the panels sharing the node.

3) Since the Cartesian mesh would sometimes give rise to very small panels while

cutting a body, the small panels whose area is less than 1/10
th

 of the neighboring

panel is merged with the large panel.

4) Generation of the hybrid prism layer by extrusion of the surface panels up to a

height that is user specified. Normally extrusion is based on the average normal of

a node. However this can also be user defined way of projection for ease of

stitching with the outer Cartesian mesh.

5) Stitch the prism layer with the outer Cartesian mesh by joining the prism layer to

the nearby outer Cartesian mesh node.

6) Split the last hybrid layer if it is too large as compared to neighbouring prism

layer.

Figures 4.11 to 4.14 show the various steps of the hybrid prism layer generation and

finally stitched with the outer Cartesian mesh for an axisymmetric geometry. Figure

4.14 shows the final hybrid Cartesian mesh and the magnified region of the nose and

flare portion. From the figure it can be seen that there are six types of cells possible

after the stitching of hybrid prism layer with the outer Cartesian mesh. The first type

of cell is the hybrid prism layer cell whose neighbours are also prism layer cells. The

second type of cell is an outer edge cell which is between the prism layer cell and the

Cartesian mesh which can have more than one Cartesian cell as its neighbour. The

third type of cell is the outer hybrid prism layer hugging the Cartesian mesh which

63

can have more than one Cartesian mesh as its neighbor. The fourth type of cell is the

outer hybrid prism layer that does not hug the Cartesian mesh. The fifth type of cell is

a Cartesian cell where all the neighbours are not pure Cartesian cells and finally the

sixth type of cell is the one whose all neighbours are Cartesian cells.

Figure 4.11 Prism layer at sphere cone region without merging of small panels

Figure 4.12 Prism layer at sphere cone region with merging of small panels

64

Figure 4.13 Prism layer mesh for the full geometry

Figure 4.14 Hybrid prism layer stitched with outer Cartesian mesh with six types

 of cells shown in inset

.

Type-1

Type-3

Type-5 Type-6

Type-4

Type-2

65

Figure 4.15 Iteration convergence for heat flux

Simulations are carried out for zero angle of attack with the stitched mesh for the

conditions as given in Table 4.1. Figure 4.15 shows the wall heat flux along the

length of the body for various iterations for 20mm prism layer height with 55 cells in

which the first cell height is 5 microns. The iteration convergence is clearly seen after

20000 iterations. Figure 4.16 and 4.17 show the Mach number profiles at two typical

stations. The two locations along which the profiles are taken are also shown in the

inset. This exercise was carried out to see whether the prism layer height has any

influence on the profiles and especially in the region of transition from the

unstructured prism layer to the Cartesian mesh. It is seen that the Mach number

profiles at the two typical stations are almost same for different prism layer heights.

As expected, the boundary layer is thicker at the location 0.335 m from nose as

compared to 0.153 m from nose. Figure 4.18 shows the Mach number contour which

shows the bow shock, expansion waves and the oblique shock at the cone flare

junction.

66

Figure 4.16 Mach number profile at X = 0.335m

Figure 4.17 Mach number profile at X =0.153 m

67

Figure 4.18 Mach number contours over the HB-2 geometry

Figure 4.19 Static pressure along the wall

68

 Figure 4.19 shows the static pressure along the geometry for both Cartesian

mesh Euler solution as well as the hybrid solution. Since the flow is attached, the

pressure is impressed on the boundary layer and hence similar solution is seen for

inviscid and viscous solution. The solutions show maximum pressure at stagnation

point followed by expansion at the spherical cap and then constant pressure on cone

followed by sharp drop in pressure due to expansion at the cone cylinder junction

after which the pressure is constant in the cylindrical region. From the cylinder to

flare, the inviscid solution shows a sharper jump as compared to laminar solution due

the fact that shock wave laminar boundary layer interaction at the cone cylinder

junction makes the pressure rise gradual

 Figure 4.20 shows the comparison of computed heat flux for the HB-2

geometry with the experimental results of Kuchi-Ishi et al. (2005). The heat flux is

maximum at the stagnation point and decreases sharply as the flow expands over the

conical region and then remains nearly constant in the cylindrical region with slight

increase in the flare region due to compression. The plot shows that the results are

clearly grid independent and shows good match with the experimental data. Figure

4.21 shows enlarged view of the wall heat flux computed which are compared with

the experimental results. The present methodology, demonstrated for an axi-

symmetric geometry to obtain the near wall resolution of a laminar hypersonic flow

from a Cartesian mesh based approach, can be considered as the first step before

extending to three dimensional geometries.

69

Figure 4.20 Comparison of Heat flux along the wall for different prism layer grids

Figure 4.21 Enlarged view of the heat flux along the wall

70

4.1.4 Heat Flux Estimation for a Typical Bulbous Heat Shield

 The present hybrid solution methodology is also applied to a typical bulbous

heat shield geometry for which the shock tunnel experimental results conducted by

Srinivasa (1991) are available at hypersonic mach numbers. The geometric details are

given in Table 4.2 and figure 4.22. The free stream conditions are given in Table 4.3.

Table 4.2 Geometry details of a typical bulbous heat shield

D1 (mm) Rn/D1 θc (°) L1/D1 θb (°) D1/D2 L2/D2 L (mm)

50 0.2188 20 1.4062 15 1.1429 1.5 195

Figure 4.22 Schematic of a typical bulbous heat shield

Table 4.3 Flow conditions of the shock tunnel experiment (Srinivasa [1991])

M∞ P∞ ρ∞ T0 Twall

Re based on 50mm

diameter

α (Angle of

attack)

5.75 1320 Pa 0.019 kg/m
3

1829 K 300 K 1.143x10
5

0

 The computations are carried out with hybrid mesh consisting of prism layer

height of 20 mm stitched to the outer Cartesian mesh, for laminar flow conditions as

in the experiments. The first grid point is of the order of 11 microns with about 45

number of prism layer cells. Figure 4.23 shows the heat flux along the length of the

model which gives a reasonable match with the shock tunnel measurements. The

maximum heat flux of about 119 W/cm
2
 is computed at stagnation point against the

experimental measurement of 114 W/cm
2
. This is followed by a steep fall due to the

expansion and nearly constant in the cone portion followed by a drop in the heat flux

71

after the cone due to the expansion at the cone cylinder junction and after little

downstream of the cylindrical region constant heat flux is observed followed by

further small drop in the boat tail region. After the boat tail a slight increase in heat

flux is noticed due to compression and remains constant after the pressure recovery

on the cylinder.

Figure 4.23 Cold wall heat flux along the wall of the bulbous heat shield

4.1.5 Hybrid solution for three dimensional flows

 After reasonable validation of the hybrid solution methodology to axi-

symmetric flows, the next logical step is to extend it to three dimensional flows. The

methodology followed for three dimensional flows is same as described in Section

4.1.2. Initially an Euler solution is obtained over the body with pure Cartesian mesh.

In the subsequent step, the prism layers are extruded from the background Cartesian

mesh panels up to a certain height and the Cartesian mesh Euler solution obtained in

72

the first step is mapped to this prism layer. Subsequently, the laminar viscous solution

is carried out for this prism layer of cells alone with inviscid Cartesian mesh solution

imposed as the outer boundary condition for the prism layer cells. It is to be noted

that, in this case, the interaction of the viscous layer would not be considered with the

outer inviscid solution and hence will be similar to the boundary layer type of

solution. However if the prism layer cells are stitched to the outer Cartesian mesh

then this interaction would automatically be taken into account as in the hybrid

solution methodology described for axi-symmetric flows in the previous section.

The stitching of this prism layer of cells in a three dimensional case with the outer

Cartesian mesh is a very involved task and is planned to be taken up as future work.

However in many cases, if the prism layer is extended sufficiently to a distance

beyond the interaction region, this in itself would give good solution. In order to

demonstrate this methodology, a three dimensional flow case for the HB-2 geometry

described in Figure 4.5 is chosen for which the free stream conditions are given in

Table 4.4 below.

Table 4.4 Free stream conditions for flow over HB-2 geometry at angle of attack from

 Kuchi-Ishi et al (2005)

P0 (MPa) T0 (K) M∞ P∞ (Pa) ρ∞ (kg/m
3
) T∞ (K)

Re(1X10
5
) based on

core dia α (deg) Twall (K) U∞ (m/s)

4.021 1040.7 9.65 114.7 0.00719 55.6 2.85 15 300 1441.9

 In the first step, an Euler solution is obtained for the pure Cartesian mesh for

the free stream conditions at angle of attack 15 degrees as shown in figure 4.24. In the

next step, unstructured prism layer is generated from the Cartesian mesh panels on

the body for a distance of 40mm in the normal direction from the wall with 45

numbers of prism layer cells as shown in figure 4.25 and the Euler solution is mapped

to the to the unstructured prism layer. Subsequently, solution of laminar Navier

Navier-Stokes equation is carried out for the prism layer alone with Euler solution

boundary condition imposed for the outer layer of prism cells.

73

Figure 4.24 Inviscid solution obtained from Cartesian mesh for HB-2 geometry at 15

 degree angle of attack

Figure 4.25 Rectangular adaptive Cartesian mesh with extruded prism layer at section

 z=0.0

74

Figure 4.26 Heat flux along HB-2 geometry at 150 angle of attack

 Figure 4.26 shows the non-dimensional heat flux plotted along the sphere cone

cylinder flare geometry. The figure shows that the computed non-dimensional heat

flux distribution along the windward side of the body with the hybrid solution

methodology shows a reasonable match with the experimentally measured data

(available only for windward side) obtained from Kuchi-Ishi et al. (2005). No flow

separation was noticed from the velocity vector information. The stagnation point is

slightly downstream of the nose cap starting point due to angle of attack effect. The

stagnation point heat flux obtained from the present computation is 20.3 W/cm
2

against the experimentally obtained value of 18.23 W/cm
2
. Also at the nose cap

starting point, the computation shows a higher non dimensional heat flux of 0.98 as

compared to the experimentally measured value of 0.95.

75

4.2 Computation of Laminar Chemically Reacting

Hypersonic Flow Using Cartesian Mesh with Near

Wall Viscous Resolution

 The methodology described in the previous section was extended to the

problems of chemically reacting hypersonic flow. Two test cases are described in the

following section wherein the comparison is made with results from other CFD codes

and limited experimental data. The first test case corresponds to 10 degree wedge at

Mach number 25, which is a typical case to validate the diffusion of chemical species

in the boundary layer. The second case is the 12.75 mm diameter sphere at Mach

number 15 which is a validation test case for the prediction of shock stand-off

distance and the temperature along the stagnation streamline. For the shock stand-off

distance, the experimental shadowgraph obtained by Lobb (1964) is also available.

4.2.1 Chemically reacting hypersonic flow over a 10 degree wedge

 Chemically reacting hypersonic flow over a 10 degree wedge of 3.5 m length at

Mach number 25.3 is computed with the following flow conditions as used by

Alavilli (1997) who performed computations using the EURANUS (European

Aerodynamic Numerical Simulator) code. EURANUS code was developed by

Hirsch et al. (1991) and was extended to simulate thermochemical non-equilibrium

flows on structured grids by Alavilli (1997). EURANUS is a Multigrid Multiblock

numerical flow solver that solves Reynolds averaged Navier Stokes equation based

on cell centered approach. The inviscid flux can be either calculated by upwind

method or by central differencing with artificial dissipation of Jameson. For this test

case the computations from EURANUS were quoted by Alavilli (1997) to be

performed with central numerical flux formulation with explicit four stage Runge-

Kutta scheme. The convergence acceleration is achieved through local time stepping

and Implicit Residual smoothing. The code has the capability to solve both chemical

and thermal non-equilibrium with Chemistry models of Park-85,Park-87 and Dunn-

Kang models.

76

Flow is assumed to be in thermal equilibrium and chemical non-equilibrium

Air chemistry model used is 7 species Park 87 models developed by Park (1987)

3.20=∞p Pa , 253=∞T K

8100=∞V m/s, Reynolds number = 490000 based on length

1200=wallT K , Mach number =25.3

Free stream mass fraction of N2 =0.79

Free stream mass fraction of O2=0.21

Wall is assumed non-catalytic

Figure 4.27 shows the wedge with the Cartesian mesh and prism layer. A small

extension is provided upstream of the wedge to facilitate the implementation of

boundary conditions. Mirror wall symmetry is imposed on this extension. Supersonic

inflow conditions are imposed on the left boundary and supersonic outflow

conditions at the top and right boundaries. In the small extension region in the front

of the wedge, symmetry boundary conditions are imposed and isothermal, non-

catalytic wall is imposed on the wedge wall. The 7 species considered are

eNONONOON ,,,,,, 22

+ and Species under-relaxation of Palmer as described in

Section 3.6 is used with under-relaxation parameter of 0.001 which will prevent the

run-away of chemical reactions. For a meaningful code to code comparison, Schmidt

number of 0.5 is used for the calculation which is the same value used by Alavilli

(1997) for this test case. A 70X40 pure Cartesian mesh is generated and prism layer is

extruded from the background Cartesian mesh and stitched with the outer Cartesian

mesh as shown in figure 4.27. Figure 4.28 shows the temperature profile at the exit

of the wedge for different number of prism layer cells. The prism layer height is 25

cm with first grid point of about 0.2 mm for 101 number of prism layer cells and

0.3mm for 36 number of prism layer cells. It can be seen that although the thermal

boundary layer is same for all the numbers of prism layer cells, the wedge shock is

more sharply captured with larger number of prism layer cells. Hence 101 number of

prism layer cells is chosen for computations. Since grid adaptation capability for

prism layer cells is not present in the existing code, the number of cells in the prism

77

layer had to be increased in an offline fashion and separate computations were carried

out. Figure 4.29 shows the convergence of the thermal boundary layer at the exit of

the wedge with iterations. It can be seen that by 20000 iterations the solution is

almost converged. The CFL number used for the fully explicit computations is 0.5.

Figure.4.30 shows the temperature profiles at the exit section of the wedge for perfect

gas and real gas compared with the results of EURANUS (European Aerodynamic

Numerical Simulator) code. As expected, the real gas temperature is lower in

comparison to perfect gas temperature because of the endothermic chemical reactions

caused by dissociation of molecular Oxygen and Nitrogen making the real gas cooler.

Good agreement with the EURANUS computation by Alavilli (1997) is seen which

uses a numerical scheme of central differencing with artificial dissipation. The shock

captured by the present code is sharper because of more number of grids used as

compared to the EURANUS code which used 65X65 structured mesh with almost

same domain as in the present computation.

Figure 4.27 10 degree wedge with hybrid prism layer stitched with outer Cartesian mesh

However, there is a small over-shoot of temperature at the shock location for the

present computation possibly because of the effect of numerical scheme and the grid.

Since the peak boundary layer temperature is quite large of the order of 5500 K

which is greater than the temperature required for start of dissociation for Oxygen

and Nitrogen, atomic Oxygen, atomic Nitrogen and Nitric oxide are formed. Figure

78

4.31 shows the mass fraction of Nitric Oxide and figure 4.32 shows the atomic

Oxygen at the exit section of the wedge. It is to be noted that, although an isothermal

wall temperature of only 1200 K is imposed on the wall, the presence of atomic

oxygen and Nitric oxide is seen. This is caused due to the diffusion of Nitric oxide

from the hotter regions of the boundary layer towards the wall. The comparison of

species mass fraction profile at the wedge exit section with that of the results of

EURANUS code by Alavilli(1997) is good. It is to be noted that species mass

fraction show a smooth variation from hybrid prism layer zone to the Cartesian mesh

zone

Figure 4.28 Temperature profile at the exit section of wedge for different number of

 cells in prism layer

79

Figure 4.29 Convergence plot of temperature profile at the exit section of wedge

Figure 4.30 Temperature profile at the exit section of wedge compared with the

 results of EURANUS code from Alavilli (1997)

80

Figure 4.31 Comparison of Nitric oxide mass fraction profile at the exit section of

 wedge with EURANUS results from Alavilli (1997)

Figure 4.32 Comparison of atomic oxygen mass fraction profile at the wedge exit

 with EURANUS results from Alavilli (1997)

81

Figure 4.33 Comparison of heat transfer coefficient along the wedge with EURANUS

 results from Alavilli (1997)

Figure 4.33 shows the non-dimensional heat transfer coefficient distribution along the

wall compared with the results of EURANUS code. The heat flux is highest at the

leading edge because of the shock being very close to the surface. A good match is

observed in the heat flux also with the EURANUS code as shown in the figure.

4.2.2 Chemically reacting hypersonic flow over Lobb sphere

 Understanding the flow phenomenon at high Mach numbers for blunt bodies is

very essential as most of the space recovery capsules that reenter the atmosphere have

such blunt body shapes so as to reduce the heat flux on the body as well as to have

higher drag to reduce the velocity. The heat flux on the blunt body is chiefly

governed by the shock stand-off distance, the shock strength and the chemical

reactions that occur behind the shock. To understand the shock shapes ahead of the

spherical blunt bodies, Lobb (1964) carried out a series of experiments on spheres of

various diameters and made shock shape measurements. One such experimental case

is chosen for validation of the present approach and comparison made for

82

experimental shock stand-off distance and with other CFD results available in

literature.

Following are the flow conditions for 12.7 mm diameter Lobb sphere

Free stream Mach number=15.3

664=∞p Pa ∞T = 293 K

5280=∞V m/s, Reynolds number = 14600 based on radius

1000=wallT K

Free stream mass fraction of molecular Nitrogen is 0.79 and Oxygen is 0.21.

 Figure 4.34 shows the hybrid grid for the Lobb sphere with 2mm prism layer

height with 40 prism layers and with a first grid point of 11 microns. Chemistry

model of Park-87 is used and diagonal point implicit scheme is used to calculate the

species production rates of species in thermal equilibrium and chemical non-

equilibrium and a Schmidt number of 0.5 is used. The chemistry model and the

Schmidt number values are the same as that used by Alavilli (1997) which will

provide code to code comparison. At the inflow boundary, supersonic inflow

condition is used and at the top and right boundaries supersonic outflow conditions

are used and at the symmetry plane, symmetry boundary condition is used. .

Figure 4.34 Hybrid mesh for Lobb sphere

83

Figure 4.35 Convergence plot of temperature along stagnation line for Lobb sphere

Fig.4.36 Temperature along the stagnation stream line for Lobb sphere

84

 Figure 4.35 shows the convergence plot of temperature along the stagnation

line which is of interest for this problem and it is seen that by 20000 iterations the

solution has reached convergence. Figure 4.36 shows the temperature along the

stagnation stream line. The shock stand-off distance for perfect gas simulation is

much more than real gas. This is because, in the case of high temperature real gas

effects, the dissociation of molecular nitrogen and molecular oxygen reduces the

temperature of the gas, which in turn increases the density of the mixture of species.

Owing to the increased density, more mass can be pushed through the stream tube

resulting in forward movement of the shock to satisfy the continuity equation. Also

the prediction of shock stand-off distance from EURANUS code by Alavilli (1997),

from LAURA code by Gnoffo (1989) and from the present code are almost same,

although there is some variation in the peak temperature predicted using LAURA.

The EURANUS code uses the central differencing with artificial dissipation

numerical scheme and LAURA employs upwind biased point implicit line relaxation

algorithm, and one of the reasons for these differences in peak temperature between

various solutions could be attributed to the differences in numerical schemes. The

predicted shock position is quite close to the experimentally measured value by Lobb

(1964).

 From the above validation cases, it can be concluded that Cartesian mesh based

hybrid approach for near wall viscous resolution can be used to compute non-

equilibrium chemically reacting hypersonic flows.

4.3 Computation of High Speed Flows with

 Combustion

 While high speed chemically reacting flow encountered during reentry of space

vehicles from outer space involves mainly endothermic reactions because of

dissociation reactions, the chemically reacting flow in air-breathing propulsion is

exothermic in nature. A comparative study will show that, the computations of flows

involving endothermic reactions are less problematic to deal with as compared to

strong exothermic reactions like that of Hydrogen-Oxygen combustion. This is

85

because, in the case of an endothermic reaction during reentry, the temperature falls

after dissociation process which in turn lowers the dissociation reaction rates and

eventually leading to stabilization of the system. On the other hand, for exothermic

reaction, the abrupt release of energy would lead to sharp rise in temperature which

will further increase the exothermic reaction rates leading to run-away conditions if

not properly handled. Flow field in a Scramjet engine involves supersonic

combustion of Hydrogen-Air in the combustion chamber and the prediction of

ignition delay in the Hydrogen-Oxygen combustion systems is an important aspect of

the combustion prediction process. In order to validate the prediction of ignition

delay occurring during Hydrogen-Oxygen combustion process, a shock-induced

combustion test case, for which the experiments carried out by Lehr (1972) are

available, is chosen.

4.3.1 Prediction of shock-induced combustion for Lehr cylinder

 Lehr (1972) performed experimental studies with 15 mm diameter hemisphere-

cylinder fired through stoichiometric Hydrogen-Oxygen and Hydrogen-air mixtures

at sub and super detonative speeds which involves shock-induced combustion

kinetics. Computations are carried out with Cartesian mesh with a hybrid prism layer

for the following experimental flow conditions of Lehr (1972);

Free stream Mach number =3.55

Free stream pressure = 186 Torr

Free stream temperature = 292 K

Free stream species mass fraction of Hydrogen = 0.1112

Free stream species mass fraction of Oxygen =0.8888

Angle of attack = 0 degree

Flow is considered laminar and in chemical non-equilibrium and the wall is treated as

adiabatic and non-catalytic.

 The above conditions pertain to sub-detonative speed and the flow phenomenon

is convection dominated. The measured detonation speed of stoichiometric 22 OH −

is 2550 m/s. 7-species 7-reaction model of ONERA as given in Table 2.7 of Section

86

2.6 is used. The chemical species considered are 2222 ,,,,,, NOHOHOHOH for the

finite rate chemical reactions. Point-Implicit scheme as described in Section 3.5 is

used to overcome the stiffness of species conservation equations. The boundary

condition on the left is the supersonic inflow condition and at the symmetry plane,

symmetry boundary condition is applied. At all other boundaries, supersonic outflow

condition is applied and fully explicit scheme with CFL of 0.l is used. The solution

converged in about 10000 iterations as seen in figure 4.37. The adiabatic wall

conditions are expected to converge faster than the isothermal wall conditions, since

thermal boundary layer formation is not needed. Figure 4.38 shows the temperature

plot over the Lehr cylinder which shows a temperature rise at the shock front and

another temperature rise at the combustion front. Although immediately after the

shock, the temperature is beyond the ignition temperature of 22 OH − mixture, a

finite time is needed for the ignition to occur as there are several elementary steps for

the reactions to complete and form water vapour. These are the chain initiation, chain

propagation, chain branching and chain termination reactions. By the time these

reactions occur, the flow would have reached very near the spherical wall. Figure

4.39 shows the temperature along the stagnation stream line. The shock position and

the combustion initiation position can be clearly seen. The distance between the two

fronts is the incubation length caused due to ignition delay which is also clearly

visible in the experimental shadowgraph from Lehr (1972) shown in the inset.

Computations show a good match with the experimentally observed shock and

combustion front location. Although the post shock temperature is high enough to

cause reactions, the non-equilibrium effects subdue effects in the incubation period.

Figure 4.40 shows the water vapour mass fraction showing the region of combustion

and figure 4.41 shows the mass fraction of various species along the stagnation

stream line. Through the above validation case good confidence is obtained for

computation of non-equilibrium Hydrogen-Oxygen combustion.

87

Figure 4.37 Convergence plot of temperature along stagnation line for Lehr cylinder

Figure 4.38 Temperature plot for Lehr cylinder at M=3.55 in stoichiometric mixture

 of Hydrogen-Oxygen

88

Figure 4.39 Temperature along the stagnation stream line computed for Lehr cylinder

 at M=3.55 along with positions of shock and combustion front from

 experiments by Lehr (1972)

Figure 4.40 Water vapour mass fraction plot for Lehr cylinder at M=3.55

Experimental

Shadowgraph

from

Lehr(1972)

89

Figure 4.41 Mass fractions of various species along the stagnation stream line for Lehr

 cylinder at Mach number 3.55

4.4 Computation of High Speed Turbulent Flows

 with Combustion for Scramjet Engines with

 Cartesian Mesh

 Computation of high speed turbulent flows with combustion in Scramjet

engines is extremely challenging because of the complex geometries and flows

involved. Cartesian mesh has considerable advantage in handling the complex

geometry and hence developing a capability to solve such flows on a Cartesian mesh

has a huge advantage from the industrial perspective in terms large reduction in turn

around time from geometry to solution. Also since such flows are convection

dominated, the Cartesian mesh would be able to capture the flow features with a good

adaptive mesh that can capture the strong gradients arising from shocks and shear

layers. It is to be noted that, in most of the cases the interest in such high speed flows

90

as applied to Scramjet engines is to obtain the thrust delivered by the engine and

hence it is not always necessary to get near wall quantities like heat flux directly from

computation. Under such circumstances, the Cartesian mesh with suitable wall

functions can make good estimates of pressures obtained from high speed turbulent

combustible flows. Hagemann et al. (1996) has carried out Cartesian mesh perfect gas

computations on 3D-Plug-Cluster nozzle configurations to obtain the pressure

distribution in the nozzle using a modified wall function approach for εκ −

turbulence model adapted to Cartesian mesh and has shown good comparison with

experiments. Same approach that is followed for the existing turbulent perfect gas

solver is also used here for computation of high speed turbulent flows with

combustion and is explained below.

4.4.1 Modified wall function approach for εκ − turbulence model

 with Cartesian mesh

 The attached flow turbulent boundary layer at the wall has three distinct

regions, namely, laminar sub-layer, log layer and the defect layer. In order to

describe the nature of the flow near the wall, it will be useful to define the following

non-dimensional velocity and distance.

 Non-dimensional wall velocity = τuu / = +
u (4.1)

Where τu is the friction velocity =
ρ

τ wall (4.2)

Non-dimensional wall distance =
ν

τyu
= +

y . (4.3)

where y is the distance of first grid point from the wall and ν is the kinematic

viscosity of the wall cell.

 The layer closest to the wall is the laminar sub-layer region wherein the non-

dimensional velocity (τuuu /=+) varies linearly with non-dimensional wall distance

+
y i.e. ++ = yu and this expression is usually used up to a non-dimensional wall

distance of 10. In this region, the turbulent stresses are very small and the flow is

dominated by molecular viscous stresses. Beyond the laminar sub-layer, there is a

91

region of the flow wherein the inertial terms are quite small and yet it is sufficiently

far off to have molecular viscous stresses very small compared to turbulent stresses.

This region is called the log-layer and usually applied for region of +
y between 10

and 1000. In this region a well known logarithmic relationship exists between non-

dimensional velocity and non-dimensional wall distance as given below

Byu += ++ ln
1

η
 where =η 0.41=Karman constant and B=5.0 (4.4)

While solving the Reynolds-Averaged Navier-Stokes equations (RANS) with εκ −

turbulence equations on very fine mesh near the wall, it is found that the standard

εκ − model makes the convergence of the numerical solution very slow due to the

stiffness of the equations. Hence wall functions like the one described above are

utilized. In this procedure, the flow structure between the wall and the first grid point

is assumed to be similar to a boundary layer flow which would have the same

velocity as the velocity of the first grid point. Knowing the velocity 1u at the first grid

point 1y from the wall, Equation (4.4) can be solved iteratively to obtain the friction

velocity τu . Once the friction velocity is obtained, the non-dimensional wall distance

can be calculated. If the calculated wall distance exceeds 1000 then the mesh need to

be refined i.e. the first grid point distance has to be made smaller for the law of the

wall to be valid. Once the wall shear stress is obtained for +
y values less than 1000,

the value of kinetic energy of turbulence, κ and the turbulent kinetic energy

dissipation rate ε are obtained at the first grid point using the following expression

based on general experimental observation of turbulence equilibrium in the near wall

region, where production of turbulence is equal to dissipation

2/1

2

1

µ

τκ
C

u
= and

1

3

1
y

u

η
ε τ= (4.5)

The above methodology can be applied to grids that have a constant wall normal

distance to the first mesh, which needs some sort of a structured mesh arrangement

near the wall. Hence the above approach cannot be directly applied to a Cartesian

92

mesh which is locally adapted to the body and does not have a constant wall normal

distance throughout the flow field. Hence a modified wall function approach, as

described by Hagemann et al. (1996), and which is available in the existing Cartesian

mesh perfect gas turbulent flow solver is also used for the present computation of

turbulent flows with combustion. A brief description of the modified wall function is

given below.

 In the modified wall function approach, a semi-empirical model to evaluate the

influence of boundary layer on the main flow is applied without resolving the main

structures and exact velocity profiles of the boundary layer. The flow quantities for

the turbulent kinetic energy κ and its dissipation ε are specified at the wall, instead

of being specified at a fixed wall distance +
y away from the wall. The wall shear

stress is estimated by the expression

iifwall uuc ρτ −= (4.6)

Where iu is the velocity of the cell adjacent to the wall i.e. partial cell and is in

principle equal to the slip condition for Euler solutions, ρ is the density of the partial

cell and fc is an equivalent skin friction coefficient which varies between 0.003 and

0.03. Based on the application problems on high speed internal flow in nozzles by

Hagemann et al. (1996) it is found that a value of 0.003 gives good comparison with

experiments and the same value is used for the present Scramjet computations.

Boundary conditions for the momentum equations are specified in terms of fluxes and

not of velocities for the partial or wall cells. Skin friction effect is taken in to account

by way of subtraction of wall shear stress effect calculated by Equation (4.6) from the

momentum equations. As for the turbulent quantities, the Dirichlet conditions is set

for the dissipation at the wall as given below by Hagemann et al. (1996)

lp

wall
By

C

µ

ρκ
ε

µ
2

= Where =py 80 and B=0.42 (4.7)

For the turbulent kinetic energy Neumann condition is applied. The modified wall

function approach has been applied to several turbulent perfect gas flows on

93

Cartesian mesh and has given good results and reported by Chakraborty et al. (2003),

Manokaran et al.(2003), and Singh et al. (2009).

4.4.2 Computation of turbulent flow with combustion for a typical

Scramjet combustor

 Computation of non-equilibrium chemically reacting turbulent flow with

combustion was carried out for a typical Scramjet combustor in connected pipe mode

which has strut based injection. For this connected pipe mode ground test,

experimental results are already available and mentioned by Gnanasekar et al (2009).

Figure 4.42 Typical Scramjet combustor with strut based injection

 Struts provide fuel injection and aid the mixing of Hydrogen with air. Since in

the ground test, the stagnation temperature conditions were achieved by burning

ethanol the air entering the combustor was vitiated with Carbon-dioxide and water

vapour. Computations were carried out for the connected pipe mode test conditions

with vitiated air and results of pressure distribution along the wall for an air fuel

equivalence ratio is compared with experimental results. In the connected pipe mode

test conditions, the facility nozzle expands the working medium to conditions

expected at the entry to the combustion chamber of the engine and the flow

discharged from the nozzle enters the combustion model directly. In this testing

procedure, the engine inlet and nozzle are absent and hence their influence, especially

that of the air intake is absent.

94

 Section Z=0.072 m

Section XX at X=0.139 m Section YY at Y=0.0305 m

Figure 4.43 Geometry of the Scramjet combustor

 Figure 4.42 shows the isometric view of the Scramjet combustor with the struts

and the coordinate system shown. The origin of the coordinate system is at the inlet

of the combustor although for clarity sake in figure it is shown at the exit. Figure 4.43

shows the geometrical details of the tested Scramjet combustor with strut based

injection. Gaseous hydrogen is injected through 24 holes of 2.5 mm diameter located

in the strut base at angle of 16 degrees from the horizontal. The struts provide

streamwise vortices which will aid in the mixing of gaseous hydrogen and incoming

vitiated air. Figure 4.44 shows the schematic of the test set up of Scramjet connected

pipe mode test. The high temperature high pressure vitiated air from the heater of

circular cross section is taken through an interface adaptor to Scramjet combustor

having rectangular cross section. The flow after the adaptor enters the nozzle

95

(100mm in length) and which provides Mach number 2 flow to the strut based

combustor. It is to be noted that the leading edge of the strut is not simulated in this

test. The combustor consists of one full strut and two half struts without leading edge,

a constant area duct portion followed by a five degree divergent. The combustor end

is open to atmosphere and has ambient conditions. The stagnation pressure,

stagnation temperature, and mass fractions are measured in the heater exit. Static

pressure at the end of the nozzle is also measured and is used as the entry condition to

the combustor for the CFD computations. The facility nozzle is of about 100 mm in

length and is not simulated in the present simulations since the length of the facility

nozzle is small and the influence of its boundary layer on the flow is not expected to

be significant.

Numerical computations are performed from the exit of the nozzle to the combustor

exit. Supersonic inflow conditions are imposed corresponding to the nozzle exit

conditions at the start of the combustor and since no flow separation is seen at the exit

of the combustor from the tests for the present experimental conditions, supersonic

outflow conditions are imposed at the combustor exit. Only one half of the geometry

is considered for computations with symmetry conditions imposed in the symmetry

plane. All other boundaries are wall boundaries.

The computation was done for the following test conditions

Flow rate of vitiated air = 2.5 kg/s

Total flow rate of gaseous Hydrogen from 24 holes = 56.92 gm/s (Equivalence ratio

φ =0.778)

Mass fraction of Oxygen = 0.2327, Mass fraction of Nitrogen = 0.5691

Mass fraction of Carbon-dioxide = 0.1215, Mass fraction of water-vapour =0.0767

Incoming vitiated air pressure = 1.267 bar

Incoming vitiated air density = 0.42 kg/m
3

Temperature of incoming vitiated air = 1048 K

Stagnation pressure = 9.66 bar

Hydrogen injection pressure =6.5 bar

Mach number of incoming vitiated air =2.0

96

Figure 4.44 Schematic of the Scramjet test combustor

 The air intake brings down the velocity of the free stream flow from hypersonic

Mach numbers to supersonic Mach numbers through oblique shock compressions

with loss in total pressure. The real challenge in the intake design is to achieve this

reduction in velocity with maximum pressure recovery and at the same time with

minimum total pressure loss. The static temperature at the inlet of combustor due to

intake compression for a hypersonic air intake would be normally more than the

ignition temperature of Hydrogen-Air mixture and hence the auto ignition would take

place. For the above conditions, the numerical simulation for Hydrogen-vitiated air

combustion with turbulent flow without turbulence-chemistry interaction was carried

out. Boundary conditions for the geometry shown in fig.4.44 is as follows

Xmin – Supersonic inflow

Xmax – Supersonic outflow

Zmin – Symmetry

Zmax – Wall

Ymin – Wall

Ymax –Wall

 The wall is considered adiabatic. 8-species (22222 ,,,,,,, CONOHOHOHOH)

and 7- reactions ONERA chemical kinetics model is used as given in Table 2.7 of

section 2.6. The chemical species 2N and 2CO are considered inert to reactions

97

which is a good approximation for temperatures less than 2500 K as in the present

case. Standard κ -ε turbulence model is used with a turbulent Prandtl number of 0.92

and inlet turbulence intensity of 1% and inlet turbulent viscosity taken same as

laminar viscosity which is widely used inflow conditions for turbulent quantities. The

computations were performed for only one half of the combustor since there is a

geometrical symmetry existing in Z direction as shown in Figure 4.44.

 Point implicit scheme is used for computing the species production terms. The

computations were carried out with a CFL number of 0.1. Initial grid used was 70 X

50 X 22 with three levels of oct-tree division near the body to capture the geometry

properly and this resulted in a total number of cells of 122600. The solution was

refined after every 15000 iterations and the refinement criterion was based on

differences in flow parameter between adjacent cells. To perform this refinement, a

non-dimensional flow gradient parameter cellψ is defined as follows

∑
=








 ∆
+

∆
+

∆
=

Neighbours

i m

i

m

i

m

i

cell
V

V

P

P

1 ρ

ρ
ψ (4.8)

Where

iP∆ is iPP
cell

− is the absolute value of difference in pressure between the cell and

its th
i neighbour.

iρ∆ is icell
ρρ − is the absolute value of difference in density between the cell and

its th
i neighbour.

iV∆ is iVV
cell

− is the absolute value of difference in resultant velocity between the

cell and its th
i neighbour.

mP = icell PP ,max() is the maximum value of pressure between the cell and its th
i

neighbour and similar expression is used to get mρ and mV .

If the value of cellψ exceeds a user-defined value, which is called as the flow

refinement criteria then the particular cell would undergo oct-tree division. The value

98

of flow refinement criteria used is 0.5 for the present problem which was good

enough to refine the flow gradients. The solutions underwent three levels of flow

gradient based solution adaptation. Figure 4.45 shows the plot of Mach number at a

section Y=47 mm. Although the simulations are carried out only for half the

geometry, the full section is shown by reflecting the solution in Z direction.

Figure 4.45 Mach number field at section Y= 0.047 m for equivalence ratio 0.778

4.46 Pressure distribution at section Y=0.047 m for equivalence ratio 0.778

99

Figure 4.45 shows the inlet Mach number of 2.0 in the connected pipe mode

condition getting reduced as the combustion occurs. Figure 4.46 shows the pressure

distribution at a section 47 mm above the bottom wall and the pressure rise due to

combustion can be very clearly seen behind the strut base. The hydrogen that is

injected through the holes of the strut mixes with the air in the recirculation zone

behind the strut. Thus the strut base is the one that holds the flame which has

relatively lower velocities as compared to the other regions. It is to be noted that in

the above mentioned computations the interaction of turbulence with the chemical

reactions are not considered. In other words, the turbulent flow models will give

mean temperature and mean density based on RANS computations which is used to

calculate the species production rates. In reality there would be fluctuating

temperature and fluctuating species concentrations which would give rise to

fluctuating species production rates. However the above turbulence-chemistry

interaction effects would be dominant only if the reaction time scales and turbulent

mixing time scales are of the same order. If the turbulent mixing time scales are much

smaller than the reaction time scales then the flow is mixing dominated and the

turbulent chemistry interactions would not play a dominant role. It would be shown,

later in this section that even with this approximation, the match of pressure

distribution with that of the experimental results are quite good indicating that the

flow is mixing dominated in the present case. Figure 4.47 shows the initial grid of

122000 cells used for the solution. As the solution progresses, grid adaptation is done

after every 15000 iterations based on flow gradients. Figure 4.48 shows the final grid

after adaptation which is about 4.4 million cells and the zoomed portion of the

combustion zone showing finer mesh. Figure 4.49 shows the pressure distribution

along the combustor top wall for different grids. Plot shows that the results are grid

independent by the second level of grid refinement when the cells are about 1.83

million. Figure 4.50 shows the water vapour mass fraction at section 47 mm from the

bottom wall.

100

Figure 4.47 Initial grid with 122000 cells with zoomed portion near strut

Figure 4.48 Final grid with 4.4 million cells after 3 levels of flow adaptation with

 zoomed portion near strut shown

101

Figure 4.49 Grid independence plot for centerline pressure

Figure 4.50 Mass fraction of water vapour at a section 47 mm from bottom wall

102

It can be seen that the gaseous hydrogen has to travel certain distance before the

multiple step reactions are completed because of the non-equilibrium chemical effects

and hence the water vapour mass fraction is very small in this region.

 Figure 4.51 shows the Hydrogen mass fraction at section 47 mm from the

bottom wall. It can be seen that most of the hydrogen has undergone mixing and

combustion in the portion behind the strut within the constant area region of the

combustor. Figure 4.52 shows the combustion efficiency along the combustor length.

Cumulative combustion efficiency is defined as the water vapour mass up to a at a

particular section to the ideal water vapour mass that would exist at that section if

total combustion would have taken place. Ideally the water vapour mass formed for

complete combustion should be 9 times the Hydrogen mass which in the present case

turns out to be 512.82 gm. Most of the combustion takes place at the base of the strut

in the constant area section. Although the combustion process in Scramjet is

considered as supersonic, most of the combustion actually takes place at low speed

regions behind the struts. However, the mass averaged Mach number at any section

which is defined as the ratio of product of mass flow rate and the Mach number at

each cell of the section summed over all cells of the section to the total mass flow rate

in the section, was seen to be more than one.

 Figure 4.53 shows the pressure along the top wall compared with that of the

experimental results from the connected pipe mode experimental results. The

computation is able to capture all the trends of the experiments. The position of peak

pressure is well captured and only very small difference in the magnitude is noticed.

Although the turbulence-chemistry interactions are not modeled, the match is quite

good. This could be because in the present case, the mixing time and the chemical

reaction time scales are not of the same order and hence the turbulence-chemistry

interactions are not significant. An estimate of the mixing time of the large scale

structures which is ratio of characteristic mixing length to characteristic flow velocity

show that the value is about 15 µ sec (0.02/1400) for this problem and the reaction

103

time of the Hydrogen air combustion is of the order of 50-70 µ sec from Chakraborty

et al. (2000). The Damkohler number based on the ratio of mixing time to reaction

time is then of the range 0.2 to 0.3.

Figure 4.51 Hydrogen mass fraction at a section Y=47 mm from bottom wall

Mass fraction of

Hydrogen at section

X=0.20 m Mass fraction of Hydrogen at section X=0.15 m

104

Figure 4.52 Cumulative combustion efficiency plot along the combustor

Figure 4.53 Computed non-dimensional pressure along the center line of bottom wall

 compared with experimental results

105

 In the turbulence-chemistry interaction modeling, the probability of fuel and

oxidizer coming together by suitable probability distribution function is taken into

account and this consideration would be to reduce the pressure rise as compared to

the computations without considering this effect. The experimental measurements

also had the stagnation temperature measurements at the exit. Figure 4.54 shows the

plot of the stagnation temperature compared with that of the experiments at the

measurement location. The measurements were made at center, Y=0.048 m along the

Z direction at points 0.105 m,0.09 m and 0.06m (symmetry plane) as shown in figure

4.54. The predicted total temperature matched reasonably well with the experiments

considering the fact that the experimental accuracy in measurement of total

temperature was of the order of 100 K. The computed total temperature is obtained

from the total enthalpy and the species concentrations at the exit. The total

temperature is more at the exit which is in line with the strut base because of more

mixing and hence good combustion. Whereas for the region between the struts, the

mixing and combustion is less and the water vapour mass fraction is less thereby

giving lesser total temperature between the struts. Figure 4.55 shows the static

temperature at a section Y=47 mm from the bottom of the strut. The plot clearly

shows that the combustion is dominated at the strut base with increased temperature

of the fluid and gets convected downstream. Figure.4.56 shows the total pressure plot

at the exit of the combustor. The total pressure plot shows reduction in total pressure

in regions of combustion as expected. Figure 4.57 shows the Mach number plot at the

exit section of the combustor. The regions which are in the same line as the strut base

have lesser Mach number due to more combustion as expected. It is to be noted that

the experiments conducted are in connected pipe mode and do not simulate all the

flight conditions that the flight combustor would encounter.

 In order to understand the effect of performance on the Scramjet combustor due

to differences in the flow conditions encountered by the actual flight combustor as

compared to the connected pipe mode conditions, numerical experiments are

performed to study this effect and are described in the next section.

106

Figure 4.54 Stagnation temperature plot at the exit section of the combustor with

 available experimental points at three positions

Figure 4.55 Static temperature plot at a section Y=47 mm

107

Figure 4.56 Total pressure plot at the exit of the combustor

Figure 4.57 Mach number plot at the exit section of the combustor

108

4.5 Effect of Connected Pipe Mode Test Conditions on

 the Performance of Scramjet Combustor

 Scramjet combustor tested in ground conditions in connected pipe mode has

limitations in simulating all the parameters related to flight conditions. To simulate

the hypersonic flight conditions in ground tests, stored high pressure air is heated

before it is expanded through the nozzle. Total pressure and stagnation temperature

would correspond to that of the flight. Generation of high enthalpy flows can be done

through the methods of shock tube heating, storage heating, arc heating, electric

heating and combustion heating. There are advantages and disadvantages of each type

of heating. While shock tubes produce highest enthalpy, the run times are of the order

of milliseconds only. Storage pebble bed heaters would contaminate the gas with

particulates and arc heaters contaminate with oxides of Nitrogen. Although electric

heating produces clean test gas, the power requirements would be prohibitive.

Combustion heating through burning hydrogen or hydrocarbons offers low cost

method of generating high enthalpy although in this process also the air gets vitiated.

Thus in this method of heating the inlet high enthalpy air will have combustion

products like Carbon-dioxide and water vapour. Owing to this, the effects of vitiation

in the ground tests have to be understood properly to extrapolate the connected pipe

mode test results to flight conditions. Effect of vitiation has been reported by Pellet et

al. (2002), Goyne et al. (2007) and very recently by Luo Feiteng et al. (2012). To

understand the effect of the connected pipe mode test conditions on the combustor

performance a numerical experiment was conducted by Gnanasekar, Ashok et al.

(2009) to study the effect of inlet static pressure and vitiation and is described below.

Combustor geometry and flow details

Figure 4.58 shows the combustor geometry considered for conducting the study. It

has a rectangular cross section with constant area region followed by divergent area

region. Length of the combustor is 14.3H and width is 4H where H is the height of

the combustor at the entry. Fuel is injected through three equi-spaced strut

configuration similar to the one used and reported by Scherrer et al. (1995) . Struts

109

have leading edge in the front and ramps in the rear from the base through which the

fuel is injected through discrete circular holes in the axial direction.

Figure 4.58 Combustor geometry to study the effects of inlet pressure and vitiation

 Hydrogen gas is injected at sonic speed and at stagnation temperature of 300 K.

Pressure of injection is varied to suit the fuel equivalence ratio. Air enters the

combustor at Mach number 2.7 and at a stagnation temperature of 1920 K. This

corresponds to the flight Mach number of 6.5. The composition of incoming air

considered for the study is Nitrogen with mass fraction of 0.78 and Oxygen with

mass fraction of 0.22. However for vitiation studies the vitiated air with water vapour

and Carbon-dioxide is considered.

Computational details

Computation domain and the initial grid is shown in figure 4.59. An initial grid

100X100X50 is used for the study. Considering the symmetry of the combustor

configuration, only half the geometry with symmetry boundary conditions is

considered. Supersonic inflow conditions are imposed at Xmin boundary and

supersonic outflow at outflow boundary. At Zmax, the symmetry boundary is

imposed and Wall boundary conditions with modified wall function of Hagemann et

al. (1996) are imposed on all other boundaries.

110

Figure 4.59 Computational domain and initial grid

The computations were carried out till a converged grid independent solution was

obtained. The final mesh after refinement is 4.4 million and it was found that by

45000 iterations the solutions had converged.

4.5.1 Effect of inlet pressure on combustor performance

 Computations were carried out for a nominal combustor entry pressure of 0.35

bar which corresponds to a typical flight Mach number of 6.5 with 60 kPa free stream

dynamic pressure and pressure recovery of air intake of about 15%. The nominal

static pressure was varied by 15% to study its effect on performance. Thus the

simulations were carried out for static pressure of 0.35 bar, 0.52 bar and 0.23 bar and

for two fuel equivalence ratios (ER) 0.42 and 0.65. Figure 4.60 shows the plot of

Hydrogen consumption along the combustor length. It can be seen that more than

90% of Hydrogen is consumed in all cases over the entire length of the combustor

with most of the consumption taking place immediately downstream of the strut.

However for the case of inlet static pressure of 0.23 bar with fuel equivalence ratio of

0.42, Hydrogen consumption increase is delayed although it picks up later. This is

because at lower static pressures, the reactions rates are slower due to lower levels of

concentrations and thereby having less number of collisions in the molecular level to

cause reactions. This causes the slower water vapour formation for lower pressure

and equivalence ratio.

111

Figure 4.60 Hydrogen consumption along the combustor for various inlet static

 pressures and fuel equivalence ratios

. Since the inlet pressure at 0.23 bar for equivalence ratio 0.42 showed this

behavior, the computations were performed at still lower pressures for higher

equivalence ratio of 0.65 to see whether the same phenomenon is noticed there also.

Figure 4.61 shows that at higher equivalence ratio of 0.65 also, the same observation

of slower Hydrogen consumption is seen as in the case of ER 0.42 although for

pressures 0.17 bar and below. This is because for higher fuel equivalence ratio, to

have the same level of concentrations as lower equivalence ratio, the static pressures

have to be lower. Figure 4.62 shows the Hydrogen converted to water vapour

expressed as percentage which is the ratio of actual OH 2 formation from

the 2H injected to the OH 2 formed if entire 2H is converted to OH 2 (i.e total 2H

flow rate X 18/2). The reduced pressure gives rise to a slower combustion and

112

reduced formation of water vapour although Hydrogen consumption was found to be

almost the same as that for higher pressure.

Figure 4.61 Hydrogen consumption along the combustor for various inlet static

 pressures for equivalence ratio 0.65

Figure 4.62 Hydrogen conversion to water vapour for various inlet pressures for an

 equivalence ratio of 0.65

113

Figure 4.63 Percentage of Hydrogen converted to H for various inlet pressures for

equivalence ratio 0.65

 Interestingly in the case of lower static pressures, the reaction paths are such

that more atomic Hydrogen is formed instead of getting converted to OH 2 , as shown

in figure 4.63.

4.5.2 Effect of vitiation on combustor performance

 In order study the effect of vitiation, inlet air of 0.52 bar pressure at Mach

number 2.7 and total temperature 1920 K and with Nitrogen mass fraction of 0.59,

Oxygen mass fraction of 0.22, water vapour mass fraction of 0.075 and Carbon-

dioxide mass fraction of 0.115 was considered for the simulations. As it is not

possible to simulate all flow parameters as that of the clean air, the parameters that

are kept same as that of clean air are Oxygen mass fraction, pressure, Mach number

and total temperature. The mass flow rate of vitiated air is about 5% less due to slight

variation in specific heat and molecular weight. Figure 4.64 shows the rise in mass

114

averaged total temperature for clean and vitiated air. In the case of vitiated air, the

rise in total temperature is about 8% less than that of the clean air, for fuel

equivalence ratio 0.42. Whereas for 0.65 the reduction in total temperature for

vitiated air is 15%. The presence of Carbon-dioxide and excess water vapour tend to

absorb more heat thus reducing the total temperature and thereby the pressure rise.

Figure 4.64 Total temperature rise with vitiated and clean air

Figure 4.65 Effect of vitiation on pressure rise

115

 Figure 4.65 shows the pressure ratio which is the ratio of area averaged

pressure to the inlet static pressure of 0.52 bar. This is evaluated at each section along

the combustor length. The pressure rise is more for the clean air as compared to

vitiated air as the temperature rise is more for clean air due to lesser coefficient of

specific heat.

 The validated solution obtained to this typical Scramjet combustor problem

demonstrates the capability of the present code to predict the Scramjet combustor

performance with non-equilibrium chemically reaction of Hydrogen-Air combustion

with turbulence on a Cartesian mesh. Experimentally, one of the ways of assessing

the combustor performance is through the connected pipe mode tests which do not

simulate all the requisite flight conditions. Hence some of the factors affecting the

combustor performance in connected pipe mode test condition are brought out

through numerical experiments. Now the next logical step is to perform the end-to-

end simulation of the Scramjet engine with intake, combustor and nozzle to get thrust

delivered by the engine. Since the engines are normally mounted on some rocket

body, it is desirable to perform the computations of Scramjet engine mounted on a

rocket body. Such types of simulations demand huge computational power as the

mesh sizes are very large. High performance computing plays a key role for such

computations. The Graphic Processing Unit (GPU) computations are new generation

computing paradigm that offers tremendous advantage for such problems, if the

numerical codes have parallel computing algorithms adapted to such type of

hardware. The topic of the next chapter is the development and application of such

parallel computing algorithms suitable for computation in GPU platforms to harness

the power of such new architectures in order to perform the complex non-equilibrium

chemically reacting turbulent flows with combustion, typical of Scramjet vehicles.

116

117

CHAPTER-5

PARALLEL COMPUTING WITH GPU

ACCELERATORS

 The advent of parallel computing has brought about tremendous advantages in

terms of reduced turnaround time for solution to large scale complex problems like

tip-to-tail simulations with combustion of Scramjet engine. Parallel computing works

on the philosophy of “divide and conquer” and the computing speed is achieved by

means of three approaches. Modern parallel computing clusters usually employ all

the three methods in combination as given below to maximize the parallel computing

performance.

1) Use of multi-core CPU (Central Processing Unit) processors in a single

machine which is like an SMP (Symmetric Multi Processing) system.

2) Using an accelerator like GPU (Graphic Processing Unit) having large

number of GPU cores in each unit which can perform SIMD (Single

Instruction Multiple Data) computations very efficiently.

3) Using a cluster of multi-core CPU machines with GPU accelerators with a fast

interconnect like Infiniband and enable distributed computing with MPI

(Message Passing Interface).

 In the case of multi-core CPU, a task can be divided into multiple parallel tasks

with each core performing the assigned task and all of them using the common

memory and hence called as shared memory system. To achieve this, the program has

to be multi-threaded using Pthread (Posix thread) library and each task assigned to a

thread. From the programming perspective, since all the parallel threads use the

common memory, the multi-threaded program has to be thread-safe which means that

a variable that gets updated and used by all the threads should essentially be passed

through functions and not put in the common memory.

118

 Although it is very much possible to implement an MPI (Message Passing

Interface) paradigm in an SMP system, the preferred way is a shared memory

approach using multiple parallel threads in a single process. This is because there is

an additional overhead of communication among the cores of the machine if MPI is

used. However the SMP systems fail to scale up on a large number of processors

since they use a common memory. While in a message passing approach, one needs

to partition the job into a number of smaller jobs with proper load balance, in a multi-

threading method, parallel threads in a program with proper load balance has to be

found out. In the case of MPI approach, a proper balance of communication and

computation is needed for the efficient use of the system. To get the best performance

from parallel computing, a combination of SMP systems and MPI approach is

employed in the modern high performance computing approach. Therefore the

approach is multi-thread method within a node and MPI approach across the nodes.

 In addition to the above two approaches of SMP system and MPI approach in a

cluster, the use of accelerators for higher compute performance is a recent approach.

In this method, a portion of the computation very much suitable to be done in an

accelerator is offloaded to the accelerator. In the case of GPU accelerators, the

computations which are of the SIMD (Single Instruction Multiple Data) type are

identified and submitted to the GPU. This means that to get good performance from

the GPU accelerators, the computational algorithm should be highly data parallel. It is

to be noted that GPU is only an accelerator and cannot function without the CPU

processor and hence is considered as a co-processor to the CPU. CFD solution

methodology with GPU accelerators has been reported by Julien C Thibault and

Inanc Senocak (2009), Everett Philips et al. (2010), Dana Jacobsen and Inanc

Senocak (2011), and Hai P. Le and Jean-Luc Cambier (2012) for solving various

problems. However, GPU implementation on adaptive Cartesian mesh with hanging

nodes which is very challenging due to lack of inherent data parallelism is not noticed

to be reported in the literature to the best of author’s knowledge. The aim of this

chapter is to bring out new data parallel algorithm with the important feature of

119

grouping the Cartesian cells with hanging node into eight different categories for

effective GPU implementation which is not noticed to be reported in the literature.

Also the factors affecting the performance of the parallel computing with GPU

accelerators for CFD solutions using adaptive Cartesian mesh is brought out. The

computing algorithms need to be in tune with the architecture of the GPU and CPU

hardware. The important features of the MIMD (Multiple Instruction Multiple Data)

architecture of CPU and SIMD (Single Instruction Multiple Data) architecture of the

GPU are explained below.

5.1 SIMD and MIMD Architecture

 In order to get the best performance from the CFD code it is essential to

program according to the architecture of the processors. The GPU architecture as

given in NVIDIA (2011) is designed such that more transistors are devoted to data

processing rather than data caching and flow control unlike the CPU processor.

Figure 5.1 Schematic of GPU architecture (adapted from NVIDIA (2011))

DRAM

120

Figure 5.2 Schematic of CPU architecture (adapted from NVIDIA (2011))

The schematic of the GPU architecture is shown in figure 5.1 and that of CPU in

figure 5.2. The CPU core is more sophisticated as compared to the GPU core as it has

better data caching, flow control and arithmetic logic unit (ALU). While the CPU can

handle multiple instruction multiple data type of algorithms in the program, the GPU

is most suited to address problems that can be expressed as data-parallel

computations. This means that the same instruction is executed on many data

elements in parallel with high arithmetic intensity which is the ratio of arithmetic

operations to memory operations. Thus the CPU is more suited to task parallel type of

jobs whereas GPU architecture is tuned to data parallel type of instructions both of

which are explained below.

5.1.1 Task Parallelism

 Task Parallelism is execution of threads (tasks) on different or same code with

different or same data across different parallel computing cores.

For example if we consider a Quadcore processor, each of the core is capable of

performing independent tasks of the same code as given below.

if(processor 1) do c=a+b

DRAM

CONTROL

CACHE

ALU ALU

ALU ALU

121

if(processor 2) do res=sqrt(a-b)

if(processor 3) do t=(l+e)(l-e)

if(processor 4) do m=a*b

Figure 5.3 Schematic of Task Parallelism

If the processor 1 of the Quadcore performs grid generation task and processor 2

performs flow solution while processor 3 and 4 is engaged in performing post

processing tasks then it is multi-tasking with different codes. Figure 5.3 shows the

schematic of Task Parallelism. Task parallelism is able to handle Multiple Data

Multiple Instructions (MIMD) by the cores which are typical of the CPU cores.

5.1.2 Data Parallelism

 In Data Parallel computations, each processor executes same set of instructions

on different pieces of data. This aspect is illustrated through an example given

below.

 int i;

 double c[1000],a[1000],b[1000];d[1000];

 for(i=0;i<1000;i++){

Processor

1

Processor

2

Processor

3

Processor

4

Task 1

Task 2

Task 3

Task 4

122

 c[i]=a[i]+b[i];

 d[i]=a[i]*b[i];

 }

The above do loop can be executed say in 10 cores, simultaneously by assigning data

of a[i] & b[i] corresponding to i=0 to 99 in core 1 and from 100-199 in core 2 and so

on up to 10
th

 core in the form of 10 parallel threads. The operation c[i]=a[i]+b[i] is

executed in each thread of all the 10 cores but with a different data corresponding to

the a[i] and b[i]. Thus it is a single instruction, but multiple data corresponding to the

respective arrays. Once this operation is completed, the next operation d[i]=a[i]+b[i]

is taken up for execution by each thread. The schematic of the Data Parallel

computation is shown in figure 5.4.

Figure 5.4 Schematic of Data Parallel computation

It is to be noted that in the above example, identical operation is conducted for each

core through a single operation which does not have any branching statement. If there

are branching statements, whose outcome is not always the same, then the

performance of the Data Parallel computations would get affected as shown by the

example given below.

Data 1 Data 2 Data 3

Processor-1 Processor-2 Processor-3 Instruction

123

 int i;

 double c[1000],a[1000],b[1000];

 for(i=0;i<1000;i++){

 if(a[i]>10) c[i]=a[i]+b[i];

 else c[i]=a[i]*b[i];

 }

As in the previous example, the data is distributed among 10 cores and execution is

carried out in 10 parallel threads. Considering, the first operation if(a[i]>10)

c[i]=a[i]+b[i], only those threads having the data a[i]>10 can execute the statement. A

GPU thread can move on to the next operation only after all the other GPU threads

have finished executing the first operation. Thus those GPU threads which have

finished executing the first operation have to wait, till all the other GPU threads have

completed the first operation. However this is not the case with CPU threads which

are more powerful to undertake flow control. Hence there is a considerable waiting or

idling for GPU thread if the computations are not data parallel. This aspect has to be

taken into account while designing the CFD algorithm to run on GPU threads.

 Since the same instruction is executed for each data element, there is a lower

requirement of sophisticated flow control. It is to be noted that GPU architecture

possesses large memory bandwidth as compared to CPU but with lower memory

access as the memory has to be shared with large number of GPU cores. Hence with

operations involving high arithmetic intensity in a GPU, the penalty of memory

access latency is not very much visible because of more number of computing load

from large calculations which can give good performance without big data caches.

 Applications which involve large data sets and that can use a data programming

model would get good speed up from GPU computations. One of the examples is 3D

rendering, wherein large sets of pixels and vertices are mapped to parallel threads.

Similarly, image and media processing applications such as post processing of

124

rendered images, video encoding and decoding and pattern recognition that can map

image blocks and pixels to parallel processing threads are some of the other examples

suitable for GPU computations.

 While the graphical applications mentioned above have a natural data

parallelism, the use of GPU in other fields like CFD would pose a real challenge in

making the program highly data parallel. Thus new data parallel algorithms have to

be evolved for harnessing the real power of GPU for CFD applications.

5.2 GPU implementation using CUDA

 The GPU processes data in Single-Instruction-Multiple-Thread (SIMT) fashion.

The Compute Unified Device Architecture (CUDA) programming model of NVIDIA

(2011) is used for GPU implementation. GPU accelerator used for the computations

in the present work was TESLA M2070 which had 448 cores with 14 Streaming

Multi-processing (SM) capability with each SM having 32 cores. The instruction that

gets executed in a GPU is called the Kernel and is invoked from the host CPU. The

CUDA programming model consists of grid and thread block. A grid consists of a

number of thread blocks and each thread block contains a number of threads. The

maximum number of threads that can be allotted to a block is 1024. The thread

blocks can be one, two or three dimensional. Figure 5.5 shows the grid of thread

blocks which are two dimensional with each block consisting of 12 threads. The

number of blocks in the grid would depend on the number of threads allotted in a

block. For example if there are 2000 cell computations of CFD allotted to be done in

a GPU and if the number of threads allotted to a block is 100, then the grid would

have 20 blocks with each block having 100 cells and each cell computed by a thread.

Thread block computations are allotted to SM for computations and at each block,

threads are organized into group of 32 threads called as Warp and computations

performed in an SIMT (Single Instruction Multiple Thread) fashion for this Warp.

Threads within a block can cooperate among themselves by sharing data through

some shared memory and synchronizing their execution to coordinate memory

125

access. For efficient cooperation, the shared memory is expected to be a low-latency

memory near each processor core, just like an L1 cache.

Figure 5.5 Grid of Thread Blocks (adapted from NVIDIA (2011))

Figure 5.6 Data Parallelism in GPU (adapted from NVIDIA (2011))

 Since all the threads of a block are expected to reside in the same GPU

processor core, the number of threads per block is restricted by the limited memory

resources of the GPU processor core. When a Kernel is called, the scheduler unit on

the device will automatically assign a group of thread blocks to the number of

126

available GPU cores on the device. Once the GPU cores have completed the

calculation, it will be assigned another block. Since, communication between thread

blocks is not there, the GPU with more cores will perform calculations faster. Figure

5.6 represents the data parallelism in GPU.

 An instruction given to a Thread Block is handled by the GPU which contains a

number of GPU cores. All the threads within each block will be organized into

groups of 32 threads called Warps which are executed in a SIMT manner as

mentioned before. The main difference in data parallelism between Grid and Thread

Block is that while there is a synchronization mechanism for all threads in a same

block, it is not there for all the blocks in the grid. Hence it is important to ensure that

there is no data dependency between Thread Blocks. The GPU implementation for a

Cartesian mesh based CFD code was carried out and the various algorithmic steps to

obtain good performance are given in the next section.

5.3 Parallel Computation of Cartesian Mesh solver

The parallel computation of the Cartesian mesh solver is done following the steps

given below

Step -1 Domain decomposition

Step-2 Setting up communication links

Step-3 Grouping of cells for data parallelism

Step-4 Identifying computations to be done in CPU and GPU

Step-5 Performing computations in CPU and GPU

Step-6 Communicate the values of boundary cells after each

iteration.

Step-7 Repeat 5 & 6 till convergence is attained.

127

J

I

K

5.3.1 Domain Decomposition

Figure 5.7 Computational domain of a typical Cartesian mesh

 The computational domain for flow over a body with Cartesian mesh will be a

rectangular Parallelepiped with cells in I, J and K directions as shown in figure 5.7. In

order to solve for flow for this particular domain using cluster of “N” multi-core CPU

machines with GPU accelerators, the first step is to divide this domain into nearly

equal “N” sub-domains. The various algorithmic steps to achieve this for a cluster of

“N” machines, say 21 for the purpose of illustration is given below.

Step-1

Compute the total computational load in the domain as per the following expression.

Total load=1.0*number of gas cells+ 1.4*number of partial cells. The weight given

for a partial cell is 1.4 times the gas cell as it has more computations involved by way

128

of implementation of body boundary condition. This additional time taken for partial

cell was found out by checking the CPU time for partial cell computation. If a

neighbour of the cell is split then unit load is added and if neighbour’s neighbour is

split then additional 10 units are added. These values have been arrived at based on

time taken for actual computations with such type of cells. The body cells have zero

weight as no computations are performed for these cells.

Step-2

Divide the total load distributed to 21 machines into two halves as given below

Load on first half= Total load*11/21

Load on the second half=Total load*10/21

March along the I direction and compute the total load for cells up to a particular I

section. The parent cell can be identified by a three dimensional index (I,J,K) and for

computing the total load up to I section say I=5 , one has to calculate the total load for

all cells from cell (0,0,0) to (5,Nj,Nk) where Nj and Nk is total number of cells in J

and K directions. For each parent cell, there could be many levels of split cells as

shown in figure 5.8 which are recursively found out and the total cell load takes into

account the computational load of all the split cells.

Figure 5.8 A Cartesian cell with three levels of division

If the load computed up to a particular I section is within 0.9 to 1.1 times the load on

the first half, then the two halves are obtained by splitting the domain into two by

cutting at that particular I section. Subsequently the same procedure is carried out

along J and K directions and checked whether a better load balance is obtained as

Split cell –level 3

129

compared to I section splitting. Out of the three ways of splitting into two halves, the

split that gives the best load balance is taken for the splitting. Figure 5.9 shows the

first level domain decomposition in which first half is allotted to 11 machines and the

second half to 10 machines. Subsequently, the first half is further split into two halves

in the same manner mentioned so as to obtain a splitting section that gives the best

load balance giving rise to two sub-domains. The load on the first sub-domain of

Domain (0) named as Domain (0, 0) will be distributed among 5 machines and the

load of second sub-domain of Domain (0) denoted as Domain (0, 1) will be

distributed among 6 Machines. Similarly Domain (0,0) is further split into two sub-

domains in the same manner as shown in figure 5.7 as Domain (0,0,0) and Domain

(0,0,1) and distributed among 3 and 2 machines respectively. This way the domain

decomposition is carried out by consecutively splitting along the I, J or K section

which gives the best load balance. It is to be noted that domain decomposition is done

on a single machine and the output of domain decomposition is the starting and

ending parent cell I, J, K values, the total number of cells and the machine to which

they are allotted.

130

Load distributed

among 11 machines

Load distributed

among 10 machines

Domain 0 Domain 1

Load distributed among 6 machines

Load distributed among 5 machines

Domain (0,0)

Domain (0,1)

Figure 5.9 Domain decomposition by consecutive splitting

Load distributed among 2 machines

Domain (0,0,0)

Load distributed among 3 machines

 Domain (0,0,1)

131

5.3.2 Setting up Communication Links

 In this step, the cells which have to communicate to other machines are tagged

and also provided with information as to the respective machine they need to

communicate with. In order for the communication process to be done in minimum

time, the communication information of cells from one machine to another particular

machine is sent together as one packet and not individually. Also the packet of

information that is sent from one machine to another machine falls in the proper

location of the respective machine.

 Figure 5.10 shows the schematic of the Cartesian cells without split cells that

participate in communication for a domain which is split into two halves. Except for

one face in each of the half, all the other faces are boundary faces for which boundary

condition need to be applied. Machine 0 has Nx0 column of cells where Nx0 is the

number of cells in I direction for Machine 0. Similarly, Machine 1 has Nx1 column of

cells where Nx1 is the total number of cells in I direction for Machine 1. Even though

the number of columns of cells is Nx0 for Machine 0, the computations are

performed for cells of column 1 to column Nx0-2 only and these cells are called as

active cells. The last two columns of cells namely (Nx0- 1)
th

 column and Nx0
th

column of cells for which computations are not performed in Machine 0 are called

dummy cells. These two dummy columns of cells are used to reconstruct the cell

values at the last active column of cells. In the case of Machine 1 the computations

are performed from the third column of cells to the last column. Thus the first two

column of cells are the dummy columns of cells for Machine 1. The last four column

of cells of Machine 0 and first four column of cells of Machine 1 are kept identical.

The last two columns of dummy cells in the Machine 0 are kept same as third and

fourth column of active cells of Machine 1 and the first two column of dummy cells

of Machine 1 are kept same as the last two active column of cells of Machine 0 at

Nx0-2 and Nx0-3.

132

Machine 0

Machine 1

I

J

K
Column Nx0

Column Nx0-2

Figure 5.10 Schematic of communication

 The computations in different machines are initiated through MPI. While the

calculation takes place from column 1 to column Nx0-2 in Machine 0, the

computations at Machine 1 takes place from column 2 to Column Nx1. If the

computational load in the two machines is same, the computations get completed in

the respective machines at the same time. Then after the first iteration, Machine 0

communicates the updated value of conserved variable vectors of last two active

column of cells (Nx0-2,Nx0-3) to Machine 1 which will get allocated to the first two

dummy column of cells (columns 0 and 1) of Machine 1. Similarly after the first

iteration, Machine 1 sends the updated value of conserved variable vectors of third

and fourth column of cells (first two active column of cells) to Machine 0 which will

get allocated to the last two column of dummy cells (Nx0-1,Nx0) of Machine 0. By

this process of two way communication, the values of the two columns of dummy

cells get updated. Then the next iteration is again started simultaneously in the two

machines by the MPI. Since the dummy column values are updated in both the

machines, a proper estimation of fluxes in the last two active columns of cells in

Machine 0 and first two columns of active cells in Machine 1 is possible in the next

133

1

e

iteration. This parallel process of computation followed by communication to update

the dummy cell values are continued until the converged results are obtained. While

communication is carried out, the complete information that is needed to be sent from

one machine to another machine is sent as one packet containing certain number of

bytes

Figure 5.11 Communication links in the sub-domains

 In the receiving machine the values get allocated to the appropriate cells by proper

ordering of memory allocation of the dummy cells in the receiving machine. Once the

domain is decomposed into as many numbers of sub-domains as the number of

machines used for parallel computation, the conserved variable vector information of

group of boundary cells that need to be send to another machine is identified. Figure

5.11 shows a domain split into 11 sub-domains with proper load balance and the two

way communication links. It should be noted that a face sometimes needs to

communicate with more than one machine. For example in Figure 5.11 it can be seen

that for the bottom face, fgb of Machine 1, the cells along face fg need to

1 2

3

4

5

6

7

9

10
11

8

a

b
c

d

f
g

134

communicate with Machine 5 and cells along face gb with Machine 6. Also the cells

at the corner as shown for Machine 9 in red colour have to communicate with more

than one machine, like Machine 4 and Machine 8. All these aspects are taken into

account while setting up the communication link.

5.3.3 Cell Grouping for Data Parallelism

 Once the domain decomposition and the communication links have been set up,

the next step is to group the cells having similar computations and allocate them to be

computed to CPU and GPU. This grouping of cells is necessary, since the GPU has a

SIMD architecture which demands same logic flow in the statements as in Data

Parallel tasks. Figure 5.12 shows the Mach number flow field for a typical launch

vehicle at supersonic Mach number and figure 5.13 shows the corresponding flow

adapted Cartesian mesh. From the figure it can be clearly seen that at regions of large

gradients the cells are divided. Also, it can be noticed from the figure that for some

cells neighbour is split where as for some others the neighbour’s neighbour is split.

The different type of cells in a rectangular adaptive Cartesian mesh can be broadly

classified to 8 types of groups as described below and shown in Figure 5.14

Group-1 Boundary partial cells

Group-2 Boundary air cells

Group-3 Partial cell whose neighbour’s neighbour is split

Group-4 Gas cells whose neighbour’s neighbour is split

Group-5 Partial cell whose neighbour is split

Group-6 Gas cell whose neighbour is split

Group-7 Partial cell whose neighbour and neighbour’s neighbour is not split

Group-8 Gas cell whose neighbour and neighbour’s neighbour is not split

135

Figure 5.12 Mach number field in supersonic flow for a typical launch vehicle with

 jet-on condition.

Figure 5.13 Flow-adapted Cartesian mesh for the flow field shown in Figure 5.12

.

136

Figure 5.14 Schematic of 8 different cell groups

 The data dependency of each cell could vary from 12 to 120. Figure 5.15 shows

the schematic of typical cell marked as red with data dependency of 12 i.e. it needs 12

neighbouring cells information with two cells information adjacent to each cell face

to compute the fluxes. Two neighbours adjacent to a face are needed for linear

reconstruction of primitive variables at a face to obtain second order accuracy in the

solution. If the neighbour to face is split and neighbour’s neighbour is further divided

as shown in figure for the cell denoted by blue colour, then 20 neighbours adjacent to

each face of the cell is needed for linear reconstruction. This is the maximum data

dependency needed for a Cartesian mesh with one hanging node for second order

accurate solution.

Group-1 Group-2

Group-3 Group-4

Group-5 Group-6

Group-7 Group-8

137

Figure 5.15 Schematic of cell with 12 and 120 cells data dependency

 The eight cell group categories are arrived to have good efficiency in GPU

computations. Each group of cells will be able to perform the computations in the

GPU almost in identical fashion. Performing computations with a mix of different

cell groups results in large performance loss in GPU accelerators. Analysis of the

Cartesian grid for most of the flow problems like the one given in Figure 5.11 would

show that most of the cells in the grid fall in the last group (cells which are not at the

boundary and whose neighbour and neighbour’s neighbour is not split), which are the

most data parallel cells. Partial cells occur only near the body. The cell groups 4 and

6 where the gas cells neighbour or neighbour’s neighbour is split occur only in the

region of the grid where the level of the oct-tree changes. The number of cells in

group 4 and 6 could increase as a result of the flow refinement, because this causes

additional splitting of the gas cells. Once the grouping of cells in each Machine is

completed, the next task is to allocate the number of cells to be computed in GPU and

CPU in each Machine.

Data dependency -12 cells
Data dependency- 120 cells

138

5.3.4 Load Sharing between CPU and GPU

 Load balancing between the CPU and GPU is done using a parameter called

core factor. This factor decides the ratio of computations between CPU and GPU. The

cell groups are assigned in the increasing order of data parallelism and cells that are

least data parallel are assigned to the CPUs first. The cell groups 1 & 2 are least data

parallel and cell group 7 and 8 are highly data parallel. The cell groups 1 & 2 are

boundary partial cells and boundary air cells respectively which have to implement

the boundary condition additionally. This boundary condition implementation

function is a lengthy code which has many branching statements and which are not

well suited to GPU computations. It was seen that when this group of cells were

allotted to GPU for computations, the performance drastically dropped and hence all

the boundary cells are first allotted to CPU cores for computation. The computational

load on CPU is estimated using the following expression

Pcpu =(ncores*Cfac)/(ncores*Cfac +ngpu) (5.1)

Pgpu = ngpu/(ncores*Cfac +ngpu) (5.2)

where

Pcpu -Portion of computation done by all the CPU cores in a computing node

Pgpu - Portion of computation done by all the GPUs in a computing node

Ncores - Number of processor cores available in the computing node

Ngpu- Number of GPUs available in the computing node

Cfac - The ratio of the computation load done by a CPU core to that of a GPU called

core factor

 In the above expression the core factor is the unknown and is arrived at based

on trial and error method. It was found that a core factor of 0.015 (for every 1000

cells to be computed in GPU, 15 cells would be computed in CPU) was found

suitable for the present GPU based code which gave good performance for wide

range of geometry and flow conditions. While performing load balancing between

CPU and GPU it is ensured that GPU which has a very large computing power would

139

never be idling and hence under situations when perfect load balancing is not possible

to achieve between CPU and GPU, the GPU would be slightly overloaded.

For the load balancing to work effectively in the problems in which the number of

less data parallel cells is more, an additional handling is introduced. If any of the

cells other than groups 7 and 8 (partial and air cells which are not on the boundary

and whose neighbour and neighbour’s neighbour are not split) falls in GPU, the core

factor is increased to a maximum value of 30%.

5.4. Programming and Algorithmic Aspects of GPU

 Computations for a Cartesian Mesh Solver

 To obtain the best performance from the GPU, the programming and algorithms

need to be tuned to the GPU architecture. In this regard, the handling of recursive

data structures, typically used to traverse from the parent to the child of an oct-tree

Cartesian cell, the memory management aspect of CPU to GPU copying and efficient

use of memory hierarchy of GPU are some of the important aspects of computation

with GPU accelerators.

5.4.1 Handling recursive data structure of Cartesian mesh

 Cartesian grid is stored in a recursive data structure based on oct-trees. In-order

to make it GPU capable, the cells need to be accessed in a non-recursive manner. The

algorithm traverses each oct-tree and stores the pointer to the cells in a linear array.

For each cell to remember its location within the tree a 32 bit integer was used. 3 bits

are required per level for identification (One bit in each dimension). Additionally a bit

is required to identify the leaf. Since trees up to a level 7 are used, 32 bits are

sufficient to identify each cell. Additionally cell pointers to the neighbours are stored

in each cell. Even though each cell could have 6 to 24 neighbours, only 6 pointers are

used to store them. This is done by only storing the cell pointers with the same or

lower level. For example if a cell is having 4 neighbours in one face, it will store the

pointer to the parent cell of the neighbours. Figure 5.16 shows how a cell is identified

140

in its oct-tree. Each quad in the identifier represents the details of the cell in a

particular level. First three bits represent X, Y and Z respectively and the fourth bit

represents whether it has reached a leaf cell.

Figure 5.16 Schematic of oct-tree structure and bitwise identification of leaf cell

5.4.2 Programming Data Structure and Implementation for

 Parallel GPU Computation

 After the domain decomposition, setting up communication links and grouping

of cells with proper load identification in GPU and CPU, GPU and CPU threads are

launched for computation. Number of CPU threads is equal to sum of number of CPU

cores and number of GPU accelerators and number of GPU threads is equal to the

number of GPU accelerators. In the case of a dual hex-core machine with 2 GPU

accelerators, there would be 14 CPU threads and 2 GPU threads. The two extra CPU

threads are meant to control the two GPU threads. The cell data structure used for the

GPU based code and programming details is given in Appendix-1. After all the

required information is copied from CPU to GPU, GPU kernels are launched which

does computation in GPU cores for groups of cells. Computation in GPU is done on

one dimensional grid with a certain number of thread blocks. Number of thread

blocks is the number of cells of particular group divided by the number of threads in a

block. For the present code, 128 threads in a thread block gave very good

performance for a wide range of problems as compared to other values.

141

5.4.3 Thread Synchronization

 After the CPU and GPU threads are launched, the first CPU thread becomes the

master thread and initiates the computation of other CPU threads and the CPU

threads that control the GPU threads which in turn initiates the GPU threads. Then

the CPU thread 0 waits for the computation in all other threads to be over. Once the

computation in a particular thread is over, the thread signals the completion to the

master thread and falls in a lock position. Thus after the thread 0 gets the information

that all other threads have completed their calculations, the communication process is

carried out within and across machines. Then the next iteration starts after the master

thread unlocks all the other threads by signaling to carry out the next iteration in the

respective threads. This thread synchronization is carried out to ensure proper

computations with proper updated values after each iteration and also to maintain the

context of threads in GPU which would mean that the same thread would execute the

functions for the next iteration without creating new threads. Creating new threads

would mean repeated memory copy from CPU to GPU during each creation which is

a time consuming operation and hence is avoided by maintaining the same GPU

threads.

5.4.4 Memory Management Aspects

 Before iteration can be started, updated value of the neighboring cells needs to

be updated between CPU and GPU. For optimal performance, the communication

should be done in minimum number of steps for the optimization of the process. To

achieve this, the flow variables of cells are allocated in a contiguous memory. Each

cell finds the location of its flow variables by storing the offset instead of the absolute

address. As a result, the communication can be done between CPU and GPU in a

single operation resulting in maximum performance. This also helps in maintaining

single code for GPUs and CPUs. The whole array of trees is traversed and the group

id is found out and marked. Then the cells are arranged in groups in the increasing

order of their data parallelism into a linear array. Now the vector of flow variables is

allocated and each cell stores the offset to its location within the flow vector.

142

Additionally only the necessary minimum is communicated between CPU and GPU.

As a result of this, the communication between CPU and GPU is optimal both in

quantity and the number of steps.

Figure 5.17 Schematic of memory layout

 Figure 5.17 show the data layout of flow variables in the cells. Each cell stores

the offset to the starting of its flow variable memory. The same memory layout is

used in CPU as well as GPU. Hence the flow variable update between CPU and GPU

can be done in a single update operation.

5.4.5 Effects of GPU Memory Hierarchy

 GPU exposes its memory hierarchy to the programmers. There are three levels

of memories namely registers, shared memory and global memory in the decreasing

level of bandwidth. Shared memory in Tesla C2070 GPU is 64kB (Configurable as

hardware managed or programmer managed). This was too low to be of any practical

use as programmer managed. Hence for effectively using the memory bandwidth two

activities were done. 48 kB of the shared memory was configured as hardware

managed cache. It was found that the optimal usage of local variables is having

143

substantial effect in performance. In order to reduce memory access latency, the

number of local variables was made to the minimum. As a result of this, there is a

better chance for them to get accommodated in the registers or cache.

5.4.6 Solution Process Overview

Step-1 Domain decomposition is done by splitting the domain into rectangular

 sub-domains.

Step-2 Communication setup for distributed memory parallel computing via

Message Passing Interface.

Step-3 Within each computing node, cells are arranged into groups with

increasing level of data parallelism. The least data parallel cells are

allotted to CPU which is computed using shared memory parallel

computing by multi-threading. The remaining cells are allocated to GPU

for groupwise computation of cells.

Step-4 All the necessary information required for computation is copied to

GPUs.

Step-5 Start of computation in CPU and groupwise cell computation in GPU

Step-6 After the completion of each iteration of computations, the updated

values are copied to the main memory.

Step-7 Communication is carried out between CPU and necessary information

passed on to the corresponding GPU.

Step-8 The computation is again started in CPU and GPU as in step-5 and

continued till convergence is attained.

144

5.5 Parallel Computing on a Cluster of GPU Machines

 The parallel computing performance was tested for a typical flow problem on a

cluster of dual quad core machines with 2 GPU accelerators in each machine. The

cluster of GPU based machines named as SAGA (Super Computer for Aerospace

with GPU Architecture) is a diskless cluster built with open source software

components and in-house developments. The description of SAGA system is given in

the next section.

5.5.1 Configuration of SAGA Supercomputer

 SAGA supercomputing cluster consists of 368 diskless compute nodes of which

218 nodes have 2.4 GHz dual Quad core Intel processors and 2 numbers of GPU

Nvidia-C-2070 accelerators and the rest 150 nodes have Intel Hex core processors

with 2 numbers of GPU Nvidia-C-2090 accelerators each. The backbone of the

cluster is a 40 Gbps Infiniband cluster interconnects. The theoretical peak computing

performance is about 448 TFLOPS with each GPU accelerator of C-2070 type

providing 515 GFLOPS peak and C-2090 type giving 570 GFLOPS peak. The Quad

core CPU gives 38 GFLOPS and the Hex core deliver 55 GFLOPS peak

performance. The peak power consumption of the cluster is about 253 kW. The

cluster has a LINPACK performance of 188 TFLOPS from 320 nodes and ranked

86
th

 in the top 500 supercomputers of the world. Fig 5.18 gives the photograph of the

Supercomputing cluster which is housed in the Sathish Dhawan Computing Centre of

Vikram Sarabhai Space Centre at Trivandrum, India.

145

Figure 5.18 Photograph of SAGA supercomputing cluster (www.ISRO.org)

Figure 5.19 shows the layout of the SAGA supercomputer. There is a redundant fail

safe Linux OS with DRBD (Distributed Relocated Block Device) and open source

configured Heart Beat for the File Servers which are NFS (Network File System)

over Infiniband. The compute node Linux Operating System is a tiny Linux

Operating System occupying just 150 MB of RAM in the diskless node and has

single image for all nodes.

 The cluster resource manager running in the brain server is the key in-house

software of the supercomputing cluster. The cluster resource manager allocates nodes

on demand, powers it up on requirement, powers down when not required, and also

manages the job queue. Daemon on the computing nodes spawns and terminates jobs

on request from scheduler and reports job termination. The occupancy data is

146

maintained by the scheduler and the brain server is a failsafe server with redundancy.

The biggest advantage of such a layout is the easiness to augment the computing

facility to PetaFLOP scale by just adding more computing nodes and file servers as

needed.

Figure 5.19 Layout of SAGA supercomputer (Sudhakaran et al. (2011))

5.5.2 Parallel computing performance with GPU accelerators

 Parallel computing with tri-level parallelism, using MPI, Pthread and CUDA on

multiple multi-core machines with GPU accelerators was carried out on SAGA for a

typical launch vehicle configuration for perfect gas turbulent flow conditions. The

problem was solved with three different grids. Figure 5.20 shows the speed up

efficiency for the same problem on three different types of grids which have varying

number of grids also varying number of split cells in the Cartesian mesh. The X axis

shows the number of GPU based machine (each machine is dual quad core with 2

GPU accelerators of C-2070 type) used and the Y axis shows the speed up efficiency.

147

Figure 5.20 Speed up efficiency for a typical flow problem over a launch vehicle on

 cluster of GPU machines

Speed up efficiency for ‘n’ machines is the ratio of ideal time taken for computation

for certain iterations (say 20 in the present case) in ‘n’ machines to the actual time

taken in ‘n’ machines. Ideal time taken in ‘n’ machines is the actual time taken (for

20 iterations in the present case) in one machine divided by the number of machines.

This can be expressed by the simple expression as given below

n

n
tn

t

*

1=η (5.3)

where nη = Speed-up efficiency for ‘ n ’ machines

 1t = Actual time taken for N iterations in 1 machine

 =nt Actual time for N iterations in ‘ n ’ machines.

148

 The problem when solved with 63 million cells consisting of only basic

Cartesian mesh without any split cells gave the best performance for more number of

machines, since it has only 3 groups of cells, namely boundary air cells, partial cells

and air cells whose neighbour and neighbour’s neighbour is not split. This type of

grid makes the computation highly data parallel. The second type of grid with 36

million cells had just one level of split Cartesian mesh. This has more types of cell

groups as compared to the first type of grid. This gives lesser performance on more

number of machines as compared to the first type of grid of 63 million cells because

of lesser number of cells with less data parallel type of cells as compared to the first

type of grid. The third type of grid used is 4 levels of split cells which would give

rise to more number of cells other than group 7 and group 8 which are simple partial

and air cells and thus less data parallel. It can be seen that, the performance rapidly

falls after about 16 machines due to the fact that cells of non data parallel type had to

be given to GPU for computations which gives poor performance. From this study it

could bee seen that for a practical type of mesh as with the grid of 46 million cells,

about 3 million cells per GPU machine gives performance above 85%.

 Regarding the performance of the GPU accelerators for this problem, the

problem speeded up by 4.5 times for the third type of grid with 46 million cells which

is a practical type of mesh in one machine as compared to the case when GPU

accelerators are not used. This speed up of 4.5X is against a theoretical maximum

possible of 14X.

 The performance of the parallel computation with GPU would depend on

number of cells or the volume of computation and the data parallel nature of the cells.

Even if the cells are highly data parallel, if the ratio of computation load to

communication load is not large, the speed up would not be good as the

communication would become a bottle neck. The present performance could further

be improved by having more groups of cells which will make it more data parallel.

This would mean that instead of neighbour being split as separate group as in the

149

present case, right side neighbour being split will be a separate group and left side

neighbour being split would be yet another group and similarly top side neighbour

split as one type and bottom side cell split as another type.

 Another important feature associated with the present program is that the same

code is used for computation on a pure CPU cluster and also for cluster of CPU

machines with GPU accelerators. The program identifies whether GPU accelerator is

present in the system and accordingly does the computation. The cluster of GPU

based machines was used to compute tip-to-tail simulation of a typical Scramjet

vehicle with combustion and is described in the next chapter.

150

151

CHAPTER-6

TIP-TO-TAIL SIMULATION OF FLOW OVER A

TYPICAL SCRAMJET VEHICLE WITH

COMBUSTION

 Air-breathing engines have higher specific impulse as compared to other

conventional propulsion systems like solid, liquid or cryogenic propulsion as it can

utilize the atmospheric oxygen while operation and hence need to carry only the fuel

which is either Hydrogen or Hydrocarbon based propellants. Scramjet mode of

operation is the most suitable mode for air breathing vehicles operating at Mach

numbers greater than 6 in order to get good propulsive power and efficiency. This is

because, at Mach numbers greater than 6 if the velocities are brought down to

subsonic conditions, as in the case of Ramjet engines, the temperature increase due to

the large reduction in velocities from hypersonic to subsonic would be so large that

the Hydrogen fuel injected would undergo dissociation instead of combustion.

However, in the case of Scramjet mode of operations, the velocities after the air

intake are maintained supersonic and hence the rise in temperature after air

compression from the intake would be only large enough to cause ignition of the

Hydrogen air mixture and not the dissociation of Hydrogen. For a Scramjet vehicle to

deliver net thrust i.e. to obtain difference between the engine thrust and vehicle total

drag greater than zero, the vehicle should have an airframe integrated Scramjet

engine. In such type of vehicles, a portion of the air frame itself will act as intake as

shown in figure 6.1. This type of vehicles with air frame integrated Scramjet engine

experiments have been performed by X-43 flight experiment as reported by Voland et

al. (2006). However such type of flight experiments would require special purpose

launchers to put the air frame integrated scramjet vehicle at the required velocity and

altitude which is quite involved and incurring huge costs. In order to evaluate the

flight performance of a typical Scramjet engine, in a cost effective manner, sounding

rocket experiments like that of Hyshot reported by Neal et al.(2005) is an alternative

152

although this would not necessarily yield net positive acceleration during the

Scramjet phase of flight .

Figure 6.1 Schematic of air frame integrated Scramjet vehicle

In such type of flight experiments, the acceleration during the flight will be measured

by the accelerometers. From the mass of the vehicle and change in the acceleration

during the Scramjet phase of the flight; the thrust delivered by the Scramjet engines

can be obtained.

 The complete testing of the Scramjet engine in the ground is usually done in the

open jet test facility and in the absence of this facility, only component level testing

like the intake test and the combustor tests are possible. Hence computational fluid

dynamics tool has to be used to predict the performance of the Scramjet vehicle

before the flight, in the absence of open jet facility to obtain the performance of

Scramjet engine. However CFD tool has to be validated against the results of

component level tests like the air intake tests and the connected pipe mode tests of the

combustor and with this confidence level, the tip-to-tail simulations with combustion

in the Scramjet combustor of the Scramjet vehicle are performed so as to obtain the

thrust delivered by the Scramjet vehicle with the external as well as internal flow.

153

 Although full engine simulations have been reported in the literature by Kodera

et al. (2003) and Gaitonde et al. (2010), the simulations performed are for body fitted

meshes on conventional CPU machines. Such full engine simulations with Cartesian

meshes employing the latest GPU based parallel computing platforms is not reported

in the literature to the best of our knowledge. Considering the tremendous advantage

of Cartesian meshes for automated grid generation and high cost effective through put

obtained from the latest GPU based parallel computing, a full engine simulation of

representative Scramjet vehicle is carried out with Cartesian mesh and are presented

in this chapter.

6.1 Description of the problem

 A Scramjet engine with three struts which has fuel injection from the base of

the struts is chosen for the demonstration of full engine simulation. Figure 6.2 shows

one half of the representative Scramjet vehicle with the engine. The figure actually

represents the body view of the vehicle after Cartesian grid generation. The grid is

generated by using a mesh of 180X120X120 with three levels of oct-tree refinement

which has resulted in good capture of the body as seen from the figure. As seen in

figure, the engine is attached to a representative cone cylinder forebody.

Figure 6.2 Typical Scramjet vehicle with Scramjet engine module

154

Figure 6.3 Representative Scramjet vehicle showing the engine module with

 three struts

 Figure 6.3 shows the Scramjet vehicle with the top cover of the engine module

removed in order to show the three struts in the engine. Figure 6.4 shows the view of

section in the symmetry plane at z=0. Figure 6.5 shows the section at X=6.34 m.

Figure 6.6 shows the section at Y=0.55 m which shows the injection ports at the end

of struts. Computations are carried out for a free stream Mach number of 6.5 and free

stream pressure of 2030 Pa at an altitude of 26 km at zero angle of attack. Fuel is

injected from the strut base through holes of 6 mm diameter. Computations are

carried out for an air fuel equivalence ratio (ER) of 0.6 and 1.0. Simulations are

carried out to obtain pressure, temperature, water vapour mass fraction and Mach

number distribution along the engine. Also the combustion efficiency and the thrust

delivered by the Scramjet engine are also obtained. All the simulations are carried out

on cluster of machines with GPU accelerators.

155

Figure 6.4 Body at section Z=0

Figure 6.5 Section view at X=6.34 m with zoomed view in the inset

Figure 6.6 Body at section Y=0.55 m

156

6.2 Results and Discussion

 A mesh of 180X120X120 with 3 levels of oct-tree splitting for the cells near the

body is employed for proper body capture. The initial number of cells is 4.8million

and the simulations are carried out at zero angle of attack for one fourth the body. At

Ymin and Zmin boundary, symmetry conditions are imposed and supersonic inflow

conditions imposed at the Xmin boundary. For all other outer boundaries the

supersonic outflow conditions are imposed. The modified wall function approach

described in Section 4.4.1 is used to get the wall effects due to turbulence on the flow

Figure 6.7 Grid independence plot for surface pressure along the centerline between

 two struts along bottom wall (ER=0.6)

(P
a)

157

Figure 6.8 Final grid at section Z=0.0 in the Scramjet region after 3 levels of

 refinements

. Figure 6.7 shows the convergence and grid independence for the pressure

plotted along the bottom wall of the Scramjet engine. Three levels of flow refinement

is carried out based on the flow gradients and the total number of cells was increased

from 4.8 million cells for the initial grid to 11.7 million for the final grid. It can be

seen from figure 6.7 that the pressure distribution along the length of the Scramjet

vehicle is independent of grid and iterations. Figure 6.8 shows the final grid in the

region of Scramjet engine region which clearly shows the fine grid due to mesh

refinement.

 Figure 6.9 shows the Mach number plot over the complete vehicle at section

Z=0.02 m (section in between the struts) from tip–to-tail simulation with combustion.

All the features like the nose shock, shocks at the intake ramp and expansion at the

nozzle are captured. Figure 6.10 shows enlarged view of the plot near the Scramjet

engine region. It can be seen that at the intake, the two stage compression through

first and second ramp takes place through the oblique shocks which almost touch the

cowl lip causing very less spillage. Figure 6.11 shows the mass average total pressure

158

plotted along the length of the Scramjet engine. The mass averaged quantity, at an

axial section of the engine, is the ratio of sum of the product of the mass flow rate

across each cell and the quantity under consideration to the total mass flow rate

across the section.

Figure 6.9 Mach number plot at section Z=0.02 m over complete vehicle from tip-to-

 tail simulation

Figure 6.10 Mach number plot in the Scramjet engine region at section Z=0.02 m

159

The mass-averaged quantity of a flow variable Q at a section can be expressed by the

following formula.

∑

∑

=

==
ncells

i

i

ncells

i

ii

averagedmass

m

Qm

Q

1

1

_

&

&

 (6.1)

where ncells is the number of cells in the section and im& is the mass flow rate across

the i
th

cell. It can be seen that at the start of the intake the total pressure is around 30

bar and after the boundary layer splitter and two compressions from the two ramps

the mass averaged total pressure drops to around 14 bar. Later the total pressure drop

occurs due to the shock losses from the strut leading edge giving rise to total pressure

at the combustor entry of around 5 bar. After the combustion process, the total

pressure drops further by around 2.5 bar.

Figure 6.11 Mass-averaged total pressure along the length of the engine (ER=0.6)

160

Figure 6.12 Mass-averaged Mach number along the engine (ER=0.6)

Figure 6.13 Pressure distribution in the Scramjet engine with combustion (ER=0.6) at

 section Z=0 showing the zoomed view of the intake shock system in the inset

161

 Figure 6.12 shows the mass averaged Mach number along the Scramjet engine.

The Mach number drops sharply due to the shock induced compression from the two

ramps and the combustor entry Mach number is around 2. At the base of the strut, the

combustion takes place with the mass averaged Mach number just above 1.0,

indicating supersonic combustion. Later due to the divergent portion of the combustor

and the nozzle, the Mach number increases.

 Figure 6.13 shows the pressure distribution in the Scramjet engine at section

Z=0 with zoomed portion of the intake showing shock reflection from cowl. The

increase in pressure due to combustion at the downstream of the strut can be very

clearly seen. No intake un-start is noticed due to the combustion as seen in the above

figure. Figure 6.14 shows the water vapour mass fraction at section Z=0 and figure

6.15 shows the water vapour mass fraction at Y=0.559 m. It can be seen from Figure

6.15 that most of the combustion is in the axial region downstream of the strut. This

indicates that there is still a region in between the strut in the combustor which can be

further used for fuel injection and subsequent combustion which of course should not

give rise to very large blockage or high pressure rise to cause intake un-start. Figure

6.16 shows mass flow rate of hydrogen along the combustor starting from the strut

end. It can be seen that most of the hydrogen is consumed just downstream of the

strut which is the mixing and combustion dominated zone. About 10% of the

hydrogen is remaining un-burnt towards the combustor end.

 Figure 6.17 shows the cumulative combustion efficiency which is the ratio of

total amount of water vapour formed up to the axial location to the total ideal amount

of water-vapour that would be formed assuming full combustion. Most of the

combustion takes place just downstream of the strut and later the combustion

efficiency remains almost constant, indicating that further combustion of small

quantities of left over hydrogen is not taking place due to very high velocities

involved. Figure 6.18a shows the pressure distribution along the centerline between

two struts of the bottom wall i.e. at section of z-symmetry plane of the engine for

162

equivalence ratio of 0.6. The free stream Mach number for the Scramjet vehicle is 6.5

and after the bow shock ,the flow field that approaches the first ramp of the intake

after the cone cylinder fore body portion is about Mach number 6 and undergoes the

first compression over the 10.5 degree ramp followed by second compression in the

second ramp which also has 10.5 degree wedge angle as shown in Fig. 6.13. Thus the

flow from the horizontal has turned by 21 degrees. The shock from the second ramp

impinges on the cowl lip and at the cowl the flow initially turns by 15 degrees and

then subsequently by another 6 degrees at the end of drooping portion of the cowl.

The turning of the flow by 15 degrees at the cowl tip will create a shock and further

turning by 6 degrees introduces another weak shock. The reflected shock from the

cowl lip impinges on the bottom wall causing the pressure rise at 6m location. It is to

be noted that there is also expansion waves emanating from the expansion corner

after the second ramp which interact with reflected shock and forms complex wave

systems. The reason for the sharp pressure jump at 6m location is due to the reflected

shock from the cowl lip. After the pressure jump due to the reflected shock, the

pressure reduces as it tries to recover and then at little downstream it again rises due

to the shock-shock interaction caused by the two strut leading edges as shown in

figure 6.18b. Subsequently the strut geometry causes pressure rise and further

pressure rise occurring near the strut base is due to combustion. The high pressure

flow due to combustion later expands through the divergent portion of the combustor

and the nozzle as shown in Fig.6.18a. Figure 6.19 shows the mass averaged static

temperature which clearly shows the rise in temperature due to compression in first

ramp and second ramp. This is followed by further increase due to shock from strut

leading edge, which will make the temperature at the base of the strut more than the

ignition temperature of hydrogen-oxygen mixture.

163

Figure 6.14 Water vapour mass fraction at section Z=0. (ER=0.6)

Figure 6.15 Water vapour mass fraction at section Y=0.559 m (ER=0.6)

164

Figure 6.16 Mass flow rate of hydrogen along the engine after the strut base (ER=0.6)

Figure 6.17 Combustion efficiency along the combustor for equivalence ratio of 0.6

(P
a)

165

Figure 6.18a)Pressure distribution along the centerline between Fig 6.18b) Pressure at

 two struts of bottom wall for equivalence ratio of 0.6 Section YY=0.55 m

 .

Figure 6.19 Mass-averaged static temperature along the engine for equivalence ratio of

 0.6

166

Figure 6.20 Cumulative axial force along the length of the Scramjet vehicle for

 equivalence ratio of 0.6

 Sharp rise in temperature is noticed due to combustion which then reduces due

to expansion in the nozzle. Figure 6.20 shows the cumulative axial force coefficient

(CX= Axial Force /(0.5*ρV
2
S)) for an equivalence ratio of 0.6 compared with that of

the non-reacting case. The behaviour of the curve is very much on the expected lines,

with the reacting and non-reacting curves behaving the same way till the start of the

strut and further after the strut, the reacting case gives a sharp drop in cumulative

axial force, indicating thrust being delivered by the Scramjet engine. However the

overall axial force with Scramjet operation is still a small positive number indicating

that the vehicle would not have a net positive thrust and hence would be decelerating.

 Figure 6.21 shows the mass-averaged Mach number along the engine length for

equivalence ratio 1.0. The Mach number keeps falling through the intake with a small

increase at the end of the second ramp because of the expansion and then keeps

further falling due to the presence of struts. At the strut base, the Mach number is

167

minimum because of low recirculating flow which is the active zone for combustion.

Increase of Mach number downstream of strut is due to the divergence of the

combustor followed by expansion through the nozzle. Figure 6.22 shows the mass-

averaged temperature along the engine for equivalence ratio 1.0 which is almost the

same as that of equivalence ratio 0.6 except that the peak temperature extends for

slightly larger region because higher fuel flow rate. Figure 6.23 shows the total

pressure plot along the engine and figure 6.24 shows the pressure along the centre

line of the engine. As expected, the higher equivalence ratio gives a larger pressure

rise. Figure 6.25 shows the mass flow rate of hydrogen downstream of the strut which

clearly shows 50% consumption of the injected mass flow within about 15 cm from

the strut base.

 Figure 6.26 shows the body pressure palette of the engine showing all the

features like pressure rise in second ramp, footprint of the leading edge shock of the

strut and rise in pressure due to combustion at the rear of the strut. Figure 6.27 shows

the centerline pressure distribution between two struts for reacting and non-reacting

cases. As expected, the pressure for reacting and non-reacting cases are same up to

the region near the strut base, after which the rise in pressure due to combustion is

clearly visible and higher pressure rise noticed for higher equivalence ratio.

 Figure 6.28 shows the cumulative axial force distribution for equivalence ratio

0.6 and 1.0 compared with non-reacting case. The equivalence ratio of 1.0 gives more

engine thrust as compared to equivalence ratio 0.6, due to more fuel injected. It is to

be noted that, for ER 1.0, the plot shows a small net positive cumulative axial force

coefficient indicating that the vehicle will still be in a deceleration mode. The net

axial force from simulation (Thrust-Drag) for equivalence ratio 0.6 is -620 N for

equivalence ratio 1.0 the value is -324 N. The change in deceleration can be measured

in flight and can also be theoretically estimated by dividing the computed thrust of

the Scramjet engine by the total mass of the Scramjet vehicle. It is to be noted that

the present simulations are for a representative Scramjet vehicle without fins which

168

otherwise would usually be needed for providing static stability to the vehicle and

this would also impart additional drag to the vehicle.

Figure 6.21 Mass-averaged Mach number along the engine for equivalence ratio of 1.0

Figure 6.22 Mass-averaged static temperature along the engine for equivalence ratio of 1.0

169

Figure 6.23 Mass-averaged total pressure along the engine for equivalence ratio of 1.0

Figure 6.24 Pressure distribution along the centerline between two struts of bottom wall

 for equivalence ratio of 1.0

(P
a)

170

Figure 6.25 Hydrogen mass flow rate downstream of strut for equivalence ratio 1.0

Figure 6.26 Body pressure of the Scramjet engine with three struts with enlarged view of

 the strut region for equivalence ratio =1.0

171

Figure 6.27 Surface pressure along the centerline between two struts for reacting and

 non-reacting cases

Figure 6.28 Cumulative axial force coefficient for equivalence ratio 0.6 and 1.0

 compared with non-reacting case

(P
a)

172

6.3 Parallel Computing Performance of Tip-to-Tail

Flow Simulations on GPU cluster

 Parallel computing was carried out on a cluster of dual quad core machines

with each machine consisting of 2 GPU accelerators having 512 cores each. Thus

each machine has 8 CPU cores and 1024 GPU cores. In order to have good

performance from the GPU cluster, the computational load has to be shared between

GPU and CPU cores in such a way that GPU cores are allotted tasks which are highly

data parallel. As described in section 5.3, the cells are classified into 8 groups which

need to perform similar type of computations and computations are performed group

wise.

 For the present computations, the total number of cells after 3 levels of flow

refinement are 11.81 million, out of which 6.56 million cells are gas cells and 1.77

million cells are partial cells and the rest are body cells for which no computations

are performed and hence is not counted for computational load. Figure 6.29 shows

different cell groups used for GPU computations.

Figure 6.29 Different cell groups for GPU computation

173

 Group-7 and Group-8 are groups of partial cells and air cells whose neighbours

are not split and are highly data parallel groups. Most of the cells in the domain will

fall in this group and are allotted to GPU for computation with maximum priority and

on the other hand these cells are allotted to CPU with least priority. Group-3 and

Group-4 cells are groups of partial cells and air cells whose neighbour’s neighbour is

split and are allotted to GPU with second level of priority. Group-5 and Group-6 are

groups of partial cells and air cells whose neighbour is split. Such groups are allotted

to CPU with a high level of priority and allotted to GPU only if the compute load in

GPU is so less that GPU could complete the computation before CPU. Normally in

GPU computation, it is always advisable to avoid idling of GPU as its computing

power is much larger than that for CPU. Hence the computational load is distributed

in such a way that if at all the load cannot be evenly distributed, always the GPU will

be allotted the extra computational load to avoid idling of GPU. The last two cell

groups are Group-1 and Group-2 cells which are the boundary partial cells and air

cells and are the least data parallel groups and are allotted to CPU with maximum

priority. Table 6.1 shows the cell group distribution between CPU and GPU for 2

machines and Table 6.2 shows the distribution in 4 machines.

Table 6.1 Distribution of cell groups between CPU and GPU in 2 machines

Machine

Number

Type Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Group-7 Group-8

1

CPU

386672

73450 20372 29253 34906 2906 42425 0 0

GPU

3681816

0 0 142794 176433 0 0 908911 2453678

2

CPU

365219

18685 97621 48769 116431 2087 68734 0 12892

GPU

3895048

0 0 0 0 0 0 538393 3356655

174

Table 6.2 Distribution of cell groups between CPU and GPU in 4 machines

Machine

number

Type Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Group-7 Group-8

1

CPU

205594

6696 122558 21378 24108 2410 28444 0 0

GPU

1813403

0 0 92932 112265 0 0 554534 1053672

2

CPU

189295

5787 54940 18685 56204 1435 52244 0 0

GPU

1944863

0 0 5380 13334 0 0 296315 1629834

3

CPU

190280

66754 81174 12670 15205 496 13981 0 0

GPU

1859211

0 0 45067 59761 0 0 354377 1400006

4

CPU

190982

12898 42681 24704 46893 652 16490 0 46664

GPU

1935127

0 0 0 0 0 0 242078 1693049

 It can be very clearly seen that boundary partial cells and boundary air cells are

Group-1 and Group-2 cells and are entirely allotted to CPU since these are least data

parallel cells due to the additional code length and branching that occurs due to

implementation of boundary conditions. On the contrary, the partial cells and the air

cells which do not have any split neighbour i.e Group-7 and Group-8 are entirely

allotted to GPU as they are highly data parallel. The Group-7 cells which are partial are

less data parallel as compared to the Group-8 cells which are air cells due to the

additional overhead of implementation of body boundary condition with wall function.

It can be seen that the GPU load is about 10 times the CPU load which is also the ratio

of the maximum theoretical speed of GPU to CPU.

175

Figure 6.30 Speed up performance on 180 node GPU cluster

Figure 6.31 Speed up performance up to 20 GPU machines

176

 Figure 6.30 shows the speed up performance up to 180 machines as compared to

ideal speed up and Figure 6.31 shows the same figure plotted for speed-up obtained up

to 20 machines for better clarity. It can be seen that for the present problem size of 8.33

million cells consisting of air cells and partial cells which would take part in the

computation, the speed up efficiency beyond the use of 10 machines (each machine has

8 CPU cores and 2 GPU accelerator) is less than 80%. This means that for 10

machines, the ideal speed up is 10 times the single machine speed or in other words the

time taken would be 1/10
th

 the time taken in a single machine for 100% efficiency.

However we notice that the speed up for 10 machines is about 8 which means the speed

up efficiency is 80%. It is to be noted that each machine has a theoretical peak speed of

1.2 TFLOP and the speed up efficiency of 80% is obtained for 12 TFLOP peak speed

which is very good for the above 8.33 million size problem. The present problem could

be completed with 214000 iterations in 36 hours on 10 machines. It is seen that beyond

certain number of machines, the speed up remains almost constant. This is because, as

number of machines is increased, the computational load on GPU reduces but the

communication overhead for GPU to CPU and CPU to GPU copy process remains

constant and hence no gain is obtained in speed up. With regard to speed up on a single

dual code core machine with 2 GPU accelerators as against computation on dual code

core without GPU accelerators, the speed up value obtained was 7.3X. as against the

theoretical value of about 14X.

 It can be inferred from the speed-up performance that for the above class of

combustion problems, about 2 million cells per GPU machine would give a

performance of more than 90% and for 1 million cells per machine the speed up

efficiency will be more than 80%. Considering the space, cost and power advantage

of GPU as compared to the CPU cluster, the computations using GPU cluster are

highly beneficial and are ideal candidates for high performance computations.

177

CHAPTER-7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

 Cartesian grid based approach to solution of high speed flow problems as

applied to reentry type of vehicles and Scramjet combustion which are essential

technologies for low cost access to space has been addressed in this work. The

solution of reentry type of problems to obtain heat flux with a Cartesian mesh based

approach is noted to be not reported in literature. The present approach followed is

through near wall viscous resolution by a combination of unstructured prism layer

solution near the wall and Cartesian mesh solution away from the wall. With regard

to application of Cartesian mesh approach to Scramjet engine flows with combustion,

along with high performance computing with GPU based systems which is also noted

to be not reported in literature, the problem is addressed through pure Cartesian mesh

with an available wall function approach. The highly compute intensive part is

addressed through development of new methodologies and algorithms for high

performance computing with GPU accelerators. We have also demonstrated its utility

in the context of tip-to-tail flow computations for a typical Scramjet vehicle with

combustion.

7.1.1 Near-Wall Viscous Resolution with Hybrid Method

 for Laminar Hypersonic Flow over Re-entry Capsules

 Cartesian mesh based approach is used to estimate near wall quantities like heat

flux for laminar hypersonic flows over axi-symmetric bodies typical of reentry

capsules. To achieve this, firstly, prism layers are constructed from the background

Cartesian mesh panels formed from intersection of Cartesian mesh with the body.

This is done by extrusion of prism layer in stretched fashion from the background

Cartesian mesh panels up to a certain user defined height. The extruded prism layer is

then stitched to the outer Cartesian mesh. Subsequently, laminar Navier-Stokes code

178

solution is carried out for the unstructured prism layer near the wall and the Cartesian

mesh away from the wall. The developed code was validated against available

experimental heat flux results for a typical sphere-cone-cylinder-flare geometry and

bulbous heat shield geometry at hypersonic Mach numbers under non-reacting

conditions. For the finite rate chemically reacting flow, the code was validated for a

wedge, sphere and hemisphere-cylinder against other CFD code solutions from

structured mesh and limited experimental results. The above hybrid solution

methodology is demonstrated for axi-symmetric flows.

 For three-dimensional flows, since the extruded prism layers from the Cartesian

mesh panels formed due to the intersection of the body are not stitched to the outer

Cartesian mesh, the solution is carried out in two steps. In the first step, an Euler

solution is obtained for the pure Cartesian mesh. Later near wall prism layers are

constructed by extrusion from the background Cartesian mesh panels but not stitched

to the outer Cartesian mesh. Subsequently, the Cartesian mesh Euler solution is

mapped on to unstructured prism layer. In the next step, the laminar Navier-Stokes

solution is performed for the prism layer alone using the Euler solution as the outer

boundary condition for the unstructured prism layer. The solution methodology is

validated against experimental heat flux values of three dimensional flow for a typical

sphere-cone-cylinder-flare configuration. This methodology, does not take into

account the interaction between the near wall unstructured prism layer solution to the

outer Cartesian mesh solution. However this deficiency was overcome by extending

the prism layer to sufficient height beyond the interaction zone.

7.1.2 Scramjet Combustion Simulation with Cartesian Mesh

 Solver

 In the area of Scramjet combustion, we have explored the Cartesian grid solver

for computing turbulent finite-rate chemically reacting Hydrogen-air combustion.

This is particularly because Scramjet engines have complex geometries for which

Cartesian mesh generation can be completely automated, leading to significantly

179

reduced turnaround time from geometry to Cartesian mesh solution. This is a very

essential aspect in the design cycle of a Scramjet engine. This was achieved by

developing a finite-rate chemically reacting Hydrogen-air combustion code from

existing Cartesian mesh perfect gas turbulent flow with the available wall function

approach. In the present computations, turbulence chemistry interaction is not taken

into account. However, based on the match seen with the current computations with

experimental results, it does not seem to have influenced the results. The developed

code was validated against available experimental pressure and total temperature

measurements for a typical Scramjet combustor test in connected pipe mode.

 Since the combustor tests carried out are in connected pipe mode which is not

identical to the flight condition, numerical studies were carried out to bring the effects

of vitiation and inlet pressure on the combustor performance. Through the above

mentioned work we could demonstrate that one could obtain good estimates of

pressure and combustion efficiency with a Cartesian mesh solver for Scramjet

combustion simulation and thus can be used as an effective tool to evaluate various

candidate Scramjet engine configurations in the design phase.

7.1.3 Parallel Computation of Scramjet Combustion on Adaptive

 Cartesian Mesh with GPU Accelerators

 The computation of finite rate chemically reacting flow with Hydrogen-air

combustion for Scramjet vehicle is very compute intensive and clearly needs a high

performance computing support to analyze a large number of candidate

configurations in the design space. In this context, we have explored the use of the

latest parallel computing technology of a cluster of CPU machines with GPU

accelerators. In order to enable computations on the GPU cluster a tri-level

parallelism approach with Pthread, MPI and CUDA was adopted. While the Pthread

enables the use of multiple CPU cores of each machine sharing a common memory,

the MPI enables the use of multiple machines and CUDA handles the computation in

the GPU accelerator. The real challenge posed was to extract good performance from

180

GPU accelerators for Cartesian grid solvers with hanging nodes which exhibit poor

data parallelism. This challenge was addressed by developing suitable data parallel

algorithms for the adaptive Cartesian mesh and implementing good memory

management techniques in the code. Data parallelism for the Cartesian mesh solver

was achieved by grouping the cells into 8 different groups having similar type of

computations and allocating the least data parallel cells to the CPU and highly data

parallel cells to GPU for computation. The new data parallel algorithm developed by

grouping the cells into different groups and launching the computations groupwise is

one of the main contributions of the present work.

 Tip-to-tail flow simulation of a typical Scramjet vehicle with a three strut

Scramjet engine was carried out for two equivalence ratios. The performance of the

Scramjet engine in terms of various quantities like total pressure, Mach number,

combustion efficiency and thrust are brought out. The parallel computing

performance for the above simulation on a cluster of GPU machines is also brought

out. It is found that a computational load of about 1 million cells per GPU machine

gives a parallel computing performance of more than 80%.

 Based on the above studies, we conclude that high performance GPU cluster

based Cartesian mesh solutions for Scramjet vehicle flow simulations with

combustion involving very complex geometry and flow is a very good option for

obtaining fast and useful solutions for a large number of candidate configurations in a

typical design environment.

7.2 Future Work

 In the area of near-wall viscous resolution with a combination of unstructured

prism layer stitched with outer Cartesian mesh, the method is demonstrated for two

dimensional and axi-symmetric flows. For three dimensional flows, the stitching of

the prism layer with the outer Cartesian mesh is not done in the present work. Hence

181

the future work is to develop methodology to stitch the extruded polyhedral prism

layers from the Cartesian mesh body panels to the outer Cartesian mesh for general

three dimensional geometries. This will greatly enhance the utility of the hybrid

solution methodology. Also grid adaptation based on flow gradients for the prism

layer cells is another future task.

 As for the Scramjet combustion, the present combustion simulations were done

with laminar chemistry i.e. without turbulence-chemistry interaction. Although good

match in the wall pressure was obtained for a particular Scramjet combustor test

condition, this may not be true for all types of geometries and flow conditions.

Hence, the inclusion of turbulence-chemistry interactions is one of the future tasks

identified. Also the present computations are done with κ-ε turbulence model and the

mixing of fuel with air behind the struts, being a very important process, it will be

useful to investigate with other turbulence models also, and even with high fidelity

models like Large Eddy Simulations. Another important task is to obtain the near

wall resolution by creating very large number of cells near the wall and directly solve

to wall for the pure Cartesian mesh without resorting to wall function. This could be

also made possible by anisotropic Cartesian mesh cell division along with high

performance computing platforms to solve extremely large number of cells that will

be mostly confined to the near-wall region.

 The future work envisaged on parallel computing with GPU accelerators is to

enhance the performance of the adaptive Cartesian mesh solver by having better

memory management by way of reduced use of global memory and better use of local

memory and registers. This can reduce the memory congestion during the global

memory access leading to substantial improvement in the computing performance.

182

183

REFERENCES

1. Alavilli Venkata Siva Prasad (1997). Numerical simulation of hypersonic

flows and associated systems in chemical and thermal nonequilibrium. Ph.D

dissertation, Dept. of Fluid Mechanics, Virje Universteit Brussel, Brussels,

Belgium

2. Anderson, J.D., (1989). Hypersonic and high temperature gas dynamics.

McGrawHill

3. Ashok,V. and Thomas C. Babu (1999). Parallelisation of Navier-Stokes

code on a cluster of workstations. Lecture notes in Computer Science-1745,

Springer Verlag edition, pp.349-353.

4. Berger, M.J. and LeVeque, R.J. (1989). An adaptive Cartesian mesh

algorithm for the Euler equations in arbitrary geometries. AIAA-89-1930-

CP

5. Blottner, F.G. (1971). Chemically reacting viscous flow program for multi-

component gas mixtures. Sandia Report SC-RR-70-754, 1971.

6. Bussing, T.R.A. and Murman, E.M. (1988). A finite volume method for the

calculation of compressible chemically reacting flows. AIAA Journal,

Vol.26,No.9

7. Candler, G.V. (1989). On computation of shock shapes in non-equilibrium

hypersonic flows. AIAA-89-0312

8. Candler, G.V. (1991). Computation of weakly ionized hypersonic flows in

thermochemical nonequilibrium. Journal of Thermophysics and Heat

Transfer, Vol.5,No.3 pp-266-273

9. Chakarborty Debasis, P.J.Paul, H.S.Mukunda (2000)Evaluation of

combustion models for high speed H2/air confined mixing layer using DNS

data. Combustion and Flame, 121:195-209.

10. Chakraborty Debasis, Roychowdhury, A.P., Ashok.V and Pradeep Kumar

(2003) Numerical investigation of staged transverse sonic injection in Mach

2 stream in confined environment. Aeronautical Journal, 2003,

107(1078),719-729.

11. Chiang, Y.L., Van Leer, B. and Powell, K.G. (1992). Simulation of

unsteady inviscid flow on an adaptively refined Cartesian grid. AIAA-92-

0443

184

12. Corier, W.J. (1994). An adaptively refined, Cartesian, cell-based scheme

for the Euler and Navier-Stokes equations. NASA-TM 106754, October-

1994

13. Crumpton, P.I., Moiner, P. and Giles, M.B. (1997). An unstructured

algorithm for high Reynolds number flows on highly stretched grids. 10th

International Conference on Numerical Methods for Laminar and Turbulent

Flows, Swansea, England, July 21-25, 1997

14. Curran,E.T. and Murthy, S.N.B. (2000). Scramjet propulsion. Vol.189,

Progress in Astronautics and Aeronautics,Reston,Virginia:American

Institute of Aeronautics and Astronautics.Inc,2000

15. Dana A. Jacobsen and Inanc Senocak (2011). A full-depth amalgamated

parallel 3d geometric multigrid solver for GPU clusters. AIAA 2011-946

16. De. Zeeuw, D. and Powell, K.G. (1991). An adaptively refined Cartesian

mesh solver for the Euler equations. AIAA-91-1542-CP

17. Dmitry Davidenko, Iskender Gokalp and Emmanuel Dufour (2003).

Numerical simulation of hydrogen supersonic combustion and validation of

computational approach. AIAA-2003-7033

18. Dunn, M.G., and Kang, S.W (1973). Theoretical and experimental studies of

reentry plasmas. NASA CR-2232.

19. Epstein, B., Luntz, A.L. and Nachshon, A. (1992). Cartesian Euler method

for arbitrary aircraft configurations. AIAA Journal, 30(3):679-687, March

1992

20. Evgeny V.Timofeev., Rabi B.Tahir, and Sannu Molder (2008). On recent

developments related to flow starting in hypersonic air intakes. AIAA-2008-

2512

21. Everett H. Phillips, Roger L. Davis and John D. Owens (2010). Unsteady

turbulent simulations on a cluster of graphics processors. AIAA 2010-5036

22. Fry Ronald, S. (2004). A century of ramjet propulsion technology evolution.

Journal of Propulsion and Power, Volume 20,No.1, January-February

2004:27-58

23. Frymier, P.D., Jr., Hassan, H.A. and Salas, M.D. (1988). Navier-Stokes

calculations using Cartesian grids. AIAA Journal,26(10):1181-1188,

October 1988

185

24. Gaffney, R.L., Hassan, H.A. and Salas, M.D. (1987). Euler calculations for

wings using Cartesian grids. AIAA-87-0536

25. Gaitonde, V., Malo-Molina, F.J., Risha,D. and Ebrahimi,H. (2009).

Integrated analysis of scramjet flow path with innovative inlets. DoD High

Performance Computing Modernization Program Users Group Conference

(HPCMP-UGC), San-Diego,CA,2009, pp-81-87

26. Georgi Kalitzin and Gianluca Iaccarino (2003). Towards immersed

boundary simulation of high Reynolds number flows. Centre for Turbulence

Research, Annual Briefs.

27. Gerlinger, P., Brugemann,D. and Algermissen,J. (1994). Numerical

simulation of supersonic mixing and combustion. Proceedings of 25
th

Symposium (International) on Combustion, Irvine (CA/USA).

28. Gerlinger, P., Kasal, P., Boltz,J. and Brugemann,D. (1998). Numerical

investigation of hydrogen strut injections into supersonic air flows. AIAA-

98-3424.

29. Gerlinger, P., Mobus, H. and Brugemann,D. (2001). An implicit multigrid

method for turbulent combustion. Journal of Computational Physics,

Volume 167, Issue 2, pp 247-276.

30. Gerlinger, P., Kasal, P., Schneider, F., von Wolfersdorf, J., Weigand, B.,

and Aigner, M. (2005). Experimental and numerical investgation of lobed

strut injectors for supersonic combustion. Basic Research and Technologies

for Two-Stage-to-Orbit Vehicles, Collaborative Research Centres. D.Jacob,

G.Sachs, S.Wagner (Editors), 365-382, Wiley 2005

31. Gerlinger, P., Nold, K. and Aigner, M. (2008). Investigation of hydrogen-air

reaction mechanisms for supersonic combustion. AIAA-2008-4682.

32. Gerlinger, P., Nold, K. and Aigner, M. (2010). Influence of reaction

mechanism, grid spacing, and inflow conditions on numerical simulations of

lifted supersonic flames. International Journal for Numerical Methods in

Fluids, 62, 1357-1380.

33. Gerlinger, P. (2012). Multi-dimensional limiting for high-order schemes

including turbulence and combustion. Journal of Computational Physics,

231 (5), pp 2199-2228. .
.
34. Ghislain Tchuen., Yves Burtschelb, and David E. Zeitounb (2008).

Computation of non-equilibrium hypersonic flow with artificially upstream

186

flux vector splitting (AUFS) schemes. International Journal of

Computational Fluid Dynamics. Vol.22,No.4 April-May 2008,209-220

35. Gnanasekar, S., Ashok, V., Dipankar Das, and Lazar T. Chitilappily (2009).

Effect of connected pipe test conditions on scramjet combustor

performance. International Journal of Aerospace Innovations, Multi-

Science Publishing, Volume 1, Number 4, December 2009, pp.159-173.

36. Gnoffo,P.A. (1989). A code calibration program in support of the aeroassist

flight experiment. AIAA –89-1673, AIAA-24th Thermophysics Conference

37. Gnoffo,P.A. (1999). Planetary-entry gas dynamics. Annual review of Fluid

Mechanics 31:451-494

38. Goyne,C.P., Krauss,R.H.,McDaniel J.C and Whitehurst, W.B (2007). Test

gas vitiation effects in a Dual-mode Scramjet Combustor. Journal of

Propulsion and Power, Vol.23, No.3,

39. Gupta, R.N., Yos, J.M., Thompson, R.A. and Lee, K.P. (1990). A review of

reaction rates and thermodynamic and transport properties for 11 species air

model for chemical and thermal nonequilibrium up to 30000K. NASA

Reference Publication, 1232

40. Hagemann, C., Schley, C.A., Odintsov, E. and Sobatchkine, A. (1996).

Nozzle flowfield analysis with particular regard to 3d-plug-cluster

configurations. AIAA 96-2954. 32nd AIAA Joint Propulsion Conference,

July 1-3, Lake Buena Vista, Florida

41. Hai P.Le and Jean-Luc Cambier (2012). Development of a flow solver with

complex kinetics on the graphic processing units. AIAA 2012-0721

42. Hirch, CH., Lacor, C., Rizzi, A., Eliasson, P., Lindblad, I and Haeuser, J

(1991). A multiblock/multigrid code for the efficient solution of complex

3D Navier-Stokes flows. First European Symposium on

Aerothermodynamics for Space Vehicles. ESA (ESTEC), Noordjwijk.

Netherlands.

43. Huang Wei, Wang ZenGhuo and Liu Jun (2011). Parametric effects on the

combustion flow field of a typical strut based scramjet combustor. Chinese

Science Bulletin, December 2011, Vol.56, No.35, pp-3871-3877

44. Jae-doo Lee. (2006). “Development of an efficient viscous approach in a

cartesian grid framework and application to rotor-fuselage interaction.”

Ph.D dissertation, Georgia Institute of Technology, August-2006.

187

45. Jeong –Yeol choi, Fuhua Ma and Vigor Yang (2005). Dynamic combustion

characteristics in scramjet combustors with transverse fuel injection.

AIAA-2005-4428

46. Jin Wook Lee (2007). “Parallelised Cartesian grid methodology for non-

equilibrium hypersonic flow analysis of ballutes”. Ph.D dissertation,

Georgia Institute of Technology, August-2007

47. Jin Wook Lee, Orsini, A. and Ruffin, S.M. (2010). Unstructured Cartesian-

grid methodology for non-equilibrium hypersonic flows. Journal of

Thermophysics and Heat Transfer, Vol.24,No1, Jan-Mar-2010

48. Julien.C.Thibault and Inanc Senocak (2009). CUDA implementation of a

Navier-Stokes solver on multi-GPU desktop platforms for incompressible

flows. AIAA 2009-758

49. Karman, S.L. Jr. (1995). SPLITFLOW: A 3D unstructured

Cartesian/prismatic grid CFD code for complex geometries. AIAA-95-0343

50. Katz, A. and Jameson, A. (2009). A multi-solver scheme for viscous flows

using adaptive Cartesian grids and meshless grid communication. AIAA-

2009-768

51. Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E. and Miller,

J.A.(1986). A Fortran computer code package for the evaluation of gas-

phase multicomponent transport properties, Tech. Rep. SAND 86-8246, UC-

401, Sandia National Laboratories..

52. Kee, R.J., Rupley, F.M. and Miller, J.A. (1992). The CHEMKIN

thermodynamic data base, Tech. Rep. SAND-8215B, UC-4, Sandia National

Laboratories, 1992.

53. Kim, K.H. and Kim, C. (2005). Accurate, efficient, and monotonic

numerical methods for multi-dimensional compressible flows, part ii: Multi-

dimensional limiting process, Journal of Computational Physics, 208, pp

570-615.

54. Kindler, M., Lempke, M., Gerlinger, P. and Aigner, M. (2011).

TASCOM3D: A scientific code for compressible reactive flows. 14
th

Teraflop Workshop at the High Performance Computing Center, Stuttgart.

55. Kodera, M., Sunami, T., and Itoh, K. (2003). Numerical simulation of

scramjet engine for JAXA’s flight experiment using Hyshot. AIAA-2003

188

56. Kuchi-Ishi,S., Watanabe,S., Nakakita, K. and Koyama,T. (2005).

Comparative force/heat-flux measurements between JAXA hypersonic test

facilities using standard model HB-2 (Part-1: 1.27m Hypersonic Wind

Tunnel Results). JAXA-RR-04-035E- March-2005

57. Launder, B.E. and Sharma, B.I. (1974). Application of the energy

dissipation model of turbulence to the calculation of flow near a spinning

disc. Letters in Heat and Mass Transfer, Vol.1, No.2, pp. 131-138.

58. Lehr, H.F. (1972). Experiments on shock-induced combustion.

Astronautica Acta, Vol.17, pp. 589-597

59. Liou M.S. and Stefen,C.J.Jr. (1993). A new flux splitting scheme.. Journal

of Computational Physics, 107, pp 23-39

60. Lobb, R.K. (1964). Experimental measurements of shock detachment

distance on spheres fired in air at hypervelocities. Proceedings of AGARD

NATO Specialists Meeting, Fluid Dynamics Panel

61. Luo Feiteng, Song Wenyan, Zhang Zhiqiang, Li Weiqiang and Li Jianping

(2012). Experimental and numerical studies of vitiated air effects on

hydrogen-fueled supersonic combustor performance. Chinese Journal of

Aeronautics (2012) 164-172

62. Manokaran, K., Vidya, G., and Goyal, V. K. (2003) CFD simulation of flow

field over a large protuberance on a flat plate at high supersonic mach

number. 41
st
 Aerospace Sciences Meeting and Exhibit, Reno, Nevada,

USA, 6th –9th January 2003, AIAA 2003 – 1253

63. Martin Krause., Reintarz, B., Ballmann, J. (2006). Numerical computation

for designing a scramjet intake. ICAS-2006. 25th International Congress of

the Aeronautical Sciences

64. Martin Krause and Josef Ballmann (2007). Numerical simulations and

design of a scramjet intake using two different RANS solvers. AIAA-2007-

5423

65. M.D.de Tullio et.al. (2007). An immersed boundary method for

compressible flow using local grid refinement. Journal of Computational

Physics,225,pp-2098-2117

66. Melton, J.E., Berger, M.J., Aftosmis M.J.,and Wong W.D. (1995). 3D

applications of a Cartesian grid euler method. AIAA-95-0853

189

67. Michael Emory, Vincent Terrapon, Rene Pecnick and Gianluca Iacarrino

(2011). Characterising the operability limits of the hyshot-II scramjet

through RANS simulations. AIAA-2011-2282

68. Moss, J.N. (1974) Reacting Viscous-Shock layer solutions with

multicomponent diffusion and mass injection. NASA TR-R-411, June.

69. Munikrishna, N. and Balakrishnan, N. (2011) Turbulent flow computations

on a hybrid Cartesian point distribution using meshless solver LSFD-U.

Computers and Fluids, 48, 128-138.

70. Neal, E. Hass, Michael K.Smart and Allan Paull (2005) Flight data analysis

of Hyshot 2. 13
th

 AIAA/CIRA. International Space Planes and Hypersonic

Systems and Technologies Conference.

71. NVIDIA (2011). NVIDIA CUDA C Programming Guide 4.1. November.

72. Palmer, G. (1989). The development of an explicit thermochemical

nonequilibrium algorithm and its application to compute three dimensional

AFE flowfields. AIAA-89-1701

73. Park, C. (1987). Assessment of Two-Temperature kinetic model for ionizing

air. AIAA-87-1574.

74. Partha.Mondal, Munikrishna,N. and Balakrishnan, N.(2007). Cartesian like

grids using a novel grid stitching algorithm for viscous flow computations

Journal of Aircraft,44 (5):1598-1609

75. Pellet,G.L., Claudio Bruno and Chinitz,W (2002). Review of air vitiation

effects on Scramjet ignition and flameholding combustion processes. 38
th

Joint Propulsion Conference and Exhibit, July, AIAA-2002-3880.

76. Peskin, C.S. (1977). Numerical analysis of blood flow in the heart. Journal

of Computational Physics, 25:220-252

77. Rahul Ingle and Debasis Chakraborty: Numerical Simulation of Dual Mode

Scramjet Combustor with significant upstream interaction, International

Journal of Manufacturing, Materials, and Mechanical Engineering, Vol 2,

No. 3, July-September, 2012, pp 60-74.

78. Rainer M Kirchhartz, David J Mee, Raymond J. Stalker, Perter A. Jacobs

and Michael A. Smart (2010). Supersonic boundary-layer combustion:

effects of upstream entropy and shear-layer thickness. Journal of

Propulsion and Power, Vol.26, No.1, January-Febraury,2010,pp.57-66

190

79. Rajat Mittal, and Gianluca Iaccarino (2005). Immersed boundary methods.

Annual Review of Fluid Mechanics,37:239

80. Rey DeLeon and Inanc Senocak (2012). GPU-accelerated large-eddy

simulation of turbulent channel flows. AIAA 2012-0722

81. Scherrer, D., Dessornes,O., Montmayeur,N. and Ferrandon, O. (1995).

Injection studies in the French hypersonic technology program. 6
th

International Aerospace Planes and Hypersonic Technologies Conference,

April 1995, AIAA 95-6096

82. Sebastian Karl, Kalus Hannemann, Johann Steelant and Andreas Mack

(2006). CFD analysis of Hyshot supersonic combustion flight experiment

configuration. AIAA-2006-8041

83. Shuang-Zhang Tu. and Stephen M. Ruffin, (2002). Calculation of

nonequilibrium flows using a solution adaptive, Unstructured Cartesian-

Grid Methodology. AIAA-2002-3098

84. Singh, A. K., Dipankar Das, Ashok, V., Jadav, V., and Babu, C. (2009).

Computational studies on the effect of blockage on starting and un-starting

of hypersonic air intake. Symposium on Applied Aerodynamics-2009,

Bangalore.

85. Soumyajit Saha and Deabsis Chakraborty, (2011). Reacting flow

computation of staged supersonic combustor with strut injection. Journal of

Aerospace Sciences and Technologies, Vol 63, No.4 , Nov, 2011, pp289-

298.

86. Sudhakaran, G., Thomas.C.Babu and Ashok, V. (2012) A GPU computing

platform (SAGA) and a CFD code on GPU for aerospace applications.

ATIP/ACRC Workshop on Accelerator Technologies for High Performance

Computing, May, Singapore, pp 117-121.

87. Srinivasa, P (1991). Experimental investigation of hypersonic flow over a

bulbous heat shield at Mach number 6. Ph.D thesis, IISc, Bangalore.

88. Svehla, R. A. (1962). Estimated viscosities and thermal conductivities of

gases at high temperatures. NASA TR-R-132, 1962.

89. Tani, K., Kanda,T. and Kudou, K. (2001). Effect of side spillage from

airframe on scramjet engines. Journal of Propulsion and Power, Vol.17,

No 1

191

90. Tani, K., Takeshi Kanda and Kenji Kudou. (2006). Aerodynamics

performance of scramjet inlet models with a single strut. Journal of

Propulsion and Power, Vol.22,No.4,July-August 2006

91. Townend, L.H.(2001). Domain of Scramjet. Journal of Propulsion and

Power, Volume-17,No.6,Nov-Dec-2001,1205-1213

92. Venkatakrishnan V. (1995). Convergence to steady-state solutions of the

euler equations on unstructured grids with limiters. Journal of

Computational Physics, 118, pp.120-130

93. Vijayan, P. and Kallinderis, Y. (1994). A 3D finite volume scheme for the

Euler equations on adaptive tetrahedral grids. Journal of Computational

Physics, 113, pp. 249-267

94. Voland, R.T., Huebner,L.D. and McClinton,C.R.(2006). X-43A hypersonic

vehicle technology development, Acta Astronautica, 59:181-191

95. Wang, Z.J.(1996). A fast nested multi-grid viscous flow solver for adaptive

cartesian/quad grids. AIAA-96-2091

96. Wang, Z.J. (1998). A quadtree-based adaptive Cartesian/quad grid flow

solver for Navier-Stokes equations. Computers and Fluids,27(4):529-549

97. Xiangying Chen, and Ge-Cheng Zha.(2009). A hybrid Cartesian-body fitted

grid approach for simulation of flows in complex geometries. AIAA-2009-

3880

98. Ya’eer Kidron, Yair Mor-Yossef, and Yuval Levy (2010). Robust cartesian

grid solver for high Reynolds number turbulent simulations. AIAA Journal,

Vol.48, No.6, June.

99. Yang, G., Causon, D.M., Ingram, D.M., Saunders, R. and Batten, P.(1997a).

A cartesian cut cell method for compressible flows. Part A: Static body

problems. Aeronautical Journal, 101(2):47-56,February 1997

100. Yang, G., Causon, D.M., Ingram, D.M., Saunders, R. and Batten, P.(1997b).

A cartesian cut cell method for compressible flows. Part B: Moving body

problems. Aeronautical Journal, 101(2):57-65, February 1997

192

193

APPENDIX-1

The cell data structure used for the GPU programming and important parts of the

GPU program with brief explanation is given

typedef union cell {

 CLEAF item;

 CNODE attr;

} CELL;

typedef struct {

 char level; char ncel; unsigned char load; unsigned char celllev; unsigned

short i; unsigned short j; unsigned short k; unsigned int lev; unsigned int marker;

real *U; real *Us

typedef struct {

 char st; char ncel; unsigned char freeze; unsigned char load; unsigned char

celllev;

 unsigned short i; unsigned short j; unsigned short k; unsigned int lev;

unsigned int marker; ; real* Ub; struct PTCL *pcp; union cell *Nb[6];

} CLEAF;

 typedef struct{

 real *U; real *Us; real *Ub; struct PTCL *pcp; union cell *next; union

cell *Nb[6];

} CNODE;

typedef struct PTCL {

 real Pt[P_DIM];

}PCELL; /* partial cell parameters structure */

The “CELL” is a union of two structures “CLEAF “and “CNODE “.A node cell is a

cell which has further children. A leaf cell is the cell which has no further divisions

and has the following information.

 1) One character (1 byte) to represent as to how many levels of division it has

undergone char level

2) One character to represent whether the leaf cell is gas cell, partial cell or

 body cell char ncel

3) The I,J,K of the parent cell is stored as unsigned short (2 bytes) unsigned

short i, unsigned short j, unsigned short k

194

4) The position of the leaf cell in the parent cell is obtained by 32 bits of

 information (7 levels of division and each direction represented by one bit)

 and is represented by unsigned integer (4 bytes) unsigned int lev

5) Conserved variable is stored in double precision which is 8 bytes (defined as

real). Pointer to the conserved variable vector, both the previous time step as

well as the updated one is .stored in cell data structure and later suitable

memory allocation is done depending upon the type of problem (for

chemically reacting flow with combustion vector of 15 conserved

 variables is used) real *Us; real *U;

6) Pointer to the boundary cell conserved variable vector real *Ub

7) Computation load for the cell. For gas cell the load is unity and for partial

 cell the load is 1.4. For each neighbour being split, the load is augmented

 by unity and for neighbour’s neighbour being split it is augmented by 10

 unsigned char load

8) Pointer to the partial cell structure (used if the cell is partial) struct PTCL

 *pcp

9) The partial cell has 10 values (Pt[P_DIM]) each of which are represented in

double precision. These are 6 partial fluxing areas of faces, 3 direction cosines

of the normal to the wall and distance from the cell center to the wall

 real Pt[P_DIM]

10) Pointer to the 6 neighbouring cells, one cell adjacent to each face is

 represented union cell *Nb[6];

11) If the cell is divided then it has the information about 8 of its children

 represented by union cell *next

 Each CPU and GPU thread has the entire information about the cells in the

Machine and is represented by the following Celllinks data structure

typedef struct Celllinks_ {

 int count,gcount,pcount; int Maxgcount,Maxpcount;

 int ggrp0,Maxggrp0, ggrp1,Maxggrp1, int ggrp2,Maxggrp2;

 int ggrp3,Maxggrp3, ggrp4,Maxggrp4, pgrp0,Maxpgrp0;

 int pgrp1,Maxpgrp1, pgrp2,Maxpgrp2, pgrp3,Maxpgrp3;

 int Tstep,StabControl; int Nx,Ny,Nz;

195

 int TRANSIENT,NAVIE,ROE,AUSM; char RFILE[128];

 int Bound[6], Maxus,Nus; unsigned long Cell_offset,U_offset,Pcp_offset;

 real *Us, *GpuUs;

 real Init_sum,Stab, a[320], *Hx,*Hy,*Hz;

 real FsM,FsT,FsP,JetM,JetT,JetP;

 CELL *C_arr,*d_C_arr, **cinfo, **pcell, **gcinfo;

 CELL **gpcel,**g0cell, **g1cell,**g2cell, **g3cell, **p0cell, **p1cell, **p2cell;

 CELL **p3cell; CELL **gg0cell;

 CELL **gg1cel, **gg2cell, **gg3cell, **gp0cell, **gp1cell;

 CELL **gp2cell, **gp3cell, **CApart **Bcell;

 struct Celllinks_ *GPUCelllink;

 int Gpu; real *Uptr; real *GPUUptr; PCELL *GPUPcpptr;

 CELL *GPUCellptr; PSYNC mlock; PSYNC glock; real Uindata[U_DIM];

 int Gpuubcount; int Gpuubcountmax;

 int transloc; real * Ub; real * GpuUb;

} CELLLINKS;

The CELLLINK structure has all the information needed for computation of which

the important ones are given below

1) Number of gas cells in the particular CPU or GPU Celllinks- int gcount

2) Number of partial cells in the Celllinks int pcount

3) Total number of partial cells in the sub-domain int Maxpcount

4) Total number of gas cells in the sub-domain int Maxgcount

5) Total number of cells in X,Y & Z direction in the sub-domain int Nx,Ny,Nz

6) Number of partial cells and gas cells of group0 to group3 in the thread denoted

through Celllink data structure int pgrp0, pgrp1, pgrp2, pgrp3, ggrp0,

ggrp1, ggrp2, ggrp3

7) Total number of partial cells and gas cells of group0 to group3 in the sub-domain

int Maxpgrp0,Maxpgrp1,Maxpgrp2,Maxpgrp3,Maxggrp0, Maxggrp1,

Maxggrp2, Maxggrp3

8) All the flow variable inputs and the flow properties and the domain size

represented by double precision real [320]

9) Pointers to the parent cell vertices real *Hx,*Hy,*Hz

10) Pointer to conserved variable vector of cells in present CPU thread

 real *Us

196

11) Pointer to conserved variable vector of cells in GPU thread real *GPuUs

12) Pointer to array of partial and air cell groups CELL**gpcel,**g0cell,

g1cell,g2cell, **g3cell, **p0cell, **p1cell, **p2cell,**p3cell

13) Pointer to array of partial and air cell groups in GPU CELL**g0cell,

g1cell,g2cell, **g3cell, **p0cell, **p1cell, **p2cell,**p3cell

14) Pointer to GPU celllinks struct Celllinks_ *GPUCelllink

15) Initial guess values of the conserved variable vector real Uindata[U_DIM]

16) Pointer to boundary cell conserved variable vectors real * Ub

17) Pointer to boundary cell conserved variable vectors in GPU real * Ub

The program below gives the SetupLinks function to generate the Celllink data

structure which would have the information as given above. The full list of the

function with all statements, variable declaration, and include files are avoided to

make the presentation short and concise. The number of celllink data structure is the

equal to sum of total CPU cores and GPU accelerators. The celllink contains all the

essential information needed for calculation of each cell.

int SetupLinks(int cores){

Nthreads = Ncore + Ngpu;

Celllinks = (CELLLINKS *)malloc(sizeof(CELLLINKS)*Nthreads);

 Pth = (pthread_t *)malloc(sizeof(pthread_t)*(Nthreads+Ngpu));

for (i=0;i<Nthreads;i++) {

 Celllinks[i].Hx = Hx;

 Celllinks[i].Hy = Hy;

 Celllinks[i].Hz = Hz;

 memcpy(Celllinks[i].a,a,320*sizeof(real));

 memcpy(Celllinks[i].Bound,Bound,6*sizeof(int));

 Celllinks[i].Nx = Nx;

 Celllinks[i].Ny = Ny;

 Celllinks[i].Nz = Nz;

 Celllinks[i].d_C_arr = GPUCellptr;

 Celllinks[i].C_arr = Cellptr;

 Celllinks[i].Cell_offset = Cell_offset;

 Initdata(Celllinks[i].Uindata);

 count = Celllinks[i].count;

 Celllinks[i].pcount = pcellcount(Celllinks[i].clist);

 Celllinks[i].pgrp0 = pgrp0count(Celllinks[i].clist);

 Celllinks[i].pgrp1 = pgrp1count(Celllinks[i].clist);

197

 Celllinks[i].pgrp2 = pgrp2count(Celllinks[i].clist);

 Celllinks[i].pgrp3 = pgrp3count(Celllinks[i].clist);

 Celllinks[i].ggrp0 = ggrp0count(Celllinks[i].clist);

 Celllinks[i].ggrp1 = ggrp1count(Celllinks[i].clist);

 Celllinks[i].ggrp2 = ggrp2count(Celllinks[i].clist);

 Celllinks[i].ggrp3 = ggrp3count(Celllinks[i].clist);

 Celllinks[i.gcount = count - Celllinks[i].pcount;

}

}

The program statements below denote the launching of CPU threads.

for(i=0;i < (Nthreads); i++) {

 pthread_create(Pth+i,NULL,CpuThread,(void*)(Celllinks+i));

}

For dual quad core machine with 2 GPU accelerators, Nthreads is 10.(2*4+2). The

extra CPU threads which are equal to number of GPU accelerators are meant to

control the GPU threads. The pthread_create function for CPU threads executes the

CpuThread function with argument Celllinks+i. The CpuThread function does the

computation of all the cells that are represented in Celllinks[i] of i
th

 CPU core.

The program, statements to create GPU threads is given below

for(i=Nthreads;i < (Nthreads+Ngpu); i++) {

pthread_create(Pth+i,NULL,GpuThread,(void*)(Celllinks+i-Ngpu));

 }

. The function GpuThread with corresponding GPU celllink pointer containing all

the information about the groups of the cells that need to be computed is passed as the

argument. In the GPU thread function all the information in celllink data structure of

the GPU thread celllink residing in CPU is copied to the GPU through the

copygpumemory function which uses the cudaMemcpy utility function. After all the

information of celllinks is copied to GPU, the cudamain function is called which

launches the GPU kernels involving computation in GPU cores in groups of cells.

Computation in GPU is done on one dimensional grid with a certain number of thread

blocks. Number of thread blocks is the number of cells of particular group divided by

the number of threads in a block. The number of threads in a block denoted by

Ngridg in the program statements below is a user defined value. For the present

198

code, 128 threads in a thread block gave very good performance for a wide range of

problems as compared to other values.

 Ng = clink->ggrp0;

 MaxThds=128;

 if(Ng > 0) {

 Ngridg = Ng/MaxThds;

 dim3 grids (Ngridg,1);

Once the grid with number of thread blocks and number of threads per block is

identified (dim3 grids (Ngridg,1);) as given by the program statements above, the

next step is to convert the shared memory of the GPU Streaming Multi-Processor

(SM) to L1 cache for faster memory access. This is done through CUDA utility

statement as given below.

cutilSafeCall(cudaFuncSetCacheConfig(Gpucalcg0,cudaFuncCachePreferL1));

After this, the important task of launching GPU Kernels for computation in GPU

cores through CUDA function call is done for different groups of cells one after

another. The following program statement below gives the GPU Kernel launch for

group 0 type cells.

Gpucalcg0<<<grids,gthrds>>>

(clink->GPUCelllink,MaxThds,Ng,SEGSIZE,stabloc);

The above statement gives the command to launch the GPU Kernel to calculate the

group 0 type cells of Ng in number with grid containing the certain number of thread

blocks and each thread block containing MaxThds number of threads. The pointer to

the Cellinks structure in GPU which contains the entire information needed for flow

computation, clink->GPUCelllink is passed as the argument and stabloc is the

convergence factor which is to be obtained from the calculation. Once the GPU

Kernel is launched, then the calculation of group 0 cells of the function

d_calc_grp0gcell(n*SEGSIZE,count,cinfo,clink->GpuUs+Stabloc)is done in GPU. In

GPU this function gets executed in clusters of 32 cells at a time.

The computer program with important functions and only important statements are

listed below for brevity.

199

void *GpuThread(void *dummy) {

 int i=0,size,size1,size2,Gpu;

 CELLLINKS *clink;

 clink = (CELLLINKS *)dummy;

 real totcpu,prevcpu,cpu,stcpu,upt,maint,copyt;

 pthread_mutex_lock(&mulock);

 psync_slave_init(&(clink->glock));

 Gpu = clink->Gpu-1;

 SetGpuDevice(Gpu);

 cudaSetDeviceFlags(cudaDeviceBlockingSync);

 setupgputhread(dummy);

 size = (sizeof(real)*((U_DIM+EXMEM)*clink->Nus));

 size1 = (sizeof(real)*((U_DIM)*clink->Nus));

 size2 = (sizeof(real)*(clink->Nus));

 if(size != 0) {

 cutilSafeCall(cudaMemcpy(clink->GPUUptr,clink->Us,size,

 cudaMemcpyHostToDevice));

 }

 cudainit(clink);

 Gpuready++;

 pthread_mutex_unlock(&mulock);

// Wait here for trigger

 while (1) {

 wait_master(&(clink->glock));

 psync_wait_master(&(clink->glock));

 UpdateGpu(clink);

 cudamain(clink);

 cutilSafeCall(cudaThreadSynchronize());

 psync_signal_master(&(clink->glock));

 cudaCopyUgrps(clink);

 cutilSafeCall(cudaThreadSynchronize());

 }

void * setupgputhread(void *dummy) {

 allocgpuallmemory(dummy);

 allocgpumemory(dummy);

 copygpumemory(dummy);

 return NULL;

}

void * copygpumemory(void *dummy) {

 CELL *el;

 int j,i;

 CELLLINKS *clink,*GPUCelllink;

 clink = (CELLLINKS *)dummy;

200

 GPUCelllink = clink->GPUCelllink;

 cutilSafeCall(cudaMemcpy(clink->Hx,Hx,

 (clink->Nx+1)*sizeof(real),cudaMemcpyHostToDevice));

 cutilSafeCall(cudaMemcpy(clink->Hy,Hy,

 (clink->Ny+1)*sizeof(real),cudaMemcpyHostToDevice));

 cutilSafeCall(cudaMemcpy(clink->Hz,Hz,

 (clink->Nz+1)*sizeof(real),cudaMemcpyHostToDevice));

 for(i=0;i<clink->ggrp0;i++) {

 clink->g0cell[i]=

 (CELL *)((unsigned long)(clink->g0cell[i])+clink->Cell_offset);

 }

 cutilSafeCall(cudaMemcpy(clink->gg0cell,clink->g0cell,

sizeof(CELL *)*clink->ggrp0,cudaMemcpyHostToDevice));

}

int cudamain(CELLLINKS *clink) {

 int Ng,Np,stabloc;

 int Ngridg,Ngridp;

 int MaxThds=MAXTHDS;

 float sttime,etime;

 dim3 gthrds(MaxThds,1);

 dim3 pthrds(MaxThds,1);

 int SEGSIZE=1;

 int Blks;

 Blks = MaxThds*16*14*10;

 stabloc = clink->Nus*U_DIM;

 Ng = clink->ggrp0;

 SEGSIZE = 1;

 if(Ng > 0) {

 Ngridg = (Ng+ MaxThds*SEGSIZE-1)/(MaxThds*SEGSIZE);

 dim3 grids (Ngridg,1);

 cutilSafeCall(cudaFuncSetCacheConfig(Gpucalcg0,cudaFuncCachePreferL1));

 Gpucalcg0<<<grids,gthrds>>>

(clink->GPUCelllink,MaxThds,Ng,SEGSIZE,stabloc);

 }

stabloc +=Ng;

 Ng = clink->ggrp1;

 SEGSIZE = (Ng+Blks-1)/Blks;

 SEGSIZE = 1;

 if(Ng > 0) {

 Ngridg = (Ng+ MaxThds*SEGSIZE-1)/(MaxThds*SEGSIZE);

 dim3 grids (Ngridg,1);

 cutilSafeCall(cudaFuncSetCacheConfig(Gpucalcg1,cudaFuncCachePreferL1));

 Gpucalcg1<<<grids,gthrds>>> (clink-

>GPUCelllink,MaxThds,Ng,SEGSIZE,stabloc);

201

 }

}

__global__ void Gpucalcg0(CELLLINKS *clink,int MaxThds,int size,int

SEGSIZE,int Stabloc) {

 int i,j,k,l,count;

 int n;

 CELL **cinfo;

 i= threadIdx.x;

 l= blockIdx.x;

 n = i+ MaxThds*l;

 count = SEGSIZE;

 if((n*SEGSIZE+count) > size) count = size - (n*SEGSIZE);

 if(count > 0) {

 cinfo = clink->gg0cell;

 d_calc_grp0gcell(n*SEGSIZE,count,cinfo,clink->GpuUs+Stabloc);

 }

}

__global__ void Gpucalcg1(CELLLINKS *clink,int MaxThds,int size,int

SEGSIZE,int Stabloc) {

 int i,j,k,l,count;

 int n;

 CELL **cinfo;

 i= threadIdx.x;

 l= blockIdx.x;

 n = i+ MaxThds*l;

 count = SEGSIZE;

 if((n*SEGSIZE+count) > size) count = size - (n*SEGSIZE);

 if(count > 0) {

 cinfo = clink->gg1cell;

 d_calc_gcell(n*SEGSIZE,count,cinfo,clink->GpuUs+Stabloc);

 }

}

202

203

PUBLICATIONS BASED ON THE THESIS

1. Ashok, V., Adimurthy, V. and George Joseph (2012). Computation of heat flux

in hypersonic flow with a Cartesian mesh using near-wall resolution. Paper

accepted for publication in Journal of Aerospace Sciences and

Technologies.

2. Ashok,V., Adimurthy, V. and George Joseph (2013). Computation of non-

equilibrium chemically reacting hypersonic flow from a Cartesian mesh with

near wall viscous resolution. Paper accepted and to be published in Journal

of Applied Fluid Mechanics, Volume 7, Number 2,April 2014.

3. Ashok, V., Harichand, M.V., Thomas.C.Babu, Adimurthy, V. and George

Joseph (2013). Acceleration of an adaptive Cartesian grid based solver for

hypersonic chemically reacting flows on a cluster of GPU based systems. Paper

under review by Journal of Parallel Computing.

4. Ashok, V., Adimurthy, V. and George Joseph (2013). Heat flux computation in

hypersonic flow with Cartesian mesh using hybrid solution methodology.

Paper accepted for publication in International Review of Aerospace

Engineering (IREASE).

